
Mendelian Randomization Analysis Using Multiple 
Biomarkers of an Underlying Common Exposure

JIN JIN1,2,∗, GUANGHAO QI3, ZHI YU4, NILANJAN CHATTERJEE1,5,∗

1Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, 
Baltimore, Maryland, U.S.A.

2Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, 
Philadelphia, Pennsylvania, U.S.A.

3Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland,
U.S.A.

4Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, 
Cambridge, Massachusetts, U.S.A.

5Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD,

U.S.A.

∗Jin.Jin@Pennmedicine.upenn.edu

∗nilanjan@jhu.edu

Summary

Mendelian Randomization (MR) analysis is increasingly popular for testing the causal effect of 

exposures on disease outcomes using data from genome-wide association studies. In some set-

tings, the underlying exposure, such as systematic inflammation, may not be directly observable, 

but measurements can be available on multiple biomarkers or other types of traits that are co-

regulated by the exposure. We propose a method for MR analysis on latent exposures (MRLE), 

which tests the significance for, and the direction of, the effect of  a latent exposure by  leveraging

information from multiple related traits. The method is developed by constructing a set of esti-
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2 J. Jin and others

mating functions based on the second-order moments of GWAS summary association statistics

for the observable traits, under a structural equation model where genetic variants are assumed

to have indirect effects through the latent exposure and potentially direct effects on the traits.

Simulation studies show that MRLE has well-controlled type I error rates and enhanced power

compared to single-trait MR tests under various types of pleiotropy. Applications of MRLE using

genetic association statistics across five inflammatory biomarkers (CRP, IL-6, IL-8, TNF-α, and

MCP-1) provide evidence for potential causal effects of inflammation on increasing the risk of

coronary artery disease, colorectal cancer, and rheumatoid arthritis, while standard MR analysis

for individual biomarkers fails to detect consistent evidence for such effects.

Key words: Chronic inflammation; Generalized method of moments; Mendelian Randomization; Latent

exposure; Structural equation model.

1. Introduction

In the last two decades, Mendelian Randomization (MR) analysis has become increasingly popular

for investigating the causal effects of risk factors and biomarkers on disease outcomes when

randomized controlled trials are unavailable (Davey Smith and Ebrahim, 2003; Lawlor and others,

2008; Emdin and others, 2017). MR analysis is a type of instrumental variable (IV) analysis that

uses genetic variants (SNPs) as “instruments” aiming for an unbiased estimate of the underlying

causal effect when there exist potential confounders. While early MR analysis focused on using

individual genetic variants of known functional consequence as instruments (Greenland, 2000;

Abifadel and others, 2003; Cohen and others, 2006; Lawlor and others, 2008), the era of genome-

wide association studies (GWAS) has led to the rise of powerful MR analysis methods based on

multiple SNPs (Pierce and others, 2011; Pierce and Burgess, 2013; Evans and Davey Smith, 2015;

Zheng and others, 2017a). In particular, with the rapid development of large publicly available
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Mendelian Randomization Analysis Using Multiple Biomarkers of an Underlying Common Exposure3

GWAS, the majority of MR research has been transferred from working with individual-level

data to two-sample MR analysis with summary-level data (Bautista and others, 2006; Burgess

and Thompson, 2015; Qi and Chatterjee, 2021).

Many recent methods for MR analysis have focused on improving robustness to the presence

of pleiotropic association by which genetic instruments can affect the outcome of interest inde-

pendent of the exposure and thus leading to violation of key assumptions (Bowden and others,

2015, 2016; Hartwig and others, 2017; Verbanck and others, 2018; Zhu and others, 2018; Qi and

Chatterjee, 2019; Morrison and others, 2020; Shapland and others, 2022; Zhao and others, 2020;

Cinelli and others, 2022). In this study, we consider a novel setting of pleiotropic association,

where genetic variants might be associated with multiple observed traits through an underlying

latent exposure which may have a causal effect on the outcome. An example of the relevant is-

sues has recently been illustrated in a study of the causal relationship between blood pressure

and multiple kidney function biomarkers (Yu and others, 2020). The analysis showed that stan-

dard MR analysis methods using an individual kidney function biomarker, such as the estimated

glomerular filtration rate determined based on the serum creatinine (eGFRcr), did not detect

a causal effect of kidney function on blood pressure. Instead, when the analysis was restricted

to instruments that showed association across multiple biomarkers and thus were likely to be

related to the underlying kidney function, it showed clear evidence of causal effects. Examples

of groups of traits that may be governed by an underlying common exposure appear in many

settings, including but not limited to, inflammatory biomarkers (Brenner and others, 2014; Qian

and others, 2019), groups of metabolites related to dietary and lifestyle exposures (Gu and oth-

ers, 2018; Oluwagbemigun and others, 2020), and measurement instruments for evaluations of

underlying mental health conditions (Tsanas and others, 2017; Black and others, 2019).

We propose a novel method for conducting MR analysis on latent exposures (MRLE), which

allows testing for the statistical significance and direction of the effect of an unobservable latent
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exposure by leveraging information from multiple related observable traits. The method uses

GWAS summary-level association statistics of the observable traits and the outcome on a set

of “strictly selected” SNPs (IVs) that are associated with at least two of the traits at specified

thresholds of significance. We use an underlying structural equation model to describe causal

paths between the SNPs, the latent exposure, the traits co-regulated by the exposure, and the

outcome. We then construct a series of estimating functions by equating the second-order sample

moments of the summary-level association statistics with the corresponding theoretical moments

and propose inference for identifiable parameters based on the Generalized Method of Moments

theory (Hansen, 1982; Newey and McFadden, 1994; Hall and others, 2005).

We show by simulation that the proposed MRLE test has a well-controlled type I error rate,

increased power, and a higher probability of correctly identifying the direction of the causal

effect compared to single-trait MR analysis, and is robust to the presence of various types of

pleiotropy across the latent exposure, the observable traits, and the outcome. We applied MRLE

to test the effect of chronic inflammation on rheumatoid arthritis, coronary artery disease, and

cancers including colorectal cancer, prostate cancer and endometrial cancer, using up to five

inflammatory biomarkers including c-reactive protein (CRP), interleukin 6 (IL-6), interleukin 8

(IL-8), tumor necrosis factor alpha (TNF-α), and monocyte chemoattractant protein-1 (MCP-1).

