

Changes in blood cell deformability in Chorea-Acanthocytosis and effects of treatment with dasatinib or lithium

1 Felix Reichel^{1,2}, Martin Kräter^{1,2}, Kevin Peikert^{3,4}, Hannes Glaß³, Philipp Rosendahl², Maik
2 Herbig^{1,2}, Alejandro Rivera Prieto², Alexander Kihm⁵, Giel Bosman⁶, Lars Kaestner^{5,7},
3 Andreas Hermann^{3,4,8,9}, Jochen Guck^{1,2*}

4 ¹Max-Planck-Institut für die Physik des Lichts and Max-Planck-Zentrum für Physik und Medizin,
5 Erlangen, Germany

6 ²Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität
7 Dresden, Dresden, Germany

8 ³Translational Neurodegeneration Section “Albrecht Kossel”, Department of Neurology, University
9 Medical Center Rostock, University of Rostock, Rostock, Germany

10 ⁴Division for Neurodegenerative Diseases, Department of Neurology, Technische Universität
11 Dresden, Dresden, Germany

12 ⁵Department of Experimental Physics, Saarland University, Campus E2 6, Saarbrücken, Germany

13 ⁶Department of Biochemistry, Radboud UMC, Nijmegen, The Netherlands

14 ⁷Theoretical Medicine and Biosciences, Saarland University, Building 61.4, 66421 Homburg,
15 Germany

16 ⁸Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Rostock/Greifswald, Rostock,
17 Germany

18 ⁹Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany

19 *** Correspondence:**

20 Jochen Guck

21 Jochen.guck@mpl.mpg.de

22 **Keywords:** chorea-acanthocytosis, blood cell deformability, real-time deformability cytometry,
23 dasatinib, lithium, cell mechanics

24 Abstract

25 Misshaped red blood cells (RBCs), characterized by thorn-like protrusions known as acanthocytes, are
26 a key diagnostic feature in Chorea-Acanthocytosis (ChAc), a rare neurodegenerative disorder. The
27 altered RBC morphology likely influences their biomechanical properties which are crucial for the
28 cells to pass the microvasculature. Here, we investigated blood cell deformability of 5 ChAc patients
29 compared to healthy controls during up to one-year individual off-label treatment with the tyrosine
30 kinases inhibitor dasatinib or several weeks with lithium. Measurements with two microfluidic
31 techniques allowed us to assess RBC deformability under different shear stresses. Furthermore, we
32 characterized leukocyte stiffness at high shear stresses. The results show that blood cell deformability
33 – including both RBCs and leukocytes – in general is altered in ChAc patients compared to healthy
34 donors. Therefore, this study shows for the first time an impairment of leukocyte properties in ChAc.
35 During treatment with dasatinib or lithium, we observe alterations in RBC deformability and a stiffness
36 increase for leukocytes. The hematological phenotype of ChAc patients hints at a reorganization of the
37 cytoskeleton in blood cells which partly explains the altered mechanical properties observed here.
38 These findings highlight the need for a systematic assessment of the contribution of impaired blood
39 cell mechanics to the clinical manifestation of ChAc.

40 1 Introduction

41 Chorea-acanthocytosis/VPS13A disease (ChAc) is a rare monogenetic neurodegenerative disease of
42 the young adulthood affecting multiple systems other than the central nervous system, e.g., the red
43 blood cells (RBCs) (1–3). ChAc is characterized by various movement disorders (due to a degeneration
44 mainly of striatal neurons), epilepsy, cognitive decline and misshaped spiky RBCs, the latter being
45 referred to as acanthocytes (1,2,4,5). The autosomal-recessive condition is caused by loss of function
46 mutations in the *vacuolar protein sorting 13 homolog A (VPS13A)* gene (6–10). Therefore, the term
47 “VPS13A disease” has been recommended to replace the historical, more descriptive terminology (11).
48 A disease-modifying therapy has not been established so far.

49 It is still unclear, how exactly the loss of function of VPS13A leads to the manifestation of the cellular
50 and clinical phenotype. VPS13A localizes at different membrane contact sites and is most probably
51 involved in non-vesicular lipid transport as it is assumed also for the other members of the VPS13
52 protein family (for review, see Leonzino, Reinisch and De Camilli, 2021) (12–15). Two downstream
53 mechanisms are considered to be important drivers of ChAc pathophysiology: decreased
54 phosphoinositide-3-kinase (PI3K) signaling and increased activity of Src family tyrosine kinase Lyn
55 (for review, see Peikert et al. 2018 (2)).

56 Active Lyn kinase accumulates in ChAc RBCs and hyperphosphorylates membrane proteins such as
57 band 3 protein. Since band 3 is a structural protein, linking the cytoskeleton to the plasma membrane,
58 it is likely to be causally involved in the genesis of the spiky morphology. Accumulation of active Lyn
59 kinase was also found to be related to impaired autophagic flux (16,17). These phenotypes could be
60 reversed by *in vitro* treatment with tyrosine kinase inhibitors (TKI) such as the Src kinase family
61 inhibitor dasatinib (16). In a *Vps13a* knockout mouse model, the more specific Lyn kinase inhibitor
62 nilotinib improved both the hematological and neurological phenotypes by improving autophagy and
63 preventing neuroinflammation (18). In their recent work, Peikert et al., 2021 (19) report on single
64 individual treatment approaches targeting Lyn kinase with dasatinib in ChAc patients. They showed
65 that initially reduced F-actin signal, increased osmotic fragility and impaired autophagy were partially
66 restored in ChAc RBCs.

67 Furthermore, disturbed signaling via Phosphoinositide-3-kinase (PI3K) has been also identified as
68 relevant in the pathophysiology of ChAc patients. Reduced signaling via the PI3K-Rac1-PAK pathway
69 was reported to lead to disordered actin polymerization (20). Additionally, in other cells, altered PI3K
70 signaling caused a decreased ORAI1 expression and store-operated Ca^{2+} entry (SOCE), subsequently
71 disturbed Ca^{2+} homeostasis and apoptosis which could be partly reversed by *in vitro* lithium treatment
72 (21–23).

73 The rather late onset of the disease at the age of early adulthood and the slow progression rate (1,3,24)
74 lead to the assumption of a dependency between the altered RBC properties and neuronal degeneration:
75 Changes in the mechanical properties of the RBCs and hence reduced passage in micro-vessels and
76 capillaries may impair oxygen supply in certain areas of the brain that could over time accumulate to
77 tissue alterations leading to the symptoms described (25).

78 Altered RBC morphology is often linked to a change in cell mechanics which may lead to impaired
79 blood flow (26,27). Until now, the effect of acanthocytes in ChAc patients on the pathophysiology of
80 the disease remains elusive. Here, we describe, for the first time, altered deformability of blood cells
81 from ChAc patients including white blood cells (WBCs). In a second step, we observed these
82 parameters during individual off-label treatments with dasatinib or lithium, each targeting one of the
83 signaling pathways believed to be involved in the genesis of the RBC phenotype.

84 Deformability was measured using two techniques that assess the response to different ranges of shear
85 stresses acting on the cells: shape analysis of RBCs at low shear stress (0.1-3 Pa) (28) and real-time
86 fluorescence and deformability cytometry (RT-FDC) (29,30) at high shear stress (ca. 100 Pa). RBC
87 shape analysis only assesses the deformability of RBCs because the stresses are too low to deform
88 WBCs and the throughput is too low to measure a sufficient number of WBCs. In contrast, RT-FDC
89 was used to characterize the mechanics of both, RBCs and WBCs. In RT-FDC on RBCs, the
90 interpretation of the deformation data is not as straight forward as for the RBC shape analysis because
91 the RBCs undergo a non-trivial shape change here. We chose to use both methods to have a
92 comprehensive image of the blood cell deformability at different stresses. We demonstrate that the
93 deformability of all blood cells is affected in ChAc patients and this is further modulated by the
94 treatments. This highlights that monitoring blood cell mechanical properties of ChAc patients during
95 the course of disease and possible treatments can increase our understanding of this disease.

96 2 Materials and Methods

97 2.1 Cell source and reagents

98 We included 5 ChAc patients in this study for whom diagnosis was confirmed by Western blot
99 (absence of chorein/VPS13A protein) and genetic testing (31). The clinical parameters of the patients
100 are listed in Table S1 and complete blood count, RBC indices and hemolytic parameters are listed in
101 Table S2. Further information for P1-P3 can be found in Peikert et al., 2021 (19). Patients and healthy
102 control blood donors were enrolled in ongoing studies on the pathogenesis and natural history of
103 neurodegenerative diseases approved by the institutional review board of the Technische Universität
104 Dresden, Germany (EK 45022009, EK 78022015). The ChAc patients were treated with dasatinib (P1-
105 P3) or lithium (P4-P5) in the context of an individual off-label therapy based on the above described
106 preclinical evidence. Standard dose of 100 mg dasatinib per day was administered orally, as it was
107 lithium for which serum lithium concentration target range was defined as 0.6-0.8 mmol/l. Treatment
108 started after the blood for the baseline measurements was taken.

110 2.2 RBC shape analysis at low shear stress

111 The distribution of shapes for RBCs flowing through a narrow capillary at a fixed flow condition is
112 directly linked to the distribution of shear moduli within the population. Thus, changes in the shape
113 distribution are directly linked to a change of cell mechanics in the sample. This approach and the
114 experimental design are described in detail in Reichel et al., 2019 (28). Here, cells flow through a
115 roughly 5 mm long measurement channel that is 10 μm wide, and their shapes and dynamics are tracked
116 at the end of the channel over a length of 435 μm . Cells were recorded with the same setup used for
117 real-time deformability cytometry (29) using a different microfluidic chip. Examples of cells flowing
118 through the region of interest are shown in figure 1A,B and in supplementary videos S1-S8.

119 The shape analysis introduced in Reichel et al., 2019 (28), comprising the RBC shapes tumblers, tank-
120 treaders, parachutes and multilobes, cannot directly be used for samples containing acanthocytes
121 because their shape at rest differs from that of healthy RBCs. Further, acanthocytes show shapes not
122 observed for healthy cells (discocytes or normocytes) when deformed by the flow in the channel. For
123 this study, cells flowing through a square channel with a width of 10 μm at cell velocities ranging up
124 to 3 mm/s were characterized by their membrane morphology as normal looking (referred to as
125 normocytes) or as acanthocytes if they showed thorn-like protrusions. We did not further distinguish
126 between acanthocytes and echinocytes but argue that the mechanical properties of both cell types
127 should be very close (32). Furthermore, cells were classified as either deformed by the flow or still
128 maintaining their resting shape (undeformed). This classification was done by eye. We chose the
129 channel dimension of $10 \times 10 \mu\text{m}$ because in such channels, RBCs undergo a sharp transition from
130 undeformed discocyte to parachute shape with a low probability of other transient shapes (28) which
131 makes it well suited to describe the deformed state of the cells. A change of the cell mechanical
132 properties should manifest in a change of the fraction of deformed cells in the sample and that the
133 velocity at which the majority of RBCs get deformed is shifted to higher values. For examples see
134 figure 1A,B.

135 The classification was done by eye from the recorded videos of cells passing the region of interest.
136 This resulted in a curve with probabilities to find cells in a deformed state for a given range of
137 velocities. The resulting curve for healthy RBCs is given in figure 2A (data from Reichel et al., 2019
138 (28), 3 control samples). To characterize differences to ChAc patient cells and changes on the cells
139 during treatment, a limited exponential growth function $P = 1 - e^{-\lambda \cdot v}$, with cell velocity v , was fitted
140 to the data. With this function, the probability to deform at $v = 0$ is zero and for very high velocities
141 the probability converges to 100% which motivated this function because cells will eventually deform
142 at high velocities. The cell deformability is characterized with the *growth rate* λ which describes how
143 quickly the cells reach a deformed state. The fitted curve for the control values is also depicted in
144 figure 2A. A higher growth rate would indicate that cells are more deformable.

