

MOTIVATIONAL BIASES IN FRONTO-STRIATAL CIRCUITS

1 Title: Prefrontal signals precede striatal
2 signals for biased credit assignment to
3 (in)actions

4

5 Authors

6

7 Johannes Algermissen^{1*}, Jennifer C. Swart¹, René Scheeringa^{1,2}, Roshan Cools^{1,3}, Hanneke E.M. den
8 Ouden^{1*}

9 Affiliations

10 ¹ Radboud University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The
11 Netherlands

12 ² Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, Essen,
13 Germany

14 ³ Department of Psychiatry, Radboud University Medical Centre, Nijmegen, The Netherlands

15 * j.algermissen@donders.ru.nl; h.denouden@donders.ru.nl

16

17

18

19

20

21

MOTIVATIONAL BIASES IN FRONTO-STRIATAL CIRCUITS

22 Abstract

23 Actions are biased by the outcomes they can produce: Humans are more likely to show action under
24 reward prospect, but hold back under punishment prospect. Such motivational biases derive not only
25 from biased response selection, but also from biased learning: humans tend to attribute rewards to their
26 own actions, but are reluctant to attribute punishments to having held back. The neural origin of these
27 biases is unclear; in particular, it remains open whether motivational biases arise primarily from the
28 architecture of subcortical regions or also reflect cortical influences, the latter being typically associated
29 with increased behavioral flexibility and emancipation from stereotyped behaviors. Simultaneous EEG-
30 fMRI allowed us to track which regions encoded biased prediction errors in which order. Biased
31 prediction errors occurred in cortical regions (dACC, PCC) before subcortical regions (striatum). These
32 results highlight that biased learning is not a mere feature of the basal ganglia, but arises through
33 prefrontal cortical contributions, revealing motivational biases to be a potentially flexible, sophisticated
34 mechanism.

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

MOTIVATIONAL BIASES IN FRONTO-STRIATAL CIRCUITS

51 Introduction

52 Human action selection is biased by potential action outcomes: reward prospect drives us to
53 invigorate action, while threat of punishment holds us back¹⁻³. These motivational biases have been
54 evoked to explain why humans are tempted by reward-related cues signaling the chance to gain food,
55 drugs, or money, as they elicit automatic approach behavior. Conversely, punishment-related cues
56 suppress action and lead to paralysis, which may even lie at the core of mental health problems such as
57 phobias and mood disorders^{4,5}. While such examples highlight the potential maladaptiveness of biases
58 in some situations, they confer benefits in other situations: Biases could provide sensible “default”
59 actions before context-specific knowledge is acquired^{1,6}. They may also provide ready-made alternatives
60 to more demanding action selection mechanisms, especially when speed has to be prioritized⁷.

61 Previous research has assumed that motivational biases arise because the valence of prospective
62 outcomes influences action selection⁸. However, we have recently shown that not only action selection,
63 but also the updating of action values based on obtained outcomes is subject to valence-dependent
64 biases^{3,9,10}: humans are more inclined to ascribe rewards to active responses, but have problems with
65 attributing punishments to having held back. On the one hand, such biased learning might be adaptive
66 in combining the flexibility of instrumental learning with somewhat rigid “priors” about typical action-
67 outcome relationships. Exploiting lifetime (or evolutionary) experience might lead to learning that is
68 faster and more robust to environmental “noise”. On the other hand, biases might be responsible for
69 phenomena of “animal superstition” like negative auto-maintenance. Studies of this phenomenon used
70 strict omission schedules in which reward were never delivered on trials on which animals showed an
71 action (key peck, button press), but only when animals inhibited responding over a given time period.
72 Still, animals showed continued key picking in such paradigms, which might either reflect a strong
73 “prior belief” that any situation in which rewards were available requires active work to obtain those, or
74 vice versa an inability to attribute rewards to having held back one’s actions^{1,11,12}. While reward
75 attainment can lead to an illusory sense of control over outcomes, control is underestimated under threat
76 of punishment: Humans find it hard to comprehend how inactions can cause negative outcomes, which
77 makes them more lenient in judging harms caused by others’ inactions^{13,14}. Taken together, also credit

MOTIVATIONAL BIASES IN FRONTO-STRIATAL CIRCUITS

78 assignment is subject to motivational biases, with enhanced credit for rewards given to actions, but
79 diminished credit for punishments given to inactions.

80 While evident in behavior, the neural mechanisms subserving such biased credit assignment remain
81 elusive. Previous fMRI studies have studied neural correlates of motivational biases in action selection
82 at the time of cue presentation, finding that the striatal BOLD signal is dominated by the action rather
83 than the cue valence^{8,15,16}. More recently, we have reported evidence for cue valence signals in
84 ventromedial prefrontal cortex (vmPFC) and anterior cingulate cortex (ACC), which putatively bias
85 action selection processes in the striatum¹⁷. The same regions might be involved in motivational biases
86 in learning during outcome processing, given the prominent role of the basal ganglia system not only in
87 action selection, but also learning. Influential computational models of basal ganglia function^{18,19}
88 (henceforth called “asymmetric pathways model”) predict such motivational learning biases: Positive
89 prediction errors, elicited by rewards, lead to long-term potentiation in the striatal direct “Go” pathway
90 (and long term depression in the indirect pathway), allowing for a particularly effective acquisition of
91 Go responses after rewards. Conversely, negative prediction errors, elicited by punishments, lead to long
92 term potentiation in the “NoGo” pathway, impairing the unlearning of NoGo responses after
93 punishments. This account suggests that motivational biases arise within the same pathways involved
94 in standard reinforcement learning (RL). An alternative candidate model is that biases arise through the
95 modulation of these RL systems by external areas that also track past actions, putatively the prefrontal
96 cortex (PFC). Past research has suggested that standard RL can be biased by information stored in PFC,
97 such as explicit instructions^{20,21} or cognitive map-like models of the environment^{22–24}. Most notably, the
98 ACC has been found to reflect the impact of explicit instructions²¹ and of environmental changes^{25,26} on
99 prediction errors.

100 Both candidate models predict that BOLD signal in striatum should be better described by biased
101 compared with “standard” prediction errors. In addition, the model proposing a prefrontal influence on
102 striatal processing makes a notable prediction about the timing of signals: information about the selected
103 action and the obtained outcome should be present first in prefrontal circuits to then later affect processes
104 in the striatum. While fMRI BOLD recordings allow for unequivocal access to striatal activity, the
105 sluggish nature of the BOLD signal prevents clear inferences about temporal precedence of signals from

MOTIVATIONAL BIASES IN FRONTO-STRIATAL CIRCUITS

106 different regions. We thus combined BOLD with simultaneous EEG recordings which allowed us to
107 precisely characterize learning signals in both space and time.

108 The key question is whether biased credit assignment arises directly from biased RL through
109 the asymmetric pathways in the striatum, or whether striatal RL mechanisms are biased by external
110 prefrontal sources, with the dACC as likely candidate. To this end, participants performed a motivational
111 Go/ NoGo learning task that is well-established to evoke motivational biases^{3,9,27}. We expected to
112 observe biased PEs in striatum and frontal cortical areas. By simultaneously recording fMRI and EEG
113 and correlating trial-by-trial BOLD signal with EEG time-frequency power, we were able to time-lock
114 the peaks of EEG-BOLD correlations for regions reflecting biased PEs and infer their relative temporal
115 precedence. We focused on two well-established electrophysiological signatures of RL, namely theta
116 and delta power^{28–33} as well as beta power^{28,34} over midfrontal electrodes.

117 Results

118 Thirty-six participants performed a motivational Go/ NoGo learning task^{3,9} in which required action
119 (Go/ NoGo) and potential outcome (reward/ punishment) were orthogonalized (Fig. 1A-D). They
120 learned by trial-and-error for each of eight cues whether to perform a left button press (Go_{LEFT}), right
121 button press (Go_{RIGHT}), or no button press (NoGo), and whether a correct action increased the chance to
122 win a reward (Win cues) or to avoid a punishment (Avoid cues). Correct actions led to 80% positive
123 outcomes (reward, no punishment), with only 20% positive outcomes for incorrect actions. Participants
124 performed two sessions of 320 trials with separate cue sets, which were counterbalanced across
125 participants.

126

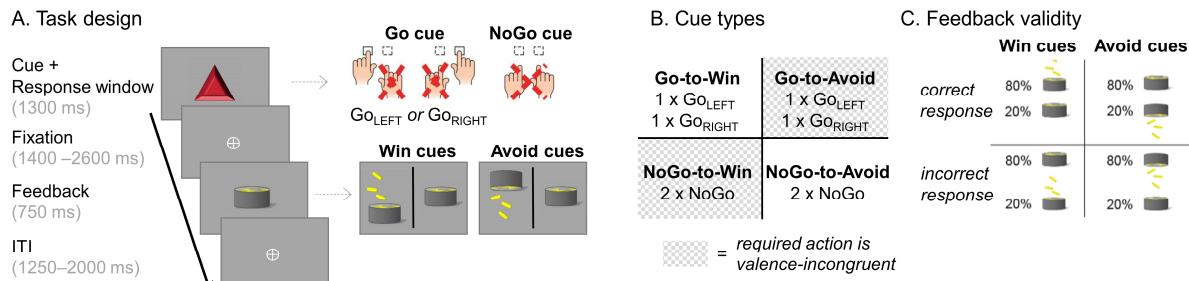


Figure 1. Motivational Go/ NoGo learning task design. A. On each trial, a Win or Avoid cue appeared; valence of the cue was not signaled but should be learned. Cue offset was also the response deadline. Response-dependent feedback followed after a jittered interval. Each cue had only one correct action (Go_{LEFT}, Go_{RIGHT}, or NoGo), which was followed by the positive outcome 80% of the time. For Win cues, actions

MOTIVATIONAL BIASES IN FRONTO-STRIATAL CIRCUITS

could lead to rewards or neutral outcomes; for Avoid cues, actions could lead to neutral outcomes or punishments. Rewards and punishments were represented by money falling into/ out of a can. **B**. There were eight different cues, orthogonalizing cue valence (Win versus Avoid) and required action (Go versus NoGo). The motivationally incongruent cues (for which the motivational action tendencies were incongruent with the instrumental requirements) are highlighted in gray. **C**. Feedback was probabilistic: Correct actions to Win cues led to rewards in 80% of cases, but neutral outcomes in 20% of cases. For Avoid cues, correct actions led to neutral outcomes in 80% of cases, but punishments in 20% of cases. For incorrect actions, these probabilities were reversed.

127

128 Regression analyses of behavior

129 We performed regression analyses to test whether a) responses were biased by the valence of
130 prospective outcomes (Win/ Avoid), reflecting biased responding and/ or learning, and b) whether
131 response repetition after positive vs. negative outcomes was biased by whether a Go vs. NoGo response
132 was performed, selectively reflecting biased learning.

133 For the first purpose, we analyzed choice data (Go/ NoGo) using mixed-effects logistic
134 regression that included the factors required action (Go/ NoGo; note that this approach collapses across
135 `GOLEFT` and responses), cue valence (Win/ Avoid), and their interaction (also reported in)¹⁷.
136 Participants learned the task, i.e., they performed more Go responses towards Go than NoGo cues (main
137 effect of required action: $b = 0.815$, $SE = 0.113$, $\chi^2(1) = 32.008$, $p < .001$). In contrast to previous studies
138^{3,9}, learning did not asymptote (Fig. 2A), which provided greater dynamic range for the biased learning
139 effects to surface. Furthermore, participants showed a motivational bias, i.e., they performed more Go
140 responses to Win than Avoid cues (main effect of cue valence, $b = 0.423$, $SE = 0.073$, $\chi^2(1) = 23.695$, p
141 $< .001$). Replicating other studies with this task, there was no significant interaction between required
142 action and cue valence ($b = 0.030$, $SE = 0.068$, $\chi^2(1) = 0.196$, $p = .658$, Fig. 2A-B), i.e., there was no
143 evidence for the effect of cue valence (motivational bias) differing in size between Go or NoGo cues.

144 Secondly, as a proxy of (biased) learning, we analyzed cue-based response repetition (i.e., the
145 probability of repeating a response on the next encounter of the same cue) as a function of outcome
146 valence (positive vs negative outcome), performed action (Go vs. NoGo), and outcome salience (salient:
147 reward or punishment vs. neutral: no reward or no punishment). As expected, participants were more
148 likely to repeat the same response following a positive outcome (main effect of outcome valence: $b =$
149 0.504 , $SE = 0.053$, $\chi^2(1) = 45.595$, $p < .001$). Most importantly, after salient outcomes, participants
150 adjusted their responses to a larger degree following Go responses than NoGo responses, revealing the
151 presence of a learning bias (Fig. 2C; interaction of valence x action x salience: $b = 0.248$, $SE = 0.048$,

MOTIVATIONAL BIASES IN FRONTO-STRIATAL CIRCUITS

152 $\chi^2(1) = 19.732, p < .001$). When selectively analyzing trials with salient outcomes only, rewards
153 (compared to punishments) led to a higher proportion of choice repetitions following Go relative to
154 NoGo responses (valence x response: $b = 0.308, SE = 0.064, \chi^2(1) = 17.798, p < .001$; valence effect for
155 Go only: $b = 1.276, SE = 0.115, \chi^2(1) = 53.932, p < .001$; valence effect for NoGo only: $b = 0.637, SE$
156 = 0.127, $\chi^2(1) = 18.228, p < .001$; see full results in Supplementary Table 1).

157 Taken together, these results suggested that behavioral adaptation following rewards and
158 punishments was biased by the type of action that led to this outcome (Go or NoGo). However, this
159 analysis only considered behavioral adaptation on the next trial, and could not pinpoint the precise
160 algorithmic nature of this learning bias. More importantly, it did not provide trial-by-trial estimates of
161 action values as required for model-based fMRI and EEG analyses to test for regions or time points that
162 reflected biased learning. We thus analyzed the impact of past outcomes on participants' choices using
163 computational RL models.

164 Computational modeling of behavior

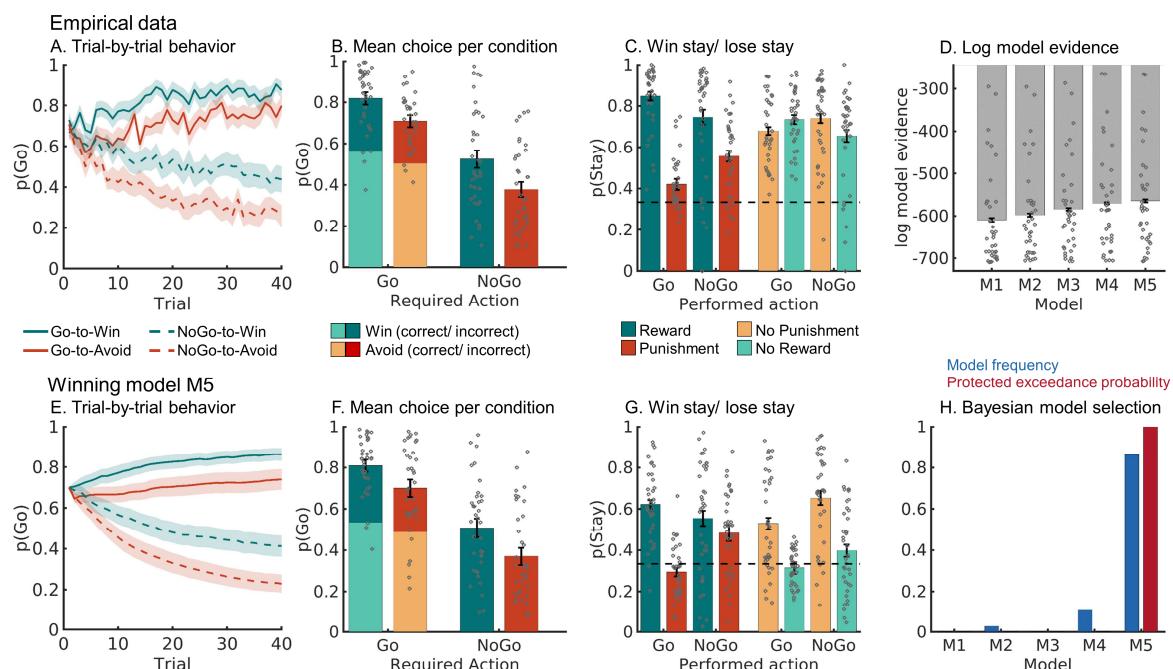
165 In line with previous work^{3,9}, we fitted a series of increasingly complex RL models. We started with
166 a simple Rescorla Wagner model featuring learning rate and feedback sensitivity parameters (M1). We
167 next added a Go bias, capturing participants' overall propensity to make Go responses (M2), and a
168 Pavlovian response bias (M3), reflecting participants' propensity to adjust their likelihood of emitting a
169 Go response in response to Win vs. Avoid cues³. Alternatively, we added a learning bias (M4),
170 amplifying the learning rate after rewarded Go responses and dampening it after punished NoGo
171 responses³, in line with the asymmetric pathways model. In the final model (M5), we added both the
172 response bias and the learning bias. For the full model space (M1-M5) and model definitions, see the
173 Methods section.

174 Model comparison showed clear evidence in favor of the full asymmetric pathways model featuring
175 both response and learning biases (M5; model frequency: 86.43%, protected exceedance probability:
176 100%, see Fig. 2D, H; for model parameters and fit indices, see Supplementary Table 2; for parameter
177 recovery analyses, see Supplementary Note 6 and Supplementary Fig. 5). Posterior predictive checks
178 involving one-step-ahead predictions and model simulations showed that this model captured key

MOTIVATIONAL BIASES IN FRONTO-STRIATAL CIRCUITS

179 behavioral features (Fig. 2E, F), including motivational biases and a greater behavioral adaptation after
 180 Go responses followed by salient outcomes than after NoGo responses followed by salient outcomes
 181 (Fig. 2G). This pattern could not be captured by an alternative learning bias model based on the idea
 182 that active responses generally enhance credit assignment³⁵ (Supplementary Note 7 and Supplementary
 183 Fig. 6).

184 One feature of the behavioral data that was not well captured by the asymmetric pathways model
 185 was a high tendency of participants to repeat responses (“stay”) to the same cue irrespective of outcomes
 186 (see Fig. 2C and G). This tendency was stronger for Win than Avoid cues. We explored three additional
 187 models featuring supplementary mechanisms to account for this behavioral pattern (Supplementary Note
 188 8 and Supplementary Fig. 7). All these models fitted the data well and captured the propensity of staying
 189 better than M5; however, these models overestimated the proportion of incorrect Go responses. Model-
 190 based fMRI analyses based on these models led to results largely identical to those obtained with M5
 191 (Supplementary Note 9 and Supplementary Fig. 8). We thus focused on M5, which relied on only a
 192 single mechanism (i.e., biased learning from rewarded Go and punishment NoGo actions).



193

Figure 2. Behavioral performance. **A.** Trial-by-trial proportion of Go responses (\pm SEM across participants) for Go cues (solid lines) and NoGo cues (dashed lines). The motivational bias was already present from very early trials onwards, as participants made more Go responses to Win than Avoid cues (i.e., green lines are above red lines). Additionally, participants clearly learn whether to make a Go response or not (proportion of Go responses increases for Go cues and decreases for NoGo cues). **B.** Mean (\pm SEM across participants) proportion Go responses per cue condition (points are individual participants' means). **C.** Probability to repeat a response (“stay”) on the next encounter of the same cue as a function of action and outcome. Learning was reflected in higher probability of staying after positive

MOTIVATIONAL BIASES IN FRONTO-STRIATAL CIRCUITS

outcomes than after negative outcomes (main effect of outcome valence). Biased learning was evident in learning from salient outcomes, where this valence effect was stronger after Go responses than NoGo responses. Dashed line indicates chance level choice ($p_{Stay} = 0.33$). **D**. Log-model evidence favors the asymmetric pathways model (M5) over simpler models (M1-M4). **E-G**. Trial-by-trial proportion of Go responses, mean proportion Go responses, and probability of staying based on one-step-ahead predictions using parameters (hierarchical Bayesian inference) of the winning model (asymmetric pathways model, M5). **H**. Model frequency and protected exceedance probability indicate best fit for model M5 (asymmetric pathways model), in line with log model evidence.

194

195 fMRI: Basic quality control analyses

196 First, we performed a GLM as a quality-check to test which regions encoded positive (rewards,
197 no punishments) vs. negative (no reward/ punishment) outcomes in a “model-free” way, independent of
198 any model-based measure derived from a RL model (for full description of the GLM regressors and
199 contrasts, see Supplementary Table 4). Positive outcomes elicited a higher BOLD response in regions
200 including vmPFC, ventral striatum, and right hippocampus, while negative outcomes elicited higher
201 BOLD in bilateral dorsolateral PFC (dlPFC), left ventrolateral PFC, and precuneus (Fig. 3A, see full
202 report of significant clusters in Supplementary Table 6).

203 We also assessed which regions encoded Go vs. NoGo as well as Go_{LEFT} vs. Go_{RIGHT} responses.
204 There was higher BOLD for Go than NoGo responses at the time of response in dorsal ACC (dACC),
205 striatum, thalamus, motor cortices, and cerebellum, while BOLD was higher for NoGo than Go
206 responses in right IFG (Fig. 6C left panel; Supplementary Table 6)¹⁷. For lateralized Go responses, there
207 was higher BOLD signal in contralateral motor cortex and operculum as well as ipsilateral cerebellum
208 when contrasting hand responses against each other (Fig. 6C, right panel). These results are in line with
209 previous results on outcome processing and response selection and thus assure the general data quality.

210 fMRI: Biased learning in prefrontal cortex and striatum

211 To test which brain regions were involved in biased learning, we performed a model-based GLM
212 featuring the trial-by-trial PE update as a parametric regressor (see GLM notation in Supplementary
213 Table 3). We used the group-level parameters of the best fitting computational model (M5) to compute
214 trial-by-trial belief updates (i.e., prediction error * learning rate) for every trial for every participant. In
215 assessing neural signatures of biased learning, we faced the complication that standard (Rescorla-
216 Wagner learning in M1) and biased PEs (winning model M5) were highly correlated. A mean correlation
217 of 0.92 across participants (range 0.88–0.95) made it difficult to neurally distinguish biased from

MOTIVATIONAL BIASES IN FRONTO-STRIATAL CIRCUITS

218 standard learning. To circumvent this collinearity problem, we decomposed the biased PE (computed
219 using model M5) into the standard PE (computed using model M1) plus a difference term^{22,36}:

$$PE_{BIAS} = PE_{STD} + PE_{DIF}$$

220 A neural signature of biased learning should significantly—and with the same sign—encode
221 both components of this biased PE term. Standard PEs and the difference term were uncorrelated (mean
222 correlation of -0.02 across participants; range -0.33–0.24; see Supplementary Fig. 9 and 10 for a
223 graphical illustration of this procedure). We tested for biased prediction errors PE_{BIAS} by testing which
224 regions significantly encoded the conjunction of both its components, i.e., the significant encoding of
225 both PE_{STD} and PE_{DIF} . Dissociating two alternative learning signals by decomposing one into the other
226 plus a difference term is an established procedure to disentangle the contributions of two highly
227 correlated signals^{22,36}. It has an effect highly similar to orthogonalizing regressors³⁷ while maintaining
228 interpretability in that both regressors (PE_{STD} and PE_{DIF}) add up to the term of interest (PE_{BIAS}).
229 Significant encoding of both components (with the same sign) provides strong evidence for encoding of
230 biased prediction errors PE_{BIAS} . The PE_{DIF} term itself has no substantive neural interpretation; it is merely
231 an implicit model comparison of a null model (PE_{STD}) against a full model (PE_{BIAS}). Intuitively, for
232 voxels for which both PE_{STD} and PE_{DIF} are significant, one can conclude that the BOLD signal correlates
233 with the full biased prediction error term PE_{BIAS} , and that this correlation is significantly stronger than
234 for the baseline prediction error term PE_{STD} .

235 While PE_{STD} was encoded in a range of cortical and subcortical regions (Fig. 3B) previously
236 reported in the literature³⁸, significant encoding of both PE_{STD} and PE_{DIF} (conjunction) occurred in
237 striatum (caudate, nucleus accumbens), dACC (area 23/24), perigenual ACC (pgACC; area 32d
238 bordering posterior vmPFC), posterior cingulate cortex (PCC), left motor cortex, left inferior temporal
239 gyrus, and early visual regions (Fig. 3C; see full report of significant clusters in Supplementary Table
240 5). Thus, BOLD signal in these regions was better described (i.e., more variance explained) by biased
241 learning than by standard prediction error learning.

242

MOTIVATIONAL BIASES IN FRONTO-STRIATAL CIRCUITS

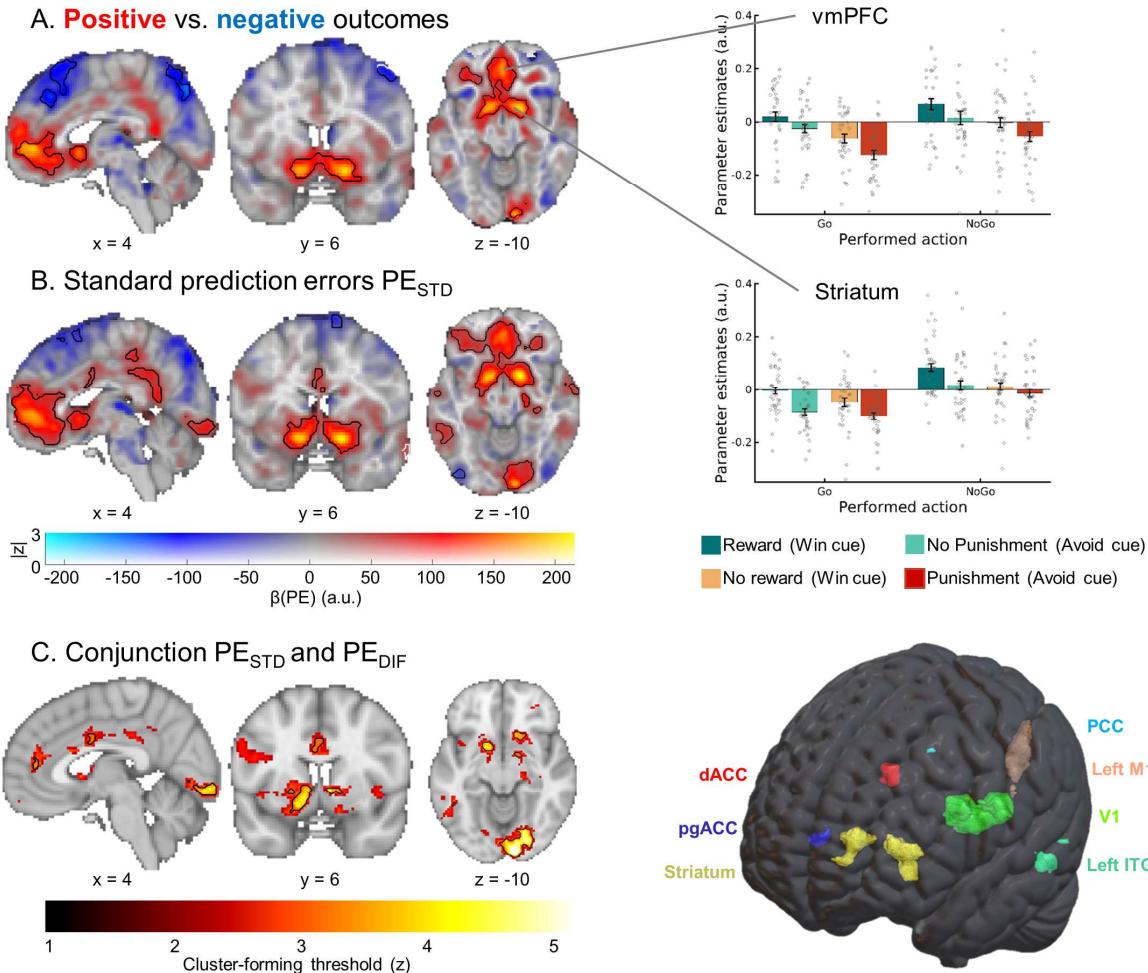


Figure 3. BOLD signal reflecting outcome processing. BOLD effects displayed using a dual-coding visualization: color indicates the parameter estimates and opacity the associated z-statistics. Significant clusters are surrounded by black edges. **A.** Significantly higher BOLD signal for positive outcomes (rewards, no punishments) compared with negative outcomes (no rewards, punishments) was present in a range of regions including bilateral ventral striatum and vmPFC. Bar plots show mean parameter estimates per condition (\pm SEM across participants; dots indicating individual participants) **B.** BOLD signals correlated positively to “standard” RL prediction errors in several regions, including the ventral striatum, dACC, vmPFC, and PCC. **C.** Left panel: Regions encoding both the standard PE term and the difference term to biased PEs (conjunction) at different cluster-forming thresholds ($1 < z < 5$, color coding; opacity constant). Clusters significant at a threshold of $z > 3.1$ are surrounded by black edges. In bilateral striatum, dACC, pgACC, PCC, left motor cortex, left inferior temporal gyrus, and primary visual cortex, BOLD was significantly better explained by biased learning than by standard learning. Right panel: 3D representation with all seven regions encoding biased learning (and used in fMRI-informed EEG analyses).

244 EEG: Biased learning in midfrontal delta, theta, and beta power

245 Similar to the fMRI analyses, we next tested whether midfrontal power encoded biased PEs
 246 rather than standard PEs. While fMRI provides spatial specificity of where PEs are encoded, EEG power
 247 provides temporal specificity of when signals encoding prediction errors occur^{29,34}. In line with our fMRI
 248 analysis, we used the standard PE term PE_{STD} and the difference to the biased PE term PE_{DIF} as trial-
 249 by-trial regressors for EEG power at each channel-time-frequency bin for each participant and then
 250 performed cluster-based permutation tests across the *b*-maps of all participants. Note that differently
 251 from BOLD signal, EEG signatures of learning typically do not encode the full prediction error. Instead,

MOTIVATIONAL BIASES IN FRONTO-STRIATAL CIRCUITS

252 PE valence (better vs. worse than expected) and PE magnitude (saliency, surprise) have been found
253 encoded in the theta and delta band, respectively, but with opposite signs^{31–33}. When testing for
254 parametric correlates of PE magnitude, we therefore controlled for PE valence, thereby effectively
255 testing for correlations with the absolute PE magnitude (i.e., degree of surprise). Note that PE valence
256 was identical for standard and biased PEs. Thus, only PE magnitude could distinguish both learning
257 models.

258 Both midfrontal theta and beta power reflected outcome (PE) valence: Theta power was higher
259 for negative (non-reward and punishment) than for positive (reward and non-punishment) outcomes
260 (225–475 ms, $p = .006$; Fig. 4A-B), while beta power was higher for positive than for negative outcomes
261 (300–1,250 ms, $p = .002$; Fig. 4A, C). Differences in theta power were clearly strongest over frontal
262 channels, while differences in the beta range were more diffuse, spreading over frontal and parietal
263 channels (Fig. 4B-C). All results held when the condition-wise ERP was removed from the data (see
264 Supplementary Note 10 and Supplementary Fig. 13), suggesting that differences between conditions
265 were due to induced (rather than evoked) activity (for results in the time domain, see Supplementary
266 Note 11 and Supplementary Fig. 14 and 15).

267 When testing for correlates of PE magnitude, we controlled for PE valence given that previous
268 studies have reported TF correlates of both PE valence and PE magnitude in a similar time and frequency
269 range, but with opposite signs^{31–33}. Midfrontal delta power was indeed positively correlated with the
270 PE_{BIAS} term (225–475 ms; $p = .017$; Fig. 4D). Decomposition of the PE_{BIAS} term into its constituent
271 terms showed that this correlation was not significant for the PE_{STD} term ($p = 0.074$, Fig. 4E) nor for
272 the PE_{DIF} term ($p = 0.185$; Fig. 4F). This result does not imply that the PE_{BIAS} term explained delta
273 power significantly better than the PE_{STD} term; it only implies significant encoding of the PE_{BIAS} term
274 as suggested by the model that best fitted the behavioral data, with no significant evidence for a similar
275 encoding of the conventional PE_{STD} term. For a similar observation in the time-domain EEG signal, see
276 Supplementary Note 12 and Supplementary Fig. 16. Beyond delta power, beta power correlated
277 positively, though not significantly with PE_{STD} ($p = 0.110$, Fig. 4E) and significantly negatively with
278 PE_{DIF} ($p = .001$, 425–850 ms). Given these oppositely-signed correlations of its constituents, the PE_{BIAS}
279 term did not significantly correlate with beta power ($p = 0.550$, Fig 4D).

MOTIVATIONAL BIASES IN FRONTO-STRIATAL CIRCUITS

280 In sum, both midfrontal theta power (negatively) and beta power (positively) encoded PE
 281 valence. In addition, delta power encoded PE magnitude (positively). This encoding was only significant
 282 for biased PEs, but not standard PEs. Taken together, as was the case for BOLD signal, midfrontal EEG
 283 power also reflected biased learning. As a next step, we tested whether the identified EEG phenomena
 284 were correlated with trial-by-trial BOLD signal in identified regions. Crucially, this allowed us to test
 285 whether EEG correlates of cortical learning precede EEG correlates of subcortical learning.

th

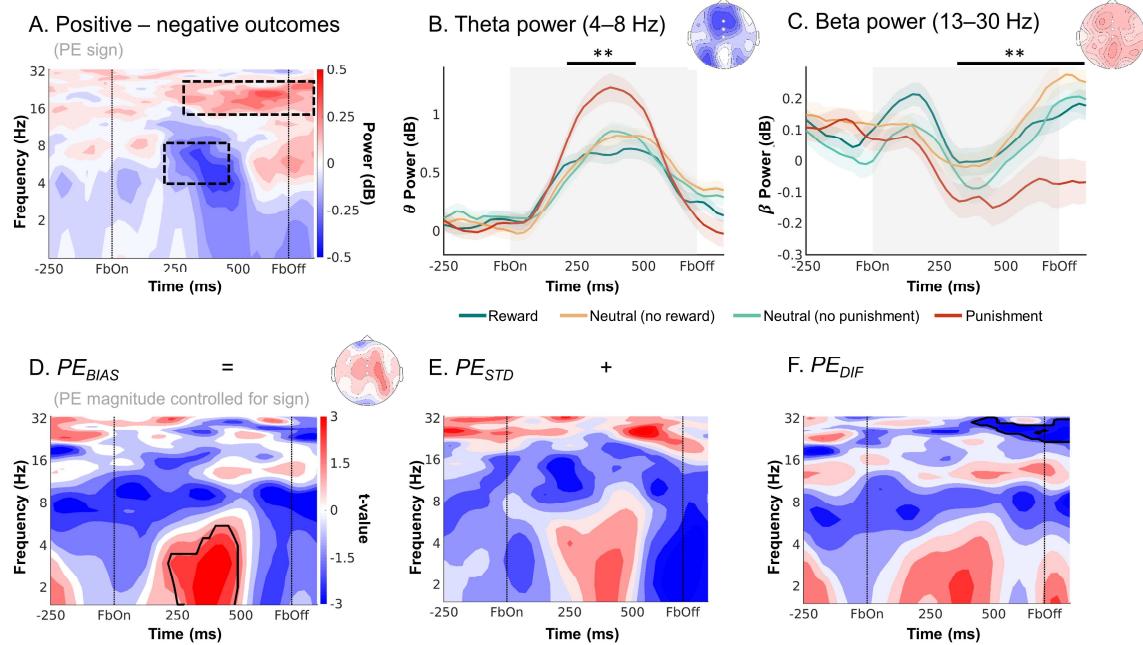


Figure 4. EEG time-frequency power over midfrontal electrodes (Fz/ FCz/ Cz), reflecting outcome processing. **A.** Time-frequency plot (logarithmic y-axis) displaying higher theta (4–8 Hz) power for negative (non-reward for Win cues and punishment for Avoid cues) outcomes and higher beta power (16–32 Hz) for positive (reward and non-punishment) outcomes. This contrast reflects EEG correlates of PE valence (better vs. worse than expected). Black square dot boxes indicate clusters above threshold that drive significance in a-priori defined frequency ranges. **B.** Theta power transiently increases for any outcome, but more so for negative outcomes (especially punishments) around 225–475 ms after feedback onset. Black horizontal lines indicate the time range for which the cluster driving significance was above threshold. **(C)** Beta power was higher for positive than negative outcomes over a long time period around 300–1,250 ms after feedback onset. **D-F.** Correlations between midfrontal EEG power and model-based trial-by-trial PE magnitudes controlling for PE valence (thus effectively testing for correlates of “absolute” PEs). Panel **D** displays the correlates of biased prediction errors PE_{BIAS} , which are decomposed into **(E)** PE_{STD} based on the non-biased learning model M1, and **(F)** their difference PE_{DIF} . Solid black lines indicate clusters above threshold. Biased PEs were significantly positively correlated with midfrontal delta power (**D**). The correlations of delta with the standard PEs (**E**) and the difference term to biased PEs (**F**) were positive as well, though not significant. Beta power only significantly encoded the difference term to biased PEs (**F**). ** $p < 0.01$.