These analyses reveal that while MR analyses based on single biomarkers often fail to detect

any consistent patterns of causal effects, the proposed MRLE method detects such evidence for

a number of diseases including RA, CAD, and CRC.

The rest of the paper is organized as follows. In Section 2, we introduce the model setup

and method development for MRLE. We investigate the performance of MRLE in a variety of

simulated data scenarios in Section 3 and through an application of testing the causal effect of

chronic inflammation on multiple diseases in Section 4. Further discussion and future directions

are presented in Section 5.
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Mendelian Randomization Analysis Using Multiple Biomarkers of an Underlying Common Exposure5

2. Methods

2.1 Problem setting and model setup

Let X denote an exposure variable of interest for which we want to examine its causal effect θ

on an outcome Y . We assume that measurements on X are not directly available, and instead

one can observe a set of biomarkers, or other types of traits, {Bk, k = 1, . . . ,K}, K ⩾ 2, that

are co-regulated by X with known directions. We call a biomarker “valid” for such analysis on

latent exposure X if it meets the following two conditions: (A) X affects the biomarker, and (B)

conditional on X, the biomarker does not have an effect on the outcome itself (“pure surrogate”).

Suppose we select M independent SNPs Gj , j = 1, 2, . . . ,M , that are associated with one or

more of the Bks, as instrumental variables (IVs) for the MR analysis. We assume that a nonzero

proportion of the selected IVs are valid IVs for X, i.e., they are directly associated with X. Details

of the IV selection strategy will be discussed later in Section 2.3. Following we will assume that

the outcome Y is continuous and develop our method in the linear structural equation modeling

framework. Note that we show method development for a continuous outcome Y for simplicity,

but the testing result is invariant with respect to the scaling of the effect size, and thus the method

can be applied to discrete (e.g., binary/categorical) outcomes without further modification (see

Appendix B of the Supplementary Materials for details). We further assume without loss of

generality that the SNPs Gj , j = 1, 2, . . . ,M , the biomarkers Bk, k = 1, 2, . . . ,K, the latent

exposure X, and the outcome Y are all standardized to have unit variance, so that the effect θ is

on the standardized scale. Again, such an assumption is only made to simplify notations in our

derivations: even if the data is not standardized, the method still works since we only care about

the existence and direction of the causal effect but not the effect size.

Figure 1 describes the assumed causal paths between the SNPs (Gjs), the latent exposure of

interest (X), the biomarkers co-regulated by the latent exposure (Bks), and the outcome (Y ),
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assuming a total of K = 3 biomarkers. Here we assume an “outcome model” of the form

Y = θX + ϵy,

where ϵy denotes a mean-zero error term with variance σ2
ϵy . Here ϵy can be correlated with X

due to unobserved confounding for the effect of X on Y , but we assume the confounders are not

associated with the selected IVs. Our goal is to conduct a hypothesis test with null hypothesis

H0 : θ = 0 and alternative hypothesis Ha : θ ̸= 0, also to infer the sign of θ when the null

hypothesis is rejected.

We next assume an “exposure model” of the form

X =
M∑
j=1

βx,jGj + ϵx,

where βx,j , j = 1, 2, . . . ,M denote additive effects of SNPs on X, and ϵx is a mean-zero error

term with variance σ2
ϵx . We further assume that the effect sizes, βx,j , j = 1, 2, . . . ,M , can be

modelled as i.i.d. mean-zero random variables with variance h2x.

Finally, we assume a set of “biomarker models” in the form

Bk = θkX +
M∑
j=1

γk,jGj + ϵBk
, k = 1, 2, . . . ,K,

where θk denotes the effect of exposure X on biomarker Bk, γk,j , j = 1, . . . ,M denote the

direct effects of the SNPs on Bk that are not medicated through X, and ϵBk
denotes the mean-

zero residual error term associated with Bk with a variance σ2
ϵBk

. We further assume that for

each k, γk,j , j = 1, 2 . . . ,M are i.i.d. mean-zero random variables with a variance h2γk
that are

uncorrelated with association coefficients for SNPs associated with X, i.e., βx,j , j = 1, . . . ,M , in

the “exposure” model.

Assume we have summary-level association statistics for biomarker Bk, {(β̂Bk,j , σ
2
Bk,j

), j =

1, 2, . . . ,M}, and those for the outcome Y , {(β̂Y,j , σ2
Y,j), j = 1, 2, . . . ,M}, from separate GWAS,

where β̂ and σ2 with specific subscript denote the corresponding estimated association coefficient
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Mendelian Randomization Analysis Using Multiple Biomarkers of an Underlying Common Exposure7

and its estimated standard error, respectively. We allow the GWAS for Bks to have potentially

overlapping samples but assume that GWAS for Y is independent of GWAS for Bks to avoid

introducing bias caused by sample overlap in two-sample MR (Burgess, Davies, and Thompson,

2016).

It has been common practice to test for causal effect of an underlying exposure, such as

chronic inflammation, using a surrogate biomarker such as CRP, based on a standard IVW es-

timator, θ̂IVW =

[∑M
j=1

(
β̂Y,j β̂B,j/σ

2
Y,j

)]
/
(∑M

j=1 β̂
2
B,jσ

2
Y,j

)
. Under the above structural equa-

tion model, we can derive the asymptotic bias of the standard IVW estimator in the form of

θ

[
pvθBh

2
x/

(
pvθ

2
Bh

2
x + h2γ

)
− 1

]
, as GWAS sample sizes go to infinity. Here pv ∈ [0, 1] denotes

the proportion of IVs selected for the biomarker that are valid IVs for the latent exposure, i.e.,

the rest of the SNPs are directly associated with the biomarker but not directly associated with

the latent exposure (see Appendix A of the Supplementary Materials for mathematical details).

Thus, under the above model, while a standard test based on an individual biomarker is expected

to be valid with a well-controlled type I error rate given a zero asymptotic bias when θ = 0, it can

lose major power due to attenuation of the underlying causal effect when pvθBh2x < pvθ
2
Bh

2
x+h

2
γ .

Furthermore, as we will show later, in the presence of more complex pleiotropy settings, single

biomarker-based tests for causal effects can easily become invalid with inflated type I error rates.

