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MOTIVATIONAL BIASES IN FRONTO-STRIATAL CIRCUITS

Abstract

Actions are biased by the outcomes they can produce: Humans are more likely to show action under
reward prospect, but hold back under punishment prospect. Such motivational biases derive not only
from biased response selection, but also from biased learning: humans tend to attribute rewards to their
own actions, but are reluctant to attribute punishments to having held back. The neural origin of these
biases is unclear; in particular, it remains open whether motivational biases arise primarily from the
architecture of subcortical regions or also reflect cortical influences, the latter being typically associated
with increased behavioral flexibility and emancipation from stereotyped behaviors. Simultaneous EEG-
fMRI allowed us to track which regions encoded biased prediction errors in which order. Biased
prediction errors occurred in cortical regions (dACC, PCC) before subcortical regions (striatum). These
results highlight that biased learning is not a mere feature of the basal ganglia, but arises through
prefrontal cortical contributions, revealing motivational biases to be a potentially flexible, sophisticated

mechanism.
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Introduction

Human action selection is biased by potential action outcomes: reward prospect drives us to
invigorate action, while threat of punishment holds us back!=. These motivational biases have been
evoked to explain why humans are tempted by reward-related cues signaling the chance to gain food,
drugs, or money, as they elicit automatic approach behavior. Conversely, punishment-related cues
suppress action and lead to paralysis, which may even lie at the core of mental health problems such as
phobias and mood disorders*®. While such examples highlight the potential maladaptiveness of biases
in some situations, they confer benefits in other situations: Biases could provide sensible “default”
actions before context-specific knowledge is acquired'®. They may also provide ready-made alternatives
to more demanding action selection mechanisms, especially when speed has to be prioritized’.

Previous research has assumed that motivational biases arise because the valence of prospective
outcomes influences action selection®. However, we have recently shown that not only action selection,
but also the updating of action values based on obtained outcomes is subject to valence-dependent
biases®*!%; humans are more inclined to ascribe rewards to active responses, but have problems with
attributing punishments to having held back. On the one hand, such biased learning might be adaptive
in combining the flexibility of instrumental learning with somewhat rigid “priors” about typical action-
outcome relationships. Exploiting lifetime (or evolutionary) experience might lead to learning that is
faster and more robust to environmental “noise”. On the other hand, biases might be responsible for
phenomena of “animal superstition” like negative auto-maintenance. Studies of this phenomenon used
strict omission schedules in which reward were never delivered on trials on which animals showed an
action (key peck, button press), but only when animals inhibited responding over a given time period.
Still, animals showed continued key picking in such paradigms, which might either reflect a strong
“prior belief” that any situation in which rewards were available requires active work to obtain those, or
vice versa an inability to attribute rewards to having held back one’s actions"!'2, While reward
attainment can lead to an illusory sense of control over outcomes, control is underestimated under threat
of punishment: Humans find it hard to comprehend how inactions can cause negative outcomes, which

makes them more lenient in judging harms caused by others’ inactions'>!*. Taken together, also credit
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78  assignment is subject to motivational biases, with enhanced credit for rewards given to actions, but
79  diminished credit for punishments given to inactions.

80 While evident in behavior, the neural mechanisms subserving such biased credit assignment remain
81  elusive. Previous fMRI studies have studied neural correlates of motivational biases in action selection
82  at the time of cue presentation, finding that the striatal BOLD signal is dominated by the action rather
83  than the cue valence®!'>!®, More recently, we have reported evidence for cue valence signals in
84  ventromedial prefrontal cortex (vmPFC) and anterior cingulate cortex (ACC), which putatively bias
85  action selection processes in the striatum!’. The same regions might be involved in motivational biases
86  in learning during outcome processing, given the prominent role of the basal ganglia system not only in
87  action selection, but also learning. Influential computational models of basal ganglia function'®!”
88  (henceforth called “asymmetric pathways model”) predict such motivational learning biases: Positive
89  prediction errors, elicited by rewards, lead to long-term potentiation in the striatal direct “Go” pathway
90 (and long term depression in the indirect pathway), allowing for a particularly effective acquisition of
91  Goresponses after rewards. Conversely, negative prediction errors, elicited by punishments, lead to long
92  term potentiation in the “NoGo” pathway, impairing the unlearning of NoGo responses after
93  punishments. This account suggests that motivational biases arise within the same pathways involved
94  in standard reinforcement learning (RL). An alternative candidate model is that biases arise through the
95  modulation of these RL systems by external areas that also track past actions, putatively the prefrontal
96  cortex (PFC). Past research has suggested that standard RL can be biased by information stored in PFC,

20,21

97  such as explicit instructions**?! or cognitive map-like models of the environment*>->*, Most notably, the

98  ACC has been found to reflect the impact of explicit instructions?! and of environmental changes*>%° on
99  prediction errors.
100 Both candidate models predict that BOLD signal in striatum should be better described by biased

101  compared with “standard” prediction errors. In addition, the model proposing a prefrontal influence on
102  striatal processing makes a notable prediction about the timing of signals: information about the selected
103  action and the obtained outcome should be present first in prefrontal circuits to then later affect processes
104  in the striatum. While fMRI BOLD recordings allow for unequivocal access to striatal activity, the
105  sluggish nature of the BOLD signal prevents clear inferences about temporal precedence of signals from

4
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106  different regions. We thus combined BOLD with simultaneous EEG recordings which allowed us to
107  precisely characterize learning signals in both space and time.

108 The key question is whether biased credit assignment arises directly from biased RL through
109  the asymmetric pathways in the striatum, or whether striatal RL mechanisms are biased by external
110  prefrontal sources, with the dACC as likely candidate. To this end, participants performed a motivational

111 Go/ NoGo learning task that is well-established to evoke motivational biases**?

. We expected to
112 observe biased PEs in striatum and frontal cortical areas. By simultaneously recording fMRI and EEG
113  and correlating trial-by-trial BOLD signal with EEG time-frequency power, we were able to time-lock

114 the peaks of EEG-BOLD correlations for regions reflecting biased PEs and infer their relative temporal

115  precedence. We focused on two well-established electrophysiological signatures of RL, namely theta

28-33 28,34

116  and delta power as well as beta power~>~* over midfrontal electrodes.

117  Results

118 Thirty-six participants performed a motivational Go/ NoGo learning task *° in which required action
119 (Go/ NoGo) and potential outcome (reward/ punishment) were orthogonalized (Fig. 1A-D). They
120  learned by trial-and-error for each of eight cues whether to perform a left button press (Goverr), right
121 button press (Goricur), or no button press (NoGo), and whether a correct action increased the chance to
122 win a reward (Win cues) or to avoid a punishment (Avoid cues). Correct actions led to 80% positive
123 outcomes (reward, no punishment), with only 20% positive outcomes for incorrect actions. Participants
124 performed two sessions of 320 trials with separate cue sets, which were counterbalanced across

125  participants.

126
A. Task design Go cue NoGo cue B. Cue types C. Feedback validity
o o oo Win cues Avoid cues
Cue + L‘@ {#’7 & . 2 _
Response window A M EHE W ?:‘é"o'w'" Gr;tg:vond correct  80% W | 8oy W
LEFT LEFT 0, 0,
Go, g1 or Gogighr 1 X GOgiar 1 X GOgeu response 20% Wl 20% .
Fixation Wi Avoid
in cues wvoid cues
80% 80% W
- NoGo-to-Win [NoGo-to-Avoid  incorrect -
Feedback 5
eedbad L} > — 1 — | 2 x NoGo 2 x NoGo response o, e | 00
ITI _ required action is

valence-incongruent

Figure 1. Motivational Go/ NoGo learning task design. A. On each trial, a Win or Avoid cue appeared; valence of the cue was not signaled
but should be learned. Cue offset was also the response deadline. Response-dependent feedback followed after a jittered interval. Each cue
had only one correct action (Gopgrr, GOrignt, OF NoGo), which was followed by the positive outcome 80% of the time. For Win cues, actions

5
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could lead to rewards or neutral outcomes; for Avoid cues, actions could lead to neutral outcomes or punishments. Rewards and punishments
were represented by money falling into/ out of a can. B. There were eight different cues, orthogonalizing cue valence (Win versus Avoid)
and required action (Go versus NoGo). The motivationally incongruent cues (for which the motivational action tendencies were incongruent
with the instrumental requirements) are highlighted in gray. C. Feedback was probabilistic: Correct actions to Win cues led to rewards in
80% of cases, but neutral outcomes in 20% of cases. For Avoid cues, correct actions led to neutral outcomes in 80% of cases, but
punishments in 20% of cases. For incorrect actions, these probabilities were reversed.

127

128  Regression analyses of behavior

129 We performed regression analyses to test whether a) responses were biased by the valence of
130  prospective outcomes (Win/ Avoid), reflecting biased responding and/ or learning, and b) whether
131  response repetition after positive vs. negative outcomes was biased by whether a Go vs. NoGo response
132 was performed, selectively reflecting biased learning.

133 For the first purpose, we analyzed choice data (Go/ NoGo) using mixed-effects logistic
134 regression that included the factors required action (Go/ NoGo; note that this approach collapses across
135 Gorerr and Gorigur responses), cue valence (Win/ Avoid), and their interaction (also reported in)'’.
136  Participants learned the task, i.e., they performed more Go responses towards Go than NoGo cues (main
137  effect of required action: b =0.815, SE =0.113, x*(1) = 32.008, p < .001). In contrast to previous studies
138 39, learning did not asymptote (Fig. 2A), which provided greater dynamic range for the biased learning
139  effects to surface. Furthermore, participants showed a motivational bias, i.e., they performed more Go
140 responses to Win than Avoid cues (main effect of cue valence, b = 0.423, SE = 0.073, ¥*(1) = 23.695, p
141 < .001). Replicating other studies with this task, there was no significant interaction between required
142 action and cue valence (b = 0.030, SE = 0.068, (1) = 0.196, p = .658, Fig. 2A-B), i.e., there was no
143 evidence for the effect of cue valence (motivational bias) differing in size between Go or NoGo cues.
144 Secondly, as a proxy of (biased) learning, we analyzed cue-based response repetition (i.e., the
145  probability of repeating a response on the next encounter of the same cue) as a function of outcome
146  valence (positive vs negative outcome), performed action (Go vs. NoGo), and outcome salience (salient:
147  reward or punishment vs. neutral: no reward or no punishment). As expected, participants were more
148  likely to repeat the same response following a positive outcome (main effect of outcome valence: b =
149 0.504, SE = 0.053, y*(1) = 45.595, p < .001). Most importantly, after salient outcomes, participants
150  adjusted their responses to a larger degree following Go responses than NoGo responses, revealing the

151 presence of a learning bias (Fig. 2C; interaction of valence x action x salience: b = 0.248, SE = 0.048,
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152 y*(1) = 19.732, p < .001). When selectively analyzing trials with salient outcomes only, rewards
153  (compared to punishments) led to a higher proportion of choice repetitions following Go relative to
154 NoGo responses (valence x response: b = 0.308, SE = 0.064, y*(1) = 17.798, p < .001; valence effect for
155 Go only: b =1.276, SE = 0.115, ¥*(1) = 53.932, p < .001; valence effect for NoGo only: b = 0.637, SE
156 =0.127,%*(1) = 18.228, p < .001; see full results in Supplementary Table 1).

157 Taken together, these results suggested that behavioral adaptation following rewards and
158  punishments was biased by the type of action that led to this outcome (Go or NoGo). However, this
159  analysis only considered behavioral adaptation on the next trial, and could not pinpoint the precise
160  algorithmic nature of this learning bias. More importantly, it did not provide trial-by-trial estimates of
161  action values as required for model-based fMRI and EEG analyses to test for regions or time points that
162  reflected biased learning. We thus analyzed the impact of past outcomes on participants’ choices using

163  computational RL models.

164  Computational modeling of behavior

165 In line with previous work>?, we fitted a series of increasingly complex RL models. We started with
166  asimple Rescorla Wagner model featuring learning rate and feedback sensitivity parameters (M1). We
167  next added a Go bias, capturing participants’ overall propensity to make Go responses (M2), and a
168  Pavlovian response bias (M3), reflecting participants’ propensity to adjust their likelihood of emitting a
169  Go response in response to Win vs. Avoid cues’. Alternatively, we added a learning bias (M4),
170  amplifying the learning rate after rewarded Go responses and dampening it after punished NoGo
171  responses?, in line with the asymmetric pathways model. In the final model (M5), we added both the
172 response bias and the learning bias. For the full model space (M1-M5) and model definitions, see the
173 Methods section.

174 Model comparison showed clear evidence in favor of the full asymmetric pathways model featuring
175  both response and learning biases (MS5; model frequency: 86.43%, protected exceedance probability:
176  100%, see Fig. 2D, H; for model parameters and fit indices, see Supplementary Table 2; for parameter
177  recovery analyses, see Supplementary Note 6 and Supplementary Fig. 5). Posterior predictive checks

178  involving one-step-ahead predictions and model simulations showed that this model captured key
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behavioral features (Fig. 2E, F), including motivational biases and a greater behavioral adaptation after
Go responses followed by salient outcomes than after NoGo responses followed by salient outcomes
(Fig. 2G). This pattern could not be captured by an alternative learning bias model based on the idea
that active responses generally enhance credit assignment® (Supplementary Note 7 and Supplementary
Fig. 6).

One feature of the behavioral data that was not well captured by the asymmetric pathways model
was a high tendency of participants to repeat responses (“‘stay”) to the same cue irrespective of outcomes
(see Fig. 2C and G). This tendency was stronger for Win than Avoid cues. We explored three additional
models featuring supplementary mechanisms to account for this behavioral pattern (Supplementary Note
8 and Supplementary Fig. 7). All these models fitted the data well and captured the propensity of staying
better than M5; however, these models overestimated the proportion of incorrect Go responses. Model-
based fMRI analyses based on these models led to results largely identical to those obtained with M5
(Supplementary Note 9 and Supplementary Fig. 8). We thus focused on M5, which relied on only a
single mechanism (i.e., biased learning from rewarded Go and punishment NoGo actions).

Empirical data

A. Trial-by-trial behavior {3 Mean choice per condition C. Win stay/ lose stay D. Log model evidence
1 . . 1

B o5 s

b d > & 2 -
» 18 v -300
0.8 0.8 % . 3 Q .
@
o8 o < -400 *
S50.6F WA © <06 - * f o = = .
o MU A S, © (I B . | T-500 5
d0.4f e SO e 1 3 Y
AR e 5 1 € 600 *
0.2 0 Eu %
0 0 -700 s
0 10 20 30 40 Go NoGo Go NoGo Go NoGo M5
Trial Required Action Performed action
—Go-to-Win = =NoGo-to-Win [T Win (correct/ incorrect) M Reward [[JNo Punishment
—Go-to-Avoid — -NoGo-to-Avoid [T Avoid (correct/ incorrect) M Punishment [ No Reward

Model frequency

Winning model M5
E. Trial-by-trial behavior
1

F. Mean choice per condition

G. Win stay/ lose stay
1 .

Protected exceedance probability
H. Bayesian model selection

. 1
0.8 b 0.8
T
50.6 ® 0.6
8 5
Q0.4 °
0 ‘: 0.4
0.2 : 0.2
0 0 0 -
0 10 20 30 40 Go NoGo Go NoGo Go NoGo M1 M2 M3 M4 M5
Trial Required Action Performed action Model

Figure 2. Behavioral performance. A. Trial-by-trial proportion of Go responses (+SEM across participants) for Go cues (solid lines) and
NoGo cues (dashed lines). The motivational bias was already present from very early trials onwards, as participants made more Go
responses to Win than Avoid cues (i.e., green lines are above red lines). Additionally, participants clearly learn whether to make a Go
response or not (proportion of Go responses increases for Go cues and decreases for NoGo cues). B. Mean (+SEM across participants)
proportion Go responses per cue condition (points are individual participants’ means). C. Probability to repeat a response (“stay”) on the
next encounter of the same cue as a function of action and outcome. Learning was reflected in higher probability of staying after positive
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outcomes than after negative outcomes (main effect of outcome valence). Biased learning was evident in learning from salient outcomes,
where this valence effect was stronger after Go responses than NoGo responses. Dashed line indicates chance level choice (pswuy = 0.33).
D. Log-model evidence favors the asymmetric pathways model (M5) over simpler models (M1-M4). E-G. Trial-by-trial proportion of Go
responses, mean proportion Go responses, and probability of staying based on one-step-ahead predictions using parameters (hierarchical
Bayesian inference) of the winning model (asymmetric pathways model, M5). H. Model frequency and protected exceedance probability
indicate best fit for model M5 (asymmetric pathways model), in line with log model evidence.

194

195  fMRI: Basic quality control analyses

196 First, we performed a GLM as a quality-check to test which regions encoded positive (rewards,
197  no punishments) vs. negative (no reward/ punishment) outcomes in a “model-free” way, independent of
198  any model-based measure derived from a RL model (for full description of the GLM regressors and
199  contrasts, see Supplementary Table 4). Positive outcomes elicited a higher BOLD response in regions
200  including vimPFC, ventral striatum, and right hippocampus, while negative outcomes elicited higher
201 BOLD in bilateral dorsolateral PFC (dIPFC), left ventrolateral PFC, and precuneus (Fig. 3A, see full
202  report of significant clusters in Supplementary Table 6).

203 We also assessed which regions encoded Go vs. NoGo as well as GoLgrr vS. GOrigur responses.
204  There was higher BOLD for Go than NoGo responses at the time of response in dorsal ACC (dACC),
205 striatum, thalamus, motor cortices, and cerebellum, while BOLD was higher for NoGo than Go
206  responses in right IFG (Fig. 6C left panel; Supplementary Table 6)'7. For lateralized Go responses, there
207  was higher BOLD signal in contralateral motor cortex and operculum as well as ipsilateral cerebellum
208  when contrasting hand responses against each other (Fig. 6C, right panel). These results are in line with

209  previous results on outcome processing and response selection and thus assure the general data quality.

210 fMRI: Biased learning in prefrontal cortex and striatum

211 To test which brain regions were involved in biased learning, we performed a model-based GLM
212 featuring the trial-by-trial PE update as a parametric regressor (see GLM notation in Supplementary
213 Table 3). We used the group-level parameters of the best fitting computational model (M5) to compute
214  trial-by-trial belief updates (i.e., prediction error * learning rate) for every trial for every participant. In
215  assessing neural signatures of biased learning, we faced the complication that standard (Rescorla-
216  Wagner learning in M 1) and biased PEs (winning model M5) were highly correlated. A mean correlation

217  of 0.92 across participants (range 0.88—0.95) made it difficult to neurally distinguish biased from
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218  standard learning. To circumvent this collinearity problem, we decomposed the biased PE (computed
219  using model M5) into the standard PE (computed using model M1) plus a difference term?>%:

220 PEpias = PEstp + PEpp

221 A neural signature of biased learning should significantly—and with the same sign—encode
222 both components of this biased PE term. Standard PEs and the difference term were uncorrelated (mean
223 correlation of -0.02 across participants; range -0.33-0.24; see Supplementary Fig. 9 and 10 for a
224 graphical illustration of this procedure). We tested for biased prediction errors PEgs by testing which
225  regions significantly encoded the conjunction of both its components, i.e., the significant encoding of
226  both PEsrp and PEp;r. Dissociating two alternative learning signals by decomposing one into the other
227  plus a difference term is an established procedure to disentangle the contributions of two highly
228  correlated signals*>%*, It has an effect highly similar to orthogonalizing regressors®’ while maintaining
229  interpretability in that both regressors (PEsrp and PEp;r) add up to the term of interest (PEpis).
230  Significant encoding of both components (with the same sign) provides strong evidence for encoding of
231  biased prediction errors PEgiss. The PEp;r term itself has no substantive neural interpretation; it is merely
232 an implicit model comparison of a null model (PEsrp) against a full model (PEpus). Intuitively, for
233 voxels for which both PEs7p and PEp,r are significant, one can conclude that the BOLD signal correlates
234  with the full biased prediction error term PEsus, and that this correlation is significantly stronger than
235 for the baseline prediction error term PEsrp.

236 While PEsrp was encoded in a range of cortical and subcortical regions (Fig. 3B) previously
237  reported in the literature®®, significant encoding of both PEsrp and PEpr (conjunction) occurred in
238 striatum (caudate, nucleus accumbens), dACC (area 23/24), perigenual ACC (pgACC; area 32d
239  bordering posterior vmPFC), posterior cingulate cortex (PCC), left motor cortex, left inferior temporal
240  gyrus, and early visual regions (Fig. 3C; see full report of significant clusters in Supplementary Table
241 5). Thus, BOLD signal in these regions was better described (i.e., more variance explained) by biased
242 learning than by standard prediction error learning.

243

10
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3
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Figure 3. BOLD signal reflecting outcome processing. BOLD effects displayed using a dual-coding visualization: color indicates the parameter
estimates and opacity the associated z-statistics. Significant clusters are surrounded by black edges. A. Significantly higher BOLD signal for
positive outcomes (rewards, no punishments) compared with negative outcomes (no rewards, punishments) was present in a range of regions
including bilateral ventral striatum and vmPFC. Bar plots show mean parameter estimates per condition (+SEM across participants; dots
indicating individual participants) B. BOLD signals correlated positively to “standard” RL prediction errors in several regions, including the
ventral striatum, dACC, vmPFC, and PCC. C. Left panel: Regions encoding both the standard PE term and the difference term to biased PEs
(conjunction) at different cluster-forming thresholds (1 < z < 5, color coding; opacity constant). Clusters significant at a threshold of z > 3.1
are surrounded by black edges. In bilateral striatum, dACC, pgACC, PCC, left motor cortex, left inferior temporal gyrus, and primary visual
cortex, BOLD was significantly better explained by biased learning than by standard learning. Right panel: 3D representation with all seven
regions encoding biased learning (and used in fMRI-informed EEG analyses).

244  EEG: Biased learning in midfrontal delta, theta, and beta power

245 Similar to the fMRI analyses, we next tested whether midfrontal power encoded biased PEs
246  rather than standard PEs. While fMRI provides spatial specificity of where PEs are encoded, EEG power
247  provides temporal specificity of when signals encoding prediction errors occur®-*, In line with our fMRI
248  analysis, we used the standard PE term PEgrp and the difference to the biased PE term PEp;r as trial-
249  Dby-trial regressors for EEG power at each channel-time-frequency bin for each participant and then
250  performed cluster-based permutation tests across the b-maps of all participants. Note that differently

251  from BOLD signal, EEG signatures of learning typically do not encode the full prediction error. Instead,
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252 PE valence (better vs. worse than expected) and PE magnitude (saliency, surprise) have been found
253  encoded in the theta and delta band, respectively, but with opposite signs®'~3. When testing for
254  parametric correlates of PE magnitude, we therefore controlled for PE valence, thereby effectively
255  testing for correlations with the absolute PE magnitude (i.e., degree of surprise). Note that PE valence
256  was identical for standard and biased PEs. Thus, only PE magnitude could distinguish both learning
257  models.

