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Abstract 22 

Actions are biased by the outcomes they can produce: Humans are more likely to show action under 23 

reward prospect, but hold back under punishment prospect. Such motivational biases derive not only 24 

from biased response selection, but also from biased learning: humans tend to attribute rewards to their 25 

own actions, but are reluctant to attribute punishments to having held back. The neural origin of these 26 

biases is unclear; in particular, it remains open whether motivational biases arise primarily from the 27 

architecture of subcortical regions or also reflect cortical influences, the latter being typically associated 28 

with increased behavioral flexibility and emancipation from stereotyped behaviors. Simultaneous EEG-29 

fMRI allowed us to track which regions encoded biased prediction errors in which order. Biased 30 

prediction errors occurred in cortical regions (dACC, PCC) before subcortical regions (striatum). These 31 

results highlight that biased learning is not a mere feature of the basal ganglia, but arises through 32 

prefrontal cortical contributions, revealing motivational biases to be a potentially flexible, sophisticated 33 

mechanism. 34 
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Introduction 51 

Human action selection is biased by potential action outcomes: reward prospect drives us to 52 

invigorate action, while threat of punishment holds us back1–3. These motivational biases have been 53 

evoked to explain why humans are tempted by reward-related cues signaling the chance to gain food, 54 

drugs, or money, as they elicit automatic approach behavior. Conversely, punishment-related cues 55 

suppress action and lead to paralysis, which may even lie at the core of mental health problems such as 56 

phobias and mood disorders4,5. While such examples highlight the potential maladaptiveness of biases 57 

in some situations, they confer benefits in other situations: Biases could provide sensible “default” 58 

actions before context-specific knowledge is acquired1,6. They may also provide ready-made alternatives 59 

to more demanding action selection mechanisms, especially when speed has to be prioritized7. 60 

Previous research has assumed that motivational biases arise because the valence of prospective 61 

outcomes influences action selection8. However, we have recently shown that not only action selection, 62 

but also the updating of action values based on obtained outcomes is subject to valence-dependent 63 

biases3,9,10: humans are more inclined to ascribe rewards to active responses, but have problems with 64 

attributing punishments to having held back. On the one hand, such biased learning might be adaptive 65 

in combining the flexibility of instrumental learning with somewhat rigid “priors” about typical action-66 

outcome relationships. Exploiting lifetime (or evolutionary) experience might lead to learning that is 67 

faster and more robust to environmental “noise”. On the other hand, biases might be responsible for 68 

phenomena of “animal superstition” like negative auto-maintenance. Studies of this phenomenon used 69 

strict omission schedules in which reward were never delivered on trials on which animals showed an 70 

action (key peck, button press), but only when animals inhibited responding over a given time period. 71 

Still, animals showed continued key picking in such paradigms, which might either reflect a strong 72 

“prior belief” that any situation in which rewards were available requires active work to obtain those, or 73 

vice versa an inability to attribute rewards to having held back one’s actions1,11,12. While reward 74 

attainment can lead to an illusory sense of control over outcomes, control is underestimated under threat 75 

of punishment: Humans find it hard to comprehend how inactions can cause negative outcomes, which 76 

makes them more lenient in judging harms caused by others’ inactions13,14. Taken together, also credit 77 
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assignment is subject to motivational biases, with enhanced credit for rewards given to actions, but 78 

diminished credit for punishments given to inactions. 79 

While evident in behavior, the neural mechanisms subserving such biased credit assignment remain 80 

elusive. Previous fMRI studies have studied neural correlates of motivational biases in action selection 81 

at the time of cue presentation, finding that the striatal BOLD signal is dominated by the action rather 82 

than the cue valence8,15,16. More recently, we have reported evidence for cue valence signals in 83 

ventromedial prefrontal cortex (vmPFC) and anterior cingulate cortex (ACC), which putatively bias 84 

action selection processes in the striatum17. The same regions might be involved in motivational biases 85 

in learning during outcome processing, given the prominent role of the basal ganglia system not only in 86 

action selection, but also learning. Influential computational models of basal ganglia function18,19 87 

(henceforth called “asymmetric pathways model”) predict such motivational learning biases: Positive 88 

prediction errors, elicited by rewards, lead to long-term potentiation in the striatal direct “Go” pathway 89 

(and long term depression in the indirect pathway), allowing for a particularly effective acquisition of 90 

Go responses after rewards. Conversely, negative prediction errors, elicited by punishments, lead to long 91 

term potentiation in the “NoGo” pathway, impairing the unlearning of NoGo responses after 92 

punishments. This account suggests that motivational biases arise within the same pathways involved 93 

in standard reinforcement learning (RL). An alternative candidate model is that biases arise through the 94 

modulation of these RL systems by external areas that also track past actions, putatively the prefrontal 95 

cortex (PFC). Past research has suggested that standard RL can be biased by information stored in PFC, 96 

such as explicit instructions20,21 or cognitive map-like models of the environment22–24. Most notably, the 97 

ACC has been found to reflect the impact of explicit instructions21 and of environmental changes25,26 on 98 

prediction errors. 99 

Both candidate models predict that BOLD signal in striatum should be better described by biased 100 

compared with “standard” prediction errors. In addition, the model proposing a prefrontal influence on 101 

striatal processing makes a notable prediction about the timing of signals: information about the selected 102 

action and the obtained outcome should be present first in prefrontal circuits to then later affect processes 103 

in the striatum. While fMRI BOLD recordings allow for unequivocal access to striatal activity, the 104 

sluggish nature of the BOLD signal prevents clear inferences about temporal precedence of signals from 105 
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different regions. We thus combined BOLD with simultaneous EEG recordings which allowed us to 106 

precisely characterize learning signals in both space and time. 107 

The key question is whether biased credit assignment arises directly from biased RL through 108 

the asymmetric pathways in the striatum, or whether striatal RL mechanisms are biased by external 109 

prefrontal sources, with the dACC as likely candidate. To this end, participants performed a motivational 110 

Go/ NoGo learning task that is well-established to evoke motivational biases3,9,27. We expected to 111 

observe biased PEs in striatum and frontal cortical areas. By simultaneously recording fMRI and EEG 112 

and correlating trial-by-trial BOLD signal with EEG time-frequency power, we were able to time-lock 113 

the peaks of EEG-BOLD correlations for regions reflecting biased PEs and infer their relative temporal 114 

precedence. We focused on two well-established electrophysiological signatures of RL, namely theta 115 

and delta power28–33 as well as beta power28,34 over midfrontal electrodes. 116 

Results 117 

Thirty-six participants performed a motivational Go/ NoGo learning task 3,9 in which required action 118 

(Go/ NoGo) and potential outcome (reward/ punishment) were orthogonalized (Fig. 1A-D). They 119 

learned by trial-and-error for each of eight cues whether to perform a left button press (GoLEFT), right 120 

button press (GoRIGHT), or no button press (NoGo), and whether a correct action increased the chance to 121 

win a reward (Win cues) or to avoid a punishment (Avoid cues). Correct actions led to 80% positive 122 

outcomes (reward, no punishment), with only 20% positive outcomes for incorrect actions. Participants 123 

performed two sessions of 320 trials with separate cue sets, which were counterbalanced across 124 

participants. 125 

 126 

Figure 1. Motivational Go/ NoGo learning task design. A. On each trial, a Win or Avoid cue appeared; valence of the cue was not signaled 
but should be learned. Cue offset was also the response deadline. Response-dependent feedback followed after a jittered interval. Each cue 
had only one correct action (GoLEFT, GoRight, or NoGo), which was followed by the positive outcome 80% of the time. For Win cues, actions 
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could lead to rewards or neutral outcomes; for Avoid cues, actions could lead to neutral outcomes or punishments. Rewards and punishments 
were represented by money falling into/ out of a can. B. There were eight different cues, orthogonalizing cue valence (Win versus Avoid) 
and required action (Go versus NoGo). The motivationally incongruent cues (for which the motivational action tendencies were incongruent 
with the instrumental requirements) are highlighted in gray. C. Feedback was probabilistic: Correct actions to Win cues led to rewards in 
80% of cases, but neutral outcomes in 20% of cases. For Avoid cues, correct actions led to neutral outcomes in 80% of cases, but 
punishments in 20% of cases. For incorrect actions, these probabilities were reversed.  

 127 

Regression analyses of behavior 128 

We performed regression analyses to test whether a) responses were biased by the valence of 129 

prospective outcomes (Win/ Avoid), reflecting biased responding and/ or learning, and b) whether 130 

response repetition after positive vs. negative outcomes was biased by whether a Go vs. NoGo response 131 

was performed, selectively reflecting biased learning. 132 

For the first purpose, we analyzed choice data (Go/ NoGo) using mixed-effects logistic 133 

regression that included the factors required action (Go/ NoGo; note that this approach collapses across 134 

GoLEFT and GoRIGHT responses), cue valence (Win/ Avoid), and their interaction (also reported in)17. 135 

Participants learned the task, i.e., they performed more Go responses towards Go than NoGo cues (main 136 

effect of required action: b = 0.815, SE = 0.113, χ2(1) = 32.008, p < .001). In contrast to previous studies 137 

3,9, learning did not asymptote (Fig. 2A), which provided greater dynamic range for the biased learning 138 

effects to surface. Furthermore, participants showed a motivational bias, i.e., they performed more Go 139 

responses to Win than Avoid cues (main effect of cue valence, b = 0.423, SE = 0.073, χ2(1) = 23.695, p 140 

< .001). Replicating other studies with this task, there was no significant interaction between required 141 

action and cue valence (b = 0.030, SE = 0.068, χ2(1) = 0.196, p = .658, Fig. 2A-B), i.e., there was no 142 

evidence for the effect of cue valence (motivational bias) differing in size between Go or NoGo cues. 143 

Secondly, as a proxy of (biased) learning, we analyzed cue-based response repetition (i.e., the 144 

probability of repeating a response on the next encounter of the same cue) as a function of outcome 145 

valence (positive vs negative outcome), performed action (Go vs. NoGo), and outcome salience (salient: 146 

reward or punishment vs. neutral: no reward or no punishment). As expected, participants were more 147 

likely to repeat the same response following a positive outcome (main effect of outcome valence: b = 148 

0.504, SE = 0.053, χ2(1) = 45.595, p < .001). Most importantly, after salient outcomes, participants 149 

adjusted their responses to a larger degree following Go responses than NoGo responses, revealing the 150 

presence of a learning bias (Fig. 2C; interaction of valence x action x salience: b = 0.248, SE = 0.048, 151 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 28, 2023. ; https://doi.org/10.1101/2021.10.03.462927doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.03.462927
http://creativecommons.org/licenses/by/4.0/


MOTIVATIONAL BIASES IN FRONTO-STRIATAL CIRCUITS  
 

7 

 

χ2(1) = 19.732, p < .001). When selectively analyzing trials with salient outcomes only, rewards 152 

(compared to punishments) led to a higher proportion of choice repetitions following Go relative to 153 

NoGo responses (valence x response: b = 0.308, SE = 0.064, χ2(1) = 17.798, p < .001; valence effect for 154 

Go only: b = 1.276, SE = 0.115, χ2(1) = 53.932, p < .001; valence effect for NoGo only: b = 0.637, SE 155 

= 0.127, χ2(1) = 18.228, p < .001; see full results in Supplementary Table 1). 156 

Taken together, these results suggested that behavioral adaptation following rewards and 157 

punishments was biased by the type of action that led to this outcome (Go or NoGo). However, this 158 

analysis only considered behavioral adaptation on the next trial, and could not pinpoint the precise 159 

algorithmic nature of this learning bias. More importantly, it did not provide trial-by-trial estimates of 160 

action values as required for model-based fMRI and EEG analyses to test for regions or time points that 161 

reflected biased learning. We thus analyzed the impact of past outcomes on participants’ choices using 162 

computational RL models. 163 

Computational modeling of behavior 164 

In line with previous work3,9, we fitted a series of increasingly complex RL models. We started with 165 

a simple Rescorla Wagner model featuring learning rate and feedback sensitivity parameters (M1). We 166 

next added a Go bias, capturing participants’ overall propensity to make Go responses (M2), and a 167 

Pavlovian response bias (M3), reflecting participants’ propensity to adjust their likelihood of emitting a 168 

Go response in response to Win vs. Avoid cues3. Alternatively, we added a learning bias (M4), 169 

amplifying the learning rate after rewarded Go responses and dampening it after punished NoGo 170 

responses3, in line with the asymmetric pathways model. In the final model (M5), we added both the 171 

response bias and the learning bias. For the full model space (M1-M5) and model definitions, see the 172 

Methods section.  173 

Model comparison showed clear evidence in favor of the full asymmetric pathways model featuring 174 

both response and learning biases (M5; model frequency: 86.43%, protected exceedance probability: 175 

100%, see Fig. 2D, H; for model parameters and fit indices, see Supplementary Table 2; for parameter 176 

recovery analyses, see Supplementary Note 6 and Supplementary Fig. 5). Posterior predictive checks 177 

involving one-step-ahead predictions and model simulations showed that this model captured key 178 
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behavioral features (Fig. 2E, F), including motivational biases and a greater behavioral adaptation after 179 

Go responses followed by salient outcomes than after NoGo responses followed by salient outcomes 180 

(Fig. 2G). This pattern could not be captured by an alternative learning bias model based on the idea 181 

that active responses generally enhance credit assignment35 (Supplementary Note 7 and Supplementary 182 

Fig. 6).  183 

One feature of the behavioral data that was not well captured by the asymmetric pathways model 184 

was a high tendency of participants to repeat responses (“stay”) to the same cue irrespective of outcomes 185 

(see Fig. 2C and G). This tendency was stronger for Win than Avoid cues. We explored three additional 186 

models featuring supplementary mechanisms to account for this behavioral pattern (Supplementary Note 187 

8 and Supplementary Fig. 7). All these models fitted the data well and captured the propensity of staying 188 

better than M5; however, these models overestimated the proportion of incorrect Go responses. Model-189 

based fMRI analyses based on these models led to results largely identical to those obtained with M5 190 

(Supplementary Note 9 and Supplementary Fig. 8). We thus focused on M5, which relied on only a 191 

single mechanism (i.e., biased learning from rewarded Go and punishment NoGo actions). 192 

 193 

 
 
Figure 2. Behavioral performance. A. Trial-by-trial proportion of Go responses (±SEM across participants) for Go cues (solid lines) and 
NoGo cues (dashed lines). The motivational bias was already present from very early trials onwards, as participants made more Go 
responses to Win than Avoid cues (i.e., green lines are above red lines). Additionally, participants clearly learn whether to make a Go 
response or not (proportion of Go responses increases for Go cues and decreases for NoGo cues). B. Mean (±SEM across participants) 
proportion Go responses per cue condition (points are individual participants’ means). C. Probability to repeat a response (“stay”) on the 
next encounter of the same cue as a function of action and outcome. Learning was reflected in higher probability of staying after positive 
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outcomes than after negative outcomes (main effect of outcome valence). Biased learning was evident in learning from salient outcomes, 
where this valence effect was stronger after Go responses than NoGo responses. Dashed line indicates chance level choice (pStay = 0.33). 
D. Log-model evidence favors the asymmetric pathways model (M5) over simpler models (M1-M4). E-G. Trial-by-trial proportion of Go 
responses, mean proportion Go responses, and probability of staying based on one-step-ahead predictions using parameters (hierarchical 
Bayesian inference) of the winning model (asymmetric pathways model, M5). H. Model frequency and protected exceedance probability 
indicate best fit for model M5 (asymmetric pathways model), in line with log model evidence. 

  194 

fMRI: Basic quality control analyses 195 

First, we performed a GLM as a quality-check to test which regions encoded positive (rewards, 196 

no punishments) vs. negative (no reward/ punishment) outcomes in a “model-free” way, independent of 197 

any model-based measure derived from a RL model (for full description of the GLM regressors and 198 

contrasts, see Supplementary Table 4). Positive outcomes elicited a higher BOLD response in regions 199 

including vmPFC, ventral striatum, and right hippocampus, while negative outcomes elicited higher 200 

BOLD in bilateral dorsolateral PFC (dlPFC), left ventrolateral PFC, and precuneus (Fig. 3A, see full 201 

report of significant clusters in Supplementary Table 6). 202 

We also assessed which regions encoded Go vs. NoGo as well as GoLEFT vs. GoRIGHT responses. 203 

There was higher BOLD for Go than NoGo responses at the time of response in dorsal ACC (dACC), 204 

striatum, thalamus, motor cortices, and cerebellum, while BOLD was higher for NoGo than Go 205 

responses in right IFG (Fig. 6C left panel; Supplementary Table 6)17. For lateralized Go responses, there 206 

was higher BOLD signal in contralateral motor cortex and operculum as well as ipsilateral cerebellum 207 

when contrasting hand responses against each other (Fig. 6C, right panel). These results are in line with 208 

previous results on outcome processing and response selection and thus assure the general data quality. 209 

fMRI: Biased learning in prefrontal cortex and striatum 210 

To test which brain regions were involved in biased learning, we performed a model-based GLM 211 

featuring the trial-by-trial PE update as a parametric regressor (see GLM notation in Supplementary 212 

Table 3). We used the group-level parameters of the best fitting computational model (M5) to compute 213 

trial-by-trial belief updates (i.e., prediction error * learning rate) for every trial for every participant. In 214 

assessing neural signatures of biased learning, we faced the complication that standard (Rescorla-215 

Wagner learning in M1) and biased PEs (winning model M5) were highly correlated. A mean correlation 216 

of 0.92 across participants (range 0.88–0.95) made it difficult to neurally distinguish biased from 217 
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standard learning. To circumvent this collinearity problem, we decomposed the biased PE (computed 218 

using model M5) into the standard PE (computed using model M1) plus a difference term22,36: 219 

������ = ����	 + ��	�� 220 

A neural signature of biased learning should significantly—and with the same sign—encode 221 

both components of this biased PE term. Standard PEs and the difference term were uncorrelated (mean 222 

correlation of -0.02 across participants; range -0.33–0.24; see Supplementary Fig. 9 and 10 for a 223 

graphical illustration of this procedure). We tested for biased prediction errors PEBIAS by testing which 224 

regions significantly encoded the conjunction of both its components, i.e., the significant encoding of 225 

both PESTD and PEDIF. Dissociating two alternative learning signals by decomposing one into the other 226 

plus a difference term is an established procedure to disentangle the contributions of two highly 227 

correlated signals22,36. It has an effect highly similar to orthogonalizing regressors37 while maintaining 228 

interpretability in that both regressors (PESTD and PEDIF) add up to the term of interest (PEBIAS). 229 

Significant encoding of both components (with the same sign) provides strong evidence for encoding of 230 

biased prediction errors PEBIAS. The PEDIF term itself has no substantive neural interpretation; it is merely 231 

an implicit model comparison of a null model (PESTD) against a full model (PEBIAS). Intuitively, for 232 

voxels for which both PESTD and PEDIF are significant, one can conclude that the BOLD signal correlates 233 

with the full biased prediction error term PEBIAS, and that this correlation is significantly stronger than 234 

for the baseline prediction error term PESTD. 235 

While PESTD was encoded in a range of cortical and subcortical regions (Fig. 3B) previously 236 

reported in the literature38, significant encoding of both PESTD and PEDIF (conjunction) occurred in 237 

striatum (caudate, nucleus accumbens), dACC (area 23/24), perigenual ACC (pgACC; area 32d 238 

bordering posterior vmPFC), posterior cingulate cortex (PCC), left motor cortex, left inferior temporal 239 

gyrus, and early visual regions (Fig. 3C; see full report of significant clusters in Supplementary Table 240 

5). Thus, BOLD signal in these regions was better described (i.e., more variance explained) by biased 241 

learning than by standard prediction error learning. 242 

 243 
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Figure 3. BOLD signal reflecting outcome processing. BOLD effects displayed using a dual-coding visualization: color indicates the parameter 
estimates and opacity the associated z-statistics. Significant clusters are surrounded by black edges. A. Significantly higher BOLD signal for 
positive outcomes (rewards, no punishments) compared with negative outcomes (no rewards, punishments) was present in a range of regions 
including bilateral ventral striatum and vmPFC. Bar plots show mean parameter estimates per condition (±SEM across participants; dots 
indicating individual participants) B. BOLD signals correlated positively to “standard” RL prediction errors in several regions, including the 
ventral striatum, dACC, vmPFC, and PCC. C. Left panel: Regions encoding both the standard PE term and the difference term to biased PEs 
(conjunction) at different cluster-forming thresholds (1 < z < 5, color coding; opacity constant). Clusters significant at a threshold of z > 3.1 
are surrounded by black edges. In bilateral striatum, dACC, pgACC, PCC, left motor cortex, left inferior temporal gyrus, and primary visual 
cortex, BOLD was significantly better explained by biased learning than by standard learning. Right panel: 3D representation with all seven 
regions encoding biased learning (and used in fMRI-informed EEG analyses). 

EEG: Biased learning in midfrontal delta, theta, and beta power 244 

Similar to the fMRI analyses, we next tested whether midfrontal power encoded biased PEs 245 

rather than standard PEs. While fMRI provides spatial specificity of where PEs are encoded, EEG power 246 

provides temporal specificity of when signals encoding prediction errors occur29,34. In line with our fMRI 247 

analysis, we used the standard PE term ����	 and the difference to the biased PE term ��	�� as trial-248 

by-trial regressors for EEG power at each channel-time-frequency bin for each participant and then 249 

performed cluster-based permutation tests across the b-maps of all participants. Note that differently 250 

from BOLD signal, EEG signatures of learning typically do not encode the full prediction error. Instead, 251 
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PE valence (better vs. worse than expected) and PE magnitude (saliency, surprise) have been found 252 

encoded in the theta and delta band, respectively, but with opposite signs31–33. When testing for 253 

parametric correlates of PE magnitude, we therefore controlled for PE valence, thereby effectively 254 

testing for correlations with the absolute PE magnitude (i.e., degree of surprise). Note that PE valence 255 

was identical for standard and biased PEs. Thus, only PE magnitude could distinguish both learning 256 

models. 257 

Both midfrontal theta and beta power reflected outcome (PE) valence: Theta power was higher 258 

for negative (non-reward and punishment) than for positive (reward and non-punishment) outcomes 259 

(225–475 ms, p = .006; Fig. 4A-B), while beta power was higher for positive than for negative outcomes 260 

(300–1,250 ms, p = .002; Fig. 4A, C). Differences in theta power were clearly strongest over frontal 261 

channels, while differences in the beta range were more diffuse, spreading over frontal and parietal 262 

channels (Fig. 4B-C). All results held when the condition-wise ERP was removed from the data (see 263 

Supplementary Note 10 and Supplementary Fig. 13), suggesting that differences between conditions 264 

were due to induced (rather than evoked) activity (for results in the time domain, see Supplementary 265 

Note 11 and Supplementary Fig. 14 and 15). 266 

When testing for correlates of PE magnitude, we controlled for PE valence given that previous 267 

studies have reported TF correlates of both PE valence and PE magnitude in a similar time and frequency 268 

range, but with opposite signs31–33. Midfrontal delta power was indeed positively correlated with the 269 

������ term (225–475 ms; p = .017; Fig. 4D). Decomposition of the ������ term into its constituent 270 

terms showed that this correlation was not significant for the ����	 term (p = 0.074, Fig. 4E) nor for 271 

the ��	�� term (p = 0.185; Fig. 4F). This result does not imply that the ������ term explained delta 272 

power significantly better than the ����	 term; it only implies significant encoding of the ������ term 273 

as suggested by the model that best fitted the behavioral data, with no significant evidence for a similar 274 

encoding of the conventional ����	 term. For a similar observation in the time-domain EEG signal, see 275 

Supplementary Note 12 and Supplementary Fig. 16. Beyond delta power, beta power correlated 276 

positively, though not significantly with ����	 (p = 0.110, Fig. 4E) and significantly negatively with 277 

��	�� (p = .001, 425–850 ms). Given these oppositely-signed correlations of its constituents, the ������ 278 

term did not significantly correlate with beta power (p = 0.550, Fig 4D).  279 
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In sum, both midfrontal theta power (negatively) and beta power (positively) encoded PE 280 

valence. In addition, delta power encoded PE magnitude (positively). This encoding was only significant 281 

for biased PEs, but not standard PEs. Taken together, as was the case for BOLD signal, midfrontal EEG 282 

power also reflected biased learning. As a next step, we tested whether the identified EEG phenomena 283 

were correlated with trial-by-trial BOLD signal in identified regions. Crucially, this allowed us to test 284 

whether EEG correlates of cortical learning precede EEG correlates of subcortical learning. 285 

th

 
Figure 4. EEG time-frequency power over midfrontal electrodes (Fz/ FCz/ Cz). reflecting outcome processing. A. Time-frequency plot 
(logarithmic y-axis) displaying higher theta (4–8 Hz) power for negative (non-reward for Win cues and punishment for Avoid cues) 
outcomes and higher beta power (16–32 Hz) for positive (reward and non-punishment) outcomes. This contrast reflects EEG correlates of 
PE valence (better vs. worse than expected). Black square dot boxes indicate clusters above threshold that drive significance in a-priori 
defined frequency ranges. B. Theta power transiently increases for any outcome, but more so for negative outcomes (especially 
punishments) around 225–475 ms after feedback onset. Black horizontal lines indicate the time range for which the cluster driving 
significance was above threshold. (C) Beta power was higher for positive than negative outcomes over a long time period around 300–
1,250 ms after feedback onset. D-F. Correlations between midfrontal EEG power and model-based trial-by-trial PE magnitudes controlling 
for PE valence (thus effectively testing for correlates of “absolute” PEs). Panel D displays the correlates of biased prediction errors ������, 
which are decomposed into (E) ����	 based on the non-biased learning model M1, and (F) their difference ��	�� . Solid black lines 
indicate clusters above threshold. Biased PEs were significantly positively correlated with midfrontal delta power (D). The correlations of 
delta with the standard PEs (E) and the difference term to biased PEs (F) were positive as well, though not significant. Beta power only 
significantly encoded the difference term to biased PEs (F). ** p < 0.01. 