2.2 Cross-biomarker MR analysis using generalized method of moments

We propose statistical inference based on the method of moments which only requires mo-

ments of the summary-level association statistics and no additional distributional assumptions

for model parameters. Let Xs = (Xs
1 , X

s
2 , . . . , X

s
M )T denote the observed GWAS summary-level

data for biomarkers and outcome, where Xs
j =

(
{β̂Bk,j}Kk=1, {σ2

Bk,j
}Kk=1, β̂Y,j , σ

2
Y,j

)T

for SNP

j = 1, 2, . . . ,M . We consider the second-order moments of {β̂Y,j , β̂B1,j , . . . , β̂BK ,j}, which, based

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 22, 2023. ; https://doi.org/10.1101/2021.02.05.429979doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.05.429979
http://creativecommons.org/licenses/by-nc-nd/4.0/


8 J. Jin and others

on our model described in the previous section, can be derived as

E(β̂Y,j β̂Bk,j) = θθkh
2
x, 1 ⩽ k ⩽ K,

E(β̂2
Bk,j

) = θ2kh
2
x + h2γk

+ σ2
Bk,j

, 1 ⩽ k ⩽ K,

E(β̂Bk,j β̂Bk′ ,j) = θkθk′h2x + ck,k′ , 1 ⩽ k < k′ ⩽ K,

where ck,k′ denotes the covariance between β̂Bk,j and β̂Bk′ ,j , which could arise due to sample

overlap between GWAS of correlated biomarkers, and can be estimated from summary-level as-

sociation statistics using techniques such as bivariate LD score regression (Turley and others,

2018; Qi and Chatterjee, 2018). Detailed derivations are provided in Appendix B of the Supple-

mentary Materials.

We note that the per-SNP heritability of the latent exposure (h2x) always shows up alongside

the terms θθk, θ2k, or θkθk′ , k = 1, 2, . . . ,K, which makes it impossible to infer h2x separately

from θ and θks. Such an identifiability issue is actually the reason we cannot estimate the causal

effect (θ) of X on Y if not fixing h2x. To avoid such an issue, we reparameterize the model

with µ = θhx, µk = θkhx, k = 1, 2, . . . ,K, and denote the vector of model parameters by

η = (µ, µ1, . . . , µK , h
2
γ1
, . . . , h2γK

)T . Conducting inference on θ is then equivalent to conducting

inference on µ: not only the hypothesis test H∗
0 : θ = 0 versus H∗

a : θ ̸= 0 is equivalent to

H∗
0 : µ = 0 versus H∗

a : µ ̸= 0, but also the sign of θ is the same as the sign of µ = θhx,

given that hx (i.e., standard deviation of βx,js) is positive. Due to the existence of the terms

θθkh
2
x, k = 1, 2, . . . ,K, the identifiability of the sign of θ requires that the signs of θks, i.e., the

associations between Bks and X, are known. Such an assumption is implicit in our proposed

MRLE method, which is reasonable because the directions of the effect of latent exposure on

biomarkers are typically known and available in the literature. One example is that for kidney

function, it is known that a higher level of estimated glomerular filtration rate (eGFR) based on

either serum creatinine (eGFRcr) or cystatin C (eGFRcys), a commonly used kidney function
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Mendelian Randomization Analysis Using Multiple Biomarkers of an Underlying Common Exposure9

biomarker, indicates better kidney function, while a higher level of blood urea nitrogen (BUN), a

complementary kidney function biomarker, indicates weaker kidney function (Levey and others,

2009; Yu and others, 2020). Another example is on chronic inflammation, the latent exposure we

will discuss in Section 4. Chronic inflammation has multiple commonly seen biomarkers, such as

CRP, IL-6, IL-8, TNF-α, and MCP-1, that are all known to be positively associated with chronic

inflammation (Sproston and Ashworth, 2018). But even if the signs of some θks are unknown, the

MRLE test is still valid, where a rejection of H0 suggests a causal effect of the latent exposure

on the outcome, but we cannot determine its direction.

By equating the second-order moments of the summary-level association coefficients with the

corresponding sample moments, we obtain our estimating functions, Ψ(Xs, η) = (1/M)
∑M

j=1 ψ(X
s
j , η),

where ψ(Xs
j , η) =

(
ψ1(X

s
j , η), ψ2(X

s
j , η), . . . , ψd(X

s
j , η)

)T

, and estimating equations Ψ(Xs, η) =

0, with

ψk(X
s
j , η) = β̂Y,j β̂Bk,j − µkµ, 1 ⩽ k ⩽ K,

ψK+k(X
s
j , η) = β̂2

Bk,j
− σ2

Bk,j
− h2γk

− µ2
k, 1 ⩽ k ⩽ K,

ψν(k,k′)(X
s
j , η) = β̂Bk,j β̂Bk′ ,j − ck,k′ − µkµk′ , 1 ⩽ k < k′ ⩽ K,

where ν(k, k′) = 2K +
∑k−1

l=1 (K − l) + (k′ − k) and d = K(K + 3)/2.

We observe that there are d = K(K+3)/2 equations and p = 2K+1 unknown parameters. To

solve the estimating equations, we need d ⩾ p, i.e., K ⩾ 2 biomarkers are required. When K = 2,

the number of estimating equations equals the number of unknown parameters, and we can solve

the equations directly. When K ⩾ 3, there are more equations than unknown parameters, the

problem becomes over-identified and we may not be able to solve the exact equations. To deal

with this issue, we consider the generalized method of moments (GMM) and define the following

GMM estimator, η̂GMM = argminη QŴ
(η), which is the global minimizer of the objective function

Q
Ŵ
(η) = Ψ(Xs, η)T ŴΨ(Xs, η), where Ŵ is a positive semi-definite weighting matrix which is
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typically specified based on Xs. Here we consider the optimal choice of Ŵ with a minimum

asymptotic covariance, Ŵ opt, which is the inverse of Ω(η0) = E
(
ψ(Xs, η0)ψ(X

s, η0)
T
)
, i.e., the

covariance matrix of the estimating equations based on true parameter values η0. The closed form

expression of Ω(η0) can be easily derived, but since η0 is unknown, in applications we conduct

inference using an iterative algorithm. Specifically, we implement a two-step GMM algorithm

where in step one we obtain an initial estimate of η with a simple choice of Ŵ , such as the

identity matrix, and in step two we estimate η iteratively by setting Ŵ = Ŵ opt based on the

estimate from the previous iteration until a pre-specified convergence criterion is met. Derivation

of Ŵ opt and detailed algorithm are provided in Appendix C of the Supplementary Materials.

