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SUMMARY
Mendelian Randomization (MR) analysis is increasingly popular for testing the causal effect of
exposures on disease outcomes using data from genome-wide association studies. In some set-
tings, the underlying exposure, such as systematic inflammation, may not be directly observable,
but measurements can be available on multiple biomarkers or other types of traits that are co-
regulated by the exposure. We propose a method for MR analysis on latent exposures (MRLE),
which tests the significance for, and the direction of, the effect of a latent exposure by leveraging

information from multiple related traits. The method is developed by constructing a set of esti-
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mating functions based on the second-order moments of GWAS summary association statistics
for the observable traits, under a structural equation model where genetic variants are assumed
to have indirect effects through the latent exposure and potentially direct effects on the traits.
Simulation studies show that MRLE has well-controlled type I error rates and enhanced power
compared to single-trait MR tests under various types of pleiotropy. Applications of MRLE using
genetic association statistics across five inflammatory biomarkers (CRP, IL-6, IL-8, TNF-a, and
MCP-1) provide evidence for potential causal effects of inflammation on increasing the risk of
coronary artery disease, colorectal cancer, and rheumatoid arthritis, while standard MR analysis

for individual biomarkers fails to detect consistent evidence for such effects.

Key words: Chronic inflammation; Generalized method of moments; Mendelian Randomization; Latent

exposure; Structural equation model.

1. INTRODUCTION

In the last two decades, Mendelian Randomization (MR) analysis has become increasingly popular
for investigating the causal effects of risk factors and biomarkers on disease outcomes when
randomized controlled trials are unavailable (Davey Smith and Ebrahim, 2003; Lawlor and others,
2008; Emdin and others, 2017). MR analysis is a type of instrumental variable (IV) analysis that
uses genetic variants (SNPs) as “instruments” aiming for an unbiased estimate of the underlying
causal effect when there exist potential confounders. While early MR analysis focused on using
individual genetic variants of known functional consequence as instruments (Greenland, 2000;
Abifadel and others, 2003; Cohen and others, 2006; Lawlor and others, 2008), the era of genome-
wide association studies (GWAS) has led to the rise of powerful MR, analysis methods based on
multiple SNPs (Pierce and others, 2011; Pierce and Burgess, 2013; Evans and Davey Smith, 2015;

Zheng and others, 2017a). In particular, with the rapid development of large publicly available
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GWAS, the majority of MR research has been transferred from working with individual-level
data to two-sample MR analysis with summary-level data (Bautista and others, 2006; Burgess
and Thompson, 2015; Qi and Chatterjee, 2021).

Many recent methods for MR analysis have focused on improving robustness to the presence
of pleiotropic association by which genetic instruments can affect the outcome of interest inde-
pendent of the exposure and thus leading to violation of key assumptions (Bowden and others,
2015, 2016; Hartwig and others, 2017; Verbanck and others, 2018; Zhu and others, 2018; Qi and
Chatterjee, 2019; Morrison and others, 2020; Shapland and others, 2022; Zhao and others, 2020;
Cinelli and others, 2022). In this study, we consider a novel setting of pleiotropic association,
where genetic variants might be associated with multiple observed traits through an underlying
latent exposure which may have a causal effect on the outcome. An example of the relevant is-
sues has recently been illustrated in a study of the causal relationship between blood pressure
and multiple kidney function biomarkers (Yu and others, 2020). The analysis showed that stan-
dard MR analysis methods using an individual kidney function biomarker, such as the estimated
glomerular filtration rate determined based on the serum creatinine (eGFRer), did not detect
a causal effect of kidney function on blood pressure. Instead, when the analysis was restricted
to instruments that showed association across multiple biomarkers and thus were likely to be
related to the underlying kidney function, it showed clear evidence of causal effects. Examples
of groups of traits that may be governed by an underlying common exposure appear in many
settings, including but not limited to, inflammatory biomarkers (Brenner and others, 2014; Qian
and others, 2019), groups of metabolites related to dietary and lifestyle exposures (Gu and oth-
ers, 2018; Oluwagbemigun and others, 2020), and measurement instruments for evaluations of
underlying mental health conditions (Tsanas and others, 2017; Black and others, 2019).

We propose a novel method for conducting MR analysis on latent exposures (MRLE), which

allows testing for the statistical significance and direction of the effect of an unobservable latent
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exposure by leveraging information from multiple related observable traits. The method uses
GWAS summary-level association statistics of the observable traits and the outcome on a set
of “strictly selected” SNPs (IVs) that are associated with at least two of the traits at specified
thresholds of significance. We use an underlying structural equation model to describe causal
paths between the SNPs, the latent exposure, the traits co-regulated by the exposure, and the
outcome. We then construct a series of estimating functions by equating the second-order sample
moments of the summary-level association statistics with the corresponding theoretical moments
and propose inference for identifiable parameters based on the Generalized Method of Moments
theory (Hansen, 1982; Newey and McFadden, 1994; Hall and others, 2005).

We show by simulation that the proposed MRLE test has a well-controlled type I error rate,
increased power, and a higher probability of correctly identifying the direction of the causal
effect compared to single-trait MR analysis, and is robust to the presence of various types of
pleiotropy across the latent exposure, the observable traits, and the outcome. We applied MRLE
to test the effect of chronic inflammation on rheumatoid arthritis, coronary artery disease, and
cancers including colorectal cancer, prostate cancer and endometrial cancer, using up to five
inflammatory biomarkers including c-reactive protein (CRP), interleukin 6 (IL-6), interleukin 8
(IL-8), tumor necrosis factor alpha (TNF-«), and monocyte chemoattractant protein-1 (MCP-1).
These analyses reveal that while MR analyses based on single biomarkers often fail to detect
any consistent patterns of causal effects, the proposed MRLE method detects such evidence for
a number of diseases including RA, CAD, and CRC.