286 Combined EEG-fMRI: Prefrontal cortex signals precede striatum during biased
 287 outcome processing

288 The observation that also cortical areas (dACC, pgACC, PCC) show biased PEs is consistent with
 289 the “external model” of cortical signals biasing learning processes in the striatum. However, this model
 290 makes the crucial prediction that these biased learning signals should be present first in cortical areas
 291 and only later in the striatum. Next, we used trial-by-trial BOLD signal from those regions encoding

MOTIVATIONAL BIASES IN FRONTO-STRIATAL CIRCUITS

292 biased PE to predict midfrontal EEG power. By determining the time points at which different regions
293 correlated with EEG power, we were able to infer the relative order of biased PE processing across
294 cortical and subcortical regions, revealing whether cortical processing preceded striatal processing. We
295 used trial-by-trial BOLD signal from the seven regions encoding biased PEs, i.e., striatum, dACC,
296 pgACC, PCC, left motor cortex, left ITG, and primary visual cortex (see masks in Supplementary Fig.
297 11 and 12) as regressors on average EEG power over midfrontal electrodes (Fz/ FCz/ Cz; see
298 Supplementary Fig. 17 for a graphical illustration of this approach). We performed analyses with and
299 without PEs included in the model, which yielded identical results and suggested that EEG-fMRI
300 correlations did not merely result from PE processing as a “common cause” driving signals in both
301 modalities. Instead, EEG-fMRI correlations reflected incremental variance explained in EEG power by
302 the BOLD signal in selected regions (even beyond variance explained by the model-based PE estimates),
303 providing the strongest test for the hypothesis that BOLD and EEG signal reflect the same neural
304 phenomenon. As the timeseries of all seven regions were included in one single regression, their
305 regression weights reflected each region’s unique contribution, controlling for any shared variance. In
306 line with the “external model”, BOLD signal from prefrontal cortical regions correlated with midfrontal
307 EEG power earlier after outcome onset than did striatal BOLD signal:

308 First, dACC BOLD was significantly negatively correlated with alpha/ theta power early after
309 outcome onset (100–575 ms, 2–17 Hz, $p = .016$; Fig. 5A). This cluster started in the alpha/ theta range
310 and then spread into the theta/delta range (henceforth called “lower alpha band power”). It was not
311 observed in the EEG-only analyses reported above.

312 Second, while pgACC BOLD did not correlate significantly with midfrontal EEG power ($p = .184$),
313 BOLD in PCC was negatively correlated with theta/ delta power (Fig. 5B; 175–500 ms, 1–6 Hz, $p =$
314 $.014$). This finding bore resemblance in terms of time-frequency space to the cluster of (negative) PE
315 valence encoding in the theta band and (positive) PE magnitude encoding in the delta band identified in
316 the EEG-only analyses (Fig. 4A). Complementary to the fMRI-informed EEG analyses, we also
317 performed independent EEG-informed fMRI analyses, which showed the robustness of this EEG-fMRI
318 correlation. We used the trial-by-trial EEG signal in the cluster identified in the EEG-only analyses (see
319 Fig. 4 A, B) to predict BOLD signal across the brain (see Supplementary Fig. 18 for a graphical

MOTIVATIONAL BIASES IN FRONTO-STRIATAL CIRCUITS

320 illustration of this approach). The EEG time-frequency-mask used to create the EEG regressor was
321 defined based on the EEG-only analyses (Fig. 4A, B) and thus blind to the result of the fMRI-informed
322 EEG analysis. We observed significant clusters of negative EEG-BOLD correlation in vmPFC and PCC
323 (Fig. 5F; Supplementary Table 7). We thus discuss vmPFC and PCC together in the following.

324 Third, there was a significant positive correlation between striatal BOLD and midfrontal beta/ alpha
325 power (driven by a cluster at 100–800 ms, 7–23 Hz, $p = .010$; Fig. 5C). This finding bore resemblance
326 in time-frequency space to the cluster of positive PE valence encoding in beta power identified in the
327 EEG-only analyses (Fig. 4A, C), but extended into the alpha range. Again, to support the robustness of
328 this finding, we used trial-by-trial midfrontal beta power in the cluster identified in the EEG-only
329 analyses (see Fig. 4A, C) to predict BOLD signal across the brain. Clusters of positive EEG-BOLD
330 correlations in right dorsal caudate (and left parahippocampal gyrus) as well as clusters of negative
331 correlations in bilateral dorsolateral PFC (dlPFC) and supramarginal gyrus (SMG; Fig. 5G;
332 Supplementary Table 7) confirmed the positive striatal BOLD-beta power association. Given that the
333 striatum is far away from the scalp and thus unlikely to be the source of midfrontal beta power over the
334 scalp, and given the assumption that trial-by-trial variation in an oscillatory signal should correlate with
335 BOLD signal in its source^{39,40}, we speculate that dlPFC and SMG (identified in the EEG-informed fMRI
336 analyses) are the sources of beta power over the scalp and act as an “antenna” for striatal signals. In line
337 with this idea, previous studies have localized feedback-related beta power in lateral frontal and parietal
338 regions, both using simultaneous EEG-fMRI^{41–43} and source-localization^{44,45}.

339 Finally, regarding the other three regions that showed a significant BOLD signature of biased PEs,
340 BOLD in left motor cortex was significantly negatively correlated with midfrontal beta power ($p = .002$;
341 around 0–625 ms; Supplementary Note 13 and Supplementary Fig. 19). There were no significant
342 correlations between midfrontal EEG power and left inferior temporal gyrus or primary visual cortex
343 BOLD (Supplementary Fig. 19). All results were robust to different analysis approaches including
344 shorter trial windows, different GLM specifications, inclusion of task-condition and fMRI motion
345 realignment regressors, and individual modelling of each region. TF results were not reducible to
346 phenomena in the time domain (Supplementary Note 14 and Supplementary Fig. 20).

MOTIVATIONAL BIASES IN FRONTO-STRIATAL CIRCUITS

347 In sum, there were negative correlations between dACC BOLD and midfrontal lower alpha band
 348 power early after outcome onset, negative correlations between PCC BOLD and midfrontal theta/ delta
 349 power at intermediate time points, and positive correlations between striatal BOLD and midfrontal beta
 350 power at late time points. This temporal dissociation was especially clear in the time courses of the test
 351 statistics for each region (thresholded at $|t| > 2$ and summed across frequencies), for which the peaks of
 352 the cortical regions preceded the peak of the striatum (Fig. 5D, H). Note that time-frequency power is
 353 estimated over temporally extended windows (400 ms in our case), which renders any interpretation of
 354 the “onset” or “offset” of such correlations more difficult. In sum, these results are consistent with an
 355 “external model” of motivational biases arising from early cortical processes biasing later learning
 356 processes in the striatum.

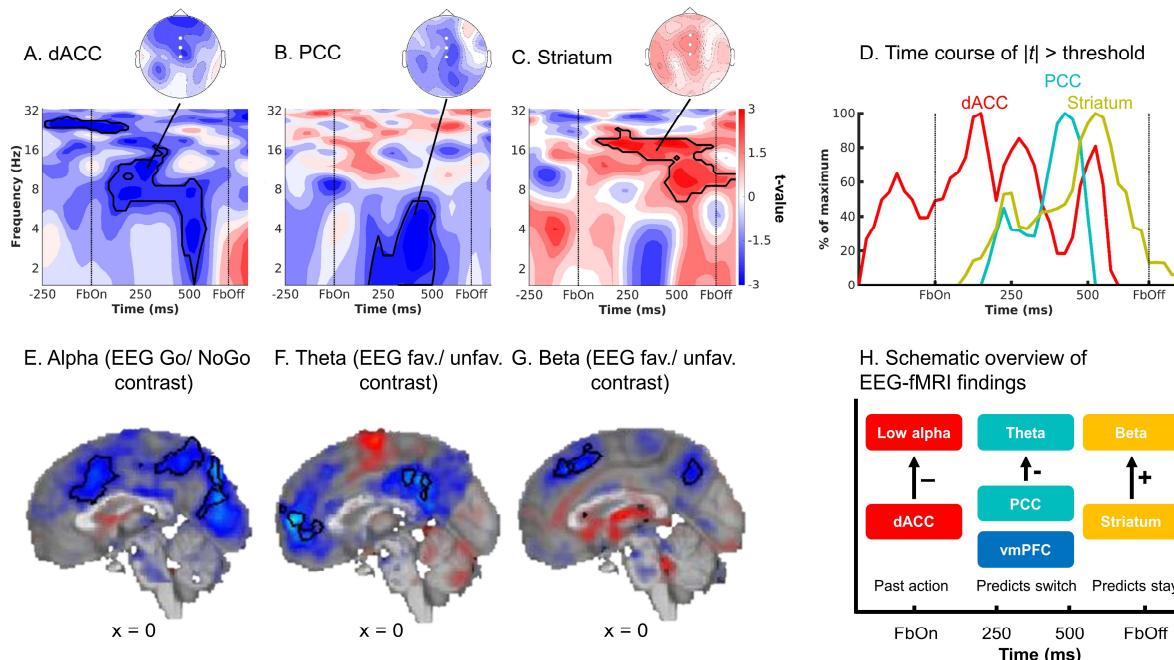


Figure 5. fMRI-informed EEG analyses. Unique temporal contributions of BOLD signal in (A) dACC, (B) PCC, and (C) striatum to average EEG power over midfrontal electrodes (Fz/ FCz/ Cz). Group-level t -maps display the modulation of the EEG power by trial-by-trial BOLD signal in the selected ROIs. dACC BOLD correlated negatively with early alpha/ theta power, PCC BOLD negatively with theta/ delta power, and striatal BOLD positively with beta/ alpha power. Areas surrounded by a black edge indicate clusters of $|t| > 2$ with $p < .05$ (cluster-corrected). Topoplots indicate the topography of the respective cluster. **D.** Time course of dACC, PCC, and striatal BOLD correlations, normalized to the peak of the time course of each region. dACC-lower alpha band correlations emerged first, followed by (negative) PCC-theta correlations and finally positive striatum-beta correlations. The reverse approach using lower alpha (**E**), theta (**F**) and beta (**G**) power as trial-by-trial regressors in fMRI GLMs corroborated the fMRI-informed EEG analyses: Lower alpha band power correlated negatively with the dACC BOLD, theta power negatively with vmPFC and PCC BOLD, and beta power positively with striatal BOLD. **H.** Schematic overview of the main EEG-fMRI results: dACC encoded the previously performed response and correlated with early midfrontal lower alpha band power. vmPFC/ PCC (correlated with theta power) and striatum (correlated with beta power) both encoded outcome valence, but had opposite effects on subsequent behavior. Note that activity in these regions temporally overlaps; boxes are ordered in temporal precedence of peak activity.

357

MOTIVATIONAL BIASES IN FRONTO-STRIATAL CIRCUITS

358 dACC BOLD and midfrontal lower alpha band power encode the previously performed
359 action during outcome presentation

360 While the clusters of EEG-fMRI correlation in the theta/ delta and beta range matched the
361 clusters identified in EEG-only analyses, the cluster of negative correlations between dACC BOLD and
362 early midfrontal lower alpha band power was novel and did not match our expectations. Given that these
363 correlations arose very soon after outcome onset, we hypothesized that dACC BOLD and midfrontal
364 lower alpha band power might reflect a process occurring even before outcome onset, such as the
365 maintenance (“memory trace”) of the previously performed response to which credit may later be
366 assigned. We therefore assessed whether information of the previous response was present in dACC
367 BOLD and in the lower alpha band around the time of outcome onset.

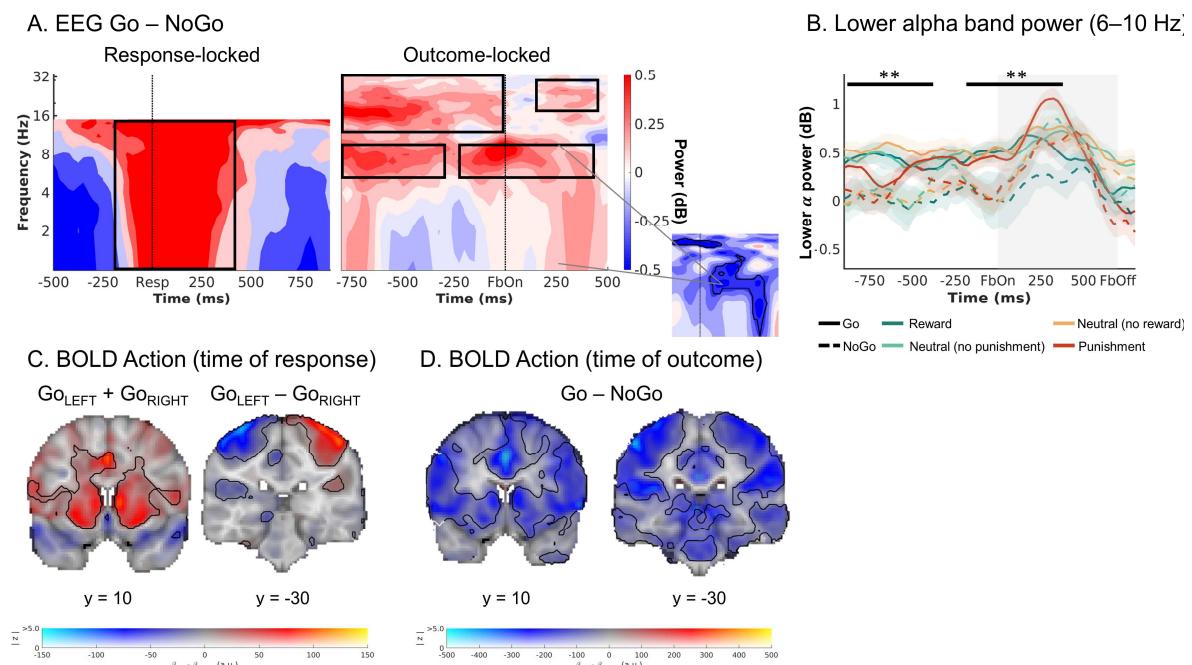
368 First, we tested for BOLD correlates of the previous response at the time of *outcomes* (eight
369 outcome-locked regressors for every Go/ NoGo x reward/ no reward/ no punishment/ punishment
370 combination) while controlling for motor-related signals at the time of the *response* (response-locked
371 regressors for left-hand and right-hand button presses). At the time of outcomes, there was higher BOLD
372 signal for NoGo than Go responses across several cortical and subcortical regions, peaking in both the
373 dACC and striatum (Fig. 6D). This inversion of effects—higher BOLD for Go than NoGo responses at
374 the time of response (see quality checks), but the reverse at the time of outcome—was also observed in
375 the upsampled raw BOLD and was independent of the response of the next trial (Supplementary Note
376 15 and Supplementary Fig. 21). In sum, large parts of cortex, including the dACC, encoded the
377 previously performed response at the moment outcomes were presented, in line with the idea that the
378 dACC maintains a “memory trace” of the previously performed response.

379 Second, we tested for differences between Go and NoGo responses at the time of outcomes in
380 midfrontal broadband EEG power. Power was significantly higher on trials with Go than on trials with
381 NoGo responses, driven by clusters in the lower alpha band (spreading into the theta band; around
382 0.000–0.425 sec., 1–11 Hz, $p = .012$) and in the beta band (around 0.200–0.450 sec., 18–27 Hz, $p =$
383 .022; Fig. 6A, B). The first cluster matched the time-frequency pattern of dACC BOLD-alpha power
384 correlations (Fig. 5A).

MOTIVATIONAL BIASES IN FRONTO-STRIATAL CIRCUITS

385 If this activity cluster contained a signature of the previously performed response, it might have
 386 been present throughout the delay between cue offset and outcome onset. When repeating the above
 387 permutation test including the last second before outcome onset, there were significant differences again,
 388 driven by a sustained cluster in the beta band (-1–0 sec., 13–33 Hz, $p = .002$) and two clusters in the
 389 alpha/ theta band (Cluster 1: -1.000– -0.275 sec., 1–10 Hz, $p = 0.014$; Cluster 2: -0.225–0.425 sec., 1–
 390 11 Hz, $p = .022$; Fig. 6B). These findings suggest that lower alpha band power might reflect a sustained
 391 memory of the previously performed response. Additional analyses (Supplementary Note 15 and
 392 Supplementary Fig. 21) yielded that this Go-NoGo trace during outcome processing did not change over
 393 the time course of the experiment, suggesting that it did not reflect typical fatigue/ time-on task effects
 394 often observed in the alpha band.

395 Again, we performed the reverse EEG-fMRI analysis using trial-by-trial power in the identified
 396 lower alpha band cluster (Fig. 6B) as an additional regressor in the quality-check fMRI GLM. Clusters
 397 of negative EEG-BOLD occurred correlation in a range of cortical regions, including dACC and
 398 precuneus (Fig. 5E; Supplementary Table 7). In sum, both dACC BOLD signal and midfrontal lower
 399 alpha band power contained information about the previously performed response, consistent with the
 400 idea that both signals reflect a “memory trace” of the response to which credit is assigned once an
 401 outcome is obtained.



MOTIVATIONAL BIASES IN FRONTO-STRIATAL CIRCUITS

Figure 6. Exploratory follow-up analyses on dACC BOLD signal and midfrontal lower alpha band power. **A.** Midfrontal time-frequency response-locked (left panel) and outcome-locked (right panel). Before and shortly after outcome onset, power in the lower alpha band was higher on trials with Go actions than on trials with NoGo actions. The shape of this difference resembles the shape of dACC BOLD-EEG TF correlations (small plot; note that this plot depicts BOLD-EEG correlations, which were negative). Note that differences between Go and NoGo trials occurred already before outcome onset in the alpha and beta range, reminiscent of delay activity, but were not fully sustained throughout the delay between response and outcome. **B.** Midfrontal power in the lower alpha band per action x outcome condition. Lower alpha band power was consistently higher on trials with Go actions than on trials with NoGo actions, starting already before outcome onset. **C.** BOLD signal differences between Go and NoGo actions (activation by either left or right Go actions compared to the implicit baseline in the GLM, which contains the NoGo actions; left panel) and left vs. right hand responses (right panel) at the time of responses. Response-locked dACC BOLD signal was significantly higher for Go than NoGo actions. **D.** BOLD signal differences between Go and NoGo actions at the time of outcomes. Outcome-locked dACC BOLD signal (and BOLD signal in other parts of cortex) was significantly lower on trials with Go than on trials with NoGo actions.

402

403 Striatal and vmPFC/ PCC BOLD differentially relate to action policy updating

404 EEG correlates of PCC BOLD and striatal BOLD occurred later than for the dACC BOLD and
405 overlapped with classical feedback-related midfrontal theta and beta power responses. We hypothesized
406 that those neural signals might be more closely related to the updating of action policies (i.e., which
407 action to perform for each cue) and predict the next response to the same cue^{30,46}. We thus used the trial-
408 by-trial BOLD responses in dACC, PCC/ vmPFC, and striatum to predict whether participants would
409 repeat the same response on the next trial with the same cue (“stay”) or switch to another response
410 (“shift”). Mixed-effects logistic regression yielded that dACC BOLD did not significantly predict
411 response repetition ($b = -0.019$, $SE = 0.016$, $\chi^2(1) = 1.294$, $p = .255$). In contrast, BOLD in PCC/ vmPFC
412 and striatum did predict response repetition, though in opposite directions: Participants were
413 significantly more likely to *repeat* the same response when striatal BOLD was high ($b = 0.067$, $SE =$
414 0.024 , $\chi^2(1) = 9.051$, $p = .003$), but more likely to *switch* to another response when vmPFC BOLD ($b =$
415 -0.065 , $SE = 0.020$, $\chi^2(1) = 8.765$, $p = .003$) or PCC BOLD ($b = -0.036$, $SE = 0.016$, $\chi^2(1) = 3.691$, $p =$
416 $.030$; Fig. 5H) was high (Supplementary Fig. 22). Similarly, high pgACC BOLD predicted a higher
417 likelihood of switching, likening it with the circuits formed by vmPFC and PCC ($b = -0.076$, $SE = 0.017$,
418 $\chi^2(1) = 15.559$, $p < .001$). We also inspected the raw upsampled HRF shapes per region per condition,
419 confirming that differential relationships were not driven by differences in HRF shapes across regions.

420 We also tested whether trial-by-trial midfrontal lower alpha band, theta, or beta power (within
421 the clusters identified in the EEG-only analyses) predicted action policy updating. Participants were
422 significantly more likely to repeat the same response when beta power was high ($b = 0.145$, $SE = 0.041$,
423 $\chi^2(1) = 11.886$, $p < .001$), but more likely to switch when theta power was high ($b = -0.099$, $SE = 0.047$,
424 $\chi^2(1) = 4.179$, $p = .041$). Notably, unlike its BOLD correlate in ACC, lower alpha band power did predict

MOTIVATIONAL BIASES IN FRONTO-STRIATAL CIRCUITS

425 response repetition, with more repetition when alpha power was high ($b = .0.179$, SE = 0.052, $\chi^2(1) =$
426 10.711, $p = .001$; Supplementary Fig. 22).

427 In sum, high striatal BOLD and midfrontal beta power predicted that the same response would
428 be repeated on the next encounter of a cue, while high vmPFC and PCC BOLD and high theta power
429 predicted that participants would switch to another response. Thus, although both striatal and vmPFC/
430 PCC BOLD positively encoded biased prediction errors, these two sets of regions had opposite roles in
431 learning: while the striatum reinforced previous responses, vmPFC/ PCC triggered the shift to another
432 response strategy (Fig. 5H).

433 Discussion

434 We investigated neural correlates of biased learning for Go and NoGo responses. In line with
435 previous research^{3,9}, participants' behavior was best described by a computational model featuring faster
436 learning from rewarded Go responses and slower learning from punished NoGo responses. Neural
437 correlates of biased PEs were present in BOLD signals in several regions, including ACC, PCC, and
438 striatum. These regions exhibited distinct midfrontal EEG power correlates. Most importantly,
439 correlates of prefrontal cortical BOLD preceded correlates of striatal BOLD: Trial-by-trial dACC BOLD
440 correlated with lower alpha band power immediately after outcome onset, followed by PCC (and
441 vmPFC) BOLD correlated with theta power, and finally, striatal BOLD correlated with beta power.
442 These results suggest that the architecture of the asymmetric striatal pathways might not be the only
443 neural structure that gives rise to motivational learning biases; instead, the PFC might critically
444 contribute to these biases.

445 The observation that both PFC and striatal BOLD signal reflected biased PEs might be explained
446 by three different models. One model assumes that both PFC and striatal processes arrive at biased
447 learning independently of each other, which is highly unlikely given strong recurrent connections
448 between both regions^{18,19,47}. Another model incorporates such interconnections, but assumes that
449 striatum leads the PFC. While such a model is in line with past animal studies⁴⁸ and modeling work⁴⁹, it
450 would predict EEG correlates of the PFC to trail after EEG correlates of the striatum—or at least to
451 occur with considerable delay after outcome onset. This model is not supported by our findings, which

MOTIVATIONAL BIASES IN FRONTO-STRIATAL CIRCUITS

452 showed EEG correlates of PFC regions soon after outcome onset, preceding striatal EEG correlates.
453 These early EEG correlates of PFC BOLD are in line with single cell recordings in PFC which show
454 responses confined to the first 500 ms following outcome onset^{50,51}, corroborating that PFC outcome
455 processing occurs before the time of EEG correlates of striatal BOLD. The only model consistent with
456 our data assumes recurrent connections between PFC and striatum, but with the PFC leading the
457 striatum. Hence, these results are in line with a model of PFC biasing striatal outcome processing, giving
458 rise to motivational learning biases in behavior.

459 The dominant idea about the origin of motivational biases has been that these biases are an
460 emergent feature of the asymmetric direct/ indirect pathway architecture in the basal ganglia^{2,19}. We
461 find that these biases are present first in prefrontal cortical areas, notably dACC and PCC, which argues
462 against biases being purely driven by subcortical circuits. Rather, motivational learning biases might be
463 an instance of sophisticated, even “model-based” learning processes in the striatum instructed by the
464 prefrontal cortex^{52,53}. An influence of PFC on striatal RL has prominently been observed in the case of
465 model-based vs. model-free learning^{23,24} and has been stipulated as a mechanism of how instructions
466 can impact RL^{20,21}. Although there are reports of striatal processes preceding prefrontal processes within
467 learning tasks^{48,54}, the opposite pattern of PFC preceding striatum has been observed as well⁵⁵ and a
468 causal impact of PFC on striatal learning is well established^{56,57}. In particular, we have previously
469 observed that motivational biases in action selection might arise from early prefrontal inputs to the
470 striatum, as well¹⁷. Prefrontal influences on striatal processes might thus be a common signature of both
471 motivational response and learning biases.

472 The particular subregion of PFC showing the earliest EEG correlates was the dACC. This
473 observation is in line with an earlier EEG-fMRI study reporting dACC to be part of an early valuation
474 system preceding a later system comprising vmPFC and striatum⁵⁸. The dACC has been suggested to
475 encode models of agents’ environment^{59,60} that are relevant for interpreting outcomes, with BOLD in
476 this region scaling with the size of PEs^{25,26} and indexing how much should be learned from new
477 outcomes. We hypothesize that, at the moment of outcome, dACC maintains a “memory trace” of the
478 previously performed response⁶¹ which might modulate the processing of outcomes as soon as they
479 become available^{62,63}. Notably, dACC exhibited stronger BOLD signal for Go than NoGo responses at

MOTIVATIONAL BIASES IN FRONTO-STRIATAL CIRCUITS

480 the time of participants' response, but this pattern reversed at the time of outcomes. This reversal rules
481 out the possibility that response-locked BOLD signal simply spilled over into the time of outcomes.
482 Future research will be necessary to corroborate such a motor "memory trace" in dACC. In sum, the
483 dACC might be in a designated position to inform subsequent outcome processing in downstream
484 regions by modulating the learning rate as a function of the previously performed response and the
485 obtained outcome. Rather than striatal circuits being sufficient for the emergence of motivational biases,
486 the more "flexible" PFC seems to play an important role in instructing downstream striatal learning
487 processes.

488 Striatal, dACC and PCC BOLD encoded biased PEs. In line with previous research, striatal
489 BOLD positively linked to midfrontal beta power^{41,42}, which positively encoded PE valence^{28,34,64}, with
490 correlations extending into alpha power. PCC and vmPFC BOLD negatively linked to midfrontal theta/
491 delta power^{17,65,66}, which encoded PE valence negatively, but PE magnitude positively. Notably, theta/
492 delta power correlates of vmPFC/ PCC BOLD preceded beta power correlates of striatal BOLD in time,
493 which aligns with previous findings of motivational response biases being first visible in the vmPFC
494 BOLD before they impact striatal action selection¹⁷. Notably, EEG correlates of striatal BOLD during
495 outcome processing were in the beta band—in contrast to previously observed correlates of striatal
496 BOLD during action selection in the theta band¹⁷. This dissociation suggests important differences in
497 the role of the striatum in these two processes. The frequency-specific nature of these EEG-fMRI
498 correlations further suggests that they are signatures of task-induced events that are specific to the trial
499 phase and unlikely to reflect general anatomical connectivity. In sum, while these EEG-fMRI findings
500 on outcome processing resemble our previous EEG-fMRI findings on action selection in that prefrontal
501 signals precede striatal signals, they are dissociated in terms of the frequency specificity, highlighting
502 the distinct roles of the striatum in these processes.

503 Positive encoding of prediction errors in striatal BOLD signal is a well-established phenomenon^{38,67}.
504 Striatal BOLD was better described by biased PEs than by standard PEs, corroborating the presence of
505 motivational learning biases also in striatal learning processes. Notably, EEG correlates of striatal
506 BOLD peaked rather late, suggesting that these processes are informed by early sources in PFC which
507 are connected to the striatum via recurrent feedback loops^{18,47}. Positive prediction errors increase the

MOTIVATIONAL BIASES IN FRONTO-STRIATAL CIRCUITS

508 value of a performed action and thus strengthen action policies. Hence, it is not surprising that high
509 striatal BOLD signal and midfrontal beta power predicted action repetition^{68,69}.

510 In contrast to striatal learning signals, the PCC and vmPFC BOLD as well as midfrontal theta
511 and delta power signals were more complicated: Theta encoded PE valence, delta encoded PE
512 magnitude. Both correlates showed opposite polarities. This observation is in line with previous
513 literature suggesting that midfrontal theta and delta power might reflect the “saliency” or “surprise”
514 aspect of PEs^{31,32,70}. Surprises have the potential to disrupt an ongoing action policy⁷¹ and motivate a
515 shift to another policy, which might explain why these signals predicted switching to another
516 response^{72,73}. Notably, this EEG surprise signal was only significantly correlated with the biased (but
517 not the standard) PE term, corroborating that the surprise attributed to outcomes depends on the
518 previously performed response in line with motivational learning biases. In sum, both vmPFC and
519 striatum encode biased PEs, though with different consequences for future action policies.

520 Taken together, distinct brain regions processed outcomes in a biased fashion at distinct time
521 points with distinct EEG power correlates. Simultaneous EEG-fMRI recordings allowed us to infer when
522 those regions reached their peak activity⁷⁴. However, the correlational nature of BOLD-EEG links
523 precludes strong statements about these regions actually generating the respective power phenomena.
524 Alternatively, activity in those regions might merely modulate the amplitude of time-frequency
525 responses originating from other sources. Furthermore, while the observed associations align with
526 previous literature^{17,41,42,65,66}, the considerable distance of the striatum to the scalp raises the question
527 whether scalp EEG could in principle reflect striatal activity, at all^{75,76}. Intracranial recordings have
528 observed beta oscillations during outcome processing in the striatum before^{69,77-79}. Also, our analysis
529 controlled for BOLD signal in motor cortex, an alternative candidate source for beta power, suggesting
530 that late midfrontal beta power did not merely reflect motor cortex beta. Even if the striatum is not the
531 generator of the beta oscillations over the scalp, their true (cortical) generator might be tightly coupled
532 to the striatum and thus act as a “transmitter” of striatal beta oscillations. In fact, the analyses using trial-
533 by-trial beta power to predict BOLD yielded significant clusters in dlPFC and SMG, two candidate
534 regions for such a “transmitter”.

MOTIVATIONAL BIASES IN FRONTO-STRIATAL CIRCUITS

535 We observed EEG correlates of striatal BOLD at a rather late time point after outcome onset.
536 While we conclude that biased outcome processing occurs much earlier in cortical regions than the
537 striatum, it is possible that the modulating influence of the striatum on cortical sources of beta
538 synchronization over the scalp (possibly dlPFC and SMG, corroborating previous EEG-fMRI⁴¹⁻⁴³ and
539 source-reconstruction findings^{44,45}) takes time to surface. However, speaking against any delay, some
540 single studies have reported maximal correlations between striatal LFPs and scalp EEG at a time lag of
541 0⁸⁰. Regardless, even in the presence of a non-zero lag, our main conclusion would hold: Biased learning
542 is present in cortical regions early after outcome onset, which cannot be a consequence of striatal input,
543 but must constitute an independent origin of motivational learning biases.

544 In order to make inferences about the relative order of PE processing in different brain regions,
545 we must assume that the regressor in our EEG-fMRI analysis approach—the trial-by-trial BOLD
546 amplitude in selected regions—mostly reflects the PE signal rather than learning-unrelated processes
547 occurring in parallel. In support of this assumption, animal recordings have indeed found that neural
548 activity in ACC, PCC, and striatum is dominated by reward processing during outcome receipt⁸¹⁻⁸⁵ and
549 meta-analyses on human BOLD signal have found strong effect sizes for PE processing in these
550 regions^{38,67}. Importantly, we observe transient EEG-fMRI correlations that are likely event-related rather
551 than reflecting resting-state like correlations. We thus favor the conclusion that the observed EEG-fMRI
552 correlations reflect differences in the timing of PE processing in these regions, although we cannot fully
553 exclude the possibility that parallel processes unrelated to (biased) learning contribute to these
554 correlations. Note that, while outcome processing in these regions is better described by biased than by
555 standard PEs, each region might encode PEs in an idiosyncratic way (potentially reflecting noise in the
556 value representations⁸⁶) and these residual idiosyncrasies drive the EEG-fMRI correlations even when
557 controlling for biased PEs predicted by the winning computational model.

558 The correlational nature of the study prevents strong statements over any causal interactions
559 between the observed regions. We assume here that a region showing an earlier midfrontal EEG
560 correlate influences other regions showing later midfrontal EEG correlates, and such an influence is
561 plausible given findings of feedback loops between prefrontal regions and the striatum⁴⁷. Future studies
562 targeting those regions via selective causal manipulations will be necessary to test for the causal role of

MOTIVATIONAL BIASES IN FRONTO-STRIATAL CIRCUITS

563 PFC in informing striatal learning. Furthermore, while parameter recovery for most parameters in the
564 winning computational model (including the effective learning rates incorporating the learning bias)
565 was excellent, parameter recovery for the learning bias term itself was positive, but weaker (see
566 Supplementary Note 6). Supplementary models tested incorporating a perseveration parameter (see
567 Supplementary Note 8) yielded higher model recovery, but failed to capture crucial aspects of the biased
568 learning under investigation. Future studies comprising larger samples of participants should explore
569 alternative implementations to reliably quantify individual differences in these learning biases.

570 In conclusion, biased learning—increased credit assignment to rewarded action, decreased
571 credit assignment to punished inaction—was visible both in behavior and in BOLD signal in a range of
572 regions. EEG correlates of prefrontal cortical regions, notably dACC and PCC, *preceded* correlates of
573 the striatum, consistent with a model of the PFC biasing RL in the striatum. The dACC appeared to hold
574 a “motor memory trace” of the past response, biasing early outcome processing. Subsequently, biased
575 learning was also present in vmPFC/ PCC and striatum, with opposite roles in adjusting vs. maintaining
576 action policies. These results refine previous views on the neural origin of these learning biases,
577 suggesting they might not only rely on subcortical parts of the brain typically associated with rigid,
578 habit-like responding, but rather incorporate frontal inputs that are associated with counterfactual
579 reasoning and increased behavioral flexibility^{87,88}. The PFC is typically believed to facilitate goal-
580 directed over instinctive processes. Hence, PFC involvement into biased learning suggests that these
581 biases are not necessarily agents’ inescapable “fate”, but rather likely act as global “priors” that facilitate
582 learning of more local relationships. They allow for combining “the best of both worlds”—long-term
583 experience with consequences of actions and inactions together with flexible learning from rewards and
584 punishments.

585 Materials and methods

586 Participants

587 Thirty-six participants ($M_{age} = 23.6$, $SD_{age} = 3.4$, range 19–32; 25 women; all right-handed; all normal
588 or corrected-to-normal vision) took part in a single 3-h data collection session, for which they received

MOTIVATIONAL BIASES IN FRONTO-STRIATAL CIRCUITS

589 €30 flat fee plus a performance-dependent bonus (range €0–5, $M_{bonus} = €1.28$, $SD_{bonus} = 1.54$). The
590 study was approved by the local ethics committee (CMO2014/288; Commissie Mensengeboden
591 Onderzoek Arnhem-Nijmegen) and all participants provided written informed consent. Exclusion
592 criteria comprised claustrophobia, allergy to gels used for EEG electrode application, hearing aids,
593 impaired vision, colorblindness, history of neurological or psychiatric diseases (including heavy
594 concussions and brain surgery), epilepsy and metal parts in the body, or heart problems. Sample size
595 was based on previous EEG studies with a comparable paradigm^{9,89}.

596 Behavioral and modeling results include all 36 participants. The following participants were
597 excluded from analyses of neural data: For two participants, fMRI functional-to-standard image
598 registration failed; hence, all fMRI-only results are based on 34 participants ($M_{age} = 23.47$, 25 women).
599 Four participants exhibited excessive residual noise in their EEG data (> 33% rejected trials) and were
600 thus excluded from all EEG analyses; hence, all EEG-only analyses are based on 32 participants (M_{age}
601 = 23.09, 23 women). For combined EEG-fMRI analyses, we excluded the above-mentioned six
602 participants plus one more participant whose regression weights for every regressor were about ten times
603 larger than for other participants, leaving 29 participants ($M_{age} = 23.00$, 22 women). Exclusions were in
604 line with a previous analysis of this data set¹⁷. fMRI- and EEG-only results held when analyzing only
605 those 29 participants (see Supplementary Notes 1–5 and Supplementary Figures 1–4).

606 Task

607 Participants performed a motivational Go/ NoGo learning task^{3,9} administered via MATLAB
608 2014b (MathWorks, Natick, MA, United States) and Psychtoolbox-3.0.13. On each trial, participants
609 saw a gem-shaped cue for 1300 ms which signaled whether they could potentially win a reward (Win
610 cues) or avoid a punishment (Avoid cues) and whether they had to perform a Go (Go cue) or NoGo
611 response (NoGo cue). They could press a left (Go_{LEFT}), right (Go_{RIGHT}), or no (NoGo) button while the
612 cue was presented. Only one response option was correct per cue. Participants had to learn both cue
613 valence and required action from trial-and-error. After a variable inter-stimulus-interval of 1,400–1,600
614 ms, the outcome was presented for 750 ms. Potential outcomes were a reward (symbolized by coins
615 falling into a can) or neutral outcome (can without money) for Win cues, and a neutral outcome or

MOTIVATIONAL BIASES IN FRONTO-STRIATAL CIRCUITS

616 punishment (symbolized by money falling out of a can) for Avoid cues. Feedback validity was 80%,
617 i.e., correct responses were followed by positive outcomes (rewards/ no punishments) on only 80% of
618 trials, while incorrect responses were still followed by positive outcomes on 20% of trials. Trials ended
619 with a jittered inter-trial interval of 1250–2000 ms, yielding total trial lengths of 4700–6650 ms.

620 Participants gave left and right Go responses via two button boxes positioned lateral to their
621 body. Each box featured four buttons, but only one button per box was required in this task. When
622 participants accidentally pressed a non-instructed button, they received the message “Please press one
623 of the correct keys” instead of an outcome. In the analyses, these responses were recoded into the
624 instructed button on the respective button box. In the fMRI GLMs, such trials were modeled with a
625 separate regressor.

626 Before the task, participants were instructed that each cue could be followed by either reward
627 or punishment, that each cue had one optimal response, that feedback was probabilistic, and that the
628 rewards and punishments were converted into a monetary bonus upon completion of the study. They
629 performed an elaborate practice session in which they got familiarized first with each condition
630 separately (using practice stimuli) and finally practiced all conditions together. They then performed
631 640 trials of the main task, separated into two sessions of 320 trials with separate cue sets. Introducing
632 a new set of cues allowed us to prevent ceiling effects in performance and investigate continuous
633 learning throughout the task. Each session featured eight cues that were presented 40 times. After every
634 100–110 trials (~ 6 min.), participants could take a self-paced break. The assignment of the gems to cue
635 conditions was counterbalanced across participants, and trial order was pseudo-random (preventing that
636 the same cue occurred on more than two consecutive trials).