258 Both midfrontal theta and beta power reflected outcome (PE) valence: Theta power was higher
259  for negative (non-reward and punishment) than for positive (reward and non-punishment) outcomes
260  (225-475 ms, p = .006; Fig. 4A-B), while beta power was higher for positive than for negative outcomes
261 (300-1,250 ms, p = .002; Fig. 4A, C). Differences in theta power were clearly strongest over frontal
262  channels, while differences in the beta range were more diffuse, spreading over frontal and parietal
263 channels (Fig. 4B-C). All results held when the condition-wise ERP was removed from the data (see
264  Supplementary Note 10 and Supplementary Fig. 13), suggesting that differences between conditions
265  were due to induced (rather than evoked) activity (for results in the time domain, see Supplementary
266  Note 11 and Supplementary Fig. 14 and 15).

267 When testing for correlates of PE magnitude, we controlled for PE valence given that previous
268  studies have reported TF correlates of both PE valence and PE magnitude in a similar time and frequency
269  range, but with opposite signs®'~*. Midfrontal delta power was indeed positively correlated with the
270  PEpgjus term (225475 ms; p = .017; Fig. 4D). Decomposition of the PEg; 45 term into its constituent
271  terms showed that this correlation was not significant for the PEgyp term (p = 0.074, Fig. 4E) nor for
272 the PEp;r term (p = 0.185; Fig. 4F). This result does not imply that the PEg;45 term explained delta
273 power significantly better than the PEgyp term; it only implies significant encoding of the PEg;45 term
274  as suggested by the model that best fitted the behavioral data, with no significant evidence for a similar
275  encoding of the conventional PEgyp term. For a similar observation in the time-domain EEG signal, see
276  Supplementary Note 12 and Supplementary Fig. 16. Beyond delta power, beta power correlated
277  positively, though not significantly with PEgrp (p = 0.110, Fig. 4E) and significantly negatively with
278  PEp;r (p=.001, 425-850 ms). Given these oppositely-signed correlations of its constituents, the PEp; 45

279  term did not significantly correlate with beta power (p = 0.550, Fig 4D).
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In sum, both midfrontal theta power (negatively) and beta power (positively) encoded PE
valence. In addition, delta power encoded PE magnitude (positively). This encoding was only significant
for biased PEs, but not standard PEs. Taken together, as was the case for BOLD signal, midfrontal EEG
power also reflected biased learning. As a next step, we tested whether the identified EEG phenomena
were correlated with trial-by-trial BOLD signal in identified regions. Crucially, this allowed us to test
whether EEG correlates of cortical learning precede EEG correlates of subcortical learning.

th
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Figure 4. EEG time-frequency power over midfrontal electrodes (Fz/ FC%/ Cz). reflecting outcome processing. A. Time-frequency plot
(logarithmic y-axis) displaying higher theta (4-8 Hz) power for negative (non-reward for Win cues and punishment for Avoid cues)
outcomes and higher beta power (16-32 Hz) for positive (reward and non-punishment) outcomes. This contrast reflects EEG correlates of
PE valence (better vs. worse than expected). Black square dot boxes indicate clusters above threshold that drive significance in a-priori
defined frequency ranges. B. Theta power transiently increases for any outcome, but more so for negative outcomes (especially
punishments) around 225-475 ms after feedback onset. Black horizontal lines indicate the time range for which the cluster driving
significance was above threshold. (C) Beta power was higher for positive than negative outcomes over a long time period around 300—
1,250 ms after feedback onset. D-F. Correlations between midfrontal EEG power and model-based trial-by-trial PE magnitudes controlling
for PE valence (thus effectively testing for correlates of “absolute” PEs). Panel D displays the correlates of biased prediction errors PEg; 45,
which are decomposed into (E) PEgrp, based on the non-biased learning model M1, and (F) their difference PEp;. Solid black lines
indicate clusters above threshold. Biased PEs were significantly positively correlated with midfrontal delta power (D). The correlations of
delta with the standard PEs (E) and the difference term to biased PEs (F) were positive as well, though not significant. Beta power only
significantly encoded the difference term to biased PEs (F). ** p < 0.01.

Combined EEG-fMRI: Prefrontal cortex signals precede striatum during biased
outcome processing

The observation that also cortical areas (AACC, pgACC, PCC) show biased PEs is consistent with
the “external model” of cortical signals biasing learning processes in the striatum. However, this model
makes the crucial prediction that these biased learning signals should be present first in cortical areas

and only later in the striatum. Next, we used trial-by-trial BOLD signal from those regions encoding
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292  biased PE to predict midfrontal EEG power. By determining the time points at which different regions
293  correlated with EEG power, we were able to infer the relative order of biased PE processing across
294  cortical and subcortical regions, revealing whether cortical processing preceded striatal processing. We
295 used trial-by-trial BOLD signal from the seven regions encoding biased PEs, i.e., striatum, dACC,
296  pgACC, PCC, left motor cortex, left ITG, and primary visual cortex (see masks in Supplementary Fig.
297 11 and 12) as regressors on average EEG power over midfrontal electrodes (Fz/ FCz/ Cz; see
298  Supplementary Fig. 17 for a graphical illustration of this approach). We performed analyses with and
299  without PEs included in the model, which yielded identical results and suggested that EEG-fMRI
300 correlations did not merely result from PE processing as a “common cause” driving signals in both
301 modalities. Instead, EEG-fMRI correlations reflected incremental variance explained in EEG power by
302 the BOLD signal in selected regions (even beyond variance explained by the model-based PE estimates),
303  providing the strongest test for the hypothesis that BOLD and EEG signal reflect the same neural
304 phenomenon. As the timeseries of all seven regions were included in one single regression, their
305 regression weights reflected each region’s unique contribution, controlling for any shared variance. In
306 line with the “external model”, BOLD signal from prefrontal cortical regions correlated with midfrontal
307 EEG power earlier after outcome onset than did striatal BOLD signal:

308 First, JACC BOLD was significantly negatively correlated with alpha/ theta power early after
309  outcome onset (100-575 ms, 2—-17 Hz, p = .016; Fig. 5SA). This cluster started in the alpha/ theta range
310 and then spread into the theta/delta range (henceforth called “lower alpha band power”). It was not
311  observed in the EEG-only analyses reported above.

312 Second, while pgACC BOLD did not correlate significantly with midfrontal EEG power (p =.184),
313  BOLD in PCC was negatively correlated with theta/ delta power (Fig. 5B; 175-500 ms, 1-6 Hz, p =
314  .014). This finding bore resemblance in terms of time-frequency space to the cluster of (negative) PE
315  valence encoding in the theta band and (positive) PE magnitude encoding in the delta band identified in
316  the EEG-only analyses (Fig. 4A). Complementary to the fMRI-informed EEG analyses, we also
317  performed independent EEG-informed fMRI analyses, which showed the robustness of this EEG-fMRI
318  correlation. We used the trial-by-trial EEG signal in the cluster identified in the EEG-only analyses (see
319 Fig. 4 A, B) to predict BOLD signal across the brain (see Supplementary Fig. 18 for a graphical
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320  illustration of this approach). The EEG time-frequency-mask used to create the EEG regressor was
321  defined based on the EEG-only analyses (Fig. 4A, B) and thus blind to the result of the fMRI-informed
322  EEG analysis. We observed significant clusters of negative EEG-BOLD correlation in vmPFC and PCC
323  (Fig. 5F; Supplementary Table 7). We thus discuss vmPFC and PCC together in the following.

324 Third, there was a significant positive correlation between striatal BOLD and midfrontal beta/ alpha
325  power (driven by a cluster at 100-800 ms, 7-23 Hz, p = .010; Fig. 5C). This finding bore resemblance
326  in time-frequency space to the cluster of positive PE valence encoding in beta power identified in the
327  EEG-only analyses (Fig. 4A, C), but extended into the alpha range. Again, to support the robustness of
328  this finding, we used trial-by-trial midfrontal beta power in the cluster identified in the EEG-only
329  analyses (see Fig. 4A, C) to predict BOLD signal across the brain. Clusters of positive EEG-BOLD
330 correlations in right dorsal caudate (and left parahippocampal gyrus) as well as clusters of negative
331  correlations in bilateral dorsolateral PFC (dIPFC) and supramarginal gyrus (SMG; Fig. 5G;
332  Supplementary Table 7) confirmed the positive striatal BOLD-beta power association. Given that the
333  striatum is far away from the scalp and thus unlikely to be the source of midfrontal beta power over the
334  scalp, and given the assumption that trial-by-trial variation in an oscillatory signal should correlate with
335  BOLD signal in its source***, we speculate that dIPFC and SMG (identified in the EEG-informed fMRI
336  analyses) are the sources of beta power over the scalp and act as an “antenna” for striatal signals. In line

337  with this idea, previous studies have localized feedback-related beta power in lateral frontal and parietal

4143 44,45

338  regions, both using simultaneous EEG-fMR and source-localization
339 Finally, regarding the other three regions that showed a significant BOLD signature of biased PEs,
340 BOLD in left motor cortex was significantly negatively correlated with midfrontal beta power (p = .002;
341  around 0-625 ms; Supplementary Note 13 and Supplementary Fig. 19). There were no significant
342  correlations between midfrontal EEG power and left inferior temporal gyrus or primary visual cortex
343  BOLD (Supplementary Fig. 19). All results were robust to different analysis approaches including
344 shorter trial windows, different GLM specifications, inclusion of task-condition and fMRI motion

345  realignment regressors, and individual modelling of each region. TF results were not reducible to

346  phenomena in the time domain (Supplementary Note 14 and Supplementary Fig. 20).
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In sum, there were negative correlations between dACC BOLD and midfrontal lower alpha band
power early after outcome onset, negative correlations between PCC BOLD and midfrontal theta/ delta
power at intermediate time points, and positive correlations between striatal BOLD and midfrontal beta
power at late time points. This temporal dissociation was especially clear in the time courses of the test
statistics for each region (thresholded at |t| > 2 and summed across frequencies), for which the peaks of
the cortical regions preceded the peak of the striatum (Fig. 5D, H). Note that time-frequency power is
estimated over temporally extended windows (400 ms in our case), which renders any interpretation of
the “onset” or “offset” of such correlations more difficult. In sum, these results are consistent with an
“external model” of motivational biases arising from early cortical processes biasing later learning

processes in the striatum.
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Figure 5. fMRI-informed EEG analyses. Unique temporal contributions of BOLD signal in (A) dACC, (B) PCC, and (C) striatum to average
EEG power over midfrontal electrodes (Fz/ FCz/ Cz). Group-level -maps display the modulation of the EEG power by trial-by-trial BOLD
signal in the selected ROIs. dACC BOLD correlated negatively with early alpha/ theta power, PCC BOLD negatively with theta/ delta
power, and striatal BOLD positively with beta/ alpha power. Areas surrounded by a black edge indicate clusters of |f| > 2 with p < .05
(cluster-corrected). Topoplots indicate the topography of the respective cluster. D. Time course of dACC, PCC, and striatal BOLD
correlations, normalized to the peak of the time course of each region. dACC-lower alpha band correlations emerged first, followed by
(negative) PCC-theta correlations and finally positive striatum-beta correlations. The reverse approach using lower alpha (E), theta (F) and
beta (G) power as trial-by-trial regressors in fMRI GLMs corroborated the fMRI-informed EEG analyses: Lower alpha band power
correlated negatively with the dACC BOLD, theta power negatively with vmPFC and PCC BOLD, and beta power positively with striatal
BOLD. H. Schematic overview of the main EEG-fMRI results: dACC encoded the previously performed response and correlated with early
midfrontal lower alpha band power. vmPFC/ PCC (correlated with theta power) and striatum (correlated with beta power) both encoded
outcome valence, but had opposite effects on subsequent behavior. Note that activity in these regions temporally overlaps; boxes are ordered
in temporal precedence of peak activity.
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358 dACC BOLD and midfrontal lower alpha band power encode the previously performed

359  action during outcome presentation

360 While the clusters of EEG-fMRI correlation in the theta/ delta and beta range matched the
361  clusters identified in EEG-only analyses, the cluster of negative correlations between dACC BOLD and
362  early midfrontal lower alpha band power was novel and did not match our expectations. Given that these
363  correlations arose very soon after outcome onset, we hypothesized that dACC BOLD and midfrontal
364  lower alpha band power might reflect a process occurring even before outcome onset, such as the
365 maintenance (“memory trace”) of the previously performed response to which credit may later be
366  assigned. We therefore assessed whether information of the previous response was present in dACC
367 BOLD and in the lower alpha band around the time of outcome onset.

368 First, we tested for BOLD correlates of the previous response at the time of outcomes (eight
369  outcome-locked regressors for every Go/ NoGo x reward/ no reward/ no punishment/ punishment
370  combination) while controlling for motor-related signals at the time of the response (response-locked
371  regressors for left-hand and right-hand button presses). At the time of outcomes, there was higher BOLD
372 signal for NoGo than Go responses across several cortical and subcortical regions, peaking in both the
373  dACC and striatum (Fig. 6D). This inversion of effects—higher BOLD for Go than NoGo responses at
374  the time of response (see quality checks), but the reverse at the time of outcome—was also observed in
375  the upsampled raw BOLD and was independent of the response of the next trial (Supplementary Note
376 15 and Supplementary Fig. 21). In sum, large parts of cortex, including the dACC, encoded the
377  previously performed response at the moment outcomes were presented, in line with the idea that the
378  dACC maintains a “memory trace” of the previously performed response.

379 Second, we tested for differences between Go and NoGo responses at the time of outcomes in
380  midfrontal broadband EEG power. Power was significantly higher on trials with Go than on trials with
381  NoGo responses, driven by clusters in the lower alpha band (spreading into the theta band; around
382 0.000-0.425 sec., 1-11 Hz, p = .012) and in the beta band (around 0.200-0.450 sec., 18-27 Hz, p =
383  .022; Fig. 6A, B). The first cluster matched the time-frequency pattern of dACC BOLD-alpha power

384  correlations (Fig. SA).
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385 If this activity cluster contained a signature of the previously performed response, it might have
386  been present throughout the delay between cue offset and outcome onset. When repeating the above
387  permutation test including the last second before outcome onset, there were significant differences again,
388 driven by a sustained cluster in the beta band (-1-0 sec., 13-33 Hz, p = .002) and two clusters in the
389  alpha/ theta band (Cluster 1: -1.000- -0.275 sec., 1-10 Hz, p = 0.014; Cluster 2: -0.225-0.425 sec., 1—-
390 11 Hz, p =.022; Fig. 6B). These findings suggest that lower alpha band power might reflect a sustained
391 memory of the previously performed response. Additional analyses (Supplementary Note 15 and
392  Supplementary Fig. 21) yielded that this Go-NoGo trace during outcome processing did not change over
393  the time course of the experiment, suggesting that it did not reflect typical fatigue/ time-on task effects
394  often observed in the alpha band.

395 Again, we performed the reverse EEG-fMRI analysis using trial-by-trial power in the identified
396  lower alpha band cluster (Fig. 6B) as an additional regressor in the quality-check fMRI GLM. Clusters
397  of negative EEG-BOLD occurred correlation in a range of cortical regions, including dACC and
398  precuneus (Fig. SE; Supplementary Table 7). In sum, both dACC BOLD signal and midfrontal lower
399  alpha band power contained information about the previously performed response, consistent with the
400  idea that both signals reflect a “memory trace” of the response to which credit is assigned once an

401 outcome is obtained.
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Figure 6. Exploratory follow-up analyses on dACC BOLD signal and midfrontal lower alpha band power. A. Midfrontal time-frequency
response-locked (left panel) and outcome-locked (right panel). Before and shortly after outcome onset, power in the lower alpha band was
higher on trials with Go actions than on trials with NoGo actions. The shape of this difference resembles the shape of dACC BOLD-EEG
TF correlations (small plot; note that this plot depicts BOLD-EEG correlations, which were negative). Note that differences between Go
and NoGeo trials occurred already before outcome onset in the alpha and beta range, reminiscent of delay activity, but were not fully sustained
throughout the delay between response and outcome. B. Midfrontal power in the lower alpha band per action x outcome condition. Lower
alpha band power was consistently higher on trials with Go actions than on trials with NoGo actions, starting already before outcome onset.
C. BOLD signal differences between Go and NoGo actions (activation by either left or right Go actions compared to the implicit baseline
in the GLM, which contains the NoGo actions; left panel) and left vs. right hand responses (right panel) at the time or responses. Response-
locked dACC BOLD signal was significantly higher for Go than NoGo actions. D. BOLD signal differences between Go and NoGo actions
at the time of outcomes. Outcome-locked dACC BOLD signal (and BOLD signal in other parts of cortex) was significantly lower on trials
with Go than on trials with NoGo actions.

402

403  Striatal and vmPFC/ PCC BOLD differentially relate to action policy updating

404 EEG correlates of PCC BOLD and striatal BOLD occurred later than for the dACC BOLD and
405  overlapped with classical feedback-related midfrontal theta and beta power responses. We hypothesized
406  that those neural signals might be more closely related to the updating of action policies (i.e., which
407  action to perform for each cue) and predict the next response to the same cue®**, We thus used the trial-
408  by-trial BOLD responses in dACC, PCC/ vmPFC, and striatum to predict whether participants would
409  repeat the same response on the next trial with the same cue (“stay”) or switch to another response
410  (“shift”). Mixed-effects logistic regression yielded that JACC BOLD did not significantly predict
411 response repetition (b =-0.019, SE = 0.016, x*(1) = 1.294, p = .255). In contrast, BOLD in PCC/ vmPFC
412  and striatum did predict response repetition, though in opposite directions: Participants were
413  significantly more likely to repeat the same response when striatal BOLD was high (b = 0.067, SE =
414  0.024, ¥*(1) =9.051, p = .003), but more likely to switch to another response when vmPFC BOLD (b =
415  -0.065, SE = 0.020, *(1) = 8.765, p = .003) or PCC BOLD (b = -0.036, SE = 0.016, ¥*(1) = 3.691, p =
416  .030; Fig. 5H) was high (Supplementary Fig. 22). Similarly, high pgACC BOLD predicted a higher
417  likelihood of switching, likening it with the circuits formed by vmPFC and PCC (b =-0.076, SE =0.017,
418  y*(1) =15.559, p < .001). We also inspected the raw upsampled HRF shapes per region per condition,
419  confirming that differential relationships were not driven by differences in HRF shapes across regions.
420 We also tested whether trial-by-trial midfrontal lower alpha band, theta, or beta power (within
421  the clusters identified in the EEG-only analyses) predicted action policy updating. Participants were
422  significantly more likely to repeat the same response when beta power was high (b =0.145, SE = 0.041,
423  ¥*(1)=11.886, p <.001), but more likely to switch when theta power was high (b = -0.099, SE = 0.047,

424  y*(1)=4.179, p=.041). Notably, unlike its BOLD correlate in ACC, lower alpha band power did predict
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425  response repetition, with more repetition when alpha power was high (b = .0.179, SE = 0.052, ¥*(1) =
426  10.711, p =.001; Supplementary Fig. 22).

427 In sum, high striatal BOLD and midfrontal beta power predicted that the same response would
428  be repeated on the next encounter of a cue, while high vmPFC and PCC BOLD and high theta power
429  predicted that participants would switch to another response. Thus, although both striatal and vmPFC/
430 PCC BOLD positively encoded biased prediction errors, these two sets of regions had opposite roles in
431  learning: while the striatum reinforced previous responses, vimPFC/ PCC triggered the shift to another

432  response strategy (Fig. 5H).

433 Discussion
434 We investigated neural correlates of biased learning for Go and NoGo responses. In line with

435  previous research®’, participants’ behavior was best described by a computational model featuring faster
436  learning from rewarded Go responses and slower learning from punished NoGo responses. Neural
437  correlates of biased PEs were present in BOLD signals in several regions, including ACC, PCC, and
438  striatum. These regions exhibited distinct midfrontal EEG power correlates. Most importantly,
439  correlates of prefrontal cortical BOLD preceded correlates of striatal BOLD: Trial-by-trial dACC BOLD
440  correlated with lower alpha band power immediately after outcome onset, followed by PCC (and
441  vmPFC) BOLD correlated with theta power, and finally, striatal BOLD correlated with beta power.
442  These results suggest that the architecture of the asymmetric striatal pathways might not be the only
443  neural structure that gives rise to motivational learning biases; instead, the PFC might critically
444  contribute to these biases.

445 The observation that both PFC and striatal BOLD signal reflected biased PEs might be explained
446 by three different models. One model assumes that both PFC and striatal processes arrive at biased
447  learning independently of each other, which is highly unlikely given strong recurrent connections
448  between both regions'®!*4’. Another model incorporates such interconnections, but assumes that
449  striatum leads the PFC. While such a model is in line with past animal studies*® and modeling work®, it
450  would predict EEG correlates of the PFC to trail after EEG correlates of the striatum—or at least to

451  occur with considerable delay after outcome onset. This model is not supported by our findings, which
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452  showed EEG correlates of PFC regions soon after outcome onset, preceding striatal EEG correlates.
453  These early EEG correlates of PFC BOLD are in line with single cell recordings in PFC which show
454  responses confined to the first 500 ms following outcome onset>®3!, corroborating that PFC outcome
455  processing occurs before the time of EEG correlates of striatal BOLD. The only model consistent with
456  our data assumes recurrent connections between PFC and striatum, but with the PFC leading the
457  striatum. Hence, these results are in line with a model of PFC biasing striatal outcome processing, giving
458  rise to motivational learning biases in behavior.

459 The dominant idea about the origin of motivational biases has been that these biases are an
460  emergent feature of the asymmetric direct/ indirect pathway architecture in the basal ganglia . We
461  find that these biases are present first in prefrontal cortical areas, notably dACC and PCC, which argues
462  against biases being purely driven by subcortical circuits. Rather, motivational learning biases might be
463  an instance of sophisticated, even “model-based” learning processes in the striatum instructed by the

52,53

464  prefrontal cortex’>>°. An influence of PFC on striatal RL has prominently been observed in the case of

23,24

465  model-based vs. model-free learning=-* and has been stipulated as a mechanism of how instructions

466  canimpact RL?*?!. Although there are reports of striatal processes preceding prefrontal processes within

4834 the opposite pattern of PFC preceding striatum has been observed as well>> and a

467  learning tasks
468  causal impact of PFC on striatal learning is well established®®’. In particular, we have previously
469  observed that motivational biases in action selection might arise from early prefrontal inputs to the
470  striatum, as well'’. Prefrontal influences on striatal processes might thus be a common signature of both
471  motivational response and learning biases.

472 The particular subregion of PFC showing the earliest EEG correlates was the dACC. This
473  observation is in line with an earlier EEG-fMRI study reporting dACC to be part of an early valuation
474  system preceding a later system comprising vmPFC and striatum®. The dACC has been suggested to
475  encode models of agents’ environment>* that are relevant for interpreting outcomes, with BOLD in

476  this region scaling with the size of PEs*-°

and indexing how much should be learned from new
477  outcomes. We hypothesize that, at the moment of outcome, dACC maintains a “memory trace” of the
478  previously performed response® which might modulate the processing of outcomes as soon as they

479  become available®>%. Notably, dACC exhibited stronger BOLD signal for Go than NoGo responses at
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480 the time of participants’ response, but this pattern reversed at the time of outcomes. This reversal rules
481  out the possibility that response-locked BOLD signal simply spilled over into the time of outcomes.
482  Future research will be necessary to corroborate such a motor “memory trace” in dACC. In sum, the
483  dACC might be in a designated position to inform subsequent outcome processing in downstream
484  regions by modulating the learning rate as a function of the previously performed response and the
485  obtained outcome. Rather than striatal circuits being sufficient for the emergence of motivational biases,
486  the more “flexible” PFC seems to play an important role in instructing downstream striatal learning
487  processes.