145 The shape analysis method is not suited to measure the deformability of WBCs, because the stresses
146 acting the cells are too low and also the throughput of the method is not high enough to capture a
147 sufficient number of cells.

148 2.3 Real-time fluorescence and deformability cytometry (RT-FDC)

149 The setup of real-time fluorescence and deformability cytometry (RT-FDC) is described in detail in
150 Otto et al., 2015 (29) and Rosendahl et al., 2018 (30). In brief, flow is introduced into a microfluidic
151 chip with the help of syringe pumps and cells get deformed by hydrodynamic stresses as they pass a
152 narrow constriction, still larger than their own size. The chip is mounted on an inverted microscope
153 (Axiovert 200M, ZEISS, Oberkochen, Germany) and images are obtained at the end of the constriction

154 with a CMOS camera (Mikrotron, Unterschleissheim, Germany). Camera and syringe pump are
155 controlled via the measuring software ShapeIn (Zellmechanik Dresden, Dresden, Germany). ShapeIn
156 analyzes the recorded images in real-time and computes a contour and projected area for each cell. The
157 deformation parameter used in RT-FDC is defined as 1-circularity and is calculated from the contour's
158 area and perimeter using: deformation = $1 - 2 \cdot \sqrt{\pi \cdot \text{Area}} / \text{perimeter}$, illustrated on the example of
159 a deformed RBC in figure 1C. As introduced by Toepfner et al., 2018 (33), the data from RT-FDC
160 experiments can be used to distinguish between different types of blood cells. These strategies were
161 used here to selectively study the deformation and mechanics of RBCs, lymphocytes, and myelocytes
162 from ChAc patients (see also SI text and fig. S5A,B).

163 Because the stresses required to deform RBCs are smaller than for leukocytes, both were measured
164 under different conditions. For measurements on leukocytes, citrate blood was resuspended in a
165 viscosity-adjusted measurement buffer (phosphate saline buffer without Mg^{2+} and Ca^{2+} (PBS-) containing
166 0.5% (w/v) methyl cellulose (4000 cPs, Alfa Aesar 036718.22, CAS# 9004-67-5); adjusted in
167 HAAKE Falling Ball Viscometer type C (Thermo Fisher Scientific, Dreieich, Germany) using ball
168 number 3 to a viscosity of 15 mPa s) at a ratio of 1:20. The increased viscosity of the buffer also
169 increases the stresses acting on the cells inside the channel. Measurements were performed in channels
170 with $20 \times 20 \mu\text{m}$ cross-section at a flow rate of 0.08 $\mu\text{l/s}$. Example images of a deformed lymphocyte
171 and myelocyte are shown in figure 1D and E, respectively. To decouple effects of the cell size on the
172 deformation, the Young's modulus was computed for leukocytes as described in Mokbel et al., 2017
173 (34). Since the derivation of Young's moduli for this system is only valid for initially spherical cells
174 (34,35), it cannot be calculated for RBCs.

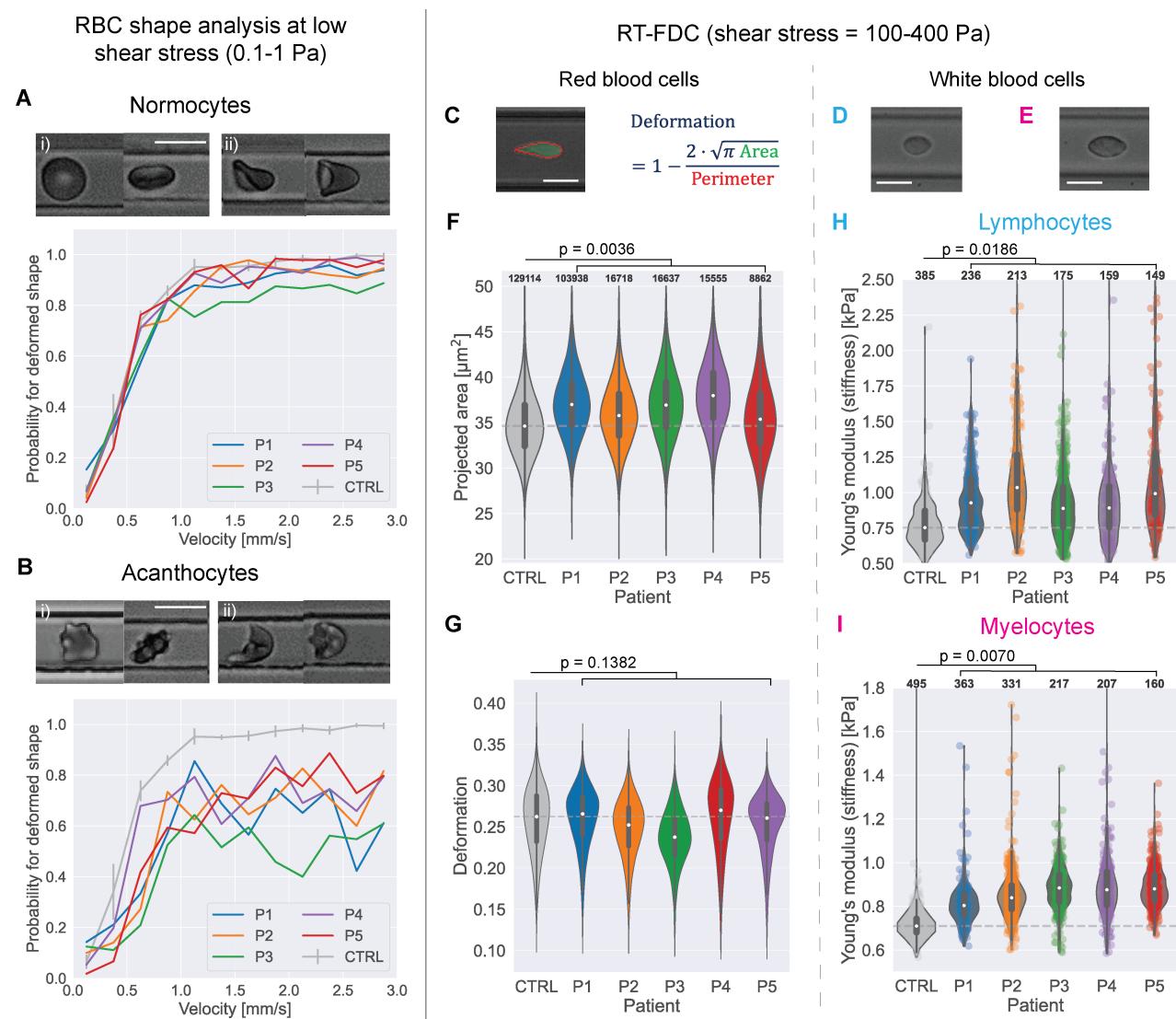
175 RBC measurements were performed on an RT-FDC setup with a fluorescence module described in
176 detail in Rosendahl et al., 2018 (30). Whole blood was resuspended in the same measurement buffer
177 described above at a ratio of 1:200. The buffer was complemented with 2.5 μM syto13 nucleic acid
178 stain (Thermo Fisher Scientific, Dreieich, Germany) to mark for the reticulocytes in the sample.
179 Fluorescence was excited with a 60 mW, 488 nm laser at 8% power (OBIS 488-nm LS 60 mW,
180 Coherent Deutschland) and the signal was measured with an avalanche photodiode (MiniSM10035;
181 SensL Corporate, Cork, Ireland). Measurements were performed in channels with a $20 \times 20 \mu\text{m}$ cross-
182 section at a flow rate of 0.02 $\mu\text{l/s}$. The control data for the RT-FDC measurements on RBCs was not
183 measured for this study but taken from 10 control samples for Rosendahl et al., 2018 (30) which were
184 measured under the same conditions (data shown in figure S4E,F).

185 2.4 Data analysis and data availability

186 Data was analyzed and plotted using custom python scripts. A detailed documentation can be found
187 here: <https://gitlab.gwdg.de/freiche/changes-in-blood-cell-deformability-in-chorea-acanthocytosis-and-effects-of-treatment-with-dasatinib-or-lithium>. A collection of the raw data files is on figshare:
188 <https://doi.org/10.6084/m9.figshare.c.5793482>.

190 3 Results

191 3.1 Red blood cell deformability in Chorea-Acanthocytosis


192 To investigate differences in the deformability of red blood cells (RBCs) from chorea-acanthocytosis
193 (ChAc) patients compared to that of healthy donors, we performed shape-analysis and real-time
194 fluorescence and deformability cytometry (RT-FDC) measurements on the blood of 5 patients (P1-P5)
195 and compared it to measurements of healthy controls. The results are depicted in figure 1A,B and 1F,G.
196 Every velocity bin of 0.25 mm/s in figure 1A and B includes approx. 100 cells for each patient. The

197 shape-probability curves of normocytes (fig. 1A) and acanthocytes (fig. 1B) show that RBCs from
198 ChAc patients are less likely to deform in channel flow. It should be mentioned that also control
199 samples can include acanthocyte-like cells but to a much lesser extent than in patient samples. The
200 analysis for the control samples only included normocytes. Acanthocytes are clearly less likely to
201 deform due to flow even for higher flow velocities.

202 Analysis of the exponential growth rate (see fig. 2A) of control and ChAc normocytes is depicted in
203 figure 2B and showed that the growth rate for control normocytes was higher which indicated that the
204 cells are were deformable. This is in line with findings from Rabe et al., 2021 (32) which reported
205 similar results for ChAc normocytes. A comparison for acanthocytes was not possible because they
206 were not present in sufficient numbers in control samples.

207 The RT-FDC measurements showed that the RBCs of ChAc patients had a slightly larger projected
208 area than those from healthy donors (fig. 1F, effect size of $+1.89 \mu\text{m}^2$, $p=0.0036$ computed with linear
209 mixed effect models (36)). No significant difference between control and ChAc RBCs' deformation
210 could be detected ($p=0.1382$, fig. 1G).

211

213 **Figure 1: Blood cell deformability of ChAc patients compared to healthy control blood.** (A) Example
 214 shapes of normal, discocyte RBCs (normocytes) in an (i) undeformed state and (ii) deformed by flow during
 215 low shear stress flow in a 10 μm channel. The diagram shows the probability to find normocyte cells from the
 216 sample in a deformed state at a given cell velocity in the channel for the acanthocyte patients and the mean curve
 217 from 3 control measurements. Error bars represent SEM. scale bar represents 10 μm (B) Example shapes of
 218 acanthocytes in an (i) undeformed state and (ii) deformed by flow. Below is the shape probability diagram for
 219 the acanthocytes and the control curves. (C) Example shape of an RBC in RT-FDC and representation how the
 220 deformation parameter is computed. All scale bars represent 10 μm . (D) Example image of a lymphocyte in RT-
 221 FDC. (E) Example image of a myelocyte. (F), (G) Projected area within the contour and deformation of RBCs
 222 of the ChAc patients from RT-FDC measurements vs. pooled data from 10 control measurements (full data in
 223 fig. S4). White dots represent the median value; grey box in the violin shows inter-quartile range (IQR) and
 224 extended lines 1.5 \times IQR. Dashed grey line shows the median control value. P-values were calculated with
 225 linear-mixed effect models as described in Herbig et al., 2018 (36). Numbers on top of the plots indicate the
 226 number of observations per violin. (H) Young's modulus of lymphocytes from ChAc patients vs. control (n=1).
 227 (I) Young's modulus of myelocytes from ChAc patients vs. control (n=1).