637 Behavior analyses

638 We used mixed-effects logistic regression (as implemented in the R package *lme4*) to analyze
639 behavioral responses (Go vs. NoGo) as a function of required action (Go/ NoGo), cue valence (Win/
640 Avoid), and their interaction. We included a random intercept and all possible random slopes and
641 correlations per participant to achieve a maximal random-effects structure⁹⁰. Sum-to-zero coding was

MOTIVATIONAL BIASES IN FRONTO-STRIATAL CIRCUITS

642 employed for the factors. Type 3 p -values were based on likelihood ratio tests (implemented in the R
643 package *afex*). We used a significance criterion of $\alpha = .05$ for all the analyses.

644 Furthermore, we used mixed-effects logistic regression to analyze “stay behavior”, i.e., whether
645 participants repeated an action on the next encounter of the same cue, as a function of outcome valence
646 (positive: reward or no punishment/ negative: no reward or punishment), outcome salience (salient:
647 reward or punishment/ neutral: no reward or no punishment), and performed action (Go/ NoGo). We
648 again included all possible random intercepts, slopes, and correlations.

649 Computational modeling

650 We fit a series of increasingly complex RL models to participants’ choices to decide between different
651 algorithmic explanations for the emergence of motivational biases in behavior. We employed the same
652 set of nested models as in previous studies using this task^{3,9}. For tests of alternative biases specifications,
653 see Supplementary Notes 7–9 and Supplementary Fig. 6–8.

654 Model space

655 To determine whether a Pavlovian response bias, a learning bias, or both biases jointly predicted
656 behavior best, we fitted a series of increasing complex computational models. In each trial (t), choice
657 probabilities for all three response options (a) given the displayed cue (s) were computed from their
658 action weights (modified Q-values) using a softmax function:

$$659 \quad p(a_t|s_t) = \frac{\exp(w(a_t, s_t))}{\sum_a \exp(w(a, s_t))} \quad (1)$$

660 After each response, action values were updated with the prediction error based on the obtained
661 outcome $r \in \{-1; 0; 1\}$. As the starting model (M1), we fitted an standard delta-learning model⁹¹ in
662 which action values were updated with prediction errors, i.e., the deviation between the experienced
663 outcome and expected outcome. This model contained two free parameters: the learning rate (ε) scaling
664 the updating term and the feedback sensitivity (ρ) scaling the received outcome (i.e., higher feedback
665 sensitivity led to choices more strongly guided by value difference, akin to the role of the inverse
666 temperature parameter frequency used in reinforcement learning models):

$$667 \quad Q_t(a_t, s_t) = Q_{t-1}(a_t, s_t) + \varepsilon(\rho r - Q_{t-1}(a_t, s_t)) \quad (2)$$

MOTIVATIONAL BIASES IN FRONTO-STRIATAL CIRCUITS

668 In this model, choice probabilities were fully determined by action values, without any bias. We
669 initialized action values Q_0 such that they reflected a “neutral” expected value for each action. Win cues
670 could lead to reward (+1) or neutral (0) outcomes and Avoid cues to neutral (0) or punishment (-1)
671 outcomes. A neutral expected value would assign equal probability to either possible outcome, leading
672 to expectations of +1/2 and -1/2, respectively. In addition, because participants’ feedback sensitivity
673 parameter ρ reflected how participants weighed the outcomes they received, also the initial values had
674 to be multiplied with the feedback sensitivity to stay neutral between 0 and participants’ re-weighted
675 positive/ negative outcome of $+/-1*\rho$. Thus, initial action values Q_0 were set to $1/2*\rho$ (Win cues) and -
676 $1/2*\rho$ (Avoid cues).

677 Unlike previous versions of the task³, cue valences were not instructed, but had to be learned
678 from outcomes, as well⁹. Thus, until experiencing the first non-neutral outcome (reward or punishment)
679 for a cue, participants could not know its valence and thus not learn from neutral feedback. Hence, for
680 these early trials, action values were multiplied with zero when computing choice probabilities⁹. After
681 the first encounter of a valenced outcome, action values were “unmuted” and started to influence choices
682 probabilities, retrospectively considering all previous outcomes⁹.

683 In M2, we added the Go bias parameter b , which accounted for individual differences in
684 participants’ overall propensity to make Go responses, to the action values Q , resulting in action weights
685 w :

$$686 w(a_t, s_t) = \begin{cases} Q_t(a_t, s_t) + b & \text{if } a = \text{Go} \\ Q_t(a_t, s_t) & \text{else} \end{cases} \quad (3)$$

687 In M3, we added a Pavlovian response bias π , scaling how positive/ negative cue valence
688 (Pavlovian values) increased/ decreased the weights of Go responses:

$$689 w(a_t, s_t) = \begin{cases} Q_t(a_t, s_t) + b + \pi V(s) & \text{if } a = \text{Go} \\ Q_t(a_t, s_t) & \text{else} \end{cases} \quad (4)$$

690 Participants were instructed that a cue was either a Win cue (affording rewards or neutral
691 outcomes) or an Avoid cue (affording neutral outcomes or punishments). Hence, cue valence (Win/
692 Avoid) did not have to be learned instrumentally; instead, it could be inferred as soon participants
693 experienced a non-neutral outcome. Until that moment, cue valence $V(s)$ was set to zero. Afterwards,
694 $V(s)$ was set to +0.5 for Win cues and -0.5 for Avoid cues. Note that choosing different values than 0.5

MOTIVATIONAL BIASES IN FRONTO-STRIATAL CIRCUITS

695 would merely rescale the bias parameter π (e.g., halving π with cue valences of +1 and -1) without any
696 changes in the model's predictions. The Pavlovian response bias affected left-hand and right-hand Go
697 responses similarly and thus reflected generalized activation/ inactivation by the cue valence.

698 In M4, we added a learning bias κ , increasing the learning rate for rewards after Go responses
699 and decreasing it for punishments after NoGo responses. The learning bias was specific to the response
700 shown, thus reflecting a specific enhancement in action learning/ impairment in unlearning for that
701 particular response. Conceptually, learning rates differed between response-outcome conditions in the
702 following way:

$$703 \quad \varepsilon = \begin{cases} \varepsilon_0 + \kappa & \text{if } r_t = 1 \text{ and } a = go \\ \varepsilon_0 - \kappa & \text{if } r_t = -1 \text{ and } a = nogo \\ \varepsilon_0 & \text{else} \end{cases} \quad (5)$$

704 In the technical implementation of this model, learning rates were sampled in continuous space
705 and then inverse-logit transformed to constrain them to the range $[0, 1]$ ^{3,9}. However, after this
706 transformation, the impact of adding vs. subtracting the learning bias κ would no longer be symmetric.
707 Hence, for baseline learning rates $\varepsilon_0 < 0.5$, we first computed the difference between the baseline
708 learning rate and the learning rates for punished NoGo responses and used this difference to compute
709 the learning rate for rewarded Go responses:

$$710 \quad \varepsilon = \begin{cases} \varepsilon_0 = \text{inv.logit}(\varepsilon) \\ \varepsilon_{\text{punished NoGo}} = \text{inv.logit}(\varepsilon - \kappa) & \text{if } \varepsilon_0 < 0.5 \\ \varepsilon_{\text{rewarded Go}} = \varepsilon_0 + (\varepsilon_0 - \varepsilon_{\text{punished NoGo}}) & \text{if } \varepsilon_0 < 0.5 \end{cases} \quad (6)$$

711 Notably, this procedure is only guaranteed to work when $\varepsilon_0 < 0.5$. For $\varepsilon_0 > 0.5$, the difference
712 term could become > 0.5 and the learning rate for rewarded Go responses would become > 1 , which is
713 impractical. Hence, for $\varepsilon_0 > 0.5$, we first computed the learning rate for rewarded Go responses and used
714 the difference to the baseline learning rate ε_0 to compute the learning rate for punished NoGo responses:

$$715 \quad \varepsilon = \begin{cases} \varepsilon_0 = \text{inv.logit}(\varepsilon) \\ \varepsilon_{\text{rewarded Go}} = \text{inv.logit}(\varepsilon + \kappa) & \text{if } \varepsilon_0 > 0.5 \\ \varepsilon_{\text{punished NoGo}} = \varepsilon_0 - (\varepsilon_{\text{rewarded Go}} - \varepsilon_0) & \text{if } \varepsilon_0 > 0.5 \end{cases} \quad (7)$$

716 In the model M5, we included both the Pavlovian response bias and the learning bias.

717 The weakly informative hyperpriors were set to $X_\rho \sim \mathcal{N}(2, 3)$, $X_\varepsilon \sim \mathcal{N}(0, 2)$, $X_{b, \pi, \kappa} \sim \mathcal{N}(0, 3)$, in
718 line with previous implementations of this model^{3,9}. The same priors (for the same parameters) were

MOTIVATIONAL BIASES IN FRONTO-STRIATAL CIRCUITS

719 used across different model implementations to not bias model comparison. Alternative hyperpriors did
720 not change the results. For computing the participant-level parameters, ρ was exponentiated to constrain
721 it to positive values, and the inverse-logit transformation was applied to ε .

722 Model fitting and comparison

723 For model fitting and comparison, we used hierarchical Bayesian inference as implemented in
724 the CBM toolbox in MATLAB⁹². This approach combines hierarchical Bayesian parameter estimation
725 with random-effects model comparison⁹³. The fitting procedure involves two steps, starting with the
726 Laplace approximation of the model evidence to compute the group evidence, which quantifies how
727 well each model fits the data while penalizing for model complexity. Both group-level and individual-
728 level parameters are estimated using an iterative algorithm. We used wide Gaussian priors (see
729 hyperpriors above) and exponential and sigmoid transforms to constrain parameter spaces. Subsequent
730 random-effects model selection allows for the possibility that different models generated the data for
731 different participants. Participants contribute to the group-level parameter estimation in proportion to
732 how well a given model fits their data, quantified via a responsibility measure (i.e., the probability that
733 the model at hand is responsible for generating data of the respective participant). This model-
734 comparison approach has been shown to be less susceptible to the influence of outliers⁹². We selected
735 the “winning” model based on the protected exceedance probability.

736 Model validation

737 We assured that the winning model was able to reproduce the data, using the sampled
738 combinations of participant-level parameter estimates to create 3600 agents that “played” the task. We
739 employed two approaches to simulate the task: *posterior predictive model simulations* and *one-step-
740 ahead model predictions*. In the posterior predictive model simulations, agents’ choices were sampled
741 probabilistically based on their action values, and outcomes probabilistically sampled based on their
742 choices. This method ignores participant-specific choice histories and can thus yield choice/ outcome
743 sequences that diverge considerably from participants’ actual experiences. In contrast, one-step-ahead
744 predictions use participants’ actual choices and experienced outcomes in each trial to update action
745 values. We simulated choices for each participant using both methods, which confirmed that the winning

MOTIVATIONAL BIASES IN FRONTO-STRIATAL CIRCUITS

746 model M5 (“asymmetric pathways model”) was able to qualitatively reproduce the data, while an
747 alternative implementation of biased learning (“action priming model”) failed to do so (see
748 Supplementary Note 7 and Supplementary Fig. 6).

749 fMRI data acquisition

750 fMRI data were collected on a 3T Siemens Magnetom Prisma fit MRI scanner with a 64-channel
751 head coil. During scanning, participants’ heads were restricted using foam pillows and strips of adhesive
752 tape were applied to participants’ forehead to provide active motion feedback and minimize head
753 movement ⁹⁴. After two localizer scans to position slices, we collected functional scans with a whole-
754 brain T2*-weighted sequence (68 axial-oblique slices, TR = 1400 ms, TE = 32 ms, voxel size 2.0 mm
755 isotropic, interslice gap 0 mm, interleaved multiband slice acquisition with acceleration factor 4, FOV
756 210 mm, flip angle 75°, A/ P phase encoding direction). The first seven volumes of each run were
757 automatically discarded. This sequence was chosen because of its balance between a short TR and
758 relatively high spatial resolution, which was required to disentangle cue and outcome-related neural
759 activity. Pilots using different sequences yielded that this sequence performed best in reducing signal
760 loss in striatum.

761 Furthermore, after task completion, we removed the EEG cap and collected a high-resolution
762 anatomical image using a T1-weighted MP-RAGE sequence (192 sagittal slices per slab, GRAPPA
763 acceleration factor = 2, TI = 1100 ms, TR = 2300 ms, TE = 3.03 ms, FOV 256 mm, voxel size 1.0 mm
764 isotropic, flip angle 8°) which was used to aid image registration, and a gradient fieldmap (GRE; TR =
765 614 ms, TE1 = 4.92 ms, voxel size 2.4 mm isotropic, flip angle 60°) for distortion correction. For one
766 participant, no fieldmap was collected due to time constraints. At the end of each session, an additional
767 DTI data collection took place; results will be reported elsewhere.

768 fMRI preprocessing

769 All fMRI pre-processing was performed in FSL 6.0.0. After cleaning images from non-brain
770 tissue (brain-extraction with BET), we performed motion correction (MC-FLIRT), spatial smoothing
771 (FWHM 3 mm), and used fieldmaps for B0 unwarping and distortion correction in orbitofrontal areas.
772 We used ICA-AROMA⁹⁵ to automatically detect and reject independent components associated with

MOTIVATIONAL BIASES IN FRONTO-STRIATAL CIRCUITS

773 head motion. Finally, images were high-pass filtered at 100 s and pre-whitened. After the first-level
774 GLM analyses, we computed and applied co-registration of EPI images to high-resolution images
775 (linearly with FLIRT using boundary-based registration) and to MNI152 2mm isotropic standard space
776 (non-linearly with FNIRT using 12 DOF and 10 mm warp resolution).

777 ROI selection

778 For fMRI-informed EEG analyses, we first created a functional mask as the conjunction of the
779 PE_{STD} and PE_{DIF} contrasts by thresholding both z-maps at $z > 3.1$, binarizing, and multiplying them (see
780 Supplementary Figures 9 and 10). After visual inspection of the respective clusters, we created seven
781 anatomical masks based on the probabilistic Harvard-Oxford Atlas (thresholded at 10%): striatum and
782 ACC (see above), vmPFC (combined frontal pole, frontal medial cortex, and paracingulate gyrus), motor
783 cortex (combined precentral and postcentral gyrus), PCC (Cingulate Gyrus, posterior division), ITG
784 (Inferior Temporal Gyrus, posterior division, and Inferior Temporal Gyrus, temporooccipital part) and
785 primary visual cortex (Lingual Gyrus, Occipital Fusiform Gyrus, Occipital Pole). We then multiplied
786 this functional mask with each of the seven anatomical masks, returning seven masks focused on the
787 respective significant clusters, which were then used for signal extraction. For the dACC mask, we
788 manually excluded voxels in pgACC belonging to a distinct cluster. Masks were back-transformed to
789 each participant's native space.

790 For bar plots in Fig. 3A, we multiplied the anatomical masks of vmPFC and striatum specified
791 above with the binarized outcome valence contrast.

792 fMRI analyses

793 For each participant, data were modelled using two event-related GLMs. First, we performed a
794 model-based GLM in which we used trial-by-trial estimates of biased PEs as regressors. Second, we
795 used another model-free GLM in which we modeled all possible action x outcome combinations via
796 outcome-locked categorical regressors while at the same time modeling response-locked left- and right-
797 hand response regressors. This model free GLM also contained the outcome valence contrast reported
798 as an initial manipulation check.

MOTIVATIONAL BIASES IN FRONTO-STRIATAL CIRCUITS

799 In the model-based GLM, we used two model-based regressors that reflected the trial-by-trial
800 prediction error (PE) update term. The update term was computed by multiplying the prediction-error
801 with the condition-specific learning rate. As described above, in the winning model M5, the learning
802 bias term κ leads to altered learning from “congruent” action-outcome pairs, with faster learning of Go
803 actions followed by rewards, but slower unlearning of NoGo actions followed by punishments. To
804 compute trial-by-trial updates, we extracted the group-level parameters of the best fitting computational
805 model M5 (asymmetric pathways model) and used those parameters to compute the prediction error on
806 every trial for every participant. Using the same parameter for each participant is warranted when testing
807 for the same qualitative learning pattern across participants⁹⁶. Given that both standard (base model M1)
808 and biased (winning model M5) PEs were highly correlated (mean correlation of 0.921 across
809 participants, range 0.884–0.952), it appeared difficult to distinguish standard learning from biased
810 learning. As a remedy, we decomposed the biased PE into the standard PE plus a difference term as
811 $PE_{BIAS} = PE_{STD} + PE_{DIF}$ ^{22,36}. Any region displaying truly biased learning should significantly encode
812 *both* the standard PE term and the difference term. The standard PE and difference term were much less
813 correlated (mean correlation of -0.020, range -0.326–0.237). To control for cue-related activation, we
814 furthermore added four regressors spanned by crossing cue valence and performed action (Go response
815 to Win cue, Go response to Avoid cue, NoGo response to Win cue, NoGo response to Avoid cue).

816 The model-free GLM included a separate regressor for each of the eight conditions obtained
817 when crossing performed action (Go/ NoGo) and obtained outcome (reward/ no reward/ no punishment/
818 punishment). We fitted four contrasts: 1) one contrast comparing conditions with positive (reward/ no
819 punishment) and negative (no reward/ punishment) outcomes, used as a quality check to identify regions
820 that encoded outcome valence; 2) one contrast comparing Go vs. NoGo responses at the time of the
821 outcome; 3) one contrast summing of left- and right-hand responses, reflecting Go vs. NoGo responses
822 at the time of the response; and 4) one contrast subtracting right- from left-handed responses, reflecting
823 lateralized motor activation. As this GLM resulted in empty regressors for several participants when
824 fitted on a block level, making it impossible to use the data of the respective blocks on a higher level,
825 we instead concatenated blocks and performed a single GLM per participant. We therefore registered
826 the data from all blocks to the middle image of the first block (default reference volume in FSL) using

MOTIVATIONAL BIASES IN FRONTO-STRIATAL CIRCUITS

827 MCFLIRT. The first and last 20 seconds of each block did not feature any task-related events, such that
828 carry-over effects of task events in the design matrix from one block to another were not possible.

829 In both GLMs, we added four regressors of no interest: one for the motor response (left = +1,
830 right = -1, NoGo = 0), one for error trials, one for outcome onset, and one for trials with invalid motor
831 response (and no outcome respectively). We also added nine or more nuisance regressors: the six
832 realignment parameters from motion correction, mean cerebrospinal fluid (CSF) signal, mean out-of-
833 brain (OBO) signal, and a separate spike regressor for each volume with a relative displacement of more
834 than 2 mm (occurred in 10 participants; in those participants: $M = 7.40$, range 1–29). For the model-free
835 GLM, nuisance regressors were added separately for each block as well as an overall intercept per block.
836 We convolved task regressors with double-gamma haemodynamic response function (HRF) and high-
837 pass filtered the design matrix at 100 s.

838 First-level contrasts were fit in native space. Afterwards, co-registration and reslicing was
839 applied to participants' contrast maps, which were then combined on a (participant and) group level
840 using FSL's mixed effects models tool FLAME with a cluster-forming threshold of $z > 3.1$ and cluster-
841 level error control at $\alpha < .05$ (i.e., two one-sided tests with $\alpha < .025$).

842 EEG data acquisition

843 We recorded EEG data with 64 channels (BrainCap-MR-3-0 64Ch-Standard; Easycap GmbH;
844 Herrsching, Germany; international 10-20 layout, reference electrode at FCz) plus channels for
845 electrocardiogram, heart rate, and respiration (used for MR artifact correction) at a sampling rate of 1000
846 Hz. We placed MRI-compatible EEG amplifiers (BrainAmp MR plus; Brain Products GmbH, Gilching,
847 Germany) behind the MR scanner and attached cables to the participants once they were located in final
848 position in the scanner. Furthermore, we fixated cables using sand-filled pillows to reduce artifacts
849 induced through cable movement in the magnetic field. During functional scans, the MR helium pump
850 was switched off to reduce EEG artifacts. After the scanning, we recorded the exact EEG electrode
851 locations on participants' heads relative to three fiducial points using a Polhemus FASTRAK device.
852 For four participants, no such data were available due to time constraints/ technical errors, in which case
853 we used the average electrode locations of the remaining 32 participants.

MOTIVATIONAL BIASES IN FRONTO-STRIATAL CIRCUITS

854 EEG pre-processing

855 First, raw EEG data were cleaned from MR scanner and cardioballistic artifacts using
856 BrainVisionAnalyzer⁹⁷. The rest of the pre-processing was performed in Fieldtrip⁹⁸. After rejecting
857 channels with high residual MR noise (mean 4.8 channels per participant, range 1–13), we epoched trials
858 into time windows of -1,400–2,000 ms relative to the onset of outcomes. Timing of these epochs was
859 determined by the minimal inter-stimulus interval beforehand until the minimal inter-trial interval
860 afterwards. Data was re-referenced to the grand average, which allowed us to recover the reference as
861 channel FCz, and then band-pass filtered using a two-pass 4th order Butterworth IIR filter (Fieldtrip
862 default) in the range of 0.5–35 Hz. These filter settings allowed us to distinguish the delta, theta, alpha,
863 and beta band, while filtering out residual high-frequency MR noise. This low-pass filter cut-off was
864 different from a previous analysis of this data in which we set it at 15 Hz¹⁷ because, in this analysis, we
865 had a hypothesis on outcome valence encoding in the beta range. We then applied linear baseline
866 correction based on the 200 ms prior to cue onset and used ICA to detect and reject independent
867 components related to eye-blinks, saccades, head motion, and residual MR artifacts (mean number of
868 rejected components per participant: 32.694, range 24–45). Afterwards, we manually rejected trials with
869 residual motion (for all 36 participants: $M = 117.722$, range 11–499). Based on trial rejection, four
870 participants for which more than 211 (33%) of trials were rejected were excluded from any further
871 analyses (rejected trials after excluding those participants: $M = 81.875$, range 11–194). Finally, we
872 computed a Laplacian filter with the spherical spline method to remove global noise (using the exact
873 electrode positions recorded with Polhemus FASTRAK), which we also used to interpolate previously
874 rejected channels. This filter attenuates more global signals (e.g., signal from deep sources or global
875 noise) and noise (heart-beat and muscle artifacts) while accentuating more local effects (e.g., superficial
876 sources).

877 EEG TF decomposition

878 We decomposed the trial-by-trial EEG time series into their time-frequency representations using
879 33 Hanning tapers between 1 and 33 Hz in steps of 1 Hz, every 25 ms from -1000 until 1,300 ms relative
880 to outcome onset. We first zero-padded trials to a length of 8 sec. and then performed time-frequency

MOTIVATIONAL BIASES IN FRONTO-STRIATAL CIRCUITS

881 decomposition in steps of 1 Hz by multiplying the Fourier transform of the trial with the Fourier
882 transform of a Hanning taper of 400 ms width, centered around the time point of interest. This procedure
883 results in an effective resolution of 2.5 Hz (Rayleigh frequency), interpolated in 1 Hz steps, which was
884 more robust to the choice of exact frequency bins. To exclude the possibility of slow drifts in power
885 over the time course of the experiment, we performed baseline correction across participants and trials
886 by fitting a linear model for each channel/ frequency combination with trial number as predictor and the
887 average power 250–50 ms before outcome onset as outcome, and subtracting the power predicted by
888 this model from the data. This procedure is able to remove slow linear drifts in power over time from
889 the data. In absence of such drifts, it is equivalent to correcting all trials by the grand mean across trials
890 per frequency in the selected baseline time window. Afterwards, we averaged power over trials within
891 each condition spanned by performed action (Go/ NoGo) and outcome (reward/ no reward/ no
892 punishment/ punishment). We finally converted the average time-frequency data per condition to decibel
893 to ensure that data across frequencies, time points, electrodes, and participants were on same scale.

894 EEG analyses

895 All analyses were performed on the average signal of a-priori selected channels Fz, FCz, and
896 Cz based on previous literature^{9,17}. We again performed model-free and model-based analyses. For the
897 model-free analyses, we sorted trials based on the performed action (Go/ NoGo) and obtained outcome
898 (reward/ no reward/ no punishment/ punishment) and computed the mean TF power across trials for
899 each of the resultant eight conditions for each participant. We tested whether theta power (average power
900 4–8 Hz) and beta power (average power 13–30 Hz) encoded outcome valence by contrasting positive
901 (reward/ no punishment) and negative (no reward/ punishment) conditions (irrespective of the performed
902 action). We also tested for differences between Go and NoGo responses in the lower alpha band (6–10
903 Hz). For all contrasts, we employed two-sided cluster-based permutation tests in a window from 0–
904 1,000 ms relative to outcome onset. For beta power, results were driven by a cluster that was at the edge
905 of 1,000 ms; to more accurately report the time span during which this cluster exceeded the threshold,
906 we extended the time window to 1,300 ms in this particular analysis. Such tests are able to reject the
907 null hypothesis of exchangeability of two experimental conditions, but they are not suited to precisely

MOTIVATIONAL BIASES IN FRONTO-STRIATAL CIRCUITS

908 locate clusters in time-frequency space. Hence, interpretations were mostly based on the visual
909 inspection of plots of the signal time courses.

910 For model-based analyses, similar to fMRI analyses, we used the group-level parameters from
911 the best fitting computational model M5 to compute the trial-by-trial biased PE term and decomposed
912 it into the standard PE term and the difference to the biased PE term. We used both terms as predictors
913 in a multiple linear regression for each channel-time-frequency bin for each participant, and then
914 performed one-sample cluster-based permutation-tests across the resultant *b*-maps of all participants⁹⁹.

915 For further details on this procedure, see fMRI-inspired EEG analyses.

916 fMRI-informed EEG analyses

917 The BOLD signal is sluggish. It is thus hard to determine when different brain regions become
918 active. In contrast, EEG provides much higher temporal resolution. A fruitful approach can be to identify
919 distinct EEG correlates of the BOLD signal in different regions, allowing to test hypotheses about the
920 temporal order in which regions might become active and modulated EEG power^{17,74}. Furthermore, by
921 using the BOLD signal from different regions in a multiple linear regression, one can control for
922 variance shared among regions (e.g., changes in global signal; variance due to task regressors) and test
923 which region is the best unique predictor of a certain EEG signal. In such an analysis, any correlation
924 between EEG and BOLD signal from a certain region reflects an association above and beyond those
925 induced by task conditions.

926 We used the trial-by-trial BOLD signal in selected regions in a multiple linear regression to predict
927 EEG signal over the scalp^{17,74} (building on existing code from <https://github.com/tuhauser/TAfT>; see
928 Supplementary Fig. 17 for a graphical illustration). As a first step, we extracted the volume-by-volume
929 signal (first eigenvariate) from each of the seven regions identified to encode biased PEs (conjunction
930 of PE_{STD} and PE_{DIF}: striatum, dACC, pgACC, left motor cortex, PCC, left ITG, and primary visual
931 cortex). We applied a highpass-filter at 128 s and regressed out nuisance regressors (6 realignment
932 parameters, CSF, OOB, single volumes with strong motion, same as in the fMRI GLM). We then
933 upsampled the signal by a factor 10, epoched it into trials of 8 s duration, and fitted a separate HRF
934 (based on the SPM template) to each trial (58 upsampled data points), resulting in trial-by-trial

MOTIVATIONAL BIASES IN FRONTO-STRIATAL CIRCUITS

935 regression weights reflecting the respective BOLD response. We then combined the regression weights
936 of all trials and regions of a certain participant into a design matrix with trials as rows and the seven
937 ROIs as columns, which we then used to predict power at each time-frequency-channel bin. As further
938 control variables, we added the behavioral PE_{STD} and PE_{DIF} regressors to the design matrix. All results
939 were identical with and without the inclusion of PEs as covariates in the regression, suggesting that
940 EEG-fMRI correlations did not merely arise from both modalities encoded PEs as a “common cause”
941 that induced correlations. Instead, these correlations reflected the incremental variance explained in EEG
942 power that was afforded by the BOLD signal even beyond the PEs. All predictors and outcomes were
943 demeaned such that the intercept became zero. Such a multiple linear regression was performed for each
944 participant, resulting in a time-frequency-channel-ROI *b*-map reflecting the association between trial-
945 by-trial BOLD signal and TF power at each time-frequency-channel bin. *B*-maps were Fisher-*z*
946 transformed, which makes the sampling distribution of correlation coefficients approximately normal
947 and allows for combining them across participants. Finally, we tested for fMRI-EEG associations with
948 a cluster-based one-sample permutation *t*-test⁹⁹ on the mean regression weights over channels Fz, FCz,
949 and Cz across participants in the range of 0–1000 ms, 1–33 Hz. We first obtained a null distribution of
950 maximal cluster mass statistics from 10000 permutations. For each permutation, we flipped the sign of
951 the *b*-map of a random subset of participants, computed a separate *t*-test at each time-frequency bin (bins
952 of 25 ms, 1 Hz) across participants (results in *t*-map), thresholded these maps at $|t| > 2$, and finally
953 computed the maximal cluster mask statistic (sum of all *t*-values) for any cluster (adjacent voxels above
954 threshold). Afterwards, we computed the same *t*-map for the real data, identified the cluster with the
955 biggest cluster-mass statistic, and computed the corresponding *p*-value as number of permutations in the
956 null distribution that were larger than the maximal cluster mass statistic in the real data.

957 EEG-informed fMRI analyses

958 For the EEG-informed fMRI analyses, we fit three additional GLMs for which we entered the
959 trial-by-trial theta/ delta power (1–8 Hz), beta power (13–30 Hz), and lower alpha band power (6–10
960 Hz) as parametric regressors on top of the task regressors of the model-free GLM. These measures were
961 created by using the 3-D (time-frequency-channel) *t*-map obtained when contrasting positive vs.

MOTIVATIONAL BIASES IN FRONTO-STRIATAL CIRCUITS

962 negative outcomes (theta/ delta and beta; Fig. 4 A, B) and Go vs. NoGo conditions (lower alpha band)
963 as a linear filter (Fig. 4; see Supplementary Fig. 18 for a graphical illustration of this approach). Note
964 that these signals were selected based on the EEG-only results and not informed by the fMRI-informed
965 EEG analyses. We enforced strict frequency cut-offs. For lower alpha band and beta, we used midfrontal
966 channels (Fz/ FCz/ Cz). For theta/ delta power, given the topography that reached far beyond midfrontal
967 channels and over the entire frontal scalp, we used a much wider ROI (AF3/ AF4/ AF7/ AF8/ F1/ F2/
968 F3/ F4/ F5/ F6/ F7/ F8/ FC1/ FC2/ FC3/ FC4/ FC5/ FC6/ FCz/ Fp1/ Fp2/ Fpz/ Fz). We extracted those
969 maps and retained all voxels with $t > 2$. These masks were applied to the trial-by-trial time-frequency
970 data to create weighted summary measures of the average power in the identified clusters in each trial.
971 For trials for which EEG data was rejected, we imputed the participant mean value of the respective
972 action (Go/ NoGo) x outcome (reward/ no reward/ no punishment/ punishment) condition. Note that this
973 approach accentuates differences between conditions, which were already captured by the task
974 regressors in the GLM, but decreases trial-by-trial variability within each condition, which is of interest
975 in this analysis. This imputation approach is thus conservative. While trial-by-trial beta and theta power
976 were largely uncorrelated, mean $r = 0.104$, range -0.118 – 0.283 across participants, and so were beta and
977 alpha, mean $r = 0.097$, range -0.162 – 0.284 across participants, theta and alpha power moderately
978 correlate, mean $r = 0.412$, range 0.121 – 0.836 across participants, warranting the use of a separate
979 channel ROI for theta and using separate GLMs for each frequency band.

980 Analyses of behavior as a function of BOLD signal and EEG power

981 We used mixed-effects logistic regression to analyze “stay behavior”, i.e., whether participants
982 repeated an action on the next encounter of the same cue, as a function of BOLD signal and EEG power
983 in selected regions. For analyses featuring BOLD signal, we used the trial-by-trial HRF amplitude also
984 used for fMRI-informed EEG analyses. For analyses featuring EEG, we used the trial-by-trial EEG
985 power also used in the EEG-informed fMRI analyses.

MOTIVATIONAL BIASES IN FRONTO-STRIATAL CIRCUITS

986 References

- 987 1. Dayan, P., Niv, Y., Seymour, B. & Daw, N. The misbehavior of value and the discipline of the will.
988 *Neural Networks* **19**, 1153–1160 (2006).
- 989 2. Guitart-Masip, M., Duzel, E., Dolan, R. & Dayan, P. Action versus valence in decision making.
990 *Trends in Cognitive Sciences* **18**, 194–202 (2014).
- 991 3. Swart, J. C. *et al.* Catecholaminergic challenge uncovers distinct Pavlovian and instrumental
992 mechanisms of motivated (in)action. *eLife* **6**, e22169 (2017).
- 993 4. Mkrtchian, A., Aylward, J., Dayan, P., Roiser, J. P. & Robinson, O. J. Modeling avoidance in mood
994 and anxiety disorders using reinforcement learning. *Biological Psychiatry* **82**, 532–539 (2017).
- 995 5. Huys, Q. J. M. *et al.* The specificity of Pavlovian regulation is associated with recovery from
996 depression. *Psychological Medicine* **46**, 1027–1035 (2016).
- 997 6. Huys, Q. J. M. *et al.* Disentangling the roles of approach, activation and valence in instrumental
998 and Pavlovian responding. *PLoS Computational Biology* **7**, e1002028 (2011).
- 999 7. Boureau, Y.-L., Sokol-Hessner, P. & Daw, N. D. Deciding how to decide: Self-control and meta-
1000 decision making. *Trends in Cognitive Sciences* **19**, 700–710 (2015).
- 1001 8. Guitart-Masip, M. *et al.* Go and no-go learning in reward and punishment: Interactions between
1002 affect and effect. *NeuroImage* **62**, 154–166 (2012).
- 1003 9. Swart, J. C. *et al.* Frontal network dynamics reflect neurocomputational mechanisms for reducing
1004 maladaptive biases in motivated action. *PLOS Biology* **16**, e2005979 (2018).
- 1005 10. de Boer, L. *et al.* Dorsal striatal dopamine D1 receptor availability predicts an instrumental bias in
1006 action learning. *Proceedings of the National Academy of Sciences* **116**, 261–270 (2019).
- 1007 11. Williams, D. R. & Williams, H. Auto-maintenance in the pigeon: Sustained pecking despite
1008 contingent non-reinforcement. *Journal of the Experimental Analysis of Behavior* **12**, 511–520
1009 (1969).
- 1010 12. Brown, P. L. & Jenkins, H. M. Autoshaping of pigeon's key-peck. *Journal of the Experimental
1011 Analysis of Behavior* **11**, 1–8 (1968).

MOTIVATIONAL BIASES IN FRONTO-STRIATAL CIRCUITS

1012 13. Ritov, I. & Baron, J. Reluctance to vaccinate: Omission bias and ambiguity. *Journal of Behavioral*
1013 *Decision Making* **3**, 263–277 (1990).

1014 14. Zeelenberg, M., Pligt, J. van der & de Vries, N. K. Attributions of responsibility and affective
1015 reactions to decision outcomes. *Acta Psychologica* **104**, 303–315 (2000).

1016 15. Guitart-Masip, M. *et al.* Action dominates valence in anticipatory representations in the human
1017 striatum and dopaminergic midbrain. *Journal of Neuroscience* **31**, 7867–7875 (2011).

1018 16. Guitart-Masip, M. *et al.* Action controls dopaminergic enhancement of reward representations.
1019 *Proceedings of the National Academy of Sciences* **109**, 7511–7516 (2012).

1020 17. Algermissen, J., Swart, J. C., Scheeringa, R., Cools, R. & den Ouden, H. E. M. Striatal BOLD and
1021 midfrontal theta power express motivation for action. *Cerebral Cortex* **32**, 2924–2942 (2022).

1022 18. Frank, M. J. Dynamic dopamine modulation in the basal ganglia: A neurocomputational account
1023 of cognitive deficits in medicated and nonmedicated Parkinsonism. *Journal of Cognitive*
1024 *Neuroscience* **17**, 51–72 (2005).

1025 19. Collins, A. G. E. & Frank, M. J. Opponent actor learning (OpAL): Modeling interactive effects of
1026 striatal dopamine on reinforcement learning and choice incentive. *Psychological Review* **121**,
1027 337–366 (2014).

1028 20. Doll, B. B., Jacobs, W. J., Sanfey, A. G. & Frank, M. J. Instructional control of reinforcement
1029 learning: A behavioral and neurocomputational investigation. *Brain Research* **1299**, 74–94
1030 (2009).

1031 21. Atlas, L. Y., Doll, B. B., Li, J., Daw, N. D. & Phelps, E. A. Instructed knowledge shapes feedback-
1032 driven aversive learning in striatum and orbitofrontal cortex, but not the amygdala. *eLife* **5**,
1033 e15192 (2016).

1034 22. Daw, N. D., Gershman, S. J., Seymour, B., Dayan, P. & Dolan, R. J. Model-based influences on
1035 humans' choices and striatal prediction errors. *Neuron* **69**, 1204–1215 (2011).

1036 23. Lee, S. W., Shimojo, S. & O'Doherty, J. P. Neural computations underlying arbitration between
1037 model-based and model-free learning. *Neuron* **81**, 687–699 (2014).

MOTIVATIONAL BIASES IN FRONTO-STRIATAL CIRCUITS

1038 24. Piray, P., Toni, I. & Cools, R. Human choice strategy varies with anatomical projections from
1039 ventromedial prefrontal cortex to medial striatum. *Journal of Neuroscience* **36**, 2857–2867
1040 (2016).

1041 25. Behrens, T. E. J., Woolrich, M. W., Walton, M. E. & Rushworth, M. F. S. Learning the value of
1042 information in an uncertain world. *Nature Neuroscience* **10**, 1214–1221 (2007).

1043 26. Meder, D. *et al.* Simultaneous representation of a spectrum of dynamically changing value
1044 estimates during decision making. *Nature Communications* **8**, 1942 (2017).

1045 27. van Nuland, A. J. *et al.* Effects of dopamine on reinforcement learning in Parkinson's disease
1046 depend on motor phenotype. *Brain* **143**, 3422–3434 (2020).

1047 28. van de Vijver, I., Ridderinkhof, K. R. & Cohen, M. X. Frontal oscillatory dynamics predict feedback
1048 learning and action adjustment. *Journal of Cognitive Neuroscience* **23**, 4106–4121 (2011).