488 Striatal, dJACC and PCC BOLD encoded biased PEs. In line with previous research, striatal
489  BOLD positively linked to midfrontal beta power*'*?, which positively encoded PE valence®®**%*, with
490  correlations extending into alpha power. PCC and vmPFC BOLD negatively linked to midfrontal theta/

491  delta power!”:636

, which encoded PE valence negatively, but PE magnitude positively. Notably, theta/
492  delta power correlates of vmPFC/ PCC BOLD preceded beta power correlates of striatal BOLD in time,
493  which aligns with previous findings of motivational response biases being first visible in the vimPFC
494  BOLD before they impact striatal action selection'’. Notably, EEG correlates of striatal BOLD during
495  outcome processing were in the beta band—in contrast to previously observed correlates of striatal
496  BOLD during action selection in the theta band'’. This dissociation suggests important differences in
497  the role of the striatum in these two processes. The frequency-specific nature of these EEG-fMRI
498  correlations further suggests that they are signatures of task-induced events that are specific to the trial
499  phase and unlikely to reflect general anatomical connectivity. In sum, while these EEG-fMRI findings
500 on outcome processing resemble our previous EEG-fMRI findings on action selection in that prefrontal
501  signals precede striatal signals, they are dissociated in terms of the frequency specificity, highlighting
502  the distinct roles of the striatum in these processes.

503 Positive encoding of prediction errors in striatal BOLD signal is a well-established phenomenon?®¢7.
504  Striatal BOLD was better described by biased PEs than by standard PEs, corroborating the presence of
505 motivational learning biases also in striatal learning processes. Notably, EEG correlates of striatal
506  BOLD peaked rather late, suggesting that these processes are informed by early sources in PFC which

507  are connected to the striatum via recurrent feedback loops'®*’. Positive prediction errors increase the
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508  value of a performed action and thus strengthen action policies. Hence, it is not surprising that high
509  striatal BOLD signal and midfrontal beta power predicted action repetition®®°.

510 In contrast to striatal learning signals, the PCC and vmPFC BOLD as well as midfrontal theta
511  and delta power signals were more complicated: Theta encoded PE valence, delta encoded PE
512 magnitude. Both correlates showed opposite polarities. This observation is in line with previous
513  literature suggesting that midfrontal theta and delta power might reflect the “saliency” or “surprise”
514  aspect of PEs*!3270, Surprises have the potential to disrupt an ongoing action policy’! and motivate a
515  shift to another policy, which might explain why these signals predicted switching to another
516  response’>’”. Notably, this EEG surprise signal was only significantly correlated with the biased (but
517 not the standard) PE term, corroborating that the surprise attributed to outcomes depends on the
518  previously performed response in line with motivational learning biases. In sum, both vmPFC and
519  striatum encode biased PEs, though with different consequences for future action policies.

520 Taken together, distinct brain regions processed outcomes in a biased fashion at distinct time
521  points with distinct EEG power correlates. Simultaneous EEG-fMRI recordings allowed us to infer when
522  those regions reached their peak activity’®. However, the correlational nature of BOLD-EEG links
523  precludes strong statements about these regions actually generating the respective power phenomena.
524  Alternatively, activity in those regions might merely modulate the amplitude of time-frequency
525  responses originating from other sources. Furthermore, while the observed associations align with

17:41.42.6566 " the considerable distance of the striatum to the scalp raises the question

526  previous literature
527  whether scalp EEG could in principle reflect striatal activity, at all”>7®. Intracranial recordings have
528  observed beta oscillations during outcome processing in the striatum before® =", Also, our analysis
529  controlled for BOLD signal in motor cortex, an alternative candidate source for beta power, suggesting
530 that late midfrontal beta power did not merely reflect motor cortex beta. Even if the striatum is not the
531  generator of the beta oscillations over the scalp, their true (cortical) generator might be tightly coupled
532  tothe striatum and thus act as a “transmitter” of striatal beta oscillations. In fact, the analyses using trial-

533  by-trial beta power to predict BOLD yielded significant clusters in dIPFC and SMG, two candidate

534  regions for such a “transmitter”.
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535 We observed EEG correlates of striatal BOLD at a rather late time point after outcome onset.
536  While we conclude that biased outcome processing occurs much earlier in cortical regions than the
537  striatum, it is possible that the modulating influence of the striatum on cortical sources of beta
538  synchronization over the scalp (possibly dIPFC and SMG, corroborating previous EEG-fMRI*'** and
539  source-reconstruction findings**°) takes time to surface. However, speaking against any delay, some
540  single studies have reported maximal correlations between striatal LFPs and scalp EEG at a time lag of
541 0%, Regardless, even in the presence of a non-zero lag, our main conclusion would hold: Biased learning
542  is present in cortical regions early after outcome onset, which cannot be a consequence of striatal input,
543  but must constitute an independent origin of motivational learning biases.

544 In order to make inferences about the relative order of PE processing in different brain regions,
545  we must assume that the regressor in our EEG-fMRI analysis approach—the trial-by-trial BOLD
546  amplitude in selected regions—mostly reflects the PE signal rather than learning-unrelated processes
547  occurring in parallel. In support of this assumption, animal recordings have indeed found that neural
548  activity in ACC, PCC, and striatum is dominated by reward processing during outcome receipt®' =5 and
549  meta-analyses on human BOLD signal have found strong effect sizes for PE processing in these
550  regions*®®’. Importantly, we observe transient EEG-fMRI correlations that are likely event-related rather
551  than reflecting resting-state like correlations. We thus favor the conclusion that the observed EEG-fMRI
552  correlations reflect differences in the timing of PE processing in these regions, although we cannot fully
553  exclude the possibility that parallel processes unrelated to (biased) learning contribute to these
554  correlations. Note that, while outcome processing in these regions is better described by biased than by
555  standard PEs, each region might encode PEs in an idiosyncratic way (potentially reflecting noise in the
556  value representations®®) and these residual idiosyncrasies drive the EEG-fMRI correlations even when
557  controlling for biased PEs predicted by the winning computational model.

558 The correlational nature of the study prevents strong statements over any causal interactions
559  between the observed regions. We assume here that a region showing an earlier midfrontal EEG
560 correlate influences other regions showing later midfrontal EEG correlates, and such an influence is
561  plausible given findings of feedback loops between prefrontal regions and the striatum*’. Future studies
562  targeting those regions via selective causal manipulations will be necessary to test for the causal role of
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563  PFC in informing striatal learning. Furthermore, while parameter recovery for most parameters in the
564  winning computational model (including the effective learning rates incorporating the learning bias)
565  was excellent, parameter recovery for the learning bias term itself was positive, but weaker (see
566  Supplementary Note 6). Supplementary models tested incorporating a perseveration parameter (see
567  Supplementary Note 8) yielded higher model recovery, but failed to capture crucial aspects of the biased
568  learning under investigation. Future studies comprising larger samples of participants should explore
569 alternative implementations to reliably quantify individual differences in these learning biases.

570 In conclusion, biased learning—increased credit assignment to rewarded action, decreased
571  credit assignment to punished inaction—was visible both in behavior and in BOLD signal in a range of
572  regions. EEG correlates of prefrontal cortical regions, notably dACC and PCC, preceded correlates of
573  the striatum, consistent with a model of the PFC biasing RL in the striatum. The dACC appeared to hold
574  a “motor memory trace” of the past response, biasing early outcome processing. Subsequently, biased
575  learning was also present in vmPFC/ PCC and striatum, with opposite roles in adjusting vs. maintaining
576  action policies. These results refine previous views on the neural origin of these learning biases,
577  suggesting they might not only rely on subcortical parts of the brain typically associated with rigid,
578  habit-like responding, but rather incorporate frontal inputs that are associated with counterfactual
579  reasoning and increased behavioral flexibility®”®8, The PFC is typically believed to facilitate goal-
580  directed over instinctive processes. Hence, PFC involvement into biased learning suggests that these
581  biases are not necessarily agents’ inescapable “fate”, but rather likely act as global “priors” that facilitate
582  learning of more local relationships. They allow for combining “the best of both worlds”—Ilong-term
583  experience with consequences of actions and inactions together with flexible learning from rewards and

584  punishments.

sgs  Materials and methods

586  Participants

587  Thirty-six participants (Maee = 23.6, SDyee = 3.4, range 19-32; 25 women; all right-handed; all normal

588  or corrected-to-normal vision) took part in a single 3-h data collection session, for which they received

25


https://doi.org/10.1101/2021.10.03.462927
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.03.462927; this version posted July 28, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

MOTIVATIONAL BIASES IN FRONTO-STRIATAL CIRCUITS

589 €30 flat fee plus a performance-dependent bonus (range €0-5, Myons = €1.28, SDponus = 1.54). The
590 study was approved by the local ethics committee (CMO2014/288; Commissie Mensengeboden
591  Onderzoek Arnhem-Nijmegen) and all participants provided written informed consent. Exclusion
592  criteria comprised claustrophobia, allergy to gels used for EEG electrode application, hearing aids,
593  impaired vision, colorblindness, history of neurological or psychiatric diseases (including heavy
594  concussions and brain surgery), epilepsy and metal parts in the body, or heart problems. Sample size
595  was based on previous EEG studies with a comparable paradigm®®,

596 Behavioral and modeling results include all 36 participants. The following participants were
597  excluded from analyses of neural data: For two participants, fMRI functional-to-standard image
598  registration failed; hence, all fMRI-only results are based on 34 participants (Mg = 23.47, 25 women).
599  Four participants exhibited excessive residual noise in their EEG data (> 33% rejected trials) and were
600  thus excluded from all EEG analyses; hence, all EEG-only analyses are based on 32 participants (Mg
601 = 23.09, 23 women). For combined EEG-fMRI analyses, we excluded the above-mentioned six
602  participants plus one more participant whose regression weights for every regressor were about ten times
603  larger than for other participants, leaving 29 participants (Mg = 23.00, 22 women). Exclusions were in
604 line with a previous analysis of this data set'”. fMRI- and EEG-only results held when analyzing only

605  those 29 participants (see Supplementary Notes 1-5 and Supplementary Figures 1-4).

606 Task

607 Participants performed a motivational Go/ NoGo learning task®® administered via MATLAB
608 2014b (MathWorks, Natick, MA, United States) and Psychtoolbox-3.0.13. On each trial, participants
609  saw a gem-shaped cue for 1300 ms which signaled whether they could potentially win a reward (Win
610  cues) or avoid a punishment (Avoid cues) and whether they had to perform a Go (Go cue) or NoGo
611 response (NoGo cue). They could press a left (Govgrr), right (Gorigur), or no (NoGo) button while the
612  cue was presented. Only one response option was correct per cue. Participants had to learn both cue
613 valence and required action from trial-and-error. After a variable inter-stimulus-interval of 1,400-1,600
614  ms, the outcome was presented for 750 ms. Potential outcomes were a reward (symbolized by coins

615 falling into a can) or neutral outcome (can without money) for Win cues, and a neutral outcome or
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616  punishment (symbolized by money falling out of a can) for Avoid cues. Feedback validity was 80%,
617 i.e., correct responses were followed by positive outcomes (rewards/ no punishments) on only 80% of
618 trials, while incorrect responses were still followed by positive outcomes on 20% of trials. Trials ended
619  with ajittered inter-trial interval of 1250-2000 ms, yielding total trial lengths of 4700-6650 ms.

620 Participants gave left and right Go responses via two button boxes positioned lateral to their
621  body. Each box featured four buttons, but only one button per box was required in this task. When
622  participants accidentally pressed a non-instructed button, they received the message ‘“Please press one
623  of the correct keys” instead of an outcome. In the analyses, these responses were recoded into the
624 instructed button on the respective button box. In the fMRI GLMs, such trials were modeled with a
625  separate regressor.

626 Before the task, participants were instructed that each cue could be followed by either reward
627  or punishment, that each cue had one optimal response, that feedback was probabilistic, and that the
628  rewards and punishments were converted into a monetary bonus upon completion of the study. They
629  performed an elaborate practice session in which they got familiarized first with each condition
630  separately (using practice stimuli) and finally practiced all conditions together. They then performed
631 640 trials of the main task, separated into two sessions of 320 trials with separate cue sets. Introducing
632 a new set of cues allowed us to prevent ceiling effects in performance and investigate continuous
633  learning throughout the task. Each session featured eight cues that were presented 40 times. After every
634  100-110 trials (~ 6 min.), participants could take a self-paced break. The assignment of the gems to cue
635  conditions was counterbalanced across participants, and trial order was pseudo-random (preventing that

636  the same cue occurred on more than two consecutive trials).

637  Behavior analyses

638 We used mixed-effects logistic regression (as implemented in the R package /me4) to analyze
639  behavioral responses (Go vs. NoGo) as a function of required action (Go/ NoGo), cue valence (Win/
640  Avoid), and their interaction. We included a random intercept and all possible random slopes and

641  correlations per participant to achieve a maximal random-effects structure®. Sum-to-zero coding was

27


https://doi.org/10.1101/2021.10.03.462927
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.03.462927; this version posted July 28, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

MOTIVATIONAL BIASES IN FRONTO-STRIATAL CIRCUITS

642  employed for the factors. Type 3 p-values were based on likelihood ratio tests (implemented in the R
643  package afex). We used a significance criterion of a = .05 for all the analyses.

644 Furthermore, we used mixed-effects logistic regression to analyze “stay behavior”, i.e., whether
645  participants repeated an action on the next encounter of the same cue, as a function of outcome valence
646  (positive: reward or no punishment/ negative: no reward or punishment), outcome salience (salient:
647  reward or punishment/ neutral: no reward or no punishment), and performed action (Go/ NoGo). We

648  again included all possible random intercepts, slopes, and correlations.

649  Computational modeling

650  We fit a series of increasingly complex RL models to participants’ choices to decide between different
651  algorithmic explanations for the emergence of motivational biases in behavior. We employed the same
652  set of nested models as in previous studies using this task®®. For tests of alternative biases specifications,

653  see Supplementary Notes 7-9 and Supplementary Fig. 6-8.

654  Model space

655 To determine whether a Pavlovian response bias, a learning bias, or both biases jointly predicted
656  behavior best, we fitted a series of increasing complex computational models. In each trial (t), choice
657  probabilities for all three response options (a) given the displayed cue (s) were computed from their

658 action weights (modified Q-values) using a softmax function:

— P Wans))
659 p(aclsy) = Y qexp (w(ar,se)) "

660 After each response, action values were updated with the prediction error based on the obtained
661 outcome r € {—1;0;1}. As the starting model (M1), we fitted an standard delta-learning model °! in
662  which action values were updated with prediction errors, i.e., the deviation between the experienced
663  outcome and expected outcome. This model contained two free parameters: the learning rate (¢) scaling
664  the updating term and the feedback sensitivity (p) scaling the received outcome (i.e., higher feedback
665  sensitivity led to choices more strongly guided by value difference, akin to the role of the inverse

666  temperature parameter frequency used in reinforcement learning models):

667 Qc(ag, st) = Qe—1(ar, s¢) + e(pr — Qr—1(a, s¢)) ()
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668 In this model, choice probabilities were fully determined by action values, without any bias. We
669 initialized action values Qo such that they reflected a “neutral” expected value for each action. Win cues
670  could lead to reward (+1) or neutral (0) outcomes and Avoid cues to neutral (0) or punishment (-1)
671  outcomes. A neutral expected value would assign equal probability to either possible outcome, leading
672  to expectations of +1/2 and -1/2, respectively. In addition, because participants’ feedback sensitivity
673  parameter p reflected how participants weighed the outcomes they received, also the initial values had
674  to be multiplied with the feedback sensitivity to stay neutral between 0 and participants’ re-weighted
675  positive/ negative outcome of +/-1*p. Thus, initial action values Qo were set to 1/2*p (Win cues) and -
676 1/2*p (Avoid cues).

677 Unlike previous versions of the task®, cue valences were not instructed, but had to be learned
678  from outcomes, as well’. Thus, until experiencing the first non-neutral outcome (reward or punishment)
679 for a cue, participants could not know its valence and thus not learn from neutral feedback. Hence, for
680 these early trials, action values were multiplied with zero when computing choice probabilities °. After
681 the first encounter of a valenced outcome, action values were “unmuted’ and started to influence choices
682  probabilities, retrospectively considering all previous outcomes’.

683 In M2, we added the Go bias parameter b, which accounted for individual differences in

684  participants’ overall propensity to make Go responses, to the action values Q, resulting in action weights

685 w:

_(Qc(as,s)) +b if a=Go
686 w(ag,s¢) = {Qt(at: 50 else 3)
687 In M3, we added a Pavlovian response bias m, scaling how positive/ negative cue valence
688  (Pavlovian values) increased/ decreased the weights of Go responses:

_ (Qe(ag, s¢g) + b +mV(s) if a=Go
089 wae, se) = {Qt(at, 5) else @
690 Participants were instructed that a cue was either a Win cue (affording rewards or neutral

691 outcomes) or an Avoid cue (affording neutral outcomes or punishments). Hence, cue valence (Win/
692  Avoid) did not have to be learned instrumentally; instead, it could be inferred as soon participants
693 experienced a non-neutral outcome. Until that moment, cue valence V(s) was set to zero. Afterwards,

694  V(s) was set to +0.5 for Win cues and -0.5 for Avoid cues. Note that choosing different values than 0.5
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695  would merely rescale the bias parameter & (e.g., halving © with cue valences of +1 and -1) without any
696  changes in the model’s predictions. The Pavlovian response bias affected left-hand and right-hand Go
697  responses similarly and thus reflected generalized activation/ inactivation by the cue valence.

698 In M4, we added a learning bias k, increasing the learning rate for rewards after Go responses
699  and decreasing it for punishments after NoGo responses. The learning bias was specific to the response
700  shown, thus reflecting a specific enhancement in action learning/ impairment in unlearning for that
701  particular response. Conceptually, learning rates differed between response-outcome conditions in the
702  following way:

g +k ifrp=1landa=go

703 =g —k ifry = —1and a = nogo ®)
£ else
704 In the technical implementation of this model, learning rates were sampled in continuous space

705  and then inverse-logit transformed to constrain them to the range [0 1]*°. However, after this
706  transformation, the impact of adding vs. subtracting the learning bias k would no longer be symmetric.
707 Hence, for baseline learning rates gy < 0.5, we first computed the difference between the baseline
708  learning rate and the learning rates for punished NoGo responses and used this difference to compute
709  the learning rate for rewarded Go responses:

& = inv.logit(e)
710 & = { Epunished NoGo = INV. logit(e — k) if & <0.5 (6)

Erewarded Go = €0 T (50 — Epunished NoGo) if & <0.5
711 Notably, this procedure is only guaranteed to work when g < 0.5. For g > 0.5, the difference
712 term could become > 0.5 and the learning rate for rewarded Go responses would become > 1, which is
713 impractical. Hence, for €y > 0.5, we first computed the learning rate for rewarded Go responses and used
714  the difference to the baseline learning rate &y to compute the learning rate for punished NoGo responses:

g = inv.logit(e)
715 €= Erewarded Go = Inv.logit(e + k) if g >0.5 (7
gpunished NoGo — €0 — (Srewarded Go — ‘90) if & > 0.5

716 In the model M5, we included both the Pavlovian response bias and the learning bias.

717 The weakly informative hyperpriors were set to X,~N(2,3), X;~N(0,2), X} 7,,,~N'(0,3), in

718  line with previous implementations of this model®>?. The same priors (for the same parameters) were
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719  used across different model implementations to not bias model comparison. Alternative hyperpriors did
720  not change the results. For computing the participant-level parameters, p was exponentiated to constrain

721  itto positive values, and the inverse-logit transformation was applied to €.

722 Model fitting and comparison

723 For model fitting and comparison, we used hierarchical Bayesian inference as implemented in
724  the CBM toolbox in MATLAB®. This approach combines hierarchical Bayesian parameter estimation
725  with random-effects model comparison®®. The fitting procedure involves two steps, starting with the
726  Laplace approximation of the model evidence to compute the group evidence, which quantifies how
727  well each model fits the data while penalizing for model complexity. Both group-level and individual-
728  level parameters are estimated using an iterative algorithm. We used wide Gaussian priors (see
729  hyperpriors above) and exponential and sigmoid transforms to constrain parameter spaces. Subsequent
730  random-effects model selection allows for the possibility that different models generated the data for
731  different participants. Participants contribute to the group-level parameter estimation in proportion to
732 how well a given model fits their data, quantified via a responsibility measure (i.e., the probability that
733  the model at hand is responsible for generating data of the respective participant). This model-
734  comparison approach has been shown to be less susceptible to the influence of outliers®. We selected

735  the “winning” model based on the protected exceedance probability.

736 Model validation

737 We assured that the winning model was able to reproduce the data, using the sampled
738  combinations of participant-level parameter estimates to create 3600 agents that “played” the task. We
739  employed two approaches to simulate the task: posterior predictive model simulations and one-step-
740  ahead model predictions. In the posterior predictive model simulations, agents’ choices were sampled
741  probabilistically based on their action values, and outcomes probabilistically sampled based on their
742 choices. This method ignores participant-specific choice histories and can thus yield choice/ outcome
743  sequences that diverge considerably from participants’ actual experiences. In contrast, one-step-ahead
744  predictions use participants’ actual choices and experienced outcomes in each trial to update action

745  values. We simulated choices for each participant using both methods, which confirmed that the winning
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746  model M5 (“asymmetric pathways model”) was able to qualitatively reproduce the data, while an
747  alternative implementation of biased learning (“action priming model”) failed to do so (see

748  Supplementary Note 7 and Supplementary Fig. 6).

749  fMRI data acquisition

750 fMRI data were collected on a 3T Siemens Magnetom Prisma fit MRI scanner with a 64-channel
751  head coil. During scanning, participants’ heads were restricted using foam pillows and strips of adhesive
752  tape were applied to participants’ forehead to provide active motion feedback and minimize head

753  movement **

. After two localizer scans to position slices, we collected functional scans with a whole-
754  brain T2*-weighted sequence (68 axial-oblique slices, TR = 1400 ms, TE = 32 ms, voxel size 2.0 mm
755  isotropic, interslice gap O mm, interleaved multiband slice acquisition with acceleration factor 4, FOV
756 210 mm, flip angle 75°, A/ P phase encoding direction). The first seven volumes of each run were
757  automatically discarded. This sequence was chosen because of its balance between a short TR and
758  relatively high spatial resolution, which was required to disentangle cue and outcome-related neural
759  activity. Pilots using different sequences yielded that this sequence performed best in reducing signal
760  loss in striatum.