The rest of the paper is organized as follows. In Section 2, we introduce the model setup
and method development for MRLE. We investigate the performance of MRLE in a variety of
simulated data scenarios in Section 3 and through an application of testing the causal effect of
chronic inflammation on multiple diseases in Section 4. Further discussion and future directions

are presented in Section 5.
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2. METHODS
2.1  Problem setting and model setup

Let X denote an exposure variable of interest for which we want to examine its causal effect 6
on an outcome Y. We assume that measurements on X are not directly available, and instead
one can observe a set of biomarkers, or other types of traits, {By,k = 1,..., K}, K > 2, that
are co-regulated by X with known directions. We call a biomarker “valid” for such analysis on
latent exposure X if it meets the following two conditions: (A) X affects the biomarker, and (B)
conditional on X, the biomarker does not have an effect on the outcome itself (“pure surrogate”).
Suppose we select M independent SNPs G, 7 = 1,2,..., M, that are associated with one or
more of the Bys, as instrumental variables (IVs) for the MR analysis. We assume that a nonzero
proportion of the selected IVs are valid IVs for X, i.e., they are directly associated with X. Details
of the IV selection strategy will be discussed later in Section 2.3. Following we will assume that
the outcome Y is continuous and develop our method in the linear structural equation modeling
framework. Note that we show method development for a continuous outcome Y for simplicity,
but the testing result is invariant with respect to the scaling of the effect size, and thus the method
can be applied to discrete (e.g., binary/categorical) outcomes without further modification (see
Appendix B of the Supplementary Materials for details). We further assume without loss of
generality that the SNPs G;, j = 1,2,..., M, the biomarkers By, k = 1,2,..., K, the latent
exposure X, and the outcome Y are all standardized to have unit variance, so that the effect 0 is
on the standardized scale. Again, such an assumption is only made to simplify notations in our
derivations: even if the data is not standardized, the method still works since we only care about
the existence and direction of the causal effect but not the effect size.

Figure 1 describes the assumed causal paths between the SNPs (G;s), the latent exposure of

interest (X), the biomarkers co-regulated by the latent exposure (Bgs), and the outcome (Y),
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assuming a total of K = 3 biomarkers. Here we assume an “outcome model” of the form
Y =0X + ¢,

where €, denotes a mean-zero error term with variance O’?y. Here €, can be correlated with X
due to unobserved confounding for the effect of X on Y, but we assume the confounders are not
associated with the selected IVs. Our goal is to conduct a hypothesis test with null hypothesis
Hy : 6 = 0 and alternative hypothesis H, : 8 # 0, also to infer the sign of § when the null
hypothesis is rejected.
We next assume an “exposure model” of the form
M
X = Zﬂxijj + €z,

j=1
where 3, ;, j = 1,2,..., M denote additive effects of SNPs on X, and €, is a mean-zero error
term with variance O‘i. We further assume that the effect sizes, 8, j = 1,2,..., M, can be
modelled as i.i.d. mean-zero random variables with variance h2.

Finally, we assume a set of “biomarker models” in the form

M
Bk = ekX-i-Z’}/k)]Gj +€Bk’ k= 1,2,...,K7
j=1
where 0, denotes the effect of exposure X on biomarker By, vij,j = 1,...,M denote the

direct effects of the SNPs on By, that are not medicated through X, and ep, denotes the mean-
zero residual error term associated with Bj with a variance U?Bk. We further assume that for
each k, v, 7 = 1,2..., M are i.i.d. mean-zero random variables with a variance h,%k that are
uncorrelated with association coefficients for SNPs associated with X, ie., 8, ;,j=1,...,M,in
the “exposure” model.

Assume we have summary-level association statistics for biomarker By, { (B By J-,U?Bk ’ j), j=
1,2,..., M}, and those for the outcome Y, {(gyvj,a%,j),j =1,2,..., M}, from separate GWAS,

where B and o2 with specific subscript denote the corresponding estimated association coefficient
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and its estimated standard error, respectively. We allow the GWAS for Bys to have potentially
overlapping samples but assume that GWAS for Y is independent of GWAS for Bys to avoid
introducing bias caused by sample overlap in two-sample MR (Burgess, Davies, and Thompson,
2016).

It has been common practice to test for causal effect of an underlying exposure, such as
chronic inflammation, using a surrogate biomarker such as CRP, based on a standard IVW es-
timator, 7V = [EjM_l (By,jBB}j/a%J)} / (Z]]Vil B\%’ja%’j). Under the above structural equa-
tion model, we can derive the asymptotic bias of the standard IVW estimator in the form of
0 [pveghi/ (pﬁ%hi + h%) - 1}, as GWAS sample sizes go to infinity. Here p, € [0, 1] denotes
the proportion of I'Vs selected for the biomarker that are valid IVs for the latent exposure, i.e.,
the rest of the SNPs are directly associated with the biomarker but not directly associated with
the latent exposure (see Appendix A of the Supplementary Materials for mathematical details).
Thus, under the above model, while a standard test based on an individual biomarker is expected
to be valid with a well-controlled type I error rate given a zero asymptotic bias when 6 = 0, it can
lose major power due to attenuation of the underlying causal effect when p,0ph2 < p,0%h2 + hg/.
Furthermore, as we will show later, in the presence of more complex pleiotropy settings, single

biomarker-based tests for causal effects can easily become invalid with inflated type I error rates.

2.2 Cross-biomarker MR analysis using generalized method of moments

We propose statistical inference based on the method of moments which only requires mo-
ments of the summary-level association statistics and no additional distributional assumptions
for model parameters. Let X° = (X7, X5,..., X &)T denote the observed GWAS summary-level
data for biomarkers and outcome, where X7 = ({BBk,j}szp {U%w}ﬁ;l,gy’j,a}%’j)jﬂ for SNP

j=1,2,..., M. We consider the second-order moments of {By7j,EBl7j, A BBKJ}, which, based


https://doi.org/10.1101/2021.02.05.429979
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.05.429979; this version posted February 22, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

8 J. JIN AND OTHERS

on our model described in the previous section, can be derived as

E(By,;B8,.;) = 00kh%, 1<k <K,
E('B\]z3k7j> = eihi + h’QYk +U]23k,j? 1<k <K,

E(B\Bk,jB\Bkuj) = 010 h2 +crpr, 1<k<k <K,

where ¢y, denotes the covariance between BBM and BBk,,j, which could arise due to sample
overlap between GWAS of correlated biomarkers, and can be estimated from summary-level as-
sociation statistics using techniques such as bivariate LD score regression (Turley and others,
2018; Qi and Chatterjee, 2018). Detailed derivations are provided in Appendix B of the Supple-
mentary Materials.