Inference on the causal effect θ can then be conducted based on µ̂GMM, i.e., the first element of

η̂GMM. We obtain µ̂GMM and an estimate of its standard error based on the GMM theory, then

perform a Wald test on H0 : µ = 0 versus Ha : µ ̸= 0. Properties of µ̂GMM and computational

details are summarized in Supporting Information Web Appendices B and C.

2.3 Selection of genetic IVs

A key issue in simultaneously analyzing multiple biomarkers is how to select instruments that

may be associated with the underlying common exposure. As noted earlier, many SNPs that are

associated with individual biomarkers may represent genetic variations that are unrelated to the

latent exposure, and using these SNPs as IVs may lead to power loss. Furthermore, if there are

numerous biomarkers, the chance of incorporating exposure-independent pleiotropic association

of SNPs with some of the biomarkers also increases, potentially leading to bias.

To alleviate these issues, we propose a more strict IV selection criterion, where we select

SNPs that are associated with at least two of the biomarkers co-regulated by the latent exposure.

Intuitively, SNPs associated with multiple biomarkers are more likely to be directly related to

the underlying common exposure and less likely to suffer from pleiotropic effects due to any
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Mendelian Randomization Analysis Using Multiple Biomarkers of an Underlying Common Exposure11

shared genetic background between individual biomarkers and the outcome. However, the use

of GWAS significance threshold (5 × 10−8) can be overly strict for this IV selection strategy,

especially when GWAS sample sizes for some biomarkers are relatively small. For example, in

our data analysis which will be described in Section 4 in detail, while GWAS for CRP was large

(N = 320041), those for the other biomarkers were relatively small (N = 3454 ∼ 8394). To ensure

that a minimum number of IVs are selected, a more liberal threshold can be used depending on

the GWAS sample size. We show by simulation that such a strategy of selecting IVs that affect

multiple biomarkers can effectively reduce pleiotropic bias, leading to a higher power of detecting

causal effect of the latent exposure (Sections 3.2, 3.3, 3.4, and 3.5) and avoiding highly inflated

type I error rates (Section 3.3), under various types of pleiotropy settings.

3. Simulation Studies

3.1 Simulating individual-level versus summary-level data

In the following sections, we will illustrate the performance of the proposed MRLE method by

simulating genome-wide studies under a variety of scenarios. Conducting large-scale, genome-

wide simulations with data being generated on the individual level is highly computationally

intensive. We, therefore, considered simplifying the simulation procedure by directly simulating

GWAS summary statistics, which is much faster to implement.

We first conducted a pilot simulation study to show the consistency of the results between

simulating on the individual level and simulating on the summary level, which is expected from

the theory. Detailed simulation settings are summarized in Appendix D.1 of the Supplementary

Materials. For both individual-level and summary-level simulations, we assumed there are un-

measured confounders between the exposure, the biomarkers, and the outcome, but the selected

genetic variants satisfy the key “instrumental variable” assumption that they are not related to the

confounders. Specifically, we assume a correlation 0.3 between the residual term ϵy in the “outcome
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12 J. Jin and others

model”, Y = θX + ϵy, and the residual term ϵx in the “exposure model”, X =
∑M

j=1 βx,jGj + ϵx,

and similarly, a correlation 0.3 between ϵy or ϵx and the residual term ϵBk
s in the “biomarker

models”, Bk = θkX +
∑M

j=1 γk,jGj + ϵBk
, k = 1, 2, . . . ,K.

We set the GWAS sample size to N = 6 × 104 for the outcome and each of the K = 6

biomarkers that are co-regulated by the latent exposure. For individual-level simulations, we

collected genotype data for N unrelated individuals that were randomly selected from the UK

Biobank samples. We first conducted LD pruning to select M=126,627 relatively independent

SNPs to be included in our analysis. Instead of assuming all SNPs to be causal as in the “exposure”

and “biomarker” model, we considered a more realistic setting, where only a small proportion (1%)

of the SNPs are causal with non-zero effect on the biomarker or the exposure. We generated the

true effects of the SNPs and simulated data for the exposure, the biomarkers, and the outcome

for the N individuals based on our assumed model. We then conducted GWAS analysis on the

outcome and each biomarker using one-SNP-at-a-time regressions. The various tests were then

applied to the GWAS summary data. Summary-level simulations were conducted under the exact

same simulated data scenario as in individual-level simulations, except that we directly simulated

GWAS summary data according to the derived distribution of the summary-level association

statistics (Appendix D of the Supplementary Materials).

The consistency of the hypothesis testing results between individual-level and summary-level

simulations is illustrated in an example data scenario. We observe from Figure 2 that the two types

of simulations have similar rejection rates. As expected, both MRLE and IVW provide valid tests

for the causal effect of the latent exposure, with type I error rates well controlled at approximately

α = 0.05 in the presence of confounding effects. The computation time required for completing

1000 individual-level simulations with a sample size of N = 6× 104 is approximately 142 hours.

On the other hand, 1000 summary-level simulations under the same data scenario were completed

within 2.13 hours. Considering that we will conduct large-scale, genome-wide simulations under a
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Mendelian Randomization Analysis Using Multiple Biomarkers of an Underlying Common Exposure13

large number of data scenarios, summary-level simulation is much more computationally feasible.

In our main simulation study (Sections 3.2 - 3.5), we thus directly simulated GWAS summary

data to reduce the computational burden.

3.2 Simulations assuming no pleiotropy

Suppose there are M = 2 × 105 independent common SNPs across the whole genome and the

summary-level data are available for K = 4, 6 or 8 biomarkers representing an underlying latent

exposure. As mentioned in Section , instead of assuming all SNPs to have non-zero effect on the

trait (exposure or biomarker), we considered a more realistic setting where only a small proportion

of the SNPs are causal, i.e., having non-zero effect on each trait. Specifically, we assumed that

a random subset of Mx = πxM SNPs were associated with X, with effect sizes βx,js generated

from N(0, h2x); similarly, a random subset of MBk
= πBk

M SNPs were associated with Bk, with

effect sizes γk,js generated from N(0, h2Bk
), k = 1, 2, . . . ,K. We set the proportion of causal SNPs

to πx = πBk
= 1%, and θk to

√
0.3, k = 1, 2, . . . ,K, so that X explains 30% of variability of

each of the biomarkers. We further set the total heritability of each biomarker (H2
B.total) to 0.2

or 0.3, and the proportion explained by the association with X to 0.2 or 0.3, which leads to a

total heritability of each biomarker that is explained by X (H2
B.X) between 0.04 and 0.09.