761 Furthermore, after task completion, we removed the EEG cap and collected a high-resolution
762  anatomical image using a T1-weighted MP-RAGE sequence (192 sagittal slices per slab, GRAPPA
763 acceleration factor = 2, TI = 1100 ms, TR = 2300 ms, TE = 3.03 ms, FOV 256 mm, voxel size 1.0 mm
764  isotropic, flip angle 8°) which was used to aid image registration, and a gradient fieldmap (GRE; TR =
765 614 ms, TE1 = 4.92 ms, voxel size 2.4 mm isotropic, flip angle 60°) for distortion correction. For one

766  participant, no fieldmap was collected due to time constraints. At the end of each session, an additional

767  DTI data collection took place; results will be reported elsewhere.

768  fMRI preprocessing

769 All fMRI pre-processing was performed in FSL 6.0.0. After cleaning images from non-brain
770  tissue (brain-extraction with BET), we performed motion correction (MC-FLIRT), spatial smoothing
771  (FWHM 3 mm), and used fieldmaps for BO unwarping and distortion correction in orbitofrontal areas.
772 We used ICA-AROMA® to automatically detect and reject independent components associated with
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773 head motion. Finally, images were high-pass filtered at 100 s and pre-whitened. After the first-level
774  GLM analyses, we computed and applied co-registration of EPI images to high-resolution images
775  (linearly with FLIRT using boundary-based registration) and to MNI152 2mm isotropic standard space

776  (non-linearly with FNIRT using 12 DOF and 10 mm warp resolution).

777 ROl selection

778 For fMRI-informed EEG analyses, we first created a functional mask as the conjunction of the
779  PEstp and PEpir contrasts by thresholding both z-maps at z > 3.1, binarizing, and multiplying them (see
780  Supplementary Figures 9 and 10). After visual inspection of the respective clusters, we created seven
781 anatomical masks based on the probabilistic Harvard-Oxford Atlas (thresholded at 10%): striatum and
782  ACC (see above), vimPFC (combined frontal pole, frontal medial cortex, and paracingulate gyrus), motor
783  cortex (combined precentral and postcentral gyrus), PCC (Cingulate Gyrus, posterior division), ITG
784  (Inferior Temporal Gyrus, posterior division, and Inferior Temporal Gyrus, temporooccipital part) and
785  primary visual cortex (Lingual Gyrus, Occipital Fusiform Gyrus, Occipital Pole). We then multiplied
786  this functional mask with each of the seven anatomical masks, returning seven masks focused on the
787  respective significant clusters, which were then used for signal extraction. For the dACC mask, we
788  manually excluded voxels in pgACC belonging to a distinct cluster. Masks were back-transformed to
789  each participant’s native space.

790 For bar plots in Fig. 3A, we multiplied the anatomical masks of vmPFC and striatum specified

791 above with the binarized outcome valence contrast.

792  fMRI analyses

793 For each participant, data were modelled using two event-related GLMs. First, we performed a
794  model-based GLM in which we used trial-by-trial estimates of biased PEs as regressors. Second, we
795  used another model-free GLM in which we modeled all possible action x outcome combinations via
796  outcome-locked categorical regressors while at the same time modeling response-locked left- and right-
797  hand response regressors. This model free GLM also contained the outcome valence contrast reported

798  as an initial manipulation check.
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799 In the model-based GLM, we used two model-based regressors that reflected the trial-by-trial
800  prediction error (PE) update term. The update term was computed by multiplying the prediction-error
801  with the condition-specific learning rate. As described above, in the winning model M5, the learning
802  bias term «x leads to altered learning from “congruent” action-outcome pairs, with faster learning of Go
803  actions followed by rewards, but slower unlearning of NoGo actions followed by punishments. To
804  compute trial-by-trial updates, we extracted the group-level parameters of the best fitting computational
805  model M5 (asymmetric pathways model) and used those parameters to compute the prediction error on
806  every trial for every participant. Using the same parameter for each participant is warranted when testing
807  for the same qualitative learning pattern across participants®®. Given that both standard (base model M1)
808  and biased (winning model MS5) PEs were highly correlated (mean correlation of 0.921 across
809  participants, range 0.884-0.952), it appeared difficult to distinguish standard learning from biased
810  learning. As a remedy, we decomposed the biased PE into the standard PE plus a difference term as
811  PEgas = PEsrp + PEp;r **°°. Any region displaying truly biased learning should significantly encode
812  both the standard PE term and the difference term. The standard PE and difference term were much less
813 correlated (mean correlation of -0.020, range -0.326-0.237). To control for cue-related activation, we
814  furthermore added four regressors spanned by crossing cue valence and performed action (Go response
815  to Win cue, Go response to Avoid cue, NoGo response to Win cue, NoGo response to Avoid cue).

816 The model-free GLM included a separate regressor for each of the eight conditions obtained
817  when crossing performed action (Go/ NoGo) and obtained outcome (reward/ no reward/ no punishment/
818  punishment). We fitted four contrasts: 1) one contrast comparing conditions with positive (reward/ no
819  punishment) and negative (no reward/ punishment) outcomes, used as a quality check to identify regions
820  that encoded outcome valence; 2) one contrast comparing Go vs. NoGo responses at the time of the
821  outcome; 3) one contrast summing of left- and right-hand responses, reflecting Go vs. NoGo responses
822  atthe time of the response; and 4) one contrast subtracting right- from left-handed responses, reflecting
823  lateralized motor activation. As this GLM resulted in empty regressors for several participants when
824  fitted on a block level, making it impossible to use the data of the respective blocks on a higher level,
825  we instead concatenated blocks and performed a single GLM per participant. We therefore registered
826  the data from all blocks to the middle image of the first block (default reference volume in FSL) using
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827  MCEFLIRT. The first and last 20 seconds of each block did not feature any task-related events, such that
828  carry-over effects of task events in the design matrix from one block to another were not possible.

829 In both GLMs, we added four regressors of no interest: one for the motor response (left = +1,
830 right = -1, NoGo = 0), one for error trials, one for outcome onset, and one for trials with invalid motor
831  response (and no outcome respectively). We also added nine or more nuisance regressors: the six
832  realignment parameters from motion correction, mean cerebrospinal fluid (CSF) signal, mean out-of-
833  brain (OBO) signal, and a separate spike regressor for each volume with a relative displacement of more
834  than 2 mm (occurred in 10 participants; in those participants: M = 7.40, range 1-29). For the model-free
835  GLM, nuisance regressors were added separately for each block as well as an overall intercept per block.
836  We convolved task regressors with double-gamma haemodynamic response function (HRF) and high-
837  pass filtered the design matrix at 100 s.

838 First-level contrasts were fit in native space. Afterwards, co-registration and reslicing was
839  applied to participants’ contrast maps, which were then combined on a (participant and) group level
840  using FSL’s mixed effects models tool FLAME with a cluster-forming threshold of z > 3.1 and cluster-

841 level error control at a < .05 (i.e., two one-sided tests with a < .025).

842  EEG data acquisition

843 We recorded EEG data with 64 channels (BrainCap-MR-3-0 64Ch-Standard; Easycap GmbH;
844  Herrsching, Germany; international 10-20 layout, reference electrode at FCz) plus channels for
845  electrocardiogram, heart rate, and respiration (used for MR artifact correction) at a sampling rate of 1000
846  Hz. We placed MRI-compatible EEG amplifiers (BrainAmp MR plus; Brain Products GmbH, Gilching,
847  Germany) behind the MR scanner and attached cables to the participants once they were located in final
848  position in the scanner. Furthermore, we fixated cables using sand-filled pillows to reduce artifacts
849  induced through cable movement in the magnetic field. During functional scans, the MR helium pump
850  was switched off to reduce EEG artifacts. After the scanning, we recorded the exact EEG electrode
851  locations on participants’ heads relative to three fiducial points using a Polhemus FASTRAK device.
852  For four participants, no such data were available due to time constraints/ technical errors, in which case

853  we used the average electrode locations of the remaining 32 participants.
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854  EEG pre-processing

855 First, raw EEG data were cleaned from MR scanner and cardioballistic artifacts using
856  BrainVisionAnalyzer”. The rest of the pre-processing was performed in Fieldtrip®. After rejecting
857  channels with high residual MR noise (mean 4.8 channels per participant, range 1-13), we epoched trials
858 into time windows of -1,400-2,000 ms relative to the onset of outcomes. Timing of this epochs was
859  determined by the minimal inter-stimulus interval beforehand until the minimal inter-trial interval
860  afterwards. Data was re-referenced to the grand average, which allowed us to recover the reference as
861  channel FCz, and then band-pass filtered using a two-pass 4th order Butterworth IIR filter (Fieldtrip
862  default) in the range of 0.5-35 Hz. These filter settings allowed us to distinguish the delta, theta, alpha,
863  and beta band, while filtering out residual high-frequency MR noise. This low-pass filter cut-off was
864  different from a previous analysis of this data in which we set it at 15 Hz!” because, in this analysis, we
865  had a hypothesis on outcome valence encoding in the beta range. We then applied linear baseline
866  correction based on the 200 ms prior to cue onset and used ICA to detect and reject independent
867 components related to eye-blinks, saccades, head motion, and residual MR artifacts (mean number of
868  rejected components per participant: 32.694, range 24-45). Afterwards, we manually rejected trials with
869  residual motion (for all 36 participants: M = 117.722, range 11-499). Based on trial rejection, four
870  participants for which more than 211 (33%) of trials were rejected were excluded from any further
871  analyses (rejected trials after excluding those participants: M = 81.875, range 11-194). Finally, we
872  computed a Laplacian filter with the spherical spline method to remove global noise (using the exact
873  electrode positions recorded with Polhemus FASTRAK), which we also used to interpolate previously
874  rejected channels. This filter attenuates more global signals (e.g., signal from deep sources or global
875 noise) and noise (heart-beat and muscle artifacts) while accentuating more local effects (e.g., superficial

876 sources).

877 EEG TF decomposition

878 We decomposed the trial-by-trial EEG time series into their time-frequency representations using
879 33 Hanning tapers between 1 and 33 Hz in steps of 1 Hz, every 25 ms from -1000 until 1,300 ms relative

880  to outcome onset. We first zero-padded trials to a length of 8 sec. and then performed time-frequency
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881  decomposition in steps of 1 Hz by multiplying the Fourier transform of the trial with the Fourier
882  transform of a Hanning taper of 400 ms width, centered around the time point of interest. This procedure
883  results in an effective resolution of 2.5 Hz (Rayleigh frequency), interpolated in 1 Hz steps, which was
884  more robust to the choice of exact frequency bins. To exclude the possibility of slow drifts in power
885  over the time course of the experiment, we performed baseline correction across participants and trials
886 by fitting a linear model for each channel/ frequency combination with trial number as predictor and the
887  average power 250-50 ms before outcome onset as outcome, and subtracting the power predicted by
888  this model from the data. This procedure is able to remove slow linear drifts in power over time from
889  the data. In absence of such drifts, it is equivalent to correcting all trials by the grand mean across trials
890  per frequency in the selected baseline time window. Afterwards, we averaged power over trials within
891  each condition spanned by performed action (Go/ NoGo) and outcome (reward/ no reward/ no
892  punishment/ punishment). We finally converted the average time-frequency data per condition to decibel

893  to ensure that data across frequencies, time points, electrodes, and participants were on same scale.

894  EEG analyses

895 All analyses were performed on the average signal of a-priori selected channels Fz, FCz, and
896  Cz based on previous literature®!”. We again performed model-free and model-based analyses. For the
897  model-free analyses, we sorted trials based on the performed action (Go/ NoGo) and obtained outcome
898  (reward/ no reward/ no punishment/ punishment) and computed the mean TF power across trials for
899  each of the resultant eight conditions for each participant. We tested whether theta power (average power
900 4-8 Hz) and beta power (average power 13-30 Hz) encoded outcome valence by contrasting positive
901  (reward/ no punishment) and negative (no reward/ punishment) conditions (irrespective of the performed
902  action). We also tested for differences between Go and NoGo responses in the lower alpha band (6-10
903  Hz). For all contrasts, we employed two-sided cluster-based permutation tests in a window from 0-
904 1,000 ms relative to outcome onset. For beta power, results were driven by a cluster that was at the edge
905  of 1,000 ms; to more accurately report the time span during which this cluster exceeded the threshold,
906  we extended the time window to 1,300 ms in this particular analysis. Such tests are able to reject the

907  null hypothesis of exchangeability of two experimental conditions, but they are not suited to precisely
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908 locate clusters in time-frequency space. Hence, interpretations were mostly based on the visual
909 inspection of plots of the signal time courses.

910 For model-based analyses, similar to fMRI analyses, we used the group-level parameters from
911  the best fitting computational model M5 to compute the trial-by-trial biased PE term and decomposed
912  itinto the standard PE term and the difference to the biased PE term. We used both terms as predictors
913  in a multiple linear regression for each channel-time-frequency bin for each participant, and then
914  performed one-sample cluster-based permutation-tests across the resultant b-maps of all participants®.

915  For further details on this procedure, see fMRI-inspired EEG analyses.

916 fMRI-informed EEG analyses

917 The BOLD signal is sluggish. It is thus hard to determine when different brain regions become
918 active. In contrast, EEG provides much higher temporal resolution. A fruitful approach can be to identify
919  distinct EEG correlates of the BOLD signal in different regions, allowing to test hypotheses about the
920  temporal order in which regions might become active and modulated EEG power 774, Furthermore, by
921  using the BOLD signal from different regions in a multiple linear regression, one can control for
922  variance shared among regions (e.g., changes in global signal; variance due to task regressors) and test
923  which region is the best unique predictor of a certain EEG signal. In such an analysis, any correlation
924  between EEG and BOLD signal from a certain region reflects an association above and beyond those
925  induced by task conditions.

926 We used the trial-by-trial BOLD signal in selected regions in a multiple linear regression to predict

927  EEG signal over the scalp'’7* (building on existing code from https://github.com/tuhauser/TAfT; see

928  Supplementary Fig. 17 for a graphical illustration). As a first step, we extracted the volume-by-volume
929  signal (first eigenvariate) from each of the seven regions identified to encode biased PEs (conjunction
930 of PEstp and PEpi: striatum, dACC, pgACC, left motor cortex, PCC, left ITG, and primary visual
931  cortex). We applied a highpass-filter at 128 s and regressed out nuisance regressors (6 realignment
932 parameters, CSF, OOB, single volumes with strong motion, same as in the fMRI GLM). We then
933  upsampled the signal by a factor 10, epoched it into trials of 8 s duration, and fitted a separate HRF

934  (based on the SPM template) to each trial (58 upsampled data points), resulting in trial-by-trial
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935  regression weights reflecting the respective BOLD response. We then combined the regression weights
936  of all trials and regions of a certain participant into a design matrix with trials as rows and the seven
937  ROIs as columns, which we then used to predict power at each time-frequency-channel bin. As further
938  control variables, we added the behavioral PEstp and PEpir regressors to the design matrix. All results
939  were identical with and without the inclusion of PEs as covariates in the regression, suggesting that
940 EEG-fMRI correlations did not merely arise from both modalities encoded PEs as a “common cause”
941 that induced correlations. Instead, these correlations reflected the incremental variance explained in EEG
942  power that was afforded by the BOLD signal even beyond the PEs. All predictors and outcomes were
943  demeaned such that the intercept became zero. Such a multiple linear regression was performed for each
944  participant, resulting in a time-frequency-channel-ROI b-map reflecting the association between trial-
945  by-trial BOLD signal and TF power at each time-frequency-channel bin. B-maps were Fisher-z
946  transformed, which makes the sampling distribution of correlation coefficients approximately normal
947  and allows for combining them across participants. Finally, we tested for fMRI-EEG associations with

948  acluster-based one-sample permutation t-test %

on the mean regression weights over channels Fz, FCz,
949  and Cz across participants in the range of 0—1000 ms, 1-33 Hz. We first obtained a null distribution of
950  maximal cluster mass statistics from 10000 permutations. For each permutation, we flipped the sign of
951  the b-map of arandom subset of participants, computed a separate ¢-test at each time-frequency bin (bins
952  of 25 ms, 1 Hz) across participants (results in -map), thresholded these maps at |t| > 2, and finally
953  computed the maximal cluster mask statistic (sum of all -values) for any cluster (adjacent voxels above
954  threshold). Afterwards, we computed the same ~map for the real data, identified the cluster with the

955  biggest cluster-mass statistic, and computed the corresponding p-value as number of permutations in the

956  null distribution that were larger than the maximal cluster mass statistic in the real data.

957 EEG-informed fMRI analyses

958 For the EEG-informed fMRI analyses, we fit three additional GLMs for which we entered the
959 trial-by-trial theta/ delta power (1-8 Hz), beta power (13-30 Hz), and lower alpha band power (6—10
960  Hz) as parametric regressors on top of the task regressors of the model-free GLM. These measures were

961  created by using the 3-D (time-frequency-channel) -map obtained when contrasting positive vs.
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962 negative outcomes (theta/ delta and beta; Fig. 4 A, B) and Go vs. NoGo conditions (lower alpha band)
963  as a linear filter (Fig. 4; see Supplementary Fig. 18 for a graphical illustration of this approach). Note
964  that these signals were selected based on the EEG-only results and not informed by the fMRI-informed
965  EEG analyses. We enforced strict frequency cut-offs. For lower alpha band and beta, we used midfrontal
966  channels (Fz/ FCz/ Cz). For theta/ delta power, given the topography that reached far beyond midfrontal
967  channels and over the entire frontal scalp, we used a much wider ROI (AF3/ AF4/ AF7/ AF8/ F1/ F2/
968  F3/ F4/ F5/ F6/ Fi1/ F8/ FC1/ FC2/ FC3/ FC4/ FC5/ FC6/ FCz/ Fpl/ Fp2/ Fpz/ Fz). We extracted those
969  maps and retained all voxels with t > 2. These masks were applied to the trial-by-trial time-frequency
970  data to create weighted summary measures of the average power in the identified clusters in each trial.
971  For trials for which EEG data was rejected, we imputed the participant mean value of the respective
972 action (Go/ NoGo) x outcome (reward/ no reward/ no punishment/ punishment) condition. Note that this
973  approach accentuates differences between conditions, which were already captured by the task
974  regressors in the GLM, but decreases trial-by-trial variability within each condition, which is of interest
975  in this analysis. This imputation approach is thus conservative. While trial-by-trial beta and theta power
976  were largely uncorrelated, mean r = 0.104, range -0.118-0.283 across participants, and so were beta and
977  alpha, mean r = 0.097, range -0.162-0.284 across participants, theta and alpha power moderately
978  correlate, mean r = 0.412, range 0.121-0.836 across participants, warranting the use of a separate

979  channel ROI for theta and using separate GLMs for each frequency band.

980  Analyses of behavior as a function of BOLD signal and EEG power

981 We used mixed-effects logistic regression to analyze “stay behavior”, i.e., whether participants
982  repeated an action on the next encounter of the same cue, as a function of BOLD signal and EEG power
983  in selected regions. For analyses featuring BOLD signal, we used the trial-by-trial HRF amplitude also
984  used for fMRI-informed EEG analyses. For analyses featuring EEG, we used the trial-by-trial EEG

985  power also used in the EEG-informed fMRI analyses.
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76 Supplementary Note 1: Behavioral results with only the 29 participants

77 included in EEG-fMRI analyses
78
79 We repeated the behavioral analyses reported in the main text while excluding the seven
80  participants that were also not included in the fMRI-inspired EEG analyses in the main text: (a) two
81  participants due to fMRI co-registration failure, which were also not included in the fMRI-only analyses;
82  (b) four further participants who exhibited excessive residual noise in their EEG data (> 33% rejected
83  trials) and were thus also not included in the EEG-only analyses, and finally (c) one more participant
84  who (together with four other participants already excluded) exhibited regression weights for every
85  regressor about ten times larger than for other participants.
86 Participants in this subgroup learned the task, reflected in a significant main effect of required
87 action on responses, b = 0.896, SE = 0.129, ¢*(1) = 28.398, p < .001, and exhibited motivational biases,
88 reflected in a significant main effect of cue valence on responses, b = 0.439, SE = 0.084, x*(1) = 19.308,
89  p <.001. The interaction between required action and cue valence was not significant, b = 0.025, SE =
90  0.085,%*1)=0.111, p = .739 (Supplementary Fig. 1A-B).
91 Participants in this subgroup also showed biased learning: They were more likely to repeat an
92 action after a positive outcome (main effect of outcome valence: b = .0553, SE = 0.059, ¥*(1) = 40.920,
93  p <.001. After salient outcomes, they adjusted their responses more strongly after feedback on Go than
94  on NoGo responses, in line with our model of biased learning and as reflected in a significant three-way
95 interaction between action, salience, and valence, b = 0.266, SE = 0.055, ¥*(1) = 16.862, p < .001. When
96  only analyzing trials with salient outcomes, outcome valence was more likely to affect response
97 repetition following Go relative to NoGo responses, b = 0.324, SE = 0.079, ¢*(1) = 13.266, p < .001,
98 with a stronger effect of outcome valence after Go responses, b = 1.342, SE = 0.120, y*(1) = 49.003, p
99 =.001, than NoGo responses, b = 0.693, SE = 0.129, ¥*(1) = 18.988, p < .001 (Supplementary Fig. 1C).

100 In this subgroup of participants, Bayesian model selection clearly favored the full asymmetric

101  pathways models featuring response and learning biases (M5, model frequency: 81.81%, protected

102  exceedance probability: 100%; Supplementary Fig. 1D-H). In sum, behavioral results were qualitatively

103  identical when analyzing only this subgroup of only 29 participants.
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122 Supplementary Note 2: Behavioral fMRI results with only the 29

123 participants included in EEG-fMRI analyses

124

125 We repeated the fMRI analyses reported in the main text while excluding the seven participants
126  that were also not included in the fMRI-inspired EEG analyses in the main text: (a) two participants due
127  to fMRI co-registration failure, which were also not included in the fMRI-only analyses; (b) four further
128  participants who exhibited excessive residual noise in their EEG data (> 33% rejected trials) and were
129  thus also not included in the EEG-only analyses, and finally (c) one more participant who (together with
130  four other participants already excluded) exhibited regression weights for every regressor about ten
131  times larger than for other participants.

132 We first repeated the model-free GLM just contrasting positive and negative outcomes. BOLD
133 signal was higher for positive than negative outcomes in five clusters, namely in vmPFC, striatum,
134  amygdala, and hippocampus (zmax = 5.65, p = 2.24e-25, 6110 voxels, MNI coordinates xyz = [6 30 -
135 12]), left superior lateral occipital cortex (zmax = 4.40, p = .00144, 367 voxels, xyz = [-46 -68 46]), right
136  occipital pole (zmax = 4.45, p = .00154, 363 voxels, xyz = [12 -92 -12]), posterior cingulate cortex (Zmax
137 = 4.36, p = .00181, 353 voxels, xyz = [-2 -48 28]), and left middle temporal gyrus (zmax = 4.63, p =
138 .00548, 289 voxels, xyz = [-60 -10 -16]; Supplementary Fig. 2A). The clusters in left sSIOCC, PCC, and
139  left MTG emerged anew compared to the original analysis comprising 34 participants. Also, compared
140  to the original analysis, clusters in left orbitofrontal cortex and left superior frontal gyrus were merged
141 with the cluster in vmPFC. In sum, all clusters from the original analysis were found back, plus some
142  additional clusters.

143 There was also one cluster in right orbitofrontal cortex (zmax = 4.37, p = .0209, 217 voxels, xyz
144  =[30 62 -2]) in which BOLD signal was higher for negative than positive outcomes. Compared to the
145  original analysis comprising 34 participants, clusters in precuneus and right superior frontal gyrus were
146  not significant.