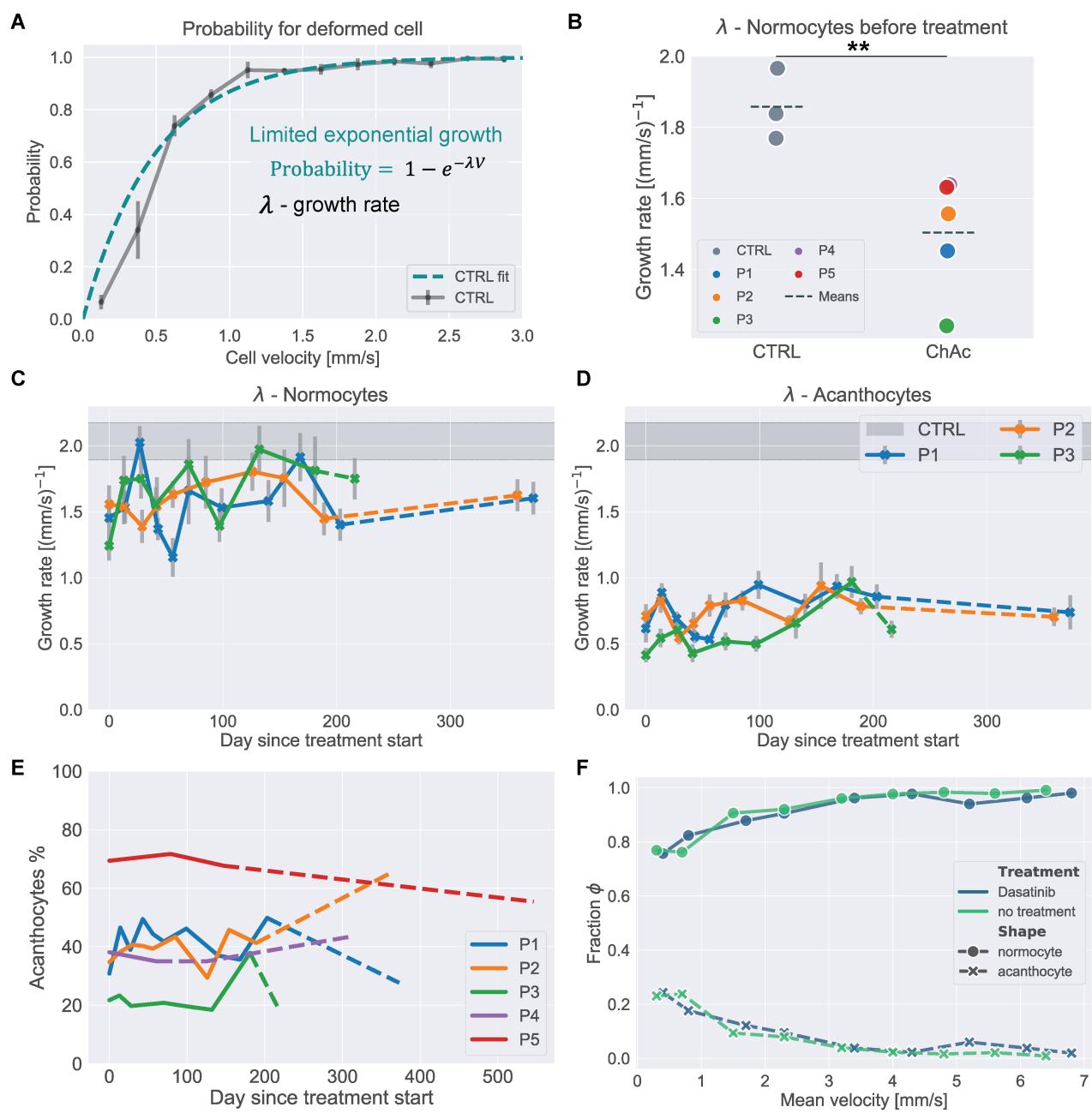
228 3.2 White blood cell deformability in Chorea-Acanthocytosis

229 In RT-FDC measurements on whole blood it is possible to distinguish different cell types (see materials
230 and methods, SI text and Töpfner et al., 2018 (33)). Thus, we investigated mechanical differences also
231 between the leukocytes of ChAc patients and one healthy donor. We distinguished, mainly by size,
232 between all lymphocytes and cells resulting from the myeloid lineage without RBCs (myelocytes),
233 comprising all mono- and granulocytes. The myelocyte fraction mainly consisted of neutrophil
234 granulocytes (>80%).

235 Since white blood cells are spherical at rest, we can employ a model that maps the projected area and
236 the deformation to an apparent Young's modulus (34), to see differences in stiffness before, during and
237 after the treatments. As depicted in figure 1H,I, both lymphocytes and myelocytes of ChAc patients
238 were significantly stiffer than their healthy counterparts before treatment onset (lymphocytes: +240 Pa,
239 $p=0.0186$, myelocytes: +150 Pa, $p=0.0070$; effect sizes and p-values determined by linear mixed effects
240 model analysis (36)). The projected area and deformation data used to compute the Young's modulus
241 is shown in figure S5C,D.

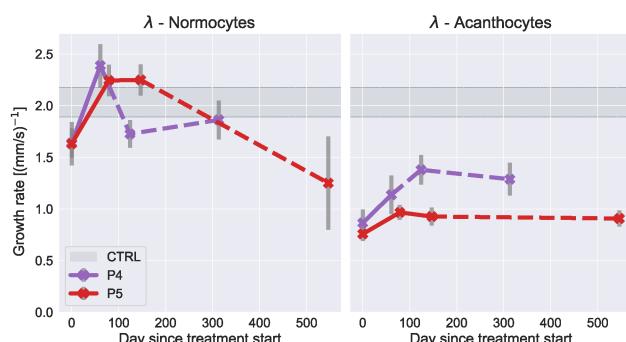
242 3.3 Dasatinib and lithium treatment effect on RBC deformability

243 3.3.1 RBC shape analysis during dasatinib or lithium treatment


244 To study the effect of dasatinib or lithium on RBC deformability of ChAc patients, we monitored RBCs
245 during treatment with shape analysis measurements and RT-FDC.

246 To compare shape-analysis data over the treatment time, a limited exponential growth was fitted to the
247 data (see fig. 2A) and the fitted growth rate was used to detect changes in the deformability during the
248 treatment time. The results for the dasatinib treatment are shown in figure 2C,D, those of the lithium
249 in figure 3. Even though one might get the impression that the growth rate showed a slight increase
250 with dasatinib treatment time for both normocytes and acanthocytes, the overall RBC deformability
251 remained unaffected by the treatment. The results pooled for all RBCs are shown in figure S1 and the
252 curves from all measurements are given in figure S2.

253 The acanthocyte count over the treatment is given in figure 2E and shows that the fraction of
254 acanthocytes remained constant within a certain range of fluctuation without a systematic trend for
255 both treatments, which was in line with the clinical data (19).

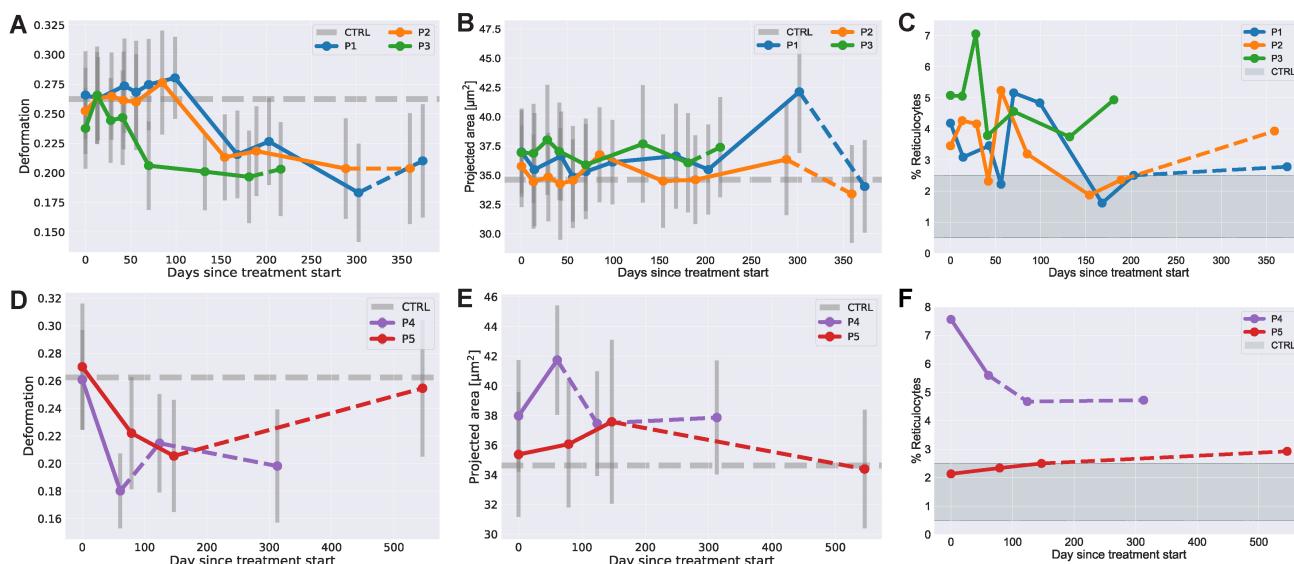

256 To check if dasatinib had a short-term effect on RBC deformability, RBCs from P3 were treated with
257 dasatinib *in vitro* and the shapes in channel flow were analyzed (for details, see SI text). The results
258 are shown in figure 2F. There was no significant difference in the deformability between control- and
259 dasatinib-treated RBCs. This indicated that the observed effects on cell deformability were likely
260 caused by long-term treatment effects, e.g., acting on erythropoiesis or indirect systemic effects.

261 For the lithium treatment, normocyte growth rate even increased above control values during the
262 treatment and recovered to, or below, pre-treatment levels after the treatment was discontinued.
263 Acanthocytes showed a slight increase in growth rate during lithium treatment. This indicated that the
264 RBCs got softer during lithium treatment but RT-FDC results showed that the cells also got larger with
265 the treatment (see fig. 4) which would make the cells more likely to deform in the channel if the overall
266 mechanics are unchanged.

268 **Figure 2: Dasatinib treatment effect on RBC deformability.** (A) Illustration of the limited exponential growth
269 function fit, used to characterize the shape probability curves presented on the control data. (B) Fitted growth
270 rate for normocytes of control samples vs samples from ChAc patients. P-value calculated by Welch's t-test (p
271 = 0.009). (C) Fitted growth rate λ of the shape probability curves from ChAc patients as a function of treatment
272 time with dasatinib for normocytes and (D) acanthocytes respectively. Dashed lines represent datapoints taken
273 after treatment was stopped. Errorbars represent standard error of the fit, calculated from the covariance matrix.
274 Gray region shows the respective value from healthy donors without treatment (Mean \pm SD). (E) Percentage of
275 acanthocytes found in each sample during shape analysis measurements for patients P1-P5. Dashed lines indicate
276 datapoints taken after the respective treatment already stopped. (F) Fraction of healthy shapes (hs) and
277 acanthocytes (ac) over cell velocity for untreated and *in-vitro* dasatinib treated RBCs from patient P3.