Combined EEG-fMRI: Prefrontal cortex signals precede striatum during biased 286 

outcome processing 287 

The observation that also cortical areas (dACC, pgACC, PCC) show biased PEs is consistent with 288 

the “external model” of cortical signals biasing learning processes in the striatum. However, this model 289 

makes the crucial prediction that these biased learning signals should be present first in cortical areas 290 

and only later in the striatum. Next, we used trial-by-trial BOLD signal from those regions encoding 291 
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biased PE to predict midfrontal EEG power. By determining the time points at which different regions 292 

correlated with EEG power, we were able to infer the relative order of biased PE processing across 293 

cortical and subcortical regions, revealing whether cortical processing preceded striatal processing. We 294 

used trial-by-trial BOLD signal from the seven regions encoding biased PEs, i.e., striatum, dACC, 295 

pgACC, PCC, left motor cortex, left ITG, and primary visual cortex (see masks in Supplementary Fig. 296 

11 and 12) as regressors on average EEG power over midfrontal electrodes (Fz/ FCz/ Cz; see 297 

Supplementary Fig. 17 for a graphical illustration of this approach). We performed analyses with and 298 

without PEs included in the model, which yielded identical results and suggested that EEG-fMRI 299 

correlations did not merely result from PE processing as a “common cause” driving signals in both 300 

modalities. Instead, EEG-fMRI correlations reflected incremental variance explained in EEG power by 301 

the BOLD signal in selected regions (even beyond variance explained by the model-based PE estimates), 302 

providing the strongest test for the hypothesis that BOLD and EEG signal reflect the same neural 303 

phenomenon. As the timeseries of all seven regions were included in one single regression, their 304 

regression weights reflected each region’s unique contribution, controlling for any shared variance. In 305 

line with the “external model”, BOLD signal from prefrontal cortical regions correlated with midfrontal 306 

EEG power earlier after outcome onset than did striatal BOLD signal:  307 

First, dACC BOLD was significantly negatively correlated with alpha/ theta power early after 308 

outcome onset (100–575 ms, 2–17 Hz, p = .016; Fig. 5A). This cluster started in the alpha/ theta range 309 

and then spread into the theta/delta range (henceforth called “lower alpha band power”). It was not 310 

observed in the EEG-only analyses reported above. 311 

Second, while pgACC BOLD did not correlate significantly with midfrontal EEG power (p = .184), 312 

BOLD in PCC was negatively correlated with theta/ delta power (Fig. 5B; 175–500 ms, 1–6 Hz, p = 313 

.014). This finding bore resemblance in terms of time-frequency space to the cluster of (negative) PE 314 

valence encoding in the theta band and (positive) PE magnitude encoding in the delta band identified in 315 

the EEG-only analyses (Fig. 4A). Complementary to the fMRI-informed EEG analyses, we also 316 

performed independent EEG-informed fMRI analyses, which showed the robustness of this EEG-fMRI 317 

correlation. We used the trial-by-trial EEG signal in the cluster identified in the EEG-only analyses (see 318 

Fig. 4 A, B) to predict BOLD signal across the brain (see Supplementary Fig. 18 for a graphical 319 
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illustration of this approach). The EEG time-frequency-mask used to create the EEG regressor was 320 

defined based on the EEG-only analyses (Fig. 4A, B) and thus blind to the result of the fMRI-informed 321 

EEG analysis. We observed significant clusters of negative EEG-BOLD correlation in vmPFC and PCC 322 

(Fig. 5F; Supplementary Table 7). We thus discuss vmPFC and PCC together in the following. 323 

Third, there was a significant positive correlation between striatal BOLD and midfrontal beta/ alpha 324 

power (driven by a cluster at 100–800 ms, 7–23 Hz, p = .010; Fig. 5C). This finding bore resemblance 325 

in time-frequency space to the cluster of positive PE valence encoding in beta power identified in the 326 

EEG-only analyses (Fig. 4A, C), but extended into the alpha range. Again, to support the robustness of 327 

this finding, we used trial-by-trial midfrontal beta power in the cluster identified in the EEG-only 328 

analyses (see Fig. 4A, C) to predict BOLD signal across the brain. Clusters of positive EEG-BOLD 329 

correlations in right dorsal caudate (and left parahippocampal gyrus) as well as clusters of negative 330 

correlations in bilateral dorsolateral PFC (dlPFC) and supramarginal gyrus (SMG; Fig. 5G; 331 

Supplementary Table 7) confirmed the positive striatal BOLD-beta power association. Given that the 332 

striatum is far away from the scalp and thus unlikely to be the source of midfrontal beta power over the 333 

scalp, and given the assumption that trial-by-trial variation in an oscillatory signal should correlate with 334 

BOLD signal in its source39,40, we speculate that dlPFC and SMG (identified in the EEG-informed fMRI 335 

analyses) are the sources of beta power over the scalp and act as an “antenna” for striatal signals. In line 336 

with this idea, previous studies have localized feedback-related beta power in lateral frontal and parietal 337 

regions, both using simultaneous EEG-fMRI41–43 and source-localization 44,45. 338 

Finally, regarding the other three regions that showed a significant BOLD signature of biased PEs, 339 

BOLD in left motor cortex was significantly negatively correlated with midfrontal beta power (p = .002; 340 

around 0–625 ms; Supplementary Note 13 and Supplementary Fig. 19). There were no significant 341 

correlations between midfrontal EEG power and left inferior temporal gyrus or primary visual cortex 342 

BOLD (Supplementary Fig. 19). All results were robust to different analysis approaches including 343 

shorter trial windows, different GLM specifications, inclusion of task-condition and fMRI motion 344 

realignment regressors, and individual modelling of each region. TF results were not reducible to 345 

phenomena in the time domain (Supplementary Note 14 and Supplementary Fig. 20).  346 
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In sum, there were negative correlations between dACC BOLD and midfrontal lower alpha band 347 

power early after outcome onset, negative correlations between PCC BOLD and midfrontal theta/ delta 348 

power at intermediate time points, and positive correlations between striatal BOLD and midfrontal beta 349 

power at late time points. This temporal dissociation was especially clear in the time courses of the test 350 

statistics for each region (thresholded at |t| > 2 and summed across frequencies), for which the peaks of 351 

the cortical regions preceded the peak of the striatum (Fig. 5D, H). Note that time-frequency power is 352 

estimated over temporally extended windows (400 ms in our case), which renders any interpretation of 353 

the “onset” or “offset” of such correlations more difficult. In sum, these results are consistent with an 354 

“external model” of motivational biases arising from early cortical processes biasing later learning 355 

processes in the striatum. 356 

 

Figure 5. fMRI-informed EEG analyses. Unique temporal contributions of BOLD signal in (A) dACC, (B) PCC, and (C) striatum to average 
EEG power over midfrontal electrodes (Fz/ FCz/ Cz). Group-level t-maps display the modulation of the EEG power by trial-by-trial BOLD 
signal in the selected ROIs. dACC BOLD correlated negatively with early alpha/ theta power, PCC BOLD negatively with theta/ delta 
power, and striatal BOLD positively with beta/ alpha power. Areas surrounded by a black edge indicate clusters of |t| > 2 with p < .05 
(cluster-corrected). Topoplots indicate the topography of the respective cluster. D. Time course of dACC, PCC, and striatal BOLD 
correlations, normalized to the peak of the time course of each region. dACC-lower alpha band correlations emerged first, followed by 
(negative) PCC-theta correlations and finally positive striatum-beta correlations. The reverse approach using lower alpha (E), theta (F) and 
beta (G) power as trial-by-trial regressors in fMRI GLMs corroborated the fMRI-informed EEG analyses: Lower alpha band power 
correlated negatively with the dACC BOLD, theta power negatively with vmPFC and PCC BOLD, and beta power positively with striatal 
BOLD. H. Schematic overview of the main EEG-fMRI results: dACC encoded the previously performed response and correlated with early 
midfrontal lower alpha band power. vmPFC/ PCC (correlated with theta power) and striatum (correlated with beta power) both encoded 
outcome valence, but had opposite effects on subsequent behavior. Note that activity in these regions temporally overlaps; boxes are ordered 
in temporal precedence of peak activity. 

 357 
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dACC BOLD and midfrontal lower alpha band power encode the previously performed 358 

action during outcome presentation 359 

While the clusters of EEG-fMRI correlation in the theta/ delta and beta range matched the 360 

clusters identified in EEG-only analyses, the cluster of negative correlations between dACC BOLD and 361 

early midfrontal lower alpha band power was novel and did not match our expectations. Given that these 362 

correlations arose very soon after outcome onset, we hypothesized that dACC BOLD and midfrontal 363 

lower alpha band power might reflect a process occurring even before outcome onset, such as the 364 

maintenance (“memory trace”) of the previously performed response to which credit may later be 365 

assigned. We therefore assessed whether information of the previous response was present in dACC 366 

BOLD and in the lower alpha band around the time of outcome onset.  367 

First, we tested for BOLD correlates of the previous response at the time of outcomes (eight 368 

outcome-locked regressors for every Go/ NoGo x reward/ no reward/ no punishment/ punishment 369 

combination) while controlling for motor-related signals at the time of the response (response-locked 370 

regressors for left-hand and right-hand button presses). At the time of outcomes, there was higher BOLD 371 

signal for NoGo than Go responses across several cortical and subcortical regions, peaking in both the 372 

dACC and striatum (Fig. 6D). This inversion of effects—higher BOLD for Go than NoGo responses at 373 

the time of response (see quality checks), but the reverse at the time of outcome—was also observed in 374 

the upsampled raw BOLD and was independent of the response of the next trial (Supplementary Note 375 

15 and Supplementary Fig. 21). In sum, large parts of cortex, including the dACC, encoded the 376 

previously performed response at the moment outcomes were presented, in line with the idea that the 377 

dACC maintains a “memory trace” of the previously performed response. 378 

Second, we tested for differences between Go and NoGo responses at the time of outcomes in 379 

midfrontal broadband EEG power. Power was significantly higher on trials with Go than on trials with 380 

NoGo responses, driven by clusters in the lower alpha band (spreading into the theta band; around 381 

0.000–0.425 sec., 1–11 Hz, p = .012) and in the beta band (around 0.200–0.450 sec., 18–27 Hz, p = 382 

.022; Fig. 6A, B). The first cluster matched the time-frequency pattern of dACC BOLD-alpha power 383 

correlations (Fig. 5A).  384 
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If this activity cluster contained a signature of the previously performed response, it might have 385 

been present throughout the delay between cue offset and outcome onset. When repeating the above 386 

permutation test including the last second before outcome onset, there were significant differences again, 387 

driven by a sustained cluster in the beta band (-1–0 sec., 13–33 Hz, p = .002) and two clusters in the 388 

alpha/ theta band (Cluster 1: -1.000– -0.275 sec., 1–10 Hz, p = 0.014; Cluster 2: -0.225–0.425 sec., 1–389 

11 Hz, p = .022; Fig. 6B). These findings suggest that lower alpha band power might reflect a sustained 390 

memory of the previously performed response. Additional analyses (Supplementary Note 15 and 391 

Supplementary Fig. 21) yielded that this Go-NoGo trace during outcome processing did not change over 392 

the time course of the experiment, suggesting that it did not reflect typical fatigue/ time-on task effects 393 

often observed in the alpha band. 394 

Again, we performed the reverse EEG-fMRI analysis using trial-by-trial power in the identified 395 

lower alpha band cluster (Fig. 6B) as an additional regressor in the quality-check fMRI GLM. Clusters 396 

of negative EEG-BOLD occurred correlation in a range of cortical regions, including dACC and 397 

precuneus (Fig. 5E; Supplementary Table 7). In sum, both dACC BOLD signal and midfrontal lower 398 

alpha band power contained information about the previously performed response, consistent with the 399 

idea that both signals reflect a “memory trace” of the response to which credit is assigned once an 400 

outcome is obtained. 401 
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Figure 6. Exploratory follow-up analyses on dACC BOLD signal and midfrontal lower alpha band power. A. Midfrontal time-frequency 
response-locked (left panel) and outcome-locked (right panel). Before and shortly after outcome onset, power in the lower alpha band was 
higher on trials with Go actions than on trials with NoGo actions. The shape of this difference resembles the shape of dACC BOLD-EEG 
TF correlations (small plot; note that this plot depicts BOLD-EEG correlations, which were negative). Note that differences between Go 
and NoGo trials occurred already before outcome onset in the alpha and beta range, reminiscent of delay activity, but were not fully sustained 
throughout the delay between response and outcome. B. Midfrontal power in the lower alpha band per action x outcome condition. Lower 
alpha band power was consistently higher on trials with Go actions than on trials with NoGo actions, starting already before outcome onset. 
C. BOLD signal differences between Go and NoGo actions (activation by either left or right Go actions compared to the implicit baseline 
in the GLM, which contains the NoGo actions; left panel) and left vs. right hand responses (right panel) at the time or responses. Response-
locked dACC BOLD signal was significantly higher for Go than NoGo actions. D. BOLD signal differences between Go and NoGo actions 
at the time of outcomes. Outcome-locked dACC BOLD signal (and BOLD signal in other parts of cortex) was significantly lower on trials 
with Go than on trials with NoGo actions. 

 402 

Striatal and vmPFC/ PCC BOLD differentially relate to action policy updating 403 

EEG correlates of PCC BOLD and striatal BOLD occurred later than for the dACC BOLD and 404 

overlapped with classical feedback-related midfrontal theta and beta power responses. We hypothesized 405 

that those neural signals might be more closely related to the updating of action policies (i.e., which 406 

action to perform for each cue) and predict the next response to the same cue30,46. We thus used the trial-407 

by-trial BOLD responses in dACC, PCC/ vmPFC, and striatum to predict whether participants would 408 

repeat the same response on the next trial with the same cue (“stay”) or switch to another response 409 

(“shift”). Mixed-effects logistic regression yielded that dACC BOLD did not significantly predict 410 

response repetition (b = -0.019, SE = 0.016, χ2(1) = 1.294, p = .255). In contrast, BOLD in PCC/ vmPFC 411 

and striatum did predict response repetition, though in opposite directions: Participants were 412 

significantly more likely to repeat the same response when striatal BOLD was high (b = 0.067, SE = 413 

0.024, χ2(1) = 9.051, p = .003), but more likely to switch to another response when vmPFC BOLD (b = 414 

-0.065, SE = 0.020, χ2(1) = 8.765, p = .003) or PCC BOLD (b = -0.036, SE = 0.016, χ2(1) = 3.691, p = 415 

.030; Fig. 5H) was high (Supplementary Fig. 22). Similarly, high pgACC BOLD predicted a higher 416 

likelihood of switching, likening it with the circuits formed by vmPFC and PCC (b = -0.076, SE = 0.017, 417 

χ2(1) = 15.559, p < .001). We also inspected the raw upsampled HRF shapes per region per condition, 418 

confirming that differential relationships were not driven by differences in HRF shapes across regions. 419 

 We also tested whether trial-by-trial midfrontal lower alpha band, theta, or beta power (within 420 

the clusters identified in the EEG-only analyses) predicted action policy updating. Participants were 421 

significantly more likely to repeat the same response when beta power was high (b = 0.145, SE = 0.041, 422 

χ2(1) = 11.886, p < .001), but more likely to switch when theta power was high (b = -0.099, SE = 0.047, 423 

χ2(1) = 4.179, p = .041). Notably, unlike its BOLD correlate in ACC, lower alpha band power did predict 424 
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response repetition, with more repetition when alpha power was high (b = .0.179, SE = 0.052, χ2(1) = 425 

10.711, p = .001; Supplementary Fig. 22). 426 

 In sum, high striatal BOLD and midfrontal beta power predicted that the same response would 427 

be repeated on the next encounter of a cue, while high vmPFC and PCC BOLD and high theta power 428 

predicted that participants would switch to another response. Thus, although both striatal and vmPFC/ 429 

PCC BOLD positively encoded biased prediction errors, these two sets of regions had opposite roles in 430 

learning: while the striatum reinforced previous responses, vmPFC/ PCC triggered the shift to another 431 

response strategy (Fig. 5H). 432 

Discussion 433 

We investigated neural correlates of biased learning for Go and NoGo responses. In line with 434 

previous research3,9, participants’ behavior was best described by a computational model featuring faster 435 

learning from rewarded Go responses and slower learning from punished NoGo responses. Neural 436 

correlates of biased PEs were present in BOLD signals in several regions, including ACC, PCC, and 437 

striatum. These regions exhibited distinct midfrontal EEG power correlates. Most importantly, 438 

correlates of prefrontal cortical BOLD preceded correlates of striatal BOLD: Trial-by-trial dACC BOLD 439 

correlated with lower alpha band power immediately after outcome onset, followed by PCC (and 440 

vmPFC) BOLD correlated with theta power, and finally, striatal BOLD correlated with beta power. 441 

These results suggest that the architecture of the asymmetric striatal pathways might not be the only 442 

neural structure that gives rise to motivational learning biases; instead, the PFC might critically 443 

contribute to these biases. 444 

The observation that both PFC and striatal BOLD signal reflected biased PEs might be explained 445 

by three different models. One model assumes that both PFC and striatal processes arrive at biased 446 

learning independently of each other, which is highly unlikely given strong recurrent connections 447 

between both regions18,19,47. Another model incorporates such interconnections, but assumes that 448 

striatum leads the PFC. While such a model is in line with past animal studies48 and modeling work49, it 449 

would predict EEG correlates of the PFC to trail after EEG correlates of the striatum—or at least to 450 

occur with considerable delay after outcome onset. This model is not supported by our findings, which 451 
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showed EEG correlates of PFC regions soon after outcome onset, preceding striatal EEG correlates. 452 

These early EEG correlates of PFC BOLD are in line with single cell recordings in PFC which show 453 

responses confined to the first 500 ms following outcome onset50,51, corroborating that PFC outcome 454 

processing occurs before the time of EEG correlates of striatal BOLD. The only model consistent with 455 

our data assumes recurrent connections between PFC and striatum, but with the PFC leading the 456 

striatum. Hence, these results are in line with a model of PFC biasing striatal outcome processing, giving 457 

rise to motivational learning biases in behavior. 458 

 The dominant idea about the origin of motivational biases has been that these biases are an 459 

emergent feature of the asymmetric direct/ indirect pathway architecture in the basal ganglia 2,19. We 460 

find that these biases are present first in prefrontal cortical areas, notably dACC and PCC, which argues 461 

against biases being purely driven by subcortical circuits. Rather, motivational learning biases might be 462 

an instance of sophisticated, even “model-based” learning processes in the striatum instructed by the 463 

prefrontal cortex52,53. An influence of PFC on striatal RL has prominently been observed in the case of 464 

model-based vs. model-free learning23,24 and has been stipulated as a mechanism of how instructions 465 

can impact RL20,21. Although there are reports of striatal processes preceding prefrontal processes within 466 

learning tasks48,54, the opposite pattern of PFC preceding striatum has been observed as well55 and a 467 

causal impact of PFC on striatal learning is well established56,57. In particular, we have previously 468 

observed that motivational biases in action selection might arise from early prefrontal inputs to the 469 

striatum, as well17. Prefrontal influences on striatal processes might thus be a common signature of both 470 

motivational response and learning biases. 471 

The particular subregion of PFC showing the earliest EEG correlates was the dACC. This 472 

observation is in line with an earlier EEG-fMRI study reporting dACC to be part of an early valuation 473 

system preceding a later system comprising vmPFC and striatum58. The dACC has been suggested to 474 

encode models of agents’ environment59,60 that are relevant for interpreting outcomes, with BOLD in 475 

this region scaling with the size of PEs25,26 and indexing how much should be learned from new 476 

outcomes. We hypothesize that, at the moment of outcome, dACC maintains a “memory trace” of the 477 

previously performed response61 which might modulate the processing of outcomes as soon as they 478 

become available62,63. Notably, dACC exhibited stronger BOLD signal for Go than NoGo responses at 479 
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the time of participants’ response, but this pattern reversed at the time of outcomes. This reversal rules 480 

out the possibility that response-locked BOLD signal simply spilled over into the time of outcomes. 481 

Future research will be necessary to corroborate such a motor “memory trace” in dACC. In sum, the 482 

dACC might be in a designated position to inform subsequent outcome processing in downstream 483 

regions by modulating the learning rate as a function of the previously performed response and the 484 

obtained outcome. Rather than striatal circuits being sufficient for the emergence of motivational biases, 485 

the more “flexible” PFC seems to play an important role in instructing downstream striatal learning 486 

processes. 487 

  Striatal, dACC and PCC BOLD encoded biased PEs. In line with previous research, striatal 488 

BOLD positively linked to midfrontal beta power41,42, which positively encoded PE valence28,34,64, with 489 

correlations extending into alpha power. PCC and vmPFC BOLD negatively linked to midfrontal theta/ 490 

delta power17,65,66, which encoded PE valence negatively, but PE magnitude positively. Notably, theta/ 491 

delta power correlates of vmPFC/ PCC BOLD preceded beta power correlates of striatal BOLD in time, 492 

which aligns with previous findings of motivational response biases being first visible in the vmPFC 493 