We note that the per-SNP heritability of the latent exposure (h2) always shows up alongside
the terms 00, 07, or 6x0y, k = 1,2,..., K, which makes it impossible to infer h2 separately
from 6 and 6s. Such an identifiability issue is actually the reason we cannot estimate the causal
effect (6) of X on Y if not fixing h2. To avoid such an issue, we reparameterize the model
with u = Ohy, pur = Okhy, k = 1,2,..., K, and denote the vector of model parameters by
N = (1., K, h?yl, ceey h?YK)T. Conducting inference on 6 is then equivalent to conducting
inference on p: not only the hypothesis test Hj : § = 0 versus H : 6 # 0 is equivalent to
Hi : p = 0versus HY : p # 0, but also the sign of 6 is the same as the sign of yu = 6h,,
given that h, (i.e., standard deviation of f, ;s) is positive. Due to the existence of the terms
00xh2, k = 1,2,..., K, the identifiability of the sign of 6 requires that the signs of fys, i.e., the
associations between Bps and X, are known. Such an assumption is implicit in our proposed
MRLE method, which is reasonable because the directions of the effect of latent exposure on
biomarkers are typically known and available in the literature. One example is that for kidney
function, it is known that a higher level of estimated glomerular filtration rate (eGFR) based on

either serum creatinine (eGFRcr) or cystatin C (eGFRcys), a commonly used kidney function
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biomarker, indicates better kidney function, while a higher level of blood urea nitrogen (BUN), a
complementary kidney function biomarker, indicates weaker kidney function (Levey and others,
2009; Yu and others, 2020). Another example is on chronic inflammation, the latent exposure we
will discuss in Section 4. Chronic inflammation has multiple commonly seen biomarkers, such as
CRP, IL-6, IL-8, TNF-«, and MCP-1, that are all known to be positively associated with chronic
inflammation (Sproston and Ashworth, 2018). But even if the signs of some s are unknown, the
MRLE test is still valid, where a rejection of Hj suggests a causal effect of the latent exposure
on the outcome, but we cannot determine its direction.

By equating the second-order moments of the summary-level association coefficients with the
corresponding sample moments, we obtain our estimating functions, U(X*,n) = (1/M) Z]A/il Y(X3,m),
where ¥(X?,n) = (1/11( X5,m), 2 (X5,m), - va(X ],n))T, and estimating equations ¥(X*® n) =

0, with

V(X5 m) = By By — e, 1<k <K,
Uran(X5n) = Bh ; —oh ; —h2, —pi, 1<k<K,

Vo) (X5,1) = BBy.iBBy i — Chkr — i, 1<k <k <K,

where v(k, k') = 2K + S0 (K — 1) + (K — k) and d = K (K + 3)/2.

We observe that there are d = K (K +3)/2 equations and p = 2K +1 unknown parameters. To
solve the estimating equations, we need d > p, i.e., K > 2 biomarkers are required. When K = 2,
the number of estimating equations equals the number of unknown parameters, and we can solve
the equations directly. When K > 3, there are more equations than unknown parameters, the
problem becomes over-identified and we may not be able to solve the exact equations. To deal
with this issue, we consider the generalized method of moments (GMM) and define the following
GMM estimator, MM = argmin, Qg (1), which is the global minimizer of the objective function

Qw(n) = ¥(X ) TWWU(X®,n), where W is a positive semi-definite weighting matrix which is
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typically specified based on X*. Here we consider the optimal choice of W with a minimum
asymptotic covariance, W\Opt, which is the inverse of Q(ng) = E (¢(XS, 1) (X?, nO)T), i.e., the
covariance matrix of the estimating equations based on true parameter values 19. The closed form
expression of (ng) can be easily derived, but since 79 is unknown, in applications we conduct
inference using an iterative algorithm. Specifically, we implement a two-step GMM algorithm
where in step one we obtain an initial estimate of 1 with a simple choice of W\, such as the
identity matrix, and in step two we estimate 7 iteratively by setting W = W°Pt based on the
estimate from the previous iteration until a pre-specified convergence criterion is met. Derivation
of WPt and detailed algorithm are provided in Appendix C of the Supplementary Materials.
Inference on the causal effect 6 can then be conducted based on i®™M ie., the first element of
nEMM_ We obtain 7GMM and an estimate of its standard error based on the GMM theory, then

GMM

perform a Wald test on Hy : u = 0 versus H, : u # 0. Properties of [ and computational

details are summarized in Supporting Information Web Appendices B and C.

2.3 Selection of genetic IVs

A key issue in simultaneously analyzing multiple biomarkers is how to select instruments that
may be associated with the underlying common exposure. As noted earlier, many SNPs that are
associated with individual biomarkers may represent genetic variations that are unrelated to the
latent exposure, and using these SNPs as IVs may lead to power loss. Furthermore, if there are
numerous biomarkers, the chance of incorporating exposure-independent pleiotropic association
of SNPs with some of the biomarkers also increases, potentially leading to bias.

To alleviate these issues, we propose a more strict IV selection criterion, where we select
SNPs that are associated with at least two of the biomarkers co-regulated by the latent exposure.
Intuitively, SNPs associated with multiple biomarkers are more likely to be directly related to

the underlying common exposure and less likely to suffer from pleiotropic effects due to any
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shared genetic background between individual biomarkers and the outcome. However, the use
of GWAS significance threshold (5 x 107%) can be overly strict for this IV selection strategy,
especially when GWAS sample sizes for some biomarkers are relatively small. For example, in
our data analysis which will be described in Section 4 in detail, while GWAS for CRP was large
(N = 320041), those for the other biomarkers were relatively small (N = 3454 ~ 8394). To ensure
that a minimum number of IVs are selected, a more liberal threshold can be used depending on
the GWAS sample size. We show by simulation that such a strategy of selecting I'Vs that affect
multiple biomarkers can effectively reduce pleiotropic bias, leading to a higher power of detecting
causal effect of the latent exposure (Sections 3.2, 3.3, 3.4, and 3.5) and avoiding highly inflated

type I error rates (Section 3.3), under various types of pleiotropy settings.