147 In the model-based GLM featuring regressors for standard PEs and the difference term towards
148 biased PEs, BOLD signal correlated with standard PEs in ten clusters, namely in vmPFC, striatum,
149  bilateral amygdala and hippocampus (zmax = 6.04, p = .4.78e-44, 8848 voxels, xyz = [12 14 -6]), left
150  superior frontal gyrus (zmax = 5.58, p = 3.5e-10, 1043 voxels, xyz = [-18 34 52]), left occipital pole and
151  lingual gyrus (Zmax = 6.23, p = 7.18e-10, 998 voxels, xyz = [10 -92 -10]), posterior cingulate cortex (Zmax
152 =5.12, p = 8.57e-10, 987 voxels, xyz = [4 -36 48]), left inferior temporal gyrus (Zmax = 5.03, p =7.07e-
153 09, 859 voxels, xyz = [-52 -46 -10]), right anterior middle temporal gyrus (zZmax = 5.32, p = .000292, 314
154 voxels, xyz = [62 -4 -16]), right cerebellum (zmax = 5.32, p = .002228, 231 voxels, xyz = [44 -72 -40]),
155 left superior lateral occipital cortex (zmax = 4.69, p = .00322, 218 voxels, xyz = [-46 -74 -38]), right
156  caudate (zmax = 4.33, p =.00538, 199 voxels, xyz = [20 12 22]), and right middle temporal gyrus (Zmax =
157  4.09, p = .0129, 189 voxels, xyz = [54 -38 -12] ; Supplementary Fig. 2B). The clusters in left superior
158 lateral occipital cortex, right caudate, and right posterior middle temporal gyrus emerged anew by
159  splitting from larger clusters visible in the original analysis based on 34 participants. Vice versa, the
160  cluster in left middle temporal gyrus reported for the original analysis was merged with a bigger cluster
161  inthe analysis of only 29 participants. The clusters in postcentral gyrus and ACC observed in the original
162  analysis based on 34 participants were not significant anymore; however, they were still visible at a
163  level of z > 3.1 uncorrected.

164 BOLD signal correlated significantly negatively with standard PEs in a single cluster in right
165  superior frontal gyrus (zmax = 5.04, p = .00771, 186 voxels, xyz = [6 26 64]), similar to the respective
166  cluster reported in the original analysis. In contrast, the clusters in right occipital pole, intracalcarine
167  cortex, and left inferior lateral occipital cortex were not significant any more, though visible at a level
168  of z> 3.1 uncorrected.
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169 BOLD signal in six clusters correlated significantly positively with the difference term towards
170  biased PEs, namely in large parts of cortex and subcortex including striatum (zmax = 6-54, p = 0, 29428
171 voxels, xyz = [34 -84 20]), dorsomedial prefrontal cortex (zmax = 5.94, p = 2.69e-40, 7001 voxels, xyz =
172 [6 22 34]), right insula (zmax = 5.76, p = 7.84e-27, 3847 voxels, xyz = [34 20 -8]), thalamus and brainstem
173 (zmax = 5.10, p = 4.06e-18, 2169 voxels, xyz = [4 -30 0]), left caudate (zmax = 4.71, p = .000188, 305
174 voxels, xyz = [-12 8 6]) and another cluster in brainstem (zmax = 4.05, p = .0151, 160 voxels, xyz = [4 -
175 30 -30]). Clusters in dmPFC, right insula, and left caudate split from larger clusters reported in the
176  original analysis. Vice versa, the cluster in left insula reported in the original analysis merged with the
177  largest cluster. The clusters in right middle temporal gyrus and right insula were missing in the analysis
178  of only 29 participants, but visible at a level of z > 3.1 uncorrected.

179 BOLD signal in three clusters correlated significantly negatively with the difference term
180 towards biased PEs, namely in vmPFC (zmax = 4.23, p = .0051, 185 voxels, xyz = [-12 48 -6]), left
181  hippocampus (zmax = 4.58, p = .00857, 168 voxels, xyz = [-26 -14 -22]), and left medial temporal gyrus
182 (zmax = 4.30, p =.0172, 146 voxels, xyz = [-62 -4 -16]). Compared to the original analysis, the cluster in
183  vmPFC emerged anew.

184 When computing the conjunction between both (positive) contrasts, BOLD signal encoded both
185 the standard and the difference in four clusters, namely in vimPFC, bilateral striatum, bilateral ITG, and
186 V1 (Supplementary Fig. 2C). Clusters in ACC, left motor cortex, and PCC were not significant any
187  more (because they were z > 3.1, but not significant after cluster correction in the standard PE contrast).
188  However, new (though rather small) clusters of biased PE encoding emerged in right insula, left
189  amygdala, and left OFC. In sum, results when analyzing only this subgroup of only 29 participants were
190  largely similar to results based on the full sample; however, clusters of biased PE encoding in left motor
191  cortex, ACC, and PCC were small and thus did not survive cluster correction in this subgroup.
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216  Supplementary Note 3: EEG results with only the 29 participants

217 included in EEG-fMRI analyses

218

219 We repeated the EEG analyses reported in the main text while excluding the seven participants
220  that were also not included in the fMRI-inspired EEG analyses in the main text: (a) two participants due
221 to fMRI co-registration failure, which were also not included in the fMRI-only analyses; (b) four further
222 participants who exhibited excessive residual noise in their EEG data (> 33% rejected trials) and were
223 thus also not included in the EEG-only analyses, and finally (c) one more participant who (together with
224 four other participants already excluded) exhibited regression weights for every regressor about ten
225  times larger than for other participants.

226 In participants in this subgroup, both midfrontal theta and beta power reflected outcome valence:
227  Theta power was higher for negative than positive outcomes (driven by a cluster around 225-500 ms, p
228  =.002; Supplementary Fig. 3A, B), while beta power was higher for positive than negative outcomes

229  (driven by a cluster around 325-1000 ms, p = .002; Supplementary Fig. 3A, C). When using PE terms
230  as regressor for midfrontal EEG power while controlling for PE valence, delta power did not encode
231  PEgpp positively, though not significant (p = .056), and also the positive encoding of PEp;r was non-
232 significant (p = .053; Supplementary Fig. 3D-F). The positive correlation of beta power with PEgr, was
233 not significant anymore (p = .059), while the negative correlation with PEp;r remained (p = .001, 450—
234 950 ms). When adding PEsrp and PEp;r together to achieve PEp;,g, theta/delta power indeed
235  significantly encoded PEg; 45, first positively (p = .032, 224475 ms) and then negatively (p =.019, 600

236  —1,000 ms; around 8 Hz and thus rather in the alpha band). Also, beta power was significantly negatively
237  correlated with PEg; 45 (p = .008, 450 — 975 ms).
238 In sum, all findings reported in the main text also held when analyzing only this subgroup of

239  only 29 participants. In addition, also late beta power and theta/alpha power appeared to negatively
240  encode the PEg 4 term.
241
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263 Supplementary Note 4: EEG and fMRI correlates of past action with
264 only the 29 participants included in EEG-fMRI analyses

265 We repeated the behavioral analyses reported in the main text while excluding the seven
266  participants that were also not included in the fMRI-inspired EEG analyses in the main text: (a) two
267  participants due to fMRI co-registration failure, which were also not included in the fMRI-only analyses;
268  (b) four further participants who exhibited excessive residual noise in their EEG data (> 33% rejected
269  trials) and were thus also not included in the EEG-only analyses, and finally (c) one more participant
270  who (together with four other participants already excluded) exhibited regression weights for every
271  regressor about ten times larger than for other participants.

272 Regarding fMRI correlates of the past action, similar to the original analysis comprising 34
273  participants, there were no clusters with higher BOLD after Go than NoGo actions at the time of
274  outcomes, but vice versa, large parts of cortex and subcortex showed higher BOLD after NoGo than Go
275  actions, highly similar to the original analysis (zmax = 7.65, p = 0, 124629 voxels, xyz = [-58 18 22];
276  Supplementary Fig. 4D).

277 Furthermore, there were four clusters with higher BOLD for Go than NoGo actions at the time
278  of the response, namely one large cluster across lateral prefrontal cortex, anterior cingulate cortex,
279 striatum, thalamus, angular gyrus, cerebellum, left operculum and motor cortex, intracalcarine cortex,
280  and occipital pole (Zmax = 7.45, p =0, 61057 voxels, xyz = [32 -4 -4]), one in right middle temporal gyrus
281 (zmax = 4.90, p = 8.66e-05, 493 voxels, xyz = [66 -32 -12]), one in left inferior temporal gyrus (Zmax =
282 4.43, p = .00294, 293 voxels, xyz = [-60 -44 -18]), and one in precuneous (Zmax = 2.39, p = .0041, 276
283  voxels, xyz = [-8 -70 38]; Supplementary Fig. 4C). All these regions were also found in the original
284  analysis comprising 34 participants. Vice versa, BOLD signal was higher NoGo than Go actions at the
285 time of the response in two clusters in vimPFC and subcallosal cortex (zmax = 4.23, p = .00864, 239
286  voxels, xyz = [-2 18 -6]) and right anterior temporal gyrus/ temporal pole (Zmax = .4.14, p = .0193, 201
287  voxels, xyz = [48 -6 -8]), identical to the original analysis comprising 34 participants.

288 Finally, there was higher BOLD signal for left hand compared to right hand responses at the
289  time of response in two clusters in right precentral and postcentral gyrus, superior parietal lobule, and
290  operculum (zmax = 6.66, p = 0, 11597 voxels, xyz = [46 -24 64]) and left cerebellum (zmax = 6.76, p =
291  1.05e-18, 2672 voxels, xyz = [-18 -54 -16]; Supplementary Fig. 4C), identical to the original analysis
292  comprising 34 participants. Vice versa, there was higher BOLD signal for right hand than left hand
293  responses at the time of responses in five clusters in left precentral and postcentral gyrus, superior
294 parietal lobule, operculum, and thalamus (zmax = 6.4, p = 0, 12372 voxels, xyz = [-36 -20 66]), right
295  cerebellum (zZmax = 7.17, p = 3.41e-21, 3206 voxels, xyz = [20 -54 -20]), right superior lateral occipital
296  cortex (zmax = 4.84, p = 2.28e-09, 988 voxels, xyz = [48 -86 -4]), right angular gyrus (zmax = 4.11, p =
297 7.68e-05, 396 voxels, xyz = [66 -50 28]), and left superior lateral occipital cortex (Zmax = 5.03, p =.019,
298 164 voxels, xyz = [-18 -82 48]). The clusters in right occipital pole/ intracalcarine cortex and in right
299  posterior cerebellum observed in the original analysis comprising 34 participants were not observed in
300  this analysis. In sum, all major findings also held when analyzing only this subgroup of only 29
301  participants.

302 Regarding EEG time-frequency correlates of the past action, when testing for differences in
303  broadband after outcome onset, there was no significant difference after Go and NoGo responses, p =
304  .283. When restricting analyses to the low alpha range, the permutation test was marginally significant,

305 p = .056, driven by a cluster around 0-100 ms around 7-10 Hz; Supplementary Fig. 4A, B). When
306  repeating the permutation test for the broadband signal including the last second before outcome onset,
307  there was a significant difference after Go and NoGo responses, driven by clusters in the beta band. p =
308 0.002, -1000 — -275 ms, 13-32 Hz, and in the theta/ low alpha band, p = 0.020, -1000 — -525 ms, 4-10
309 Hz.
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310 Supplementary Note 5: Stay behavior as a function of EEG and fMRI

311 with only the 29 participants included in EEG-fMRI analyses

312

313 We repeated the behavioral analyses reported in the main text while excluding the seven
314  participants that were also not included in the fMRI-inspired EEG analyses in the main text: (a) two
315  participants due to fMRI co-registration failure, which were also not included in the fMRI-only analyses;
316  (b) four further participants who exhibited excessive residual noise in their EEG data (> 33% rejected
317  trials) and were thus also not included in the EEG-only analyses, and finally (c) one more participant
318  who (together with four other participants already excluded) exhibited regression weights for every
319  regressor about ten times larger than for other participants.

320 When linking trial-by-trial BOLD signal in selected ROIs as well as midfrontal EEG TF power
321  to response repetition on the next trial with the same cue, dJACC BOLD signal did not significantly
322 predict the response repetition, b = -0.013, SE = 0.018, ¥*(1) = 0.524, p = .469, and neither did PCC
323 BOLD signal, b = -0.037, SE = 0.018, x*(1) = 2.079, p = .149. However, participants in this subgroup
324  were significantly more likely to repeat the sample action when striatal BOLD signal was high, b =
325 0.097, SE = 0.025, x*(1) = 12.043, p < .001, but more likely to switch when vmPFC BOLD was high, b
326 =-0.075, SE=0.019, (1) = 13.170, p < .001.

327 When linking trial-by-trial midfrontal EEG TF power to response repetition on the next trial
328  with the same cue, participants in this subgroup were more likely to repeat the same response when beta
329  power was high, b =0.124, SE = 0.036, y*(1) = 3.502, p < .001, or when low alpha power was high, b =
330 0.135, SE = 0.044, ¢*(1) = 8.789, p = .003, but more likely to switch to another response when theta
331  power was high, b =-0.090, SE = 0.040, ¥*(1) =4.812, p = .028.
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357  Supplementary Note 6: Parameter recovery analyses for model M5

358

359 We performed parameter recovery analyses to assess the identifiability of the model parameters
360 in the winning “asymmetric pathways” model M5. We simulated 100 new data sets based on the best
361 fitting parameters of each participant, fitted a separate model to each simulated data set (using first
362  Laplace approximation and then hierarchical Bayesian inference), and finally averaged parameters
363  across the 100 fitted models.

364 Parameter recovery was excellent for the feedback sensitivity p (r = .91), the baseline learning
365 rate g (r = .98), the Go bias b (r > .99), and the Pavlovian response bias « (r > .99), with between-
366  participant differences in ground-truth parameters correlating at high levels (all » > .90; Supplementary
367  Fig. 5) with between-participant differences in the recovered parameters. Note that, due to shrinkage to
368 the mean as a consequence of hierarchical Bayesian inference, extreme parameter values tended to be
369  shrunk to the overall group-level mean in the recovered parameters. Correlations for the learning bias
370  parameter k were considerably lower, though still strongly positive (r = 0.50; r = 0.51 when removing
371  one outlier participant; Supplementary Fig. SE). Note however that the effect of « on learning depended
372 on participants’ baseline learning rate €. When computing increased learning rates for rewarded Go
373  actions and decreased learning rates for punished NoGo actions—the parameters that determine the
374  effective degree of trial-by-trial learning—these learning rates were again highly correlated with the
375 ground truth parameters (&rewarded 6o : 7 = 0.96; Epunisned NoGo - ¥ = 0.85 resp. r = 0.86 when removing
376  one outlier participant; Supplementary Fig. SF-G).

377 Further parameter recovery analyses on the models explored in Supplementary Note 8 yielded
378  thatthe recovery of k was improved (r = 0.78) when adding perseveration parameters (which themselves
379  had recovery performances of r’s > 0.99). This observation suggested that models featuring such
380  perseveration parameters might be better suited for quantifying individual differences in the learning
381  bias.

382 In sum, parameter recovery was excellent for all parameters but the learning bias k. More
383  relevant than recovery of k, however, was that we could recover the effective learning rate well
384  (combining baseline learning rate g and the learning bias k). However, when combining the baseline
385  learning rate € and the learning bias «, recovery was high, as well. Note that the ability to accurately
386  capture individual differences in biased learning is not of interest in this study, nor relevant to the
387  imaging analyses. In fact, we used a single set of parameters (the group-level parameters) to compute
388 trial-by-trial regressors for the EEG and fMRI analyses. This is a standard approach in model-based
389  fMRI for two main reasons. First, it has been shown that the exact parameter values for relatively simple
390 RL models like the ones used here have little impact on the results of fMRI analyses '. For the current
391  study, of most relevance is the qualitatively differential pattern of learning updates after Go and NoGo
392  responses >, as embodied by the algorithmic specification of the model. This pattern drives the EEG
393  and fMRI results and indeed, using a different set of parameter values, we obtain essentially identical
394  fMRI results (see Supplementary Note 9 and Supplementary Fig. 8).
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404  Supplementary Note 7: Simulations for asymmetric pathways and

405 action priming model

406

407 Motivational learning biases are predicted by the asymmetric pathways model >°: Positive PEs,
408  elicited by rewards, lead to long-term potentiation in the striatal direct “Go” pathway (and long term
409  depression in the indirect pathway), allowing for a particularly effective acquisition of Go actions to
410  obtain rewards. Conversely, negative PEs, elicited by punishments, lead to long term potentiation in the
411  NoGo pathway, impairing the unlearning of NoGo actions in face of punishments.

412 An alternative account has recently suggested that self-generated (Go) actions lead to
413  preferential learning (relative to non-self-generated actions, including inaction), more generally
414  (henceforth called “action priming model”)’. A self-generated action could “prime” basal ganglia
415  circuits and lead to subsequently larger PEs and thus faster learning. The main differential prediction
416  between these two models is how they account for the failure to learn “Go” actions to avoid punishment:
417 In the first model, this is due to a failure to unlearn punished “NoGo” actions, while in the second model,
418  this is due to increased unlearning of punished “Go” actions.

419 Here, we directly tested both models against each other. We specified an alternative model M6
420 7 with two separate learning rates, one learning rate for trials where self-generated (Go) action selection
421  should prime the processing of any following salient outcome (i.e., Go actions followed by rewards/
422  punishments), and one learning rate for any other action-outcome combination. In this model, equation
423 (6) was substituted by equation (7):

424
G ti ith salient out
425 . {‘ZsalGo for any Go action with salient ou coZle: -
0
426

427  When comparing all models M1-M6 using Bayesian model selection, M5 (the asymmetric pathways
428  model) received highest support (model frequency: 68.15%; protected exceedance probability: 99.70%),
429  also compared to M6 (the action priming model; model frequency: 24.19%; protected exceedance
430  probability: 0.30%; Supplementary Fig. 6D, H). In fact, as visible in Supplementary Fig. 6E-G, the
431  action priming did not reproduce the motivational biases in learning curves and bar plots, which
432  constitutes a case of qualitative model falsification 2. If anything, it seemed that the action priming
433  model traded off both biases, leading to negative response biases for a majority of participants. In
434  contrast, the asymmetric pathways model (M5) was well able to capture the qualitative patterns observed
435  in the data (Supplementary Fig. 6A-C). We conclude that only the asymmetric pathways model is able
436  to qualitatively reproduce core characteristics of our data.
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448 Supplementary Note 8: Behavioral results for the perseveration model
449 (MT7), cue valence-based perseveration model (MS8), and neutral

450 outcomes reinterpretation model (M9)

451

452 While the winning model M5 reported in the main text captured learning curves and the
453  proportion of (correct/ incorrect) Go and NoGo responses well, it did not fully capture the propensity to
454  stay (i.e., repeat the same response to the subsequent presentation of the same cue) following different
455  action-outcome combinations (see Fig. 2G in the main text). Specifically, M5 underestimated the overall
456  propensity to stay and predicted a higher probability of repeating a Go response after a positive (neutral)
457 outcome for Avoid cues, relative to the negative (neutral) outcome for Win cues. In contrast, in the data,
458  there was no such significant difference. We thus explored three extensions of M5 that had the potential
459  to capture this behavioral pattern. Specifically, we considered mechanisms that would make the model
460  more likely to repeat a given response. Furthermore, any such mechanism should boost repetition of Go
461  responses to non-rewarded Win cues particular. We hypothesized that two potential mechanisms could
462  account for these data features, and present three new models to test these mechanisms.

463 As a first mechanism, we considered overall “response stickiness” or “perseveration™, a process
464  that leads participants to repeat a previous response independent of the obtained outcome. This
465  mechanism could explain participants’ overall higher propensity to stay, which we tested in model M7.
466  Model M7, called “single perseveration model”, featured the same parameters as M5 plus a
467  perseveration parameter ¢ that was added as a “bonus” to the action weight w(a;, s;) of the specific
468  action shown on the last occurrence of the respective cue®:

160 wiays,) = {w(ai, Se)+ @ if last action to same cue was q; 8)
w(a;, s¢) else

470

471 In M7 equation 7 in the main manuscript was replaced by equation 8 above, such that parameter

472 ¢ captured the propensity to repeat the action from the last time this cue was presented.

473 However, to account for the fact that staying was not different and numerically even higher for

474  anon-rewarded Go response (to a Win cue), relative to a non-punished Go response to an Avoid cue,
475  we tested whether separate perseveration parameters for Win and Avoid cues could capture this
476  behavioral difference (M8), as such a pattern of results could result from an overall higher propensity to
477  stay for Win cues. This “cue valence-dependent perseveration model” (M8), contained two separate
478  perseveration parameters, one for Win cues ¢y, ;y, and one for Avoid cues @4y 0;p- The respective
479  perseveration parameter was added to the action weight w(a;, s;) of the specific action shown on the
480 last occurrence of respective the cue:

w(a;, s¢) + ewin if Win cue and last action to same cue was a;
481  w(a;, sy) =w(a;, s¢) + avom if Avoid cue and last action to same cue was a; (9)
w(a;, s¢) else
482
483 In M8, equation 7 in the main manuscript was replaced by equation 9 above, such that parameter

484 @y n and @4y0rp captured the propensity to repeat the action from the last time this cue was presented,
485  separately for Win and Avoid cues.

486 As an alternative mechanism that could potentially capture the p(stay) pattern in the data, we
487  considered the possibility that participants might “re-interpret” neutral outcomes in line with the cue
488  valence: although a non-reward after a Win cue constitutes negative feedback, the positive cue valence
489  might “overshadow” this feedback and give participants the impression that they received a reward.
490  Similarly, a non-punishment after an Avoid cue constitutes positive feedback, but the negative cue
491  valence might overshadow this feedback and give participants the impression that they received a
492  punishment.
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493 Following this idea, lastly, we considered M9, called the “neutral outcome reinterpretation
494  model”, which featured a single perseveration parameter ¢ as in equation (8), but in addition replaced
495  neutral outcomes (coded as zero) with what we term the “effective reward” rgpp, which allows the
496  neutral outcome to take on a value in the direction of the cue valence V (s). The degree to which this
497  happens is scaled by the parameter n:

v iFr=0
498  rgpp = {r(S) * if relse (10)

499  We subsequently used rgpp for computing prediction errors. Thus M9 adds equation 10 to model M7.
500 Note that for n = 0, neutral outcomes stay at zero and M9 becomes equivalent to M7.

501 Bayesian model comparison across the winning original model M5 and these three new models
502  yielded highest model evidence for M8, followed by M9 (model frequency: M5: 3%, M7: 0%, M8: 62%,
503  MB9: 35%; protected exceedance probability: M5: 0%, M7: 0% M8: 95%, M9: 5%). All three models
504  performed better than the original winning model M5 (Supplementary Fig. 7, bottom row). Simulations
505  showed that the best fitting model M8 (with separate perseveration rates for Win and Avoid cues) indeed
506  better captured the propensity to stay on neutral trials, though this came at the cost of a general
507  overestimation of staying after punished responses (which hold similarly for M7 and M9; see
508  Supplementary Fig. 7, third row). More importantly, however, this model drastically underestimated the
509  crucial pattern of behavior under study here, namely the propensity of incorrect, bias-driven Go
510  responses to Win cues (see Supplementary Fig. 7, second row, dark green part of bars).