BOLD before they impact striatal action selection17. Notably, EEG correlates of striatal BOLD during 494 

outcome processing were in the beta band—in contrast to previously observed correlates of striatal 495 

BOLD during action selection in the theta band17. This dissociation suggests important differences in 496 

the role of the striatum in these two processes. The frequency-specific nature of these EEG-fMRI 497 

correlations further suggests that they are signatures of task-induced events that are specific to the trial 498 

phase and unlikely to reflect general anatomical connectivity. In sum, while these EEG-fMRI findings 499 

on outcome processing resemble our previous EEG-fMRI findings on action selection in that prefrontal 500 

signals precede striatal signals, they are dissociated in terms of the frequency specificity, highlighting 501 

the distinct roles of the striatum in these processes. 502 

Positive encoding of prediction errors in striatal BOLD signal is a well-established phenomenon38,67. 503 

Striatal BOLD was better described by biased PEs than by standard PEs, corroborating the presence of 504 

motivational learning biases also in striatal learning processes. Notably, EEG correlates of striatal 505 

BOLD peaked rather late, suggesting that these processes are informed by early sources in PFC which 506 

are connected to the striatum via recurrent feedback loops18,47. Positive prediction errors increase the 507 
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value of a performed action and thus strengthen action policies. Hence, it is not surprising that high 508 

striatal BOLD signal and midfrontal beta power predicted action repetition68,69. 509 

In contrast to striatal learning signals, the PCC and vmPFC BOLD as well as midfrontal theta 510 

and delta power signals were more complicated: Theta encoded PE valence, delta encoded PE 511 

magnitude. Both correlates showed opposite polarities. This observation is in line with previous 512 

literature suggesting that midfrontal theta and delta power might reflect the “saliency” or “surprise” 513 

aspect of PEs31,32,70. Surprises have the potential to disrupt an ongoing action policy71 and motivate a 514 

shift to another policy, which might explain why these signals predicted switching to another 515 

response72,73. Notably, this EEG surprise signal was only significantly correlated with the biased (but 516 

not the standard) PE term, corroborating that the surprise attributed to outcomes depends on the 517 

previously performed response in line with motivational learning biases. In sum, both vmPFC and 518 

striatum encode biased PEs, though with different consequences for future action policies. 519 

Taken together, distinct brain regions processed outcomes in a biased fashion at distinct time 520 

points with distinct EEG power correlates. Simultaneous EEG-fMRI recordings allowed us to infer when 521 

those regions reached their peak activity74. However, the correlational nature of BOLD-EEG links 522 

precludes strong statements about these regions actually generating the respective power phenomena. 523 

Alternatively, activity in those regions might merely modulate the amplitude of time-frequency 524 

responses originating from other sources. Furthermore, while the observed associations align with 525 

previous literature 17,41,42,65,66, the considerable distance of the striatum to the scalp raises the question 526 

whether scalp EEG could in principle reflect striatal activity, at all75,76. Intracranial recordings have 527 

observed beta oscillations during outcome processing in the striatum before69,77–79. Also, our analysis 528 

controlled for BOLD signal in motor cortex, an alternative candidate source for beta power, suggesting 529 

that late midfrontal beta power did not merely reflect motor cortex beta. Even if the striatum is not the 530 

generator of the beta oscillations over the scalp, their true (cortical) generator might be tightly coupled 531 

to the striatum and thus act as a “transmitter” of striatal beta oscillations. In fact, the analyses using trial-532 

by-trial beta power to predict BOLD yielded significant clusters in dlPFC and SMG, two candidate 533 

regions for such a “transmitter”. 534 
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We observed EEG correlates of striatal BOLD at a rather late time point after outcome onset. 535 

While we conclude that biased outcome processing occurs much earlier in cortical regions than the 536 

striatum, it is possible that the modulating influence of the striatum on cortical sources of beta 537 

synchronization over the scalp (possibly dlPFC and SMG, corroborating previous EEG-fMRI41–43 and 538 

source-reconstruction findings44,45) takes time to surface. However, speaking against any delay, some 539 

single studies have reported maximal correlations between striatal LFPs and scalp EEG at a time lag of 540 

080. Regardless, even in the presence of a non-zero lag, our main conclusion would hold: Biased learning 541 

is present in cortical regions early after outcome onset, which cannot be a consequence of striatal input, 542 

but must constitute an independent origin of motivational learning biases. 543 

In order to make inferences about the relative order of PE processing in different brain regions, 544 

we must assume that the regressor in our EEG-fMRI analysis approach—the trial-by-trial BOLD 545 

amplitude in selected regions—mostly reflects the PE signal rather than learning-unrelated processes 546 

occurring in parallel. In support of this assumption, animal recordings have indeed found that neural 547 

activity in ACC, PCC, and striatum is dominated by reward processing during outcome receipt81–85 and 548 

meta-analyses on human BOLD signal have found strong effect sizes for PE processing in these 549 

regions38,67. Importantly, we observe transient EEG-fMRI correlations that are likely event-related rather 550 

than reflecting resting-state like correlations. We thus favor the conclusion that the observed EEG-fMRI 551 

correlations reflect differences in the timing of PE processing in these regions, although we cannot fully 552 

exclude the possibility that parallel processes unrelated to (biased) learning contribute to these 553 

correlations. Note that, while outcome processing in these regions is better described by biased than by 554 

standard PEs, each region might encode PEs in an idiosyncratic way (potentially reflecting noise in the 555 

value representations86) and these residual idiosyncrasies drive the EEG-fMRI correlations even when 556 

controlling for biased PEs predicted by the winning computational model. 557 

The correlational nature of the study prevents strong statements over any causal interactions 558 

between the observed regions. We assume here that a region showing an earlier midfrontal EEG 559 

correlate influences other regions showing later midfrontal EEG correlates, and such an influence is 560 

plausible given findings of feedback loops between prefrontal regions and the striatum47. Future studies 561 

targeting those regions via selective causal manipulations will be necessary to test for the causal role of 562 
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PFC in informing striatal learning. Furthermore, while parameter recovery for most parameters in the 563 

winning computational model (including the effective learning rates incorporating the learning bias) 564 

was excellent, parameter recovery for the learning bias term itself was positive, but weaker (see 565 

Supplementary Note 6). Supplementary models tested incorporating a perseveration parameter (see 566 

Supplementary Note 8) yielded higher model recovery, but failed to capture crucial aspects of the biased 567 

learning under investigation. Future studies comprising larger samples of participants should explore 568 

alternative implementations to reliably quantify individual differences in these learning biases.  569 

In conclusion, biased learning—increased credit assignment to rewarded action, decreased 570 

credit assignment to punished inaction—was visible both in behavior and in BOLD signal in a range of 571 

regions. EEG correlates of prefrontal cortical regions, notably dACC and PCC, preceded correlates of 572 

the striatum, consistent with a model of the PFC biasing RL in the striatum. The dACC appeared to hold 573 

a “motor memory trace” of the past response, biasing early outcome processing. Subsequently, biased 574 

learning was also present in vmPFC/ PCC and striatum, with opposite roles in adjusting vs. maintaining 575 

action policies. These results refine previous views on the neural origin of these learning biases, 576 

suggesting they might not only rely on subcortical parts of the brain typically associated with rigid, 577 

habit-like responding, but rather incorporate frontal inputs that are associated with counterfactual 578 

reasoning and increased behavioral flexibility87,88. The PFC is typically believed to facilitate goal-579 

directed over instinctive processes. Hence, PFC involvement into biased learning suggests that these 580 

biases are not necessarily agents’ inescapable “fate”, but rather likely act as global “priors” that facilitate 581 

learning of more local relationships. They allow for combining “the best of both worlds”—long-term 582 

experience with consequences of actions and inactions together with flexible learning from rewards and 583 

punishments. 584 

Materials and methods 585 

Participants 586 

Thirty-six participants (Mage = 23.6, SDage = 3.4, range 19–32; 25 women; all right-handed; all normal 587 

or corrected-to-normal vision) took part in a single 3-h data collection session, for which they received 588 
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€30 flat fee plus a performance-dependent bonus (range €0–5, Mbonus = €1.28, SDbonus = 1.54). The 589 

study was approved by the local ethics committee (CMO2014/288; Commissie Mensengeboden 590 

Onderzoek Arnhem-Nijmegen) and all participants provided written informed consent. Exclusion 591 

criteria comprised claustrophobia, allergy to gels used for EEG electrode application, hearing aids, 592 

impaired vision, colorblindness, history of neurological or psychiatric diseases (including heavy 593 

concussions and brain surgery), epilepsy and metal parts in the body, or heart problems. Sample size 594 

was based on previous EEG studies with a comparable paradigm9,89. 595 

  Behavioral and modeling results include all 36 participants. The following participants were 596 

excluded from analyses of neural data: For two participants, fMRI functional-to-standard image 597 

registration failed; hence, all fMRI-only results are based on 34 participants (Mage = 23.47, 25 women). 598 

Four participants exhibited excessive residual noise in their EEG data (> 33% rejected trials) and were 599 

thus excluded from all EEG analyses; hence, all EEG-only analyses are based on 32 participants (Mage 600 

= 23.09, 23 women). For combined EEG-fMRI analyses, we excluded the above-mentioned six 601 

participants plus one more participant whose regression weights for every regressor were about ten times 602 

larger than for other participants, leaving 29 participants (Mage = 23.00, 22 women). Exclusions were in 603 

line with a previous analysis of this data set17. fMRI- and EEG-only results held when analyzing only 604 

those 29 participants (see Supplementary Notes 1–5 and Supplementary Figures 1–4). 605 

Task 606 

Participants performed a motivational Go/ NoGo learning task3,9 administered via MATLAB 607 

2014b (MathWorks, Natick, MA, United States) and Psychtoolbox-3.0.13. On each trial, participants 608 

saw a gem-shaped cue for 1300 ms which signaled whether they could potentially win a reward (Win 609 

cues) or avoid a punishment (Avoid cues) and whether they had to perform a Go (Go cue) or NoGo 610 

response (NoGo cue). They could press a left (GoLEFT), right (GoRIGHT), or no (NoGo) button while the 611 

cue was presented. Only one response option was correct per cue. Participants had to learn both cue 612 

valence and required action from trial-and-error. After a variable inter-stimulus-interval of 1,400–1,600 613 

ms, the outcome was presented for 750 ms. Potential outcomes were a reward (symbolized by coins 614 

falling into a can) or neutral outcome (can without money) for Win cues, and a neutral outcome or 615 
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punishment (symbolized by money falling out of a can) for Avoid cues. Feedback validity was 80%, 616 

i.e., correct responses were followed by positive outcomes (rewards/ no punishments) on only 80% of 617 

trials, while incorrect responses were still followed by positive outcomes on 20% of trials. Trials ended 618 

with a jittered inter-trial interval of 1250–2000 ms, yielding total trial lengths of 4700–6650 ms. 619 

Participants gave left and right Go responses via two button boxes positioned lateral to their 620 

body. Each box featured four buttons, but only one button per box was required in this task. When 621 

participants accidentally pressed a non-instructed button, they received the message “Please press one 622 

of the correct keys” instead of an outcome. In the analyses, these responses were recoded into the 623 

instructed button on the respective button box. In the fMRI GLMs, such trials were modeled with a 624 

separate regressor. 625 

Before the task, participants were instructed that each cue could be followed by either reward 626 

or punishment, that each cue had one optimal response, that feedback was probabilistic, and that the 627 

rewards and punishments were converted into a monetary bonus upon completion of the study. They 628 

performed an elaborate practice session in which they got familiarized first with each condition 629 

separately (using practice stimuli) and finally practiced all conditions together. They then performed 630 

640 trials of the main task, separated into two sessions of 320 trials with separate cue sets. Introducing 631 

a new set of cues allowed us to prevent ceiling effects in performance and investigate continuous 632 

learning throughout the task. Each session featured eight cues that were presented 40 times. After every 633 

100–110 trials (~ 6 min.), participants could take a self-paced break. The assignment of the gems to cue 634 

conditions was counterbalanced across participants, and trial order was pseudo-random (preventing that 635 

the same cue occurred on more than two consecutive trials). 636 

Behavior analyses 637 

We used mixed-effects logistic regression (as implemented in the R package lme4) to analyze 638 

behavioral responses (Go vs. NoGo) as a function of required action (Go/ NoGo), cue valence (Win/ 639 

Avoid), and their interaction. We included a random intercept and all possible random slopes and 640 

correlations per participant to achieve a maximal random-effects structure90. Sum-to-zero coding was 641 
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employed for the factors. Type 3 p-values were based on likelihood ratio tests (implemented in the R 642 

package afex). We used a significance criterion of α = .05 for all the analyses. 643 

Furthermore, we used mixed-effects logistic regression to analyze “stay behavior”, i.e., whether 644 

participants repeated an action on the next encounter of the same cue, as a function of outcome valence 645 

(positive: reward or no punishment/ negative: no reward or punishment), outcome salience (salient: 646 

reward or punishment/ neutral: no reward or no punishment), and performed action (Go/ NoGo). We 647 

again included all possible random intercepts, slopes, and correlations. 648 

Computational modeling 649 

We fit a series of increasingly complex RL models to participants’ choices to decide between different 650 

algorithmic explanations for the emergence of motivational biases in behavior. We employed the same 651 

set of nested models as in previous studies using this task3,9. For tests of alternative biases specifications, 652 

see Supplementary Notes 7–9 and Supplementary Fig. 6–8. 653 

Model space  654 

To determine whether a Pavlovian response bias, a learning bias, or both biases jointly predicted 655 

behavior best, we fitted a series of increasing complex computational models. In each trial (t), choice 656 

probabilities for all three response options (a) given the displayed cue (s) were computed from their 657 

action weights (modified Q-values) using a softmax function: 658 

����|��� = ��� �����,����∑ ��� �����,�����              (1) 659 

After each response, action values were updated with the prediction error based on the obtained 660 

outcome   ∈  {−1; 0; 1}. As the starting model (M1), we fitted an standard delta-learning model 91 in 661 

which action values were updated with prediction errors, i.e., the deviation between the experienced 662 

outcome and expected outcome. This model contained two free parameters: the learning rate (ε) scaling 663 

the updating term and the feedback sensitivity (ρ) scaling the received outcome (i.e., higher feedback 664 

sensitivity led to choices more strongly guided by value difference, akin to the role of the inverse 665 

temperature parameter frequency used in reinforcement learning models): 666 

(����, ��� = (�)*���, ��� + +�, − (�)*���, ����         (2) 667 
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In this model, choice probabilities were fully determined by action values, without any bias. We 668 

initialized action values Q0 such that they reflected a “neutral” expected value for each action. Win cues 669 

could lead to reward (+1) or neutral (0) outcomes and Avoid cues to neutral (0) or punishment (-1) 670 

outcomes. A neutral expected value would assign equal probability to either possible outcome, leading 671 

to expectations of +1/2 and -1/2, respectively. In addition, because participants’ feedback sensitivity 672 

parameter ρ reflected how participants weighed the outcomes they received, also the initial values had 673 

to be multiplied with the feedback sensitivity to stay neutral between 0 and participants’ re-weighted 674 

positive/ negative outcome of +/-1*ρ. Thus, initial action values Q0 were set to 1/2*ρ (Win cues) and -675 

1/2*ρ (Avoid cues). 676 

Unlike previous versions of the task3, cue valences were not instructed, but had to be learned 677 

from outcomes, as well9. Thus, until experiencing the first non-neutral outcome (reward or punishment) 678 

for a cue, participants could not know its valence and thus not learn from neutral feedback. Hence, for 679 

these early trials, action values were multiplied with zero when computing choice probabilities 9. After 680 

the first encounter of a valenced outcome, action values were “unmuted” and started to influence choices 681 

probabilities, retrospectively considering all previous outcomes9. 682 

In M2, we added the Go bias parameter b, which accounted for individual differences in 683 

participants’ overall propensity to make Go responses, to the action values Q, resulting in action weights 684 

w: 685 

-��� , ��� = .(����, ��� + /                 01 � = 23(����, ���                                    45�4           (3) 686 

In M3, we added a Pavlovian response bias π, scaling how positive/ negative cue valence 687 

(Pavlovian values) increased/ decreased the weights of Go responses: 688 

-��� , ��� = .(����, ��� + / + 67���               01 � = 23(����, ���                                                   45�4          (4) 689 

Participants were instructed that a cue was either a Win cue (affording rewards or neutral 690 

outcomes) or an Avoid cue (affording neutral outcomes or punishments). Hence, cue valence (Win/ 691 

Avoid) did not have to be learned instrumentally; instead, it could be inferred as soon participants 692 

experienced a non-neutral outcome. Until that moment, cue valence 7��� was set to zero. Afterwards, 693 

7��� was set to +0.5 for Win cues and -0.5 for Avoid cues. Note that choosing different values than 0.5 694 
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would merely rescale the bias parameter π (e.g., halving π with cue valences of +1 and -1) without any 695 

changes in the model’s predictions. The Pavlovian response bias affected left-hand and right-hand Go 696 

responses similarly and thus reflected generalized activation/ inactivation by the cue valence. 697 

In M4, we added a learning bias κ, increasing the learning rate for rewards after Go responses 698 

and decreasing it for punishments after NoGo responses. The learning bias was specific to the response 699 

shown, thus reflecting a specific enhancement in action learning/ impairment in unlearning for that 700 

particular response. Conceptually, learning rates differed between response-outcome conditions in the 701 

following way: 702 

+ = 8+9 + :     01  � = 1 �;< � = =3+9 − :   01 � = −1 �;< � = ;3=3+9                                                   45�4            (5) 703 

In the technical implementation of this model, learning rates were sampled in continuous space 704 

and then inverse-logit transformed to constrain them to the range [0 1]3,9. However, after this 705 

transformation, the impact of adding vs. subtracting the learning bias κ would no longer be symmetric. 706 

Hence, for baseline learning rates ε0 < 0.5, we first computed the difference between the baseline 707 

learning rate and the learning rates for punished NoGo responses and used this difference to compute 708 

the learning rate for rewarded Go responses: 709 

+ = > +9 = 0;?. 53=0@�+�                            +ABCD�EFG HIJI = 0;?. 53=0@�+ − :�                    01 +9 < 0.5  +MF��MGFG JI = +9 + N+9 − +ABCD�EFG HIJIO 01 +9 < 0.5         (6) 710 

 Notably, this procedure is only guaranteed to work when ε0 < 0.5. For ε0 > 0.5, the difference 711 

term could become > 0.5 and the learning rate for rewarded Go responses would become > 1, which is 712 

impractical. Hence, for ε0 > 0.5, we first computed the learning rate for rewarded Go responses and used 713 

the difference to the baseline learning rate ε0 to compute the learning rate for punished NoGo responses: 714 

+ = > +9 = 0;?. 53=0@�+�                               +MF��MGFG JI = 0;?. 53=0@�+ + :�                   01 +9 > 0.5 +ABCD�EFG HIJI = +9 − �+MF��MGFG JI − +9 �    01 +9 > 0.5                     (7) 715 

In the model M5, we included both the Pavlovian response bias and the learning bias. 716 

The weakly informative hyperpriors were set to QR~T�2,3�, QW~T�0,2�, QX,Y,Z~T�0,3�, in 717 

line with previous implementations of this model3,9. The same priors (for the same parameters) were 718 
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used across different model implementations to not bias model comparison. Alternative hyperpriors did 719 

not change the results. For computing the participant-level parameters, ρ was exponentiated to constrain 720 

it to positive values, and the inverse-logit transformation was applied to ε. 721 

Model fitting and comparison 722 

For model fitting and comparison, we used hierarchical Bayesian inference as implemented in 723 

the CBM toolbox in MATLAB92. This approach combines hierarchical Bayesian parameter estimation 724 

with random-effects model comparison93. The fitting procedure involves two steps, starting with the 725 

Laplace approximation of the model evidence to compute the group evidence, which quantifies how 726 

well each model fits the data while penalizing for model complexity. Both group-level and individual-727 

level parameters are estimated using an iterative algorithm. We used wide Gaussian priors (see 728 

hyperpriors above) and exponential and sigmoid transforms to constrain parameter spaces. Subsequent 729 

random-effects model selection allows for the possibility that different models generated the data for 730 

different participants. Participants contribute to the group-level parameter estimation in proportion to 731 

how well a given model fits their data, quantified via a responsibility measure (i.e., the probability that 732 

the model at hand is responsible for generating data of the respective participant). This model-733 

comparison approach has been shown to be less susceptible to the influence of outliers92. We selected 734 

the “winning” model based on the protected exceedance probability.  735 

Model validation 736 

We assured that the winning model was able to reproduce the data, using the sampled 737 

combinations of participant-level parameter estimates to create 3600 agents that “played” the task. We 738 

employed two approaches to simulate the task: posterior predictive model simulations and one-step-739 

ahead model predictions. In the posterior predictive model simulations, agents’ choices were sampled 740 

probabilistically based on their action values, and outcomes probabilistically sampled based on their 741 

choices. This method ignores participant-specific choice histories and can thus yield choice/ outcome 742 

sequences that diverge considerably from participants’ actual experiences. In contrast, one-step-ahead 743 

predictions use participants’ actual choices and experienced outcomes in each trial to update action 744 

values. We simulated choices for each participant using both methods, which confirmed that the winning 745 
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model M5 (“asymmetric pathways model”) was able to qualitatively reproduce the data, while an 746 

alternative implementation of biased learning (“action priming model”) failed to do so (see 747 

Supplementary Note 7 and Supplementary Fig. 6). 748 

fMRI data acquisition 749 

fMRI data were collected on a 3T Siemens Magnetom Prisma fit MRI scanner with a 64-channel 750 

head coil. During scanning, participants’ heads were restricted using foam pillows and strips of adhesive 751 

tape were applied to participants’ forehead to provide active motion feedback and minimize head 752 

movement 94. After two localizer scans to position slices, we collected functional scans with a whole-753 

brain T2*-weighted sequence (68 axial-oblique slices, TR = 1400 ms, TE = 32 ms, voxel size 2.0 mm 754 

isotropic, interslice gap 0 mm, interleaved multiband slice acquisition with acceleration factor 4, FOV 755 

210 mm, flip angle 75°, A/ P phase encoding direction). The first seven volumes of each run were 756 

automatically discarded. This sequence was chosen because of its balance between a short TR and 757 

relatively high spatial resolution, which was required to disentangle cue and outcome-related neural 758 

activity. Pilots using different sequences yielded that this sequence performed best in reducing signal 759 

loss in striatum.  760 

Furthermore, after task completion, we removed the EEG cap and collected a high-resolution 761 

anatomical image using a T1-weighted MP-RAGE sequence (192 sagittal slices per slab, GRAPPA 762 

acceleration factor = 2, TI = 1100 ms, TR = 2300 ms, TE = 3.03 ms, FOV 256 mm, voxel size 1.0 mm 763 

isotropic, flip angle 8°) which was used to aid image registration, and a gradient fieldmap (GRE; TR = 764 

614 ms, TE1 = 4.92 ms, voxel size 2.4 mm isotropic, flip angle 60°) for distortion correction. For one 765 

participant, no fieldmap was collected due to time constraints. At the end of each session, an additional 766 

DTI data collection took place; results will be reported elsewhere. 767 

fMRI preprocessing 768 

All fMRI pre-processing was performed in FSL 6.0.0. After cleaning images from non-brain 769 

tissue (brain-extraction with BET), we performed motion correction (MC-FLIRT), spatial smoothing 770 

(FWHM 3 mm), and used fieldmaps for B0 unwarping and distortion correction in orbitofrontal areas. 771 