3. SIMULATION STUDIES
3.1  Simulating individual-level versus summary-level data

In the following sections, we will illustrate the performance of the proposed MRLE method by
simulating genome-wide studies under a variety of scenarios. Conducting large-scale, genome-
wide simulations with data being generated on the individual level is highly computationally
intensive. We, therefore, considered simplifying the simulation procedure by directly simulating
GWAS summary statistics, which is much faster to implement.

We first conducted a pilot simulation study to show the consistency of the results between
simulating on the individual level and simulating on the summary level, which is expected from
the theory. Detailed simulation settings are summarized in Appendix D.1 of the Supplementary
Materials. For both individual-level and summary-level simulations, we assumed there are un-
measured confounders between the exposure, the biomarkers, and the outcome, but the selected
genetic variants satisfy the key “instrumental variable” assumption that they are not related to the

confounders. Specifically, we assume a correlation 0.3 between the residual term ¢, in the “outcome
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model”, Y = 6X + ¢,, and the residual term ¢, in the “exposure model”, X = Z;Vil Ba,iGj + €,
and similarly, a correlation 0.3 between €, or €, and the residual term ep,s in the “biomarker
models”, By, = 0, X + ZJM:l Y, G +ep, k=1,2,..., K.

We set the GWAS sample size to N = 6 x 10* for the outcome and each of the K = 6
biomarkers that are co-regulated by the latent exposure. For individual-level simulations, we
collected genotype data for N unrelated individuals that were randomly selected from the UK
Biobank samples. We first conducted LD pruning to select M=126,627 relatively independent
SNPs to be included in our analysis. Instead of assuming all SNPs to be causal as in the “exposure”
and “biomarker” model, we considered a more realistic setting, where only a small proportion (1%)
of the SNPs are causal with non-zero effect on the biomarker or the exposure. We generated the
true effects of the SNPs and simulated data for the exposure, the biomarkers, and the outcome
for the N individuals based on our assumed model. We then conducted GWAS analysis on the
outcome and each biomarker using one-SNP-at-a-time regressions. The various tests were then
applied to the GWAS summary data. Summary-level simulations were conducted under the exact
same simulated data scenario as in individual-level simulations, except that we directly simulated
GWAS summary data according to the derived distribution of the summary-level association
statistics (Appendix D of the Supplementary Materials).

The consistency of the hypothesis testing results between individual-level and summary-level
simulations is illustrated in an example data scenario. We observe from Figure 2 that the two types
of simulations have similar rejection rates. As expected, both MRLE and IVW provide valid tests
for the causal effect of the latent exposure, with type I error rates well controlled at approximately
a = 0.05 in the presence of confounding effects. The computation time required for completing
1000 individual-level simulations with a sample size of N = 6 x 10* is approximately 142 hours.
On the other hand, 1000 summary-level simulations under the same data scenario were completed

within 2.13 hours. Considering that we will conduct large-scale, genome-wide simulations under a
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large number of data scenarios, summary-level simulation is much more computationally feasible.
In our main simulation study (Sections 3.2 - 3.5), we thus directly simulated GWAS summary

data to reduce the computational burden.

3.2 Simulations assuming no pleiotropy

Suppose there are M = 2 x 10° independent common SNPs across the whole genome and the
summary-level data are available for K = 4, 6 or 8 biomarkers representing an underlying latent
exposure. As mentioned in Section , instead of assuming all SNPs to have non-zero effect on the
trait (exposure or biomarker), we considered a more realistic setting where only a small proportion
of the SNPs are causal, i.e., having non-zero effect on each trait. Specifically, we assumed that
a random subset of M, = m,M SNPs were associated with X, with effect sizes 8, js generated
from N (0, h2); similarly, a random subset of Mp, = 7, M SNPs were associated with By, with
effect sizes 7y js generated from N (0, hQBkL k=1,2,...,K. We set the proportion of causal SNPs
to m, = 7, = 1%, and 6y to V0.3, k = 1,2,..., K, so that X explains 30% of variability of
each of the biomarkers. We further set the total heritability of each biomarker (H3 ,...) to 0.2
or 0.3, and the proportion explained by the association with X to 0.2 or 0.3, which leads to a
total heritability of each biomarker that is explained by X (H% y) between 0.04 and 0.09.

As mentioned earlier, we directly simulated GWAS summary-level association statistics to
avoid having to simulate large-scale individual-level data (Qi and Chatterjee, 2018, see Appendix
D.2 of the Supplementary Materials for details). For simplicity, we assumed equal sample sizes
across all GWAS and all SNPs, which were set equal to 6 x 10%, 8 x 104, or 10°. We also set
the overlapping GWAS sample size between any two biomarkers to Np, p, = N, i.e., the GWAS
summary data for all Biomarkers were obtained from the same set of individuals, and between-
biomarker correlation to cov(By,B;) = 0.3, 1 < k <1 < K. We also set Np, y = 0 for k =

1, ..., K based on the requirement of no sample overlap between the biomarkers and the outcome.
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After generating summary-level association statistics, we selected IVs using either one of the
two strategies discussed in Section 2.3, i.e., we selected either (1) the union of the SNPs that
reached genome-wide significance threshold (5 x 1078) for any single By, the corresponding test
was denoted by “MRLE-Union”; or (2) SNPs that reached a more liberal significance threshold,
5x 1079, for at least two biomarkers, the corresponding test was denoted by “MRLE-Intersection”.
As a comparison, we also applied the fixed-effect IVW tests based on SNPs associated with
each individual biomarker. Similiar to MRLE, we also considered two IV selection strategies,
where for each single-biomarker IVW test, we selected either (1) SNPs that reached genome-wide
significance threshold (5 x 10~%) for that biomarker only (“IVW-Standard”); or (2) SNPs that
reached significance level 5 x 1076 for that biomarker and at least one other (“IVW-Intersection”).
Since multiple IVW tests were conducted, an adjusted significance level, a3 = 1 — (1 — 040)1/ K
was used for the test on each biomarker to control family-wise error rate (FWER) at ag. We
assessed type I error control of the various methods at 8 = 0 and power at 6 = 0.1.