1049 29. Cohen, M. X., Wilmes, K. A. & van de Vijver, I. Cortical electrophysiological network dynamics of
1050 feedback learning. *Trends in Cognitive Sciences* **15**, 558–566 (2011).

1051 30. Cavanagh, J. F., Frank, M. J., Klein, T. J. & Allen, J. J. B. Frontal theta links prediction errors to
1052 behavioral adaptation in reinforcement learning. *NeuroImage* **49**, 3198–3209 (2010).

1053 31. Cavanagh, J. F. Cortical delta activity reflects reward prediction error and related behavioral
1054 adjustments, but at different times. *NeuroImage* **110**, 205–216 (2015).

1055 32. Talmi, D., Atkinson, R. & El-Deredy, W. The feedback-related negativity signals salience
1056 prediction errors, not reward prediction errors. *Journal of Neuroscience* **33**, 8264–8269 (2013).

1057 33. Bernat, E. M., Nelson, L. D. & Baskin-Sommers, A. R. Time-frequency theta and delta measures
1058 index separable components of feedback processing in a gambling task. *Psychophysiology* **52**,
1059 626–637 (2015).

1060 34. Marco-Pallarés, J., Münte, T. F. & Rodríguez-Fornells, A. The role of high-frequency oscillatory
1061 activity in reward processing and learning. *Neuroscience and Biobehavioral Reviews* **49**, 1–7
1062 (2015).

MOTIVATIONAL BIASES IN FRONTO-STRIATAL CIRCUITS

1063 35. Cockburn, J., Collins, A. G. E. & Frank, M. J. A reinforcement learning mechanism responsible for
1064 the valuation of free choice. *Neuron* **83**, 551–557 (2014).

1065 36. Wittmann, B. C., Daw, N. D., Seymour, B. & Dolan, R. J. Striatal activity underlies novelty-based
1066 choice in humans. *Neuron* **58**, 967–973 (2008).

1067 37. Mumford, J. A., Poline, J.-B. & Poldrack, R. A. Orthogonalization of regressors in fMRI models.
1068 *PLOS ONE* **10**, e0126255 (2015).

1069 38. Bartra, O., McGuire, J. T. & Kable, J. W. The valuation system: A coordinate-based meta-analysis
1070 of BOLD fMRI experiments examining neural correlates of subjective value. *NeuroImage* **76**, 412–
1071 427 (2013).

1072 39. Huster, R. J., Debener, S., Eichele, T. & Herrmann, C. S. Methods for simultaneous EEG-fMRI: An
1073 introductory review. *Journal of Neuroscience* **32**, 6053–6060 (2012).

1074 40. Debener, S., Ullsperger, M., Siegel, M. & Engel, A. K. Single-trial EEG–fMRI reveals the dynamics
1075 of cognitive function. *Trends in Cognitive Sciences* **10**, 558–563 (2006).

1076 41. Sadaghiani, S. *et al.* Intrinsic connectivity networks, alpha oscillations, and tonic alertness: A
1077 simultaneous electroencephalography/functional magnetic resonance imaging study. *Journal of
1078 Neuroscience* **30**, 10243–10250 (2010).

1079 42. Andreou, C. *et al.* Theta and high-beta networks for feedback processing: a simultaneous EEG–
1080 fMRI study in healthy male subjects. *Transl Psychiatry* **7**, e1016–e1016 (2017).

1081 43. Mas-Herrero, E., Ripollés, P., HajiHosseini, A., Rodríguez-Fornells, A. & Marco-Pallarés, J. Beta
1082 oscillations and reward processing: Coupling oscillatory activity and hemodynamic responses.
1083 *NeuroImage* **119**, 13–19 (2015).

1084 44. Sepe-Forrest, L., Carver, F. W., Quentin, R., Holroyd, T. & Nugent, A. C. Basal ganglia activation
1085 localized in MEG using a reward task. *Neuroimage: Reports* **1**, 100034 (2021).

1086 45. HajiHosseini, A. & Holroyd, C. B. Reward feedback stimuli elicit high-beta EEG oscillations in
1087 human dorsolateral prefrontal cortex. *Scientific Reports* **5**, 13021 (2015).

MOTIVATIONAL BIASES IN FRONTO-STRIATAL CIRCUITS

1088 46. Frank, M. J., Woroch, B. S. & Curran, T. Error-related negativity predicts reinforcement learning
1089 and conflict biases. *Neuron* **47**, 495–501 (2005).

1090 47. Haber, S. N. The primate basal ganglia: Parallel and integrative networks. *Journal of Chemical
1091 Neuroanatomy* **26**, 317–330 (2003).

1092 48. Pasupathy, A. & Miller, E. K. Different time courses of learning-related activity in the prefrontal
1093 cortex and striatum. *Nature* **433**, 873–876 (2005).

1094 49. Wang, J. X. *et al.* Prefrontal cortex as a meta-reinforcement learning system. *Nat Neurosci* **21**,
1095 860–868 (2018).

1096 50. Rolls, E. T., Critchley, H. D., Mason, R. & Wakeman, E. A. Orbitofrontal cortex neurons: Role in
1097 olfactory and visual association learning. *Journal of Neurophysiology* **75**, 1970–1981 (1996).

1098 51. Morrison, S. E. & Salzman, C. D. The convergence of information about rewarding and aversive
1099 stimuli in single neurons. *Journal of Neuroscience* **29**, 11471–11483 (2009).

1100 52. Sharpe, M. J. *et al.* Dopamine transients are sufficient and necessary for acquisition of model-
1101 based associations. *Nature Neuroscience* **20**, 735–742 (2017).

1102 53. Sharpe, M. J. *et al.* An integrated model of action selection: Distinct modes of cortical control of
1103 striatal decision making. *Annual Review of Psychology* **70**, 53–76 (2019).

1104 54. Antzoulatos, E. G. & Miller, E. K. Increases in functional connectivity between prefrontal cortex
1105 and striatum during category learning. *Neuron* **83**, 216–225 (2014).

1106 55. Seo, M., Lee, E. & Averbeck, B. B. Action selection and action value in frontal-striatal circuits.
1107 *Neuron* **74**, 947–960 (2012).

1108 56. Howard, J. D. *et al.* Targeted stimulation of human orbitofrontal networks disrupts outcome-
1109 guided behavior. *Current Biology* **30**, 490-498.e4 (2020).

1110 57. van Schouwenburg, M. R., O'Shea, J., Mars, R. B., Rushworth, M. F. S. & Cools, R. Controlling
1111 human striatal cognitive function via the frontal cortex. *Journal of Neuroscience* **32**, 5631–5637
1112 (2012).

MOTIVATIONAL BIASES IN FRONTO-STRIATAL CIRCUITS

1113 58. Fouragnan, E., Retzler, C., Mullinger, K. & Philiastides, M. G. Two spatiotemporally distinct value
1114 systems shape reward-based learning in the human brain. *Nat Commun* **6**, 8107 (2015).

1115 59. Alexander, W. H. & Brown, J. W. Medial prefrontal cortex as an action-outcome predictor.
1116 *Nature Neuroscience* **14**, 1338–1344 (2011).

1117 60. Alexander, W. H. & Brown, J. W. Frontal cortex function as derived from hierarchical predictive
1118 coding. *Sci Rep* **8**, 3843 (2018).

1119 61. Enel, P., Wallis, J. D. & Rich, E. L. Stable and dynamic representations of value in the prefrontal
1120 cortex. *eLife* **9**, e54313 (2020).

1121 62. Vyas, S., O’Shea, D. J., Ryu, S. I. & Shenoy, K. V. Causal role of motor preparation during error-
1122 driven learning. *Neuron* **106**, 329-339.e4 (2020).

1123 63. Shadmehr, R., Smith, M. A. & Krakauer, J. W. Error correction, sensory prediction, and adaptation
1124 in motor control. *Annual Review of Neuroscience* **33**, 89–108 (2010).

1125 64. Marco-Pallarés, J. *et al.* Human oscillatory activity associated to reward processing in a gambling
1126 task. *Neuropsychologia* **46**, 241–248 (2008).

1127 65. Scheeringa, R. *et al.* Frontal theta EEG activity correlates negatively with the default mode
1128 network in resting state. *International Journal of Psychophysiology* **67**, 242–251 (2008).

1129 66. Scheeringa, R. *et al.* Trial-by-trial coupling between EEG and BOLD identifies networks related to
1130 alpha and theta EEG power increases during working memory maintenance. *NeuroImage* **44**,
1131 1224–1238 (2009).

1132 67. Fouragnan, E., Retzler, C. & Philiastides, M. G. Separate neural representations of prediction
1133 error valence and surprise: Evidence from an fMRI meta-analysis. *Human Brain Mapping* **39**,
1134 2887–2906 (2018).

1135 68. Engel, A. K. & Fries, P. Beta-band oscillations—signalling the status quo? *Current Opinion in*
1136 *Neurobiology* **20**, 156–165 (2010).

1137 69. Feingold, J., Gibson, D. J., Depasquale, B. & Graybiel, A. M. Bursts of beta oscillation differentiate
1138 postperformance activity in the striatum and motor cortex of monkeys performing movement

MOTIVATIONAL BIASES IN FRONTO-STRIATAL CIRCUITS

1139 tasks. *Proceedings of the National Academy of Sciences of the United States of America* **112**,
1140 13687–13692 (2015).

1141 70. Hauser, T. U. *et al.* The feedback-related negativity (FRN) revisited: New insights into the
1142 localization, meaning and network organization. *NeuroImage* **84**, 159–168 (2014).

1143 71. Wessel, J. R. & Aron, A. R. On the globality of motor suppression: Unexpected events and their
1144 influence on behavior and cognition. *Neuron* **93**, 259–280 (2017).

1145 72. Trudel, N. *et al.* Polarity of uncertainty representation during exploration and exploitation in
1146 ventromedial prefrontal cortex. *Nat Hum Behav* **5**, 83–98 (2021).

1147 73. Domenech, P., Rheims, S. & Koechlin, E. Neural mechanisms resolving exploitation-exploration
1148 dilemmas in the medial prefrontal cortex. *Science* **369**, eabb0184 (2020).

1149 74. Hauser, T. U. *et al.* Temporally dissociable contributions of human medial prefrontal subregions
1150 to reward-guided learning. *Journal of Neuroscience* **35**, 11209–11220 (2015).

1151 75. Foti, D., Weinberg, A., Dien, J. & Hajcak, G. Event-related potential activity in the basal ganglia
1152 differentiates rewards from nonrewards: Temporospatial principal components analysis and
1153 source localization of the feedback negativity. *Human Brain Mapping* **32**, 2207–2216 (2011).

1154 76. Cohen, M. X., Cavanagh, J. F. & Slagter, H. A. Event-related potential activity in the basal ganglia
1155 differentiates rewards from nonrewards: Temporospatial principal components analysis and
1156 source localization of the feedback negativity: Commentary. *Human Brain Mapping* **32**, 2270–
1157 2271 (2011).

1158 77. Amemori, K., Amemori, S., Gibson, D. J. & Graybiel, A. M. Striatal microstimulation induces
1159 persistent and repetitive negative decision-making predicted by striatal beta-band oscillation.
1160 *Neuron* **99**, 829-841.e6 (2018).

1161 78. Amemori, K., Amemori, S., Gibson, D. J. & Graybiel, A. M. Striatal beta oscillation and neuronal
1162 activity in the primate caudate nucleus differentially represent valence and arousal under
1163 approach-avoidance conflict. *Frontiers in Neuroscience* **14**, 1–17 (2020).

MOTIVATIONAL BIASES IN FRONTO-STRIATAL CIRCUITS

1164 79. Courtemanche, R., Fujii, N. & Graybiel, A. M. Synchronous, focally modulated β -band oscillations
1165 characterize local field potential activity in the striatum of awake behaving monkeys. *Journal of*
1166 *Neuroscience* **23**, 11741–11752 (2003).

1167 80. Cohen, M. X. *et al.* Neuroelectric signatures of reward learning and decision-making in the
1168 human nucleus accumbens. *Neuropsychopharmacology* **34**, 1649–1658 (2009).

1169 81. Matsumoto, M., Matsumoto, K., Abe, H. & Tanaka, K. Medial prefrontal cell activity signaling
1170 prediction errors of action values. *Nat Neurosci* **10**, 647–656 (2007).

1171 82. Seo, H. & Lee, D. Temporal filtering of reward signals in the dorsal anterior cingulate cortex
1172 during a mixed-strategy game. *Journal of Neuroscience* **27**, 8366–8377 (2007).

1173 83. Hayden, B. Y., Nair, A. C., McCoy, A. N. & Platt, M. L. Posterior cingulate cortex mediates
1174 outcome-contingent allocation of behavior. *Neuron* **60**, 19–25 (2008).

1175 84. Mohebi, A. *et al.* Dissociable dopamine dynamics for learning and motivation. *Nature* **570**, 65–70
1176 (2019).

1177 85. Hamid, A. A., Frank, M. J. & Moore, C. I. Wave-like dopamine dynamics as a mechanism for
1178 spatiotemporal credit assignment. *Cell* **184**, 2733-2749.e16 (2021).

1179 86. Findling, C., Skvortsova, V., Dromnelle, R., Palminteri, S. & Wyart, V. Computational noise in
1180 reward-guided learning drives behavioral variability in volatile environments. *Nature*
1181 *Neuroscience* (2019) doi:10.1038/s41593-019-0518-9.

1182 87. Boorman, E. D., Behrens, T. E. J., Woolrich, M. W. & Rushworth, M. F. S. How green is the grass
1183 on the other side? Frontopolar cortex and the evidence in favor of alternative courses of action.
1184 *Neuron* **62**, 733–743 (2009).

1185 88. Fouragnan, E. F. *et al.* The macaque anterior cingulate cortex translates counterfactual choice
1186 value into actual behavioral change. *Nat Neurosci* **22**, 797–808 (2019).

1187 89. Cavanagh, J. F., Eisenberg, I., Guitart-Masip, M., Huys, Q. J. M. & Frank, M. J. Frontal theta
1188 overrides Pavlovian learning biases. *Journal of Neuroscience* **33**, 8541–8548 (2013).

MOTIVATIONAL BIASES IN FRONTO-STRIATAL CIRCUITS

1189 90. Barr, D. J., Levy, R., Scheepers, C. & Tily, H. J. Random effects structure for confirmatory
1190 hypothesis testing: Keep it maximal. *Journal of Memory and Language* **68**, 255–278 (2013).

1191 91. Rescorla, R. A. & Wagner, A. R. A theory of Pavlovian conditioning: Variations in the effectiveness
1192 of reinforcement and nonreinforcement. in *Classical Conditioning II: Current Research and*
1193 *Theory* (eds. Black, A. H. & Prokasy, W. F.) vol. 21 64–99 (Appleton Century Crofts, 1972).

1194 92. Piray, P., Dezfouli, A., Heskes, T., Frank, M. J. & Daw, N. D. Hierarchical Bayesian inference for
1195 concurrent model fitting and comparison for group studies. *PLOS Computational Biology* **15**,
1196 e1007043 (2019).

1197 93. Stephan, K. E., Penny, W. D., Daunizeau, J., Moran, R. J. & Friston, K. J. Bayesian model selection
1198 for group studies. *NeuroImage* **46**, 1004–1017 (2009).

1199 94. Krause, F. *et al.* Active head motion reduction in magnetic resonance imaging using tactile
1200 feedback. *Human Brain Mapping* **40**, 4026–4037 (2019).

1201 95. Pruim, R. H. R. *et al.* ICA-AROMA: A robust ICA-based strategy for removing motion artifacts from
1202 fMRI data. *NeuroImage* **112**, 267–277 (2015).

1203 96. Wilson, R. C. & Niv, Y. Is model fitting necessary for model-based fMRI? *PLOS Computational*
1204 *Biology* **11**, e1004237 (2015).

1205 97. Allen, P. J., Josephs, O. & Turner, R. A method for removing imaging artifact from continuous EEG
1206 recorded during functional MRI. *NeuroImage* **12**, 230–239 (2000).

1207 98. Oostenveld, R., Fries, P., Maris, E. & Schoffelen, J.-M. FieldTrip: Open source software for
1208 advanced analysis of MEG, EEG, and invasive electrophysiological data. *Computational*
1209 *Intelligence and Neuroscience* **2011**, 1–9 (2011).

1210 99. Hunt, L. T., Woolrich, M. W., Rushworth, M. F. S. & Behrens, T. E. J. Trial-type dependent frames
1211 of reference for value comparison. *PLoS Computational Biology* **9**, e1003225 (2013).

MOTIVATIONAL BIASES IN FRONTO-STRIATAL CIRCUITS

1212 Acknowledgments

1213 We thank Emma van Dijk for assistance with data collection, Michael J. Frank for helpful
1214 discussions, and the weekly Donders M/EEG meeting for discussions of these results and many helpful
1215 suggestions.

1216 Funding

1217 This work was supported by:

1218 Netherlands Organization for Scientific Research (NWO) research talent grant 406-14-028 (JCS)

1219 Netherlands Organization for Scientific Research (NWO) VENI grant 451-12-021 (RS)

1220 Netherlands Organization for Scientific Research (NWO) VICI grant 453-14-005 (RC)

1221 Netherlands Organization for Scientific Research (NWO) Ammodo KNAW Award 2017 (RC)

1222 James S. McDonnell Foundation James McDonnell Scholar Award (RC)

1223 Netherlands Organization for Scientific Research (NWO) VIDI grant 452-17-016 (HEMDO)

1224 Author contributions

1225 Conceptualization: JA, JCS, RC, HEMDO

1226 Data curation: JA

1227 Formal analysis: JA

1228 Funding acquisition: JCS, RC, HEMDO

1229 Investigation: JA, JCS

1230 Methodology: JA, HEMDO

1231 Project administration: JA, JCS, HEMDO

1232 Resources: RC, HEMDO

1233 Software: JA, JCS, HEMDO

1234 Supervision: JCS, RS, RC, HEMDO

1235 Validation: JA, JCS, RS, RC, HEMDO

1236 Visualization: JA

MOTIVATIONAL BIASES IN FRONTO-STRIATAL CIRCUITS

1237 Writing – original draft: JA, HEMDO

1238 Writing – review & editing: JA, JCS, RS, RC, HEMDO

1239 Competing interests

1240 Authors declare that they have no competing interests.

1241 Data and code availability statement

1242 All raw data is available under: <https://doi.org/10.34973/pezs-pw62>. All code required to
1243 achieve the reported results as well as preprocessed data and fMRI results are available under: [All data
1244 and code will be made available upon 19 manuscript acceptance]. In line with requirements of the Ethics
1245 Committee and the Radboud University security officer, potentially identifying data (such as imaging
1246 data) can only be shared to identifiable researchers. Hence, researchers requesting access to the data
1247 have to register and accept a data user agreement; access will then automatically be granted via a “click-
1248 through” procedure (without involvement of authors or data stewards).

1249 Group-level unthresholded fMRI z-maps are available on Neurovault
1250 (<https://neurovault.org/collections/11184/>).

1 Supplementary Information to “Prefrontal 2 signals precede striatal signals for biased 3 credit assignment to (in)actions”

4

5 Contents

6 Supplementary Note 1: Behavioral results with only the 29 participants included in EEG-fMRI	
7 analyses	3
8 Supplementary Note 2: Behavioral fMRI results with only the 29 participants included in EEG-fMRI	
9 analyses	4
10 Supplementary Note 3: EEG results with only the 29 participants included in EEG-fMRI analyses.....	6
11 Supplementary Note 4: EEG and fMRI correlates of past action with only the 29 participants included	
12 in EEG-fMRI analyses	7
13 Supplementary Note 5: Stay behavior as a function of EEG and fMRI with only the 29 participants	
14 included in EEG-fMRI analyses.....	8
15 Supplementary Note 6: Parameter recovery analyses for model M5	9
16 Supplementary Note 7: Simulations for asymmetric pathways and action priming model	10
17 Supplementary Note 8: Behavioral results for the perseveration model (M7), cue valence-based	
18 perseveration model (M8), and neutral outcomes reinterpretation model (M9)	11
19 Supplementary Note 9: Neural results based on prediction-errors from the cue valence-based	
20 perseveration model (M8) and neutral outcomes reinterpretation model (M9)	13
21 Supplementary Note 10: EEG time-frequency results after ERPs were removed.....	14
22 Supplementary Note 11: ERPs as a function of action and outcome	16
23 Supplementary Note 12: Model-based EEG analyses in the time domain.....	18
24 Supplementary Note 13: fMRI-informed EEG results in time-frequency space.....	19
25 Supplementary Note 14: fMRI-informed EEG results in the time domain.....	20
26 Supplementary Note 15: Go/NoGo differences over time in BOLD signal, choices, alpha, and beta	
27 power	21
28 Supplementary Figure 1: Behavioral results with only the 29 participants included in EEG-fMRI	
29 analyses	23
30 Supplementary Figure 2: fMRI results with only the 29 participants included in EEG-fMRI analyses	24
31 Supplementary Figure 3: EEG results with only the 29 participants included in EEG-fMRI analyses	25
32 Supplementary Figure 4: EEG and fMRI correlates of past action with only the 29 participants	
33 included in EEG-fMRI analyses.....	26
34 Supplementary Figure 5: Parameter recovery analyses for model M5.....	27
35 Supplementary Figure 6: Simulations for asymmetric pathways and action priming model.....	28

SUPPLEMENTS PREFRONTAL SIGNALS PRECEDE STRIATAL SIGNALS

2

36	Supplementary Figure 7: Behavioral results from the perseveration model (M7), cue valence-based 37 perseveration model (M8), and neutral outcomes reinterpretation model (M9)	29
38	Supplementary Figure 8: Neural results based on prediction-errors from cue valence-based 39 perseveration model (M8) and neutral outcomes reinterpretation model (M9)	30
40	Supplementary Figure 9: Illustration of biased and standard learning for a representative example 41 participant.....	31
42	Supplementary Figure 10: Illustration of prediction error regressor decomposition	32
43	Supplementary Figure 11: Conjunctions of anatomical and functional masks – vmPFC and striatum	33
44	Supplementary Figure 12: Conjunctions of anatomical and functional masks – ACC, PCC, left M1, 45 left ITG, V1	34
46	Supplementary Figure 13: EEG time-frequency results after ERPs were removed	35
47	Supplementary Figure 14: ERPs as a function of action and outcome – binary contrasts	36
48	Supplementary Figure 15: ERPs as a function of action and outcome – all conditions	37
49	Supplementary Figure 16: Model-based EEG analyses in the time domain	38
50	Supplementary Figure 17: Graphical illustration of the fMRI-informed EEG analysis approach	39
51	Supplementary Figure 18: Graphical illustration of the EEG-informed fMRI analysis approach	40
52	Supplementary Figure 19: fMRI-informed EEG results in the time-frequency domain	41
53	Supplementary Figure 20: fMRI-informed EEG results in the time domain	42
54	Supplementary Figure 21: Go/NoGo differences over time in BOLD signal, choices, alpha, and beta 55 power	43
56	Supplementary Figure 22: Stay behavior as a function of BOLD and EEG TF power.....	44
57	Supplementary Table 1: Stay behavior as a function of action, salience, and valence	45
58	Supplementary Table 2: Model parameters and fit indices for models M1-M6.....	46
59	Supplementary Table 3: BOLD-GLM with parametric modulation by standard and biased prediction 60 errors.....	47
61	Supplementary Table 4: BOLD-GLM with response-locked and outcome-locked categorical 62 regressors.....	48
63	Supplementary Table 5: Significant clusters in BOLD-GLM with parametric modulation by standard 64 and biased prediction errors	49
65	Supplementary Table 6: Significant clusters in BOLD-GLM with response-locked and outcome- 66 locked categorical regressors.....	51
67	Supplementary Table 7: Significant clusters in BOLD-GLM with EEG regressors	53
68	Supplementary References	56
69		
70		
71		
72		
73		
74		
75		

76 **Supplementary Note 1: Behavioral results with only the 29 participants**
77 **included in EEG-fMRI analyses**

78
79 We repeated the behavioral analyses reported in the main text while excluding the seven
80 participants that were also not included in the fMRI-inspired EEG analyses in the main text: (a) two
81 participants due to fMRI co-registration failure, which were also not included in the fMRI-only analyses;
82 (b) four further participants who exhibited excessive residual noise in their EEG data ($> 33\%$ rejected
83 trials) and were thus also not included in the EEG-only analyses, and finally (c) one more participant
84 who (together with four other participants already excluded) exhibited regression weights for every
85 regressor about ten times larger than for other participants.

86 Participants in this subgroup learned the task, reflected in a significant main effect of required
87 action on responses, $b = 0.896$, $SE = 0.129$, $\chi^2(1) = 28.398$, $p < .001$, and exhibited motivational biases,
88 reflected in a significant main effect of cue valence on responses, $b = 0.439$, $SE = 0.084$, $\chi^2(1) = 19.308$,
89 $p < .001$. The interaction between required action and cue valence was not significant, $b = 0.025$, $SE =$
90 0.085 , $\chi^2(1) = 0.111$, $p = .739$ (Supplementary Fig. 1A-B).

91 Participants in this subgroup also showed biased learning: They were more likely to repeat an
92 action after a positive outcome (main effect of outcome valence: $b = .0553$, $SE = 0.059$, $\chi^2(1) = 40.920$,
93 $p < .001$). After salient outcomes, they adjusted their responses more strongly after feedback on Go than
94 on NoGo responses, in line with our model of biased learning and as reflected in a significant three-way
95 interaction between action, salience, and valence, $b = 0.266$, $SE = 0.055$, $\chi^2(1) = 16.862$, $p < .001$. When
96 only analyzing trials with salient outcomes, outcome valence was more likely to affect response
97 repetition following Go relative to NoGo responses, $b = 0.324$, $SE = 0.079$, $\chi^2(1) = 13.266$, $p < .001$,
98 with a stronger effect of outcome valence after Go responses, $b = 1.342$, $SE = 0.120$, $\chi^2(1) = 49.003$, p
99 = $.001$, than NoGo responses, $b = 0.693$, $SE = 0.129$, $\chi^2(1) = 18.988$, $p < .001$ (Supplementary Fig. 1C).

100 In this subgroup of participants, Bayesian model selection clearly favored the full asymmetric
101 pathways models featuring response and learning biases (M5, model frequency: 81.81%, protected
102 exceedance probability: 100%; Supplementary Fig. 1D-H). In sum, behavioral results were qualitatively
103 identical when analyzing only this subgroup of only 29 participants.

104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121

122 **Supplementary Note 2: Behavioral fMRI results with only the 29**
123 **participants included in EEG-fMRI analyses**

124
125 We repeated the fMRI analyses reported in the main text while excluding the seven participants
126 that were also not included in the fMRI-inspired EEG analyses in the main text: (a) two participants due
127 to fMRI co-registration failure, which were also not included in the fMRI-only analyses; (b) four further
128 participants who exhibited excessive residual noise in their EEG data ($> 33\%$ rejected trials) and were
129 thus also not included in the EEG-only analyses, and finally (c) one more participant who (together with
130 four other participants already excluded) exhibited regression weights for every regressor about ten
131 times larger than for other participants.

132 We first repeated the model-free GLM just contrasting positive and negative outcomes. BOLD
133 signal was higher for positive than negative outcomes in five clusters, namely in vmPFC, striatum,
134 amygdala, and hippocampus ($z_{\max} = 5.65, p = 2.24e-25$, 6110 voxels, MNI coordinates xyz = [6 30 -
135 12]), left superior lateral occipital cortex ($z_{\max} = 4.40, p = .00144$, 367 voxels, xyz = [-46 -68 46]), right
136 occipital pole ($z_{\max} = 4.45, p = .00154$, 363 voxels, xyz = [12 -92 -12]), posterior cingulate cortex ($z_{\max} = 4.36, p = .00181$, 353 voxels, xyz = [-2 -48 28]), and left middle temporal gyrus ($z_{\max} = 4.63, p = .00548$, 289 voxels, xyz = [-60 -10 -16]; Supplementary Fig. 2A). The clusters in left sLOCC, PCC, and
137 left MTG emerged anew compared to the original analysis comprising 34 participants. Also, compared
138 to the original analysis, clusters in left orbitofrontal cortex and left superior frontal gyrus were merged
139 with the cluster in vmPFC. In sum, all clusters from the original analysis were found back, plus some
140 additional clusters.

141 There was also one cluster in right orbitofrontal cortex ($z_{\max} = 4.37, p = .0209$, 217 voxels, xyz
142 = [30 62 -2]) in which BOLD signal was higher for negative than positive outcomes. Compared to the
143 original analysis comprising 34 participants, clusters in precuneus and right superior frontal gyrus were
144 not significant.

145 In the model-based GLM featuring regressors for standard PEs and the difference term towards
146 biased PEs, BOLD signal correlated with standard PEs in ten clusters, namely in vmPFC, striatum,
147 bilateral amygdala and hippocampus ($z_{\max} = 6.04, p = .4.78e-44$, 8848 voxels, xyz = [12 14 -6]), left
148 superior frontal gyrus ($z_{\max} = 5.58, p = 3.5e-10$, 1043 voxels, xyz = [-18 34 52]), left occipital pole and
149 lingual gyrus ($z_{\max} = 6.23, p = 7.18e-10$, 998 voxels, xyz = [10 -92 -10]), posterior cingulate cortex ($z_{\max} = 5.12, p = 8.57e-10$, 987 voxels, xyz = [4 -36 48]), left inferior temporal gyrus ($z_{\max} = 5.03, p = 7.07e-9$, 859 voxels, xyz = [-52 -46 -10]), right anterior middle temporal gyrus ($z_{\max} = 5.32, p = .000292$, 314
150 voxels, xyz = [62 -4 -16]), right cerebellum ($z_{\max} = 5.32, p = .002228$, 231 voxels, xyz = [44 -72 -40]),
151 left superior lateral occipital cortex ($z_{\max} = 4.69, p = .00322$, 218 voxels, xyz = [-46 -74 -38]), right
152 caudate ($z_{\max} = 4.33, p = .00538$, 199 voxels, xyz = [20 12 22]), and right middle temporal gyrus ($z_{\max} = 4.09, p = .0129$, 189 voxels, xyz = [54 -38 -12] ; Supplementary Fig. 2B). The clusters in left superior
153 lateral occipital cortex, right caudate, and right posterior middle temporal gyrus emerged anew by
154 splitting from larger clusters visible in the original analysis based on 34 participants. Vice versa, the
155 cluster in left middle temporal gyrus reported for the original analysis was merged with a bigger cluster
156 in the analysis of only 29 participants. The clusters in postcentral gyrus and ACC observed in the original
157 analysis based on 34 participants were not significant anymore; however, they were still visible at a
158 level of $z > 3.1$ uncorrected.

159 BOLD signal correlated significantly negatively with standard PEs in a single cluster in right
160 superior frontal gyrus ($z_{\max} = 5.04, p = .00771$, 186 voxels, xyz = [6 26 64]), similar to the respective
161 cluster reported in the original analysis. In contrast, the clusters in right occipital pole, intracalcarine
162 cortex, and left inferior lateral occipital cortex were not significant any more, though visible at a level
163 of $z > 3.1$ uncorrected.

SUPPLEMENTS PREFRONTAL SIGNALS PRECEDE STRIATAL SIGNALS

169 BOLD signal in six clusters correlated significantly positively with the difference term towards
170 biased PEs, namely in large parts of cortex and subcortex including striatum ($z_{\max} = 6\text{-}54, p = 0, 29428$
171 voxels, $xyz = [34\text{-}84\text{ 20}]$), dorsomedial prefrontal cortex ($z_{\max} = 5.94, p = 2.69\text{e-}40, 7001$ voxels, $xyz =$
172 $[6\text{ 22\,}34]$), right insula ($z_{\max} = 5.76, p = 7.84\text{e-}27, 3847$ voxels, $xyz = [34\text{ 20\,}-8]$), thalamus and brainstem
173 ($z_{\max} = 5.10, p = 4.06\text{e-}18, 2169$ voxels, $xyz = [4\text{ -30\,}0]$), left caudate ($z_{\max} = 4.71, p = .000188, 305$
174 voxels, $xyz = [-12\text{ 8\,}6]$) and another cluster in brainstem ($z_{\max} = 4.05, p = .0151, 160$ voxels, $xyz = [4\text{ -}$
175 $30\text{ -}30]$). Clusters in dmPFC, right insula, and left caudate split from larger clusters reported in the
176 original analysis. Vice versa, the cluster in left insula reported in the original analysis merged with the
177 largest cluster. The clusters in right middle temporal gyrus and right insula were missing in the analysis
178 of only 29 participants, but visible at a level of $z > 3.1$ uncorrected.

179 BOLD signal in three clusters correlated significantly negatively with the difference term
180 towards biased PEs, namely in vmPFC ($z_{\max} = 4.23, p = .0051, 185$ voxels, $xyz = [-12\text{ 48\,}-6]$), left
181 hippocampus ($z_{\max} = 4.58, p = .00857, 168$ voxels, $xyz = [-26\text{ -14\,}-22]$), and left medial temporal gyrus
182 ($z_{\max} = 4.30, p = .0172, 146$ voxels, $xyz = [-62\text{ -4\,}-16]$). Compared to the original analysis, the cluster in
183 vmPFC emerged anew.

184 When computing the conjunction between both (positive) contrasts, BOLD signal encoded both
185 the standard and the difference in four clusters, namely in vmPFC, bilateral striatum, bilateral ITG, and
186 V1 (Supplementary Fig. 2C). Clusters in ACC, left motor cortex, and PCC were not significant any
187 more (because they were $z > 3.1$, but not significant after cluster correction in the standard PE contrast).
188 However, new (though rather small) clusters of biased PE encoding emerged in right insula, left
189 amygdala, and left OFC. In sum, results when analyzing only this subgroup of only 29 participants were
190 largely similar to results based on the full sample; however, clusters of biased PE encoding in left motor
191 cortex, ACC, and PCC were small and thus did not survive cluster correction in this subgroup.

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216 **Supplementary Note 3: EEG results with only the 29 participants**
217 **included in EEG-fMRI analyses**

218

219 We repeated the EEG analyses reported in the main text while excluding the seven participants
220 that were also not included in the fMRI-inspired EEG analyses in the main text: (a) two participants due
221 to fMRI co-registration failure, which were also not included in the fMRI-only analyses; (b) four further
222 participants who exhibited excessive residual noise in their EEG data ($> 33\%$ rejected trials) and were
223 thus also not included in the EEG-only analyses, and finally (c) one more participant who (together with
224 four other participants already excluded) exhibited regression weights for every regressor about ten
225 times larger than for other participants.

226

227 In participants in this subgroup, both midfrontal theta and beta power reflected outcome valence:
228 Theta power was higher for negative than positive outcomes (driven by a cluster around 225–500 ms, p
229 = .002; Supplementary Fig. 3A, B), while beta power was higher for positive than negative outcomes
230 (driven by a cluster around 325–1000 ms, p = .002; Supplementary Fig. 3A, C). When using PE terms
231 as regressor for midfrontal EEG power while controlling for PE valence, delta power did not encode
232 PE_{STD} positively, though not significant (p = .056), and also the positive encoding of PE_{DIF} was non-
233 significant (p = .053; Supplementary Fig. 3D-F). The positive correlation of beta power with PE_{STD} was
234 not significant anymore (p = .059), while the negative correlation with PE_{DIF} remained (p = .001, 450–
235 950 ms). When adding PE_{STD} and PE_{DIF} together to achieve PE_{BIAS} , theta/delta power indeed
236 significantly encoded PE_{BIAS} , first positively (p = .032, 224–475 ms) and then negatively (p = .019, 600
237 – 1,000 ms; around 8 Hz and thus rather in the alpha band). Also, beta power was significantly negatively
238 correlated with PE_{BIAS} (p = .008, 450 – 975 ms).

239

240 In sum, all findings reported in the main text also held when analyzing only this subgroup of
241 only 29 participants. In addition, also late beta power and theta/alpha power appeared to negatively
242 encode the PE_{BIAS} term.

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263 **Supplementary Note 4: EEG and fMRI correlates of past action with**
264 **only the 29 participants included in EEG-fMRI analyses**

265 We repeated the behavioral analyses reported in the main text while excluding the seven
266 participants that were also not included in the fMRI-inspired EEG analyses in the main text: (a) two
267 participants due to fMRI co-registration failure, which were also not included in the fMRI-only analyses;
268 (b) four further participants who exhibited excessive residual noise in their EEG data ($> 33\%$ rejected
269 trials) and were thus also not included in the EEG-only analyses, and finally (c) one more participant
270 who (together with four other participants already excluded) exhibited regression weights for every
271 regressor about ten times larger than for other participants.

272 Regarding fMRI correlates of the past action, similar to the original analysis comprising 34
273 participants, there were no clusters with higher BOLD after Go than NoGo actions at the time of
274 outcomes, but vice versa, large parts of cortex and subcortex showed higher BOLD after NoGo than Go
275 actions, highly similar to the original analysis ($z_{\max} = 7.65, p = 0, 124629$ voxels, xyz = [-58 18 22];
276 Supplementary Fig. 4D).

277 Furthermore, there were four clusters with higher BOLD for Go than NoGo actions at the time
278 of the response, namely one large cluster across lateral prefrontal cortex, anterior cingulate cortex,
279 striatum, thalamus, angular gyrus, cerebellum, left operculum and motor cortex, intracalcarine cortex,
280 and occipital pole ($z_{\max} = 7.45, p = 0, 61057$ voxels, xyz = [32 -4 -4]), one in right middle temporal gyrus
281 ($z_{\max} = 4.90, p = 8.66e-05, 493$ voxels, xyz = [66 -32 -12]), one in left inferior temporal gyrus ($z_{\max} =$
282 4.43, $p = .00294, 293$ voxels, xyz = [-60 -44 -18]), and one in precuneous ($z_{\max} = 2.39, p = .0041, 276$
283 voxels, xyz = [-8 -70 38]; Supplementary Fig. 4C). All these regions were also found in the original
284 analysis comprising 34 participants. Vice versa, BOLD signal was higher NoGo than Go actions at the
285 time of the response in two clusters in vmPFC and subcallosal cortex ($z_{\max} = 4.23, p = .00864, 239$
286 voxels, xyz = [-2 18 -6]) and right anterior temporal gyrus/ temporal pole ($z_{\max} = .4.14, p = .0193, 201$
287 voxels, xyz = [48 -6 -8]), identical to the original analysis comprising 34 participants.