We used ICA-AROMA95 to automatically detect and reject independent components associated with 772 
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head motion. Finally, images were high-pass filtered at 100 s and pre-whitened. After the first-level 773 

GLM analyses, we computed and applied co-registration of EPI images to high-resolution images 774 

(linearly with FLIRT using boundary-based registration) and to MNI152 2mm isotropic standard space 775 

(non-linearly with FNIRT using 12 DOF and 10 mm warp resolution). 776 

ROI selection 777 

For fMRI-informed EEG analyses, we first created a functional mask as the conjunction of the 778 

PESTD and PEDIF contrasts by thresholding both z-maps at z > 3.1, binarizing, and multiplying them (see 779 

Supplementary Figures 9 and 10). After visual inspection of the respective clusters, we created seven 780 

anatomical masks based on the probabilistic Harvard-Oxford Atlas (thresholded at 10%): striatum and 781 

ACC (see above), vmPFC (combined frontal pole, frontal medial cortex, and paracingulate gyrus), motor 782 

cortex (combined precentral and postcentral gyrus), PCC (Cingulate Gyrus, posterior division), ITG 783 

(Inferior Temporal Gyrus, posterior division, and Inferior Temporal Gyrus, temporooccipital part) and 784 

primary visual cortex (Lingual Gyrus, Occipital Fusiform Gyrus, Occipital Pole). We then multiplied 785 

this functional mask with each of the seven anatomical masks, returning seven masks focused on the 786 

respective significant clusters, which were then used for signal extraction. For the dACC mask, we 787 

manually excluded voxels in pgACC belonging to a distinct cluster. Masks were back-transformed to 788 

each participant’s native space. 789 

For bar plots in Fig. 3A, we multiplied the anatomical masks of vmPFC and striatum specified 790 

above with the binarized outcome valence contrast.  791 

fMRI analyses 792 

For each participant, data were modelled using two event-related GLMs. First, we performed a 793 

model-based GLM in which we used trial-by-trial estimates of biased PEs as regressors. Second, we 794 

used another model-free GLM in which we modeled all possible action x outcome combinations via 795 

outcome-locked categorical regressors while at the same time modeling response-locked left- and right-796 

hand response regressors. This model free GLM also contained the outcome valence contrast reported 797 

as an initial manipulation check. 798 
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In the model-based GLM, we used two model-based regressors that reflected the trial-by-trial 799 

prediction error (PE) update term. The update term was computed by multiplying the prediction-error 800 

with the condition-specific learning rate. As described above, in the winning model M5, the learning 801 

bias term κ leads to altered learning from “congruent” action-outcome pairs, with faster learning of Go 802 

actions followed by rewards, but slower unlearning of NoGo actions followed by punishments. To 803 

compute trial-by-trial updates, we extracted the group-level parameters of the best fitting computational 804 

model M5 (asymmetric pathways model) and used those parameters to compute the prediction error on 805 

every trial for every participant. Using the same parameter for each participant is warranted when testing 806 

for the same qualitative learning pattern across participants96. Given that both standard (base model M1) 807 

and biased (winning model M5) PEs were highly correlated (mean correlation of 0.921 across 808 

participants, range 0.884–0.952), it appeared difficult to distinguish standard learning from biased 809 

learning. As a remedy, we decomposed the biased PE into the standard PE plus a difference term as 810 

������ = ����	 + ��	�� 22,36. Any region displaying truly biased learning should significantly encode 811 

both the standard PE term and the difference term. The standard PE and difference term were much less 812 

correlated (mean correlation of -0.020, range -0.326–0.237). To control for cue-related activation, we 813 

furthermore added four regressors spanned by crossing cue valence and performed action (Go response 814 

to Win cue, Go response to Avoid cue, NoGo response to Win cue, NoGo response to Avoid cue). 815 

The model-free GLM included a separate regressor for each of the eight conditions obtained 816 

when crossing performed action (Go/ NoGo) and obtained outcome (reward/ no reward/ no punishment/ 817 

punishment). We fitted four contrasts: 1) one contrast comparing conditions with positive (reward/ no 818 

punishment) and negative (no reward/ punishment) outcomes, used as a quality check to identify regions 819 

that encoded outcome valence; 2) one contrast comparing Go vs. NoGo responses at the time of the 820 

outcome; 3) one contrast summing of left- and right-hand responses, reflecting Go vs. NoGo responses 821 

at the time of the response; and 4) one contrast subtracting right- from left-handed responses, reflecting 822 

lateralized motor activation. As this GLM resulted in empty regressors for several participants when 823 

fitted on a block level, making it impossible to use the data of the respective blocks on a higher level, 824 

we instead concatenated blocks and performed a single GLM per participant. We therefore registered 825 

the data from all blocks to the middle image of the first block (default reference volume in FSL) using 826 
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MCFLIRT. The first and last 20 seconds of each block did not feature any task-related events, such that 827 

carry-over effects of task events in the design matrix from one block to another were not possible. 828 

In both GLMs, we added four regressors of no interest: one for the motor response (left = +1, 829 

right = -1, NoGo = 0), one for error trials, one for outcome onset, and one for trials with invalid motor 830 

response (and no outcome respectively). We also added nine or more nuisance regressors: the six 831 

realignment parameters from motion correction, mean cerebrospinal fluid (CSF) signal, mean out-of-832 

brain (OBO) signal, and a separate spike regressor for each volume with a relative displacement of more 833 

than 2 mm (occurred in 10 participants; in those participants: M = 7.40, range 1–29). For the model-free 834 

GLM, nuisance regressors were added separately for each block as well as an overall intercept per block. 835 

We convolved task regressors with double-gamma haemodynamic response function (HRF) and high-836 

pass filtered the design matrix at 100 s. 837 

First-level contrasts were fit in native space. Afterwards, co-registration and reslicing was 838 

applied to participants’ contrast maps, which were then combined on a (participant and) group level 839 

using FSL’s mixed effects models tool FLAME with a cluster-forming threshold of z > 3.1 and cluster-840 

level error control at α < .05 (i.e., two one-sided tests with α < .025).  841 

EEG data acquisition 842 

We recorded EEG data with 64 channels (BrainCap-MR-3-0 64Ch-Standard; Easycap GmbH; 843 

Herrsching, Germany; international 10-20 layout, reference electrode at FCz) plus channels for 844 

electrocardiogram, heart rate, and respiration (used for MR artifact correction) at a sampling rate of 1000 845 

Hz. We placed MRI-compatible EEG amplifiers (BrainAmp MR plus; Brain Products GmbH, Gilching, 846 

Germany) behind the MR scanner and attached cables to the participants once they were located in final 847 

position in the scanner. Furthermore, we fixated cables using sand-filled pillows to reduce artifacts 848 

induced through cable movement in the magnetic field. During functional scans, the MR helium pump 849 

was switched off to reduce EEG artifacts. After the scanning, we recorded the exact EEG electrode 850 

locations on participants’ heads relative to three fiducial points using a Polhemus FASTRAK device. 851 

For four participants, no such data were available due to time constraints/ technical errors, in which case 852 

we used the average electrode locations of the remaining 32 participants. 853 
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EEG pre-processing 854 

First, raw EEG data were cleaned from MR scanner and cardioballistic artifacts using 855 

BrainVisionAnalyzer97. The rest of the pre-processing was performed in Fieldtrip98. After rejecting 856 

channels with high residual MR noise (mean 4.8 channels per participant, range 1–13), we epoched trials 857 

into time windows of -1,400–2,000 ms relative to the onset of outcomes. Timing of this epochs was 858 

determined by the minimal inter-stimulus interval beforehand until the minimal inter-trial interval 859 

afterwards. Data was re-referenced to the grand average, which allowed us to recover the reference as 860 

channel FCz, and then band-pass filtered using a two-pass 4th order Butterworth IIR filter (Fieldtrip 861 

default) in the range of 0.5–35 Hz. These filter settings allowed us to distinguish the delta, theta, alpha, 862 

and beta band, while filtering out residual high-frequency MR noise. This low-pass filter cut-off was 863 

different from a previous analysis of this data in which we set it at 15 Hz17 because, in this analysis, we 864 

had a hypothesis on outcome valence encoding in the beta range. We then applied linear baseline 865 

correction based on the 200 ms prior to cue onset and used ICA to detect and reject independent 866 

components related to eye-blinks, saccades, head motion, and residual MR artifacts (mean number of 867 

rejected components per participant: 32.694, range 24–45). Afterwards, we manually rejected trials with 868 

residual motion (for all 36 participants: M = 117.722, range 11–499). Based on trial rejection, four 869 

participants for which more than 211 (33%) of trials were rejected were excluded from any further 870 

analyses (rejected trials after excluding those participants: M = 81.875, range 11–194). Finally, we 871 

computed a Laplacian filter with the spherical spline method to remove global noise (using the exact 872 

electrode positions recorded with Polhemus FASTRAK), which we also used to interpolate previously 873 

rejected channels. This filter attenuates more global signals (e.g., signal from deep sources or global 874 

noise) and noise (heart-beat and muscle artifacts) while accentuating more local effects (e.g., superficial 875 

sources). 876 

EEG TF decomposition 877 

We decomposed the trial-by-trial EEG time series into their time-frequency representations using 878 

33 Hanning tapers between 1 and 33 Hz in steps of 1 Hz, every 25 ms from -1000 until 1,300 ms relative 879 

to outcome onset. We first zero-padded trials to a length of 8 sec. and then performed time-frequency 880 
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decomposition in steps of 1 Hz by multiplying the Fourier transform of the trial with the Fourier 881 

transform of a Hanning taper of 400 ms width, centered around the time point of interest. This procedure 882 

results in an effective resolution of 2.5 Hz (Rayleigh frequency), interpolated in 1 Hz steps, which was 883 

more robust to the choice of exact frequency bins. To exclude the possibility of slow drifts in power 884 

over the time course of the experiment, we performed baseline correction across participants and trials 885 

by fitting a linear model for each channel/ frequency combination with trial number as predictor and the 886 

average power 250–50 ms before outcome onset as outcome, and subtracting the power predicted by 887 

this model from the data. This procedure is able to remove slow linear drifts in power over time from 888 

the data. In absence of such drifts, it is equivalent to correcting all trials by the grand mean across trials 889 

per frequency in the selected baseline time window. Afterwards, we averaged power over trials within 890 

each condition spanned by performed action (Go/ NoGo) and outcome (reward/ no reward/ no 891 

punishment/ punishment). We finally converted the average time-frequency data per condition to decibel 892 

to ensure that data across frequencies, time points, electrodes, and participants were on same scale. 893 

EEG analyses 894 

All analyses were performed on the average signal of a-priori selected channels Fz, FCz, and 895 

Cz based on previous literature9,17. We again performed model-free and model-based analyses. For the 896 

model-free analyses, we sorted trials based on the performed action (Go/ NoGo) and obtained outcome 897 

(reward/ no reward/ no punishment/ punishment) and computed the mean TF power across trials for 898 

each of the resultant eight conditions for each participant. We tested whether theta power (average power 899 

4–8 Hz) and beta power (average power 13–30 Hz) encoded outcome valence by contrasting positive 900 

(reward/ no punishment) and negative (no reward/ punishment) conditions (irrespective of the performed 901 

action). We also tested for differences between Go and NoGo responses in the lower alpha band (6–10 902 

Hz). For all contrasts, we employed two-sided cluster-based permutation tests in a window from 0–903 

1,000 ms relative to outcome onset. For beta power, results were driven by a cluster that was at the edge 904 

of 1,000 ms; to more accurately report the time span during which this cluster exceeded the threshold, 905 

we extended the time window to 1,300 ms in this particular analysis. Such tests are able to reject the 906 

null hypothesis of exchangeability of two experimental conditions, but they are not suited to precisely 907 
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locate clusters in time-frequency space. Hence, interpretations were mostly based on the visual 908 

inspection of plots of the signal time courses. 909 

For model-based analyses, similar to fMRI analyses, we used the group-level parameters from 910 

the best fitting computational model M5 to compute the trial-by-trial biased PE term and decomposed 911 

it into the standard PE term and the difference to the biased PE term. We used both terms as predictors 912 

in a multiple linear regression for each channel-time-frequency bin for each participant, and then 913 

performed one-sample cluster-based permutation-tests across the resultant b-maps of all participants99. 914 

For further details on this procedure, see fMRI-inspired EEG analyses.  915 

fMRI-informed EEG analyses 916 

The BOLD signal is sluggish. It is thus hard to determine when different brain regions become 917 

active. In contrast, EEG provides much higher temporal resolution. A fruitful approach can be to identify 918 

distinct EEG correlates of the BOLD signal in different regions, allowing to test hypotheses about the 919 

temporal order in which regions might become active and modulated EEG power 17,74. Furthermore, by 920 

using the BOLD signal from different regions in a multiple linear regression, one can control for 921 

variance shared among regions (e.g., changes in global signal; variance due to task regressors) and test 922 

which region is the best unique predictor of a certain EEG signal. In such an analysis, any correlation 923 

between EEG and BOLD signal from a certain region reflects an association above and beyond those 924 

induced by task conditions.  925 

We used the trial-by-trial BOLD signal in selected regions in a multiple linear regression to predict 926 

EEG signal over the scalp17,74 (building on existing code from https://github.com/tuhauser/TAfT; see 927 

Supplementary Fig. 17 for a graphical illustration). As a first step, we extracted the volume-by-volume 928 

signal (first eigenvariate) from each of the seven regions identified to encode biased PEs (conjunction 929 

of PESTD and PEDIF: striatum, dACC, pgACC, left motor cortex, PCC, left ITG, and primary visual 930 

cortex). We applied a highpass-filter at 128 s and regressed out nuisance regressors (6 realignment 931 

parameters, CSF, OOB, single volumes with strong motion, same as in the fMRI GLM). We then 932 

upsampled the signal by a factor 10, epoched it into trials of 8 s duration, and fitted a separate HRF 933 

(based on the SPM template) to each trial (58 upsampled data points), resulting in trial-by-trial 934 
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regression weights reflecting the respective BOLD response. We then combined the regression weights 935 

of all trials and regions of a certain participant into a design matrix with trials as rows and the seven 936 

ROIs as columns, which we then used to predict power at each time-frequency-channel bin. As further 937 

control variables, we added the behavioral PESTD and PEDIF regressors to the design matrix. All results 938 

were identical with and without the inclusion of PEs as covariates in the regression, suggesting that 939 

EEG-fMRI correlations did not merely arise from both modalities encoded PEs as a “common cause” 940 

that induced correlations. Instead, these correlations reflected the incremental variance explained in EEG 941 

power that was afforded by the BOLD signal even beyond the PEs. All predictors and outcomes were 942 

demeaned such that the intercept became zero. Such a multiple linear regression was performed for each 943 

participant, resulting in a time-frequency-channel-ROI b-map reflecting the association between trial-944 

by-trial BOLD signal and TF power at each time-frequency-channel bin. B-maps were Fisher-z 945 

transformed, which makes the sampling distribution of correlation coefficients approximately normal 946 

and allows for combining them across participants. Finally, we tested for fMRI-EEG associations with 947 

a cluster-based one-sample permutation t-test 99 on the mean regression weights over channels Fz, FCz, 948 

and Cz across participants in the range of 0–1000 ms, 1–33 Hz. We first obtained a null distribution of 949 

maximal cluster mass statistics from 10000 permutations. For each permutation, we flipped the sign of 950 

the b-map of a random subset of participants, computed a separate t-test at each time-frequency bin (bins 951 

of 25 ms, 1 Hz) across participants (results in t-map), thresholded these maps at |t| > 2, and finally 952 

computed the maximal cluster mask statistic (sum of all t-values) for any cluster (adjacent voxels above 953 

threshold). Afterwards, we computed the same t-map for the real data, identified the cluster with the 954 

biggest cluster-mass statistic, and computed the corresponding p-value as number of permutations in the 955 

null distribution that were larger than the maximal cluster mass statistic in the real data. 956 

EEG-informed fMRI analyses 957 

For the EEG-informed fMRI analyses, we fit three additional GLMs for which we entered the 958 

trial-by-trial theta/ delta power (1–8 Hz), beta power (13–30 Hz), and lower alpha band power (6–10 959 

Hz) as parametric regressors on top of the task regressors of the model-free GLM. These measures were 960 

created by using the 3-D (time-frequency-channel) t-map obtained when contrasting positive vs. 961 
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negative outcomes (theta/ delta and beta; Fig. 4 A, B) and Go vs. NoGo conditions (lower alpha band) 962 

as a linear filter (Fig. 4; see Supplementary Fig. 18 for a graphical illustration of this approach). Note 963 

that these signals were selected based on the EEG-only results and not informed by the fMRI-informed 964 

EEG analyses. We enforced strict frequency cut-offs. For lower alpha band and beta, we used midfrontal 965 

channels (Fz/ FCz/ Cz). For theta/ delta power, given the topography that reached far beyond midfrontal 966 

channels and over the entire frontal scalp, we used a much wider ROI (AF3/ AF4/ AF7/ AF8/ F1/ F2/ 967 

F3/ F4/ F5/ F6/ F7/ F8/ FC1/ FC2/ FC3/ FC4/ FC5/ FC6/ FCz/ Fp1/ Fp2/ Fpz/ Fz). We extracted those 968 

maps and retained all voxels with t > 2. These masks were applied to the trial-by-trial time-frequency 969 

data to create weighted summary measures of the average power in the identified clusters in each trial. 970 

For trials for which EEG data was rejected, we imputed the participant mean value of the respective 971 

action (Go/ NoGo) x outcome (reward/ no reward/ no punishment/ punishment) condition. Note that this 972 

approach accentuates differences between conditions, which were already captured by the task 973 

regressors in the GLM, but decreases trial-by-trial variability within each condition, which is of interest 974 

in this analysis. This imputation approach is thus conservative. While trial-by-trial beta and theta power 975 

were largely uncorrelated, mean r = 0.104, range -0.118–0.283 across participants, and so were beta and 976 

alpha, mean r = 0.097, range -0.162–0.284 across participants, theta and alpha power moderately 977 

correlate, mean r = 0.412, range 0.121–0.836 across participants, warranting the use of a separate 978 

channel ROI for theta and using separate GLMs for each frequency band. 979 

Analyses of behavior as a function of BOLD signal and EEG power 980 

We used mixed-effects logistic regression to analyze “stay behavior”, i.e., whether participants 981 

repeated an action on the next encounter of the same cue, as a function of BOLD signal and EEG power 982 

in selected regions. For analyses featuring BOLD signal, we used the trial-by-trial HRF amplitude also 983 

used for fMRI-informed EEG analyses. For analyses featuring EEG, we used the trial-by-trial EEG 984 

power also used in the EEG-informed fMRI analyses. 985 
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Supplementary Note 1: Behavioral results with only the 29 participants 76 

included in EEG-fMRI analyses 77 

 78 

We repeated the behavioral analyses reported in the main text while excluding the seven 79 

participants that were also not included in the fMRI-inspired EEG analyses in the main text: (a) two 80 

participants due to fMRI co-registration failure, which were also not included in the fMRI-only analyses; 81 

(b) four further participants who exhibited excessive residual noise in their EEG data (> 33% rejected 82 

trials) and were thus also not included in the EEG-only analyses, and finally (c) one more participant 83 

who (together with four other participants already excluded) exhibited regression weights for every 84 

regressor about ten times larger than for other participants. 85 

Participants in this subgroup learned the task, reflected in a significant main effect of required 86 

action on responses, b = 0.896, SE = 0.129, χ2(1) = 28.398, p < .001, and exhibited motivational biases, 87 

reflected in a significant main effect of cue valence on responses, b = 0.439, SE = 0.084, χ2(1) = 19.308, 88 

p < .001. The interaction between required action and cue valence was not significant, b = 0.025, SE = 89 

0.085, χ2(1) = 0.111, p = .739 (Supplementary Fig. 1A-B). 90 

Participants in this subgroup also showed biased learning: They were more likely to repeat an 91 

action after a positive outcome (main effect of outcome valence: b = .0553, SE = 0.059, χ2(1) = 40.920, 92 

p < .001. After salient outcomes, they adjusted their responses more strongly after feedback on Go than 93 

on NoGo responses, in line with our model of biased learning and as reflected in a significant three-way 94 

interaction between action, salience, and valence, b = 0.266, SE = 0.055, χ2(1) = 16.862, p < .001. When 95 

only analyzing trials with salient outcomes, outcome valence was more likely to affect response 96 

repetition following Go relative to NoGo responses, b = 0.324, SE = 0.079, χ2(1) = 13.266, p < .001, 97 

with a stronger effect of outcome valence after Go responses, b = 1.342, SE = 0.120, χ2(1) = 49.003, p 98 

= .001, than NoGo responses, b = 0.693, SE = 0.129, χ2(1) = 18.988, p < .001 (Supplementary Fig. 1C). 99 

In this subgroup of participants, Bayesian model selection clearly favored the full asymmetric 100 

pathways models featuring response and learning biases (M5, model frequency: 81.81%, protected 101 

exceedance probability: 100%; Supplementary Fig. 1D-H). In sum, behavioral results were qualitatively 102 

identical when analyzing only this subgroup of only 29 participants.  103 

 104 

 105 

 106 

 107 
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Supplementary Note 2: Behavioral fMRI results with only the 29 122 

participants included in EEG-fMRI analyses 123 

 124 

We repeated the fMRI analyses reported in the main text while excluding the seven participants 125 

that were also not included in the fMRI-inspired EEG analyses in the main text: (a) two participants due 126 

to fMRI co-registration failure, which were also not included in the fMRI-only analyses; (b) four further 127 

participants who exhibited excessive residual noise in their EEG data (> 33% rejected trials) and were 128 

thus also not included in the EEG-only analyses, and finally (c) one more participant who (together with 129 

four other participants already excluded) exhibited regression weights for every regressor about ten 130 

times larger than for other participants. 131 

We first repeated the model-free GLM just contrasting positive and negative outcomes. BOLD 132 

signal was higher for positive than negative outcomes in five clusters, namely in vmPFC, striatum, 133 

amygdala, and hippocampus (zmax = 5.65, p = 2.24e-25, 6110 voxels, MNI coordinates xyz = [6 30 -134 

12]), left superior lateral occipital cortex (zmax = 4.40, p = .00144, 367 voxels, xyz = [-46 -68 46]), right 135 

occipital pole (zmax = 4.45, p = .00154, 363 voxels, xyz = [12 -92 -12]), posterior cingulate cortex (zmax 136 

= 4.36, p = .00181, 353 voxels, xyz = [-2 -48 28]), and left middle temporal gyrus (zmax = 4.63, p = 137 

.00548, 289 voxels, xyz = [-60 -10 -16]; Supplementary Fig. 2A). The clusters in left slOCC, PCC, and 138 

left MTG emerged anew compared to the original analysis comprising 34 participants. Also, compared 139 

to the original analysis, clusters in left orbitofrontal cortex and left superior frontal gyrus were merged 140 

with the cluster in vmPFC. In sum, all clusters from the original analysis were found back, plus some 141 

additional clusters. 142 

There was also one cluster in right orbitofrontal cortex (zmax = 4.37, p = .0209, 217 voxels, xyz 143 

= [30 62 -2]) in which BOLD signal was higher for negative than positive outcomes. Compared to the 144 

original analysis comprising 34 participants, clusters in precuneus and right superior frontal gyrus were 145 

not significant. 146 

In the model-based GLM featuring regressors for standard PEs and the difference term towards 147 

biased PEs, BOLD signal correlated with standard PEs in ten clusters, namely in vmPFC, striatum, 148 

bilateral amygdala and hippocampus (zmax = 6.04, p = .4.78e-44, 8848 voxels, xyz = [12 14 -6]), left 149 

superior frontal gyrus (zmax = 5.58, p = 3.5e-10, 1043 voxels, xyz = [-18 34 52]), left occipital pole and 150 

lingual gyrus (zmax = 6.23, p = 7.18e-10, 998 voxels, xyz = [10 -92 -10]), posterior cingulate cortex (zmax 151 