Under the no pleiotropy assumption, type I error rates seem to be well controlled at approx-
imately ap = 0.05 in all simulated settings (Figures 3, S2, and S3). We observe that overall, as
GWAS sample size (N) increases (which leads to increased number of IVs), the power of both IVW
and MRLE tests increases (Figure 3). The power of the tests also increases as the total heritabil-
ity of the biomarkers (H%.total) and the proportion of this heritability explained by the exposure
(H «/H} io1a1) increase. Compared to the naive IV selection strategy of choosing all SNPs asso-
ciated with any biomarker, the proposed, more strict criterion of choosing SNPs associated with
at least two biomarkers yields a higher power and a higher probability of correctly identifying
the direction of the effect for both tests (Figures 3, S2, S3, and S4(B), MRLE-Intersection ver-
sus MRLE-Union, IVW-Intersection versus IVW-Standard). Using either of the two IV selection
strategies, MRLE provides a substantially higher power and a higher probability of correctly

identifying the causal direction compared to the IVW test under the same level of type I error
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control. We also conducted simulation studies under the same settings but assuming a total of
K = 4 or 8 biomarkers (Figures S2, S3, and S4(A,C)). Overall, the results are similar to those
presented in Figures 3 and S4(B), but using a larger number of biomarkers tends to give a higher

power and a higher chance of correctly identifying the causal direction.

3.3 Simulations assuming correlated pleiotropy between biomarkers and the outcome

We next examined the performance of the tests under different types of pleiotropic effects. We
first considered pleiotropy between the biomarkers and the outcome, where there exist SNPs that
have correlated associations with the outcome and at least one of the biomarkers (Figure S1(A)).
In our simulation, this was reflected by randomly assigning half of the mpM SNPs that had a
direct effect on each biomarker to have another direct effect, uy j, on the outcome, with mean
0, variance 0.1h23k, and cor(yg,,;,uk,;) = 0.15, k € 1,..., K. We set mp = 2%, and for each
biomarker, we set the total heritability to 0.3 or 0.4, and the proportion of heritability explained
by the latent exposure to 0.15 or 0.2, which leads to a heritability of the biomarker explained by
the latent exposure between 0.045 and 0.080.

In the presence of horizontal pleiotropy between a biomarker and the outcome, selecting
SNPs significantly associated (i.e., « = 5 x 1078) with any biomarker as IVs can lead to severe
inflation in type I error rate, especially for the IVW test (Figure 4, “IVW-Standard”). Compared
to the results in the no-pleiotropy scenario in Figures 3 and S4(B), at the same level of power,
the probability of correctly identifying the causal direction also decreases for both tests with
either of the two IV selection strategies (Figure S5(A)), although MRLE test still outperforms
IVW test in terms of type I error control and identification of the direction of the effect. On
the contrary, selecting SNPs that are associated with at least two biomarkers at a more liberal
threshold (a = 5 x 1075) as IVs can substantially improve the type I error control, power, and

the probability of correcting identifying the direction of the effect for both methods. Under this
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strategy, MRLE has a consistently lower type I error rate that is close to the target level oy = 0.05

and higher power compared to the IVW test.

3.4 Simulations assuming correlated pleiotropy across biomarkers

Another type of pleiotropy that is likely to exist is the pleiotropy among biomarkers, where
some SNPs have correlated direct effects across multiple biomarkers, which can be due to shared
genetic pathways across biomarkers (Figure S1(B)). In the simulation, we introduced this type
of pleiotropy by allowing 1/K of the mgM SNPs that had a direct effect on biomarker k (i ;)
to also have another direct effect on each of the other K — 1 biomarkers (v ;, j # k), with
mean 0, variances h%, and cor(vx j,vi;) = 0.5, k,l € 1,..., K. This leads to a total of rpM/K
SNPs to be directly associated with each individual biomarker, and 75 M /K SNPs to be directly
associated with each pair of biomarkers. We set mg = K%, and for each biomarker, we set the
total heritability to 0.3 or 0.4, and the proportion of heritability explained by the latent exposure
to 0.15 or 0.2, which leads to a heritability of the biomarker explained by the latent exposure
between 0.045 and 0.08.

Simulation results show that in the presence of pleiotropy across biomarkers, strict type I error
control can be achieved by either selecting SNPs associated with any biomarker (“IVW-Standard”
and “MRLE-Union” in Figure 5) or selecting SNPs associated with at least two biomarkers (“IVW-
Intersection” and “MRLE-Intersection” in Figure 5). Overall, the more stringent IV selection
strategy (“IVW-Intersection” and “MRLE-Intersection”) yields a higher power and a higher prob-
ability of correctly identifying the causal direction for both IVW and MRLE tests (Figures 5 and
S5(B)). Compared to IVW, MRLE shows a higher power and a higher probability of correctly

identifying the causal direction using either of the two IV selection criteria.
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3.5 Simulations assuming correlated pleiotropy between the latent exposure and its biomarkers

In Section 3.4 we assess the validity and robustness of MRLE in the presence of correlated
pleiotropy across biomarkers, i.e., there exist SNPs that have correlated direct effects, v1 j,. .., 7k 5,
across the K biomarkers. Now we further consider a more complex scenario where in addition to
the correlation structure among -y js, there is also correlation between ;s and 3, ;, the direct
effect of SNP j on the latent exposure. In other words, there are SNPs that have pleiotropic
effects described in Figure S1(B), or Figure S1(C), or both. Specifically, we conducted an addi-
tional simulation under the same simulation setting as in Section 3.2 except that we now only
consider K = 6 biomarkers, and for each SNP j that had more than two nonzero effects among
Ba,jr V.5, - 7K,j» we added an additional correlation 0.3 between any pair of the effects. Given
that the number of SNPs with correlated direct effects on both the exposure and the biomarkers
is small compared to the total number of causal SNPs, the heritability of the exposure and the
biomarkers are approximately the same as that in the simulations in Section 3.2. Results in Fig-
ure 6 show that both IVW and MRLE have good type I error control under correlated pleiotropy
across latent exposure and biomarkers. Both IVW and MRLE have higher power (Figure 6) and
a higher probability of correctly identifying the causal direction (Figure S6) compared to the
corresponding tests when there is no correlated pleiotropy across latent exposure and biomarkers

(Figure 3, Figure S4(B)).