Changes in blood cell deformability in ChAc-Acanthocytes and effect of treatment with dasatinib or lithium

279 **Figure 3: Lithium treatment effect on RBC deformability.** Fitted growth rate λ of the shape probability
280 curves from ChAc patients as a function of treatment time with lithium for normocytes and acanthocytes
281 respectively. Dashed lines represent datapoints taken after treatment was stopped. Errorbars represent standard
282 error of the fit, calculated from the covariance matrix. Gray region shows the respective value from healthy
283 donors without treatment (Mean \pm SD).

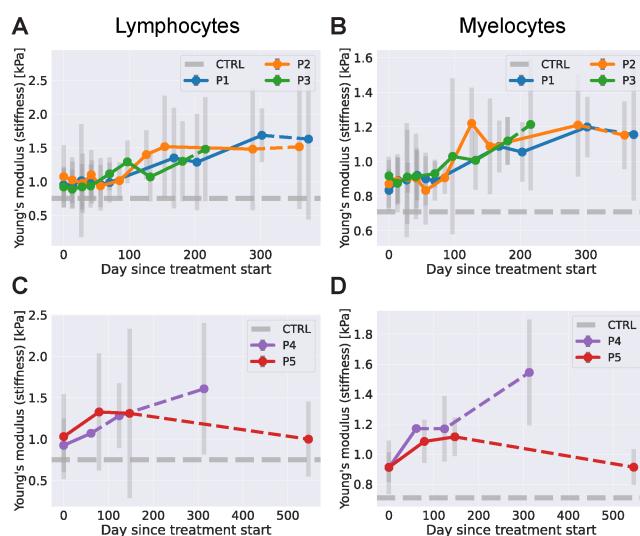

284 3.3.2 RBC deformation in RT-FDC during dasatinib or lithium treatment

285 RT-FDC results for the dasatinib treatment are shown in figure 4A-C and for the lithium treatment in
286 figure 4D-F. It can be seen that during treatment with dasatinib, the RBC deformation parameter
287 dropped for all patients between 50-100 days after treatment start, while the projected area remained
288 mainly constant with the exception of some outliers.

289 For the lithium treatment, the RT-FDC results showed that the deformation parameter decreased with
290 treatment time which was accompanied by an increase in cell size. After the treatment, the deformation
291 and area values returned almost to the control values for P5 while the values for P4 did not fully
292 recover.

293 The interpretation of deformation values for RBCs in RT-FDC cannot directly be linked to cell
294 mechanics because they undergo a non-trivial shape transition from discocyte to tear-drop shape (28).
295 A decrease of the deformation value does not necessarily mean that the cells got stiffer. To back this
296 up, we artificially stiffened RBCs from healthy donors with glutaraldehyde (37,38) or diamide (39)
297 (see SI text and fig. S3) and saw that an increasing concentration of the reagents led to an increase of
298 the deformation when working at low concentrations. At high concentrations the cell shape got fixed
299 which led to lower deformation values.

300 Since reticulocytes have been reported to have a higher projected area and lower deformation compared
301 to the whole RBC population (30), we speculated that above mentioned results might be due to
302 increased levels of reticulocytes in ChAc patients. The results for reticulocytes, labelled with syto13
303 nucleic acid stain, together with all RBCs are given in figure S4A-D. The patients' reticulocytes indeed
304 had higher projected area and lower deformation if compared to the whole RBC population which did
305 not differ from healthy controls. Qualitatively, reticulocyte area and deformation changed over
306 treatment time like the total RBC population. The fraction of reticulocytes in the blood was initially
307 higher compared to controls and slightly decreased during the dasatinib treatment closer to values from
308 healthy donors (fig. 4C). A reduction of the reticulocyte count with dasatinib treatment was also
309 reported for VPS13a^{-/-} mice phenocopying human ChAc (18). During lithium treatment P4 showed a
310 decrease during and after treatment, while P5 showed a slight increase but values were mostly in the
311 range expected for healthy individuals (0.5-2.5%).


313 **Figure 4: RBC deformation, size and reticulocyte count in RT-FDC during treatment with dasatinib or**
 314 **lithium. (A-C) RBC median deformation, projected area and reticulocyte fraction measured with RT-FDC**
 315 **before, during and after treatment with dasatinib. (D-F) RBC median deformation, projected area and**
 316 **reticulocyte fraction measured with RT-FDC before, during and after treatment with lithium. Dashed lines**
 317 **indicate time points after the treatment was stopped, dashed gray lines indicate control values without treatment.**
 318 **The red region in the reticulocyte plots indicates the range for healthy individuals reported in the literature of**
 319 **0.5-2.5%.**

320 3.4 ChAc Leukocytes stiffened during treatment with dasatinib

321 The Young's moduli of lymphocytes and myelocytes in dasatinib treatment are shown in figure 5A,B.
 322 The lithium data is shown in figure 5C,D. During treatment with dasatinib, we observed a further
 323 increase of the Young's modulus for all three patients which also persisted for the lymphocytes shortly
 324 after the treatment stopped. For myelocytes, the median Young's modulus decreased for patients P1
 325 and P2 shortly after the treatment but kept increasing for P3.

326 During treatment with lithium both patients showed an increase in lymphocyte and myelocyte stiffness.
 327 After the treatment was stopped, we observed a further increase for patient P4 and a drop back to the
 328 pre-treatment level for patient P5 approximately one year after the treatment stopped. The area and
 329 deformation data used to compute the Young's modulus is given in figure S5E,F.

Changes in blood cell deformability in ChAc-Anchoeytosis and effect of treatment with dasatinib or lithium

331 **Figure 5: Leukocyte stiffness in RT-FDC during treatment with Dasatinib or lithium.** (A) Median Young's
 332 modulus of ChAc patients' lymphocytes during dasatinib treatment. (B) Median Young's modulus of ChAc
 333 patients' myelocytes during dasatinib treatment. (C) Median Young's modulus of ChAc patients' lymphocytes
 334 during lithium treatment. (D) Median Young's modulus of ChAc patients' myelocytes during lithium treatment.

335 4 Discussion

336 Our study highlights that the deformability, not only of RBCs but of all blood cell types, was altered
 337 in ChAc patients. Shape analysis results showed a decreased deformability of ChAc RBCs compared
 338 to controls. The decreased deformability can be directly inferred from the reduced number of deformed
 339 cells at any cell velocity which was also reflected by a smaller growth rate. A reduced deformability
 340 of ChAc normocytes, deduced from cell shapes, has recently also been reported by Rabe et al., 2021
 341 (32).

342 In RT-FDC, we did not observe a change in the deformation parameter but ChAc RBCs had a larger
 343 projected area. Because deformation and size are always correlated in RT-FDC (35), this is also an
 344 indicator for a change of RBC deformability, but the interpretation of this behavior is not straight
 345 forward. To see how the deformation parameter changes when RBC stiffness is controllably changed,
 346 we treated RBCs *in vitro* with glutaraldehyde or diamide. At low concentrations, we observed an
 347 increase of the deformation parameter which shows that higher deformation parameter can also occur
 348 for stiffer RBCs.

349 While we observed larger RBCs in ChAc patients, values for the mean corpuscular volume (MCV)
 350 reported in Peikert et al., 2021 (19) (see also Table S2) did not show an increased RBC volume for
 351 patients P1-P3. Sizes reported in RT-FDC measurements are based on the projected cross-sectional
 352 area of the deformed cells. Simulations of the flow fields inside the channel suggest that the stresses
 353 near the centerline can be approximated as axisymmetric (40). Therefore, it is fair to assume that the
 354 RBCs take up an axisymmetric shape as well and the projected area is directly correlated to cell size.
 355 In automated cell counters, the MCV is determined, e.g., by impedance or light scattering
 356 measurements which require a constant deformability of RBCs for a reliable result. Thus, MCV is not
 357 a direct measurement of single cell sizes. Here, we provide a direct observation of sizes based on single
 358 cell imaging.

359 Both, shape analysis and RT-FDC indicated a change of RBC deformability during treatment with
360 dasatinib. Shape analysis experiments showed a slight increase of the growth rate with treatment time,
361 which indicated an increased deformability of both normocytes and acanthocytes. In RT-FDC, we
362 observed a sharp drop of the deformation parameter after 50-100 treatment days while the size
363 fluctuated around a constant value. Again, for RBCs a direct link between the deformation parameter
364 in RT-FDC and cell mechanics is not trivial and a decrease in deformation does not necessarily mean
365 that the cells got stiffer (see fig. S3). Even though we do not have certainty of the direction of the
366 change, we claim that RBC mechanics was altered during dasatinib treatment.

367 During lithium treatment, we also observed an increasing growth rate in the shape analysis which
368 indicated increased RBC deformability. In RT-FDC, we saw a decrease of deformation accompanied
369 by an increase in projected area. An increase in projected area and decrease in deformation hints at a
370 volume increase and a reduced surface area-to-volume ratio, which leads to an increased sphericity or
371 effective rounding of the cells. Rounder shapes lead to smaller deformation values, assuming that this
372 effect dominates any stiffness changes of the cells. The increased cell size could also explain the
373 increased deformability in the shape analysis experiments because larger cells experience higher
374 stresses and are therefore more likely to deform. All in all, these findings indicate that lithium affects
375 RBC properties in ChAc patients but because of the scarcity of the data here, one should be careful
376 with the interpretation.

377 Data from Peikert et al., 2021 indicated that with dasatinib treatment, F-actin became more localized
378 at the cortex (19). These modifications in the actin network likely contribute to changes in RBC
379 deformability (41) that we observed here.

380 Treatment with dasatinib led to a decrease of the reticulocyte fraction in the blood of ChAc patients.
381 The same effect was observed in a mouse model phenocopying human ChAc (18). Peikert et al., 2021
382 reported an abundance of the autophagy initiator Ulk1 in ChAc patients RBCs, which decreased with
383 dasatinib treatment (19). Ulk1 is connected to autophagy in erythropoiesis and could influence the rate
384 of reticulocyte production (42), providing a mechanistic link to the reticulocyte count.

385 While an impaired RBC deformability was described before for patients with other forms of
386 neuroacanthocytosis (43) this is, to our knowledge, the first time that also patients' leukocyte stiffness
387 was studied. Lymphocytes and myelocytes were both stiffer in ChAc patients compared to cells from
388 healthy donors. This is of interest as VPS13A, the gene which is known to have a loss-of-function
389 mutation in ChAc, is especially expressed in human monocytes and B-, and helper T-cells (44). Since
390 VPS13A is known to cause structural reorganizations of the cytoskeleton from studies on other cell
391 types (17,20,45), it is likely that we observed these as altered mechanical properties in leukocytes.
392 Another feature in ChAc blood is an increased expression of Lyn kinase, which is known to set the
393 threshold for B-cell activation. Mechanical changes of lymphocytes after activation have been reported
394 before (33,46). Another mechanism that could lead to altered leukocyte mechanics is an increase in
395 interleukin-1 beta (IL-1 β) that was observed in the brain of Vps13a knockout mice (18). IL-1 β not only
396 plays a key role in autoinflammation but is also known to cause re-organization of the actin
397 cytoskeleton in different cell types (47,48).

398 Young's moduli of both lymphocytes and myelocytes increased even further away from control values
399 during treatment with dasatinib or lithium. A stiffening was previously also observed for leukemic cells
400 during treatment with different chemotherapeutic agents for acute lymphoblastic leukemia
401 (dexamethasone and daunorubicin), such as dasatinib (49). Dasatinib interferes with all the pathways
402 described above and likely induces further mechanical changes in leukocytes. The inhibited activity of

403 Lyn during dasatinib treatment could cause a change in lymphocyte activation levels leading to altered
404 mechanics but the exact mechanisms for the observed leukocyte stiffening with dasatinib treatment
405 remain rather speculative at this point.