511 In sum, the three additional models provided a better quantitative fit to the data compared to the
512 winning model M5 reported in the main text. Also, these additional models predicted the propensity
513  more accurately than the base models did. However, their qualitative fit (i.e. the ability to capture
514  relevant aspects of the data) was worse: These additional models systematically underestimated the
515  proportion of incorrect Go responses (Supplementary Fig. 7). Furthermore, although the predicted
516  patterns of the propensity to stay matched the data more closely than M5, these predicted patterns still
517  mis-matched some aspects of the data, particularly now over-estimating the tendency to stay following
518 a punishment. Taken together, these models could capture certain qualitative patterns in the data, but
519  not others, which is a core feature of computational modelling, which by definition constitutes a data
520 reduction procedure that necessarily loses some details of the data. In terms of qualitative model
521  validation/ falsification**, M5 and M8/MO9 capture different qualitative features of the data, but no model
522  captured all features well.
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538 Supplementary Note 9: Neural results based on prediction-errors from
539 the cue valence-based perseveration model (M8) and neutral outcomes

540  reinterpretation model (M9)

541

542 To confirm that neural correlates of biased prediction-error updating were not altered under
543  these alternative model specifications, we repeated the model-based fMRI analyses for both the cue
544  valence-dependent perseveration model M8 and the neutral outcomes interpretation model M9. In
545  summary, the results are effectively unchanged, as we present in more detail below.

546 Notably, M8 does not make different predictions about trial-by-trial learning updates; the only
547  difference to M5 consisted in slightly different best fitting parameter estimates for € and k (leading a
548  slightly different BOLD regressors. Neural correlates of learning typically reflect the qualitative learning
549  pattern, which is the same for M5 and M8, but are hardly sensitive to the exact parameter values .
550 Indeed, when repeating the fMRI analyses with those different parameter values, we found almost
551 identical results, with significant encoding of both PEstp and PEpsr in striatum, dACC, pgACC, PCC,
552 left motor cortex, left ITG, and V1 (Supplementary Fig. 8A, B). The only exception was the cluster in
553  dACC, which under M8 was not significant at a whole-brain level, but significant when using small-
554  volume correction with an anatomical ACC mask (from the Harvard-Oxford Atlas), warranted by our
555  a-priori hypotheses based on previous literature’.

556 When we repeated our fMRI analyses with learning updates predicted by M9, we again found
557 significant encoding of both PEstp and PEpir in striatum, dACC, pgACC, PCC, left motor cortex, left
558 ITG, and V1 (Supplementary Fig. 8C). However, the pgACC cluster was much larger and extended into
559  the vmPFC. Similarly, the PCC cluster was much larger. In addition, BOLD signal in left inferior frontal
560  gyrus and in multiple clusters in superior and inferior lateral occipital cortex encoded both PEsrp and
561  PEpr significantly. Using trial-by-trial BOLD signal from the extended vmPFC and PCC clusters
562  identified with M9 regressors to predict midfrontal EEG power, we obtained results that were highly
563  similar to the results for the pgACC and PCC clusters identified with M5 regressors.

564 In sum, model-based fMRI analyses based on PEs derived from M8 and M9 replicated the
565  findings based on M5 reported in the main text. In addition, M9 led to larger clusters in vmPFC and
566  PCC, tentatively suggesting that these regions might potentially contribute to “reinterpreting” neutral
567  outcomes in light of the previously presented cue valence (see also Fig. 2 in the main text).
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ss4  Supplementary Note 10: EEG time-frequency results after ERPs were

sgs  removed

586

587  Given that differences in theta power between positive and negative outcomes as well as differences in
588  lower alpha band power after Go and NoGo responses occurred quite soon after cue onset, we aimed to
589 test whether these effects reflected differences in evoked rather than induced activity. For this purpose,
590 we removed evoked components from our data by computing the ERP for each of the eight conditions
591  (action x outcome) for each participant and then subtracting the condition-specific ERP from the trial-
592  by-trial data '°. Only afterwards, we performed time-frequency decomposition.

593 In line with the results reported in the main text, power was higher for negative compared to
594  positive outcomes in the theta band (p =.018, driven by cluster at 225-475 ms; Supplementary Fig. 11A,
595  B), but higher for positive than negative outcomes in the beta band (p < .001, driven by cluster at 0—
596 1250 ms; Supplementary Fig. 11A, C). Notably, unlike the results reported in the main text (Fig. 4A),
597  the cluster of high power for negative compared to positive outcomes was constrained to the theta range,
598  and did not extend further into the delta range (Supplementary Fig. 11A).

599 When using the trial-by-trial PEs (both the standard PE and the difference term to a biased PE)
600  as predictors in a multiple linear regression at each time-frequency-channel bin while controlling for PE
601  valence, delta power encoded PEsrp positively, though not significantly (p = .198). However, at a later
602  time point around outcome offset, delta (and theta) power in fact correlated negatively with PEgyp (575—
603 800 ms, p = .002; Supplementary Fig. 11E). The correlation between delta and the PEp;r term was still
604  positive, but not significant (p = .228; Supplementary Fig. 11F). Similarly, the correlation of the PEg; 45
605  term with delta power was positive, but not significant (p = .084; Supplementary Fig. 11D).

606 Regarding beta power, there was a positive, though non-significant correlation of beta power
607  with PEgrp (p =.096; Supplementary Fig. 11E). There was again a significantly negative correlation of
608  beta power with PEp;r (425-875 ms, p < .001; Supplementary Fig. 11F). Likewise, beta power
609  correlated significantly negatively with PEg 45 (450-800 ms, p = .018; Supplementary Fig. 11D), driven
610 by the correlation with PEp;p.

611 In sum, after subtracting the condition-wise ERP from each trial before time-frequency
612  decomposition, supposedly removing the phase-locked aspect of power, both beta and theta still encoded
613  PE valence. However, the encoding of PE magnitude by delta power was attenuated and not significant
614  any more.

615 This reduction in magnitude encoding might occur of several reasons. Firstly, it might be that
616  this correlation in the delta range was in fact (partly) reflecting correlations with phase-locked, i.e.,
617  evoked activity (ERPs), especially in the N2 (FPN)/ P3 (RewP) time range (see Supplementary Note 11
618  and Supplementary Fig. 12)''-2°, Nonetheless, a positively correlation between delta power and biased
619  PEs was still visible in Supplementary Fig. 11D, suggesting that at least part of the signal encoding
620  biased PEs was not phase-locked. Secondly, it might be that the removal of the condition-wise ERPs
621  hasintroduced additional noise in the data, attenuating any true correlation. Thirdly, there was a negative
622  correlation between PEgrp and theta/ delta power at later time points which was visible, though not
623  significant in the results reported in the main text (Fig. 4D). Subtraction of an ERP-like template acts
624  like a high-pass filter. High-pass filtering at relatively high cut-offs (> 0.5 Hz) can artificially postpone
625  or induce effects at later points 2!. It is possible that in this case, ERP subtraction attenuated a positive
626  correlation in the theta/ delta range, but enhanced a later negative correlation.

627 Taken together, it is possible that part of the PE magnitude encoding in the theta/ delta range is
628  due to correlations with the phase-locked (ERP) signal. However, this finding did not compromise the
629  conclusion that overall, theta/delta power seemed to be more strongly associated with the PEg; 45 term
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than the PEsyp term. Our primary goal was not to pinpoint the precise nature of electrophysiological
correlates of biased learning, but rather test the relative temporal order of when different regions
exhibiting biased learning signals become active.

Finally, we tested whether after ERP subtraction, low alpha (and beta power) still encoded the
previously performed action. When testing for differences in broadband power after Go and NoGo
responses, power was indeed significantly different between conditions, driven by clusters in beta band
(p =0.002, 0.125-625 ms; p = 0.052, 700-1000 ms, 23-29 Hz) and theta/ low alpha band (p = 0.024,
575-1000 ms, 5-9 Hz; p = 0.056, 0-225 ms, 6-11 Hz). For power before outcome onset, there were
again broadband differences between Go and NoGo (p = 0.002, -1000 — +225 ms, 1-33 Hz), but note
that there was no ERP subtracted before outcome onset. We thus conclude that the differences between
Go and NoGo responses were attributable to differences in induced rather than evoked activity.
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677 Supplementary Note 11: ERPs as a function of action and outcome

678

679 In addition to the induced activity in time-frequency power reported in the main text, we also
680  analyzed the data in the time domain to test for differences in evoked activity. These analyses were
681  particularly motivated given that differences in time-frequency power between positive and negative
682  outcomes (theta/delta range) and after Go and NoGo responses (lower alpha/ theta range) occurred soon
683  after outcome onset, warranting the assumption that differences might also occur in evoked activity. A
684  large range of previous research has reported a modulation of evoked potentials by outcome valence in
685  form of the feedback-reduced negativity '“2%?2, i.e., a stronger N2 component for negative compared to
686  positive outcomes around ~ 250 post-cue over midfrontal electrodes, recently also characterized as
687  rather constituting a reward positivity (RewP) 4. Also, some studies have reported a modulation of the
688  P3 by outcome valence, which has been attributed to outcome magnitude or salience rather than valence
689 17182023

690 Similar to the analysis of time frequency power, we sorted trials into the eight conditions
691  spanned by the performed action (Go/ NoGo) and the obtained outcome (reward/ no reward/ no
692  punishment/ punishment), computed the average ERP for each condition per participant, and tested for
693  differences between positive (reward/ no punishment) and negative (no reward/ punishment) outcomes
694  as well as conditions of relative stronger (rewarded Go and punished Go) vs. relatively weaker learning
695  (rewarded NoGo and punished NoGo). We used cluster-based permutation tests on the average signal
696  over midfrontal electrodes (Fz/ FCz/ Cz) in the time range of 0-700 ms after outcome onset (where
697  evoked potentials visible in condition-averaged plot).

698 First, midfrontal ERPs were significantly different between positive and negative outcomes,
699  driven by two separate clusters of differences above threshold (Cluster 1: around 246 — 294 ms, p =
700 .034; Cluster 2: around 344 — 414 ms, p =.004; Supplementary Fig. 12A, C). The first cluster the classical
701  feedback-related negativity, i.e., a stronger N2 component for negative compared to positive outcomes.
702  The second cluster reflected weaker P3 component for negative compared to positive outcomes, similar
703  the reward positivity reported before. In fact, the N3 was rather absent for negative outcomes
704  (Supplementary Fig. 13). Both effects were clearly focused on midfrontal electrodes. These findings
705  replicate previous findings of outcome valence modulating N2 (feedback-related negativity) and P3
706  components, and complement our time-frequency findings of theta and beta power reflecting outcome
707  valence.

708 Second, when contrasting trials with Go vs. NoGo responses, no significant difference was
709  observed (p =.358; Supplementary Fig. 12D). Visual inspection of the topoplot yielded that, if anything,
710  differences emerged over right occipital electrodes. If one performed a test over those right occipital
711  electrodes (02, 04, PO4; Supplementary Fig. 12F; note that this procedure constitutes double-dipping
712 because the test was informed by first looking at the data), this test would have yielded significant results
713 (p = .016) driven by cluster around 423-466 ms, reflecting a slightly larger P3 after Go than NoGo
714  responses (Supplementary Fig. 12E). This finding appears to be the strongest (if any) difference in
715  amplitude after outcome onset between Go and NoGo actions. Given that this difference was not
716  hypothesized and occurred far away from our a-priori selected channels of interest, we are careful not
717  to over-interpret those differences.

718 Third, contrasting trials with positive and negative at the same right occipital electrodes yielded
719 a significant difference, driven by clusters around 46103 ms (p = 0.034), 141-255 ms (p = .002), and
720 519 — 580 ms (p = .034). Most notably, the P1 amplitude was much larger for positive than negative
721  outcomes (Supplementary Fig. 12B). However, given that these differences were not hypothesized and
722 occurred far away from our a-priori selected channels of interest, we are careful not to over-interpret
723  those differences.
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Taken together, we found a bigger midfrontal N2/ FRN for negative compared to positive
outcomes, and a bigger midfrontal P3/ RewP for positive compared to negative outcomes, in line with
a vast literature of previous findings “2%2223, Midfrontal voltage did not significantly differ after Go or
NoGo responses. If anything, differences after Go and NoGo responses were maximal over right
occipital electrodes, with a larger P3 after Go than after NoGo responses. Signal at these channels also
differed between positive and negative outcomes, most notably with a bigger P1 after positive than
negative outcomes. In sum, we replicate classical reward learning ERP effects, which shows that the
motivational Go/NoGo learning task taps into reward learning processes reported before, but these
processes appeared to be unaffected by the previously performed action.
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771 Supplementary Note 12: Model-based EEG analyses in the time domain
772

773 In addition to testing whether midfrontal time-frequency power reflected signatures of biased
774  learning (see main text), we also tested whether the midfrontal time domain signal reflected biased
775  learning. Again, we used the standard PE term and the difference term to biased PEs as regressors in a
776  multiple linear regression on each channel-time bin.

777 Focusing on midfrontal electrodes, and controlling for outcomes valence, first, the PE¢yp, term
778  was negatively correlated with midfrontal voltage around 529-575 ms (p = .039; Supplementary Fig.
779  14B). Note that so late after outcome onset, signal was not part of any “classical” ERP component any
780  more. Second, the PEp;r correlated negatively with midfrontal voltage around 123-166 ms (p = .029)
781  in the time range of the N1 and later positively around 365—443 ms (p < .001; Supplementary Fig. 14C)
782  in the time range of the P3/ RewP. Third, a similar pattern of correlations occurred for the PEg;45 term
783 (Cluster 1: negative, 111-184 ms, p = .004; Cluster 2: positive, 346—449 ms, p < .001; Supplementary
784  Fig. 14A). Fourth, around these same time windows, midfrontal voltage also encoded outcome valence
785 itself, but with opposite sign (Cluster 1: positive, 99—184 ms, p < .001; Cluster 2: negative, 308—448 ms,
786  p <.001; see Supplementary Note 11 and Supplementary Fig. 12A).

787 In sum, similar to analyses of midfrontal power reported in the main text, PE sign and magnitude
788  were encoded in midfrontal voltage around the same time, but with opposite polarity: Signal around the
789  time of the N1 encoded PE sign positively, but PE magnitude negatively. Vice versa, signal around the
790  time of the P3/ RewP encoded PE sign negatively, but PE magnitude positively. The same phenomenon
791  of separate valence and magnitude encoding in midfrontal EEG signal has been reported before '>!319,
792  Notably, magnitude encoding in midfrontal voltage emerged for the PEg;4s term, but not the PEgrp,
793  indicating that this correlation was driven by the PEp;r term and that biased learning described
794  midfrontal voltage better than standard learning. These results complement our findings of theta/delta
795  power encoding outcome valence and magnitude with opposite polarities (see main text).
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818  Supplementary Note 13: fMRI-informed EEG results in time-frequency

819 Space

820

821 Besides the results for striatum, ACC, and PCC reported in the main text, there were also
822  significant EEG correlates over midfrontal electrodes for trial-by-trial BOLD signal from left motor
823  cortex (p = .002, around 0—625 ms, 16-27 Hz; Supplementary Fig. 17A). There were however no
824  significant EEG correlates over midfrontal electrodes for BOLD signal from pgACC (p = .174; Fig.
825  Supplementary Fig. 17B), left inferior temporal gyrus (p = .097; Supplementary Fig. 17C), and primary
826  visual cortex (p = .170; Supplementary Fig. 17D).

827 As quality checks, we checked whether visual cortex BOLD correlated negatively with alpha
828  over occipital electrodes **?* and whether motor cortex BOLD correlated negatively with beta power
829  over central electrodes 2?7, Both was the case (see Supplementary Fig. 17E, F), showing that our data
830  was of sufficient quality to detect these well-established associations.
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865  Supplementary Note 14: fMRI-informed EEG results in the time

g6 domain

867

868 For fMRI-inspired analysis of the EEG signal in the time domain (voltage), we applied the same
869  approach as reported in main text, but with voltage signal (time-domain) instead of time-frequency
870  power as dependent variable. As independent variables, we entered the trial-by-trial BOLD signal from
871  all seven regions encoding biased PEs plus the trial-by-trial standard PE and the different term towards
872  the biased PE (exact same procedure as for EEG TF analyses), all in one single multiple linear
873  regression. On a group-level, we again focused on the mean signal over midfrontal electrodes (Fz/ FCz/
874  Cz)in a time range of 0—700 ms, for which ERPs had been visible in the condition-averaged plots (see
875  Supplementary Note 11 and Supplementary Fig. 12 and 13).

876 First, trial-by-trial striatal BOLD correlated significantly with midfrontal voltage at two time
877  points, namely positively around 152-196 ms (p = .017) in the time range of the N1 and again negatively
878  around 316-383 ms (p < .001, Supplementary Fig. 18A) in the time range of the N2/ FRN and P3/RewP.
879  Second, trial-by-trial pgACC BOLD correlated significantly positively with midfrontal voltage around
880  347-412 ms (p = .006, Supplementary Fig. 18A) in the time range of the N2/ FRN and P3/RewP. Third,
881  trial-by-trial BOLD from primary visual cortex correlated significantly positively with midfrontal
882  voltage around 307-367 ms (p = .011, Supplementary Fig. 18B), overlapping with (but slightly earlier
883  than) correlations from pgACC BOLD, i.e., in the time range of the N2/ FRN and P3/RewP. For
884  midfrontal voltage split up per high vs. low BOLD signal (revealing which ERP components were
885  respectively modulated), see Supplementary Fig. 18C-E. There were no significantly correlations
886  between midfrontal voltage and trial-by-trial BOLD from dACC (p = .927, Supplementary Fig. 18A),
887  left motor cortex (p = .649, Supplementary Fig. 18B), PCC (p = .796, Supplementary Fig. 18A), or left
888 inferior temporal gyrus (p = .649, Supplementary Fig. 18B). For further details on BOLD-EEG voltage
889  correlations in the time domain, see Supplementary Fig. 18F-L.

890 Taken together, trial-by-trial BOLD signal in striatum, pgACC, and V1 all correlated with FRN/
891  RewP amplitude, which was the dominant phenomenon over midfrontal electrodes reflecting outcome
892  valence (see Supplementary Note 11 and Supplementary Fig. 12, 13). Notably, correlations with striatal
893  and pgACC BOLD were of opposite signs, which aligns with the finding that striatal and pgACC BOLD
894  predicted opposite behavioral tendencies on future trials (see main text; see Supplementary Fig. 20).
895  However, crucially, the time domain signal did not allow for a temporal dissociation of these different
896  regions. Possibly, the midfrontal evoked signal (i.e., the part of the signal that was phase-locked to
897  outcome onset) was so stereotyped that only the FRN/ RewP complex showed enough variation across
898 trials to allow for substantial correlations with trial-by-trial BOLD signal. This finding demonstrates
899  that the time-frequency domain signal (i.e., the part of the signal that is not necessarily phase-locked to
900 outcome onset) might be more suited for dissociating the activity of different regions in time.
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912  Supplementary Note 15: Go/NoGo differences over time in BOLD

913  signal, choices, alpha, and beta power

914

915 We observed differences between trials with Go responses and trials with NoGo responses in
916  the low alpha power before and shortly after outcome onset (Fig. 6A, B main text). Alpha typically
917  increases over the time course of an experiment, potentially related to fatigue and decreasing arousal 2.
918  If the ratio of Go and NoGo responses changed over time, as well, such an increase over time could
919  spuriously lead to a difference between Go and NoGo responses (though note that this ratio did not
920 noticeably change over time; Supplementary Fig. 19D). To exclude this possibility, we extracted trial-
921  by-trial time-frequency power from the three significant clusters report in the main text in which power
922  differed between Go and NoGo responses: i) lower alpha band power after outcome onset, ii) lower
923  alphaband power before and after outcome onset, iii) beta band power before outcome onset. We log10-
924  transformed this data to decibel and analyzed it as a function of the performed response (factor), block
925 number (1-6; z-standardized), and the interaction between both. We reasoned that if power differences
926  occurred merely due to fatigue effects, the main effect of performed response should not be significant
927  when accounting for time on task (i.e., block number).

928 For lower alpha band power after outcome onset, there was a significant main effect of
929 performed response, b = 0.035, SE = 0.015, x*(1) = 5.350, p = .021, with higher power for Go than NoGo
930 responses, a significant main effect of block number with lower alpha band power increasing over time,
931 b = 0.052, SE = 0.019, ¢*(1) = 6.645, p = .010, but no significant interaction, b = 0.003, SE = 0.008,
932  ¥*(1)=0.156, p = .693. As Supplementary Fig. 19A reveals, lower alpha band power was consistently
933  higher after Go than after NoGo responses for every block of the task, suggesting that differences in
934  lower alpha band power were not merely due to time on task.

935 For lower alpha band power before and after outcome onset, as well, there was a significant
936  main effect of performed response, b = 0.068, SE = 0.030, x*(1) = 5.010, p = .025, with higher power
937  after Go than NoGo responses, a significant main effect of block number with lower alpha band power
938 increasing over time, b = 0.072, SE = 0.029, ¥*(1) = 6.757, p = .016, but no significant interaction, b =
939  0.010, SE =0.009, y*(1) = 1.184, p = .277 (Supplementary Fig. 19B), leading to identical conclusions.
940 For beta band power before and after outcome onset, there was a significant main effect of
941 performed response, b = 0.083, SE = 0.032, x*(1) = 6.301, p = .012, with higher power after Go than
942  NoGo responses, a significant main effect of block number with beta power decreasing over time, b = -
943 0.042, SE = 0.021, x*(1) = 4.007, p = .045, but no significant interaction, b = 0.001, SE = 0.007, ¥*(1) =
944  0.030, p = .864 (Supplementary Fig. 19C). In sum, even in presence of changes in power over the time
945  course of the task, lower alpha band and beta band power were consistently higher after Go responses
946  than after NoGo responses, suggesting that these effects were not due to time on task.