4. MR ANALYSIS OF MULTIPLE INFLAMMATORY BIOMARKERS ON RISK OF FIVE DISEASES

Chronic inflammation has been long hypothesized to be one of the underlying causes of a spec-
trum of common diseases (Libby, 2007). Epidemiologic studies have used a variety of inflammation
biomarkers to study the potential relationship between inflammation and disease risks (Hunter,
2012; Brenner and others, 2014; Bennett and others, 2018; Furman and others, 2019; Demir,

2020). In particular, C-reactive protein (CRP), a type of protein in blood produced by liver in
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response to inflammation, has been commonly used to associate chronic inflammation to a vari-
ety of diseases including heart disease (Collaboration and others, 2010; Shrivastava and others,
2015), ischemic stroke (Di Napoli and others, 2001; VanGilder and others, 2014), cancers of colon
(Erlinger and others, 2004; Aleksandrova and others, 2010) and lung (Chaturvedi and others,
2010; Pastorino and others, 2017). However, recent MR studies have indicated that CRP itself is
unlikely to be an underlying causal risk factor for these diseases. In addition to CRP, a variety
of other biomarkers, including interleukin 6 (IL-6), interleukin 8 (IL-8), tumor necrosis factor
alpha (TNF-a), and monocyte chemoattractant protein-1 (MCP-1), are commonly used to as-
sess inflammation and hence associate with risks of diseases. MR analyses for these additional
biomarkers, however, have been largely limited as sample sizes for the underlying GWAS have
been typically fairly modest (Ahola-Olli and others, 2017; Hoglund and others, 2019; Hillary and
others, 2020; Russell and others, 2020).

Here we investigate the causal effect of chronic inflammation on a number of diseases including
rheumatoid arthritis (RA), coronary artery disease (CAD), colorectal cancer (CRC), prostate
cancer (PCa) and endometrial cancers (EC), all of which have been associated with one or more
inflammatory biomarkers in previous studies (Choy and Panayi, 2001; Kraus and Arber, 2009;
Friedenreich and others, 2013; Abu-Remaileh and others, 2015; Shrivastava and others, 2015;
Izano and others, 2016; Platz and others, 2017; Li and others, 2018; Ridker and others, 2018;
Cai and others, 2019; Subirana and others, 2018; Wang and others, 2019).

We apply the proposed MRLE method to test the causal effect of chronic inflammation on
the diseases using summary-level data from publicly available GWAS for five commonly used
systematic biomarkers of chronic inflammation, including, CRP, IL-6, IL-8, TNF-« and MCP-1.
We ourselves generated the summary-level data for CRP by conducting a GWAS on 320041 unre-
lated, European-ancestry individuals in the UK Biobank who have CRP measurements available.

We performed a GWAS across 1186957 common SNPs (minor allele frequency >5%) that are
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available in HapMap 3 (International HapMap 3 Consortium and others, 2010) based on additive
genetic model adjusting for age, sex and body-mass index (BMI) using PLINK 2 (Chang and
others, 2015; Purcell, S. M. and Chang, C. C., 2018). We used summary-level data for IL-6, IL-8,
TNF-a and MCP-1 which were previously generated based on GWAS on up to 3596 European-
ancestry participants in the Cardiovascular Risk in Young Finns Study (YFS) and up to 6313
European-ancestry participants in the FINRISK study that have the corresponding measurements
available, after adjusting for age, sex, BMI and the first 10 genetic principal components (Ahola-
Olli and others, 2017). Summary-level data for RA (Okada and others, 2014), CAD (Schunkert
and others, 2011), CRC (Zhou and others, 2018), PCa (Schumacher and others, 2018), and EC
(O’Mara and others, 2018) were all obtained from publicly available GWAS. As GWAS for CRC
and EC have overlapping individuals with the UK Biobank-based GWAS for CRP, we excluded
CRP from the set of biomarkers used in the analyses of CRC and EC. Detailed information on
GWAS for the inflammatory biomarkers and diseases are summarized in Table S1.

To select IVs, we first conducted a filtering procedure (Zheng and others, 2017b) by removing
the SNPs that were strand-ambiguous, had alleles that did not match those in the 1000 Genomes
Project, or were within the major histocompatibility complex (MHC) region (26Mb - 34Mb on
chromosome 6) since they may have complex large pleiotropic effects across multiple inflammation
related traits (Trowsdale and Knight, 2013; Matzaraki and others, 2017). We then selected SNPs
that were significantly associated with at least two of the inflammatory biomarkers. Considering
the GWAS sample sizes, we used a more liberal instrument selection threshold, o = 1073, for
the four cytokine-type biomarkers (Ngwas = 3454 ~ 8293), and a more stringent threshold,
a=5x 1075 for CRP (Ngwas = 320041). To select independent SNPs, we conducted linkage
disequilibrium (LD) clumping on the remaining SNPs with a window size d = 1MB and a cut-
off for squared-correlation, 72 = 0.05 using PLINK (Purcell and others, 2007). Additionally, we

removed SNPs that were significantly associated (o = 5 x 1078) with the potential confounders
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of the association between inflammation and the outcomes (Rothenbacher and others, 2003),
including systolic blood pressure (SBP), history of diabetes, smoking status, alcohol consumption
status, high-density lipoprotein (HDL), and low-density lipoprotein (LDL), based on a GWAS
we conducted on 320041 relatively unrelated European-ancestry UK Biobank individuals using
PLINK 2 (Chang and others, 2015; Purcell, S. M. and Chang, C. C., 2018). These steps lead to
a total of 53-58 IVs selected for the MR analyses on CRC and EC, and a total of 58-67 IVs for
the MR analyses on CAD, RA and PCa.