288 Finally, there was higher BOLD signal for left hand compared to right hand responses at the
289 time of response in two clusters in right precentral and postcentral gyrus, superior parietal lobule, and
290 operculum ($z_{\max} = 6.66, p = 0, 11597$ voxels, xyz = [46 -24 64]) and left cerebellum ($z_{\max} = 6.76, p =$
291 1.05e-18, 2672 voxels, xyz = [-18 -54 -16]; Supplementary Fig. 4C), identical to the original analysis
292 comprising 34 participants. Vice versa, there was higher BOLD signal for right hand than left hand
293 responses at the time of responses in five clusters in left precentral and postcentral gyrus, superior
294 parietal lobule, operculum, and thalamus ($z_{\max} = 6.4, p = 0, 12372$ voxels, xyz = [-36 -20 66]), right
295 cerebellum ($z_{\max} = 7.17, p = 3.41e-21, 3206$ voxels, xyz = [20 -54 -20]), right superior lateral occipital
296 cortex ($z_{\max} = 4.84, p = 2.28e-09, 988$ voxels, xyz = [48 -86 -4]), right angular gyrus ($z_{\max} = 4.11, p =$
297 7.68e-05, 396 voxels, xyz = [66 -50 28]), and left superior lateral occipital cortex ($z_{\max} = 5.03, p = .019,$
298 164 voxels, xyz = [-18 -82 48]). The clusters in right occipital pole/ intracalcarine cortex and in right
299 posterior cerebellum observed in the original analysis comprising 34 participants were not observed in
300 this analysis. In sum, all major findings also held when analyzing only this subgroup of only 29
301 participants.

302 Regarding EEG time-frequency correlates of the past action, when testing for differences in
303 broadband after outcome onset, there was no significant difference after Go and NoGo responses, $p =$
304 .283. When restricting analyses to the low alpha range, the permutation test was marginally significant,
305 $p = .056$, driven by a cluster around 0–100 ms around 7–10 Hz; Supplementary Fig. 4A, B). When
306 repeating the permutation test for the broadband signal including the last second before outcome onset,
307 there was a significant difference after Go and NoGo responses, driven by clusters in the beta band. $p =$
308 0.002, -1000 – -275 ms, 13–32 Hz, and in the theta/ low alpha band, $p = 0.020, -1000 – -525$ ms, 4–10
309 Hz.

310 **Supplementary Note 5: Stay behavior as a function of EEG and fMRI**
311 **with only the 29 participants included in EEG-fMRI analyses**
312

313 We repeated the behavioral analyses reported in the main text while excluding the seven
314 participants that were also not included in the fMRI-inspired EEG analyses in the main text: (a) two
315 participants due to fMRI co-registration failure, which were also not included in the fMRI-only analyses;
316 (b) four further participants who exhibited excessive residual noise in their EEG data ($> 33\%$ rejected
317 trials) and were thus also not included in the EEG-only analyses, and finally (c) one more participant
318 who (together with four other participants already excluded) exhibited regression weights for every
319 regressor about ten times larger than for other participants.

320 When linking trial-by-trial BOLD signal in selected ROIs as well as midfrontal EEG TF power
321 to response repetition on the next trial with the same cue, dACC BOLD signal did not significantly
322 predict the response repetition, $b = -0.013$, $SE = 0.018$, $\chi^2(1) = 0.524$, $p = .469$, and neither did PCC
323 BOLD signal, $b = -0.037$, $SE = 0.018$, $\chi^2(1) = 2.079$, $p = .149$. However, participants in this subgroup
324 were significantly more likely to repeat the sample action when striatal BOLD signal was high, $b =$
325 0.097 , $SE = 0.025$, $\chi^2(1) = 12.043$, $p < .001$, but more likely to switch when vmPFC BOLD was high, b
326 $= -0.075$, $SE = 0.019$, $\chi^2(1) = 13.170$, $p < .001$.

327 When linking trial-by-trial midfrontal EEG TF power to response repetition on the next trial
328 with the same cue, participants in this subgroup were more likely to repeat the same response when beta
329 power was high, $b = 0.124$, $SE = 0.036$, $\chi^2(1) = 3.502$, $p < .001$, or when low alpha power was high, $b =$
330 0.135 , $SE = 0.044$, $\chi^2(1) = 8.789$, $p = .003$, but more likely to switch to another response when theta
331 power was high, $b = -0.090$, $SE = 0.040$, $\chi^2(1) = 4.812$, $p = .028$.

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357 **Supplementary Note 6: Parameter recovery analyses for model M5**

358

359 We performed parameter recovery analyses to assess the identifiability of the model parameters
360 in the winning “asymmetric pathways” model M5. We simulated 100 new data sets based on the best
361 fitting parameters of each participant, fitted a separate model to each simulated data set (using first
362 Laplace approximation and then hierarchical Bayesian inference), and finally averaged parameters
363 across the 100 fitted models.

364

365 Parameter recovery was excellent for the feedback sensitivity ρ ($r = .91$), the baseline learning
366 rate ε_0 ($r = .98$), the Go bias b ($r > .99$), and the Pavlovian response bias π ($r > .99$), with between-
367 participant differences in ground-truth parameters correlating at high levels (all $r > .90$; Supplementary
368 Fig. 5) with between-participant differences in the recovered parameters. Note that, due to shrinkage to
369 the mean as a consequence of hierarchical Bayesian inference, extreme parameter values tended to be
370 shrunk to the overall group-level mean in the recovered parameters. Correlations for the learning bias
371 parameter κ were considerably lower, though still strongly positive ($r = 0.50$; $r = 0.51$ when removing
372 one outlier participant; Supplementary Fig. 5E). Note however that the effect of κ on learning depended
373 on participants’ baseline learning rate ε_0 . When computing increased learning rates for rewarded Go
374 actions and decreased learning rates for punished NoGo actions—the parameters that determine the
375 effective degree of trial-by-trial learning—these learning rates were again highly correlated with the
376 ground truth parameters ($\varepsilon_{\text{rewarded Go}} : r = 0.96$; $\varepsilon_{\text{punished NoGo}} : r = 0.85$ resp. $r = 0.86$ when removing
377 one outlier participant; Supplementary Fig. 5F-G).

378

379 Further parameter recovery analyses on the models explored in Supplementary Note 8 yielded
380 that the recovery of κ was improved ($r = 0.78$) when adding perseveration parameters (which themselves
381 had recovery performances of r ’s > 0.99). This observation suggested that models featuring such
382 perseveration parameters might be better suited for quantifying individual differences in the learning
383 bias.

384

385 In sum, parameter recovery was excellent for all parameters but the learning bias κ . More
386 relevant than recovery of κ , however, was that we could recover the effective learning rate well
387 (combining baseline learning rate ε_0 and the learning bias κ). However, when combining the baseline
388 learning rate ε_0 and the learning bias κ , recovery was high, as well. Note that the ability to accurately
389 capture individual differences in biased learning is not of interest in this study, nor relevant to the
390 imaging analyses. In fact, we used a single set of parameters (the group-level parameters) to compute
391 trial-by-trial regressors for the EEG and fMRI analyses. This is a standard approach in model-based
392 fMRI for two main reasons. First, it has been shown that the exact parameter values for relatively simple
393 RL models like the ones used here have little impact on the results of fMRI analyses¹. For the current
394 study, of most relevance is the qualitatively differential pattern of learning updates after Go and NoGo
395 responses²⁻⁴, as embodied by the algorithmic specification of the model. This pattern drives the EEG
396 and fMRI results and indeed, using a different set of parameter values, we obtain essentially identical
397 fMRI results (see Supplementary Note 9 and Supplementary Fig. 8).

398

399

400

401

402

403

404 **Supplementary Note 7: Simulations for asymmetric pathways and**
405 **action priming model**

406

407 Motivational learning biases are predicted by the *asymmetric pathways model*^{5,6}: Positive PEs,
408 elicited by rewards, lead to long-term potentiation in the striatal direct “Go” pathway (and long term
409 depression in the indirect pathway), allowing for a particularly effective acquisition of Go actions to
410 obtain rewards. Conversely, negative PEs, elicited by punishments, lead to long term potentiation in the
411 NoGo pathway, impairing the unlearning of NoGo actions in face of punishments.

412

413 An alternative account has recently suggested that self-generated (Go) actions lead to
414 preferential learning (relative to non-self-generated actions, including inaction), more generally
415 (henceforth called “action priming model”)⁷. A self-generated action could “prime” basal ganglia
416 circuits and lead to subsequently larger PEs and thus faster learning. The main differential prediction
417 between these two models is how they account for the failure to learn “Go” actions to avoid punishment:
418 In the first model, this is due to a failure to unlearn punished “NoGo” actions, while in the second model,
419 this is due to increased unlearning of punished “Go” actions.

420

421 Here, we directly tested both models against each other. We specified an alternative model M6
422 with two separate learning rates, one learning rate for trials where self-generated (Go) action selection
423 should prime the processing of any following salient outcome (i.e., Go actions followed by rewards/
424 punishments), and one learning rate for any other action-outcome combination. In this model, equation
425 (6) was substituted by equation (7):

426

$$\varepsilon = \begin{cases} \varepsilon_{salGo} & \text{for any Go action with salient outcomes} \\ \varepsilon_0 & \text{else} \end{cases} \quad (7)$$

427

428 When comparing all models M1–M6 using Bayesian model selection, M5 (the asymmetric pathways
429 model) received highest support (model frequency: 68.15%; protected exceedance probability: 99.70%),
430 also compared to M6 (the action priming model; model frequency: 24.19%; protected exceedance
431 probability: 0.30%; Supplementary Fig. 6D, H). In fact, as visible in Supplementary Fig. 6E–G, the
432 action priming did not reproduce the motivational biases in learning curves and bar plots, which
433 constitutes a case of qualitative model falsification^{2,3}. If anything, it seemed that the action priming
434 model traded off both biases, leading to negative response biases for a majority of participants. In
435 contrast, the asymmetric pathways model (M5) was well able to capture the qualitative patterns observed
436 in the data (Supplementary Fig. 6A–C). We conclude that only the asymmetric pathways model is able
437 to qualitatively reproduce core characteristics of our data.

438

439

440

441

442

443

444

445

446

447

448 **Supplementary Note 8: Behavioral results for the perseveration model**
449 **(M7), cue valence-based perseveration model (M8), and neutral**
450 **outcomes reinterpretation model (M9)**

451

452 While the winning model M5 reported in the main text captured learning curves and the
453 proportion of (correct/ incorrect) Go and NoGo responses well, it did not fully capture the propensity to
454 stay (i.e., repeat the same response to the subsequent presentation of the same cue) following different
455 action-outcome combinations (see Fig. 2G in the main text). Specifically, M5 underestimated the overall
456 propensity to stay and predicted a higher probability of repeating a Go response after a positive (neutral)
457 outcome for Avoid cues, relative to the negative (neutral) outcome for Win cues. In contrast, in the data,
458 there was no such significant difference. We thus explored three extensions of M5 that had the potential
459 to capture this behavioral pattern. Specifically, we considered mechanisms that would make the model
460 more likely to repeat a given response. Furthermore, any such mechanism should boost repetition of Go
461 responses to non-rewarded Win cues particular. We hypothesized that two potential mechanisms could
462 account for these data features, and present three new models to test these mechanisms.

463 As a first mechanism, we considered overall “response stickiness” or “perseveration”⁸, a process
464 that leads participants to repeat a previous response independent of the obtained outcome. This
465 mechanism could explain participants’ overall higher propensity to stay, which we tested in model M7.
466 **Model M7**, called “*single perseveration model*”, featured the same parameters as M5 plus a
467 perseveration parameter φ that was added as a “bonus” to the action weight $w(a_i, s_t)$ of the specific
468 action shown on the last occurrence of the respective cue⁸:

$$469 w(a_i, s_t) = \begin{cases} w(a_i, s_t) + \varphi & \text{if last action to same cue was } a_i \\ w(a_i, s_t) & \text{else} \end{cases} \quad (8)$$

470

471 **In M7** equation 7 in the main manuscript was replaced by equation 8 above, such that parameter
472 φ captured the propensity to repeat the action from the last time this cue was presented.

473

474 However, to account for the fact that staying was not different and numerically even higher for
475 a non-rewarded Go response (to a Win cue), relative to a non-punished Go response to an Avoid cue,
476 we tested whether separate perseveration parameters for Win and Avoid cues could capture this
477 behavioral difference (M8), as such a pattern of results could result from an overall higher propensity to
478 stay for Win cues. **This “cue valence-dependent perseveration model” (M8)**, contained two separate
479 perseveration parameters, one for Win cues φ_{WIN} , and one for Avoid cues φ_{AVOID} . The respective
480 perseveration parameter was added to the action weight $w(a_i, s_t)$ of the specific action shown on the
481 last occurrence of respective the cue:

$$481 w(a_i, s_t) = \begin{cases} w(a_i, s_t) + \varphi_{WIN} & \text{if Win cue and last action to same cue was } a_i \\ w(a_i, s_t) + \varphi_{AVOID} & \text{if Avoid cue and last action to same cue was } a_i \\ w(a_i, s_t) & \text{else} \end{cases} \quad (9)$$

482

483 **In M8**, equation 7 in the main manuscript was replaced by equation 9 above, such that parameter
484 φ_{WIN} and φ_{AVOID} captured the propensity to repeat the action from the last time this cue was presented,
485 separately for Win and Avoid cues.

486

487 As an alternative mechanism that could potentially capture the p(stay) pattern in the data, we
488 considered the possibility that participants might “re-interpret” neutral outcomes in line with the cue
489 valence: although a non-reward after a Win cue constitutes negative feedback, the positive cue valence
490 might “overshadow” this feedback and give participants the impression that they received a reward.
491 Similarly, a non-punishment after an Avoid cue constitutes positive feedback, but the negative cue
492 valence might overshadow this feedback and give participants the impression that they received a
punishment.

SUPPLEMENTS PREFRONTAL SIGNALS PRECEDE STRIATAL SIGNALS

12

493 Following this idea, lastly, we considered **M9**, called the “**neutral outcome reinterpretation**
494 **model**”, which featured a single perseveration parameter η as in equation (8), but in addition replaced
495 neutral outcomes (coded as zero) with what we term the “effective reward” r_{EFF} , which allows the
496 neutral outcome to take on a value in the direction of the cue valence $V(s)$. The degree to which this
497 happens is scaled by the parameter η :

498
$$r_{EFF} = \begin{cases} V(s) * \eta & \text{if } r = 0 \\ r & \text{else} \end{cases} \quad (10)$$

499 We subsequently used r_{EFF} for computing prediction errors. Thus **M9** adds equation 10 to model **M7**.
500 Note that for $\eta = 0$, neutral outcomes stay at zero and M9 becomes equivalent to M7.

501 Bayesian model comparison across the winning original model M5 and these three new models
502 yielded highest model evidence for M8, followed by M9 (model frequency: M5: 3%, M7: 0%, M8: 62%,
503 M9: 35%; protected exceedance probability: M5: 0%, M7: 0% M8: 95%, M9: 5%). All three models
504 performed better than the original winning model M5 (Supplementary Fig. 7, bottom row). Simulations
505 showed that the best fitting model M8 (with separate perseveration rates for Win and Avoid cues) indeed
506 better captured the propensity to stay on neutral trials, though this came at the cost of a general
507 overestimation of staying after punished responses (which hold similarly for M7 and M9; see
508 Supplementary Fig. 7, third row). More importantly, however, this model drastically underestimated the
509 crucial pattern of behavior under study here, namely the propensity of incorrect, bias-driven Go
510 responses to Win cues (see Supplementary Fig. 7, second row, dark green part of bars).

511 In sum, the three additional models provided a better quantitative fit to the data compared to the
512 winning model M5 reported in the main text. Also, these additional models predicted the propensity
513 more accurately than the base models did. However, their qualitative fit (i.e. the ability to capture
514 relevant aspects of the data) was worse: These additional models systematically underestimated the
515 proportion of incorrect Go responses (Supplementary Fig. 7). Furthermore, although the predicted
516 patterns of the propensity to stay matched the data more closely than M5, these predicted patterns still
517 mis-matched some aspects of the data, particularly now over-estimating the tendency to stay following
518 a punishment. Taken together, these models could capture certain qualitative patterns in the data, but
519 not others, which is a core feature of computational modelling, which by definition constitutes a data
520 reduction procedure that necessarily loses some details of the data. In terms of qualitative model
521 validation/ falsification^{2,3}, M5 and M8/M9 capture different qualitative features of the data, but no model
522 captured all features well.

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538 **Supplementary Note 9: Neural results based on prediction-errors from**
539 **the cue valence-based perseveration model (M8) and neutral outcomes**
540 **reinterpretation model (M9)**

541

542 To confirm that neural correlates of biased prediction-error updating were not altered under
543 these alternative model specifications, we repeated the model-based fMRI analyses for both the cue
544 valence-dependent perseveration model M8 and the neutral outcomes interpretation model M9. In
545 summary, the results are effectively unchanged, as we present in more detail below.

546 Notably, M8 does not make different predictions about trial-by-trial learning updates; the only
547 difference to M5 consisted in slightly different best fitting parameter estimates for ϵ and κ (leading a
548 slightly different BOLD regressors. Neural correlates of learning typically reflect the qualitative learning
549 pattern, which is the same for M5 and M8, but are hardly sensitive to the exact parameter values¹.
550 Indeed, when repeating the fMRI analyses with those different parameter values, we found almost
551 identical results, with significant encoding of both PE_{STD} and PE_{DIF} in striatum, dACC, pgACC, PCC,
552 left motor cortex, left ITG, and V1 (Supplementary Fig. 8A, B). The only exception was the cluster in
553 dACC, which under M8 was not significant at a whole-brain level, but significant when using small-
554 volume correction with an anatomical ACC mask (from the Harvard-Oxford Atlas), warranted by our
555 a-priori hypotheses based on previous literature⁹.

556 When we repeated our fMRI analyses with learning updates predicted by M9, we again found
557 significant encoding of both PE_{STD} and PE_{DIF} in striatum, dACC, pgACC, PCC, left motor cortex, left
558 ITG, and V1 (Supplementary Fig. 8C). However, the pgACC cluster was much larger and extended into
559 the vmPFC. Similarly, the PCC cluster was much larger. In addition, BOLD signal in left inferior frontal
560 gyrus and in multiple clusters in superior and inferior lateral occipital cortex encoded both PE_{STD} and
561 PE_{DIF} significantly. Using trial-by-trial BOLD signal from the extended vmPFC and PCC clusters
562 identified with M9 regressors to predict midfrontal EEG power, we obtained results that were highly
563 similar to the results for the pgACC and PCC clusters identified with M5 regressors.

564 In sum, model-based fMRI analyses based on PEs derived from M8 and M9 replicated the
565 findings based on M5 reported in the main text. In addition, M9 led to larger clusters in vmPFC and
566 PCC, tentatively suggesting that these regions might potentially contribute to “reinterpreting” neutral
567 outcomes in light of the previously presented cue valence (see also Fig. 2 in the main text).

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584 **Supplementary Note 10: EEG time-frequency results after ERPs were**
585 **removed**

586

587 Given that differences in theta power between positive and negative outcomes as well as differences in
588 lower alpha band power after Go and NoGo responses occurred quite soon after cue onset, we aimed to
589 test whether these effects reflected differences in evoked rather than induced activity. For this purpose,
590 we removed evoked components from our data by computing the ERP for each of the eight conditions
591 (action x outcome) for each participant and then subtracting the condition-specific ERP from the trial-
592 by-trial data¹⁰. Only afterwards, we performed time-frequency decomposition.

593

594 In line with the results reported in the main text, power was higher for negative compared to
595 positive outcomes in the theta band ($p = .018$, driven by cluster at 225–475 ms; Supplementary Fig. 11A,
596 B), but higher for positive than negative outcomes in the beta band ($p < .001$, driven by cluster at 0–
597 1250 ms; Supplementary Fig. 11A, C). Notably, unlike the results reported in the main text (Fig. 4A),
598 the cluster of high power for negative compared to positive outcomes was constrained to the theta range,
599 and did not extend further into the delta range (Supplementary Fig. 11A).

600

601 When using the trial-by-trial PEs (both the standard PE and the difference term to a biased PE)
602 as predictors in a multiple linear regression at each time-frequency-channel bin while controlling for PE
603 valence, delta power encoded PE_{STD} positively, though not significantly ($p = .198$). However, at a later
604 time point around outcome offset, delta (and theta) power in fact correlated negatively with PE_{STD} (575–
605 800 ms, $p = .002$; Supplementary Fig. 11E). The correlation between delta and the PE_{DIF} term was still
606 positive, but not significant ($p = .228$; Supplementary Fig. 11F). Similarly, the correlation of the PE_{BIAS}
607 term with delta power was positive, but not significant ($p = .084$; Supplementary Fig. 11D).

608

609 Regarding beta power, there was a positive, though non-significant correlation of beta power
610 with PE_{STD} ($p = .096$; Supplementary Fig. 11E). There was again a significantly negative correlation of
611 beta power with PE_{DIF} (425–875 ms, $p < .001$; Supplementary Fig. 11F). Likewise, beta power
612 correlated significantly negatively with PE_{BIAS} (450–800 ms, $p = .018$; Supplementary Fig. 11D), driven
613 by the correlation with PE_{DIF} .

614

615 In sum, after subtracting the condition-wise ERP from each trial before time-frequency
616 decomposition, supposedly removing the phase-locked aspect of power, both beta and theta still encoded
617 PE valence. However, the encoding of PE magnitude by delta power was attenuated and not significant
618 any more.

619

620 This reduction in magnitude encoding might occur of several reasons. Firstly, it might be that
621 this correlation in the delta range was in fact (partly) reflecting correlations with phase-locked, i.e.,
622 evoked activity (ERPs), especially in the N2 (FPN)/ P3 (RewP) time range (see Supplementary Note 11
623 and Supplementary Fig. 12)^{11–20}. Nonetheless, a positively correlation between delta power and biased
624 PEs was still visible in Supplementary Fig. 11D, suggesting that at least part of the signal encoding
625 biased PEs was not phase-locked. Secondly, it might be that the removal of the condition-wise ERPs
626 has introduced additional noise in the data, attenuating any true correlation. Thirdly, there was a negative
627 correlation between PE_{STD} and theta/ delta power at later time points which was visible, though not
628 significant in the results reported in the main text (Fig. 4D). Subtraction of an ERP-like template acts
629 like a high-pass filter. High-pass filtering at relatively high cut-offs (> 0.5 Hz) can artificially postpone
630 or induce effects at later points²¹. It is possible that in this case, ERP subtraction attenuated a positive
631 correlation in the theta/ delta range, but enhanced a later negative correlation.

632

633 Taken together, it is possible that part of the PE magnitude encoding in the theta/ delta range is
634 due to correlations with the phase-locked (ERP) signal. However, this finding did not compromise the
635 conclusion that overall, theta/delta power seemed to be more strongly associated with the PE_{BIAS} term

SUPPLEMENTS PREFRONTAL SIGNALS PRECEED STRIATAL SIGNALS

15

630 than the PE_{STD} term. Our primary goal was not to pinpoint the precise nature of electrophysiological
631 correlates of biased learning, but rather test the relative temporal order of when different regions
632 exhibiting biased learning signals become active.

633 Finally, we tested whether after ERP subtraction, low alpha (and beta power) still encoded the
634 previously performed action. When testing for differences in broadband power after Go and NoGo
635 responses, power was indeed significantly different between conditions, driven by clusters in beta band
636 ($p = 0.002$, 0.125–625 ms; $p = 0.052$, 700–1000 ms, 23–29 Hz) and theta/ low alpha band ($p = 0.024$,
637 575–1000 ms, 5–9 Hz; $p = 0.056$, 0–225 ms, 6–11 Hz). For power before outcome onset, there were
638 again broadband differences between Go and NoGo ($p = 0.002$, -1000 – +225 ms, 1–33 Hz), but note
639 that there was no ERP subtracted before outcome onset. We thus conclude that the differences between
640 Go and NoGo responses were attributable to differences in induced rather than evoked activity.

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677 **Supplementary Note 11: ERPs as a function of action and outcome**

678

679 In addition to the induced activity in time-frequency power reported in the main text, we also
680 analyzed the data in the time domain to test for differences in evoked activity. These analyses were
681 particularly motivated given that differences in time-frequency power between positive and negative
682 outcomes (theta/delta range) and after Go and NoGo responses (lower alpha/ theta range) occurred soon
683 after outcome onset, warranting the assumption that differences might also occur in evoked activity. A
684 large range of previous research has reported a modulation of evoked potentials by outcome valence in
685 form of the feedback-reduced negativity^{14–20,22}, i.e., a stronger N2 component for negative compared to
686 positive outcomes around ~ 250 post-cue over midfrontal electrodes, recently also characterized as
687 rather constituting a reward positivity (RewP)¹⁴. Also, some studies have reported a modulation of the
688 P3 by outcome valence, which has been attributed to outcome magnitude or salience rather than valence
689^{17,18,20,23}.

690 Similar to the analysis of time frequency power, we sorted trials into the eight conditions
691 spanned by the performed action (Go/ NoGo) and the obtained outcome (reward/ no reward/ no
692 punishment/ punishment), computed the average ERP for each condition per participant, and tested for
693 differences between positive (reward/ no punishment) and negative (no reward/ punishment) outcomes
694 as well as conditions of relative stronger (rewarded Go and punished Go) vs. relatively weaker learning
695 (rewarded NoGo and punished NoGo). We used cluster-based permutation tests on the average signal
696 over midfrontal electrodes (Fz/ FCz/ Cz) in the time range of 0–700 ms after outcome onset (where
697 evoked potentials visible in condition-averaged plot).

698 First, midfrontal ERPs were significantly different between positive and negative outcomes,
699 driven by two separate clusters of differences above threshold (Cluster 1: around 246 – 294 ms, $p = .034$;
700 Cluster 2: around 344 – 414 ms, $p = .004$; Supplementary Fig. 12A, C). The first cluster the classical
701 feedback-related negativity, i.e., a stronger N2 component for negative compared to positive outcomes.
702 The second cluster reflected weaker P3 component for negative compared to positive outcomes, similar
703 the reward positivity reported before. In fact, the N3 was rather absent for negative outcomes
704 (Supplementary Fig. 13). Both effects were clearly focused on midfrontal electrodes. These findings
705 replicate previous findings of outcome valence modulating N2 (feedback-related negativity) and P3
706 components, and complement our time-frequency findings of theta and beta power reflecting outcome
707 valence.

708 Second, when contrasting trials with Go vs. NoGo responses, no significant difference was
709 observed ($p = .358$; Supplementary Fig. 12D). Visual inspection of the topoplot yielded that, if anything,
710 differences emerged over right occipital electrodes. If one performed a test over those right occipital
711 electrodes (O2, 04, PO4; Supplementary Fig. 12F; note that this procedure constitutes double-dipping
712 because the test was informed by first looking at the data), this test would have yielded significant results
713 ($p = .016$) driven by cluster around 423–466 ms, reflecting a slightly larger P3 after Go than NoGo
714 responses (Supplementary Fig. 12E). This finding appears to be the strongest (if any) difference in
715 amplitude after outcome onset between Go and NoGo actions. Given that this difference was not
716 hypothesized and occurred far away from our a-priori selected channels of interest, we are careful not
717 to over-interpret those differences.

718 Third, contrasting trials with positive and negative at the same right occipital electrodes yielded
719 a significant difference, driven by clusters around 46–103 ms ($p = 0.034$), 141–255 ms ($p = .002$), and
720 519 – 580 ms ($p = .034$). Most notably, the P1 amplitude was much larger for positive than negative
721 outcomes (Supplementary Fig. 12B). However, given that these differences were not hypothesized and
722 occurred far away from our a-priori selected channels of interest, we are careful not to over-interpret
723 those differences.

SUPPLEMENTS PREFRONTAL SIGNALS PRECEED STRIATAL SIGNALS

17

724 Taken together, we found a bigger midfrontal N2/ FRN for negative compared to positive
725 outcomes, and a bigger midfrontal P3/ RewP for positive compared to negative outcomes, in line with
726 a vast literature of previous findings ^{14-20,22,23}. Midfrontal voltage did not significantly differ after Go or
727 NoGo responses. If anything, differences after Go and NoGo responses were maximal over right
728 occipital electrodes, with a larger P3 after Go than after NoGo responses. Signal at these channels also
729 differed between positive and negative outcomes, most notably with a bigger P1 after positive than
730 negative outcomes. In sum, we replicate classical reward learning ERP effects, which shows that the
731 motivational Go/NoGo learning task taps into reward learning processes reported before, but these
732 processes appeared to be unaffected by the previously performed action.

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771 **Supplementary Note 12: Model-based EEG analyses in the time domain**

772

773 In addition to testing whether midfrontal time-frequency power reflected signatures of biased
774 learning (see main text), we also tested whether the midfrontal time domain signal reflected biased
775 learning. Again, we used the standard PE term and the difference term to biased PEs as regressors in a
776 multiple linear regression on each channel-time bin.

777 Focusing on midfrontal electrodes, and controlling for outcomes valence, first, the PE_{STD} term
778 was negatively correlated with midfrontal voltage around 529–575 ms ($p = .039$; Supplementary Fig.
779 14B). Note that so late after outcome onset, signal was not part of any “classical” ERP component any
780 more. Second, the PE_{DIF} correlated negatively with midfrontal voltage around 123–166 ms ($p = .029$)
781 in the time range of the N1 and later positively around 365–443 ms ($p < .001$; Supplementary Fig. 14C)
782 in the time range of the P3/ RewP. Third, a similar pattern of correlations occurred for the PE_{BIAS} term
783 (Cluster 1: negative, 111–184 ms, $p = .004$; Cluster 2: positive, 346–449 ms, $p < .001$; Supplementary
784 Fig. 14A). Fourth, around these same time windows, midfrontal voltage also encoded outcome valence
785 itself, but with opposite sign (Cluster 1: positive, 99–184 ms, $p < .001$; Cluster 2: negative, 308–448 ms,
786 $p < .001$; see Supplementary Note 11 and Supplementary Fig. 12A).

787 In sum, similar to analyses of midfrontal power reported in the main text, PE sign and magnitude
788 were encoded in midfrontal voltage around the same time, but with opposite polarity: Signal around the
789 time of the N1 encoded PE sign positively, but PE magnitude negatively. Vice versa, signal around the
790 time of the P3/ RewP encoded PE sign negatively, but PE magnitude positively. The same phenomenon
791 of separate valence and magnitude encoding in midfrontal EEG signal has been reported before^{12,13,19}.
792 Notably, magnitude encoding in midfrontal voltage emerged for the PE_{BIAS} term, but not the PE_{STD} ,
793 indicating that this correlation was driven by the PE_{DIF} term and that biased learning described
794 midfrontal voltage better than standard learning. These results complement our findings of theta/delta
795 power encoding outcome valence and magnitude with opposite polarities (see main text).

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818 **Supplementary Note 13: fMRI-informed EEG results in time-frequency**
819 **space**

820

821 Besides the results for striatum, ACC, and PCC reported in the main text, there were also
822 significant EEG correlates over midfrontal electrodes for trial-by-trial BOLD signal from left motor
823 cortex ($p = .002$, around 0–625 ms, 16–27 Hz; Supplementary Fig. 17A). There were however no
824 significant EEG correlates over midfrontal electrodes for BOLD signal from pgACC ($p = .174$; Fig.
825 Supplementary Fig. 17B), left inferior temporal gyrus ($p = .097$; Supplementary Fig. 17C), and primary
826 visual cortex ($p = .170$; Supplementary Fig. 17D).

827

828 As quality checks, we checked whether visual cortex BOLD correlated negatively with alpha
829 over occipital electrodes^{24,25} and whether motor cortex BOLD correlated negatively with beta power
830 over central electrodes^{26,27}. Both was the case (see Supplementary Fig. 17E, F), showing that our data
831 was of sufficient quality to detect these well-established associations.

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865 **Supplementary Note 14: fMRI-informed EEG results in the time**
866 **domain**

867

868 For fMRI-inspired analysis of the EEG signal in the time domain (voltage), we applied the same
869 approach as reported in main text, but with voltage signal (time-domain) instead of time-frequency
870 power as dependent variable. As independent variables, we entered the trial-by-trial BOLD signal from
871 all seven regions encoding biased PEs plus the trial-by-trial standard PE and the different term towards
872 the biased PE (exact same procedure as for EEG TF analyses), all in one single multiple linear
873 regression. On a group-level, we again focused on the mean signal over midfrontal electrodes (Fz/ FCz/
874 Cz) in a time range of 0–700 ms, for which ERPs had been visible in the condition-averaged plots (see
875 Supplementary Note 11 and Supplementary Fig. 12 and 13).

876 First, trial-by-trial striatal BOLD correlated significantly with midfrontal voltage at two time
877 points, namely positively around 152–196 ms ($p = .017$) in the time range of the N1 and again negatively
878 around 316–383 ms ($p < .001$, Supplementary Fig. 18A) in the time range of the N2/ FRN and P3/RewP.
879 Second, trial-by-trial pgACC BOLD correlated significantly positively with midfrontal voltage around
880 347–412 ms ($p = .006$, Supplementary Fig. 18A) in the time range of the N2/ FRN and P3/RewP. Third,
881 trial-by-trial BOLD from primary visual cortex correlated significantly positively with midfrontal
882 voltage around 307–367 ms ($p = .011$, Supplementary Fig. 18B), overlapping with (but slightly earlier
883 than) correlations from pgACC BOLD, i.e., in the time range of the N2/ FRN and P3/RewP. For
884 midfrontal voltage split up per high vs. low BOLD signal (revealing which ERP components were
885 respectively modulated), see Supplementary Fig. 18C–E. There were no significantly correlations
886 between midfrontal voltage and trial-by-trial BOLD from dACC ($p = .927$, Supplementary Fig. 18A),
887 left motor cortex ($p = .649$, Supplementary Fig. 18B), PCC ($p = .796$, Supplementary Fig. 18A), or left
888 inferior temporal gyrus ($p = .649$, Supplementary Fig. 18B). For further details on BOLD-EEG voltage
889 correlations in the time domain, see Supplementary Fig. 18F–L.

890 Taken together, trial-by-trial BOLD signal in striatum, pgACC, and V1 all correlated with FRN/
891 RewP amplitude, which was the dominant phenomenon over midfrontal electrodes reflecting outcome
892 valence (see Supplementary Note 11 and Supplementary Fig. 12, 13). Notably, correlations with striatal
893 and pgACC BOLD were of opposite signs, which aligns with the finding that striatal and pgACC BOLD
894 predicted opposite behavioral tendencies on future trials (see main text; see Supplementary Fig. 20).
895 However, crucially, the time domain signal did not allow for a temporal dissociation of these different
896 regions. Possibly, the midfrontal evoked signal (i.e., the part of the signal that was phase-locked to
897 outcome onset) was so stereotyped that only the FRN/ RewP complex showed enough variation across
898 trials to allow for substantial correlations with trial-by-trial BOLD signal. This finding demonstrates
899 that the time-frequency domain signal (i.e., the part of the signal that is not necessarily phase-locked to
900 outcome onset) might be more suited for dissociating the activity of different regions in time.

901

902

903

904

905

906

907

908

909

910

911

912 **Supplementary Note 15: Go/NoGo differences over time in BOLD**
913 **signal, choices, alpha, and beta power**

914
915 We observed differences between trials with Go responses and trials with NoGo responses in
916 the low alpha power before and shortly after outcome onset (Fig. 6A, B main text). Alpha typically
917 increases over the time course of an experiment, potentially related to fatigue and decreasing arousal²⁸.
918 If the ratio of Go and NoGo responses changed over time, as well, such an increase over time could
919 spuriously lead to a difference between Go and NoGo responses (though note that this ratio did not
920 noticeably change over time; Supplementary Fig. 19D). To exclude this possibility, we extracted trial-
921 by-trial time-frequency power from the three significant clusters report in the main text in which power
922 differed between Go and NoGo responses: i) lower alpha band power after outcome onset, ii) lower
923 alpha band power before and after outcome onset, iii) beta band power before outcome onset. We log10-
924 transformed this data to decibel and analyzed it as a function of the performed response (factor), block
925 number (1–6; z-standardized), and the interaction between both. We reasoned that if power differences
926 occurred merely due to fatigue effects, the main effect of performed response should not be significant
927 when accounting for time on task (i.e., block number).

928 For lower alpha band power after outcome onset, there was a significant main effect of
929 performed response, $b = 0.035$, $SE = 0.015$, $\chi^2(1) = 5.350$, $p = .021$, with higher power for Go than NoGo
930 responses, a significant main effect of block number with lower alpha band power increasing over time,
931 $b = 0.052$, $SE = 0.019$, $\chi^2(1) = 6.645$, $p = .010$, but no significant interaction, $b = 0.003$, $SE = 0.008$,
932 $\chi^2(1) = 0.156$, $p = .693$. As Supplementary Fig. 19A reveals, lower alpha band power was consistently
933 higher after Go than after NoGo responses for every block of the task, suggesting that differences in
934 lower alpha band power were not merely due to time on task.

935 For lower alpha band power before and after outcome onset, as well, there was a significant
936 main effect of performed response, $b = 0.068$, $SE = 0.030$, $\chi^2(1) = 5.010$, $p = .025$, with higher power
937 after Go than NoGo responses, a significant main effect of block number with lower alpha band power
938 increasing over time, $b = 0.072$, $SE = 0.029$, $\chi^2(1) = 6.757$, $p = .016$, but no significant interaction, $b =$
939 0.010 , $SE = 0.009$, $\chi^2(1) = 1.184$, $p = .277$ (Supplementary Fig. 19B), leading to identical conclusions.