= 5.12, p = 8.57e-10, 987 voxels, xyz = [4 -36 48]), left inferior temporal gyrus (zmax = 5.03, p = 7.07e-152 

09, 859 voxels, xyz = [-52 -46 -10]), right anterior middle temporal gyrus (zmax = 5.32, p = .000292, 314 153 

voxels, xyz = [62 -4 -16]), right cerebellum (zmax = 5.32, p = .002228, 231 voxels, xyz = [44 -72 -40]), 154 

left superior lateral occipital cortex (zmax = 4.69, p = .00322, 218 voxels, xyz = [-46 -74 -38]), right 155 

caudate (zmax = 4.33, p = .00538, 199 voxels, xyz = [20 12 22]), and right middle temporal gyrus (zmax = 156 

4.09, p = .0129, 189 voxels, xyz = [54 -38 -12] ; Supplementary Fig. 2B). The clusters in left superior 157 

lateral occipital cortex, right caudate, and right posterior middle temporal gyrus emerged anew by 158 

splitting from larger clusters visible in the original analysis based on 34 participants. Vice versa, the 159 

cluster in left middle temporal gyrus reported for the original analysis was merged with a bigger cluster 160 

in the analysis of only 29 participants. The clusters in postcentral gyrus and ACC observed in the original 161 

analysis based on 34 participants were not significant anymore; however, they were still visible at a 162 

level of z > 3.1 uncorrected.  163 

 BOLD signal correlated significantly negatively with standard PEs in a single cluster in right 164 

superior frontal gyrus (zmax = 5.04, p = .00771, 186 voxels, xyz = [6 26 64]), similar to the respective 165 

cluster reported in the original analysis. In contrast, the clusters in right occipital pole, intracalcarine 166 

cortex, and left inferior lateral occipital cortex were not significant any more, though visible at a level 167 

of z > 3.1 uncorrected. 168 
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 BOLD signal in six clusters correlated significantly positively with the difference term towards 169 

biased PEs, namely in large parts of cortex and subcortex including striatum (zmax = 6-54, p = 0, 29428 170 

voxels, xyz = [34 -84 20]), dorsomedial prefrontal cortex (zmax = 5.94, p = 2.69e-40, 7001 voxels, xyz = 171 

[6 22 34]), right insula (zmax = 5.76, p = 7.84e-27, 3847 voxels, xyz = [34 20 -8]), thalamus and brainstem 172 

(zmax = 5.10, p = 4.06e-18, 2169 voxels, xyz = [4 -30 0]), left caudate (zmax = 4.71, p = .000188, 305 173 

voxels, xyz = [-12 8 6]) and another cluster in brainstem (zmax = 4.05, p = .0151, 160 voxels, xyz = [4 -174 

30 -30]). Clusters in dmPFC, right insula, and left caudate split from larger clusters reported in the 175 

original analysis. Vice versa, the cluster in left insula reported in the original analysis merged with the 176 

largest cluster. The clusters in right middle temporal gyrus and right insula were missing in the analysis 177 

of only 29 participants, but visible at a level of z > 3.1 uncorrected. 178 

BOLD signal in three clusters correlated significantly negatively with the difference term 179 

towards biased PEs, namely in vmPFC (zmax = 4.23, p = .0051, 185 voxels, xyz = [-12 48 -6]), left 180 

hippocampus (zmax = 4.58, p = .00857, 168 voxels, xyz = [-26 -14 -22]), and left medial temporal gyrus 181 

(zmax = 4.30, p = .0172, 146 voxels, xyz = [-62 -4 -16]). Compared to the original analysis, the cluster in 182 

vmPFC emerged anew. 183 

 When computing the conjunction between both (positive) contrasts, BOLD signal encoded both 184 

the standard and the difference in four clusters, namely in vmPFC, bilateral striatum, bilateral ITG, and 185 

V1 (Supplementary Fig. 2C). Clusters in ACC, left motor cortex, and PCC were not significant any 186 

more (because they were z > 3.1, but not significant after cluster correction in the standard PE contrast). 187 

However, new (though rather small) clusters of biased PE encoding emerged in right insula, left 188 

amygdala, and left OFC. In sum, results when analyzing only this subgroup of only 29 participants were 189 

largely similar to results based on the full sample; however, clusters of biased PE encoding in left motor 190 

cortex, ACC, and PCC were small and thus did not survive cluster correction in this subgroup. 191 

 192 

 193 

 194 

 195 

 196 

 197 

 198 

 199 

 200 

 201 

 202 

 203 

 204 

 205 

 206 

 207 

 208 

 209 

 210 

 211 

 212 

 213 

 214 

 215 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 28, 2023. ; https://doi.org/10.1101/2021.10.03.462927doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.03.462927
http://creativecommons.org/licenses/by/4.0/


SUPPLEMENTALS PREFRONTAL SIGNALS PRECEED STRIATAL SIGNALS

  6 

 

Supplementary Note 3: EEG results with only the 29 participants 216 

included in EEG-fMRI analyses 217 

 218 

We repeated the EEG analyses reported in the main text while excluding the seven participants 219 

that were also not included in the fMRI-inspired EEG analyses in the main text: (a) two participants due 220 

to fMRI co-registration failure, which were also not included in the fMRI-only analyses; (b) four further 221 

participants who exhibited excessive residual noise in their EEG data (> 33% rejected trials) and were 222 

thus also not included in the EEG-only analyses, and finally (c) one more participant who (together with 223 

four other participants already excluded) exhibited regression weights for every regressor about ten 224 

times larger than for other participants. 225 

In participants in this subgroup, both midfrontal theta and beta power reflected outcome valence: 226 

Theta power was higher for negative than positive outcomes (driven by a cluster around 225–500 ms, p 227 

= .002; Supplementary Fig. 3A, B), while beta power was higher for positive than negative outcomes 228 

(driven by a cluster around 325–1000 ms, p = .002; Supplementary Fig. 3A, C). When using PE terms 229 

as regressor for midfrontal EEG power while controlling for PE valence, delta power did not encode 230 ����� positively, though not significant (p = .056), and also the positive encoding of ����� was non-231 

significant (p = .053; Supplementary Fig. 3D-F). The positive correlation of beta power with ����� was 232 

not significant anymore (p = .059), while the negative correlation with ����� remained (p = .001, 450–233 

950 ms). When adding ����� and ����� together to achieve ����	�, theta/delta power indeed 234 

significantly encoded ����	�, first positively (p = .032, 224–475 ms) and then negatively (p = .019, 600 235 

– 1,000 ms; around 8 Hz and thus rather in the alpha band). Also, beta power was significantly negatively 236 

correlated with ����	� (p = .008, 450 – 975 ms). 237 

In sum, all findings reported in the main text also held when analyzing only this subgroup of 238 

only 29 participants. In addition, also late beta power and theta/alpha power appeared to negatively 239 

encode the ����	� term. 240 

 241 

 242 

 243 
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Supplementary Note 4: EEG and fMRI correlates of past action with 263 

only the 29 participants included in EEG-fMRI analyses 264 

We repeated the behavioral analyses reported in the main text while excluding the seven 265 

participants that were also not included in the fMRI-inspired EEG analyses in the main text: (a) two 266 

participants due to fMRI co-registration failure, which were also not included in the fMRI-only analyses; 267 

(b) four further participants who exhibited excessive residual noise in their EEG data (> 33% rejected 268 

trials) and were thus also not included in the EEG-only analyses, and finally (c) one more participant 269 

who (together with four other participants already excluded) exhibited regression weights for every 270 

regressor about ten times larger than for other participants. 271 

Regarding fMRI correlates of the past action, similar to the original analysis comprising 34 272 

participants, there were no clusters with higher BOLD after Go than NoGo actions at the time of 273 

outcomes, but vice versa, large parts of cortex and subcortex showed higher BOLD after NoGo than Go 274 

actions, highly similar to the original analysis (zmax = 7.65, p = 0, 124629 voxels, xyz = [-58 18 22]; 275 

Supplementary Fig. 4D).  276 

Furthermore, there were four clusters with higher BOLD for Go than NoGo actions at the time 277 

of the response, namely one large cluster across lateral prefrontal cortex, anterior cingulate cortex, 278 

striatum, thalamus, angular gyrus, cerebellum, left operculum and motor cortex, intracalcarine cortex, 279 

and occipital pole (zmax = 7.45, p = 0, 61057 voxels, xyz = [32 -4 -4]), one in right middle temporal gyrus 280 

(zmax = 4.90, p = 8.66e-05, 493 voxels, xyz = [66 -32 -12]), one in left inferior temporal gyrus (zmax = 281 

4.43, p = .00294, 293 voxels, xyz = [-60 -44 -18]), and one in precuneous (zmax = 2.39, p = .0041, 276 282 

voxels, xyz = [-8 -70 38]; Supplementary Fig. 4C). All these regions were also found in the original 283 

analysis comprising 34 participants. Vice versa, BOLD signal was higher NoGo than Go actions at the 284 

time of the response in two clusters in vmPFC and subcallosal cortex (zmax = 4.23, p = .00864, 239 285 

voxels, xyz = [-2 18 -6]) and right anterior temporal gyrus/ temporal pole (zmax = .4.14, p = .0193, 201 286 

voxels, xyz = [48 -6 -8]), identical to the original analysis comprising 34 participants.  287 

Finally, there was higher BOLD signal for left hand compared to right hand responses at the 288 

time of response in two clusters in right precentral and postcentral gyrus, superior parietal lobule, and 289 

operculum (zmax = 6.66, p = 0, 11597 voxels, xyz = [46 -24 64]) and left cerebellum (zmax = 6.76, p = 290 

1.05e-18, 2672 voxels, xyz = [-18 -54 -16]; Supplementary Fig. 4C), identical to the original analysis 291 

comprising 34 participants. Vice versa, there was higher BOLD signal for right hand than left hand 292 

responses at the time of responses in five clusters in left precentral and postcentral gyrus, superior 293 

parietal lobule, operculum, and thalamus (zmax = 6.4, p = 0, 12372 voxels, xyz = [-36 -20 66]), right 294 

cerebellum (zmax = 7.17, p = 3.41e-21, 3206 voxels, xyz = [20 -54 -20]), right superior lateral occipital 295 

cortex (zmax = 4.84, p = 2.28e-09, 988 voxels, xyz = [48 -86 -4]), right angular gyrus (zmax = 4.11, p = 296 

7.68e-05, 396 voxels, xyz = [66 -50 28]), and left superior lateral occipital cortex (zmax = 5.03, p = .019, 297 

164 voxels, xyz = [-18 -82 48]). The clusters in right occipital pole/ intracalcarine cortex and in right 298 

posterior cerebellum observed in the original analysis comprising 34 participants were not observed in 299 

this analysis. In sum, all major findings also held when analyzing only this subgroup of only 29 300 

participants. 301 

Regarding EEG time-frequency correlates of the past action, when testing for differences in 302 

broadband after outcome onset, there was no significant difference after Go and NoGo responses, p = 303 

.283. When restricting analyses to the low alpha range, the permutation test was marginally significant, 304 

p = .056, driven by a cluster around 0–100 ms around 7–10 Hz; Supplementary Fig. 4A, B). When 305 

repeating the permutation test for the broadband signal including the last second before outcome onset, 306 

there was a significant difference after Go and NoGo responses, driven by clusters in the beta band. p = 307 

0.002, -1000 – -275 ms, 13–32 Hz, and in the theta/ low alpha band, p = 0.020, -1000 – -525 ms, 4–10 308 

Hz. 309 
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Supplementary Note 5: Stay behavior as a function of EEG and fMRI 310 

with only the 29 participants included in EEG-fMRI analyses 311 

 312 

We repeated the behavioral analyses reported in the main text while excluding the seven 313 

participants that were also not included in the fMRI-inspired EEG analyses in the main text: (a) two 314 

participants due to fMRI co-registration failure, which were also not included in the fMRI-only analyses; 315 

(b) four further participants who exhibited excessive residual noise in their EEG data (> 33% rejected 316 

trials) and were thus also not included in the EEG-only analyses, and finally (c) one more participant 317 

who (together with four other participants already excluded) exhibited regression weights for every 318 

regressor about ten times larger than for other participants. 319 

When linking trial-by-trial BOLD signal in selected ROIs as well as midfrontal EEG TF power 320 

to response repetition on the next trial with the same cue, dACC BOLD signal did not significantly 321 

predict the response repetition, b = -0.013, SE = 0.018, χ2(1) = 0.524, p = .469, and neither did PCC 322 

BOLD signal, b = -0.037, SE = 0.018, χ2(1) = 2.079, p = .149. However, participants in this subgroup 323 

were significantly more likely to repeat the sample action when striatal BOLD signal was high, b = 324 

0.097, SE = 0.025, χ2(1) = 12.043, p < .001, but more likely to switch when vmPFC BOLD was high, b 325 

= -0.075, SE = 0.019, χ2(1) = 13.170, p < .001.  326 

When linking trial-by-trial midfrontal EEG TF power to response repetition on the next trial 327 

with the same cue, participants in this subgroup were more likely to repeat the same response when beta 328 

power was high, b = 0.124, SE = 0.036, χ2(1) = 3.502, p < .001, or when low alpha power was high, b = 329 

0.135, SE = 0.044, χ2(1) = 8.789, p = .003, but more likely to switch to another response when theta 330 

power was high, b = -0.090, SE = 0.040, χ2(1) = 4.812, p = .028. 331 

 332 
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Supplementary Note 6: Parameter recovery analyses for model M5 357 

 358 

We performed parameter recovery analyses to assess the identifiability of the model parameters 359 

in the winning “asymmetric pathways” model M5. We simulated 100 new data sets based on the best 360 

fitting parameters of each participant, fitted a separate model to each simulated data set (using first 361 

Laplace approximation and then hierarchical Bayesian inference), and finally averaged parameters 362 

across the 100 fitted models. 363 

 Parameter recovery was excellent for the feedback sensitivity ρ (r = .91), the baseline learning 364 

rate ε0 (r = .98), the Go bias b (r > .99), and the Pavlovian response bias π (r > .99), with between-365 

participant differences in ground-truth parameters correlating at high levels (all r > .90; Supplementary 366 

Fig. 5) with between-participant differences in the recovered parameters. Note that, due to shrinkage to 367 

the mean as a consequence of hierarchical Bayesian inference, extreme parameter values tended to be 368 

shrunk to the overall group-level mean in the recovered parameters. Correlations for the learning bias 369 

parameter κ were considerably lower, though still strongly positive (r = 0.50; r = 0.51 when removing 370 

one outlier participant; Supplementary Fig. 5E). Note however that the effect of κ on learning depended 371 

on participants’ baseline learning rate ε0. When computing increased learning rates for rewarded Go 372 

actions and decreased learning rates for punished NoGo actions—the parameters that determine the 373 

effective degree of trial-by-trial learning—these learning rates were again highly correlated with the 374 

ground truth parameters (
��
����� �� : r = 0.96; 
�������� ���� : r = 0.85 resp. r = 0.86 when removing 375 

one outlier participant; Supplementary Fig. 5F-G).  376 

Further parameter recovery analyses on the models explored in Supplementary Note 8 yielded 377 

that the recovery of κ was improved (r = 0.78) when adding perseveration parameters (which themselves 378 

had recovery performances of r’s > 0.99). This observation suggested that models featuring such 379 

perseveration parameters might be better suited for quantifying individual differences in the learning 380 

bias. 381 

 In sum, parameter recovery was excellent for all parameters but the learning bias κ. More 382 

relevant than recovery of κ, however, was that we could recover the effective learning rate well 383 

(combining baseline learning rate ε0 and the learning bias κ). However, when combining the baseline 384 

learning rate ε0 and the learning bias κ, recovery was high, as well. Note that the ability to accurately 385 

capture individual differences in biased learning is not of interest in this study, nor relevant to the 386 

imaging analyses. In fact, we used a single set of parameters (the group-level parameters) to compute 387 

trial-by-trial regressors for the EEG and fMRI analyses. This is a standard approach in model-based 388 

fMRI for two main reasons. First, it has been shown that the exact parameter values for relatively simple 389 

RL models like the ones used here have little impact on the results of fMRI analyses 1. For the current 390 

study, of most relevance is the qualitatively differential pattern of learning updates after Go and NoGo 391 

responses 2–4, as embodied by the algorithmic specification of the model. This pattern drives the EEG 392 

and fMRI results and indeed, using a different set of parameter values, we obtain essentially identical 393 

fMRI results (see Supplementary Note 9 and Supplementary Fig. 8). 394 

 395 

 396 

 397 

 398 

 399 

 400 

 401 

 402 
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Supplementary Note 7: Simulations for asymmetric pathways and 404 

action priming model 405 

 406 

Motivational learning biases are predicted by the asymmetric pathways model 5,6: Positive PEs, 407 

elicited by rewards, lead to long-term potentiation in the striatal direct “Go” pathway (and long term 408 

depression in the indirect pathway), allowing for a particularly effective acquisition of Go actions to 409 

obtain rewards. Conversely, negative PEs, elicited by punishments, lead to long term potentiation in the 410 

NoGo pathway, impairing the unlearning of NoGo actions in face of punishments.  411 

An alternative account has recently suggested that self-generated (Go) actions lead to 412 

preferential learning (relative to non-self-generated actions, including inaction), more generally 413 

(henceforth called “action priming model”)7. A self-generated action could “prime” basal ganglia 414 

circuits and lead to subsequently larger PEs and thus faster learning. The main differential prediction 415 

between these two models is how they account for the failure to learn “Go” actions to avoid punishment: 416 

In the first model, this is due to a failure to unlearn punished “NoGo” actions, while in the second model, 417 

this is due to increased unlearning of punished “Go” actions.  418 

Here, we directly tested both models against each other. We specified an alternative model M6 419 

7 with two separate learning rates, one learning rate for trials where self-generated (Go) action selection 420 

should prime the processing of any following salient outcome (i.e., Go actions followed by rewards/ 421 

punishments), and one learning rate for any other action-outcome combination. In this model, equation 422 

(6) was substituted by equation (7): 423 

 424 


 = �
�����   ���  !" #�  $%&�! '&%ℎ ) *&+!% �,%$�-+)
.                                                                                    +*)+    (7) 425 

 426 

When comparing all models M1–M6 using Bayesian model selection, M5 (the asymmetric pathways 427 

model) received highest support (model frequency: 68.15%; protected exceedance probability: 99.70%), 428 

also compared to M6 (the action priming model; model frequency: 24.19%; protected exceedance 429 

probability: 0.30%; Supplementary Fig. 6D, H). In fact, as visible in Supplementary Fig. 6E-G, the 430 

action priming did not reproduce the motivational biases in learning curves and bar plots, which 431 

constitutes a case of qualitative model falsification 2,3. If anything, it seemed that the action priming 432 

model traded off both biases, leading to negative response biases for a majority of participants. In 433 

contrast, the asymmetric pathways model (M5) was well able to capture the qualitative patterns observed 434 

in the data (Supplementary Fig. 6A-C). We conclude that only the asymmetric pathways model is able 435 

to qualitatively reproduce core characteristics of our data. 436 

 437 

 438 

 439 

 440 

 441 

 442 

 443 

 444 

 445 

 446 
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Supplementary Note 8: Behavioral results for the perseveration model 448 

(M7), cue valence-based perseveration model (M8), and neutral 449 

outcomes reinterpretation model (M9) 450 

 451 

While the winning model M5 reported in the main text captured learning curves and the 452 

proportion of (correct/ incorrect) Go and NoGo responses well, it did not fully capture the propensity to 453 

stay (i.e., repeat the same response to the subsequent presentation of the same cue) following different 454 

action-outcome combinations (see Fig. 2G in the main text). Specifically, M5 underestimated the overall 455 

propensity to stay and predicted a higher probability of repeating a Go response after a positive (neutral) 456 

outcome for Avoid cues, relative to the negative (neutral) outcome for Win cues. In contrast, in the data, 457 

there was no such significant difference. We thus explored three extensions of M5 that had the potential 458 

to capture this behavioral pattern. Specifically, we considered mechanisms that would make the model 459 

more likely to repeat a given response. Furthermore, any such mechanism should boost repetition of Go 460 

responses to non-rewarded Win cues particular. We hypothesized that two potential mechanisms could 461 

account for these data features, and present three new models to test these mechanisms.  462 

As a first mechanism, we considered overall “response stickiness” or “perseveration”8, a process 463 

that leads participants to repeat a previous response independent of the obtained outcome. This 464 

mechanism could explain participants’ overall higher propensity to stay, which we tested in model M7.  465 

Model M7, called “single perseveration model”, featured the same parameters as M5 plus a 466 

perseveration parameter / that was added as a “bonus” to the action weight '0 �, )23 of the specific 467 

action shown on the last occurrence of the respective cue8: 468 

'0 � , )23 = �'0 �, )23 + /                 &� * )%  $%&�! %� ) -+ $,+ ' )  �'0 � , )23                                                                                  +*)+     (8) 469 

 470 

In M7 equation 7 in the main manuscript was replaced by equation  8 above, such that parameter 471 / captured the propensity to repeat the action from the last time this cue was presented.  472 

However, to account for the fact that staying was not different and numerically even higher for 473 

a non-rewarded Go response (to a Win cue), relative to a non-punished Go response to an Avoid cue, 474 

we tested whether separate perseveration parameters for Win and Avoid cues could capture this 475 

behavioral difference (M8), as such a pattern of results could result from an overall higher propensity to 476 

stay for Win cues. This “cue valence-dependent perseveration model” (M8), contained two separate 477 

perseveration parameters, one for Win cues /5��, and one for Avoid cues /	67��. The respective 478 

perseveration parameter was added to the action weight '0 � , )23 of the specific action shown on the 479 

last occurrence of respective the cue: 480 

'0 � , )23 = 8'0 � , )23 + /5��                    &� 9&! $,+  !: * )%  $%&�! %� ) -+ $,+ ' )  �'0 �, )23 + /	67��              &� ;<�&: $,+  !: * )%  $%&�! %� ) -+ $,+ ' )  �'0 �, )23                                                                                                                     +*)+     (9) 481 

 482 

In M8, equation 7 in the main manuscript was replaced by equation 9 above, such that parameter 483 /5�� and /	67�� captured the propensity to repeat the action from the last time this cue was presented, 484 

separately for Win and Avoid cues. 485 

As an alternative mechanism that could potentially capture the p(stay) pattern in the data, we 486 

considered the possibility that participants might “re-interpret” neutral outcomes in line with the cue 487 

valence: although a non-reward after a Win cue constitutes negative feedback, the positive cue valence 488 

might “overshadow” this feedback and give participants the impression that they received a reward. 489 

Similarly, a non-punishment after an Avoid cue constitutes positive feedback, but the negative cue 490 

valence might overshadow this feedback and give participants the impression that they received a 491 

punishment.  492 
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Following this idea, lastly, we considered M9, called the “neutral outcome reinterpretation 493 

model”, which featured a single perseveration parameter φ as in equation (8), but in addition replaced 494 

neutral outcomes (coded as zero) with what we term the “effective reward” �=��, which allows the 495 

neutral outcome to take on a value in the direction of the cue valence >0)3. The degree to which this 496 

happens is scaled by the parameter η: 497 �=�� = ?V0s3 ∗ η                        &� � = 0�                                           +*)+         (10) 498 