As mentioned earlier, we directly simulated GWAS summary-level association statistics to

avoid having to simulate large-scale individual-level data (Qi and Chatterjee, 2018, see Appendix

D.2 of the Supplementary Materials for details). For simplicity, we assumed equal sample sizes

across all GWAS and all SNPs, which were set equal to 6 × 104, 8 × 104, or 105. We also set

the overlapping GWAS sample size between any two biomarkers to NBk,Bl
= N , i.e., the GWAS

summary data for all Biomarkers were obtained from the same set of individuals, and between-

biomarker correlation to cov(Bk, Bl) = 0.3, 1 ⩽ k < l ⩽ K. We also set NBk,Y = 0 for k =

1, . . . ,K based on the requirement of no sample overlap between the biomarkers and the outcome.
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After generating summary-level association statistics, we selected IVs using either one of the

two strategies discussed in Section 2.3, i.e., we selected either (1) the union of the SNPs that

reached genome-wide significance threshold (5× 10−8) for any single Bk, the corresponding test

was denoted by “MRLE-Union”; or (2) SNPs that reached a more liberal significance threshold,

5×10−6, for at least two biomarkers, the corresponding test was denoted by “MRLE-Intersection”.

As a comparison, we also applied the fixed-effect IVW tests based on SNPs associated with

each individual biomarker. Similiar to MRLE, we also considered two IV selection strategies,

where for each single-biomarker IVW test, we selected either (1) SNPs that reached genome-wide

significance threshold (5 × 10−8) for that biomarker only (“IVW-Standard”); or (2) SNPs that

reached significance level 5×10−6 for that biomarker and at least one other (“IVW-Intersection”).

Since multiple IVW tests were conducted, an adjusted significance level, α1 = 1 − (1 − α0)
1/K

was used for the test on each biomarker to control family-wise error rate (FWER) at α0. We

assessed type I error control of the various methods at θ = 0 and power at θ = 0.1.

Under the no pleiotropy assumption, type I error rates seem to be well controlled at approx-

imately α0 = 0.05 in all simulated settings (Figures 3, S2, and S3). We observe that overall, as

GWAS sample size (N) increases (which leads to increased number of IVs), the power of both IVW

and MRLE tests increases (Figure 3). The power of the tests also increases as the total heritabil-

ity of the biomarkers (H2
B.total) and the proportion of this heritability explained by the exposure

(H2
B.X/H

2
B.total) increase. Compared to the naive IV selection strategy of choosing all SNPs asso-

ciated with any biomarker, the proposed, more strict criterion of choosing SNPs associated with

at least two biomarkers yields a higher power and a higher probability of correctly identifying

the direction of the effect for both tests (Figures 3, S2, S3, and S4(B), MRLE-Intersection ver-

sus MRLE-Union, IVW-Intersection versus IVW-Standard). Using either of the two IV selection

strategies, MRLE provides a substantially higher power and a higher probability of correctly

identifying the causal direction compared to the IVW test under the same level of type I error
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control. We also conducted simulation studies under the same settings but assuming a total of

K = 4 or 8 biomarkers (Figures S2, S3, and S4(A,C)). Overall, the results are similar to those

presented in Figures 3 and S4(B), but using a larger number of biomarkers tends to give a higher

power and a higher chance of correctly identifying the causal direction.

3.3 Simulations assuming correlated pleiotropy between biomarkers and the outcome

We next examined the performance of the tests under different types of pleiotropic effects. We

first considered pleiotropy between the biomarkers and the outcome, where there exist SNPs that

have correlated associations with the outcome and at least one of the biomarkers (Figure S1(A)).

In our simulation, this was reflected by randomly assigning half of the πBM SNPs that had a

direct effect on each biomarker to have another direct effect, uk,j , on the outcome, with mean

0, variance 0.1h2Bk
, and cor(γBk,j , uk,j) = 0.15, k ∈ 1, . . . ,K. We set πB = 2%, and for each

biomarker, we set the total heritability to 0.3 or 0.4, and the proportion of heritability explained

by the latent exposure to 0.15 or 0.2, which leads to a heritability of the biomarker explained by

the latent exposure between 0.045 and 0.080.

In the presence of horizontal pleiotropy between a biomarker and the outcome, selecting

SNPs significantly associated (i.e., α = 5 × 10−8) with any biomarker as IVs can lead to severe

inflation in type I error rate, especially for the IVW test (Figure 4, “IVW-Standard”). Compared

to the results in the no-pleiotropy scenario in Figures 3 and S4(B), at the same level of power,

the probability of correctly identifying the causal direction also decreases for both tests with

either of the two IV selection strategies (Figure S5(A)), although MRLE test still outperforms

IVW test in terms of type I error control and identification of the direction of the effect. On

the contrary, selecting SNPs that are associated with at least two biomarkers at a more liberal

threshold (α = 5 × 10−6) as IVs can substantially improve the type I error control, power, and

the probability of correcting identifying the direction of the effect for both methods. Under this
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strategy, MRLE has a consistently lower type I error rate that is close to the target level α0 = 0.05

and higher power compared to the IVW test.

3.4 Simulations assuming correlated pleiotropy across biomarkers

Another type of pleiotropy that is likely to exist is the pleiotropy among biomarkers, where

some SNPs have correlated direct effects across multiple biomarkers, which can be due to shared

genetic pathways across biomarkers (Figure S1(B)). In the simulation, we introduced this type

of pleiotropy by allowing 1/K of the πBM SNPs that had a direct effect on biomarker k (γk,j)

to also have another direct effect on each of the other K − 1 biomarkers (γl,j , j ̸= k), with

mean 0, variances h2B , and cor(γk,j , γl,j) = 0.5, k, l ∈ 1, . . . ,K. This leads to a total of πBM/K

SNPs to be directly associated with each individual biomarker, and πBM/K SNPs to be directly

associated with each pair of biomarkers. We set πB = K%, and for each biomarker, we set the

total heritability to 0.3 or 0.4, and the proportion of heritability explained by the latent exposure

to 0.15 or 0.2, which leads to a heritability of the biomarker explained by the latent exposure

between 0.045 and 0.08.