940 For beta band power before and after outcome onset, there was a significant main effect of
941 performed response, $b = 0.083$, $SE = 0.032$, $\chi^2(1) = 6.301$, $p = .012$, with higher power after Go than
942 NoGo responses, a significant main effect of block number with beta power decreasing over time, $b = -$
943 0.042 , $SE = 0.021$, $\chi^2(1) = 4.007$, $p = .045$, but no significant interaction, $b = 0.001$, $SE = 0.007$, $\chi^2(1) =$
944 0.030 , $p = .864$ (Supplementary Fig. 19C). In sum, even in presence of changes in power over the time
945 course of the task, lower alpha band and beta band power were consistently higher after Go responses
946 than after NoGo responses, suggesting that these effects were not due to time on task.

947 Furthermore, we asked whether differences in dACC BOLD between trials with Go and trials
948 with NoGo response at the time of the outcome were due to outcome-related activity or might rather the
949 reflect action on the next trial. We thus plotted the “raw” BOLD signal per action x outcome condition.
950 We used the first eigenvariate of the BOLD in signal in the dACC cluster that reflected biased learning,
951 upsampled the BOLD signal, epoched it into trials relative to outcome onset (same procedure as for
952 fMRI-informed EEG analyses), and averaged the signal across trials and participants separately per
953 performed action (Go/NoGo) and outcome valence (positive/ negative). This plot yielded higher dACC
954 BOLD signal on trials with NoGo responses than on trials with Go responses at the time of outcomes
955 (Supplementary Fig. 19E). However, this difference could potentially be driven by the response on the
956 following task. Hence, we further split the data according to whether the action on the following trial
957 was a Go or a NoGo response. Irrespective of the action on the following trial, dACC BOLD signal was
958 higher when the action on the current trial was a NoGo response compared to a Go response

SUPPLEMENTS PREFRONTAL SIGNALS PRECEED STRIATAL SIGNALS

22

959 (Supplementary Fig. 20F). In sum, these analyses corroborate that dACC BOLD signal was indeed
960 higher after NoGo than Go responses at the time of outcomes.

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

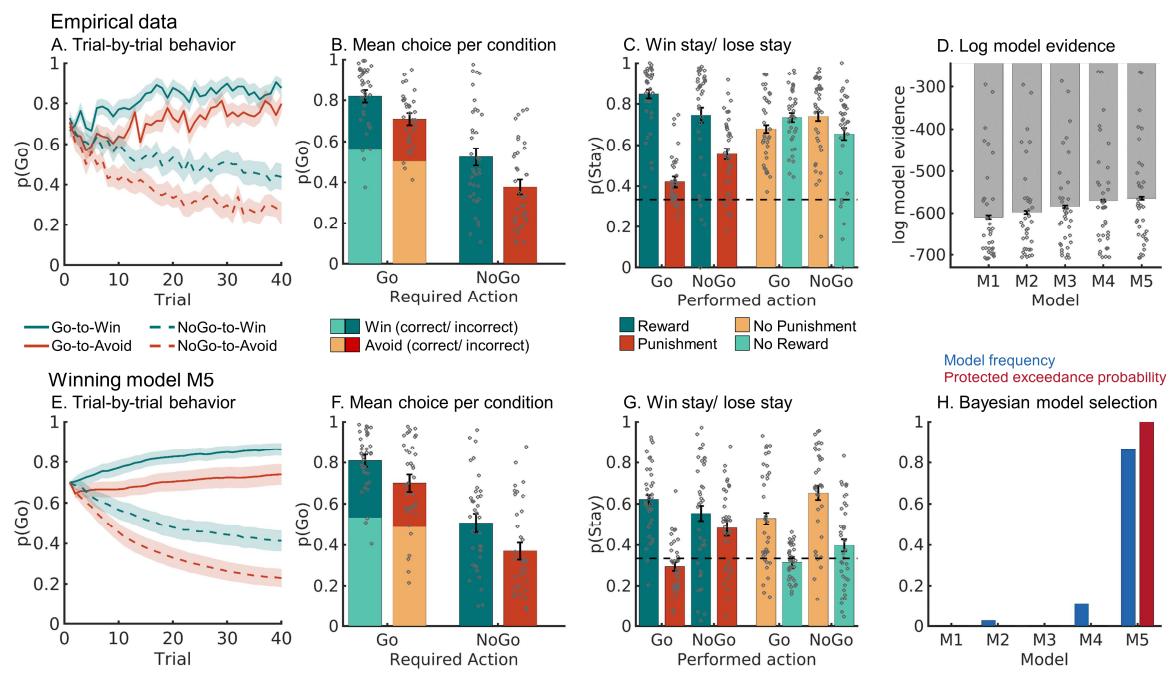
1004

1005

SUPPLEMENTS PREFRONTAL SIGNALS PRECEDE STRIATAL SIGNALS

23

1006 **Supplementary Figure 1: Behavioral results with only the 29**
 1007 **participants included in EEG-fMRI analyses**
 1008



Supplementary Figure 1. Behavioral performance in the subgroup of 29 participants included in the fMRI-inspired EEG analyses. **A.** Trial-by-trial proportion of Go responses (\pm SEM across participants) for Go cues (solid lines) and NoGo cues (dashed lines). The motivational bias was already present from very early trials onwards, as participants made more Go responses to Win than Avoid cues (i.e., green lines are above red lines). Additionally, participants clearly learn whether to make a Go response or not (proportion of Go responses increases for Go cues and decreases for NoGo cues). **B.** Mean (\pm SEM across participants) proportion Go responses per cue condition (points are individual participants' means). **C.** Probability of repeating a response ("stay") on the next encounter of the same cue as a function of action and outcome. Learning was reflected in higher probability of staying after positive outcomes than after negative outcomes (main effect of outcome valence). Biased learning was evident in learning from salient outcomes, where this valence effect was stronger after Go responses than NoGo responses. Dashed line indicates chance level choice ($p_{Stay} = 0.33$). **D.** Log-model evidence favors the asymmetric pathways model (M5) over simpler models (M1-M4). **E-G.** Trial-by-trial proportion of Go responses, mean proportion Go responses, and probability of staying based on one-step-ahead predictions using parameters (hierarchical Bayesian inference) of the winning model (asymmetric pathways model, M5). **H.** Model frequency and protected exceedance probability indicate best fit for model M5 (asymmetric pathways model), in line with log model evidence.

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

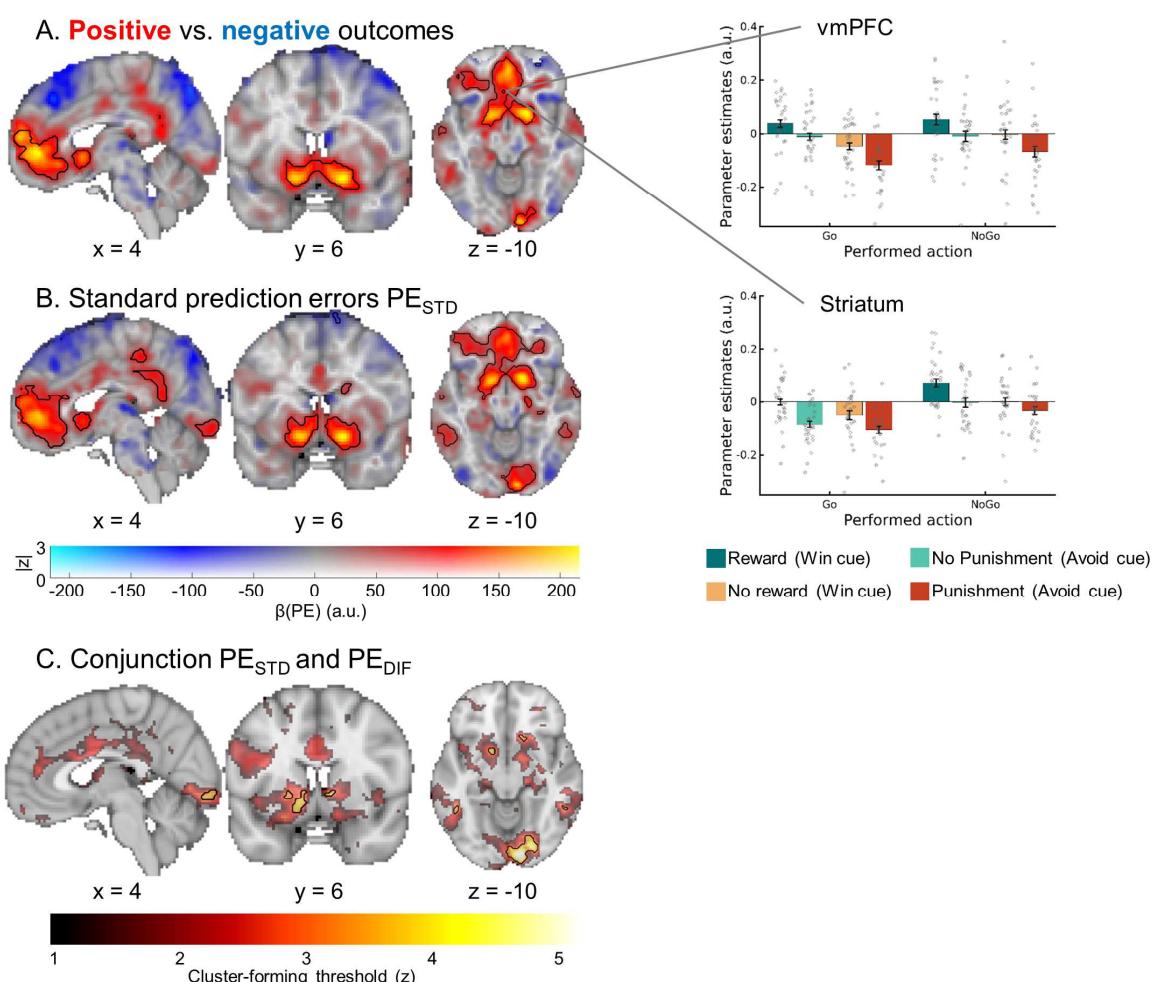
1021

1022

1023

1024

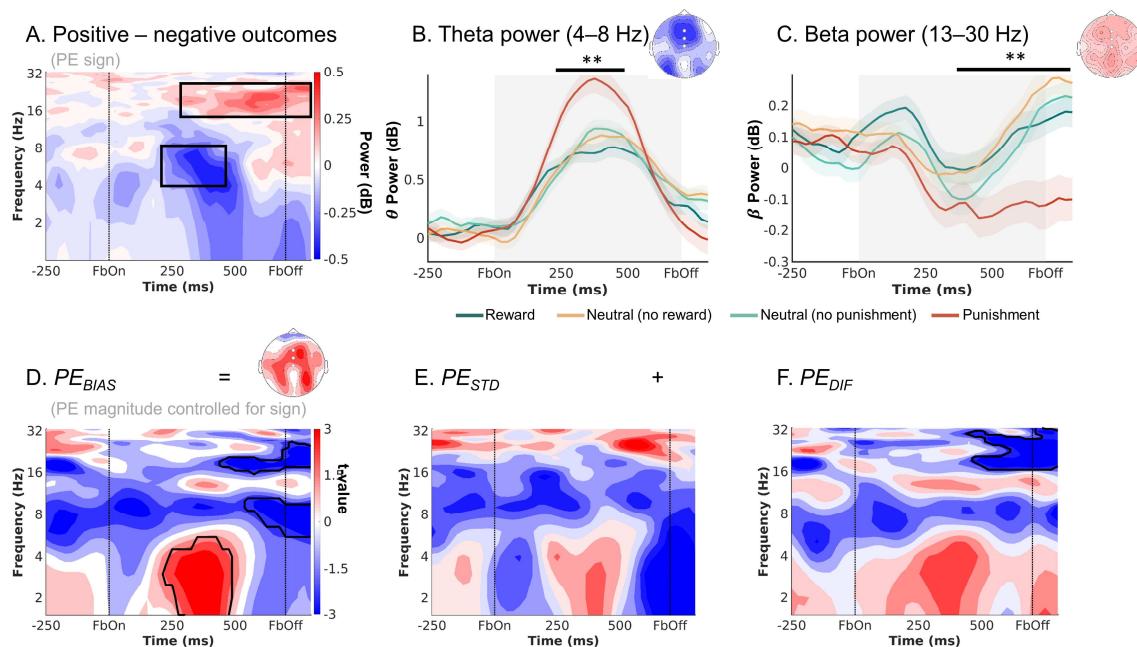
1025 Supplementary Figure 2: fMRI results with only the 29 participants
1026 included in EEG-fMRI analyses
1027



Supplementary Figure 2. BOLD signal reflecting outcome processing in the subgroup of 29 participants included in the fMRI-inspired EEG analyses. **A.** BOLD signal was higher for positive outcomes (rewards, no punishments) compared with negative outcomes (no rewards, punishments) in a range of regions including bilateral ventral striatum and vmPFC. BOLD effects displayed using a dual-coding data visualization approach with color indicating the parameter estimates and opacity the associated z-statistics. Significant clusters are surrounded by black edges. Bar plots show parameter estimates per action x outcome condition (\pm SEM across participants) **B.** When using the trial-by-trial PEs participants experienced as model-based regressors in our GLM, positive PE correlations occurred in several regions including importantly the ventral striatum, vmPFC, dACC, and PCC. **C.** Left panel: Regions encoding both the standard PE term and the difference term to biased PEs (conjunction) at different cluster-forming thresholds (color). Clusters significant at a threshold of $z > 3.1$ are surrounded by black edges. In bilateral striatum, pgACC, bilateral ITG, and primary visual cortex, BOLD was significantly better explained by biased learning than by standard learning. Clusters in dACC, left motor cortex, and PCC were not significant any more.

1028
1029
1030
1031
1032
1033
1034
1035
1036
1037

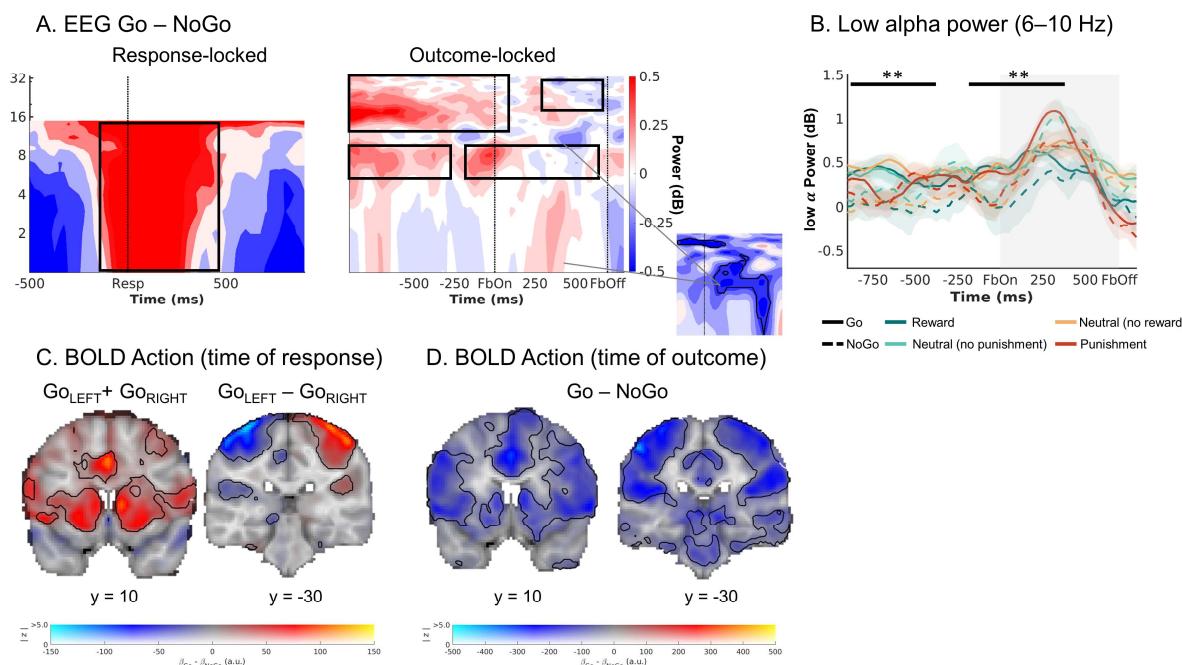
1038 **Supplementary Figure 3: EEG results with only the 29 participants**
1039 **included in EEG-fMRI analyses**
1040



Supplementary Figure 3. EEG time-frequency power midfrontal electrodes ($Fz/FCz/Cz$) reflecting outcomes processing in the subgroup of 29 participants included in the fMRI-inspired EEG analyses. **A.** Time-frequency plot (logarithmic y-axis) displaying high theta (4–8 Hz) power for negative outcomes and higher beta power (16–32 Hz) for positive outcomes. **B.** Theta power transiently increases for any outcome, but more so for negative outcomes (especially punishments) around 225–475 ms after feedback onset. **C.** Beta was higher for positive than negative outcomes (especially punishments) over a long time period around 300–1,250 ms after feedback onset. **D-F.** Correlations between midfrontal EEG power and trial-by-trial PEs. Solid black lines indicate clusters above threshold. Biased PEs were significantly positively correlated with midfrontal theta power, but also negatively correlated with later alpha and beta power (**D**). The correlations of theta with the standard PEs (**E**) and the difference term to biased PEs (**F**) were also positive, though not significant. Beta power only encoded the difference term to biased PEs (**F**). ** $p < 0.01$. ** $p < 0.01$.

1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060

1061 **Supplementary Figure 4: EEG and fMRI correlates of past action with**
1062 **only the 29 participants included in EEG-fMRI analyses**
1063



Supplementary Figure 4. Exploratory follow-up analyses on dACC BOLD signal and midfrontal low-alpha power in the subgroup of 29 participants included in the fMRI-inspired EEG analyses. A. Midfrontal time-frequency response-locked (left panel) and outcome-locked (right panel). Before and shortly after outcome onset, power in the lower alpha band was higher on trials with Go actions than on trials with NoGo actions. The shape of this difference resembles the shape of dACC BOLD-EEG TF correlations (small plot; note that this plot depicts BOLD-EEG correlations, which were negative). Note that differences between Go and NoGo trials occurred already before outcome onset in the alpha and beta range, reminiscent of delay activity; but were not fully sustained since the actual response. B. Midfrontal power in the lower alpha band per action x outcome condition. Lower alpha band power was consistently higher on trials with Go actions than on trials with NoGo actions, starting already before outcome onset. C. BOLD signal differences between Go and NoGo actions (activation by either left or right Go actions compared to the implicit baseline in the GLM, which contains the NoGo actions; left panel) and left vs. right hand responses (right panel) at the time of responses. Response-locked dACC BOLD was significantly higher for Go than NoGo actions. D. BOLD signal differences between Go and NoGo actions at the time of outcomes. Outcome-locked dACC BOLD signal (and BOLD signal in other parts of cortex) was significantly lower on trials with Go than on trials with NoGo actions.

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

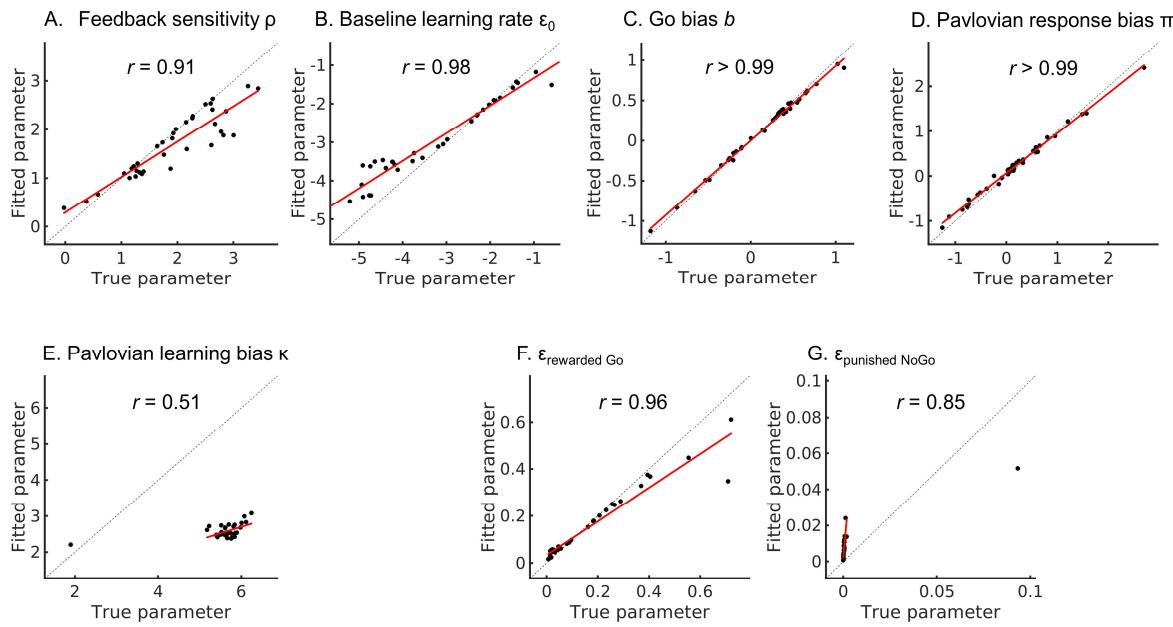
1077

1078

1079

1080

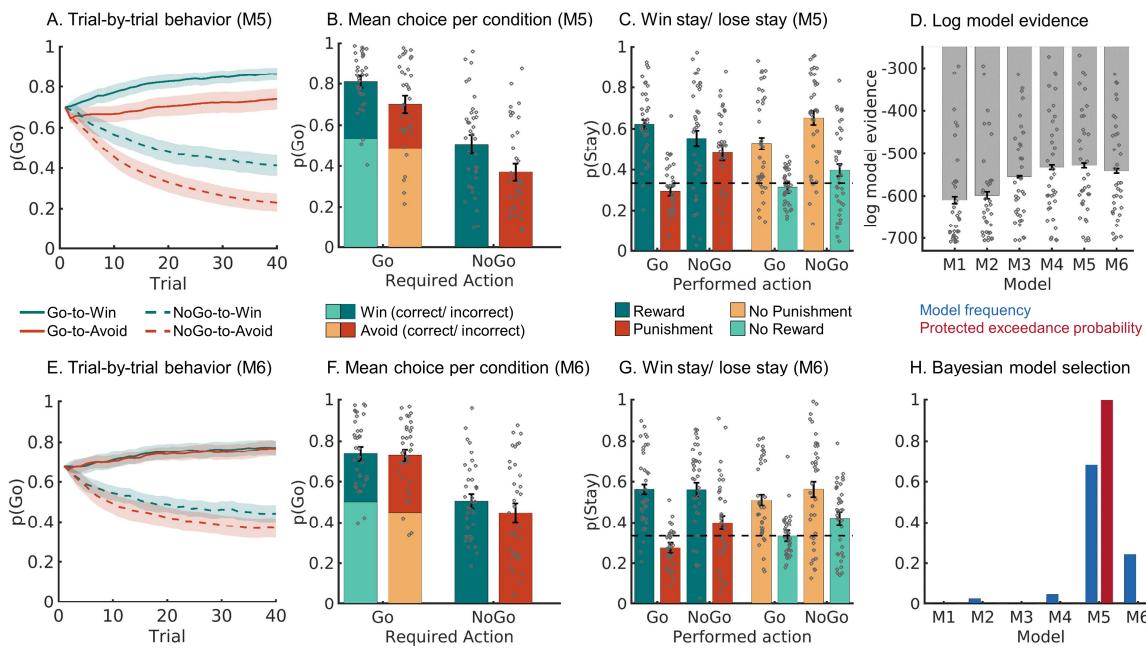
1081 Supplementary Figure 5: Parameter recovery analyses for model M5 1082



Supplementary Figure 5. Parameter recovery results for the asymmetric pathways (M5) model. The feedback sensitivity parameter ρ (**A**), the baseline learning rate ε_0 (**B**), the Go bias b (**C**), and the Pavlovian response bias π (**D**) all showed excellent parameter recovery, i.e., between-participants correlations of ground-truth and fitted parameters all exceeded $r > 0.90$. Parameters ρ and ε_0 are still in sampling space and thus untransformed (which means they can be negative). Dashed lines represent the identity line; red solid lines represent a linear regression line of fitted parameters regressed onto true parameters. Only recovery of the learning bias parameter κ (**E**) was not quite as good, though the correlation between ground-truth and fitted parameters was still strongly positive ($r > 0.50$). Note an outlier at the bottom left of κ values; the regression line was fitted without this data point. When combining the baseline learning rate ε_0 with the learning bias κ to compute the biased learning rates for rewarded Go actions $\varepsilon_{\text{rewarded Go}}$ (**F**) and punished NoGo actions $\varepsilon_{\text{punished NoGo}}$ (**G**), correlations between ground-truth and fitted parameter values were considerably higher (r 's > 0.86). Note again an outlier at the top right of for $\varepsilon_{\text{punished NoGo}}$ values; the regression line was fitted without this data point.

1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101

1102 **Supplementary Figure 6: Simulations for asymmetric pathways and**
1103 **action priming model**
1104



Supplementary Figure 6. Model comparison and validation of asymmetric pathways (M5) and action priming (M6) model. (A-C) One-step-ahead predictions using parameters (hierarchical Bayesian inference) of the winning model asymmetric pathways model (M5). A. Trial-by-trial proportion of Go responses (\pm SEM across participants) for Go cues (solid lines) and NoGo cues (dashed lines); B. Mean (\pm SEM across participants) proportion Go responses per cue condition (points are individual participants' means); C. Probability of repeating a response ("stay") on the next encounter of the same cue as a function of action and outcome. The asymmetric pathways model was well able to capture core characteristics of the empirical data (see Fig. 2 in the main text). D. Log-model evidence favors the asymmetric pathways model (M5), even over the action priming model (M6). E-G. Trial-by-trial proportion of Go responses, mean proportion Go responses, and probability of for the action priming model (M6). This model did not reproduce motivational biases (i.e., the difference between green and red lines and bars) well. H. Model frequency and protected exceedance probability indicate best fit for model M5 (asymmetric pathways model), in line with log model evidence.

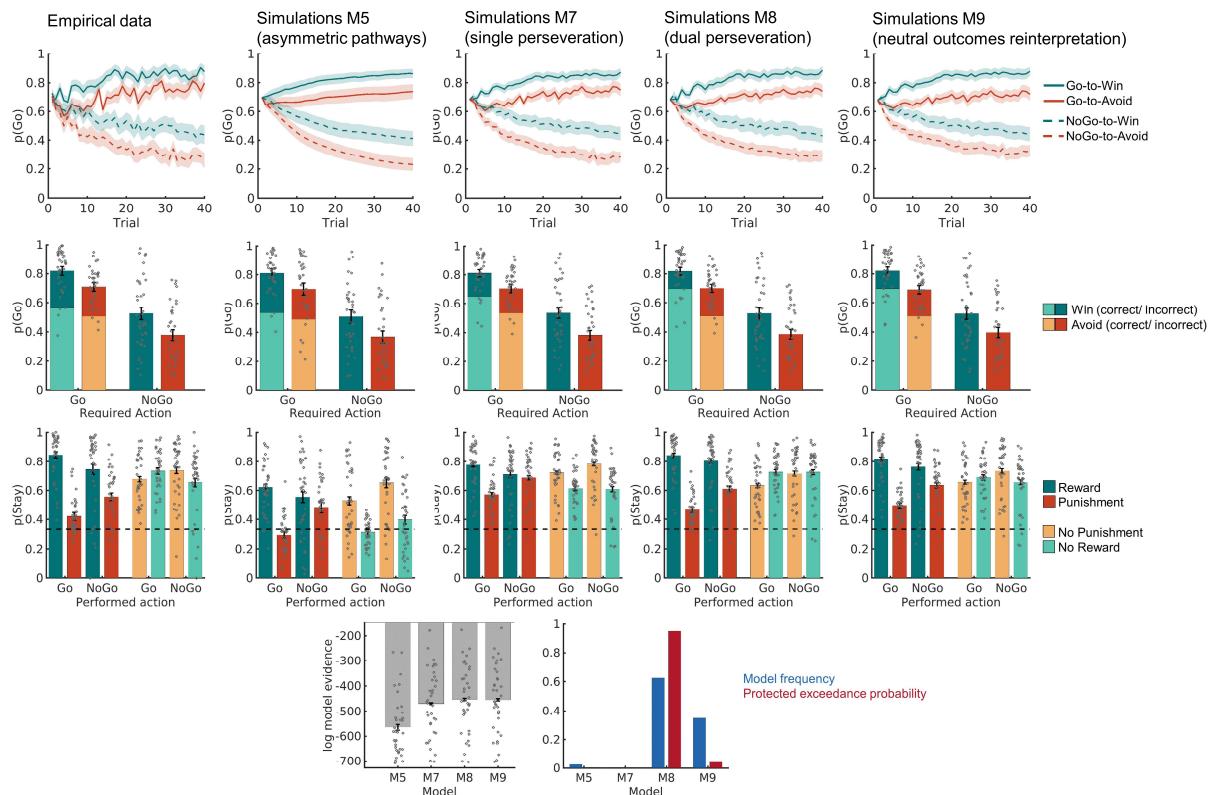
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123

SUPPLEMENTS PREFRONTAL SIGNALS PRECEDE STRIATAL SIGNALS

29

1124 **Supplementary Figure 7: Behavioral results from the perseveration**
 1125 **model (M7), cue valence-based perseveration model (M8), and neutral**
 1126 **outcomes reinterpretation model (M9)**

1127



Supplementary Figure 7. Model comparison and validation of the single perseveration (M7), dual perseveration (M8) and cue valence-based outcome reinterpretation models. First row. Trial-by-trial proportion of Go responses (\pm SEM across participants) for Go cues (solid lines) and NoGo cues (dashed lines). *Second row.* Mean (\pm SEM across participants) proportion Go responses per cue condition (points are individual participants' means). *Third row.* Probability to repeat a response ("stay") on the next encounter of the same cue as a function of action and outcome. *Fourth row.* Log-model evidence, model frequency, and protected exceedance probability all favored the dual perseveration model (M8) over the other models. In sum, the additional models M7-9 provided a better quantitative fit to the data compared to the asymmetric pathways model M5 reported in the main text. They also predicted the propensity of staying overall more accurately than M5. However, these additional models all overestimated the proportion of incorrect Go responses. Furthermore, although the predicted patterns of the propensity of staying mimicked the data more closely than M5, these predicted patterns still mismatched some aspects of the empirical data. Taken together, these models could capture certain qualitative patterns in the data, but not others, which was expectable given the data reduction that comes with fitting a learning model with few parameters only.

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

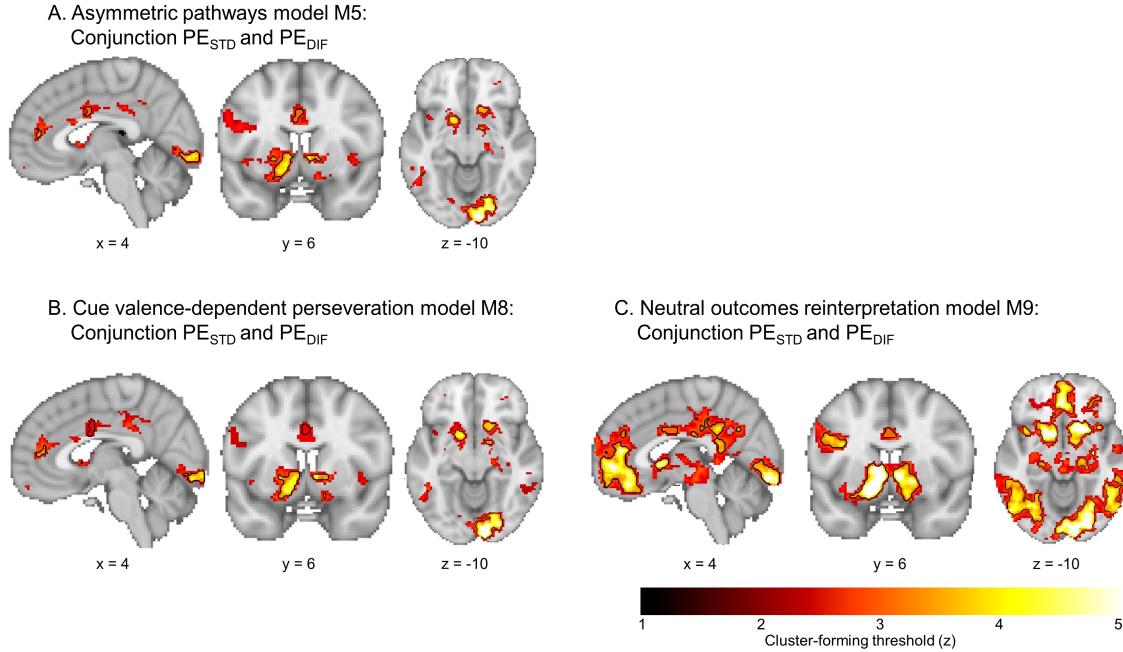
1140

SUPPLEMENTS PREFRONTAL SIGNALS PRECEDE STRIATAL SIGNALS

30

1141 **Supplementary Figure 8: Neural results based on prediction-errors from**
1142 **cue valence-based perseveration model (M8) and neutral outcomes**
1143 **reinterpretation model (M9)**

1144



Supplementary Figure 8. BOLD correlates of biased prediction errors as predicted by the asymmetric pathways model (M5), the cue valence-dependent perseveration model (M8) and the neutral outcomes reinterpretation model (M9). (A) Regions encoding both the standard PE term and the difference term to biased PEs (conjunction) as predicted from the asymmetric pathways model (M5) at different cluster-forming thresholds ($1 < z < 5$, color coding; opacity constant; replotted from Fig. 3C main text). Clusters significant at a threshold of $z > 3.1$ are surrounded by black edges. This is a version of Fig. 3C reprinted with a color scheme consistent with the other two panels. (B) Regions encoding both the standard PE term and the difference term to biased PEs (conjunction) as predicted from the cue valence-dependent perseveration model (M8) at different cluster-forming thresholds ($1 < z < 5$, color coding; opacity constant). Clusters significant at a threshold of $z > 3.1$ are surrounded by black edges. In line with correlates of biased PEs as predicted by M5, BOLD signal in bilateral striatum, dACC (small-volume corrected), pgACC, PCC, left motor cortex, left inferior temporal gyrus, and primary visual cortex was significantly better explained by biased learning than by standard learning. This finding was not surprising given that adding perseveration to the model did not change the learning mechanism, but only led to slightly different best fitting parameter values. (B) Regions encoding both the standard PE term and the difference term to biased PEs (conjunction) as predicted from the neutral outcomes reinterpretation model (M9). In addition to the regions in which BOLD signal was significantly better explained by biased than standard PEs as derived from M5 and M8, biased PEs derived from M9 also explained BOLD signal in vmPFC (larger cluster than M5), PCC (larger cluster than M5), left inferior frontal gyrus and multiple clusters in superior and inferior lateral occipital cortex significantly better than standard PEs. These results tentatively suggested that vmPFC, PCC, and these other occipital regions might implement an additional mechanism besides biased learning which encodes the cue valence also at the time of the outcome, biasing the processing of neutral outcomes.