406 Overall, our results showed that the mechanical phenotype of all blood cell types in ChAc patients
407 were impaired but did not change towards regimes of healthy donors during the treatments. Clinical
408 data in Peikert et al., 2021 (19) hints on slightly improved hematological features but these did not
409 manifest in an improved neurological phenotype. This demonstrates that the techniques that were
410 utilized here are suited to measure a treatment response.

411 In general, decreased blood cell deformability often leads to clinical symptoms due to decreased cell
412 survival and secondary pathology (25–27,50). Especially, an impaired oxygen transport by altered
413 blood cell deformability should be considered in neurological diseases (51). While clinical descriptions
414 of ChAc patients focus on neurological symptoms, we highlight in this study that the effects on blood
415 deformability should not be neglected and could contribute to the clinical manifestation (through the
416 mechanisms stated above) and thus methods that are able to monitor this (as shown here) should be
417 considered as read outs for clinical trials. Our results on the impaired mechanics of leucocytes
418 especially highlights that the focus of ChAc research should not only be on RBCs but also include
419 other blood cell types.

420

421 **5 Conflict of Interest**

422 The authors declare that the research was conducted in the absence of any commercial or financial
423 relationships that could be construed as a potential conflict of interest.

424 **6 Author Contributions**

425 Conceptualization: F.R., M.K., K.P., G.B., A.H., and J.G.; Experiments—shape analysis: F.R. and
426 A.R.P., Experiments—RT-FDC: F.R., P.R., M.H., and M.K., Experiments—in-vitro shape analysis:
427 A.K.; Formal analysis: F.R., P.R., A.K., and M.K.; Supervision: L.K., A.H., and J.G.; Writing—
428 original draft, K.P. and F.R.; Writing—review and editing, F.R., M.K., K.P., G.B., L.K., A.H., and
429 J.G.; All authors have read and agreed to the published version of the manuscript.

430 **7 Funding**

431 K.P. was supported by the Else Kröner clinician scientist program and the MeDDrive program (TU
432 Dresden, Germany), as well as by the Rostock Academy for Clinician Scientists (RACS) and the
433 FORUN program (University of Rostock, Germany). A.H. was supported by the “Hermann und Lilly
434 Schilling-Stiftung für medizinische Forschung im Stifterverband”. Expenses for the off-label
435 dasatinib prescription were gratefully covered in part by the Center for Regenerative Therapies
436 Dresden (CRTD, TU Dresden, Germany) and the public healthcare insurance of the patients.

437 **8 Acknowledgments**

438 The authors thank all patients and their families for giving consent for publication of the data and the
439 healthy control subjects for participation in this study. We are especially grateful to Glenn (†) and
440 Ginger Irvine as the founders of the Advocacy for Neuroacanthocytosis Patients

441 (www.naadvocacy.org) and to Susan Wagner and Joy Willard-Williford as representatives of the NA
442 Advocacy USA (www.naadvocacyusa.org).

443 **9 Supplementary Material**

444 Supplementary Information, Figures, Table and Videos will be available online.

445 **10 Data Availability statement**

446 Raw data files and initial analysis scripts are available on figshare.com:
447 <https://doi.org/10.6084/m9.figshare.c.5793482>. Analysis documentation and creation of figure plots is
448 documented on gitlab: <https://gitlab.gwdg.de/freiche/changes-in-blood-cell-deformability-in-chorea-acanthocytosis-and-effects-of-treatment-with-dasatinib-or-lithium>.
449

450

451 **11 References**

- 452 1. Jung HH, Danek A, Walker RH. Neuroacanthocytosis Syndromes. *Orphanet J Rare Dis.*
453 (2011) 6(1):68. doi: 10.1186/1750-1172-6-68
- 454 2. Peikert K, Danek A, Hermann A. Current state of knowledge in Chorea-Acanthocytosis as
455 core Neuroacanthocytosis syndrome. *Eur J Med Genet.* (2018) 61(11):699–705. doi:
456 10.1016/j.ejmg.2017.12.007
- 457 3. Walker RH. Chorea-Acanthocytosis. In: Reference Module in Neuroscience and Biobehavioral
458 Psychology. Elsevier; (2017.). doi: 10.1016/B978-0-12-809324-5.00521-6
- 459 4. Levine IM, Estes JW, Looney JM. Hereditary Neurological Disease With Acanthocytosis: A
460 New Syndrome. *Arch Neurol.* (1968) 19(4):403–9. doi:
461 10.1001/archneur.1968.00480040069007
- 462 5. Critchley EM, Clark DB, Wikler A. Acanthocytosis and neurological disorder without
463 betalipoproteinemia. *Arch Neurol.* (1968) 18(2):134–40. doi:
464 10.1001/archneur.1968.00470320036004
- 465 6. Danek A, Bader B, Velayos-Baeza A, Walker RH. Autosomal recessive transmission of
466 chorea-acanthocytosis confirmed. *Acta Neuropathol.* (2012) 123(6):905–6. doi:
467 10.1007/s00401-012-0971-y
- 468 7. Dobson-Stone C, Danek A, Rampoldi L, Hardie R, Chalmers R, Wood N, et al. Mutational
469 spectrum of the CHAC gene in patients with chorea-acanthocytosis. *Eur J Hum Genet.* (2002)
470 10(11):773–81. doi: 10.1038/sj.ejhg.5200866
- 471 8. Rampoldi L, Dobson-Stone C, Rubio JP, Danek A, Chalmers RM, Wood NW, et al. A
472 conserved sorting-associated protein is mutant in chorea-acanthocytosis. *Nat Genet.* (2001)
473 28(2):119–20. doi: 10.1038/88821
- 474 9. Ueno S, Maruki Y, Nakamura M, Tomemori Y, Kamae K, Tanabe H, et al. The gene encoding
475 a newly discovered protein, chorein, is mutated in chorea-acanthocytosis. *Nat Genet.* (2001)
476 28(2):121–2. doi: 10.1038/88825

477 10. Nishida Y, Nakamura M, Urata Y, Kasamo K, Hiwatashi H, Yokoyama I, et al. Novel
478 pathogenic VPS13A gene mutations in Japanese patients with chorea-acanthocytosis. *Neurol*
479 *Genet.* (2019) 5(3):e332. doi: 10.1212/NXG.0000000000000332

480 11. Walker RH, Danek A. “Neuroacanthocytosis” – Overdue for a Taxonomic Update. *Tremor*
481 and Other Hyperkinetic Movements. (2021) 11(1):1–6. doi: 10.5334/tohm.583

482 12. Leonzino M, Reinisch KM, De Camilli P. Insights into VPS13 properties and function reveal a
483 new mechanism of eukaryotic lipid transport. *Biochim Biophys Acta - Mol Cell Biol Lipids.*
484 (2021) 1866(10):159003. doi: 10.1016/j.bbapli.2021.159003

485 13. Gao M, Yang H. VPS13: A lipid transfer protein making contacts at multiple cellular
486 locations. *J Cell Biol.* (2018) 217(10):3322–4. doi: 10.1083/jcb.201808151

487 14. Kumar N, Leonzino M, Hancock-Cerutti W, Horenkamp FA, Li P, Lees JA, et al. VPS13A
488 and VPS13C are lipid transport proteins differentially localized at ER contact sites. *J Cell Biol.*
489 (2018) 217(10):3625–39. doi: 10.1083/jcb.201807019

490 15. Yesshaw WM, van der Zwaag M, Pinto F, Lahaye LL, Faber AIE, Gómez-Sánchez R, et al.
491 Human VPS13A is associated with multiple organelles and influences mitochondrial
492 morphology and lipid droplet motility. *Elife.* (2019) 8. doi: 10.7554/eLife.43561

493 16. Lupo F, Tibaldi E, Matte A, Sharma AK, Brunati AM, Alper SL, et al. A new molecular link
494 between defective autophagy and erythroid abnormalities in chorea-acanthocytosis. *Blood.*
495 (2016) 128(25):2976–87. doi: 10.1182/blood-2016-07-727321

496 17. De Franceschi L, Tomelleri C, Matte A, Brunati AM, Bovee-Geurts PH, Bertoldi M, et al.
497 Erythrocyte membrane changes of chorea-acanthocytosis are the result of altered Lyn kinase
498 activity. *Blood.* (2011) 118(20):5652–63. doi: 10.1182/blood-2011-05-355339

499 18. Peikert K, Federti E, Matte A, Constantin G, Pietronigro EC, Fabene PF, et al. Therapeutic
500 targeting of Lyn kinase to treat chorea-acanthocytosis. *Acta Neuropathol Commun.* (2021)
501 9(1):81. doi: 10.1186/s40478-021-01181-y

502 19. Peikert K, Glaß H, Federti E, Matte A, Pelzl L, Akgün K, et al. Targeting Lyn Kinase in
503 Chorea-Acanthocytosis: A Translational Treatment Approach in a Rare Disease. *J Pers Med.*
504 (2021) 11(5):392. doi: 10.3390/jpm11050392

505 20. Föller M, Hermann A, Gu S, Alesutan I, Qadri SM, Borst O, et al. Chorein-sensitive
506 polymerization of cortical actin and suicidal cell death in chorea-acanthocytosis. *FASEB J.*
507 (2012) 26(4):1526–34. doi: 10.1096/fj.11-198317

508 21. Pelzl L, Elsir B, Sahu I, Bissinger R, Singh Y, Sukkar B, et al. Lithium Sensitivity of Store
509 Operated Ca²⁺ Entry and Survival of Fibroblasts Isolated from Chorea-Acanthocytosis
510 Patients. *Cell Physiol Biochem.* (2017) 42(5):2066–77. doi: 10.1159/000479901

511 22. Pelzl L, Hauser S, Elsir B, Sukkar B, Sahu I, Singh Y, et al. Lithium Sensitive ORAI1
512 Expression, Store Operated Ca²⁺ Entry and Suicidal Death of Neurons in Chorea-
513 Acanthocytosis. *Sci Rep.* (2017) 7(1):6457. doi: 10.1038/s41598-017-06451-1

514 23. Yu W, Honisch S, Schmidt S, Yan J, Schmid E, Alkahtani S, et al. Chorein Sensitive Orai1
515 Expression and Store Operated Ca²⁺ Entry in Rhabdomyosarcoma Cells. *Cell Physiol*
516 *Biochem.* (2016) 40(5):1141–52. doi: 10.1159/000453168

517 24. Rampoldi L, Danek A, Monaco AP. Clinical features and molecular bases of
518 neuroacanthocytosis. *J Mol Med.* (2002) 80(8):475–91. doi: 10.1007/s00109-002-0349-z

519 25. Adjobo-Hermans MJW, Cluitmans JCA, Bosman GJCGM. Neuroacanthocytosis:
520 Observations, Theories and Perspectives on the Origin and Significance of Acanthocytes.
521 Tremor and Other Hyperkinetic Movements. (2015) 5:328. doi: 10.5334/tohm.271

522 26. An X, Mohandas N. Disorders of red cell membrane. *Br J Haematol.* (2008) 141:367–75. doi:
523 10.1111/j.1365-2141.2008.07091.x

524 27. Da Costa L, Galimand J, Fenneteau O, Mohandas N. Hereditary spherocytosis, elliptocytosis,
525 and other red cell membrane disorders. *Blood Rev.* (2013) 27(4):167–78. doi:
526 10.1016/j.blre.2013.04.003

527 28. Reichel F, Mauer J, Nawaz AA, Gompper G, Guck J, Fedosov DA. High-Throughput
528 Microfluidic Characterization of Erythrocyte Shapes and Mechanical Variability. *Biophys J.*
529 (2019) 117(1):14–24. doi: 10.1016/j.bpj.2019.05.022