947 Furthermore, we asked whether differences in dACC BOLD between trials with Go and trials
948  with NoGo response at the time of the outcome were due to outcome-related activity or might rather the
949  reflect action on the next trial. We thus plotted the “raw” BOLD signal per action x outcome condition.
950  We used the first eigenvariate of the BOLD in signal in the dACC cluster that reflected biased learning,
951  upsampled the BOLD signal, epoched it into trials relative to outcome onset (same procedure as for
952  fMRI-informed EEG analyses), and averaged the signal across trials and participants separately per
953  performed action (Go/NoGo) and outcome valence (positive/ negative). This plot yielded higher dACC
954  BOLD signal on trials with NoGo responses than on trials with Go responses at the time of outcomes
955  (Supplementary Fig. 19E). However, this difference could potentially be driven by the response on the
956  following task. Hence, we further split the data according to whether the action on the following trial
957  was a Go or a NoGo response. Irrespective of the action on the following trial, JACC BOLD signal was
958  higher when the action on the current trial was a NoGo response compared to a Go response
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(Supplementary Fig. 20F). In sum, these analyses corroborate that dACC BOLD signal was indeed
higher after NoGo than Go responses at the time of outcomes.
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1006 Supplementary Figure 1: Behavioral results with only the 29
1007 participants included in EEG-fMRI analyses
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Supplementary Figure 1. Behavioral performance in the subgroup of 29 participants included in the fMRI-inspired EEG analyses. A. Trial-
by-trial proportion of Go responses (+SEM across participants) for Go cues (solid lines) and NoGo cues (dashed lines). The motivational
bias was already present from very early trials onwards, as participants made more Go responses to Win than Avoid cues (i.e., green lines
are above red lines). Additionally, participants clearly learn whether to make a Go response or not (proportion of Go responses increases
for Go cues and decreases for NoGo cues). B. Mean (+SEM across participants) proportion Go responses per cue condition (points are
individual participants’ means). C. Probability of repeating a response (“‘stay”) on the next encounter of the same cue as a function of action
and outcome. Learning was reflected in higher probability of staying after positive outcomes than after negative outcomes (main effect of
outcome valence). Biased learning was evident in learning from salient outcomes, where this valence effect was stronger after Go responses
than NoGo responses. Dashed line indicates chance level choice (psay = 0.33). D. Log-model evidence favors the asymmetric pathways
model (M5 over simpler models (M1-M4). E-G. Trial-by-trial proportion of Go responses, mean proportion Go responses, and probability
of staying based on one-step-ahead predictions using parameters (hierarchical Bayesian inference) of the winning model (asymmetric
pathways model, M5). H. Model frequency and protected exceedance probability indicate best fit for model M5 (asymmetric pathways
model), in line with log model evidence.
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1025 Supplementary Figure 2: fMRI results with only the 29 participants
1026 included in EEG-fMRI analyses
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Supplementary Figure 2. BOLD signal reflecting outcome processing in the subgroup of 29 participants included in the fMRI-inspired EEG
analyses. A. BOLD signal was higher for positive outcomes (rewards, no punishments) compared with negative outcomes (no rewards,
punishments) in a range of regions including bilateral ventral striatum and vmPFC. BOLD effects displayed using a dual-coding data
visualization approach with color indicating the parameter estimates and opacity the associated z-statistics. Significant clusters are surrounded
by black edges. Bar plots show parameter estimates per action x outcome condition (+SEM across participants) B. When using the trial-by-
trial PEs participants experienced as model-based regressors in our GLM, positive PE correlations occurred in several regions including
importantly the ventral striatum, vmPFC, dACC, and PCC. C. Left panel: Regions encoding both the standard PE term and the difference term
to biased PEs (conjunction) at different cluster-forming thresholds (color). Clusters significant at a threshold of z > 3.1 are surrounded by black
edges. In bilateral striatum, pgACC, bilateral ITG, and primary visual cortex, BOLD was significantly better explained by biased learning than
by standard learning. Clusters in dACC, left motor cortex, and PCC were not significant any more.
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1038 Supplementary Figure 3: EEG results with only the 29 participants
1039 included in EEG-fMRI analyses
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Supplementary Figure 3. EEG time-frequency power midfrontal electrodes (Fz/ FC%/ Cz) reflecting outcomes processing in the subgroup
of 29 participants included in the fMRI-inspired EEG analyses. A. Time-frequency plot (logarithmic y-axis) displaying high theta (4-8
Hz) power for negative outcomes and higher beta power (1632 Hz) for positive outcomes. B. Theta power transiently increases for any
outcome, but more so for negative outcomes (especially punishments) around 225-475 ms after feedback onset. C. Beta was higher for
positive than negative outcomes (especially punishments) over a long time period around 300-1,250 ms after feedback onset. D-F.
Correlations between midfrontal EEG power and trial-by-trial PEs. Solid black lines indicate clusters above threshold. Biased PEs were
significantly positively correlated with midfrontal theta power, but also negatively correlated with later alpha and beta power (D). The
correlations of theta with the standard PEs (E) and the difference term to biased PEs (F) were also positive, though not significant. Beta
power only encoded the difference term to biased PEs (F). ** p < 0.01.%* p < 0.01.
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1061 Supplementary Figure 4: EEG and fMRI correlates of past action with

1062 only the 29 participants included in EEG-fMRI analyses
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Supplementary Figure 4. Exploratory follow-up analyses on dACC BOLD signal and midfrontal low-alpha power in the subgroup of 29
participants included in the fMRI-inspired EEG analyses. A. Midfrontal time-frequency response-locked (left panel) and outcome-locked
(right panel). Before and shortly after outcome onset, power in the lower alpha band was higher on trials with Go actions than on trials with
NoGo actions. The shape of this difference resembles the shape of dACC BOLD-EEG TF correlations (small plot; note that this plot depicts
BOLD-EEG correlations, which were negative). Note that differences between Go and NoGo trials occurred already before outcome onset
in the alpha and beta range, reminiscent of delay activity; but were not fully sustained since the actual response. B. Midfrontal power in the
lower alpha band per action x outcome condition. Lower alpha band power was consistently higher on trials with Go actions than on trials
with NoGo actions, starting already before outcome onset. C. BOLD signal differences between Go and NoGo actions (activation by either
left or right Go actions compared to the implicit baseline in the GLM, which contains the NoGo actions; left panel) and left vs. right hand
responses (right panel) at the time or responses. Response-locked dACC BOLD was significantly higher for Go than NoGo actions. D.
BOLD signal differences between Go and NoGo actions at the time of outcomes. Outcome-locked dACC BOLD signal (and BOLD signal
in other parts of cortex) was significantly lower on trials with Go than on trials with NoGo actions.
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1081 Supplementary Figure 5: Parameter recovery analyses for model M5
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Supplementary Figure 5. Parameter recovery results for the asymmetric pathways (M5) model. The feedback sensitivity parameter p (A),
the baseline learning rate €, (B), the Go bias b (C), and the Pavlovian response bias @ (D) all showed excellent parameter recovery, i.e.,
between-participants correlations of ground-truth and fitted parameters all exceeded r > 0.90. Parameters p and &, are still in sampling space
and thus untransformed (which means they can be negative). Dashed lines represent the identity line; red solid lines represent a linear
regression line of fitted parameters regressed onto true parameters. Only recovery of the learning bias parameter k (E) was not quite as
good, though the correlation between ground-truth and fitted parameters was still strongly positive (r > 0.50). Note an outlier at the bottom
left of k values; the regression line was fitted without this data point. When combining the baseline learning rate g with the learning bias «
to compute the biased learning rates for rewarded Go actions &wardea Go () and punished NoGo actions €punished NoGo (G), correlations between
ground-truth and fitted parameter values were considerably higher (’s > 0.86). Note again an outlier at the top right of for &uunished NoGo
values; the regression line was fitted without this data point.
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1102 Supplementary Figure 6: Simulations for asymmetric pathways and
1103  action priming model
1104
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Supplementary Figure 6. Model comparison and validation of asymmetric pathways (M5) and action priming (M6) model. (A-C) One-step-
ahead predictions using parameters (hierarchical Bayesian inference) of the winning model asymmetric pathways model (MS5). A. Trial-by-
trial proportion of Go responses (+SEM across participants) for Go cues (solid lines) and NoGo cues (dashed lines); B. Mean (+SEM across
participants) proportion Go responses per cue condition (points are individual participants’ means); C. Probability of repeating a response
(“stay”) on the next encounter of the same cue as a function of action and outcome. The asymmetric pathways model was well able to
capture core characteristics of the empirical data (see Fig. 2 in the main text). D. Log-model evidence favors the asymmetric pathways
model (M5), even over the action priming model (M6). E-G. Trial-by-trial proportion of Go responses, mean proportion Go responses, and
probability of for the action priming model (M6). This model did not reproduce motivational biases (i.e., the difference between green and
red lines and bars) well. H. Model frequency and protected exceedance probability indicate best fit for model M5 (asymmetric pathways
model), in line with log model evidence.
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Supplementary Figure 7: Behavioral results from the perseveration
model (M7), cue valence-based perseveration model (M8), and neutral
outcomes reinterpretation model (M9)
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Supplementary Figure 7. Model comparison and validation of the single perseveration (M7), dual perseveration (M8) and cue valence-based
outcome reinterpretation models. First row. Trial-by-trial proportion of Go responses (+SEM across participants) for Go cues (solid lines) and
NoGo cues (dashed lines). Second row. Mean (+SEM across participants) proportion Go responses per cue condition (points are individual
participants’ means). Third row. Probability to repeat a response (“stay”) on the next encounter of the same cue as a function of action and
outcome. Fourth row. Log-model evidence, model frequency, and protected exceedance probability all favored the dual perseveration model
(MS8) over the other models. In sum, the additional models M7-9 provided a better quantitative fit to the data compared to the asymmetric
pathways model M5 reported in the main text. They also predicted the propensity of staying overall more accurately than M5. However, these
additional models all overestimated the proportion of incorrect Go responses. Furthermore, although the predicted patterns of the propensity
of staying mimicked the data more closely than M5, these predicted patterns still mismatched some aspects of the empirical data. Taken
together, these models could capture certain qualitative patterns in the data, but not others, which was expectable given the data reduction that
comes with fitting a learning model with few parameters only.
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1141 Supplementary Figure 8: Neural results based on prediction-errors from
1142 cue valence-based perseveration model (M8) and neutral outcomes
1143 reinterpretation model (M9)

1144
A. Asymmetric pathways model M5:
Conjunction PEgp and PEp:
B. Cue valence-dependent perseveration model M8: C. Neutral outcomes reinterpretation model M9:
Conjunction PEgp and PEp e Conjunction PEgrp and PEg
3
Cluster-forming threshold (z)

Supplementary Figure 8. BOLD correlates of biased prediction errors as predicted by the asymmetric pathways model (M5), the cue
valence-dependent perseveration model (MS8) and the neutral outcomes reinterpretation model (M9). (A) Regions encoding both the
standard PE term and the difference term to biased PEs (conjunction) as predicted from the asymmetric pathways model (M5) at different
cluster-forming thresholds (1 < z < 5, color coding; opacity constant; replotted from Fig. 3C main text). Clusters significant at a threshold
of z > 3.1 are surrounded by black edges. This is a version of Fig. 3C reprinted with a color scheme consistent with the other two panels.
(B) Regions encoding both the standard PE term and the difference term to biased PEs (conjunction) as predicted from the cue valence-
dependent perseveration model (M8) at different cluster-forming thresholds (1 <z < 5, color coding; opacity constant). Clusters significant
at a threshold of z > 3.1 are surrounded by black edges. In line with correlates of biased PEs as predicted by M5, BOLD signal in bilateral
striatum, dACC (small-volume corrected), pgACC, PCC, left motor cortex, left inferior temporal gyrus, and primary visual cortex was
significantly better explained by biased learning than by standard learning. This finding was not surprising given that adding perseveration
to the model did not change the learning mechanism, but only led to slightly different best fitting parameter values. (B) Regions encoding
both the standard PE term and the difference term to biased PEs (conjunction) as predicted from the neutral outcomes reinterpretation model
(M9). In addition to the regions in which BOLD signal was significantly better explained by biased than standard PEs as derived from M5
and M8, biased PEs derived from M9 also explained BOLD signal in vmPFC (larger cluster than MS5), PCC (larger cluster than M5), left
inferior frontal gyrus and multiple clusters in superior and inferior lateral occipital cortex significantly better than standard PEs. These
results tentatively suggested that vmPFC, PCC, and these other occipital regions might implement an additional mechanism besides biased
learning which encodes the cue valence also at the time of the outcome, biasing the processing of neutral outcomes.
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1157 Supplementary Figure 9: Illustration of biased and standard learning

1158 for a representative example participant
1159

A. PEgpp [black) and PEg, {color) over time B. PE¢pp (black) and PE (color) over time

Go responses to Win cues Go responses to Avoid cues Go responses to Win cues Go responses to Avoid cues
3 3

b gy
go P .‘9 ot
I

LS ST NV

Lo
.. o

£
z
i

@
£

(5] SRR . I, Ly T [1)] Sy el re s B s

5
?.
%

~
)
*
°
®

.
-

W R o RN W
x

Prediction error term
Prediction error term
W R o R N W

50 100 150 50 100 150 200 50 100 150

NoGo responses to Win cues NoGo responses to Avoid cues NoGo responses to Win cues NoGo responses to Avoid cues
3 3

B o ey 2 ° .L bt 3
B e e -

Yeadeany Mgy

L
.

o = N
-

Y\ Mg

Prediction error term
Prediction error term
‘ i

L

1

1

1

'

1

1

'

1

|

|

1

'

'

1

1

'
WoNoR o R N W

g

e
@
@
.
f
S
o
.
%
.
g
.
"
oy
b
* .
.
e
&
-
.

.
L] -
" o

20 40 60 80 100 50 100 150 20 40 60 80 100 50 100 150
Trial number Trial number Trial number Trial number

Supplementary Figure 9. Illustration of biased and standard learning for a representative example participant. (A) Prediction errors
according to the standard Q-learning model M1 (PEgzp; black dots) and according to the winning model M5 implementing biased learning
(PEpus; colored dots). In M5, motivational biases partially arise through biased learning: Participants learn more readily that an action has
caused a reward, and are reluctant to learn that inaction has led to a punishment. For each cue, the values of each of the three possible
actions (Gopgrr, Gorigur, NoGo) are learnt independently, and prediction errors are calculated relative to the value of the chosen action.
The learning bias acts such that the effective learning rate is increased when a reward follows any Go response, and decreased when a
punishment follows a NoGo response (see equation 5 in the main manuscript). Hence, for Win cues, action values for Go responses (but
not NoGo responses) will be affected by the learning bias and approach the positive asymptote more quickly compared to standard learning,
leading to faster decay of positive prediction errors. At the same time, negative outcomes will remain surprising and elicit larger prediction
errors compared to standard learning. Hence, model predictions diverge for prediction errors after Go responses to Win cues, but not after
NoGo responses to Win cues (colored dots are on top of black dots). Vice versa, for Avoid cues, action values for NoGo responses (but not
Go responses) are affected by the learning bias and approach the negative asymptote more slowly compared to standard learning (with
negative prediction errors remaining high) as participants are reluctant to take punishments after NoGo responses into account. At the same
time, ignoring punishments leads to a faster approach of positive action values to the positive asymptote (and a faster decay of positive
prediction errors) compared to standard learning. Model predictions diverge for prediction errors after NoGo responses to Avoid cues, but
not after Go responses to Avoid cues (colored dots are on top of black dots). (B) To assess evidence for biased learning despite this high
multicollinearity, we decomposed PEgssinto PEsyy (black dots) plus a difference term PEpyr = PEgas— PEsp (colored dots). Note that
PEpris always zero after NoGo responses to Win cues and Go responses to Avoid cues as both M1 and M5 make identical predictions for
these action values. In contrast, for Go responses to Win cues and NoGo responses to Avoid cues, the PEpr term is always negative because,
in both cases, positive action values approach the positive asymptote more quickly (such that positive prediction errors decay more quickly)
compared to standard learning, and negative action values approach the negatively asymptote more slowly (and thus negative prediction
errors remain high) compared to standard learning.
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1172 Supplementary Figure 10: Illustration of prediction error regressor
1173 decomposition
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Supplementary Figure 10. Illustration of prediction error regressor decomposition for a representative example participant. (A) Prediction
errors according to the standard Q-learning model M1 (PEsp; larger red dots) and according to the winning model M5 implementing biased
learning with more learning from rewarded Go responses and less learning from punished NoGo responses (PEgss; smaller blue dots; blue
dots with a red edge reflect trials on which both models make identical predictions). Both prediction error types have a highly similar
profile. The key difference between them is an overall downwards shift of PEg;ys compared to PEsyp, with positive PEg4s approaching zero
more quickly than positive PEszp, while negative PEg;ss remain more negative compared to negative PEszp. Note that, after trial 320, session
2 starts (vertical dashed line), featuring new cues. (B) The prediction errors from both models are highly correlated (mean across
participants: r = 0.99, range 0.96-0.99), implicating that, when entered together into a multiple linear regression, both regressors would
share most of their variance, which would be attributed to neither of them. (C) To assess evidence for biased learning despite this high
multicollinearity, we decomposed PEgjsinto PEgsp plus a difference term PEp;r = PEpus— PEstp. PEsrp and PEp;r show markedly different
profiles, with PEp;r being zero for trials on which both PEsr, and PEg4s make identical predictions, and being negative otherwise (reflecting
the relatively faster decay of positive PEgias and slower decay of negative PEgys). (D) Both PEsrp and PEp,r are much less correlated (mean
across participants: r = -0.02, range -0.07-0.09), making it possible to enter them in the same multiple linear regression and test whether
PEpr predicts variance in BOLD signal above and beyond PEsrp.
1175
1176
1177
1178
1179
1180
1181
1182
1183

1184


https://doi.org/10.1101/2021.10.03.462927
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.03.462927; this version posted July 28, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

SUPPLEMENTALS PREFRONTAL SIGNALS PRECEED STRIATAL SIGNALS
33

1185  Supplementary Figure 11: Conjunctions of anatomical and functional

1186 masks — vmPFC and striatum
1187

A. vmPFC anatomical n valence contrast

Y=12

C. vmPFC anatomical n PEgp contrast N PE - contrast

Z=0

Supplementary Figure 11. Conjunctions of anatomical masks with functional contrasts from fMRI GLM analyses used for fMRI-informed
EEG analyses. Anatomical masks were based on the Harvard-Oxford Atlas. Functional contrasts involve outcome valence and conjunction
of PEgrp and PEp. A. vmPFC outcome valence contrast (dark blue, conjunction of frontal pole, frontal medial cortex, and paracingulate
gyrus). B. striatum outcome valence contrast (yellow, conjunction of bilateral nucleus accumbens, caudate, and putamen). C. vmPFC PEgrp
N PEpr contrast (dark blue, results in a cluster in pgACC). D. striatum PEstp N PEpr contrast (yellow). All anatomical masks were extracted
from the probabilistic Harvard-Oxford Atlas, thresholded at 10%. Note that images are in radiological orientation (i.e., left brain hemisphere
presented on the right and vice versa).
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Supplementary Figure 12: Conjunctions of anatomical and functional
masks — ACC, PCC, left M1, left ITG, V1

A. ACC anatomical n PEgy contrast n PEp,e contrast
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Supplementary Figure 12. Conjunctions of anatomical masks with functional contrasts from fMRI GLM analyses used for fMRI-informed
EEG analyses: A. AAC PEgrp N PEpr contrast (red, cingulate gyrus, anterior division, resulting in a cluster in dACC; B. PCC PEgrp N
PEpir contrast (light blue, cingulate gyrus, posterior division); C. Left motor cortex PEgrp N PEpr contrast (orange, conjunction of
precentral and postcentral gyrus). D. Left inferior temporal gyrus PEstp N PEpr contrast (turquoise, conjunction of inferior temporal gyrus,
posterior division, and inferior temporal gyrus, temporooccipital part). E. Primary visual cortex PEsrp N PEpyr contrast (green, conjunction
of lingual gyrus, occipital fusiform gyrus, occipital pole). All anatomical masks were extracted from the probabilistic Harvard-Oxford
Atlas, thresholded at 10%. Note that images are in radiological orientation (i.e., left brain hemisphere presented on the right and vice versa).


https://doi.org/10.1101/2021.10.03.462927
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.03.462927; this version posted July 28, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

SUPPLEMENTALS PREFRONTAL SIGNALS PRECEED STRIATAL SIGNALS
35

1198 Supplementary Figure 13: EEG time-frequency results after ERPs were
1199 removed
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Supplementary Figure 13. EEG time-frequency power over midfrontal electrodes (Fz/ FCz/ Cz) after the (action x outcome) condition-wise
ERPs has been removed. A. Time-frequency plot (logarithmic y-axis) displaying high theta (4-8 Hz) power for negative outcomes and
higher beta power (16-32 Hz) for positive outcomes. B. Theta power transiently increases for any outcome, but more so for negative
outcomes (especially punishments) around 225-475 ms after feedback onset. C. Beta was higher for positive than negative outcomes
(especially punishments) over a long time period around 300-1,250 ms after feedback onset. D-F. Correlations between midfrontal EEG
power and trial-by-trial PEs. Solid black lines indicate clusters above threshold. There still was a visible positive correlation between biased
PEs and midfrontal delta power, but this correlation was not significant (D). The correlation of delta with the standard PEs (E) was also
positive, though not significant; in fact, at a later time point around stimulus offset, delta power correlated significantly negatively with
standard PEs. The difference term to biased PEs (F) also correlated positively, though not significantly with delta power. Beta power
encoded the difference term and biased PEs themselves (F). ** p < 0.01.
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1220 Supplementary Figure 14: ERPs as a function of action and outcome —
1221  binary contrasts
1222
1223
A. ERPs favorable vs. unfavorable = B. ERPs favorable vs. unfavorable C. ERPs favorable — unfavorable
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Supplementary Figure 14. ERPs reflecting outcome valence and performed action. A. Voltage (+SEM) over midfrontal electrodes
(Fz/FCz/Cz) was lower for negative than positive outcomes around 246-294 ms (stronger N2, FRN) and higher for positive than negative
outcomes around 344 — 414 ms (stronger P3/ RewP). B. Over right occipital electrodes, the P3 was slightly bigger for positive than negative
outcomes. ** p < 0.01. * p < .05 C. Topoplots of difference in voltage between trials with positive and negative outcomes over selected
time windows. D. There was no difference in voltage over midfrontal electrodes between trials with Go and NoGo responses. E. Over right
occipital electrodes, the P3 was slightly stronger after Go than NoGo actions (no p-value because ROI selected based on visual inspection).
F. Topoplots of difference in voltage between trials with Go and NoGo actions over selected time windows.
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1244  Supplementary Figure 15: ERPs as a function of action and outcome —

1245 all conditions
1246

0,05, ERPs per action x outcome condition
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Supplementary Figure 15. ERPs per action x outcome condition. Biggest differences occurred around the time of the N2 (FRN) and P3
(RewP). N2 and P3 exhibited larger amplitudes on trials with punishments. There was no apparent modulation by the previous action (Go/
NoGo).
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1271 Supplementary Figure 16: Model-based EEG analyses in the time
1272 domain
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Supplementary Figure 16. Modulation of EEG voltage by biased PEs and decomposition into the standard PE term and the difference term

to biased PEs. A. Mean EEG voltage over midfrontal electrodes (Fz, FCz, Cz) was significantly modulated by biased PEs around 111-184

(negatively) and 353—414 ms (positively) after outcome onset. B. Correlations with the standard PE term only emerged around 529 — 575

ms (negatively). C. Correlations with the difference term to biased PEs were similar to correlations for the biased PE term itself, i.e., around

123-166 (negatively) and 365-443 ms (positively). Bottom row: Topoplots displaying #-values of beta-weights for the respective regressor

over the entire scalp in steps of 100 ms from 0 to 800 ms.
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1300 Supplementary Figure 17: Graphical illustration of the fMRI-informed