Simulation results show that in the presence of pleiotropy across biomarkers, strict type I error

control can be achieved by either selecting SNPs associated with any biomarker (“IVW-Standard”

and “MRLE-Union” in Figure 5) or selecting SNPs associated with at least two biomarkers (“IVW-

Intersection” and “MRLE-Intersection” in Figure 5). Overall, the more stringent IV selection

strategy (“IVW-Intersection” and “MRLE-Intersection”) yields a higher power and a higher prob-

ability of correctly identifying the causal direction for both IVW and MRLE tests (Figures 5 and

S5(B)). Compared to IVW, MRLE shows a higher power and a higher probability of correctly

identifying the causal direction using either of the two IV selection criteria.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 22, 2023. ; https://doi.org/10.1101/2021.02.05.429979doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.05.429979
http://creativecommons.org/licenses/by-nc-nd/4.0/


Mendelian Randomization Analysis Using Multiple Biomarkers of an Underlying Common Exposure17

3.5 Simulations assuming correlated pleiotropy between the latent exposure and its biomarkers

In Section 3.4 we assess the validity and robustness of MRLE in the presence of correlated

pleiotropy across biomarkers, i.e., there exist SNPs that have correlated direct effects, γ1,j ,. . . ,γK,j ,

across the K biomarkers. Now we further consider a more complex scenario where in addition to

the correlation structure among γk,js, there is also correlation between γk,js and βx,j , the direct

effect of SNP j on the latent exposure. In other words, there are SNPs that have pleiotropic

effects described in Figure S1(B), or Figure S1(C), or both. Specifically, we conducted an addi-

tional simulation under the same simulation setting as in Section 3.2 except that we now only

consider K = 6 biomarkers, and for each SNP j that had more than two nonzero effects among

βx,j , γ1,j , . . . , γK,j , we added an additional correlation 0.3 between any pair of the effects. Given

that the number of SNPs with correlated direct effects on both the exposure and the biomarkers

is small compared to the total number of causal SNPs, the heritability of the exposure and the

biomarkers are approximately the same as that in the simulations in Section 3.2. Results in Fig-

ure 6 show that both IVW and MRLE have good type I error control under correlated pleiotropy

across latent exposure and biomarkers. Both IVW and MRLE have higher power (Figure 6) and

a higher probability of correctly identifying the causal direction (Figure S6) compared to the

corresponding tests when there is no correlated pleiotropy across latent exposure and biomarkers

(Figure 3, Figure S4(B)).

4. MR Analysis of Multiple Inflammatory Biomarkers on Risk of Five Diseases

Chronic inflammation has been long hypothesized to be one of the underlying causes of a spec-

trum of common diseases (Libby, 2007). Epidemiologic studies have used a variety of inflammation

biomarkers to study the potential relationship between inflammation and disease risks (Hunter,

2012; Brenner and others, 2014; Bennett and others, 2018; Furman and others, 2019; Demir,

2020). In particular, C-reactive protein (CRP), a type of protein in blood produced by liver in
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response to inflammation, has been commonly used to associate chronic inflammation to a vari-

ety of diseases including heart disease (Collaboration and others, 2010; Shrivastava and others,

2015), ischemic stroke (Di Napoli and others, 2001; VanGilder and others, 2014), cancers of colon

(Erlinger and others, 2004; Aleksandrova and others, 2010) and lung (Chaturvedi and others,

2010; Pastorino and others, 2017). However, recent MR studies have indicated that CRP itself is

unlikely to be an underlying causal risk factor for these diseases. In addition to CRP, a variety

of other biomarkers, including interleukin 6 (IL-6), interleukin 8 (IL-8), tumor necrosis factor

alpha (TNF-α), and monocyte chemoattractant protein-1 (MCP-1), are commonly used to as-

sess inflammation and hence associate with risks of diseases. MR analyses for these additional

biomarkers, however, have been largely limited as sample sizes for the underlying GWAS have

been typically fairly modest (Ahola-Olli and others, 2017; Höglund and others, 2019; Hillary and

others, 2020; Russell and others, 2020).

Here we investigate the causal effect of chronic inflammation on a number of diseases including

rheumatoid arthritis (RA), coronary artery disease (CAD), colorectal cancer (CRC), prostate

cancer (PCa) and endometrial cancers (EC), all of which have been associated with one or more

inflammatory biomarkers in previous studies (Choy and Panayi, 2001; Kraus and Arber, 2009;

Friedenreich and others, 2013; Abu-Remaileh and others, 2015; Shrivastava and others, 2015;

Izano and others, 2016; Platz and others, 2017; Li and others, 2018; Ridker and others, 2018;

Cai and others, 2019; Subirana and others, 2018; Wang and others, 2019).

We apply the proposed MRLE method to test the causal effect of chronic inflammation on

the diseases using summary-level data from publicly available GWAS for five commonly used

systematic biomarkers of chronic inflammation, including, CRP, IL-6, IL-8, TNF-α and MCP-1.

We ourselves generated the summary-level data for CRP by conducting a GWAS on 320041 unre-

lated, European-ancestry individuals in the UK Biobank who have CRP measurements available.

We performed a GWAS across 1186957 common SNPs (minor allele frequency >5%) that are
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available in HapMap 3 (International HapMap 3 Consortium and others, 2010) based on additive

genetic model adjusting for age, sex and body-mass index (BMI) using PLINK 2 (Chang and

others, 2015; Purcell, S. M. and Chang, C. C., 2018). We used summary-level data for IL-6, IL-8,

TNF-α and MCP-1 which were previously generated based on GWAS on up to 3596 European-

ancestry participants in the Cardiovascular Risk in Young Finns Study (YFS) and up to 6313

European-ancestry participants in the FINRISK study that have the corresponding measurements

available, after adjusting for age, sex, BMI and the first 10 genetic principal components (Ahola-

Olli and others, 2017). Summary-level data for RA (Okada and others, 2014), CAD (Schunkert

and others, 2011), CRC (Zhou and others, 2018), PCa (Schumacher and others, 2018), and EC

(O’Mara and others, 2018) were all obtained from publicly available GWAS. As GWAS for CRC

and EC have overlapping individuals with the UK Biobank-based GWAS for CRP, we excluded

CRP from the set of biomarkers used in the analyses of CRC and EC. Detailed information on

GWAS for the inflammatory biomarkers and diseases are summarized in Table S1.