We subsequently used �=�� for computing prediction errors. Thus M9 adds equation 10 to model M7. 499 

Note that for E = 0, neutral outcomes stay at zero and M9 becomes equivalent to M7.  500 

Bayesian model comparison across the winning original model M5 and these three new models  501 

yielded highest model evidence for M8, followed by M9 (model frequency: M5: 3%, M7: 0%, M8: 62%, 502 

M9: 35%; protected exceedance probability: M5: 0%, M7: 0% M8: 95%, M9: 5%). All three models 503 

performed better than the original winning model M5 (Supplementary Fig. 7, bottom row). Simulations 504 

showed that the best fitting model M8 (with separate perseveration rates for Win and Avoid cues) indeed 505 

better captured the propensity to stay on neutral trials, though this came at the cost of a general 506 

overestimation of staying after punished responses (which hold similarly for M7 and M9; see 507 

Supplementary Fig. 7, third row). More importantly, however, this model drastically underestimated the 508 

crucial pattern of behavior under study here, namely the propensity of incorrect, bias-driven Go 509 

responses to Win cues (see Supplementary Fig. 7, second row, dark green part of bars). 510 

In sum, the three additional models provided a better quantitative fit to the data compared to the 511 

winning model M5 reported in the main text. Also, these additional models predicted the propensity  512 

more accurately than the base models did. However, their qualitative fit (i.e. the ability to capture 513 

relevant aspects of the data) was worse: These additional models systematically underestimated the 514 

proportion of incorrect Go responses (Supplementary Fig. 7). Furthermore, although the predicted 515 

patterns of the propensity to stay  matched the data more closely than M5, these predicted patterns still 516 

mis-matched some aspects of the data, particularly now over-estimating the tendency to stay following 517 

a punishment. Taken together, these models could capture certain qualitative patterns in the data, but 518 

not others, which is a core feature of computational modelling, which by definition constitutes a data 519 

reduction procedure that necessarily loses some details of the data. In terms of qualitative model 520 

validation/ falsification2,3, M5 and M8/M9 capture different qualitative features of the data, but no model 521 

captured all features well. 522 

 523 
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Supplementary Note 9: Neural results based on prediction-errors from  538 

the cue valence-based perseveration model (M8) and neutral outcomes 539 

reinterpretation model (M9) 540 

 541 

To confirm that neural correlates of biased prediction-error updating were not altered under 542 

these alternative model specifications, we repeated the model-based fMRI analyses for both the cue 543 

valence-dependent perseveration model M8 and the neutral outcomes interpretation model M9. In 544 

summary, the results are effectively unchanged, as we present in more detail below.  545 

Notably, M8 does not make different predictions about trial-by-trial learning updates; the only 546 

difference to M5 consisted in slightly different best fitting parameter estimates for ε and κ (leading a 547 

slightly different BOLD regressors. Neural correlates of learning typically reflect the qualitative learning 548 

pattern, which is the same for M5 and M8, but are hardly sensitive to the exact parameter values 1. 549 

Indeed, when repeating the fMRI analyses with those different parameter values, we found almost 550 

identical results, with significant encoding of both PESTD and PEDIF in striatum, dACC, pgACC, PCC, 551 

left motor cortex, left ITG, and V1 (Supplementary Fig. 8A, B). The only exception was the cluster in 552 

dACC, which under M8 was not significant at a whole-brain level, but significant when using small-553 

volume correction with an anatomical ACC mask (from the Harvard-Oxford Atlas), warranted by our 554 

a-priori hypotheses based on previous literature9.  555 

When we repeated our fMRI analyses with learning updates predicted by M9, we again found 556 

significant encoding of both PESTD and PEDIF in striatum, dACC, pgACC, PCC, left motor cortex, left 557 

ITG, and V1 (Supplementary Fig. 8C). However, the pgACC cluster was much larger and extended into 558 

the vmPFC. Similarly, the PCC cluster was much larger. In addition, BOLD signal in left inferior frontal 559 

gyrus and in multiple clusters in superior and inferior lateral occipital cortex encoded both PESTD and 560 

PEDIF significantly. Using trial-by-trial BOLD signal from the extended vmPFC and PCC clusters 561 

identified with M9 regressors to predict midfrontal EEG power, we obtained results that were highly 562 

similar to the results for the pgACC and PCC clusters identified with M5 regressors.  563 

In sum, model-based fMRI analyses based on PEs derived from M8 and M9 replicated the 564 

findings based on M5 reported in the main text. In addition, M9 led to larger clusters in vmPFC and 565 

PCC, tentatively suggesting that these regions might potentially contribute to “reinterpreting” neutral 566 

outcomes in light of the previously presented cue valence (see also Fig. 2 in the main text).  567 

 568 

 569 
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Supplementary Note 10: EEG time-frequency results after ERPs were 584 

removed 585 

  586 

Given that differences in theta power between positive and negative outcomes as well as differences in 587 

lower alpha band power after Go and NoGo responses occurred quite soon after cue onset, we aimed to 588 

test whether these effects reflected differences in evoked rather than induced activity. For this purpose, 589 

we removed evoked components from our data by computing the ERP for each of the eight conditions 590 

(action x outcome) for each participant and then subtracting the condition-specific ERP from the trial-591 

by-trial data 10. Only afterwards, we performed time-frequency decomposition. 592 

In line with the results reported in the main text, power was higher for negative compared to 593 

positive outcomes in the theta band (p =.018, driven by cluster at 225–475 ms; Supplementary Fig. 11A, 594 

B), but higher for positive than negative outcomes in the beta band (p < .001, driven by cluster at 0–595 

1250 ms; Supplementary Fig. 11A, C). Notably, unlike the results reported in the main text (Fig. 4A), 596 

the cluster of high power for negative compared to positive outcomes was constrained to the theta range, 597 

and did not extend further into the delta range (Supplementary Fig. 11A). 598 

When using the trial-by-trial PEs (both the standard PE and the difference term to a biased PE) 599 

as predictors in a multiple linear regression at each time-frequency-channel bin while controlling for PE 600 

valence, delta power encoded ����� positively, though not significantly (p = .198). However, at a later 601 

time point around outcome offset, delta (and theta) power in fact correlated negatively with ����� (575–602 

800 ms, p = .002; Supplementary Fig. 11E). The correlation between delta and the ����� term was still 603 

positive, but not significant (p = .228; Supplementary Fig. 11F). Similarly, the correlation of the ����	� 604 

term with delta power was positive, but not significant (p = .084; Supplementary Fig. 11D). 605 

Regarding beta power, there was a positive, though non-significant correlation of beta power 606 

with ����� (p = .096; Supplementary Fig. 11E). There was again a significantly negative correlation of 607 

beta power with ����� (425–875 ms, p < .001; Supplementary Fig. 11F). Likewise, beta power 608 

correlated significantly negatively with ����	� (450–800 ms, p = .018; Supplementary Fig. 11D), driven 609 

by the correlation with �����. 610 

In sum, after subtracting the condition-wise ERP from each trial before time-frequency 611 

decomposition, supposedly removing the phase-locked aspect of power, both beta and theta still encoded 612 

PE valence. However, the encoding of PE magnitude by delta power was attenuated and not significant 613 

any more.  614 

This reduction in magnitude encoding might occur of several reasons. Firstly, it might be that 615 

this correlation in the delta range was in fact (partly) reflecting correlations with phase-locked, i.e., 616 

evoked activity (ERPs), especially in the N2 (FPN)/ P3 (RewP) time range (see Supplementary Note 11 617 

and Supplementary Fig. 12)11–20. Nonetheless, a positively correlation between delta power and biased 618 

PEs was still visible in Supplementary Fig. 11D, suggesting that at least part of the signal encoding 619 

biased PEs was not phase-locked. Secondly, it might be that the removal of the condition-wise ERPs 620 

has introduced additional noise in the data, attenuating any true correlation. Thirdly, there was a negative 621 

correlation between ����� and theta/ delta power at later time points which was visible, though not 622 

significant in the results reported in the main text (Fig. 4D). Subtraction of an ERP-like template acts 623 

like a high-pass filter. High-pass filtering at relatively high cut-offs (> 0.5 Hz) can artificially postpone 624 

or induce effects at later points 21. It is possible that in this case, ERP subtraction attenuated a positive 625 

correlation in the theta/ delta range, but enhanced a later negative correlation.  626 

Taken together, it is possible that part of the PE magnitude encoding in the theta/ delta range is 627 

due to correlations with the phase-locked (ERP) signal. However, this finding did not compromise the 628 

conclusion that overall, theta/delta power seemed to be more strongly associated with the ����	� term 629 
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than the ����� term. Our primary goal was not to pinpoint the precise nature of electrophysiological 630 

correlates of biased learning, but rather test the relative temporal order of when different regions 631 

exhibiting biased learning signals become active.  632 

Finally, we tested whether after ERP subtraction, low alpha (and beta power) still encoded the 633 

previously performed action. When testing for differences in broadband power after Go and NoGo 634 

responses, power was indeed significantly different between conditions, driven by clusters in beta band 635 

(p = 0.002, 0.125–625 ms; p = 0.052, 700–1000 ms, 23–29 Hz) and theta/ low alpha band (p = 0.024, 636 

575–1000 ms, 5–9 Hz; p = 0.056, 0–225 ms, 6–11 Hz). For power before outcome onset, there were 637 

again broadband differences between Go and NoGo (p = 0.002, -1000 – +225 ms, 1–33 Hz), but note 638 

that there was no ERP subtracted before outcome onset. We thus conclude that the differences between 639 

Go and NoGo responses were attributable to differences in induced rather than evoked activity. 640 

 641 
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 643 

 644 
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 646 
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Supplementary Note 11: ERPs as a function of action and outcome 677 

  678 

In addition to the induced activity in time-frequency power reported in the main text, we also 679 

analyzed the data in the time domain to test for differences in evoked activity. These analyses were 680 

particularly motivated given that differences in time-frequency power between positive and negative 681 

outcomes (theta/delta range) and after Go and NoGo responses (lower alpha/ theta range) occurred soon 682 

after outcome onset, warranting the assumption that differences might also occur in evoked activity. A 683 

large range of previous research has reported a modulation of evoked potentials by outcome valence in 684 

form of the feedback-reduced negativity 14–20,22, i.e., a stronger N2 component for negative compared to 685 

positive outcomes around ~ 250 post-cue over midfrontal electrodes, recently also characterized as 686 

rather constituting a reward positivity (RewP) 14. Also, some studies have reported a modulation of the 687 

P3 by outcome valence, which has been attributed to outcome magnitude or salience rather than valence 688 

17,18,20,23. 689 

 Similar to the analysis of time frequency power, we sorted trials into the eight conditions 690 

spanned by the performed action (Go/ NoGo) and the obtained outcome (reward/ no reward/ no 691 

punishment/ punishment), computed the average ERP for each condition per participant, and tested for 692 

differences between positive (reward/ no punishment) and negative (no reward/ punishment) outcomes 693 

as well as conditions of relative stronger (rewarded Go and punished Go) vs. relatively weaker learning 694 

(rewarded NoGo and punished NoGo). We used cluster-based permutation tests on the average signal 695 

over midfrontal electrodes (Fz/ FCz/ Cz) in the time range of 0–700 ms after outcome onset (where 696 

evoked potentials visible in condition-averaged plot). 697 

 First, midfrontal ERPs were significantly different between positive and negative outcomes, 698 

driven by two separate clusters of differences above threshold (Cluster 1: around 246 – 294 ms, p = 699 

.034; Cluster 2: around 344 – 414 ms, p =.004; Supplementary Fig. 12A, C). The first cluster the classical 700 

feedback-related negativity, i.e., a stronger N2 component for negative compared to positive outcomes. 701 

The second cluster reflected weaker P3 component for negative compared to positive outcomes, similar 702 

the reward positivity reported before. In fact, the N3 was rather absent for negative outcomes 703 

(Supplementary Fig. 13). Both effects were clearly focused on midfrontal electrodes. These findings 704 

replicate previous findings of outcome valence modulating N2 (feedback-related negativity) and P3 705 

components, and complement our time-frequency findings of theta and beta power reflecting outcome 706 

valence. 707 

 Second, when contrasting trials with Go vs. NoGo responses, no significant difference was 708 

observed (p = .358; Supplementary Fig. 12D). Visual inspection of the topoplot yielded that, if anything, 709 

differences emerged over right occipital electrodes. If one performed a test over those right occipital 710 

electrodes (O2, 04, PO4; Supplementary Fig. 12F; note that this procedure constitutes double-dipping 711 

because the test was informed by first looking at the data), this test would have yielded significant results 712 

(p = .016) driven by cluster around 423–466 ms, reflecting a slightly larger P3 after Go than NoGo 713 

responses (Supplementary Fig. 12E). This finding appears to be the strongest (if any) difference in 714 

amplitude after outcome onset between Go and NoGo actions. Given that this difference was not 715 

hypothesized and occurred far away from our a-priori selected channels of interest, we are careful not 716 

to over-interpret those differences. 717 

 Third, contrasting trials with positive and negative at the same right occipital electrodes yielded 718 

a significant difference, driven by clusters around 46–103 ms (p = 0.034), 141–255 ms (p = .002), and 719 

519 – 580 ms (p = .034). Most notably, the P1 amplitude was much larger for positive than negative 720 

outcomes (Supplementary Fig. 12B). However, given that these differences were not hypothesized and 721 

occurred far away from our a-priori selected channels of interest, we are careful not to over-interpret 722 

those differences. 723 
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  Taken together, we found a bigger midfrontal N2/ FRN for negative compared to positive 724 

outcomes, and a bigger midfrontal P3/ RewP for positive compared to negative outcomes, in line with 725 

a vast literature of previous findings 14–20,22,23. Midfrontal voltage did not significantly differ after Go or 726 

NoGo responses. If anything, differences after Go and NoGo responses were maximal over right 727 

occipital electrodes, with a larger P3 after Go than after NoGo responses. Signal at these channels also 728 

differed between positive and negative outcomes, most notably with a bigger P1 after positive than 729 

negative outcomes. In sum, we replicate classical reward learning ERP effects, which shows that the 730 

motivational Go/NoGo learning task taps into reward learning processes reported before, but these 731 

processes appeared to be unaffected by the previously performed action. 732 
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Supplementary Note 12: Model-based EEG analyses in the time domain 771 

  772 

In addition to testing whether midfrontal time-frequency power reflected signatures of biased 773 

learning (see main text), we also tested whether the midfrontal time domain signal reflected biased 774 

learning. Again, we used the standard PE term and the difference term to biased PEs as regressors in a 775 

multiple linear regression on each channel-time bin.  776 

Focusing on midfrontal electrodes, and controlling for outcomes valence, first, the ����� term 777 

was negatively correlated with midfrontal voltage around 529–575 ms (p = .039; Supplementary Fig. 778 

14B). Note that so late after outcome onset, signal was not part of any “classical” ERP component any 779 

more. Second, the ����� correlated negatively with midfrontal voltage around 123–166 ms (p = .029) 780 

in the time range of the N1 and later positively around 365–443 ms (p < .001; Supplementary Fig. 14C) 781 

in the time range of the P3/ RewP. Third, a similar pattern of correlations occurred for the ����	� term 782 

(Cluster 1: negative, 111–184 ms, p = .004; Cluster 2: positive, 346–449 ms, p < .001; Supplementary 783 

Fig. 14A). Fourth, around these same time windows, midfrontal voltage also encoded outcome valence 784 

itself, but with opposite sign (Cluster 1: positive, 99–184 ms, p < .001; Cluster 2: negative, 308–448 ms, 785 

p < .001; see Supplementary Note 11 and Supplementary Fig. 12A). 786 

In sum, similar to analyses of midfrontal power reported in the main text, PE sign and magnitude 787 

were encoded in midfrontal voltage around the same time, but with opposite polarity: Signal around the 788 

time of the N1 encoded PE sign positively, but PE magnitude negatively. Vice versa, signal around the 789 

time of the P3/ RewP encoded PE sign negatively, but PE magnitude positively. The same phenomenon 790 

of separate valence and magnitude encoding in midfrontal EEG signal has been reported before 12,13,19. 791 

Notably, magnitude encoding in midfrontal voltage emerged for the ����	� term, but not the �����, 792 

indicating that this correlation was driven by the ����� term and that biased learning described 793 

midfrontal voltage better than standard learning. These results complement our findings of theta/delta 794 

power encoding outcome valence and magnitude with opposite polarities (see main text). 795 
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Supplementary Note 13: fMRI-informed EEG results in time-frequency 818 

space 819 

 820 

Besides the results for striatum, ACC, and PCC reported in the main text, there were also 821 

significant EEG correlates over midfrontal electrodes for trial-by-trial BOLD signal from left motor 822 

cortex (p = .002, around 0–625 ms, 16–27 Hz; Supplementary Fig. 17A). There were however no 823 

significant EEG correlates over midfrontal electrodes for BOLD signal from pgACC (p = .174; Fig. 824 

Supplementary Fig. 17B), left inferior temporal gyrus (p = .097; Supplementary Fig. 17C), and primary 825 

visual cortex (p = .170; Supplementary Fig. 17D). 826 

As quality checks, we checked whether visual cortex BOLD correlated negatively with alpha 827 

over occipital electrodes 24,25 and whether motor cortex BOLD correlated negatively with beta power 828 

over central electrodes 26,27. Both was the case (see Supplementary Fig. 17E, F), showing that our data 829 

was of sufficient quality to detect these well-established associations. 830 
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Supplementary Note 14: fMRI-informed EEG results in the time 865 

domain 866 

 867 

For fMRI-inspired analysis of the EEG signal in the time domain (voltage), we applied the same 868 

approach as reported in main text, but with voltage signal (time-domain) instead of time-frequency 869 

power as dependent variable. As independent variables, we entered the trial-by-trial BOLD signal from 870 

all seven regions encoding biased PEs plus the trial-by-trial standard PE and the different term towards 871 

the biased PE (exact same procedure as for EEG TF analyses), all in one single multiple linear 872 

regression. On a group-level, we again focused on the mean signal over midfrontal electrodes (Fz/ FCz/ 873 

Cz) in a time range of 0–700 ms, for which ERPs had been visible in the condition-averaged plots (see 874 

Supplementary Note 11 and Supplementary Fig. 12 and 13).  875 

First, trial-by-trial striatal BOLD correlated significantly with midfrontal voltage at two time 876 

points, namely positively around 152–196 ms (p = .017) in the time range of the N1 and again negatively 877 

around 316–383 ms (p < .001, Supplementary Fig. 18A) in the time range of the N2/ FRN and P3/RewP. 878 

Second, trial-by-trial pgACC BOLD correlated significantly positively with midfrontal voltage around 879 

347–412 ms (p = .006, Supplementary Fig. 18A) in the time range of the N2/ FRN and P3/RewP. Third, 880 

trial-by-trial BOLD from primary visual cortex correlated significantly positively with midfrontal 881 

voltage around 307–367 ms (p = .011, Supplementary Fig. 18B), overlapping with (but slightly earlier 882 

than) correlations from pgACC BOLD, i.e., in the time range of the N2/ FRN and P3/RewP. For 883 

midfrontal voltage split up per high vs. low BOLD signal (revealing which ERP components were 884 

respectively modulated), see Supplementary Fig. 18C-E. There were no significantly correlations 885 

between midfrontal voltage and trial-by-trial BOLD from dACC (p = .927, Supplementary Fig. 18A), 886 

left motor cortex (p = .649, Supplementary Fig. 18B), PCC (p = .796, Supplementary Fig. 18A), or left 887 

inferior temporal gyrus (p = .649, Supplementary Fig. 18B). For further details on BOLD-EEG voltage 888 

correlations in the time domain, see Supplementary Fig. 18F–L.  889 

Taken together, trial-by-trial BOLD signal in striatum, pgACC, and V1 all correlated with FRN/ 890 

RewP amplitude, which was the dominant phenomenon over midfrontal electrodes reflecting outcome 891 

valence (see Supplementary Note 11 and Supplementary Fig. 12, 13). Notably, correlations with striatal 892 

and pgACC BOLD were of opposite signs, which aligns with the finding that striatal and pgACC BOLD 893 

predicted opposite behavioral tendencies on future trials (see main text; see Supplementary Fig. 20). 894 

However, crucially, the time domain signal did not allow for a temporal dissociation of these different 895 

regions. Possibly, the midfrontal evoked signal (i.e., the part of the signal that was phase-locked to 896 

outcome onset) was so stereotyped that only the FRN/ RewP complex showed enough variation across 897 

trials to allow for substantial correlations with trial-by-trial BOLD signal. This finding demonstrates 898 

that the time-frequency domain signal (i.e., the part of the signal that is not necessarily phase-locked to 899 

outcome onset) might be more suited for dissociating the activity of different regions in time. 900 
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Supplementary Note 15: Go/NoGo differences over time in BOLD 912 

signal, choices, alpha, and beta power 913 

 914 

We observed differences between trials with Go responses and trials with NoGo responses in 915 

the low alpha power before and shortly after outcome onset (Fig. 6A, B main text). Alpha typically 916 

increases over the time course of an experiment, potentially related to fatigue and decreasing arousal 28. 917 

If the ratio of Go and NoGo responses changed over time, as well, such an increase over time could 918 

spuriously lead to a difference between Go and NoGo responses (though note that this ratio did not 919 

noticeably change over time; Supplementary Fig. 19D). To exclude this possibility, we extracted trial-920 

by-trial time-frequency power from the three significant clusters report in the main text in which power 921 

differed between Go and NoGo responses: i) lower alpha band power after outcome onset, ii) lower 922 

alpha band power before and after outcome onset, iii) beta band power before outcome onset. We log10-923 

transformed this data to decibel and analyzed it as a function of the performed response (factor), block 924 

number (1–6; z-standardized), and the interaction between both. We reasoned that if power differences 925 

occurred merely due to fatigue effects, the main effect of performed response should not be significant 926 

when accounting for time on task (i.e., block number). 927 

 For lower alpha band power after outcome onset, there was a significant main effect of 928 

performed response, b = 0.035, SE = 0.015, χ2(1) = 5.350, p = .021, with higher power for Go than NoGo 929 

responses, a significant main effect of block number with lower alpha band power increasing over time, 930 

b = 0.052, SE = 0.019, χ2(1) = 6.645, p = .010, but no significant interaction, b = 0.003, SE = 0.008, 931 

χ2(1) = 0.156, p = .693. As Supplementary Fig. 19A reveals, lower alpha band power was consistently 932 

higher after Go than after NoGo responses for every block of the task, suggesting that differences in 933 

lower alpha band power were not merely due to time on task.  934 

For lower alpha band power before and after outcome onset, as well, there was a significant 935 

main effect of performed response, b = 0.068, SE = 0.030, χ2(1) = 5.010, p = .025, with higher power 936 

after Go than NoGo responses, a significant main effect of block number with lower alpha band power 937 

increasing over time, b = 0.072, SE = 0.029, χ2(1) = 6.757, p = .016, but no significant interaction, b = 938 

0.010, SE = 0.009, χ2(1) = 1.184, p = .277 (Supplementary Fig. 19B), leading to identical conclusions. 939 

For beta band power before and after outcome onset, there was a significant main effect of 940 

performed response, b = 0.083, SE = 0.032, χ2(1) = 6.301, p = .012, with higher power after Go than 941 

NoGo responses, a significant main effect of block number with beta power decreasing over time, b = -942 

0.042, SE = 0.021, χ2(1) = 4.007, p = .045, but no significant interaction, b = 0.001, SE = 0.007, χ2(1) = 943 