Since summary-level data for the four cytokine-type biomarkers, IL-6, IL-8, TNF-a and MCP-
1, were obtained from the same GWAS, we estimated the between-biomarker covariance (¢ is in
the proposed estimating equations) by fitting bivariate LD score regressions as described in the
Methods section. We also conducted fixed-effect IVW test on each biomarker, where the IVs were
defined as the SNPs that were associated with the biomarker and at least one other biomarker.
The MR analyses were conducted at a significance level of ag = 0.05. The desired level of type I
error rate for the single-biomarker IVW tests were set at 1 — (1 — ag)*/%, i.e., 0.0102 for CAD,
RA and PCa, and 0.0127 for CRC and EC, to control FWER of the IVW test at 0.05 for each
disease. Details of the IV selection procedure are summarized in Figure S7.

We observe that results on RA are significant based on all tests (Table 1). The proposed MRLE
test detects a significant, positive effect of chronic inflammation (p-value=2.5x 10~27). All single-
biomarker IVW tests detect significant evidence as well, but the identified causal directions do
not agree with each other: the tests based on IL-8, TNF-a and CRP suggest a positive effect
of chronic inflammation on the risk of RA, while IL-6 and MCP-1 suggest a negative effect,
thus no universal conclusion can be drawn for the effect on RA based on IVW tests. No single-
biomarker IVW test shows significant evidence for a causal effect of chronic inflammation on
the risk of CAD. Among the single-biomarker IVW tests, three of the biomarkers (CRP, TNF-«

and IL-8) which indicate most significant evidence all seem to be associated with an increased
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risk of CAD. Similarly, no single-biomarker IVW test on CRC suggests a significant effect of
chronic inflammation, although two of them (IL-8 and TNF-«) achieve borderline significance
both indicating an increased risk of CRC being associated with higher level of inflammation. The
proposed MRLE method, on the other hand, indicates a significant, positive effect of chronic
inflammation on the risk of both CAD (p-value=0.012) and CRC (p-value=0.011). Neither the
IVW tests nor the MRLE test detects any significant effect of chronic inflammation on PCa or

EC.

5. DISCUSSION

We propose a novel method for MR analysis for testing the causal effect of an unobservable la-
tent exposure utilizing multiple traits co-regulated by the exposure. Through a set of extensive
simulation studies and data analyses, we demonstrate that the proposed method overcomes var-
ious challenges associated with the standard MR analyses that use individual observable traits
associated with the latent exposure and their associated genetic instruments.

Several practical issues merit consideration. First, the validity of the selected observable traits
as surrogates for the latent exposure of interest. Theoretically, including more observable traits for
latent exposure can provide higher power. However, the inclusion of invalid traits, i.e., traits that
are actually not regulated by the latent exposure or/and themselves have a direct causal effect
on the exposure, can affect both the type I error rate and power of the tests. Second, a strict IV
selection procedure is crucial. Other than the commonly implemented filtering procedures such as
removing SNPs that are significantly associated with the potential confounders, we recommend
selecting the SNPs that are associated with at least two traits. We have shown by simulation that
this more strict criterion can efficiently reduce the number of invalid IVs selected, thus providing
higher power and more strict type I error control under various types of pleiotropy. Additionally,

although a more liberal significance threshold may be used for an individual trait when the
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sample size is relatively small, there needs to be rigorous criteria to ensure the selection of valid
instruments. Recent methods for discovering strictly pleiotropic associations across multiple traits
can be potentially used for instrument selection (Ray and Chatterjee, 2020).

Our study has several limitations. First, our current model assumes no horizontal pleiotropy
between the latent exposure and the outcome. There has been a considerable amount of research
in the recent past on weakening the no horizontal pleiotropy assumption when the exposure is
directly observable (Bowden and others, 2016; Hartwig and others, 2017; Verbanck and others,
2018; Qi and Chatterjee, 2019; Burgess and others, 2020). Our method, on the other hand,
provides the formal framework for carrying an MR analysis for a latent exposure based on multiple
biomarkers. The method is robust to pleiotropic effects of genetic variants across biomarkers,
between the latent exposure and the biomarkers, and between the biomarkers and the outcome.
Future studies are merited to explore how MRLE can be further strengthened to take into account
possible horizontal pleiotropy between the latent exposure and the outcome.

Results from our MR analysis of chronic inflammation and various diseases should be in-
terpreted cautiously. First, null results for certain diseases, such as PCa and EC, may be due
to the inability of the set of the biomarkers used to capture relevant aspects of inflammation.
Second, the GWAS sample for all the inflammatory biomarkers except CRP was relatively small,
causing substantially large uncertainty of the effect estimates. In the future, our results need to
be confirmed using results from much larger GWAS of inflammatory biomarkers when such data

become available.

6. SOFTWARE

The R package “MRLE” and the R code for simulations and data analyses are available at

https://github.com/Jin93/MRLE.
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7. SUPPLEMENTARY MATERIALS

The reader is referred to the on-line Supplementary Materials for technical appendices and addi-

tional simulation results.
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Fig. 1: Causal paths between the SNPs (G;s), the latent exposure of interest (X), the biomarkers
co-regulated by the latent exposure (Bys), and the outcome (Y). Ag represents the set of indexes
for SNPs that are directly associated with X with effect sizes (, ;s, and Ay represents the set
of indexes for SNPs that are not associated with X but directly associated with By with effect
sizes y48, k = 1,..., K. Ap and Ays may have overlaps with each other, but the effects of one
SNP on different traits or the outcome are assumed independent, although we will show validity
of the proposed MRLE test on various correlated pleiotropy settings by simulations. The number
of observable traits is set to K = 3 for illustration.
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Fig. 2: Results from the pilot simulation study showing consistency of the results between
individual-level simulation (A) and summary-level simulation (B). Results were summarized
from 1000 simulations assuming a total of K = 6 biomarkers, with a GWAS sample size of
N = 6x10* for the outcome and all biomarkers. The total heritability of each biomarker (H3 , ..,)
and the heritability of each biomarker explained by the latent exposure (H%.X) were both set to
0.2. IVs are defined as either the SNPs associated with at least one biomarker (“IVW-Standard”
and “MRLE-Union”, o = 5 x 10~%) or the SNPs associated with at least two biomarkers (“IVW-
Intersection” and “MRLE-Intersection”, & = 5 x 1079). In each subfigure, the upper panel shows
the empirical type I error rate under 6 = 0, and the lower panel shows the empirical power under
0 =0.1.