To select IVs, we first conducted a filtering procedure (Zheng and others, 2017b) by removing

the SNPs that were strand-ambiguous, had alleles that did not match those in the 1000 Genomes

Project, or were within the major histocompatibility complex (MHC) region (26Mb - 34Mb on

chromosome 6) since they may have complex large pleiotropic effects across multiple inflammation

related traits (Trowsdale and Knight, 2013; Matzaraki and others, 2017). We then selected SNPs

that were significantly associated with at least two of the inflammatory biomarkers. Considering

the GWAS sample sizes, we used a more liberal instrument selection threshold, α = 10−3, for

the four cytokine-type biomarkers (NGWAS = 3454 ∼ 8293), and a more stringent threshold,

α = 5 × 10−6, for CRP (NGWAS = 320041). To select independent SNPs, we conducted linkage

disequilibrium (LD) clumping on the remaining SNPs with a window size d = 1MB and a cut-

off for squared-correlation, r2 = 0.05 using PLINK (Purcell and others, 2007). Additionally, we

removed SNPs that were significantly associated (α = 5× 10−8) with the potential confounders
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of the association between inflammation and the outcomes (Rothenbacher and others, 2003),

including systolic blood pressure (SBP), history of diabetes, smoking status, alcohol consumption

status, high-density lipoprotein (HDL), and low-density lipoprotein (LDL), based on a GWAS

we conducted on 320041 relatively unrelated European-ancestry UK Biobank individuals using

PLINK 2 (Chang and others, 2015; Purcell, S. M. and Chang, C. C., 2018). These steps lead to

a total of 53-58 IVs selected for the MR analyses on CRC and EC, and a total of 58-67 IVs for

the MR analyses on CAD, RA and PCa.

Since summary-level data for the four cytokine-type biomarkers, IL-6, IL-8, TNF-α and MCP-

1, were obtained from the same GWAS, we estimated the between-biomarker covariance (ck,k′s in

the proposed estimating equations) by fitting bivariate LD score regressions as described in the

Methods section. We also conducted fixed-effect IVW test on each biomarker, where the IVs were

defined as the SNPs that were associated with the biomarker and at least one other biomarker.

The MR analyses were conducted at a significance level of α0 = 0.05. The desired level of type I

error rate for the single-biomarker IVW tests were set at 1− (1 − α0)
1/K , i.e., 0.0102 for CAD,

RA and PCa, and 0.0127 for CRC and EC, to control FWER of the IVW test at 0.05 for each

disease. Details of the IV selection procedure are summarized in Figure S7.

We observe that results on RA are significant based on all tests (Table 1). The proposed MRLE

test detects a significant, positive effect of chronic inflammation (p-value=2.5×10−27). All single-

biomarker IVW tests detect significant evidence as well, but the identified causal directions do

not agree with each other: the tests based on IL-8, TNF-α and CRP suggest a positive effect

of chronic inflammation on the risk of RA, while IL-6 and MCP-1 suggest a negative effect,

thus no universal conclusion can be drawn for the effect on RA based on IVW tests. No single-

biomarker IVW test shows significant evidence for a causal effect of chronic inflammation on

the risk of CAD. Among the single-biomarker IVW tests, three of the biomarkers (CRP, TNF-α

and IL-8) which indicate most significant evidence all seem to be associated with an increased
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risk of CAD. Similarly, no single-biomarker IVW test on CRC suggests a significant effect of

chronic inflammation, although two of them (IL-8 and TNF-α) achieve borderline significance

both indicating an increased risk of CRC being associated with higher level of inflammation. The

proposed MRLE method, on the other hand, indicates a significant, positive effect of chronic

inflammation on the risk of both CAD (p-value=0.012) and CRC (p-value=0.011). Neither the

IVW tests nor the MRLE test detects any significant effect of chronic inflammation on PCa or

EC.

5. Discussion

We propose a novel method for MR analysis for testing the causal effect of an unobservable la-

tent exposure utilizing multiple traits co-regulated by the exposure. Through a set of extensive

simulation studies and data analyses, we demonstrate that the proposed method overcomes var-

ious challenges associated with the standard MR analyses that use individual observable traits

associated with the latent exposure and their associated genetic instruments.

Several practical issues merit consideration. First, the validity of the selected observable traits

as surrogates for the latent exposure of interest. Theoretically, including more observable traits for

latent exposure can provide higher power. However, the inclusion of invalid traits, i.e., traits that

are actually not regulated by the latent exposure or/and themselves have a direct causal effect

on the exposure, can affect both the type I error rate and power of the tests. Second, a strict IV

selection procedure is crucial. Other than the commonly implemented filtering procedures such as

removing SNPs that are significantly associated with the potential confounders, we recommend

selecting the SNPs that are associated with at least two traits. We have shown by simulation that

this more strict criterion can efficiently reduce the number of invalid IVs selected, thus providing

higher power and more strict type I error control under various types of pleiotropy. Additionally,

although a more liberal significance threshold may be used for an individual trait when the
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sample size is relatively small, there needs to be rigorous criteria to ensure the selection of valid

instruments. Recent methods for discovering strictly pleiotropic associations across multiple traits

can be potentially used for instrument selection (Ray and Chatterjee, 2020).

Our study has several limitations. First, our current model assumes no horizontal pleiotropy

between the latent exposure and the outcome. There has been a considerable amount of research

in the recent past on weakening the no horizontal pleiotropy assumption when the exposure is

directly observable (Bowden and others, 2016; Hartwig and others, 2017; Verbanck and others,

2018; Qi and Chatterjee, 2019; Burgess and others, 2020). Our method, on the other hand,

provides the formal framework for carrying an MR analysis for a latent exposure based on multiple

biomarkers. The method is robust to pleiotropic effects of genetic variants across biomarkers,

between the latent exposure and the biomarkers, and between the biomarkers and the outcome.

Future studies are merited to explore how MRLE can be further strengthened to take into account

possible horizontal pleiotropy between the latent exposure and the outcome.

Results from our MR analysis of chronic inflammation and various diseases should be in-

terpreted cautiously. First, null results for certain diseases, such as PCa and EC, may be due

to the inability of the set of the biomarkers used to capture relevant aspects of inflammation.

Second, the GWAS sample for all the inflammatory biomarkers except CRP was relatively small,

causing substantially large uncertainty of the effect estimates. In the future, our results need to

be confirmed using results from much larger GWAS of inflammatory biomarkers when such data

become available.