0.030, p = .864 (Supplementary Fig. 19C). In sum, even in presence of changes in power over the time 944 

course of the task, lower alpha band and beta band power were consistently higher after Go responses 945 

than after NoGo responses, suggesting that these effects were not due to time on task. 946 

 Furthermore, we asked whether differences in dACC BOLD between trials with Go and trials 947 

with NoGo response at the time of the outcome were due to outcome-related activity or might rather the 948 

reflect action on the next trial. We thus plotted the “raw” BOLD signal per action x outcome condition. 949 

We used the first eigenvariate of the BOLD in signal in the dACC cluster that reflected biased learning, 950 

upsampled the BOLD signal, epoched it into trials relative to outcome onset (same procedure as for 951 

fMRI-informed EEG analyses), and averaged the signal across trials and participants separately per 952 

performed action (Go/NoGo) and outcome valence (positive/ negative). This plot yielded higher dACC 953 

BOLD signal on trials with NoGo responses than on trials with Go responses at the time of outcomes 954 

(Supplementary Fig. 19E). However, this difference could potentially be driven by the response on the 955 

following task. Hence, we further split the data according to whether the action on the following trial 956 

was a Go or a NoGo response. Irrespective of the action on the following trial, dACC BOLD signal was 957 

higher when the action on the current trial was a NoGo response compared to a Go response 958 
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(Supplementary Fig. 20F). In sum, these analyses corroborate that dACC BOLD signal was indeed 959 

higher after NoGo than Go responses at the time of outcomes. 960 
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Supplementary Figure 1: Behavioral results with only the 29 1006 

participants included in EEG-fMRI analyses 1007 

 1008 

Supplementary Figure 1. Behavioral performance in the subgroup of 29 participants included in the fMRI-inspired EEG analyses. A. Trial-

by-trial proportion of Go responses (±SEM across participants) for Go cues (solid lines) and NoGo cues (dashed lines). The motivational 

bias was already present from very early trials onwards, as participants made more Go responses to Win than Avoid cues (i.e., green lines 

are above red lines). Additionally, participants clearly learn whether to make a Go response or not (proportion of Go responses increases 

for Go cues and decreases for NoGo cues). B. Mean (±SEM across participants) proportion Go responses per cue condition (points are 

individual participants’ means). C. Probability of repeating a response (“stay”) on the next encounter of the same cue as a function of action 

and outcome. Learning was reflected in higher probability of staying after positive outcomes than after negative outcomes (main effect of 

outcome valence). Biased learning was evident in learning from salient outcomes, where this valence effect was stronger after Go responses 

than NoGo responses. Dashed line indicates chance level choice (pStay = 0.33). D. Log-model evidence favors the asymmetric pathways 

model (M5 over simpler models (M1-M4). E-G. Trial-by-trial proportion of Go responses, mean proportion Go responses, and probability 

of staying based on one-step-ahead predictions using parameters (hierarchical Bayesian inference) of the winning model (asymmetric 

pathways model, M5). H. Model frequency and protected exceedance probability indicate best fit for model M5 (asymmetric pathways 

model), in line with log model evidence. 
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Supplementary Figure 2: fMRI results with only the 29 participants 1025 

included in EEG-fMRI analyses 1026 

 1027 

 
Supplementary Figure 2. BOLD signal reflecting outcome processing in the subgroup of 29 participants included in the fMRI-inspired EEG 

analyses. A. BOLD signal was higher for positive outcomes (rewards, no punishments) compared with negative outcomes (no rewards, 

punishments) in a range of regions including bilateral ventral striatum and vmPFC. BOLD effects displayed using a dual-coding data 

visualization approach with color indicating the parameter estimates and opacity the associated z-statistics. Significant clusters are surrounded 

by black edges. Bar plots show parameter estimates per action x outcome condition (±SEM across participants) B. When using the trial-by-

trial PEs participants experienced as model-based regressors in our GLM, positive PE correlations occurred in several regions including 

importantly the ventral striatum, vmPFC, dACC, and PCC. C. Left panel: Regions encoding both the standard PE term and the difference term 

to biased PEs (conjunction) at different cluster-forming thresholds (color). Clusters significant at a threshold of z > 3.1 are surrounded by black 

edges. In bilateral striatum, pgACC, bilateral ITG, and primary visual cortex, BOLD was significantly better explained by biased learning than 

by standard learning. Clusters in dACC, left motor cortex, and PCC were not significant any more. 
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Supplementary Figure 3: EEG results with only the 29 participants 1038 

included in EEG-fMRI analyses 1039 

 1040 

 
Supplementary Figure 3. EEG time-frequency power midfrontal electrodes (Fz/ FCz/ Cz) reflecting outcomes processing in the subgroup 

of 29 participants included in the fMRI-inspired EEG analyses. A. Time-frequency plot (logarithmic y-axis) displaying high theta (4–8 

Hz) power for negative outcomes and higher beta power (16–32 Hz) for positive outcomes. B. Theta power transiently increases for any 

outcome, but more so for negative outcomes (especially punishments) around 225–475 ms after feedback onset. C. Beta was higher for 

positive than negative outcomes (especially punishments) over a long time period around 300–1,250 ms after feedback onset. D-F. 

Correlations between midfrontal EEG power and trial-by-trial PEs. Solid black lines indicate clusters above threshold. Biased PEs were 

significantly positively correlated with midfrontal theta power, but also negatively correlated with later alpha and beta power (D). The 

correlations of theta with the standard PEs (E) and the difference term to biased PEs (F) were also positive, though not significant. Beta 

power only encoded the difference term to biased PEs (F). ** p < 0.01.** p < 0.01. 
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Supplementary Figure 4: EEG and fMRI correlates of past action with 1061 

only the 29 participants included in EEG-fMRI analyses 1062 

 1063 

Supplementary Figure 4. Exploratory follow-up analyses on dACC BOLD signal and midfrontal low-alpha power in the subgroup of 29 

participants included in the fMRI-inspired EEG analyses. A. Midfrontal time-frequency response-locked (left panel) and outcome-locked 

(right panel). Before and shortly after outcome onset, power in the lower alpha band was higher on trials with Go actions than on trials with 

NoGo actions. The shape of this difference resembles the shape of dACC BOLD-EEG TF correlations (small plot; note that this plot depicts 

BOLD-EEG correlations, which were negative). Note that differences between Go and NoGo trials occurred already before outcome onset 

in the alpha and beta range, reminiscent of delay activity; but were not fully sustained since the actual response. B. Midfrontal power in the 

lower alpha band per action x outcome condition. Lower alpha band power was consistently higher on trials with Go actions than on trials 

with NoGo actions, starting already before outcome onset. C. BOLD signal differences between Go and NoGo actions (activation by either 

left or right Go actions compared to the implicit baseline in the GLM, which contains the NoGo actions; left panel) and left vs. right hand 

responses (right panel) at the time or responses. Response-locked dACC BOLD was significantly higher for Go than NoGo actions. D. 

BOLD signal differences between Go and NoGo actions at the time of outcomes. Outcome-locked dACC BOLD signal (and BOLD signal 

in other parts of cortex) was significantly lower on trials with Go than on trials with NoGo actions. 
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Supplementary Figure 5: Parameter recovery analyses for model M5 1081 

 1082 

Supplementary Figure 5. Parameter recovery results for the asymmetric pathways (M5) model. The feedback sensitivity parameter ρ (A), 

the baseline learning rate ε0 (B), the Go bias b (C), and the Pavlovian response bias π (D) all showed excellent parameter recovery, i.e., 

between-participants correlations of ground-truth and fitted parameters all exceeded r > 0.90. Parameters ρ and ε0 are still in sampling space 

and thus untransformed (which means they can be negative). Dashed lines represent the identity line; red solid lines represent a linear 

regression line of fitted parameters regressed onto true parameters. Only recovery of the learning bias parameter κ (E) was not quite as 

good, though the correlation between ground-truth and fitted parameters was still strongly positive (r > 0.50). Note an outlier at the bottom 

left of κ values; the regression line was fitted without this data point. When combining the baseline learning rate ε0 with the learning bias κ 

to compute the biased learning rates for rewarded Go actions εrewarded Go (F) and punished NoGo actions εpunished NoGo (G), correlations between 

ground-truth and fitted parameter values were considerably higher (r’s > 0.86). Note again an outlier at the top right of for εpunished NoGo 

values; the regression line was fitted without this data point. 
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Supplementary Figure 6: Simulations for asymmetric pathways and 1102 

action priming model 1103 

 1104 

Supplementary Figure 6. Model comparison and validation of asymmetric pathways (M5) and action priming (M6) model. (A-C) One-step-

ahead predictions using parameters (hierarchical Bayesian inference) of the winning model asymmetric pathways model (M5). A. Trial-by-

trial proportion of Go responses (±SEM across participants) for Go cues (solid lines) and NoGo cues (dashed lines); B. Mean (±SEM across 

participants) proportion Go responses per cue condition (points are individual participants’ means); C. Probability of repeating a response 

(“stay”) on the next encounter of the same cue as a function of action and outcome. The asymmetric pathways model was well able to 

capture core characteristics of the empirical data (see Fig. 2 in the main text). D. Log-model evidence favors the asymmetric pathways 

model (M5), even over the action priming model (M6). E-G. Trial-by-trial proportion of Go responses, mean proportion Go responses, and 

probability of for the action priming model (M6). This model did not reproduce motivational biases (i.e., the difference between green and 

red lines and bars) well. H. Model frequency and protected exceedance probability indicate best fit for model M5 (asymmetric pathways 

model), in line with log model evidence. 
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Supplementary Figure 7: Behavioral results from the perseveration 1124 

model (M7), cue valence-based perseveration model (M8), and neutral 1125 

outcomes reinterpretation model (M9) 1126 

 1127 

 

 

Supplementary Figure 7. Model comparison and validation of the single perseveration (M7), dual perseveration (M8) and cue valence-based 

outcome reinterpretation models. First row. Trial-by-trial proportion of Go responses (±SEM across participants) for Go cues (solid lines) and 

NoGo cues (dashed lines). Second row. Mean (±SEM across participants) proportion Go responses per cue condition (points are individual 

participants’ means). Third row. Probability to repeat a response (“stay”) on the next encounter of the same cue as a function of action and 

outcome. Fourth row. Log-model evidence, model frequency, and protected exceedance probability all favored the dual perseveration model 

(M8) over the other models. In sum, the additional models M7-9 provided a better quantitative fit to the data compared to the asymmetric 

pathways model M5 reported in the main text. They also predicted the propensity of staying overall more accurately than M5. However, these 

additional models all overestimated the proportion of incorrect Go responses. Furthermore, although the predicted patterns of the propensity 

of staying mimicked the data more closely than M5, these predicted patterns still mismatched some aspects of the empirical data. Taken 

together, these models could capture certain qualitative patterns in the data, but not others, which was expectable given the data reduction that 

comes with fitting a learning model with few parameters only. 
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Supplementary Figure 8: Neural results based on prediction-errors from 1141 

cue valence-based perseveration model (M8) and neutral outcomes 1142 

reinterpretation model (M9) 1143 

 1144 

Supplementary Figure 8. BOLD correlates of biased prediction errors as predicted by the asymmetric pathways model (M5), the cue 

valence-dependent perseveration model (M8) and the neutral outcomes reinterpretation model (M9). (A) Regions encoding both the 

standard PE term and the difference term to biased PEs (conjunction) as predicted from the asymmetric pathways model (M5) at different 

cluster-forming thresholds (1 < z < 5, color coding; opacity constant; replotted from Fig. 3C main text). Clusters significant at a threshold 

of z > 3.1 are surrounded by black edges. This is a version of Fig. 3C reprinted with a color scheme consistent with the other two panels. 

(B) Regions encoding both the standard PE term and the difference term to biased PEs (conjunction) as predicted from the cue valence-

dependent perseveration model (M8) at different cluster-forming thresholds (1 < z < 5, color coding; opacity constant). Clusters significant 

at a threshold of z > 3.1 are surrounded by black edges. In line with correlates of biased PEs as predicted by M5, BOLD signal in bilateral 

striatum, dACC (small-volume corrected), pgACC, PCC, left motor cortex, left inferior temporal gyrus, and primary visual cortex was 

significantly better explained by biased learning than by standard learning. This finding was not surprising given that adding perseveration 

to the model did not change the learning mechanism, but only led to slightly different best fitting parameter values. (B) Regions encoding 

both the standard PE term and the difference term to biased PEs (conjunction) as predicted from the neutral outcomes reinterpretation model 

(M9). In addition to the regions in which BOLD signal was significantly better explained by biased than standard PEs as derived from M5 

and M8, biased PEs derived from M9 also explained BOLD signal in vmPFC (larger cluster than M5), PCC (larger cluster than M5), left 

inferior frontal gyrus and multiple clusters in superior and inferior lateral occipital cortex significantly better than standard PEs. These 

results tentatively suggested that vmPFC, PCC, and these other occipital regions might implement an additional mechanism besides biased 

learning which encodes the cue valence also at the time of the outcome, biasing the processing of neutral outcomes. 
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Supplementary Figure 9: Illustration of biased and standard learning 1157 

for a representative example participant 1158 

 1159 

Supplementary Figure 9. Illustration of biased and standard learning for a representative example participant. (A) Prediction errors 

according to the standard Q-learning model M1 (PESTD; black dots) and according to the winning model M5 implementing biased learning 

(PEBIAS; colored dots). In M5, motivational biases partially arise through biased learning: Participants learn more readily that an action has 

caused a reward, and are reluctant to learn that inaction has led to a punishment. For each cue, the values of each of the three possible 

actions (GoLEFT, GoRIGHT, NoGo) are learnt independently, and prediction errors are calculated relative to the value of the chosen action. 

The learning bias acts such that the effective learning rate is increased when a reward follows any Go response, and decreased when a 

punishment follows a NoGo response (see equation 5 in the main manuscript). Hence, for Win cues, action values for Go responses (but 

not NoGo responses) will be affected by the learning bias and approach the positive asymptote more quickly compared to standard learning, 

leading to faster decay of positive prediction errors. At the same time, negative outcomes will remain surprising and elicit larger prediction 

errors compared to standard learning. Hence, model predictions diverge for prediction errors after Go responses to Win cues, but not after 

NoGo responses to Win cues (colored dots are on top of black dots). Vice versa, for Avoid cues, action values for NoGo responses (but not 

Go responses) are affected by the learning bias and approach the negative asymptote more slowly compared to standard learning (with 

negative prediction errors remaining high) as participants are reluctant to take punishments after NoGo responses into account. At the same 

time, ignoring punishments leads to a faster approach of positive action values to the positive asymptote (and a faster decay of positive 

prediction errors) compared to standard learning. Model predictions diverge for prediction errors after NoGo responses to Avoid cues, but 

not after Go responses to Avoid cues (colored dots are on top of black dots). (B) To assess evidence for biased learning despite this high 

multicollinearity, we decomposed PEBIAS into PESTD  (black dots) plus a difference term PEDIF = PEBIAS – PESTD (colored dots). Note that 

PEDIF is always zero after NoGo responses to Win cues and Go responses to Avoid cues as both M1 and M5 make identical predictions for 

these action values. In contrast, for Go responses to Win cues and NoGo responses to Avoid cues, the PEDIF term is always negative because, 

in both cases, positive action values approach the positive asymptote more quickly (such that positive prediction errors decay more quickly) 

compared to standard learning, and negative action values approach the negatively asymptote more slowly (and thus negative prediction 

errors remain high) compared to standard learning. 
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Supplementary Figure 10: Illustration of prediction error regressor 1172 

decomposition 1173 

 1174 

Supplementary Figure 10. Illustration of prediction error regressor decomposition for a representative example participant. (A) Prediction 

errors according to the standard Q-learning model M1 (PESTD; larger red dots) and according to the winning model M5 implementing biased 

learning with more learning from rewarded Go responses and less learning from punished NoGo responses (PEBIAS; smaller blue dots; blue 

dots with a red edge reflect trials on which both models make identical predictions). Both prediction error types have a highly similar 

profile. The key difference between them is an overall downwards shift of PEBIAS compared to PESTD, with positive PEBIAS approaching zero 

more quickly than positive PESTD, while negative PEBIAS remain more negative compared to negative PESTD. Note that, after trial 320, session 

2 starts (vertical dashed line), featuring new cues. (B) The prediction errors from both models are highly correlated (mean across 

participants: r = 0.99, range 0.96–0.99), implicating that, when entered together into a multiple linear regression, both regressors would 

share most of their variance, which would be attributed to neither of them. (C) To assess evidence for biased learning despite this high 

multicollinearity, we decomposed PEBIAS into PESTD plus a difference term PEDIF = PEBIAS – PESTD. PESTD and PEDIF show markedly different 

profiles, with PEDIF being zero for trials on which both PESTD and PEBIAS make identical predictions, and being negative otherwise (reflecting 

the relatively faster decay of positive PEBIAS and slower decay of negative PEBIAS). (D) Both PESTD and PEDIF are much less correlated (mean 

across participants: r = -0.02, range -0.07–0.09), making it possible to enter them in the same multiple linear regression and test whether 

PEDIF predicts variance in BOLD signal above and beyond PESTD. 
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Supplementary Figure 11: Conjunctions of anatomical and functional 1185 

masks – vmPFC and striatum 1186 

 1187 

Supplementary Figure 11. Conjunctions of anatomical masks with functional contrasts from fMRI GLM analyses used for fMRI-informed 

EEG analyses. Anatomical masks were based on the Harvard-Oxford Atlas. Functional contrasts involve outcome valence and conjunction 

of PESTD and PEDIF. A. vmPFC outcome valence contrast (dark blue, conjunction of frontal pole, frontal medial cortex, and paracingulate 

gyrus). B. striatum outcome valence contrast (yellow, conjunction of bilateral nucleus accumbens, caudate, and putamen). C. vmPFC PESTD ∩ PEDIF contrast (dark blue, results in a cluster in pgACC). D. striatum PESTD ∩ PEDIF contrast (yellow). All anatomical masks were extracted 

from the probabilistic Harvard-Oxford Atlas, thresholded at 10%. Note that images are in radiological orientation (i.e., left brain hemisphere 

presented on the right and vice versa). 
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Supplementary Figure 12: Conjunctions of anatomical and functional 1190 

masks – ACC, PCC, left M1, left ITG, V1 1191 

 
Supplementary Figure 12. Conjunctions of anatomical masks with functional contrasts from fMRI GLM analyses used for fMRI-informed 

EEG analyses: A. AAC PESTD ∩ PEDIF contrast (red, cingulate gyrus, anterior division, resulting in a cluster in dACC; B. PCC PESTD ∩ 

PEDIF contrast (light blue, cingulate gyrus, posterior division); C. Left motor cortex PESTD ∩ PEDIF contrast (orange, conjunction of 

precentral and postcentral gyrus). D. Left inferior temporal gyrus PESTD ∩ PEDIF contrast (turquoise, conjunction of inferior temporal gyrus, 

posterior division, and inferior temporal gyrus, temporooccipital part). E. Primary visual cortex PESTD ∩ PEDIF contrast (green, conjunction 

of lingual gyrus, occipital fusiform gyrus, occipital pole). All anatomical masks were extracted from the probabilistic Harvard-Oxford 

Atlas, thresholded at 10%. Note that images are in radiological orientation (i.e., left brain hemisphere presented on the right and vice versa). 
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Supplementary Figure 13: EEG time-frequency results after ERPs were 1198 

removed 1199 

 1200 

Supplementary Figure 13. EEG time-frequency power over midfrontal electrodes (Fz/ FCz/ Cz) after the (action x outcome) condition-wise 

ERPs has been removed. A. Time-frequency plot (logarithmic y-axis) displaying high theta (4–8 Hz) power for negative outcomes and 

higher beta power (16–32 Hz) for positive outcomes. B. Theta power transiently increases for any outcome, but more so for negative 

outcomes (especially punishments) around 225–475 ms after feedback onset. C. Beta was higher for positive than negative outcomes 

(especially punishments) over a long time period around 300–1,250 ms after feedback onset. D-F. Correlations between midfrontal EEG 

power and trial-by-trial PEs. Solid black lines indicate clusters above threshold. There still was a visible positive correlation between biased 

PEs and midfrontal delta power, but this correlation was not significant (D). The correlation of delta with the standard PEs (E) was also 

positive, though not significant; in fact, at a later time point around stimulus offset, delta power correlated significantly negatively with 

standard PEs. The difference term to biased PEs (F) also correlated positively, though not significantly with delta power. Beta power 

encoded the difference term and biased PEs themselves (F). ** p < 0.01. 
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Supplementary Figure 14: ERPs as a function of action and outcome – 1220 

binary contrasts 1221 

 1222 

 1223 

Supplementary Figure 14. ERPs reflecting outcome valence and performed action. A. Voltage (±SEM) over midfrontal electrodes 

(Fz/FCz/Cz) was lower for negative than positive outcomes around 246–294 ms (stronger N2, FRN) and higher for positive than negative 

outcomes around 344 – 414 ms (stronger P3/ RewP). B. Over right occipital electrodes, the P3 was slightly bigger for positive than negative 

outcomes. ** p < 0.01. * p < .05 C. Topoplots of difference in voltage between trials with positive and negative outcomes over selected 

time windows. D. There was no difference in voltage over midfrontal electrodes between trials with Go and NoGo responses. E. Over right 

occipital electrodes, the P3 was slightly stronger after Go than NoGo actions (no p-value because ROI selected based on visual inspection). 

F. Topoplots of difference in voltage between trials with Go and NoGo actions over selected time windows. 
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Supplementary Figure 15: ERPs as a function of action and outcome – 1244 

all conditions 1245 

 1246 

Supplementary Figure 15. ERPs per action x outcome condition. Biggest differences occurred around the time of the N2 (FRN) and P3 

(RewP). N2 and P3 exhibited larger amplitudes on trials with punishments. There was no apparent modulation by the previous action (Go/ 

NoGo). 
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Supplementary Figure 16: Model-based EEG analyses in the time 1271 

domain 1272 

 1273 

 1274 

Supplementary Figure 16. Modulation of EEG voltage by biased PEs and decomposition into the standard PE term and the difference term 

to biased PEs. A. Mean EEG voltage over midfrontal electrodes (Fz, FCz, Cz) was significantly modulated by biased PEs around 111–184 

(negatively) and 353–414 ms (positively) after outcome onset. B. Correlations with the standard PE term only emerged around 529 – 575 

ms (negatively). C. Correlations with the difference term to biased PEs were similar to correlations for the biased PE term itself, i.e., around 

123–166 (negatively) and 365–443 ms (positively). Bottom row: Topoplots displaying t-values of beta-weights for the respective regressor 

over the entire scalp in steps of 100 ms from 0 to 800 ms. 
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Supplementary Figure 17: Graphical illustration of the fMRI-informed 1300 

EEG analysis approach 1301 

 1302 

 
Supplementary Figure 17. Graphical illustration of the fMRI-informed EEG analysis approach. A. Regions are identified to encode biased 

PEs via a model-based GLM on BOLD data (see Fig. 2 in the main text). B. The volume-by-volume time-series of the signal in each ROI 

is extracted and upsampled. C. Time series are epoched into trials and the HRF amplitude is estimated for every trial. D. HRF amplitudes 

in every ROI for every trial are combined into a design matrix. E. The design matrix is applied in a multiple linear regression for each 

participant at each channel, frequency, and time point across trials. F. Regressions yield a sensor-frequency-time map of b regression 

weights for each ROI for each participant. Maps are combined across participants using a one-sample t-test. 
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Supplementary Figure 18: Graphical illustration of the EEG-informed 1303 

fMRI analysis approach 1304 

Supplementary Figure 18. Graphical illustration of the EEG-informed fMRI analysis approach. A. 3D clusters of channel-frequency-time 

points where power significantly distinguishes trials with positive from trials with negative outcomes are identified via a cluster-based 

permutation test (see Fig. 3A in the main text). The t-values above a threshold |2| are retained, weights at all other grid points are set to zero. 