Power
Power


https://doi.org/10.1101/2021.02.05.429979
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.05.429979; this version posted February 22, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

REFERENCES 37
A B
H a20%, M= 0% H a20% H2=6.0%
0.100- 0.100-
2 2
S 0.075 S 0.075
= -
3 2
£ 0050~ Fm- =t ey E - Eo0050---FE-gm---1-mmc-o-----
8 0.025- I I I I I 8 0.025- I I I I
> >
[ [
0.000- 0.000-
N=60k  N=80k  N=100k N=60k  N=80k  N=100k
1.00- 1.00-
0.75- 0.75-
b b
% _— % 0.50- Type | error rate
o o IVW - Standard
0.25- 0.25- | IVW - Intersection
; MRLE - Union
0.00- . | 0.00- - i
N=60k  N=80k  N=100k N=60k  N=80k  N=100k Bl MRLE - Intersection
C D
HG tota=30% H5=6.0% HG tota=30% H5=9.0% Power
o 100 o 100 IVW - Standard
T o075 T o.075- | IvW - Intersection
5 . 5 . MRLE - Union
Eo0s0- BN - g - - - Eooso-to------B_ W = _ [ MRLE - Intersection
8 0.025- I I I S 0.025- I I I I
> >
[ [
0.000- 0.000-
N=60k  N=80k  N=100k N=60k  N=80k  N=100k
1.00- 1.00-
0.75- 0.75-
- =
3 3
2 0.50- § 0.50-
o o
0.25- I 0.25-
0.00- 0.00-
N=60k N=80k N=100k N=60k N=80k N=100k

Fig. 3: Simulation results assuming a total of K = 6 biomarkers based on 1000 simulations per
setting. H3 ... and HZ y denote the total heritability of each biomarker and the heritability of
each biomarker explained by the latent exposure, respectively. IVs are defined as either the SNPs
associated with at least one biomarker (“IVW-Standard” and “MRLE-Union”, a = 5 x 1078) or
the SNPs associated with at least two biomarkers (“IVW-Intersection” and “MRLE-Intersection”,
a = 5 x 107%). In each subfigure, the upper panel shows the empirical type I error rate under
0 = 0, and the lower panel shows the empirical power under 6 = 0.1.
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Fig. 4: Simulation results assuming a total of K = 6 biomarkers and that there are SNPs that
have correlated pleiotropic effects between some biomarkers and the outcome. HE ..., and Hj x
denote the total heritability of each biomarker and the heritability of each biomarker explained
by the latent exposure, respectively. IVs are defined as either the SNPs associated with at least
one biomarker (“IVW-Standard” and “MRLE-Union”, o = 5 x 10~%) or the SNPs associated with
at least two biomarkers (“IVW-Intersection” and “MRLE-Intersection”, « = 5 x 107°). In each
subfigure, the upper panel shows the empirical type I error rate under 8 = 0, and the lower panel
shows the empirical power under § = 0.1.
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Fig. 5: Simulation results assuming a total of K = 6 biomarkers and correlated pleiotropic effects
across biomarkers. H3 ... and H3y denote the total heritability of each biomarker and the
heritability of each biomarker explained by the latent exposure, respectively. IVs are defined as
either the SNPs associated with at least one biomarker (“IVW-Standard” and “MRLE-Union”,
a =5 x 107%) or the SNPs associated with at least two biomarkers (“IVW-Intersection” and
“MRLE-Intersection”, & = 5 x 107%). In each subfigure, the upper panel shows the empirical type
I error rate under # = 0, and the lower panel shows the empirical power under 8 = 0.1.
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Fig. 6: Simulation results assuming a total of K = 6 biomarkers and correlated pleiotropic effects
across latent exposure and biomarkers. H3 , .., and H3 « denote the total heritability of each
biomarker and the heritability of each biomarker explained by the latent exposure, respectively.
IVs are defined as either the SNPs associated with at least one biomarker (“IVW-Standard” and
“MRLE-Union”, a = 5 x 1078) or the SNPs associated with at least two biomarkers (“[VW-
Intersection” and “MRLE-Intersection”, a = 5 x 1079). In each subfigure, the upper panel shows
the empirical type I error rate under 6 = 0, and the lower panel shows the empirical power under
60 =0.1.
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Table 1: Causal effect of chronic inflammation on the risk of various diseases. The IVs used in
MRLE are the SNPs associated with at least two of the inflammatory biomarkers. The IVs used in
each single-biomarker IVW test are the SNPs associated with the biomarker and at least one other
biomarker. Significance threshold for IV selection is set to a = 5 x 1076 for CRP and a = 1073
for the other biomarkers. Bold font indicates significant conclusion. Significance thresholds for
IVW tests are set to 1 — (1 — o)/ %, i.e., 0.0102 for CAD, RA and PCa, and 0.0127 for CRC
and EC, to control FWER at 0.05. CRP were excluded from the tests on CRC and EC due to
overlapping individuals in GWAS.

Outcome Method Number of IVs  Effect P-value
IVW - IL-6 25 - < 5.0 x 1073#
IVW - IL-8 33 + < 5.0 x 107324
RA IVW - TNF-« 31 + < 5.0 x 107324
IVW - MCP-1 17 — < 5.0 x 107324
IVW - CRP 7 + 3.8 x 10271
MRLE 55 + 9.3 x 10723
IVW - IL-6 29 — 0.928
IVW - IL-8 37 + 0.341
CAD IVW - TNF-« 35 + 0.243
IVW - MCP-1 21 — 0.951
IVW - CRP 15 + 0.097
MRLE 67 + 0.012
IVW - IL-6 26 + 0.322
IVW - IL-8 34 + 0.082
CRC IVW - TNF-« 35 + 0.014
IVW - MCP-1 13 — 0.408
MRLE 53 + 0.011
IVW - IL-6 29 — 0.294
IVW - IL-8 35 + 0.724
PCa IVW - TNF-« 35 + 0.642
IVW - MCP-1 20 - 0.229
IVW - CRP 14 + 0.428
MRLE 65 + 0.550
IVW - IL-6 26 — 0.325
IVW - IL-8 34 + 0.541
BC IVW - TNF-« 35 + 0.805
IVW - MCP-1 13 — 0.095
MRLE 58 — 0.069
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