6. Software

The R package “MRLE” and the R code for simulations and data analyses are available at

https://github.com/Jin93/MRLE.
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7. Supplementary Materials

The reader is referred to the on-line Supplementary Materials for technical appendices and addi-

tional simulation results.
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Fig. 1: Causal paths between the SNPs (Gjs), the latent exposure of interest (X), the biomarkers
co-regulated by the latent exposure (Bks), and the outcome (Y ). A0 represents the set of indexes
for SNPs that are directly associated with X with effect sizes βx,js, and Ak represents the set
of indexes for SNPs that are not associated with X but directly associated with Bk with effect
sizes γk,js, k = 1, . . . ,K. A0 and Aks may have overlaps with each other, but the effects of one
SNP on different traits or the outcome are assumed independent, although we will show validity
of the proposed MRLE test on various correlated pleiotropy settings by simulations. The number
of observable traits is set to K = 3 for illustration.
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Fig. 2: Results from the pilot simulation study showing consistency of the results between
individual-level simulation (A) and summary-level simulation (B). Results were summarized
from 1000 simulations assuming a total of K = 6 biomarkers, with a GWAS sample size of
N = 6×104 for the outcome and all biomarkers. The total heritability of each biomarker (H2

B.total)
and the heritability of each biomarker explained by the latent exposure (H2

B.X) were both set to
0.2. IVs are defined as either the SNPs associated with at least one biomarker (“IVW-Standard”
and “MRLE-Union”, α = 5× 10−8) or the SNPs associated with at least two biomarkers (“IVW-
Intersection” and “MRLE-Intersection”, α = 5× 10−6). In each subfigure, the upper panel shows
the empirical type I error rate under θ = 0, and the lower panel shows the empirical power under
θ = 0.1.
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Fig. 3: Simulation results assuming a total of K = 6 biomarkers based on 1000 simulations per
setting. H2

B.total and H2
B.X denote the total heritability of each biomarker and the heritability of

each biomarker explained by the latent exposure, respectively. IVs are defined as either the SNPs
associated with at least one biomarker (“IVW-Standard” and “MRLE-Union”, α = 5 × 10−8) or
the SNPs associated with at least two biomarkers (“IVW-Intersection” and “MRLE-Intersection”,
α = 5 × 10−6). In each subfigure, the upper panel shows the empirical type I error rate under
θ = 0, and the lower panel shows the empirical power under θ = 0.1.
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Fig. 4: Simulation results assuming a total of K = 6 biomarkers and that there are SNPs that
have correlated pleiotropic effects between some biomarkers and the outcome. H2

B.total and H2
B.X

denote the total heritability of each biomarker and the heritability of each biomarker explained
by the latent exposure, respectively. IVs are defined as either the SNPs associated with at least
one biomarker (“IVW-Standard” and “MRLE-Union”, α = 5×10−8) or the SNPs associated with
at least two biomarkers (“IVW-Intersection” and “MRLE-Intersection”, α = 5 × 10−6). In each
subfigure, the upper panel shows the empirical type I error rate under θ = 0, and the lower panel
shows the empirical power under θ = 0.1.
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Fig. 5: Simulation results assuming a total of K = 6 biomarkers and correlated pleiotropic effects
across biomarkers. H2

B.total and H2
B.X denote the total heritability of each biomarker and the

heritability of each biomarker explained by the latent exposure, respectively. IVs are defined as
either the SNPs associated with at least one biomarker (“IVW-Standard” and “MRLE-Union”,
α = 5 × 10−8) or the SNPs associated with at least two biomarkers (“IVW-Intersection” and
“MRLE-Intersection”, α = 5×10−6). In each subfigure, the upper panel shows the empirical type
I error rate under θ = 0, and the lower panel shows the empirical power under θ = 0.1.
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Fig. 6: Simulation results assuming a total of K = 6 biomarkers and correlated pleiotropic effects
across latent exposure and biomarkers. H2

B.total and H2
B.X denote the total heritability of each

biomarker and the heritability of each biomarker explained by the latent exposure, respectively.
IVs are defined as either the SNPs associated with at least one biomarker (“IVW-Standard” and
“MRLE-Union”, α = 5 × 10−8) or the SNPs associated with at least two biomarkers (“IVW-
Intersection” and “MRLE-Intersection”, α = 5× 10−6). In each subfigure, the upper panel shows
the empirical type I error rate under θ = 0, and the lower panel shows the empirical power under
θ = 0.1.
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Table 1: Causal effect of chronic inflammation on the risk of various diseases. The IVs used in
MRLE are the SNPs associated with at least two of the inflammatory biomarkers. The IVs used in
each single-biomarker IVW test are the SNPs associated with the biomarker and at least one other
biomarker. Significance threshold for IV selection is set to α = 5× 10−6 for CRP and α = 10−3

for the other biomarkers. Bold font indicates significant conclusion. Significance thresholds for
IVW tests are set to 1 − (1 − α0)

1/K , i.e., 0.0102 for CAD, RA and PCa, and 0.0127 for CRC
and EC, to control FWER at 0.05. CRP were excluded from the tests on CRC and EC due to
overlapping individuals in GWAS.

Outcome Method Number of IVs Effect P-value

RA

IVW - IL-6 25 − < 5.0× 10−324

IVW - IL-8 33 + < 5.0× 10−324

IVW - TNF-α 31 + < 5.0× 10−324

IVW - MCP-1 17 − < 5.0× 10−324

IVW - CRP 7 + 3.8× 10−271

MRLE 55 + 9.3× 10−23

CAD

IVW - IL-6 29 − 0.928
IVW - IL-8 37 + 0.341
IVW - TNF-α 35 + 0.243
IVW - MCP-1 21 − 0.951
IVW - CRP 15 + 0.097
MRLE 67 + 0.012

CRC

IVW - IL-6 26 + 0.322
IVW - IL-8 34 + 0.082
IVW - TNF-α 35 + 0.014
IVW - MCP-1 13 − 0.408
MRLE 53 + 0.011

PCa

IVW - IL-6 29 − 0.294
IVW - IL-8 35 + 0.724
IVW - TNF-α 35 + 0.642
IVW - MCP-1 20 − 0.229
IVW - CRP 14 + 0.428
MRLE 65 + 0.550

EC

IVW - IL-6 26 − 0.325
IVW - IL-8 34 + 0.541
IVW - TNF-α 35 + 0.805
IVW - MCP-1 13 − 0.095
MRLE 58 − 0.069
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