530 29. Otto O, Rosendahl P, Mietke A, Golfier S, Herold C, Klaue D, et al. Real-time deformability
531 cytometry: on-the-fly cell mechanical phenotyping. *Nat Methods.* (2015) 12(3):199–202. doi:
532 10.1038/nmeth.3281

533 30. Rosendahl P, Plak K, Jacobi A, Kraeter M, Toepfner N, Otto O, et al. Real-time fluorescence
534 and deformability cytometry. *Nat Methods.* (2018) 15(5):355–8. doi: 10.1038/nmeth.4639

535 31. Dobson-Stone C, Velayos-Baeza A, Filippone LA, Westbury S, Storch A, Erdmann T, et al.
536 Chorein detection for the diagnosis of chorea-acanthocytosis. *Ann Neurol.* (2004) 56(2):299–
537 302. doi: 10.1002/ana.20200

538 32. Rabe A, Kihm A, Darras A, Peikert K, Simionato G, Dasanna AK, et al. The Erythrocyte
539 Sedimentation Rate and Its Relation to Cell Shape and Rigidity of Red Blood Cells from
540 Chorea-Acanthocytosis Patients in an Off-Label Treatment with Dasatinib. *Biomolecules.*
541 (2021) 11(5):727. doi: 10.3390/biom11050727

542 33. Toepfner N, Herold C, Otto O, Rosendahl P, Jacobi A, Kräter M, et al. Detection of human
543 disease conditions by single-cell morpho-rheological phenotyping of blood. *eLife.* (2018)
544 7:e29213. doi: 10.7554/eLife.29213

545 34. Mokbel M, Mokbel D, Mietke A, Träber N, Girardo S, Otto O, et al. Numerical Simulation of
546 Real-Time Deformability Cytometry To Extract Cell Mechanical Properties. *ACS Biomater
547 Sci Eng.* (2017) 3(11):2962–73. doi: 10.1021/acsbiomaterials.6b00558

548 35. Mietke A, Otto O, Girardo S, Rosendahl P, Taubenberger A, Golfier S, et al. Extracting Cell
549 Stiffness from Real-Time Deformability Cytometry: Theory and Experiment. *Biophys J.*
550 (2015) 109(10):2023–36. doi: 10.1016/j.bpj.2015.09.006

551 36. Herbig M, Mietke A, Müller P, Otto O. Statistics for real-time deformability cytometry:
552 Clustering, dimensionality reduction, and significance testing. *Biomicrofluidics*. (2018)
553 12(4):042214. doi: 10.1063/1.5027197

554 37. Holmes D, Whyte G, Bailey J, Vergara-Irigaray N, Ekpenyong A, Guck J, et al. Separation of
555 blood cells with differing deformability using deterministic lateral displacement. *Interface*
556 *Focus*. (2014) 4(6):20140011. doi: 10.1098/rsfs.2014.0011

557 38. Forsyth AM, Wan J, Ristenpart WD, Stone HA. The dynamic behavior of chemically
558 “stiffened” red blood cells in microchannel flows. *Microvasc Res*. (2010) 80(1):37–43. doi:
559 10.1016/j.mvr.2010.03.008

560 39. Sinha A, Chu TTT, Dao M, Chandramohanadas R. Single-cell evaluation of red blood cell bio-
561 mechanical and nano-structural alterations upon chemically induced oxidative stress. *Sci Rep*.
562 (2015) 5(1):9768. doi: 10.1038/srep09768

563 40. Panhwar MH, Czerwinski F, Dabbiru VAS, Komaragiri Y, Fregin B, Biedenweg D, et al.
564 High-throughput cell and spheroid mechanics in virtual fluidic channels. *Nat Commun*. (2020)
565 11(1):2190. doi: 10.1038/s41467-020-15813-9

566 41. Gokhin DS, Nowak RB, Khoory JA, Piedra A de la, Ghiran IC, Fowler VM. Dynamic actin
567 filaments control the mechanical behavior of the human red blood cell membrane. Pollard TD,
568 editor. *Mol Biol Cell*. (2015) 26(9):1699–710. doi: 10.1091/mbc.E14-12-1583

569 42. Kundu M, Lindsten T, Yang C-Y, Wu J, Zhao F, Zhang J, et al. Ulk1 plays a critical role in
570 the autophagic clearance of mitochondria and ribosomes during reticulocyte maturation.
571 *Blood*. (2008) 112(4):1493–502. doi: 10.1182/blood-2008-02-137398

572 43. Cluitmans JCA, Tomelleri C, Yapici Z, Dinkla S, Bovee-Geurts P, Chokkalingam V, et al.
573 Abnormal Red Cell Structure and Function in Neuroacanthocytosis. Connes P, editor. *PLoS*
574 One. (2015) 10(5):e0125580. doi: 10.1371/journal.pone.0125580

575 44. Samaras P, Schmidt T, Frejno M, Gessulat S, Reinecke M, Jarzab A, et al. ProteomicsDB: a
576 multi-omics and multi-organism resource for life science research. *Nucleic Acids Res*. (2019)
577 48(D1):D1153–63. doi: 10.1093/nar/gkz974

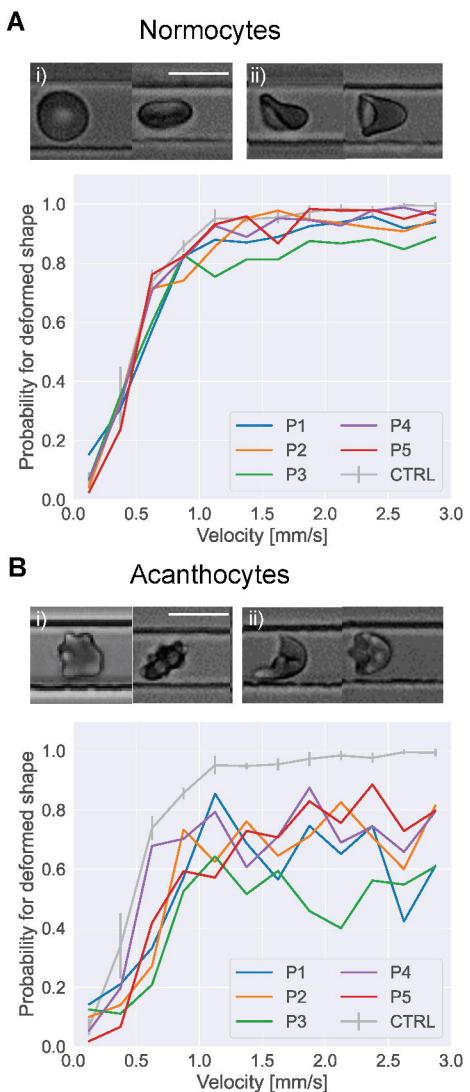
578 45. Rzepnikowska W, Flis K, Muñoz-Braceras S, Menezes R, Escalante R, Zoladek T. Yeast and
579 other lower eukaryotic organisms for studies of Vps13 proteins in health and disease. *Traffic*.
580 (2017) 18(11):711–9. doi: 10.1111/tra.12523

581 46. Zhang X, Kim T-H, Thauland TJ, Li H, Majedi FS, Ly C, et al. Unraveling the
582 mechanobiology of immune cells. *Curr Opin Biotechnol*. (2020) 66:236–45. doi:
583 10.1016/j.copbio.2020.09.004

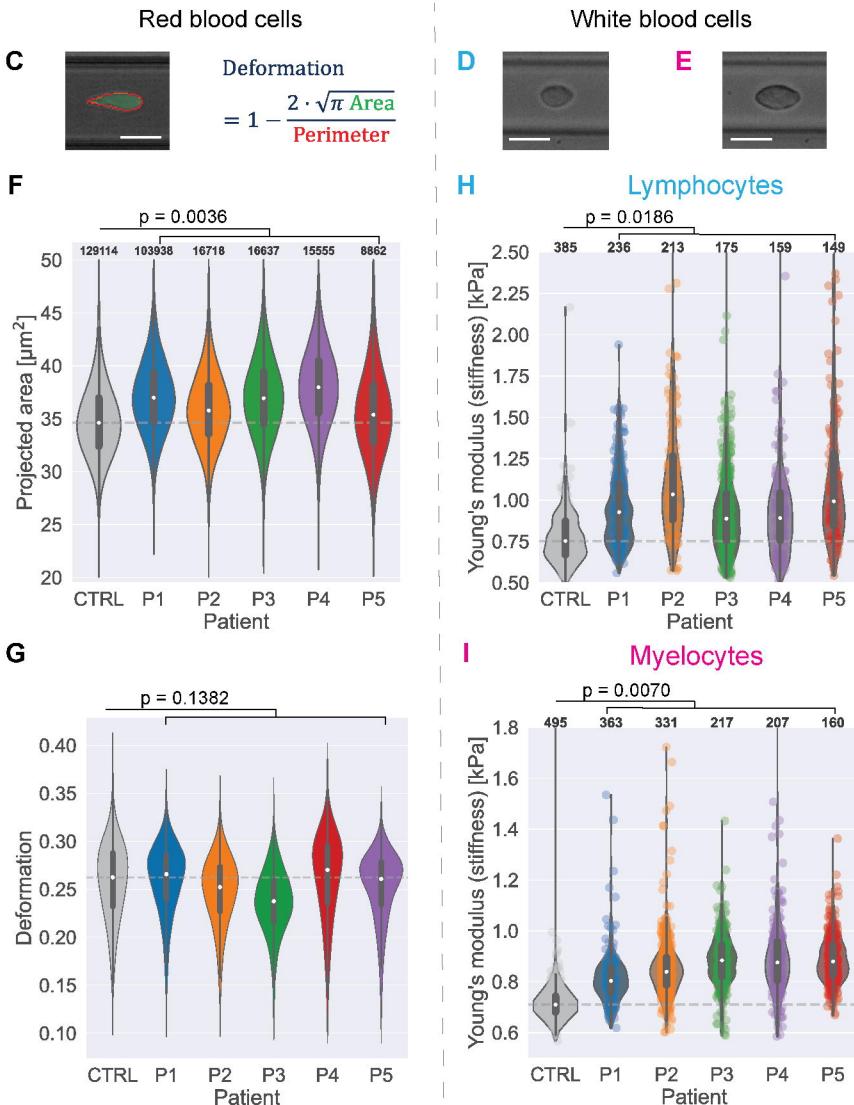
584 47. Franco-Barraza J, Valdivia-Silva JE, Zamudio-Meza H, Castillo A, García-Zepeda EA,
585 Benítez-Bribiesca L, et al. Actin Cytoskeleton Participation in the Onset of IL-1 β Induction of
586 an Invasive Mesenchymal-like Phenotype in Epithelial MCF-7 Cells. *Arch Med Res*. (2010)
587 41(3):170–81. doi: 10.1016/j.arcmed.2010.04.010