1145

1146

1147

1148

1149

1150

1151

1152

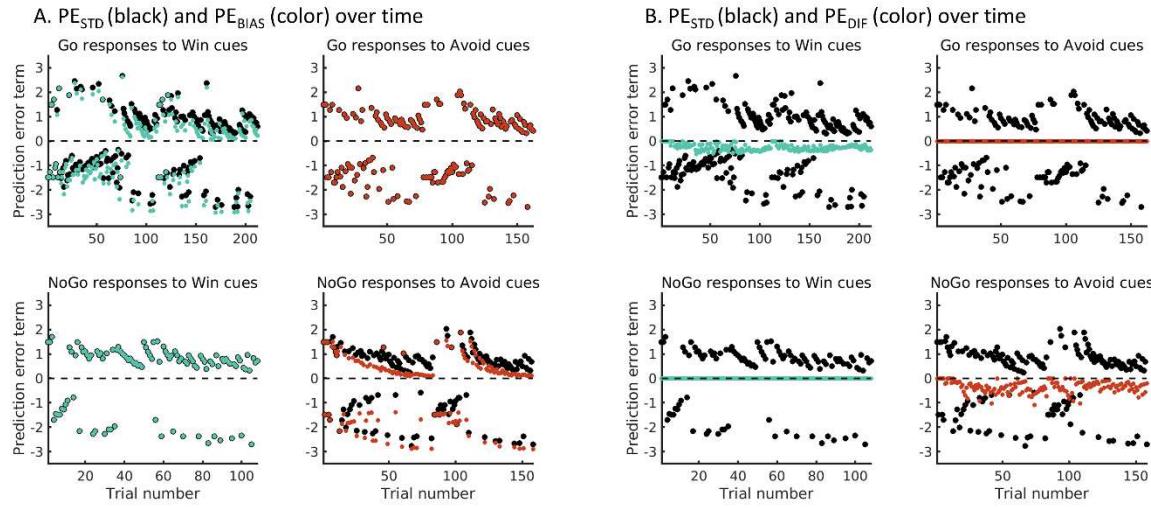
1153

1154

1155

1156

1157 **Supplementary Figure 9: Illustration of biased and standard learning**
1158 **for a representative example participant**
1159



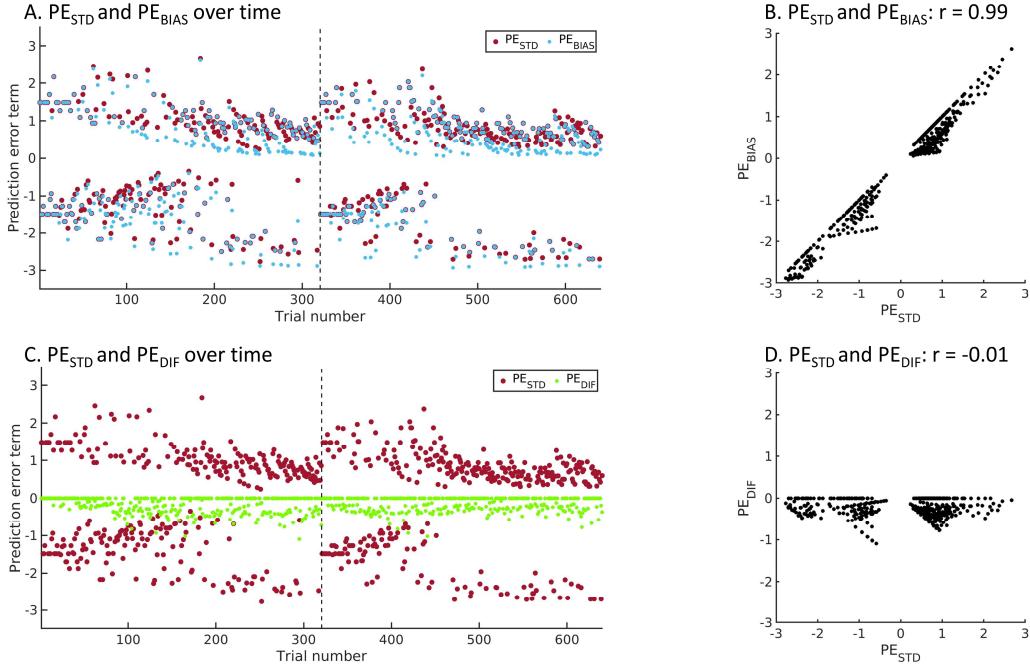
Supplementary Figure 9. Illustration of biased and standard learning for a representative example participant. (A) Prediction errors according to the standard Q-learning model M1 (PE_{STD} ; black dots) and according to the winning model M5 implementing biased learning (PE_{BIAS} ; colored dots). In M5, motivational biases partially arise through biased learning: Participants learn more readily that an action has caused a reward, and are reluctant to learn that inaction has led to a punishment. For each cue, the values of each of the three possible actions (Go_{LEFT} , Go_{RIGHT} , $NoGo$) are learnt independently, and prediction errors are calculated relative to the value of the chosen action. The learning bias acts such that the effective learning rate is increased when a reward follows any Go response, and decreased when a punishment follows a $NoGo$ response (see equation 5 in the main manuscript). Hence, for Win cues, action values for Go responses (but not $NoGo$ responses) will be affected by the learning bias and approach the positive asymptote more quickly compared to standard learning, leading to faster decay of positive prediction errors. At the same time, negative outcomes will remain surprising and elicit larger prediction errors compared to standard learning. Hence, model predictions diverge for prediction errors after Go responses to Win cues, but not after $NoGo$ responses to Win cues (colored dots are on top of black dots). Vice versa, for Avoid cues, action values for $NoGo$ responses (but not Go responses) are affected by the learning bias and approach the negative asymptote more slowly compared to standard learning (with negative prediction errors remaining high) as participants are reluctant to take punishments after $NoGo$ responses into account. At the same time, ignoring punishments leads to a faster approach of positive action values to the positive asymptote (and a faster decay of positive prediction errors) compared to standard learning. Model predictions diverge for prediction errors after $NoGo$ responses to Avoid cues, but not after Go responses to Avoid cues (colored dots are on top of black dots). (B) To assess evidence for biased learning despite this high multicollinearity, we decomposed PE_{BIAS} into PE_{STD} (black dots) plus a difference term $PE_{DIF} = PE_{BIAS} - PE_{STD}$ (colored dots). Note that PE_{DIF} is always zero after $NoGo$ responses to Win cues and Go responses to Avoid cues as both M1 and M5 make identical predictions for these action values. In contrast, for Go responses to Win cues and $NoGo$ responses to Avoid cues, the PE_{DIF} term is always negative because, in both cases, positive action values approach the positive asymptote more quickly (such that positive prediction errors decay more quickly) compared to standard learning, and negative action values approach the negatively asymptote more slowly (and thus negative prediction errors remain high) compared to standard learning.

1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171

SUPPLEMENTS PREFRONTAL SIGNALS PRECEDE STRIATAL SIGNALS

32

1172 **Supplementary Figure 10: Illustration of prediction error regressor**
1173 **decomposition**
1174



Supplementary Figure 10. Illustration of prediction error regressor decomposition for a representative example participant. (A) Prediction errors according to the standard Q-learning model M1 (PE_{STD} ; larger red dots) and according to the winning model M5 implementing biased learning with more learning from rewarded Go responses and less learning from punished NoGo responses (PE_{BIAS} ; smaller blue dots; blue dots with a red edge reflect trials on which both models make identical predictions). Both prediction error types have a highly similar profile. The key difference between them is an overall downwards shift of PE_{BIAS} compared to PE_{STD} , with positive PE_{BIAS} approaching zero more quickly than positive PE_{STD} , while negative PE_{BIAS} remain more negative compared to negative PE_{STD} . Note that, after trial 320, session 2 starts (vertical dashed line), featuring new cues. **(B)** The prediction errors from both models are highly correlated (mean across participants: $r = 0.99$, range 0.96–0.99), implicating that, when entered together into a multiple linear regression, both regressors would share most of their variance, which would be attributed to neither of them. **(C)** To assess evidence for biased learning despite this high multicollinearity, we decomposed PE_{BIAS} into PE_{STD} plus a difference term $PE_{DIF} = PE_{BIAS} - PE_{STD}$. PE_{STD} and PE_{DIF} show markedly different profiles, with PE_{DIF} being zero for trials on which both PE_{STD} and PE_{BIAS} make identical predictions, and being negative otherwise (reflecting the relatively faster decay of positive PE_{BIAS} and slower decay of negative PE_{BIAS}). **(D)** Both PE_{STD} and PE_{DIF} are much less correlated (mean across participants: $r = -0.02$, range -0.07–0.09), making it possible to enter them in the same multiple linear regression and test whether PE_{DIF} predicts variance in BOLD signal above and beyond PE_{STD} .

1175

1176

1177

1178

1179

1180

1181

1182

1183

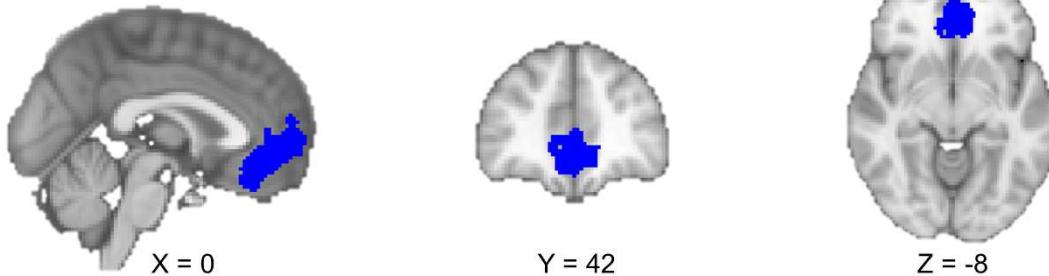
1184

SUPPLEMENTS PREFRONTAL SIGNALS PRECEDE STRIATAL SIGNALS

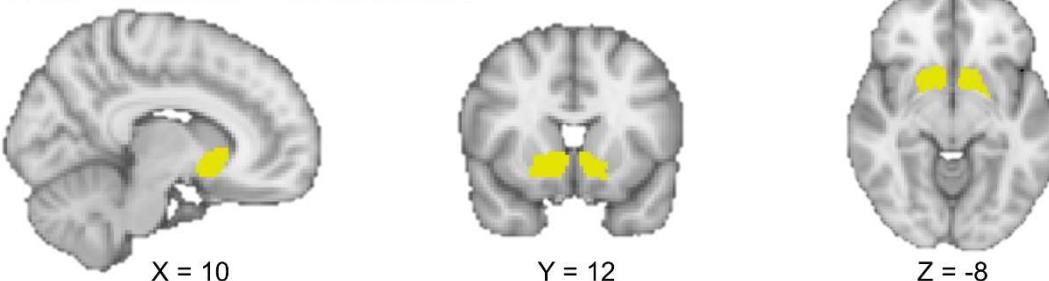
33

1185 **Supplementary Figure 11: Conjunctions of anatomical and functional**
1186 **masks – vmPFC and striatum**
1187

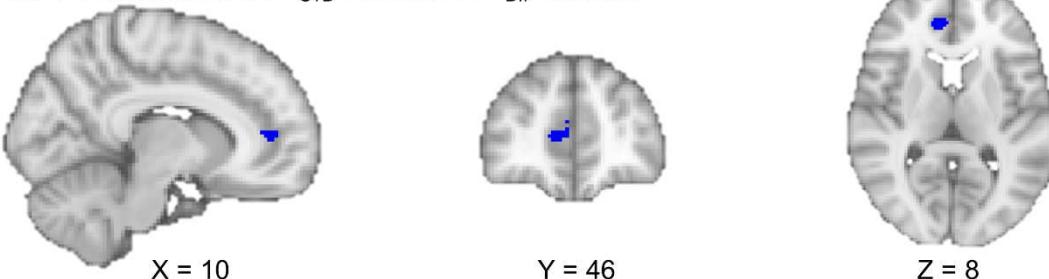
A. vmPFC anatomical \cap valence contrast



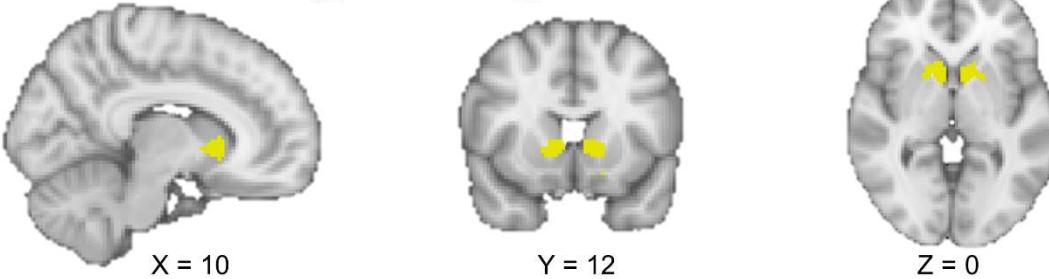
B. Striatum anatomical \cap valence contrast



C. vmPFC anatomical \cap PE_{STD} contrast \cap PE_{DIF} contrast



D. Striatum anatomical \cap PE_{STD} contrast \cap PE_{DIF} contrast

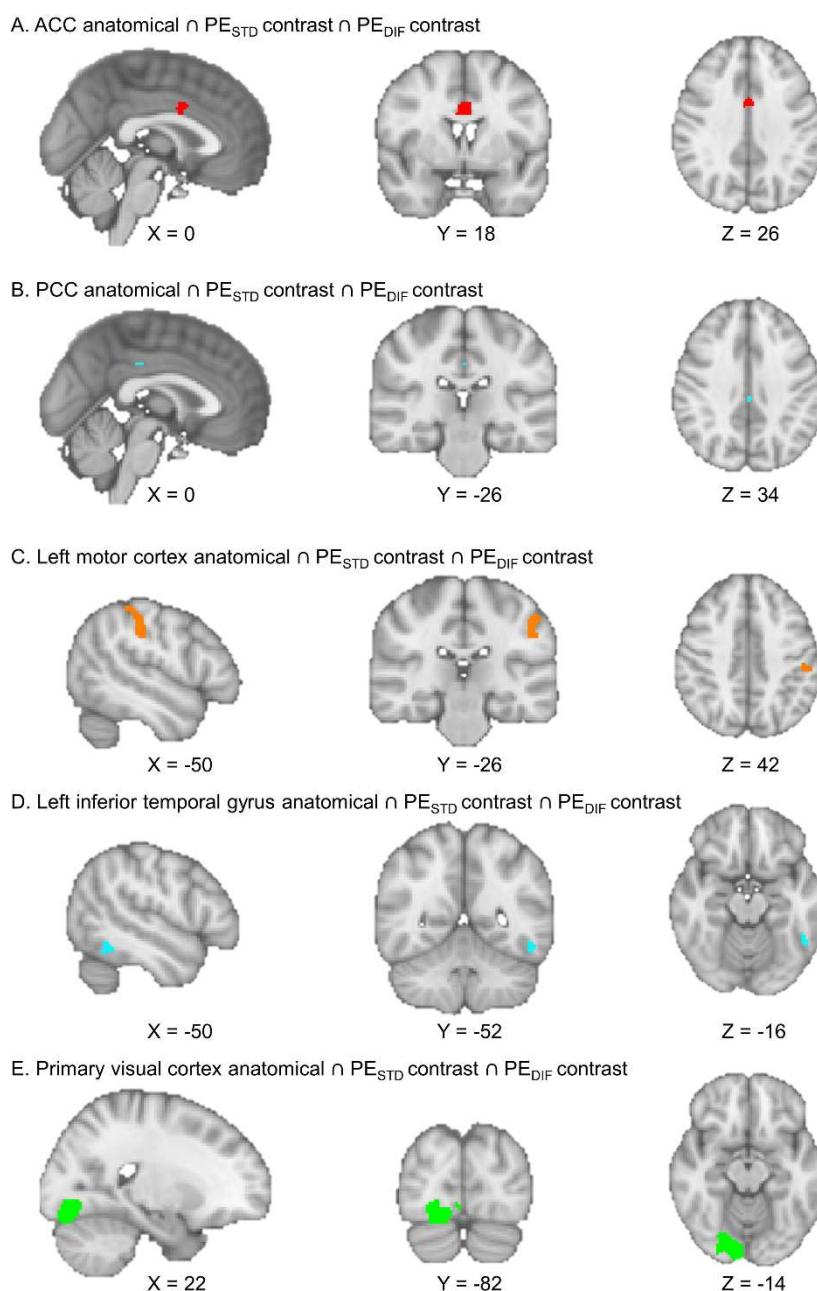


Supplementary Figure 11. Conjunctions of anatomical masks with functional contrasts from fMRI GLM analyses used for fMRI-informed EEG analyses. Anatomical masks were based on the Harvard-Oxford Atlas. Functional contrasts involve outcome valence and conjunction of PE_{STD} and PE_{DIF}. **A.** vmPFC outcome valence contrast (dark blue, conjunction of frontal pole, frontal medial cortex, and paracingulate gyrus). **B.** striatum outcome valence contrast (yellow, conjunction of bilateral nucleus accumbens, caudate, and putamen). **C.** vmPFC PE_{STD} \cap PE_{DIF} contrast (dark blue, results in a cluster in pgACC). **D.** striatum PE_{STD} \cap PE_{DIF} contrast (yellow). All anatomical masks were extracted from the probabilistic Harvard-Oxford Atlas, thresholded at 10%. Note that images are in radiological orientation (i.e., left brain hemisphere presented on the right and vice versa).

1188

1189

1190 Supplementary Figure 12: Conjunctions of anatomical and functional
1191 masks – ACC, PCC, left M1, left ITG, V1



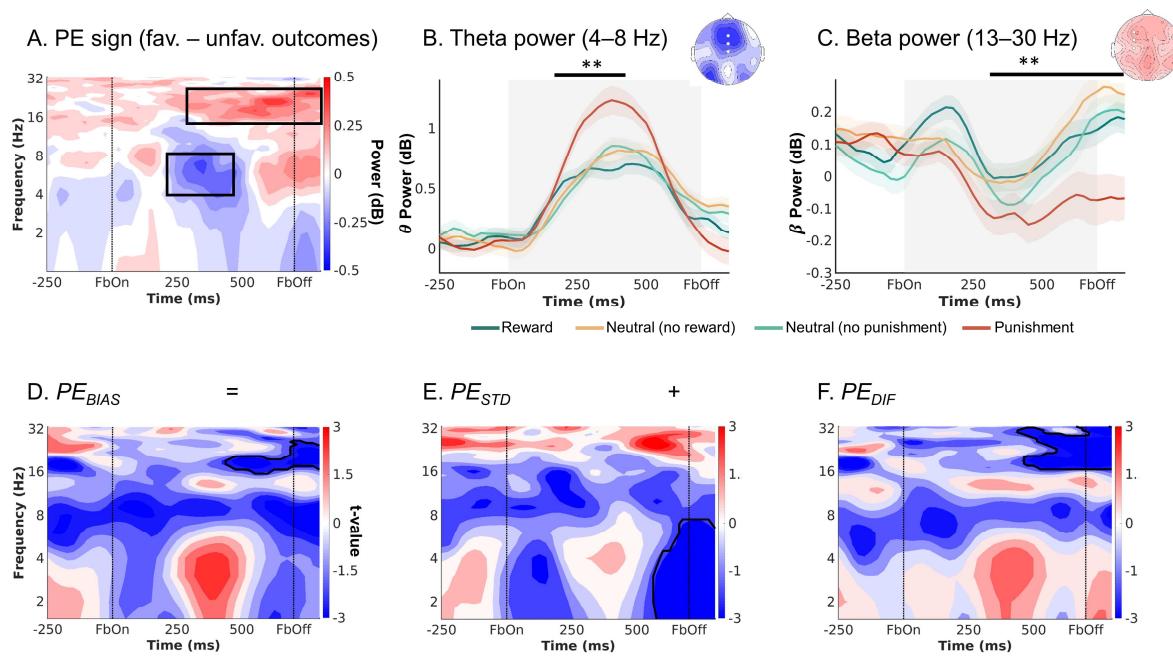
Supplementary Figure 12. Conjunctions of anatomical masks with functional contrasts from fMRI GLM analyses used for fMRI-informed EEG analyses: **A.** AAC $PE_{STD} \cap PE_{DIF}$ contrast (red, cingulate gyrus, anterior division, resulting in a cluster in dACC); **B.** PCC $PE_{STD} \cap PE_{DIF}$ contrast (light blue, cingulate gyrus, posterior division); **C.** Left motor cortex $PE_{STD} \cap PE_{DIF}$ contrast (orange, conjunction of precentral and postcentral gyrus). **D.** Left inferior temporal gyrus $PE_{STD} \cap PE_{DIF}$ contrast (turquoise, conjunction of inferior temporal gyrus, posterior division, and inferior temporal gyrus, temporooccipital part). **E.** Primary visual cortex $PE_{STD} \cap PE_{DIF}$ contrast (green, conjunction of lingual gyrus, occipital fusiform gyrus, occipital pole). All anatomical masks were extracted from the probabilistic Harvard-Oxford Atlas, thresholded at 10%. Note that images are in radiological orientation (i.e., left brain hemisphere presented on the right and vice versa).

1192
1193
1194
1195
1196
1197

SUPPLEMENTS PREFRONTAL SIGNALS PRECEDE STRIATAL SIGNALS

35

1198 **Supplementary Figure 13: EEG time-frequency results after ERPs were**
1199 **removed**
1200



*Supplementary Figure 13. EEG time-frequency power over midfrontal electrodes (Fz/FCz/Cz) after the (action x outcome) condition-wise ERPs has been removed. A. Time-frequency plot (logarithmic y-axis) displaying high theta (4–8 Hz) power for negative outcomes and higher beta power (16–32 Hz) for positive outcomes. B. Theta power transiently increases for any outcome, but more so for negative outcomes (especially punishments) around 225–475 ms after feedback onset. C. Beta was higher for positive than negative outcomes (especially punishments) over a long time period around 300–1,250 ms after feedback onset. D-F. Correlations between midfrontal EEG power and trial-by-trial PEs. Solid black lines indicate clusters above threshold. There still was a visible positive correlation between biased PEs and midfrontal delta power, but this correlation was not significant (D). The correlation of delta with the standard PEs (E) was also positive, though not significant; in fact, at a later time point around stimulus offset, delta power correlated significantly negatively with standard PEs. The difference term to biased PEs (F) also correlated positively, though not significantly with delta power. Beta power encoded the difference term and biased PEs themselves (F). ** p < 0.01.*

1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219

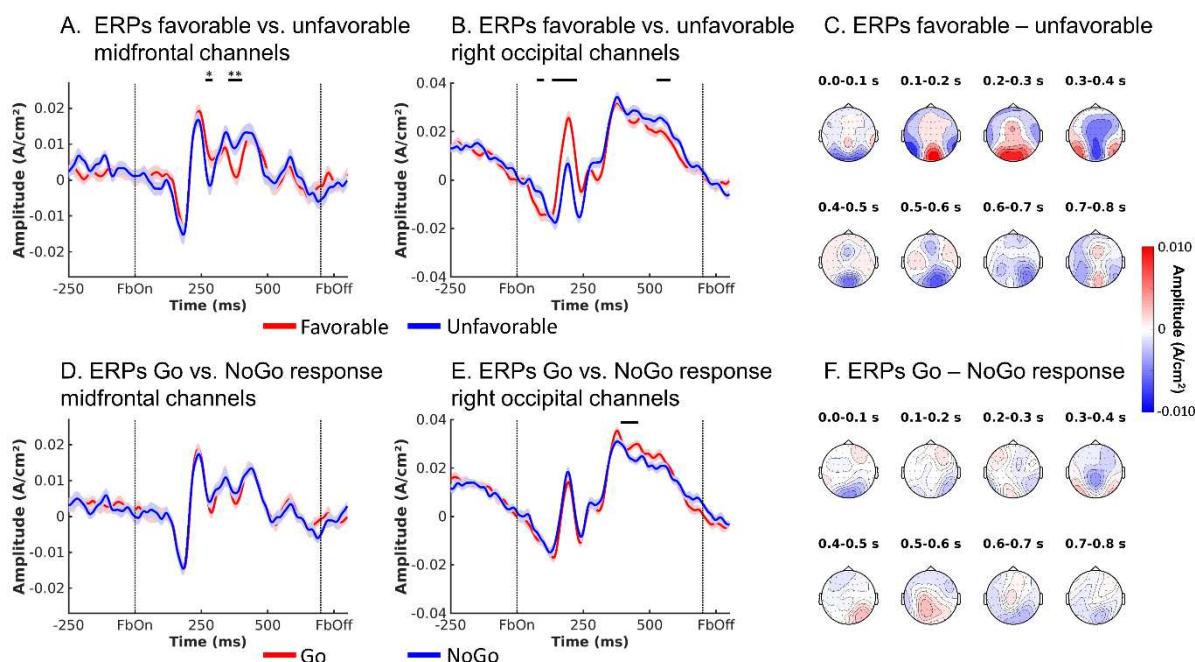
SUPPLEMENTS PREFRONTAL SIGNALS PRECEDE STRIATAL SIGNALS

36

1220 **Supplementary Figure 14: ERPs as a function of action and outcome –**
1221 **binary contrasts**

1222

1223



Supplementary Figure 14. ERPs reflecting outcome valence and performed action. **A.** Voltage (\pm SEM) over midfrontal electrodes (Fz/FCz/Cz) was lower for negative than positive outcomes around 246–294 ms (stronger N2, FRN) and higher for positive than negative outcomes around 344–414 ms (stronger P3/ RewP). **B.** Over right occipital electrodes, the P3 was slightly bigger for positive than negative outcomes. ** $p < 0.01$. * $p < .05$ **C.** Topoplots of difference in voltage between trials with positive and negative outcomes over selected time windows. **D.** There was no difference in voltage over midfrontal electrodes between trials with Go and NoGo responses. **E.** Over right occipital electrodes, the P3 was slightly stronger after Go than NoGo actions (no p -value because ROI selected based on visual inspection). **F.** Topoplots of difference in voltage between trials with Go and NoGo actions over selected time windows.

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

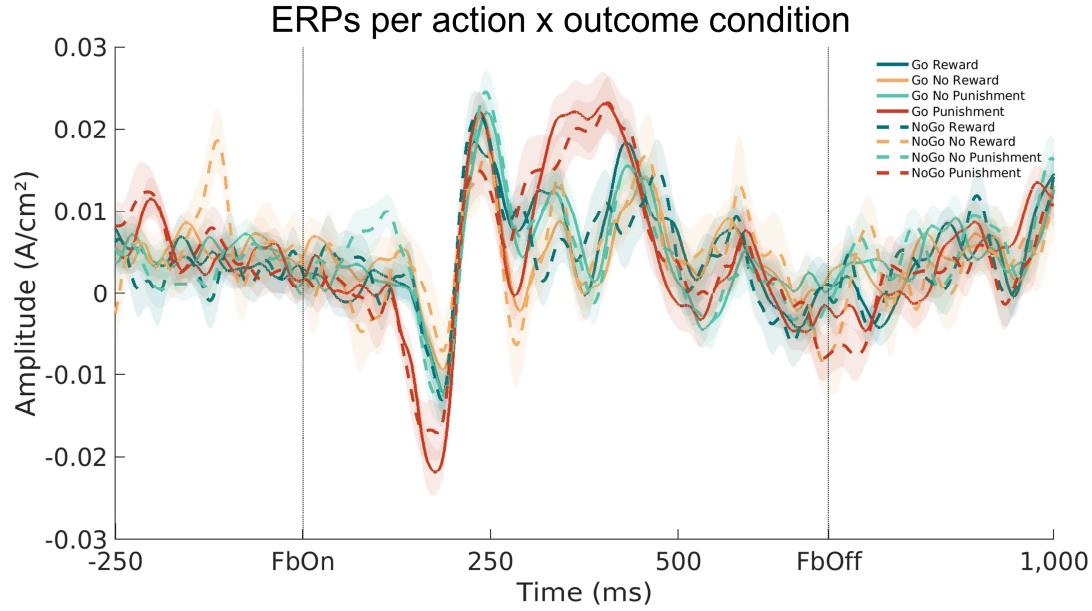
1240

1241

1242

1243

1244 **Supplementary Figure 15: ERPs as a function of action and outcome –**
1245 **all conditions**
1246



Supplementary Figure 15. ERPs per action x outcome condition. Biggest differences occurred around the time of the N2 (FRN) and P3 (RewP). N2 and P3 exhibited larger amplitudes on trials with punishments. There was no apparent modulation by the previous action (Go/NoGo).

1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270

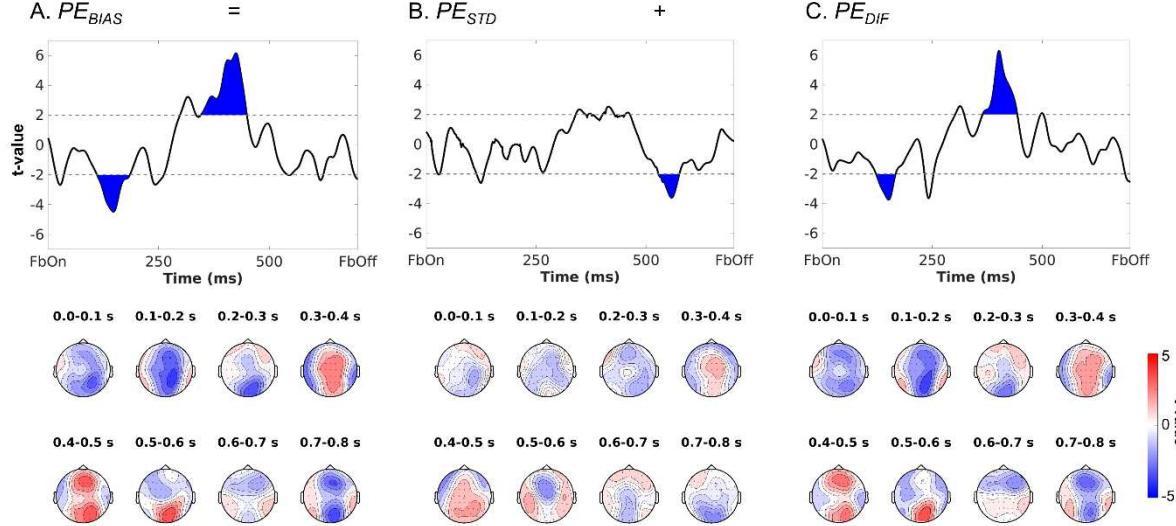
SUPPLEMENTS PREFRONTAL SIGNALS PRECEDE STRIATAL SIGNALS

38

1271 **Supplementary Figure 16: Model-based EEG analyses in the time**
1272 **domain**

1273

1274



Supplementary Figure 16. Modulation of EEG voltage by biased PEs and decomposition into the standard PE term and the difference term to biased PEs. A. Mean EEG voltage over midfrontal electrodes (Fz, FCz, Cz) was significantly modulated by biased PEs around 111–184 (negatively) and 353–414 ms (positively) after outcome onset. B. Correlations with the standard PE term only emerged around 529 – 575 ms (negatively). C. Correlations with the difference term to biased PEs were similar to correlations for the biased PE term itself, i.e., around 123–166 (negatively) and 365–443 ms (positively). Bottom row: Topoplots displaying t -values of beta-weights for the respective regressor over the entire scalp in steps of 100 ms from 0 to 800 ms.

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

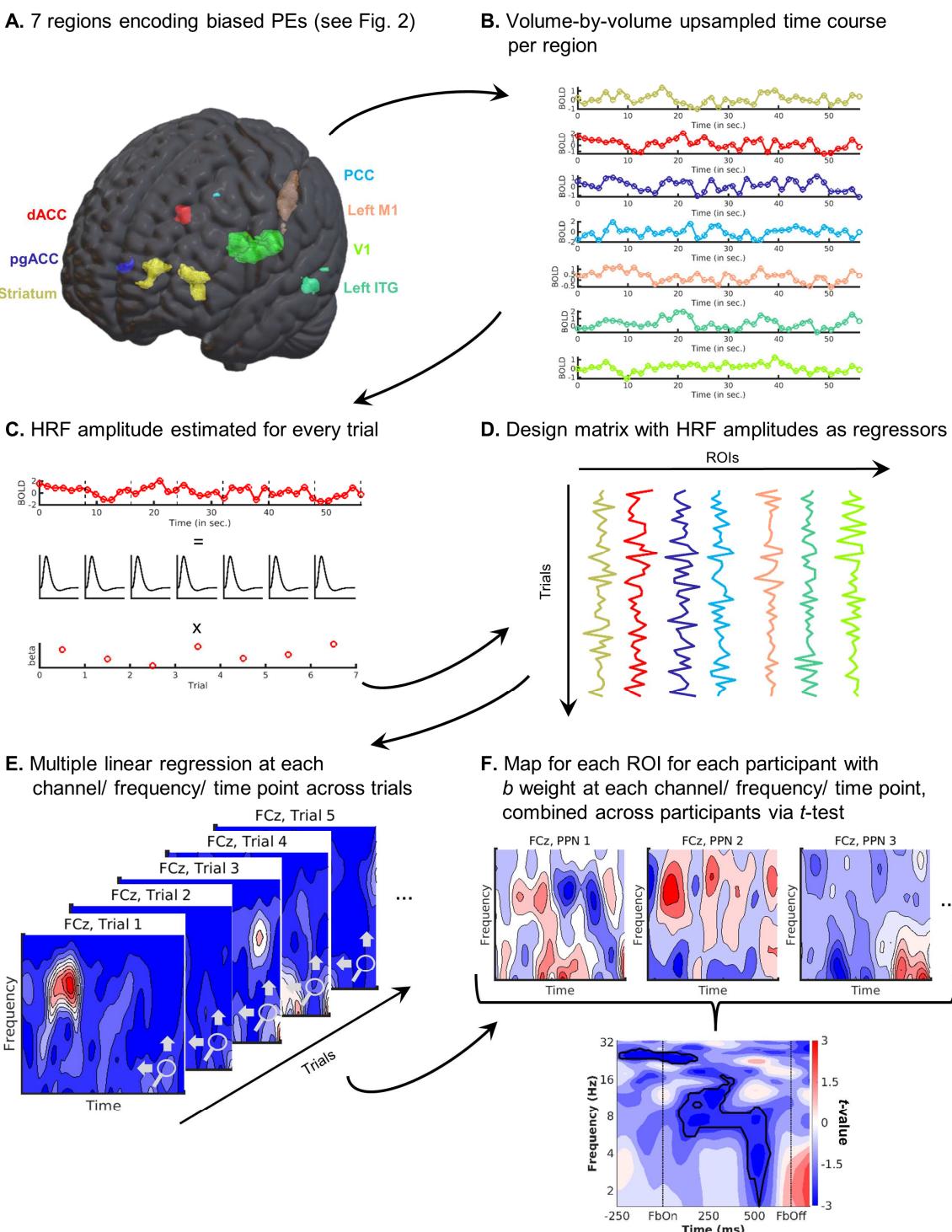
1296

1297

1298

1299

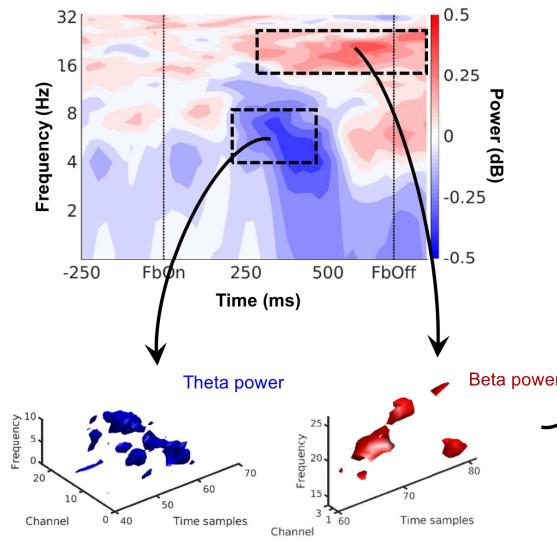
1300 **Supplementary Figure 17: Graphical illustration of the fMRI-informed**
 1301 **EEG analysis approach**
 1302



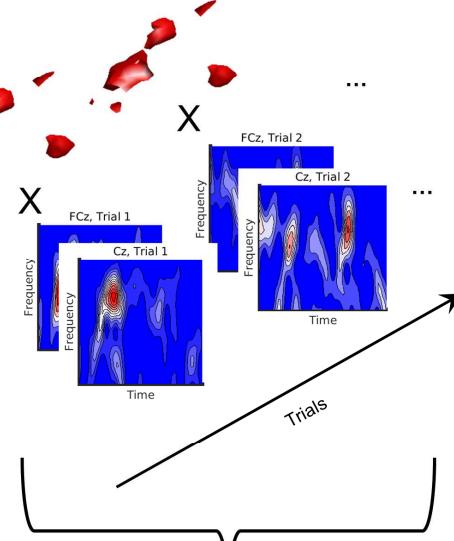
Supplementary Figure 17. Graphical illustration of the fMRI-informed EEG analysis approach. **A.** Regions are identified to encode biased PEs via a model-based GLM on BOLD data (see Fig. 2 in the main text). **B.** The volume-by-volume time-series of the signal in each ROI is extracted and upsampled. **C.** Time series are epoched into trials and the HRF amplitude is estimated for every trial. **D.** HRF amplitudes in every ROI for every trial are combined into a design matrix. **E.** The design matrix is applied in a multiple linear regression for each participant at each channel, frequency, and time point across trials. **F.** Regressions yield a sensor-frequency-time map of b regression weights for each ROI for each participant. Maps are combined across participants using a one-sample t -test.

1303 **Supplementary Figure 18: Graphical illustration of the EEG-informed**
 1304 **fMRI analysis approach**

A. 3D clusters distinguishing positive and negative outcomes (see Fig. 3)



B. Multiply 3D mask with trial-by-trial TF data



C. Trial-by-trial mean power in cluster added to design matrix for GLM on BOLD data

Trial	Action	Cue valence	Outcome	...	EEG
1	1	1	1	...	
2	0	0	-1	...	
3	0	1	0	...	
4	1	0	0	...	
5	1	1	1	...	
6	0	1	0	...	
7	1	0	-1	...	
8	1	0	-1	...	
9	0	1	1	...	
10	1	1	1	...	
....

Supplementary Figure 18. Graphical illustration of the EEG-informed fMRI analysis approach. A. 3D clusters of channel-frequency-time points where power significantly distinguishes trials with positive from trials with negative outcomes are identified via a cluster-based permutation test (see Fig. 3A in the main text). The t -values above a threshold $|2|$ are retained, weights at all other grid points are set to zero. B. The 3D t -value cluster is multiplied with the trial-by-trial channel-frequency-time data, yielding a single average value of power in the cluster at each trial. C. Trial-by-trial average power in the cluster is added as a parametric regressor in the GLM on BOLD-data and fitted with FSL.