B. The 3D t-value cluster is multiplied with the trial-by-trial channel-frequency-time data, yielding a single average value of power in the 

cluster at each trial. C. Trial-by-trial average power in the cluster is added as a parametric regressor in the GLM on BOLD-data and fitted 

with FSL. 
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Supplementary Figure 19: fMRI-informed EEG results in the time-1313 

frequency domain 1314 

 1315 

Supplementary Figure 19. Supplementary fMRI-informed EEG results in the time-frequency domain. Unique temporal contributions of 

BOLD signal in (A) left motor cortex, (B) pgACC, (C) left ITG and (D) primary visual cortex to midfrontal EEG power. Group-level t-

maps display the modulation of the EEG power over midfrontal electrodes (Fz/ FCz/ Cz) by trial-by-trial BOLD signal in the selected ROIs. 

There significant correlations between midfrontal EEG TF power in the beta range and left motor cortex BOLD signal (p = .002), but no 

significant midfrontal EEG correlates for BOLD signal from other ROIs. E. Topoplots displaying t-values of left motor cortex BOLD over 

the entire scalp between 13 and 30 Hz (beta band) in steps of 100 ms from 0 to 800 ms. There were significant negatively correlates over 

central electrodes, especially round 300–500 ms. F. Topoplot displaying t-values of primary visual cortex BOLD over the entire scalp 

between 8 and 13 Hz (alpha band) in steps of 100 ms from 0 to 800 ms. There were significantly negatively correlations over occipital 

electrodes throughout outcome presentation.  
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Supplementary Figure 20: fMRI-informed EEG results in the time 1335 

domain 1336 

 1337 

Supplementary Figure 20. fMRI-informed EEG analyses in the time-domain. Group-level t-value time courses display the modulation of 

the EEG voltage over midfrontal electrodes (Fz/ FCz/ Cz) by trial-by-trial BOLD signal in the selected ROIs. A. Correlations between 

midfrontal voltage and trial-by-trial BOLD signal from core value regions, i.e., striatum, dACC, pgACC, and PCC. Striatal BOLD 

modulates the amplitude of the N1 and P3, while the P3 amplitude was also modulated by pgACC BOLD. B. Correlations between 

midfrontal voltage and trial-by-trial BOLD signal from other regions, i.e., left motor cortex, left inferior temporal gyrus, and primary visual 

cortex. Visual cortex BOLD modulates the amplitude of the P3, as well. C-E. Midfrontal voltage split up for high vs. low BOLD signal 

(median split) from regions significantly modulating voltage. Striatal BOLD modulated N1 and P2 amplitude, while pgACC BOLD and 

visual cortex BOLD modulated N2 (FRN) amplitude. F-L. Topoplots displaying t-values of correlations between midfrontal voltage and 

trial-by-trial BOLD for all regions in steps of 100 ms from 0 to 800 ms.  
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Supplementary Figure 21: Go/NoGo differences over time in BOLD 1341 

signal, choices, alpha, and beta power 1342 

 1343 

Supplementary Figure 21. Control analyses excluding temporal confounds in midfrontal lower alpha band power and dACC 

BOLD. A. Mean midfrontal low alpha power (±SEM across participants) after outcome onset, (B) before and after outcome 

onset, and (C) beta power before outcome onset as a function of the performed action and block number (i.e., time on task). 

While low alpha power increases and beta power decreases over the time course of the task, power was always consistently 

higher for trials with Go than trials with NoGo responses, suggesting that action effects were not reducible to time on task. 

D. Response for each participant (rows) on each trial (columns). There was no noticeable change in the overall ratio of Go 

to NoGo responses over time. The vertical blue line indicates the start of the second session featuring new stimuli. E. Mean 

upsampled dACC BOLD signal (±SEM across participants) at the time of the outcome, split per performed action 

(Go/NoGo) and outcome valence (positive/negative). BOLD signal was higher after NoGo than Go responses. F. Same plot 

as (E), but split based on whether the next action was a Go (left panel) or an NoGo (right panel) response. Even if the next 

response was NoGo, BOLD signal was higher for trials with NoGo responses (on the current trial) than trials Go responses. 
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Supplementary Figure 22: Stay behavior as a function of BOLD and 1358 

EEG TF power 1359 

Supplementary Figure 22. Probability of repeating the same response (“stay”) on the next cue encounter as a function of 

outcome-related BOLD and EEG signal. A-C. Probability of repeating the same action (“staying”) as a function of BOLD 

signal from (A) dACC, (B) vmPFC (cluster correlating with theta power in Fig. 5F), and (C) striatum (split into 5 bins). 

While dACC BOLD was not significantly linked to the probability to stay, high BOLD signal in vmPFC predicted a higher 

chance to switch to another action, while high BOLD signal in striatum predicted a higher probability of staying with the 

same action. D-E. Probability of staying as a function of midfrontal time-frequency power in the (D) low alpha, (E) 

theta/delta, and (F) beta range. Higher low alpha power and higher beta power predict a higher probability of staying with 

the same action, while higher theta power predicts a higher chance to switch to another action. Grey circles represent 

individual per condition-per-participant means. Error bars were very narrow (and thus hardly visible) and computed based 

on the Cousineau-Morey methods based on per-condition-per-participant means. 
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Supplementary Table 1: Stay behavior as a function of action, salience, 1380 

and valence 1381 

 1382 

Effect χ2 Df p-value 

Action 0.01 1    .924 

Salience 5.15 1    .021 

Valence 45.59 1 < .001 

Action x Salience 0.12 1    .728 

Action x Valence 3.24 1    .067 

Salience x Valence 30.95 1 < .001 

Action x Valence x Salience 19.73 1 < .001 

    

Salient outcomes only:    

Action 0.01 1    .960 

Valence 46.36 1 < .001 

Action x Valence 17.80 1 < .001 

    

Neutral outcomes only:    

Action .102 1    .750 

Valence .830 1    .362 

Action x Valence 12.32 1 < .001 

    

Go with salient outcomes only:    

Valence 53.93 1 < .001 

NoGo with salient outcomes only:    

Valence 18.23 1 < .001 

Go with neutral outcomes only:    

Valence 0.13 1    .050 

NoGo with neutral outcomes only:    

Valence 7.21 1    .007 

Supplementary Table 1. Full report of model of stay behavior. Mixed-effects logistic regression of stay vs. switch behavior 

(i.e., repeating vs. changing an action on the next occurrence of the same cue) as a function of performed action (Go vs. 

NoGo), outcome salience (salient: reward or punishment vs. neutral: no reward or no punishment), and outcome valence 

(positive: reward or no punishment vs. negative: no reward or punishment). Follow-up analyses were performed on trials 

with salient vs. neutral outcomes separately, and then separately based on Go vs. NoGo actions and salient vs. neutral 

outcomes. P-values were computed using likelihood ratio tests using the mixed-function (option “LRT”) from package afex. 
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Supplementary Table 2: Model parameters and fit indices for models 1402 

M1-M6 1403 

 1404 

 M1 M2 M3 M4 M5 

(Asymmetric 

pathways) 

M6 

(Action 

priming) 

Mean log model 

evidence 

-609.30 -597.95 -554.46 -532.40 -528.13 -540.84 

Model frequency 0 0.0278 0 0.0488 0.6815 0.2419 

Protected 

exceedance 

probability 

0 0 0 0 .9970 .0030 

ρ 7.75 

[0.53 – 38.68] 

6.81 

[0.48 – 37.74] 

6.38 

[0.49 – 35.71] 

10.05 

[1.26 – 40.60] 

9.41 

[0.98 – 31.22] 

6.64 

[0.71 – 22.83] 

ε0 0.17 

[0.002 – 0.77] 

0.20 

[0.003 – 0.82] 

0.21 

[0.003 – 0.85] 

0.09 

[0.003 – 0.38] 

0.08 

[0.003 – 0.41] 

0.039 

[0.003 – 0.11] 

b  -0.05 

[-1.23 – 0.82] 

-0.01 

[-1.23 – 1.09] 

0.13 

[-1.16 – 1.03] 

0.14 

[-1.18 – 1.10] 

0.16 

[-1.22 – 1.40] 

π   0.77 

[-0.78 – 3.73] 

 0.17  

[-1.25 – 2.70] 

-1.11 

[-3.29 – 1.23] 

ε rewarded Go (ε0+κ)    0.749 

[0.29 – 0.99] 

0.833 

[0.43 – 0.99] 

 

ε punished NoGo (ε0–κ)    0.001 

[0.001 – 0.02] 

0.003 

[0.001 – 0.09] 

 

ε salient Go      0.49 

[0.05 – 0.90] 

Supplementary Table 2. Model parameters for fitted models. Mean [minimum – maximum] of participant-level parameter estimates 

in model space, fitted with hierarchical Bayesian inference (only the respective model included in the fitting process). Model 

frequency and protected exceedance probability were based on a model comparison that involves models M1-M6. Note that Fig. 2 

in the main text does not include M6. 
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Supplementary Table 3: BOLD-GLM with parametric modulation by 1429 

standard and biased prediction errors 1430 

  1431 

 Regressor 1 2 3 4 5 6 7 8 9 10 

 C
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1 PESTD        1   

2 PEDIF         1  

Supplementary Table 3. BOLD-GLM with parametric modulation by standard and biased prediction errors. Explanation of regressors: 

WinGoOnset: for every trial with Win cue and Go action, at cue onset, duration 1, value +1. 

AvoidGoOnset: for every trial with Avoid cue and Go action, at cue onset, duration 1, value +1. 

WinNoGoOnset: for every trial with Win cue and NoGo action, at cue onset, duration 1, value +1. 

AvoidNoGoOnset: for every trial with Avoid cue and NoGo action, at cue onset, duration 1, value +1. 

Handedness: for every trial, at cue onset, duration 1, value +1 for left hand response, 0 for NoGo 10 response, -1 for right hand response.  

Error: for every trial, at cue onset, duration 1, value +1 for incorrect response, 0 for correct response. 

OutcomeOnset: for every trial, at outcome onset, duration 1, value +1 for every trial. 

PESTD: for every trial, at outcome onset, duration 1, value is the demeaned PE times learning rate for model M1. 

PEDIF: for every trial, at outcome onset, duration 1, value is the demeaned difference between (PE times learning rate) for model M1 and 

(PE times learning rate) for model M5. 

Invalid: for trials where uninstructed button was pressed, at outcome onset, duration 1, value 1. 
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Supplementary Table 4: BOLD-GLM with response-locked and 1457 

outcome-locked categorical regressors  1458 

 1459 

 1460 

 Regressors 1 2 3 4 5 6 7 8 9 10 11 12 13 

 C
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1 Valence 1 -1 1 -1 1 -1 1 -1      

2 Action 1 1 1 1 -1 -1 -1 -1      

3 Hand Sum         1 1    

4 Hand Dif         1 -1    

Supplementary Table 4. BOLD-GLM with response-locked and outcome-locked categorical regressors. Explanation of regressors:  

GoReward: for every trial with Go action and reward obtained, at outcome onset, duration 1, value +1. 

GoNoReward: for every trial with Go action and no reward obtained, at outcome onset, duration 1, value +1. 

GoNoPunishment: for every trial with Go action and no punishment obtained, at outcome onset, duration 1, value +1. 

GoPunishment: for every trial with Go action and punishment obtained, at outcome onset, duration 1, value +1. 

NoGoReward: for every trial with NoGo action and reward obtained, at outcome onset, duration 1, value +1. 

NoGoNoReward: for every trial with NoGo action and no reward obtained, at outcome onset, duration 1, value +1. 

NoGoNoPunishment: for every trial with NoGo action and no punishment obtained, at outcome onset, duration 1, value +1. 

NoGoPunishment: for every trial with NoGo action and punishment obtained, at outcome onset, duration 1, value +1. 

LeftHand: for very trial with left hand response, at response onset, duration 1, value + 1. 

RightHand: for very trial with right hand response, at response onset, duration 1, value + 1. 

Error: for every trial, at cue onset, duration 1, value +1 for incorrect response, 0 for correct response. 

OutcomeOnset: for every trial, at outcome onset, duration 1, value +1 for every trial. 

Invalid: for trials where uninstructed button was pressed, at outcome onset, duration 1, value 1. 
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Supplementary Table 5: Significant clusters in BOLD-GLM with 1482 

parametric modulation by standard and biased prediction errors 1483 

 1484 

 1485 

 Contrast    Peak coordinates 

No Brain region Maximal Z-

value 

Cluster size 

(voxels) 

Corrected p x y z 

 PESTD Positive       

1 Ventromedial prefrontal cortex,  

Nucleus accumbens, caudate,  

putamen, 

bilateral amygdala, bilateral 

hippocampus 

6.47 8762 1.02e-43 12 14 -6 

2 Occipital pole,  

lingual gyrus,  

occipital fusiform gyrus 

6.64 1012 6.10e-10 10 -92 -10 

3 Posterior cingulate cortex 4.72 985 9.40e-10 4 -50 18 

4 Left superior frontal gyrus 5.56 910 3.19e-09 -18 34 50 

5 Right middle temporal gyrus, 

anterior division 

5.48 381 6.47e-05 62 -4 -18 

6 Left inferior temporal gyrus, 

temporooccipital part 

5.16 360 .000103 -52 -46 -10 

7 Left middle temporal gyrus, anterior 

division 

4.70 329 .000209 -60 -10 -14 

8 Left postcentral gyrus 4.33 271 .000838 -52 -28 48 

9 Right cerebellum 4.89 147 .0239 44 -72 -40 

10 Anterior cingulate cortex 4.27 146 .0247 2 6 34 

 PESTD Negative       

1 Right superior frontal gyrus 5.20 351 .000127 6 26 62 

2 Right occipital pole,  

right inferior lateral occipital cortex 

4.76 211 .00391 30 -94 4 

3 Left lingual gyrus 4.21 186 .00776 -22 -64 2 

4 Left inferior lateral occipital cortex 4.28 147 .0239 -44 -86 -10 

 PEDIF Positive       

1 Bilateral superior frontal gyrus, 

paracingulate gyrus, anterior 

cingulate cortex,  

posterior cingulate cortex,  

ventromedial frontal cortex,  

bilateral frontal orbital cortex,  

bilateral frontal pole, bilateral 

supramarginal gyrus,  

bilateral middle temporal gyrus, 

bilateral inferior temporal gyrus, 

bilateral fusiform gyrus, bilateral 

inferior occipital cortex, bilateral 

superior occipital cortex, 

precuneous,  

bilateral cerebellum 

7.11 35109 0 34 -84 20 

2 Right insula,  

right frontal operculum,  

right inferior frontal gyrus,  

right middle frontal gyrus,  

right frontal orbital cortex,  

bilateral caudate,  

bilateral Nucleus accumbens,  

bilateral thalamus, brainstem 

6.36 10364 0 34 20 -8 

3 Left insula,  

left frontal operculum,  

left inferior frontal gyrus,  

left middle frontal gyrus,  

left frontal orbital cortex 

6.51 10132 0 -36 20 -6 
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4 Right middle temporal gyrus, 

posterior division 

4.66 307 .0003 56 -32 -4 

5 Right insula, right planum polare 4.72 

 

143 .0248 40 -8 -12 

 PEDIF Negative       

1 Left middle temporal gyrus, anterior 

division 

4.22 191 .00607 -64 -6 -14 

2 Left hippocampus 4.49 158 .0158 -26 -14 -22 
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Supplementary Table 6: Significant clusters in BOLD-GLM with 1527 

response-locked and outcome-locked categorical regressors 1528 

 1529 

 1530 

 Contrast    Peak coordinates 

      

No Brain region Maximal Z-

value 

Cluster size 

(voxels) 

Corrected p x y z 

 Positive > Negative       

1 Ventromedial prefrontal cortex, 

left lateral orbitofrontal cortex, 

Nucleus accumbens, caudate,  

putamen, 

bilateral amygdala, 

bilateral hippocampus 

5.65 3999 2.86e-19 8 12 -4 

2 Left superior frontal gyrus 4.03 331 0.00239 -18 28 60 

3 Left lateral orbitofrontal cortex  4.31 288 0.00512 -34 40 -8 

4 Right occipital pole 4.59 213 0.0212 18 -92 -16 

 Negative > Positive       

1 Right lateral orbitofrontal cortex 4.59 367 0.00142 30 62 -2 

2 Precuneous 4.58 356 0.00170 8 -66 58 

3 Right superior frontal gyrus 4.32 340 0.00223 12 14 72 

 Go > NoGo  

outcome-locked 

      

 No significant clusters       

 NoGo > Go  

outcome-locked 

      

1 Bilateral lateral orbitofrontal cortex, 

Bilateral superior frontal gyrus, 

anterior cingulate cortex, 

posterior cingulate cortex, 

pre-SMA, 

bilateral precentral gyrus,  

bilateral postcentral gyus, 

bilateral supramarginal gyrus, 

bilateral operculum, 

bilateral planum temporale,  

bilateral superior temporal gyrus, 

bilateral middle temporal gyrus, 

bilateral inferior temporal gyrus, 

bilateral superior lateral occipital 

cortex, 

bilateral inferior lateral occipital 

cortex, 

bilateral thalamus 

7.32 114090 0 -42 -6 12 

 Go (left + right hand response) > 

NoGo  

response-locked  

      

1 Cerebellum, bilateral thalamus, 

bilateral putamen, bilateral caudate, 

bilateral Nucleus Accumbens, 

posterior cingulate cortex, right 

operculum, right angular gyrus, 

right superior parietal lobule. 

anterior cingulate cortex, 

paracingulate gyrus, bilateral 

ventrolateral frontal cortex, right 

middle frontal gyrus 

7.08 46437 0 32 -4 -6 

2 Left operculum, left angular gyrus, 

left superior parietal lobule 

5.88 3936 3.13e-17 -46 -24 26 

3 Intracalcarine cortex 3.79 374 0.00248 -12 -88 6 

4 Right middle temporal gyrus 4.63 287 0.00956 68 -32 -12 
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 1558 

 NoGo > Go (left + right hand 

response) response-locked 

      

1 Right medial temporal gyrus, right 

temporal pole 

4.09 465 0.000636 50 -8 -16 

2 vmPFC, subcallosal cortex 3.95 435 0.000973 0 40 -12 

 Left Hand > Right Hand 

Response response-locked 

      

1 Right precentral gyrus, right 

postcentral gyrus, right superior 

parietal lobule, right operculum 

7.05 9460 9.41e-39 46 -24 64 

2 Left cerebellum 7.18 2208 2.1e-14 -18 -54 -18 

 Right Hand > Left Hand 

Response response-locked 

      

1 left precentral gyrus, left postcentral 

gyrus, left superior parietal lobule, 

left operculum, left thalamus 

7.06 14870 0 -36 -20 66 

2 Right anterior cerebellum 7.90 3735 1.44e-20 18 -54 -20 

3 Right inferior lateral occipital 

cortex, right superior lateral 

occipital cortex 

4.96 1452 9.66e-11 48 -86 -4 

4 Right angular gyrus 4.98 551 2.06e05 66 -50 28 

5 Left occipital pole, right 

intracalcarine cortex 

3.93 409 0.000236 -4 -96 26 

6 Right posterior cerebellum 4.64 200 0.0157 48 -78 -32 

        

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 28, 2023. ; https://doi.org/10.1101/2021.10.03.462927doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.03.462927
http://creativecommons.org/licenses/by/4.0/


SUPPLEMENTALS PREFRONTAL SIGNALS PRECEED STRIATAL SIGNALS

  53 

 

Supplementary Table 7: Significant clusters in BOLD-GLM with EEG 1559 

regressors  1560 

 1561 
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 Contrast    Peak coordinates 

No Brain region Maximal Z-

value 

Cluster size 

(voxels) 

Corrected p x y z 

 Central Lower Alpha Band 

Positive 

      

 No significant clusters       

 Central Lower Alpha Band 

Negative 

      

1 Precuneous, 

cuneal cortex, 

right superior lateral occipital cortex 

5.78 8346 2.50e-33 6 -60 66 

2 Anterior cingulate gyrus, 

right superior frontal gyrus 

4.77 2449 1.75e-14 24 12 66 

3 Left middle frontal gyrus,  5.59 1828 7.63e-12 -38 8 34 

4 Right insula,  

right central opercular cortex 

4.71 1794 1.08e-11 42 2 28 

5 Right frontal pole, 

right middle frontal gyrus, 

right inferior frontal gyrus, pars 

triangularis 

5.43 1300 2.37e-09 30 40 20 

6 Left supramarginal gyrus, anterior 

division 

4.61 959 1.19e-07 -64 -36 42 

7 Left angular gyrus 5.83 916 2.38e-07 -48 -52 18 

8 Right cerebellum, anterior 4.79 480 .000131 42 -38 -38 

9 Posterior cingulate cortex, 

parahippocampal gyrus,  

right thalamus 

4.41 424 .000328 14 -38 -2 

10 Left temporal pole,  

left inferior frontal gyrus, pars 

opercularis 

left insula 

4.08 413 .000394 -56 16 -6 

11 Left cerebellum, anterior 5.44 263 .00598 -30 -40 -42 

12 Right lingual gyrus 3.43 235 .0104 10 -74 -10 

13 Left cerebellum, posterior 5.74 215 .0158 -14 -76 -42 

14 Brainstem 4.35 207 .0186 8 -34 -20 

 Frontal Theta Band Positive       

1 Right bilateral precentral gyrus 4.82 394 .000577 12 -16 80 

2 Left bilateral precentral gyrus 5.25 357 .0011 -20 -28 78 

 Frontal Theta Band Negative       

1 Right supramarginal gyrus, posterior 

division,  

right superior lateral occipital cortex 

3.94 1002 1.10e-07 -54 -50 44 

2 Left supramarginal gyrus, posterior 

division,  

Left superior lateral occipital cortex 

4.39 508 8.96e-05 56 -50 20 

3 Posterior cingulate cortex 4.58 419 .000378 -6 -30 38 

4 Ventromedial prefrontal cortex 4.03 342 .00143 0 42 4 

 Central Beta Band Positive       

1 Right caudate 4.19 258 .00481 16 30 6 

2 Left parahippocampal gyrus, 

posterior divison 

4.86 221 .0106 -38 -36 -8 

 Central Beta Band Negative       

1 Right frontal pole,  
right middle frontal gyrus,  
right superior frontal gyrus 

5.49 6599 7.06e-30 -32 8 28 

2 Left frontal pole, 
left middle frontal gyrus,  
Left superior frontal gyrus 

5.51 6144 1.82e-28 40 38 36 

3 Left supramarginal gyrus, posterior 
division, 
left superior parietal lobule, 
left superior lateral occipital cortex, 
Left middle temporal gyrus, 

temporooccipital part 

5.51 5175 2.43e-25 -66 -44 28 
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4 Right supramarginal gyrus, posterior 
division, 
Right superior parietal lobule, 
right superior lateral occipital cortex 

5.13 3264 1.62e-18 30 -74 54 

5 Left superior frontal gyrus, 

paracingulate gyrus, 

precuneous 

4.54 1235 1.80e-09 -4 12 52 

6 Right superior temporal gyrus, 

posterior division 

4.59 1076 1.33e-08 48 -14 -10 

7 Left temporal pole,  
left planum temporale 

4.96 320 .00139 -46 4 -18 
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