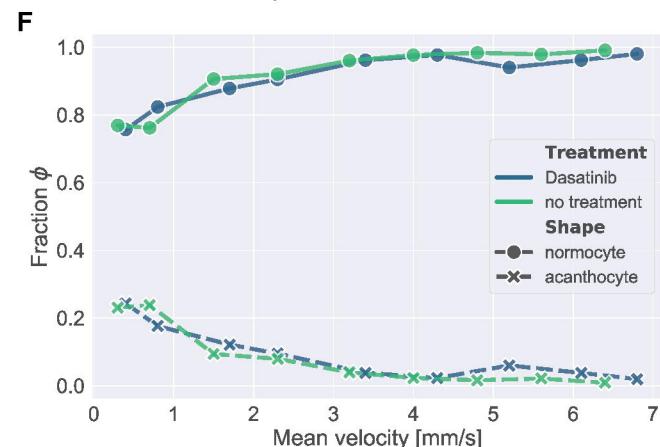
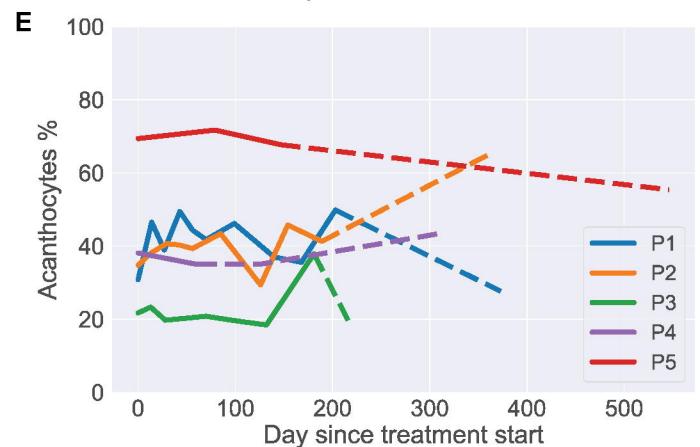
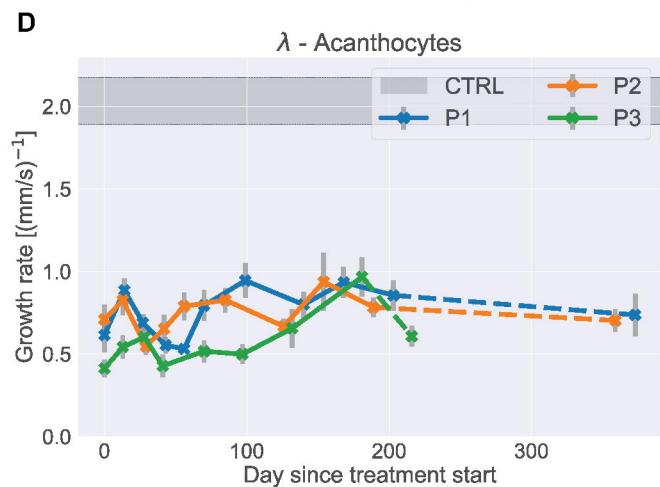
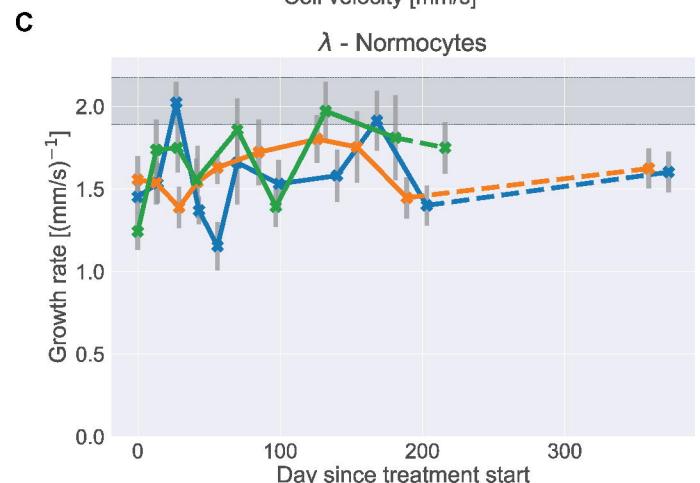
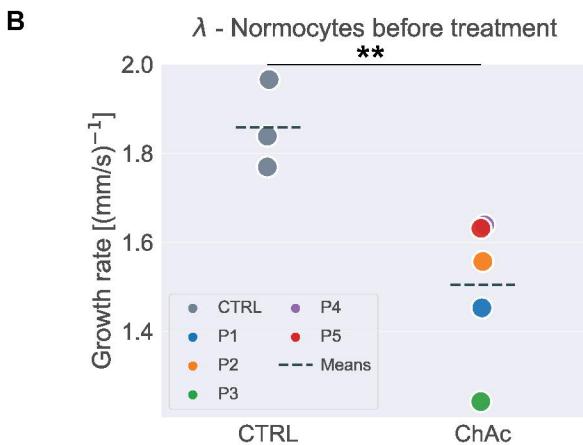
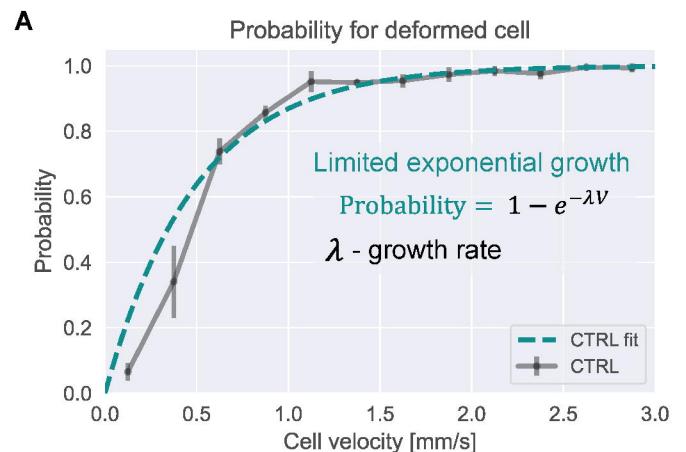
588 48. Lie PPY, Cheng CY, Mruk DD. The biology of interleukin-1: emerging concepts in the

589 regulation of the actin cytoskeleton and cell junction dynamics. *Cell Mol Life Sci.* (2012)
590 69(4):487–500. doi: 10.1007/s00018-011-0760-0

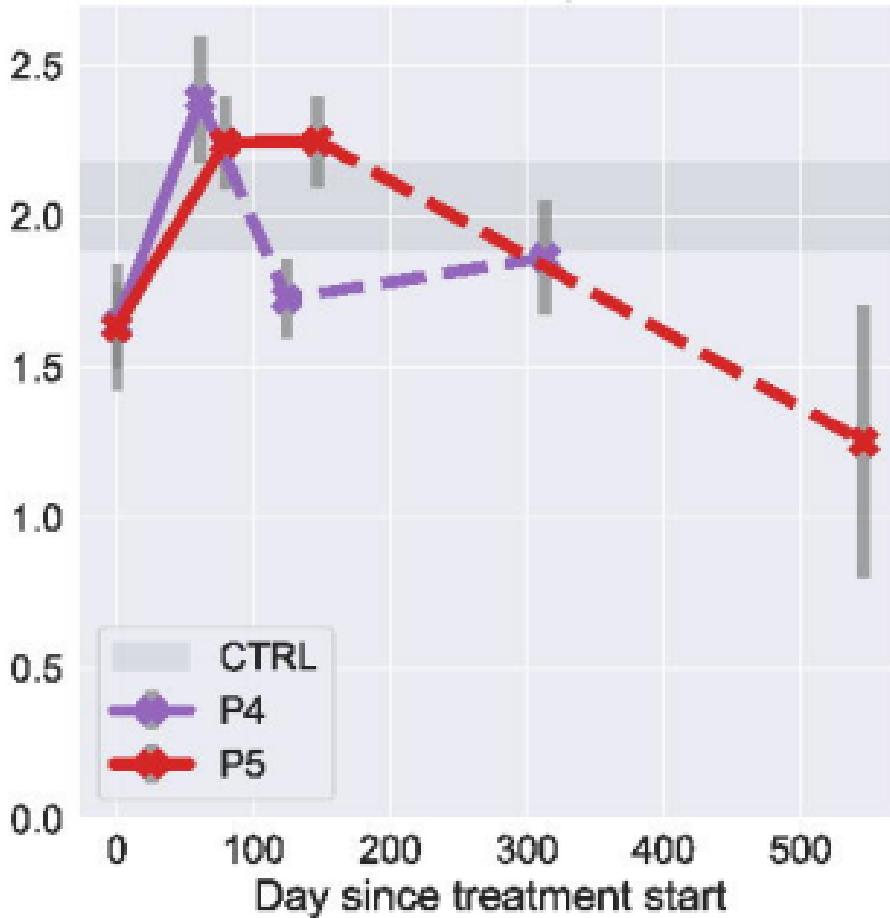

591 49. Lam WA, Rosenbluth MJ, Fletcher DA. Chemotherapy exposure increases leukemia cell
592 stiffness. *Blood.* (2007) 109(8):3505–8. doi: 10.1182/blood-2006-08-043570

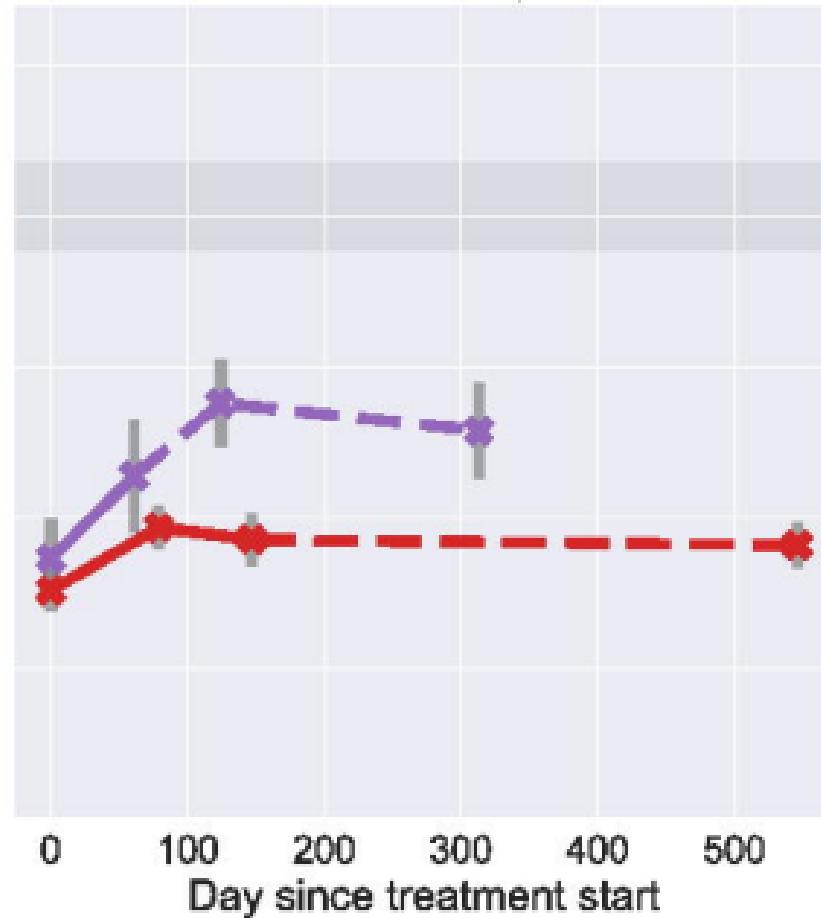
593 50. Brown CD, Ghali HS, Zhao Z, Thomas LL, Friedman EA. Association of reduced red blood
594 cell deformability and diabetic nephropathy. *Kidney Int.* (2005) 67(1):295–300. doi:
595 10.1111/j.1523-1755.2005.00082.x