1305

1306

1307

1308

1309

1310

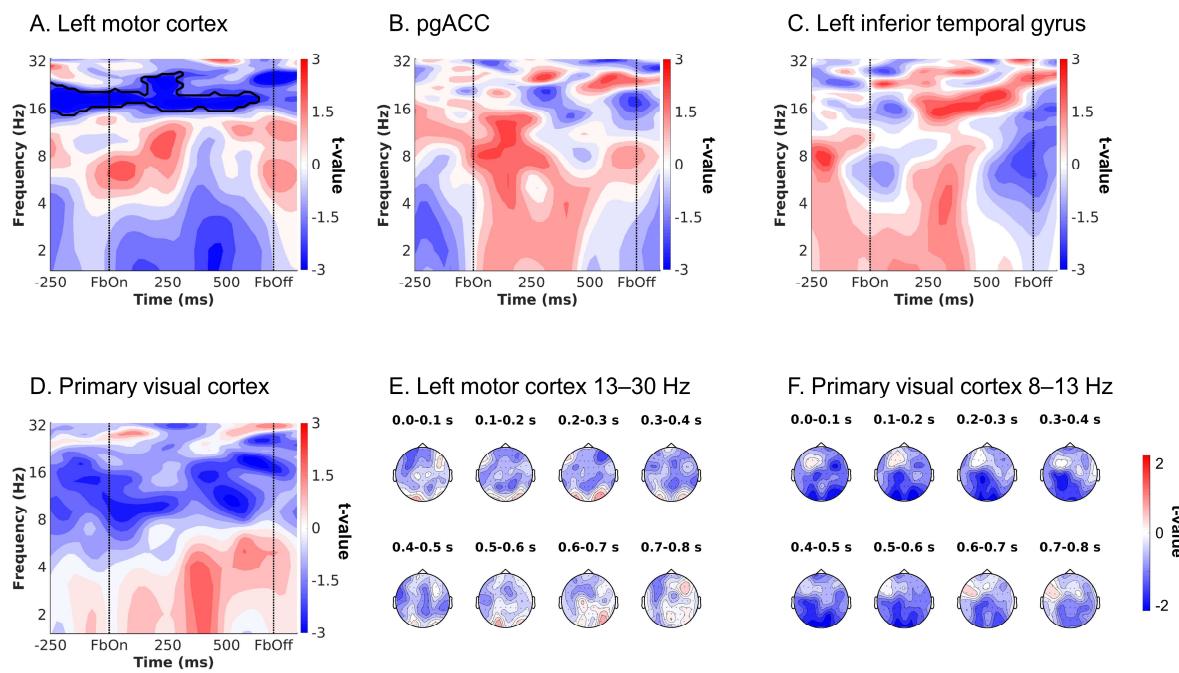
1311

1312

SUPPLEMENTS PREFRONTAL SIGNALS PRECEDE STRIATAL SIGNALS

41

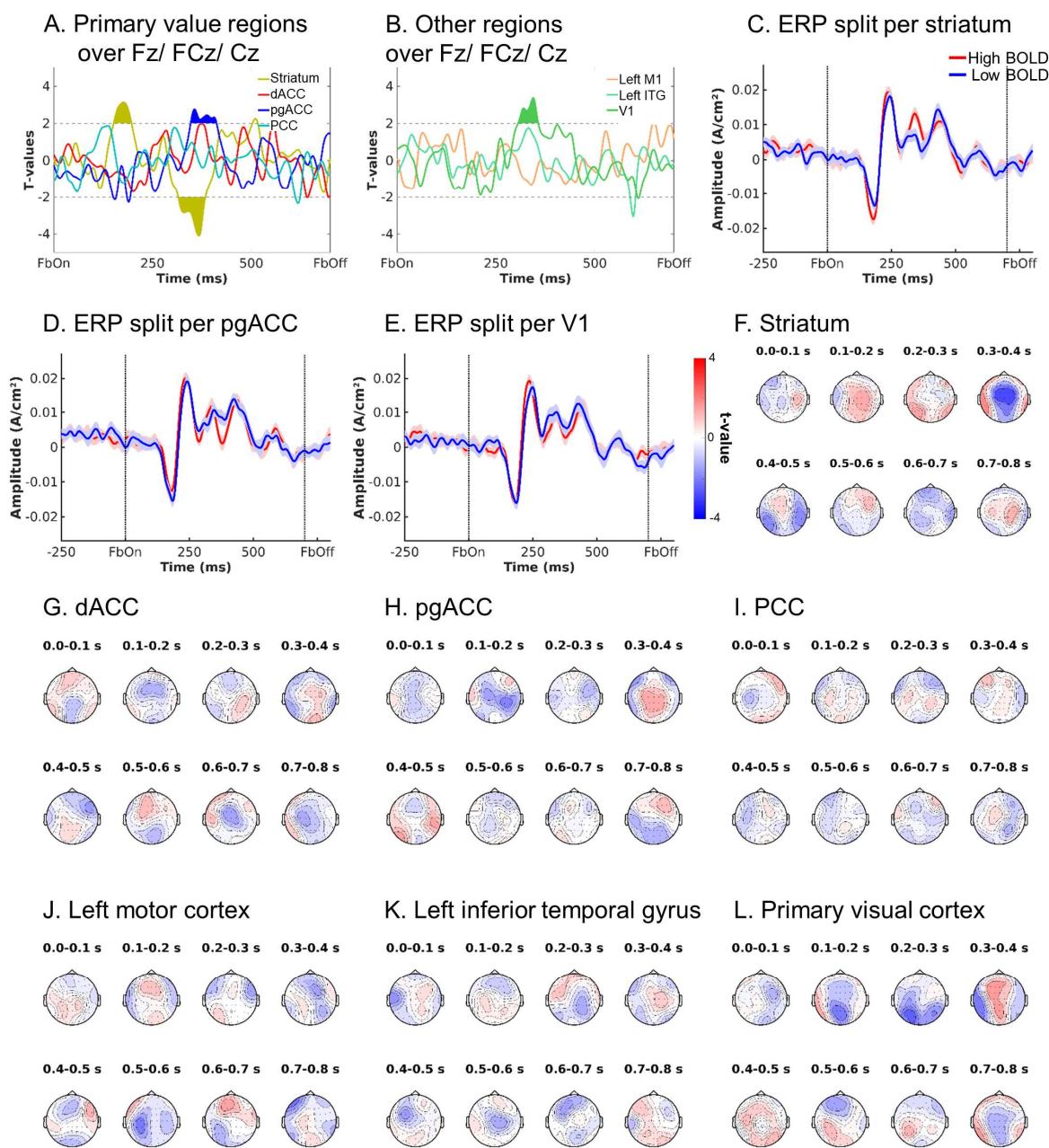
1313 **Supplementary Figure 19: fMRI-informed EEG results in the time-
1314 frequency domain**
1315



Supplementary Figure 19. Supplementary fMRI-informed EEG results in the time-frequency domain. Unique temporal contributions of BOLD signal in (A) left motor cortex, (B) pgACC, (C) left ITG and (D) primary visual cortex to midfrontal EEG power. Group-level *t*-maps display the modulation of the EEG power over midfrontal electrodes (Fz/ FCz/ Cz) by trial-by-trial BOLD signal in the selected ROIs. There significant correlations between midfrontal EEG TF power in the beta range and left motor cortex BOLD signal ($p = .002$), but no significant midfrontal EEG correlates for BOLD signal from other ROIs. E. Topoplots displaying *t*-values of left motor cortex BOLD over the entire scalp between 13 and 30 Hz (beta band) in steps of 100 ms from 0 to 800 ms. There were significant negatively correlates over central electrodes, especially round 300–500 ms. F. Topoplots displaying *t*-values of primary visual cortex BOLD over the entire scalp between 8 and 13 Hz (alpha band) in steps of 100 ms from 0 to 800 ms. There were significantly negatively correlations over occipital electrodes throughout outcome presentation.

1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334

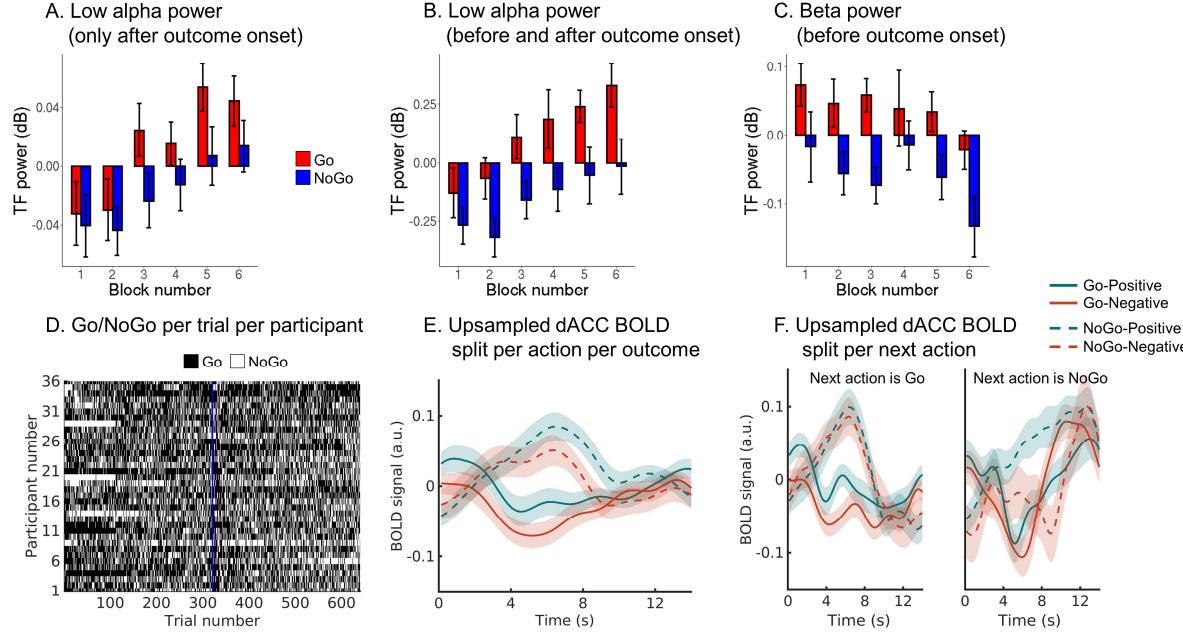
1335 **Supplementary Figure 20: fMRI-informed EEG results in the time**
1336 **domain**
1337



Supplementary Figure 20. fMRI-informed EEG analyses in the time-domain. Group-level t -value time courses display the modulation of the EEG voltage over midfrontal electrodes (Fz/ FCz/ Cz) by trial-by-trial BOLD signal in the selected ROIs. **A.** Correlations between midfrontal voltage and trial-by-trial BOLD signal from core value regions, i.e., striatum, dACC, pgACC, and PCC. Striatal BOLD modulates the amplitude of the N1 and P3, while the P3 amplitude was also modulated by pgACC BOLD. **B.** Correlations between midfrontal voltage and trial-by-trial BOLD signal from other regions, i.e., left motor cortex, left inferior temporal gyrus, and primary visual cortex. Visual cortex BOLD modulates the amplitude of the P3, as well. **C-E.** Midfrontal voltage split up for high vs. low BOLD signal (median split) from regions significantly modulating voltage. Striatal BOLD modulated N1 and P2 amplitude, while pgACC BOLD and visual cortex BOLD modulated N2 (FRN) amplitude. **F-L.** Topoplots displaying t -values of correlations between midfrontal voltage and trial-by-trial BOLD for all regions in steps of 100 ms from 0 to 800 ms.

1338
1339
1340

1341 **Supplementary Figure 21: Go/NoGo differences over time in BOLD**
1342 **signal, choices, alpha, and beta power**
1343



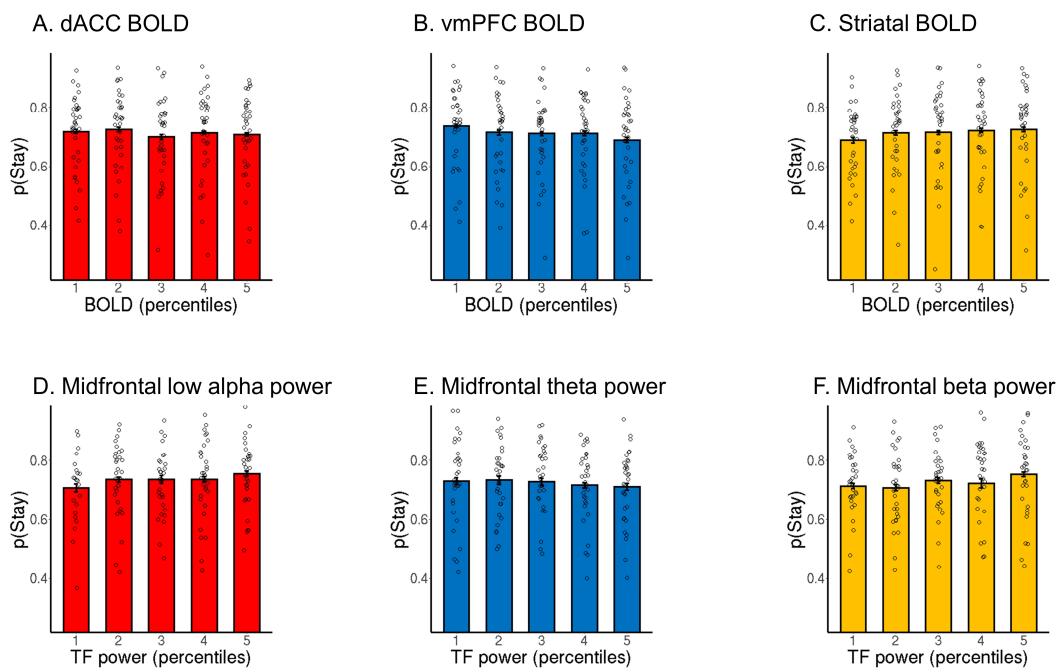
Supplementary Figure 21. Control analyses excluding temporal confounds in midfrontal lower alpha band power and dACC BOLD. **A.** Mean midfrontal low alpha power (\pm SEM across participants) after outcome onset, **(B)** before and after outcome onset, and **(C)** beta power before outcome onset as a function of the performed action and block number (i.e., time on task). While low alpha power increases and beta power decreases over the time course of the task, power was always consistently higher for trials with Go than trials with NoGo responses, suggesting that action effects were not reducible to time on task. **D.** Response for each participant (rows) on each trial (columns). There was no noticeable change in the overall ratio of Go to NoGo responses over time. The vertical blue line indicates the start of the second session featuring new stimuli. **E.** Mean upsampled dACC BOLD signal (\pm SEM across participants) at the time of the outcome, split per performed action (Go/NoGo) and outcome valence (positive/negative). BOLD signal was higher after NoGo than Go responses. **F.** Same plot as (E), but split based on whether the next action was a Go (left panel) or an NoGo (right panel) response. Even if the next response was NoGo, BOLD signal was higher for trials with NoGo responses (on the current trial) than trials Go responses.

1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357

SUPPLEMENTS PREFRONTAL SIGNALS PRECEDE STRIATAL SIGNALS

44

1358 **Supplementary Figure 22: Stay behavior as a function of BOLD and**
1359 **EEG TF power**



Supplementary Figure 22. Probability of repeating the same response (“stay”) on the next cue encounter as a function of outcome-related BOLD and EEG signal. **A-C.** Probability of repeating the same action (“staying”) as a function of BOLD signal from (A) dACC, (B) vmPFC (cluster correlating with theta power in Fig. 5F), and (C) striatum (split into 5 bins). While dACC BOLD was not significantly linked to the probability to stay, high BOLD signal in vmPFC predicted a higher chance to switch to another action, while high BOLD signal in striatum predicted a higher probability of staying with the same action. **D-E.** Probability of staying as a function of midfrontal time-frequency power in the (D) low alpha, (E) theta/delta, and (F) beta range. Higher low alpha power and higher beta power predict a higher probability of staying with the same action, while higher theta power predicts a higher chance to switch to another action. Grey circles represent individual per condition-per-participant means. Error bars were very narrow (and thus hardly visible) and computed based on the Cousineau-Morey methods based on per-condition-per-participant means.

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

SUPPLEMENTS PREFRONTAL SIGNALS PRECEDE STRIATAL SIGNALS

45

1380 **Supplementary Table 1: Stay behavior as a function of action, salience,**
1381 **and valence**

1382

Effect	χ^2	Df	p-value
Action	0.01	1	.924
Salience	5.15	1	.021
Valence	45.59	1	< .001
Action x Salience	0.12	1	.728
Action x Valence	3.24	1	.067
Salience x Valence	30.95	1	< .001
Action x Valence x Salience	19.73	1	< .001
<i>Salient outcomes only:</i>			
Action	0.01	1	.960
Valence	46.36	1	< .001
Action x Valence	17.80	1	< .001
<i>Neutral outcomes only:</i>			
Action	.102	1	.750
Valence	.830	1	.362
Action x Valence	12.32	1	< .001
<i>Go with salient outcomes only:</i>			
Valence	53.93	1	< .001
<i>NoGo with salient outcomes only:</i>			
Valence	18.23	1	< .001
<i>Go with neutral outcomes only:</i>			
Valence	0.13	1	.050
<i>NoGo with neutral outcomes only:</i>			
Valence	7.21	1	.007

Supplementary Table 1. Full report of model of stay behavior. Mixed-effects logistic regression of stay vs. switch behavior (i.e., repeating vs. changing an action on the next occurrence of the same cue) as a function of performed action (Go vs. NoGo), outcome salience (salient: reward or punishment vs. neutral: no reward or no punishment), and outcome valence (positive: reward or no punishment vs. negative: no reward or punishment). Follow-up analyses were performed on trials with salient vs. neutral outcomes separately, and then separately based on Go vs. NoGo actions and salient vs. neutral outcomes. P-values were computed using likelihood ratio tests using the *mixed*-function (option “LRT”) from package *afex*.

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

SUPPLEMENTS PREFRONTAL SIGNALS PRECEDE STRIATAL SIGNALS

46

1402 **Supplementary Table 2: Model parameters and fit indices for models**
1403 **M1-M6**
1404

	M1	M2	M3	M4	M5 (Asymmetric pathways)	M6 (Action priming)
Mean log model evidence	-609.30	-597.95	-554.46	-532.40	-528.13	-540.84
Model frequency	0	0.0278	0	0.0488	0.6815	0.2419
Protected exceedance probability	0	0	0	0	.9970	.0030
ρ	7.75 [0.53 – 38.68]	6.81 [0.48 – 37.74]	6.38 [0.49 – 35.71]	10.05 [1.26 – 40.60]	9.41 [0.98 – 31.22]	6.64 [0.71 – 22.83]
ϵ_0	0.17 [0.002 – 0.77]	0.20 [0.003 – 0.82]	0.21 [0.003 – 0.85]	0.09 [0.003 – 0.38]	0.08 [0.003 – 0.41]	0.039 [0.003 – 0.11]
b		-0.05 [-1.23 – 0.82]	-0.01 [-1.23 – 1.09]	0.13 [-1.16 – 1.03]	0.14 [-1.18 – 1.10]	0.16 [-1.22 – 1.40]
π			0.77 [-0.78 – 3.73]		0.17 [-1.25 – 2.70]	-1.11 [-3.29 – 1.23]
ϵ rewarded Go ($\epsilon_0 + \kappa$)				0.749 [0.29 – 0.99]	0.833 [0.43 – 0.99]	
ϵ punished NoGo ($\epsilon_0 - \kappa$)				0.001 [0.001 – 0.02]	0.003 [0.001 – 0.09]	
ϵ salient Go						0.49 [0.05 – 0.90]

Supplementary Table 2. Model parameters for fitted models. Mean [minimum – maximum] of participant-level parameter estimates in model space, fitted with hierarchical Bayesian inference (only the respective model included in the fitting process). Model frequency and protected exceedance probability were based on a model comparison that involves models M1-M6. Note that Fig. 2 in the main text does not include M6.

1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428

SUPPLEMENTS PREFRONTAL SIGNALS PRECEDE STRIATAL SIGNALS

47

1429 **Supplementary Table 3: BOLD-GLM with parametric modulation by**
1430 **standard and biased prediction errors**
1431

Regressors	1	2	3	4	5	6	7	8	9	10
Contrast	WinGoOnset	AvoidGoOnset	WinNoGoOnset	AvoidNoGoOnset	Handedness	Error	Outcome Onset	PE_{STD}	PE_{DIF}	Invalid
1 PE_{STD}								1		
2 PE_{DIF}									1	

Supplementary Table 3. BOLD-GLM with parametric modulation by standard and biased prediction errors. Explanation of regressors:

WinGoOnset: for every trial with Win cue and Go action, at cue onset, duration 1, value +1.

AvoidGoOnset: for every trial with Avoid cue and Go action, at cue onset, duration 1, value +1.

WinNoGoOnset: for every trial with Win cue and NoGo action, at cue onset, duration 1, value +1.

AvoidNoGoOnset: for every trial with Avoid cue and NoGo action, at cue onset, duration 1, value +1.

Handedness: for every trial, at cue onset, duration 1, value +1 for left hand response, 0 for NoGo 10 response, -1 for right hand response.

Error: for every trial, at cue onset, duration 1, value +1 for incorrect response, 0 for correct response.

OutcomeOnset: for every trial, at outcome onset, duration 1, value +1 for every trial.

PE_{STD} : for every trial, at outcome onset, duration 1, value is the demeaned PE times learning rate for model M1.

PE_{DIF} : for every trial, at outcome onset, duration 1, value is the demeaned difference between (PE times learning rate) for model M1 and (PE times learning rate) for model M5.

Invalid: for trials where uninstructed button was pressed, at outcome onset, duration 1, value 1.

1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456

SUPPLEMENTS PREFRONTAL SIGNALS PRECEDE STRIATAL SIGNALS

48

1457 **Supplementary Table 4: BOLD-GLM with response-locked and**
1458 **outcome-locked categorical regressors**

1459

1460

Regressors	1	2	3	4	5	6	7	8	9	10	11	12	13
1 Contrast													
1 Valence	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1	1
2 Action	1	1	1	1	-1	-1	-1	-1					
3 Hand Sum									1	1			
4 Hand Dif									1	-1			

Supplementary Table 4. BOLD-GLM with response-locked and outcome-locked categorical regressors. Explanation of regressors:

GoReward: for every trial with Go action and reward obtained, at outcome onset, duration 1, value +1.

GoNoReward: for every trial with Go action and no reward obtained, at outcome onset, duration 1, value +1.

GoNoPunishment: for every trial with Go action and no punishment obtained, at outcome onset, duration 1, value +1.

GoPunishment: for every trial with Go action and punishment obtained, at outcome onset, duration 1, value +1.

NoGoReward: for every trial with NoGo action and reward obtained, at outcome onset, duration 1, value +1.

NoGoNoReward: for every trial with NoGo action and no reward obtained, at outcome onset, duration 1, value +1.

NoGoNoPunishment: for every trial with NoGo action and no punishment obtained, at outcome onset, duration 1, value +1.

NoGoPunishment: for every trial with NoGo action and punishment obtained, at outcome onset, duration 1, value +1.

LeftHand: for every trial with left hand response, at response onset, duration 1, value +1.

RightHand: for every trial with right hand response, at response onset, duration 1, value +1.

Error: for every trial, at cue onset, duration 1, value +1 for incorrect response, 0 for correct response.

OutcomeOnset: for every trial, at outcome onset, duration 1, value +1 for every trial.

Invalid: for trials where uninstructed button was pressed, at outcome onset, duration 1, value 1.

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

SUPPLEMENTS PREFRONTAL SIGNALS PRECEDE STRIATAL SIGNALS

49

1482 **Supplementary Table 5: Significant clusters in BOLD-GLM with**
 1483 **parametric modulation by standard and biased prediction errors**

1484

1485

No	Brain region	Maximal value	Z-	Cluster (voxels)	size	Corrected p	Peak coordinates		
							x	y	z
PE_{STD} Positive									
1	Ventromedial prefrontal cortex, Nucleus accumbens, caudate, putamen, bilateral amygdala, bilateral hippocampus	6.47		8762		1.02e-43	12	14	-6
2	Occipital pole, lingual gyrus, occipital fusiform gyrus	6.64		1012		6.10e-10	10	-92	-10
3	Posterior cingulate cortex	4.72		985		9.40e-10	4	-50	18
4	Left superior frontal gyrus	5.56		910		3.19e-09	-18	34	50
5	Right middle temporal gyrus, anterior division	5.48		381		6.47e-05	62	-4	-18
6	Left inferior temporal gyrus, temporooccipital part	5.16		360		.000103	-52	-46	-10
7	Left middle temporal gyrus, anterior division	4.70		329		.000209	-60	-10	-14
8	Left postcentral gyrus	4.33		271		.000838	-52	-28	48
9	Right cerebellum	4.89		147		.0239	44	-72	-40
10	Anterior cingulate cortex	4.27		146		.0247	2	6	34
PE_{STD} Negative									
1	Right superior frontal gyrus	5.20		351		.000127	6	26	62
2	Right occipital pole, right inferior lateral occipital cortex	4.76		211		.00391	30	-94	4
3	Left lingual gyrus	4.21		186		.00776	-22	-64	2
4	Left inferior lateral occipital cortex	4.28		147		.0239	-44	-86	-10
PE_{DIF} Positive									
1	Bilateral superior frontal gyrus, paracingulate gyrus, anterior cingulate cortex, posterior cingulate cortex, ventromedial frontal cortex, bilateral frontal orbital cortex, bilateral frontal pole, bilateral supramarginal gyrus, bilateral middle temporal gyrus, bilateral inferior temporal gyrus, bilateral fusiform gyrus, bilateral inferior occipital cortex, bilateral superior occipital cortex, precuneous, bilateral cerebellum	7.11		35109		0	34	-84	20
2	Right insula, right frontal operculum, right inferior frontal gyrus, right middle frontal gyrus, right frontal orbital cortex, bilateral caudate, bilateral Nucleus accumbens, bilateral thalamus, brainstem	6.36		10364		0	34	20	-8
3	Left insula, left frontal operculum, left inferior frontal gyrus, left middle frontal gyrus, left frontal orbital cortex	6.51		10132		0	-36	20	-6

SUPPLEMENTS PREFRONTAL SIGNALS PRECEED STRIATAL SIGNALS

50

4	Right middle temporal gyrus, posterior division	4.66	307	.0003	56	-32	-4
5	Right insula, right planum polare	4.72	143	.0248	40	-8	-12
<hr/>							
	PE_{DF} Negative						
1	Left middle temporal gyrus, anterior division	4.22	191	.00607	-64	-6	-14
2	Left hippocampus	4.49	158	.0158	-26	-14	-22

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

SUPPLEMENTS PREFRONTAL SIGNALS PRECEDE STRIATAL SIGNALS

51

1527 **Supplementary Table 6: Significant clusters in BOLD-GLM with**
 1528 **response-locked and outcome-locked categorical regressors**
 1529
 1530

Contrast							Peak coordinates		
No	Brain region	Maximal value	Z-	Cluster (voxels)	size	Corrected p	x	y	z
Positive > Negative									
1	Ventromedial prefrontal cortex, left lateral orbitofrontal cortex, Nucleus accumbens, caudate, putamen, bilateral amygdala, bilateral hippocampus	5.65		3999		2.86e-19	8	12	-4
Negative > Positive									
1	Left superior frontal gyrus	4.03		331		0.00239	-18	28	60
2	Left lateral orbitofrontal cortex	4.31		288		0.00512	-34	40	-8
4	Right occipital pole	4.59		213		0.0212	18	-92	-16
Go > NoGo outcome-locked									
<i>No significant clusters</i>									
NoGo > Go outcome-locked									
1	Bilateral lateral orbitofrontal cortex, Bilateral superior frontal gyrus, anterior cingulate cortex, posterior cingulate cortex, pre-SMA, bilateral precentral gyrus, bilateral postcentral gyrus, bilateral supramarginal gyrus, bilateral operculum, bilateral planum temporale, bilateral superior temporal gyrus, bilateral middle temporal gyrus, bilateral inferior temporal gyrus, bilateral superior lateral occipital cortex, bilateral inferior lateral occipital cortex, bilateral thalamus	7.32		114090	0		-42	-6	12
Go (left + right hand response) > NoGo response-locked									
1	Cerebellum, bilateral thalamus, bilateral putamen, bilateral caudate, bilateral Nucleus Accumbens, posterior cingulate cortex, right operculum, right angular gyrus, right superior parietal lobule, anterior cingulate cortex, paracingulate gyrus, bilateral ventrolateral frontal cortex, right middle frontal gyrus	7.08		46437	0		32	-4	-6
2	Left operculum, left angular gyrus, left superior parietal lobule	5.88		3936		3.13e-17	-46	-24	26
3	Intracalcarine cortex	3.79		374		0.00248	-12	-88	6
4	Right middle temporal gyrus	4.63		287		0.00956	68	-32	-12

SUPPLEMENTS PREFRONTAL SIGNALS PRECEDE STRIATAL SIGNALS

52

NoGo > Go (left + right hand response) response-locked							
1	Right medial temporal gyrus, right temporal pole	4.09	465	0.000636	50	-8	-16
2	vmPFC, subcallosal cortex	3.95	435	0.000973	0	40	-12
Left Hand > Right Hand Response response-locked							
1	Right precentral gyrus, right postcentral gyrus, right superior parietal lobule, right operculum	7.05	9460	9.41e-39	46	-24	64
2	Left cerebellum	7.18	2208	2.1e-14	-18	-54	-18
Right Hand > Left Hand Response response-locked							
1	left precentral gyrus, left postcentral gyrus, left superior parietal lobule, left operculum, left thalamus	7.06	14870	0	-36	-20	66
2	Right anterior cerebellum	7.90	3735	1.44e-20	18	-54	-20
3	Right inferior lateral occipital cortex, right superior lateral occipital cortex	4.96	1452	9.66e-11	48	-86	-4
4	Right angular gyrus	4.98	551	2.06e05	66	-50	28
5	Left occipital pole, right intracalcarine cortex	3.93	409	0.000236	-4	-96	26
6	Right posterior cerebellum	4.64	200	0.0157	48	-78	-32

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

SUPPLEMENTS PREFRONTAL SIGNALS PRECEED STRIATAL SIGNALS

53

1559 Supplementary Table 7: Significant clusters in BOLD-GLM with EEG
1560 regressors
1561

SUPPLEMENTS PREFRONTAL SIGNALS PRECEDE STRIATAL SIGNALS

No	Contrast				Maximal value	Z-	Cluster (voxels)	size	Corrected p	Peak coordinates							
	Central	Lower	Alpha	Band						x	y	z					
Central Lower Alpha Band Positive																	
<i>No significant clusters</i>																	
Central Lower Alpha Band Negative																	
1	Precuneous, cuneal cortex, right superior lateral occipital cortex		5.78		8346		2.50e-33		6	-60	66						
2	Anterior cingulate gyrus, right superior frontal gyrus		4.77		2449		1.75e-14		24	12	66						
3	Left middle frontal gyrus, right insula, right central opercular cortex		5.59		1828		7.63e-12		-38	8	34						
4	Right insula, right central opercular cortex		4.71		1794		1.08e-11		42	2	28						
5	Right frontal pole, right middle frontal gyrus, right inferior frontal gyrus, pars triangularis		5.43		1300		2.37e-09		30	40	20						
6	Left supramarginal gyrus, anterior division		4.61		959		1.19e-07		-64	-36	42						
7	Left angular gyrus		5.83		916		2.38e-07		-48	-52	18						
8	Right cerebellum, anterior		4.79		480		.000131		42	-38	-38						
9	Posterior cingulate cortex, parahippocampal gyrus, right thalamus		4.41		424		.000328		14	-38	-2						
10	Left temporal pole, left inferior frontal gyrus, pars opercularis, left insula		4.08		413		.000394		-56	16	-6						
11	Left cerebellum, anterior		5.44		263		.00598		-30	-40	-42						
12	Right lingual gyrus		3.43		235		.0104		10	-74	-10						
13	Left cerebellum, posterior		5.74		215		.0158		-14	-76	-42						
14	Brainstem		4.35		207		.0186		8	-34	-20						
Frontal Theta Band Positive																	
1	Right bilateral precentral gyrus		4.82		394		.000577		12	-16	80						
2	Left bilateral precentral gyrus		5.25		357		.0011		-20	-28	78						
Frontal Theta Band Negative																	
1	Right supramarginal gyrus, posterior division, right superior lateral occipital cortex		3.94		1002		1.10e-07		-54	-50	44						
2	Left supramarginal gyrus, posterior division, Left superior lateral occipital cortex		4.39		508		8.96e-05		56	-50	20						
3	Posterior cingulate cortex		4.58		419		.000378		-6	-30	38						
4	Ventromedial prefrontal cortex		4.03		342		.00143		0	42	4						
Central Beta Band Positive																	
1	Right caudate		4.19		258		.00481		16	30	6						
2	Left parahippocampal gyrus, posterior division		4.86		221		.0106		-38	-36	-8						
Central Beta Band Negative																	
1	Right frontal pole, right middle frontal gyrus, right superior frontal gyrus		5.49		6599		7.06e-30		-32	8	28						
2	Left frontal pole, left middle frontal gyrus, Left superior frontal gyrus		5.51		6144		1.82e-28		40	38	36						
3	Left supramarginal gyrus, posterior division, left superior parietal lobule, left superior lateral occipital cortex, Left middle temporal gyrus, temporooccipital part		5.51		5175		2.43e-25		-66	-44	28						

SUPPLEMENTS PREFRONTAL SIGNALS PRECEED STRIATAL SIGNALS

55

4	Right supramarginal gyrus, posterior division, Right superior parietal lobule, right superior lateral occipital cortex	5.13	3264	1.62e-18	30	-74	54
5	Left superior frontal gyrus, paracingulate gyrus, precuneous	4.54	1235	1.80e-09	-4	12	52
6	Right superior temporal gyrus, posterior division	4.59	1076	1.33e-08	48	-14	-10
7	Left temporal pole, left planum temporale	4.96	320	.00139	-46	4	-18

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602 **Supplementary References**

1603

- 1604 1. Wilson, R. C. & Niv, Y. Is model fitting necessary for model-based fMRI? *PLOS Computational*
1605 *Biology* **11**, e1004237 (2015).
- 1606 2. Palminteri, S., Wyart, V. & Koechlin, E. The importance of falsification in computational
1607 cognitive modeling. *Trends in Cognitive Sciences* **21**, 425–433 (2017).
- 1608 3. Nassar, M. R. & Frank, M. J. Taming the beast: Extracting generalizable knowledge from
1609 computational models of cognition. *Current Opinion in Behavioral Sciences* **11**, 49–54 (2016).
- 1610 4. Wilson, R. C. & Collins, A. G. Ten simple rules for the computational modeling of behavioral
1611 data. *eLife* **8**, 1–35 (2019).
- 1612 5. Frank, M. J. Dynamic dopamine modulation in the basal ganglia: A neurocomputational account
1613 of cognitive deficits in medicated and nonmedicated Parkinsonism. *Journal of Cognitive*
1614 *Neuroscience* **17**, 51–72 (2005).
- 1615 6. Collins, A. G. E. & Frank, M. J. Opponent actor learning (OpAL): Modeling interactive effects of
1616 striatal dopamine on reinforcement learning and choice incentive. *Psychological Review* **121**,
1617 337–366 (2014).
- 1618 7. Cockburn, J., Collins, A. G. E. & Frank, M. J. A reinforcement learning mechanism responsible
1619 for the valuation of free choice. *Neuron* **83**, 551–557 (2014).
- 1620 8. Rutledge, R. B. *et al.* Dopaminergic drugs modulate learning rates and perseveration in
1621 Parkinson's patients in a dynamic foraging task. *Journal of Neuroscience* **29**, 15104–15114
1622 (2009).
- 1623 9. Behrens, T. E. J., Woolrich, M. W., Walton, M. E. & Rushworth, M. F. S. Learning the value of
1624 information in an uncertain world. *Nature Neuroscience* **10**, 1214–1221 (2007).
- 1625 10. Cohen, M. X. & Donner, T. H. Midfrontal conflict-related theta-band power reflects neural
1626 oscillations that predict behavior. *Journal of Neurophysiology* **110**, 2752–2763 (2013).
- 1627 11. Cohen, M. X., Wilmes, K. A. & van de Vijver, I. Cortical electrophysiological network dynamics
1628 of feedback learning. *Trends in Cognitive Sciences* **15**, 558–566 (2011).
- 1629 12. Bernat, E. M., Nelson, L. D. & Baskin-Sommers, A. R. Time-frequency theta and delta measures
1630 index separable components of feedback processing in a gambling task. *Psychophysiology* **52**,
1631 626–637 (2015).
- 1632 13. Cavanagh, J. F. Cortical delta activity reflects reward prediction error and related behavioral
1633 adjustments, but at different times. *NeuroImage* **110**, 205–216 (2015).
- 1634 14. Proudfit, G. H. The reward positivity: From basic research on reward to a biomarker for
1635 depression. *Psychophysiology* **52**, 449–459 (2015).
- 1636 15. Paul, K., Vassena, E., Severo, M. C. & Pourtois, G. Dissociable effects of reward magnitude on
1637 fronto-medial theta and FRN during performance monitoring. *Psychophysiology* **57**, e13481
1638 (2020).
- 1639 16. Sambrook, T. D. & Goslin, J. Principal components analysis of reward prediction errors in a
1640 reinforcement learning task. *NeuroImage* **124**, 276–286 (2016).
- 1641 17. Yeung, N. & Sanfey, A. G. Independent coding of reward magnitude and valence in the human
1642 brain. *Journal of Neuroscience* **24**, 6258–6264 (2004).
- 1643 18. Kreussel, L. *et al.* The influence of the magnitude, probability, and valence of potential wins and
1644 losses on the amplitude of the feedback negativity. *Psychophysiology* **49**, 207–219 (2012).
- 1645 19. Talmi, D., Atkinson, R. & El-Deredy, W. The feedback-related negativity signals salience
1646 prediction errors, not reward prediction errors. *Journal of Neuroscience* **33**, 8264–8269 (2013).
- 1647 20. Sato, A. *et al.* Effects of value and reward magnitude on feedback negativity and P300.
1648 *NeuroReport* **16**, 407–411 (2005).
- 1649 21. Tanner, D., Morgan-Short, K. & Luck, S. J. How inappropriate high-pass filters can produce
1650 artifactual effects and incorrect conclusions in ERP studies of language and cognition.
1651 *Psychophysiology* **52**, 997–1009 (2015).
- 1652 22. Foti, D., Weinberg, A., Dien, J. & Hajcak, G. Event-related potential activity in the basal ganglia
1653 differentiates rewards from nonrewards: Temporospatial principal components analysis and
1654 source localization of the feedback negativity. *Human Brain Mapping* **32**, 2207–2216 (2011).

SUPPLEMENTS PREFRONTAL SIGNALS PRECEED STRIATAL SIGNALS

57

1655 23. Wu, Y. & Zhou, X. The P300 and reward valence, magnitude, and expectancy in outcome
1656 evaluation. *Brain Research* **1286**, 114–122 (2009).

1657 24. Scheeringa, R. *et al.* Neuronal dynamics underlying high-and low-frequency EEG oscillations
1658 contribute independently to the human BOLD signal. *Neuron* **69**, 572–583 (2011).

1659 25. Zumer, J. M., Scheeringa, R., Schoffelen, J.-M., Norris, D. G. & Jensen, O. Occipital alpha
1660 activity during stimulus processing gates the information flow to object-selective cortex. *PLoS
1661 Biology* **12**, e1001965 (2014).

1662 26. Jurkiewicz, M. T., Gaetz, W. C., Bostan, A. C. & Cheyne, D. Post-movement beta rebound is
1663 generated in motor cortex: Evidence from neuromagnetic recordings. *NeuroImage* **32**, 1281–1289
1664 (2006).

1665 27. Ritter, P., Moosmann, M. & Villringer, A. Rolandic alpha and beta EEG rhythms' strengths are
1666 inversely related to fMRI-BOLD signal in primary somatosensory and motor cortex. *Human
1667 Brain Mapping* **30**, 1168–1187 (2009).

1668 28. Klimesch, W. EEG alpha and theta oscillations reflect cognitive and memory performance: A
1669 review and analysis. *Brain Research Reviews* **29**, 169–195 (1999).

1670