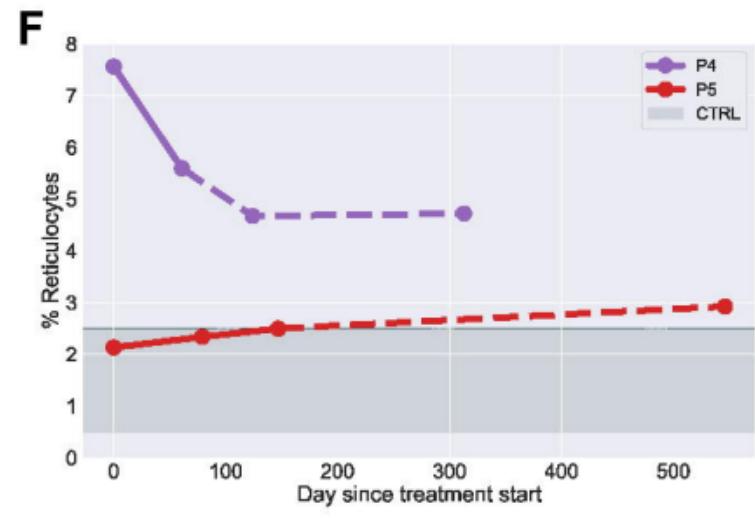
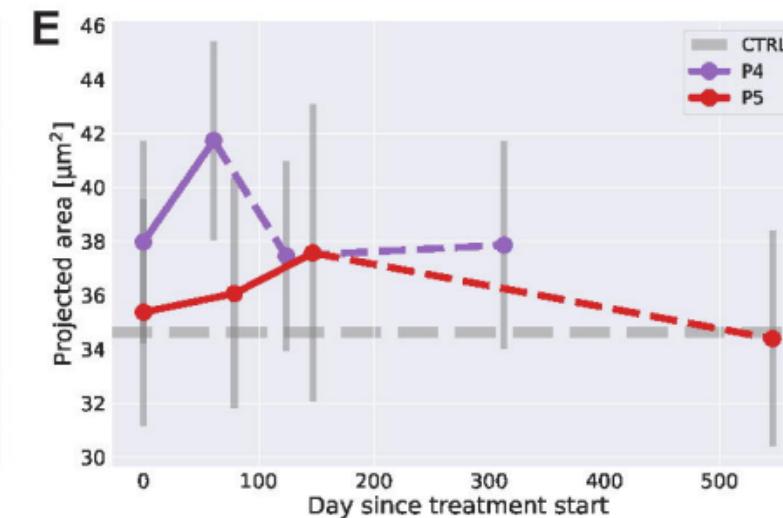
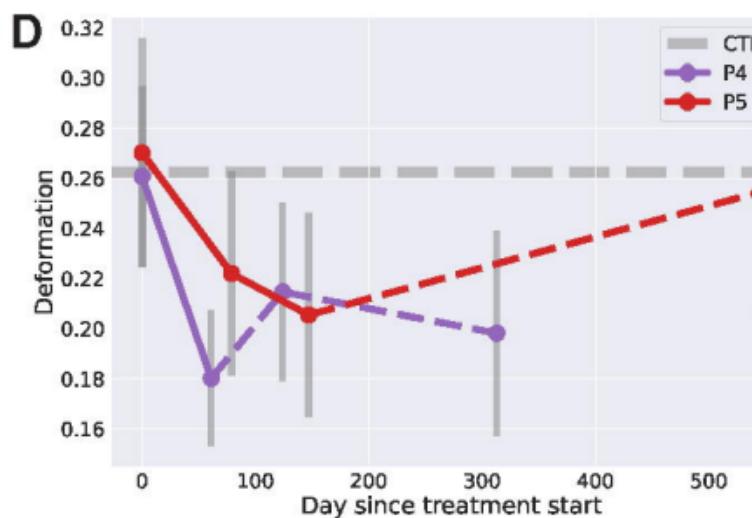
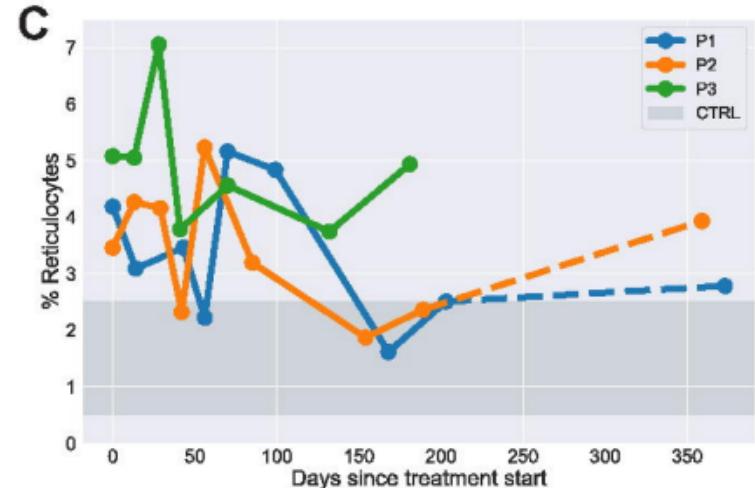
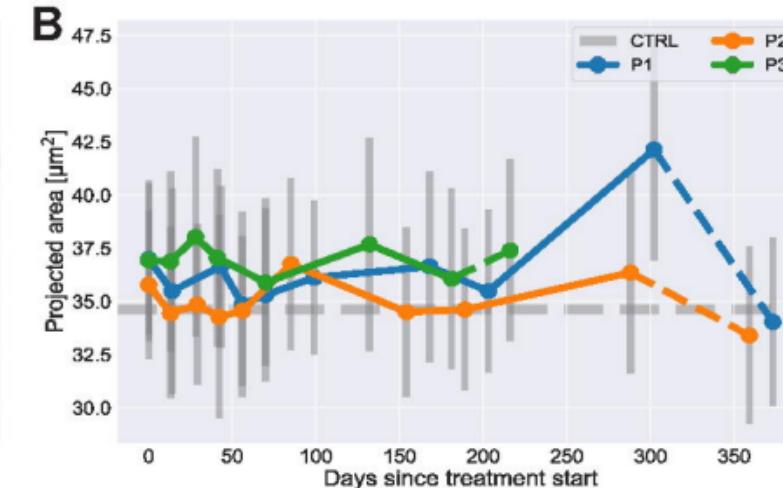
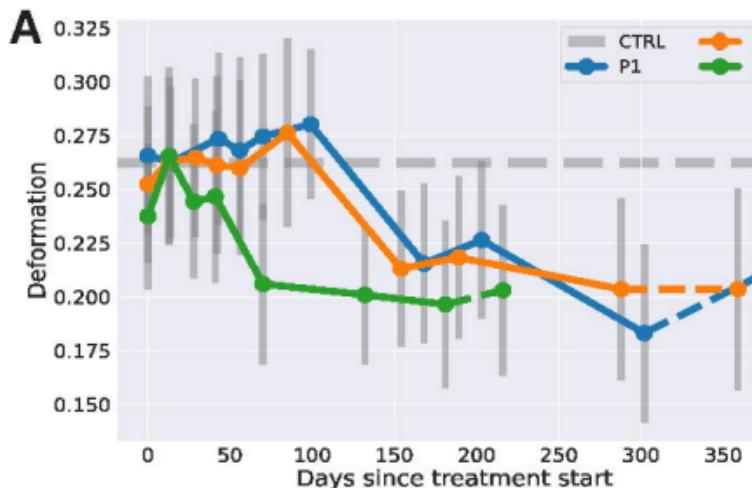

596 51. Kikuchi Y, Da Q-W, Fujino T. Variation in Red Blood Cell Deformability and Possible
597 Consequences for Oxygen Transport to Tissue. *Microvasc Res.* (1994) 47(2):222–31. doi:
598 10.1006/mvre.1994.1017

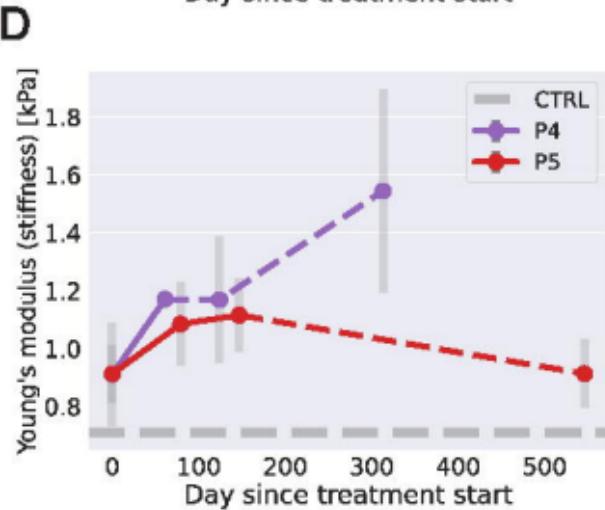
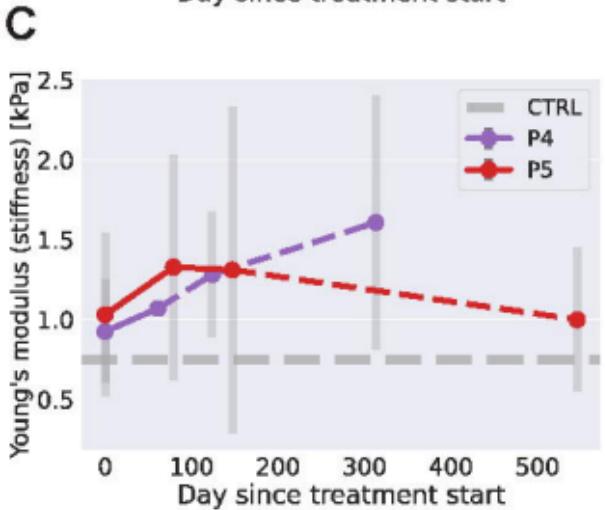
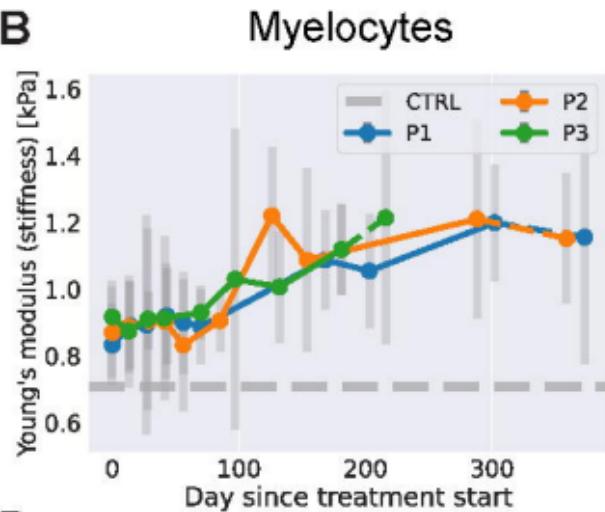
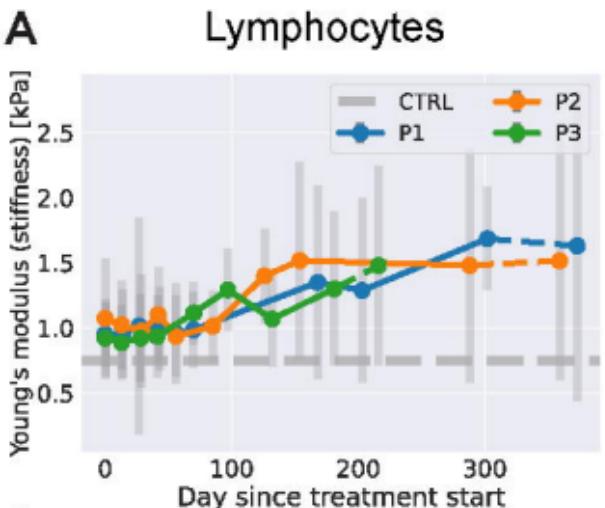






599

RBC shape analysis at low shear stress (0.1-1 Pa)


RT-FDC (shear stress = 100-400 Pa)









λ - Normocytes





Growth rate $[(\text{mm/s})^{-1}]$

λ - Acanthocytes