1301 EEG analysis approach
1302

A. 7 regions encoding biased PEs (see Fig. 2) B. Volume-by-volume upsampled time course
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Supplementary Figure 17. Graphical illustration of the fMRI-informed EEG analysis approach. A. Regions are identified to encode biased
PEs via a model-based GLM on BOLD data (see Fig. 2 in the main text). B. The volume-by-volume time-series of the signal in each ROI
is extracted and upsampled. C. Time series are epoched into trials and the HRF amplitude is estimated for every trial. D. HRF amplitudes
in every ROI for every trial are combined into a design matrix. E. The design matrix is applied in a multiple linear regression for each
participant at each channel, frequency, and time point across trials. F. Regressions yield a sensor-frequency-time map of b regression
weights for each ROI for each participant. Maps are combined across participants using a one-sample z-test.
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Supplementary Figure 18: Graphical illustration of the EEG-informed

fMRI analysis approach

A. 3D clusters distinguishing positive and negative

outcomes (see Fig. 3)
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Supplementary Figure 18. Graphical illustration of the EEG-informed fMRI analysis approach. A. 3D clusters of channel-frequency-time
points where power significantly distinguishes trials with positive from trials with negative outcomes are identified via a cluster-based
permutation test (see Fig. 3A in the main text). The #-values above a threshold |2| are retained, weights at all other grid points are set to zero.
B. The 3D t-value cluster is multiplied with the trial-by-trial channel-frequency-time data, yielding a single average value of power in the
cluster at each trial. C. Trial-by-trial average power in the cluster is added as a parametric regressor in the GLM on BOLD-data and fitted

with FSL.
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Supplementary Figure 19: fMRI-informed EEG results in the time-
frequency domain
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Supplementary Figure 19. Supplementary fMRI-informed EEG results in the time-frequency domain. Unique temporal contributions of
BOLD signal in (A) left motor cortex, (B) pgACC, (C) left ITG and (D) primary visual cortex to midfrontal EEG power. Group-level 7-
maps display the modulation of the EEG power over midfrontal electrodes (Fz/ FCz/ Cz) by trial-by-trial BOLD signal in the selected ROIs.
There significant correlations between midfrontal EEG TF power in the beta range and left motor cortex BOLD signal (p = .002), but no
significant midfrontal EEG correlates for BOLD signal from other ROIs. E. Topoplots displaying ¢-values of left motor cortex BOLD over
the entire scalp between 13 and 30 Hz (beta band) in steps of 100 ms from 0 to 800 ms. There were significant negatively correlates over
central electrodes, especially round 300-500 ms. F. Topoplot displaying ¢-values of primary visual cortex BOLD over the entire scalp
between 8 and 13 Hz (alpha band) in steps of 100 ms from O to 800 ms. There were significantly negatively correlations over occipital
electrodes throughout outcome presentation.
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1335 Supplementary Figure 20: fMRI-informed EEG results in the time
1336  domain
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Supplementary Figure 20. fMRI-informed EEG analyses in the time-domain. Group-level t-value time courses display the modulation of
the EEG voltage over midfrontal electrodes (Fz/ FCz/ Cz) by trial-by-trial BOLD signal in the selected ROIs. A. Correlations between
midfrontal voltage and trial-by-trial BOLD signal from core value regions, i.e., striatum, dACC, pgACC, and PCC. Striatal BOLD
modulates the amplitude of the N1 and P3, while the P3 amplitude was also modulated by pgACC BOLD. B. Correlations between
midfrontal voltage and trial-by-trial BOLD signal from other regions, i.e., left motor cortex, left inferior temporal gyrus, and primary visual
cortex. Visual cortex BOLD modulates the amplitude of the P3, as well. C-E. Midfrontal voltage split up for high vs. low BOLD signal
(median split) from regions significantly modulating voltage. Striatal BOLD modulated N1 and P2 amplitude, while pgACC BOLD and
visual cortex BOLD modulated N2 (FRN) amplitude. F-L. Topoplots displaying t-values of correlations between midfrontal voltage and
trial-by-trial BOLD for all regions in steps of 100 ms from 0 to 800 ms.
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1341 Supplementary Figure 21: Go/NoGo differences over time in BOLD
1342 signal, choices, alpha, and beta power
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Supplementary Figure 21. Control analyses excluding temporal confounds in midfrontal lower alpha band power and dACC
BOLD. A. Mean midfrontal low alpha power (+SEM across participants) after outcome onset, (B) before and after outcome
onset, and (C) beta power before outcome onset as a function of the performed action and block number (i.e., time on task).
While low alpha power increases and beta power decreases over the time course of the task, power was always consistently
higher for trials with Go than trials with NoGo responses, suggesting that action effects were not reducible to time on task.
D. Response for each participant (rows) on each trial (columns). There was no noticeable change in the overall ratio of Go
to NoGo responses over time. The vertical blue line indicates the start of the second session featuring new stimuli. E. Mean
upsampled dACC BOLD signal (+SEM across participants) at the time of the outcome, split per performed action
(Go/NoGo) and outcome valence (positive/negative). BOLD signal was higher after NoGo than Go responses. F. Same plot
as (E), but split based on whether the next action was a Go (left panel) or an NoGo (right panel) response. Even if the next
response was NoGo, BOLD signal was higher for trials with NoGo responses (on the current trial) than trials Go responses.
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Supplementary Figure 22: Stay behavior as a function of BOLD and

EEG TF power
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Supplementary Figure 22. Probability of repeating the same response (“stay”) on the next cue encounter as a function of
outcome-related BOLD and EEG signal. A-C. Probability of repeating the same action (“staying”) as a function of BOLD
signal from (A) dACC, (B) vmPFC (cluster correlating with theta power in Fig. 5F), and (C) striatum (split into 5 bins).
While dACC BOLD was not significantly linked to the probability to stay, high BOLD signal in vimPFC predicted a higher
chance to switch to another action, while high BOLD signal in striatum predicted a higher probability of staying with the
same action. D-E. Probability of staying as a function of midfrontal time-frequency power in the (D) low alpha, (E)
theta/delta, and (F) beta range. Higher low alpha power and higher beta power predict a higher probability of staying with
the same action, while higher theta power predicts a higher chance to switch to another action. Grey circles represent
individual per condition-per-participant means. Error bars were very narrow (and thus hardly visible) and computed based
on the Cousineau-Morey methods based on per-condition-per-participant means.
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Supplementary Table 1: Stay behavior as a function of action, salience,

and valence
Effect v Df p-value
Action 0.01 1 924
Salience 5.15 1 .021
Valence 45.59 1 <.001
Action x Salience 0.12 1 728
Action x Valence 3.24 1 .067
Salience x Valence 30.95 1 <.001
Action x Valence x Salience 19.73 1 <.001

Salient outcomes only:

Action 0.01 1 .960
Valence 46.36 1 <.001
Action x Valence 17.80 1 <.001

Neutral outcomes only:

Action 102 1 750
Valence .830 1 362
Action x Valence 12.32 1 <.001

Go with salient outcomes only:

Valence 53.93 1 <.001
NoGo with salient outcomes only:

Valence 18.23 1 <.001
Go with neutral outcomes only:

Valence 0.13 1 .050
NoGo with neutral outcomes only:

Valence 7.21 1 .007

Supplementary Table 1. Full report of model of stay behavior. Mixed-effects logistic regression of stay vs. switch behavior
(i.e., repeating vs. changing an action on the next occurrence of the same cue) as a function of performed action (Go vs.
NoGo), outcome salience (salient: reward or punishment vs. neutral: no reward or no punishment), and outcome valence
(positive: reward or no punishment vs. negative: no reward or punishment). Follow-up analyses were performed on trials
with salient vs. neutral outcomes separately, and then separately based on Go vs. NoGo actions and salient vs. neutral
outcomes. P-values were computed using likelihood ratio tests using the mixed-function (option “LRT”) from package afex.
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Supplementary Table 2: Model parameters and fit indices for models
M1-M6
M1 M2 M3 M4 M5 M6
(Asymmetric (Action
pathways) priming)
Mean log model -609.30 -597.95 -554.46 -532.40 -528.13 -540.84
evidence
Model frequency 0 0.0278 0 0.0488 0.6815 0.2419
Protected 0 0 0 0 9970 .0030
exceedance
probability
p 7.75 6.81 6.38 10.05 9.41 6.64
[0.53 — 38.68] [0.48 — 37.74] [0.49 -35.71] [1.26 — 40.60] [0.98 —31.22] [0.71 —22.83]
€ 0.17 0.20 0.21 0.09 0.08 0.039
[0.002 - 0.77] [0.003 - 0.82] [0.003 - 0.85] [0.003 — 0.38] [0.003 - 0.41] [0.003 - 0.11]
b -0.05 -0.01 0.13 0.14 0.16
[-1.23 -0.82] [-1.23 - 1.09] [-1.16 - 1.03] [-1.18 - 1.10] [-1.22 - 1.40]
T 0.77 0.17 -1.11
[-0.78 —3.73] [-1.25-2.70] [-3.29 - 1.23]
€ rewarded Go (8()+K) 0749 0833
[0.29 - 0.99] [0.43 -0.99]
€ punished NoGo (SO_K) 0.001 0.003
[0.001 —0.02] [0.001 —0.09]
€ salient Go 0.49
[0.05 - 0.90]

Supplementary Table 2. Model parameters for fitted models. Mean [minimum — maximum] of participant-level parameter estimates
in model space, fitted with hierarchical Bayesian inference (only the respective model included in the fitting process). Model

frequency and protected exceedance probability were based on a model comparison that involves models M1-M6. Note that Fig. 2

in the main text does not include M6.
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1429 Supplementary Table 3: BOLD-GLM with parametric modulation by
1430  standard and biased prediction errors

1431
Regressor 1 2 3 4 5 6 7 8 9 10
- 3
. 5} = o]
o] 12 2
2 £ S 2 2 5
g o <] &} % ©
2 Q S 2 z 5 g
g Q% =1 2 3 "g [ I a ) E
g & 2 £ S g E £ & A g
o = < = < s 5 S & & Cl
1 PESTD 1
2 PEDH: 1
Supplementary Table 3. BOLD-GLM with parametric modulation by standard and biased prediction errors. Explanation of regressors:
WinGoOnset: for every trial with Win cue and Go action, at cue onset, duration 1, value +1.
AvoidGoOnset: for every trial with Avoid cue and Go action, at cue onset, duration 1, value +1.
WinNoGoOnset: for every trial with Win cue and NoGo action, at cue onset, duration 1, value +1.
AvoidNoGoOnset: for every trial with Avoid cue and NoGo action, at cue onset, duration 1, value +1.
Handedness: for every trial, at cue onset, duration 1, value +1 for left hand response, 0 for NoGo 10 response, -1 for right hand response.
Error: for every trial, at cue onset, duration 1, value +1 for incorrect response, 0 for correct response.
OutcomeOnset: for every trial, at outcome onset, duration 1, value +1 for every trial.
PEgrp: for every trial, at outcome onset, duration 1, value is the demeaned PE times learning rate for model M1.
PEpir: for every trial, at outcome onset, duration 1, value is the demeaned difference between (PE times learning rate) for model M1 and
(PE times learning rate) for model MS.
Invalid: for trials where uninstructed button was pressed, at outcome onset, duration 1, value 1.
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1457  Supplementary Table 4. BOLD-GLM with response-locked and
1458 outcome-locked categorical regressors

1459
1460
Regressors 1 2 3 4 5 6 7 8 9 10 11 12 13
g
g =R 5
= < 2] -
2 z = = 3 4 &~ k= = 2 Q
- 3 Q Z Q =] i} = g 2]
z g & & z & z z £ g = £ -
£ o) e S 5 [°) 5] ) o) T = — 19) =
= =4 4 Z & Q Q Q Q = < ) 2 S
o [} [} ) ) o} o} ) o} 5} & =} = 2
O &) &) 6] ©) Z Z Z Z | & m o =
1 Valence 1 -1 1 -1 1 -1 1 -1
ction - - - -
2 Acti 1 1 1 1 1 1 1 1
3 Hand Sum 1 1
4 Hand Dif 1 -1

Supplementary Table 4. BOLD-GLM with response-locked and outcome-locked categorical regressors. Explanation of regressors:
GoReward: for every trial with Go action and reward obtained, at outcome onset, duration 1, value +1.
GoNoReward: for every trial with Go action and no reward obtained, at outcome onset, duration 1, value +1.
GoNoPunishment: for every trial with Go action and no punishment obtained, at outcome onset, duration 1, value +1.
GoPunishment: for every trial with Go action and punishment obtained, at outcome onset, duration 1, value +1.
NoGoReward: for every trial with NoGo action and reward obtained, at outcome onset, duration 1, value +1.
NoGoNoReward: for every trial with NoGo action and no reward obtained, at outcome onset, duration 1, value +1.
NoGoNoPunishment: for every trial with NoGo action and no punishment obtained, at outcome onset, duration 1, value +1.
NoGoPunishment: for every trial with NoGo action and punishment obtained, at outcome onset, duration 1, value +1.
LeftHand: for very trial with left hand response, at response onset, duration 1, value + 1.
RightHand: for very trial with right hand response, at response onset, duration 1, value + 1.
Error: for every trial, at cue onset, duration 1, value +1 for incorrect response, 0 for correct response.
OutcomeOnset: for every trial, at outcome onset, duration 1, value +1 for every trial.
Invalid: for trials where uninstructed button was pressed, at outcome onset, duration 1, value 1.
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1482 Supplementary Table 5: Significant clusters in BOLD-GLM with

1483 parametric modulation by standard and biased prediction errors
1484

1485

Contrast Peak coordinates

No Brain region Maximal Z- Cluster size  Corrected p X y z

value (voxels)

PEgrp Positive

1 Ventromedial prefrontal cortex, 6.47 8762 1.02e-43 12 14 -6
Nucleus accumbens, caudate,
putamen,
bilateral amygdala, bilateral
hippocampus

2 Occipital pole, 6.64 1012 6.10e-10 10 -92 -10
lingual gyrus,
occipital fusiform gyrus

3 Posterior cingulate cortex 4.72 985 9.40e-10 4 -50 18

4 Left superior frontal gyrus 5.56 910 3.19e-09 -18 34 50

5 Right middle temporal gyrus, 5.48 381 6.47e-05 62 -4 -18
anterior division

6 Left inferior temporal gyrus, 5.16 360 .000103 -52 -46 -10
temporooccipital part

7 Left middle temporal gyrus, anterior  4.70 329 .000209 -60 -10 -14
division

8 Left postcentral gyrus 433 271 .000838 -52 -28 48

9 Right cerebellum 4.89 147 .0239 44 -72 -40

10 Anterior cingulate cortex 4.27 146 .0247 2 6 34
PEgsrp Negative

1 Right superior frontal gyrus 5.20 351 .000127 6 26 62

2 Right occipital pole, 4.76 211 .00391 30 -94 4
right inferior lateral occipital cortex

3 Left lingual gyrus 4.21 186 .00776 -22 -64 2

4 Left inferior lateral occipital cortex 4.28 147 .0239 -44 -86 -10
PEpr Positive

1 Bilateral superior frontal gyrus, 7.11 35109 0 34 -84 20
paracingulate gyrus, anterior

cingulate cortex,
posterior cingulate cortex,
ventromedial frontal cortex,
bilateral frontal orbital cortex,
bilateral frontal pole, bilateral
supramarginal gyrus,
bilateral middle temporal gyrus,
bilateral inferior temporal gyrus,
bilateral fusiform gyrus, bilateral
inferior occipital cortex, bilateral
superior occipital cortex,
precuneous,
bilateral cerebellum

2 Right insula, 6.36 10364 0 34 20 -8
right frontal operculum,
right inferior frontal gyrus,
right middle frontal gyrus,
right frontal orbital cortex,
bilateral caudate,
bilateral Nucleus accumbens,
bilateral thalamus, brainstem

3 Left insula, 6.51 10132 0 -36 20 -6
left frontal operculum,
left inferior frontal gyrus,
left middle frontal gyrus,
left frontal orbital cortex
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4 Right middle temporal gyrus, 4.66 307 .0003 56 -32 -4
posterior division

5 Right insula, right planum polare 4.72 143 .0248 40 -8 -12
PEDIF Negative

1 Left middle temporal gyrus, anterior ~ 4.22 191 .00607 -64 -6 -14
division

2 Left hippocampus 4.49 158 .0158 -26 -14 =22
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Supplementary Table 6: Significant clusters in BOLD-GLM with
response-locked and outcome-locked categorical regressors

Contrast

Peak coordinates

No

Brain region

Maximal Z-
value

Cluster size
(voxels)

Corrected p

Positive > Negative

Ventromedial prefrontal cortex,
left lateral orbitofrontal cortex,
Nucleus accumbens, caudate,
putamen,

bilateral amygdala,
bilateral hippocampus

Left superior frontal gyrus

Left lateral orbitofrontal cortex
Right occipital pole

5.65

4.03
431
4.59

3999

331
288
213

2.86e-19

0.00239
0.00512
0.0212

-18 28 60

18 -92 -16

Negative > Positive

Right lateral orbitofrontal cortex
Precuneous

Right superior frontal gyrus

4.59
4.58
4.32

367
356
340

0.00142
0.00170
0.00223

30 62 -2

12 14 72

Go > NoGo
outcome-locked
No significant clusters

NoGo > Go
outcome-locked

Bilateral lateral orbitofrontal cortex,
Bilateral superior frontal gyrus,
anterior cingulate cortex,

posterior cingulate cortex,
pre-SMA,

bilateral precentral gyrus,

bilateral postcentral gyus,

bilateral supramarginal gyrus,
bilateral operculum,

bilateral planum temporale,
bilateral superior temporal gyrus,
bilateral middle temporal gyrus,
bilateral inferior temporal gyrus,
bilateral superior lateral occipital
cortex,

bilateral inferior lateral occipital
cortex,

bilateral thalamus

7.32

114090

Go (left + right hand response) >
NoGo

response-locked

Cerebellum, Dbilateral thalamus,
bilateral putamen, bilateral caudate,
bilateral Nucleus Accumbens,
posterior cingulate cortex, right
operculum, right angular gyrus,
right superior parietal lobule.
anterior cingulate cortex,
paracingulate ~ gyrus,  bilateral
ventrolateral frontal cortex, right
middle frontal gyrus

Left operculum, left angular gyrus,
left superior parietal lobule
Intracalcarine cortex

Right middle temporal gyrus

7.08

5.88

3.79
4.63

46437

3936

374
287

3.13e-17

0.00248
0.00956

32 -4 -6
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NoGo > Go (left + right hand
response) response-locked

1 Right medial temporal gyrus, right 4.09 465 0.000636 50 -8 -16
temporal pole
2 vmPFC, subcallosal cortex 3.95 435 0.000973 0 40 -12

Left Hand > Right Hand
Response response-locked
1 Right precentral gyrus, right 7.05 9460 9.41e-39 46 -24 64
postcentral gyrus, right superior
parietal lobule, right operculum
2 Left cerebellum 7.18 2208 2.1e-14 -18 -54 -18
Right Hand > Left Hand
Response response-locked
1 left precentral gyrus, left postcentral ~ 7.06 14870 0 -36 -20 66
gyrus, left superior parietal lobule,
left operculum, left thalamus
2 Right anterior cerebellum 7.90 3735 1.44e-20 18 -54 -20
3 Right inferior lateral occipital 4.96 1452 9.66e-11 48 -86 -4
cortex, right superior lateral
occipital cortex
4 Right angular gyrus 4.98 551 2.06e05 66 -50 28
5 Left  occipital  pole, right 3.93 409 0.000236 -4 -96 26
intracalcarine cortex
6 Right posterior cerebellum 4.64 200 0.0157 48 =78 -32

1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558


https://doi.org/10.1101/2021.10.03.462927
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.03.462927; this version posted July 28, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

SUPPLEMENTALS PREFRONTAL SIGNALS PRECEED STRIATAL SIGNALS
53

1559 Supplementary Table 7: Significant clusters in BOLD-GLM with EEG

1560 TEZressors
1561
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Contrast Peak coordinates
No Brain region Maximal Z-  Cluster size  Corrected p X y z
value (voxels)
Central Lower Alpha Band
Positive
No significant clusters
Central Lower Alpha Band
Negative
1 Precuneous, 5.78 8346 2.50e-33 6 -60 66
cuneal cortex,
right superior lateral occipital cortex
2 Anterior cingulate gyrus, 4.77 2449 1.75e-14 24 12 66
right superior frontal gyrus
3 Left middle frontal gyrus, 5.59 1828 7.63e-12 -38 8 34
Right insula, 4.71 1794 1.08e-11 42 2 28
right central opercular cortex
5 Right frontal pole, 5.43 1300 2.37e-09 30 40 20
right middle frontal  gyrus,
right inferior frontal gyrus, pars
triangularis
6 Left supramarginal gyrus, anterior 4.61 959 1.19e-07 -64 -36 42
division
7 Left angular gyrus 5.83 916 2.38e-07 -48 -52 18
8 Right cerebellum, anterior 4.79 480 .000131 42 -38 -38
9 Posterior cingulate cortex, 4.41 424 .000328 14 -38 -2
parahippocampal gyrus,
right thalamus
10 Left temporal pole, 4.08 413 .000394 -56 16 -6
left inferior frontal gyrus, pars
opercularis
left insula
11 Left cerebellum, anterior 5.44 263 .00598 -30 -40 -42
12 Right lingual gyrus 343 235 .0104 10 =74 -10
13 Left cerebellum, posterior 5.74 215 0158 -14 -76 -42
14 Brainstem 435 207 .0186 8 -34 -20
Frontal Theta Band Positive
1 Right bilateral precentral gyrus 4.82 394 .000577 12 -16 80
2 Left bilateral precentral gyrus 5.25 357 .0011 -20 -28 78
Frontal Theta Band Negative
1 Right supramarginal gyrus, posterior  3.94 1002 1.10e-07 -54 -50 44
division,
right superior lateral occipital cortex
2 Left supramarginal gyrus, posterior  4.39 508 8.96e-05 56 -50 20
division,
Left superior lateral occipital cortex
3 Posterior cingulate cortex 4.58 419 .000378 -6 -30 38
Ventromedial prefrontal cortex 4.03 342 .00143 0 42 4
Central Beta Band Positive
1 Right caudate 4.19 258 .00481 16 30 6
2 Left  parahippocampal gyrus, 4.86 221 .0106 -38 -36 -8

posterior divison
Central Beta Band Negative
1 Right frontal pole, 5.49 6599 7.06e-30 -32 8 28
right middle frontal gyrus,
right superior frontal gyrus
2 Left frontal pole, 5.51 6144 1.82e-28 40 38 36
left middle frontal gyrus,
Left superior frontal gyrus
3 Left supramarginal gyrus, posterior 5.51 5175 2.43e-25 -66 -44 28
division,
left superior parietal lobule,
left superior lateral occipital cortex,
Left middle temporal gyrus,
temporooccipital part
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4 Right supramarginal gyrus, posterior ~ 5.13 3264 1.62e-18 30 -74 54
division,
Right superior parietal lobule,
right superior lateral occipital cortex

5 Left superior frontal gyrus, 4.54 1235 1.80e-09 -4 12 52
paracingulate gyrus,
precuneous

6 Right superior temporal gyrus, 4.59 1076 1.33e-08 48 -14 -10
posterior division

7 Left temporal pole, 4.96 320 .00139 -46 4 -18
left planum temporale

1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601


https://doi.org/10.1101/2021.10.03.462927
http://creativecommons.org/licenses/by/4.0/

1602
1603

1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.03.462927; this version posted July 28, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

made available under aCC-BY 4.0 International license.

SUPPLEMENTALS PREFRONTAL SIGNALS PRECEED STRIATAL SIGNALS

56

Supplementary References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Wilson, R. C. & Niv, Y. Is model fitting necessary for model-based fMRI? PLOS Computational
Biology 11, 1004237 (2015).

Palminteri, S., Wyart, V. & Koechlin, E. The importance of falsification in computational
cognitive modeling. Trends in Cognitive Sciences 21, 425-433 (2017).

Nassar, M. R. & Frank, M. J. Taming the beast: Extracting generalizable knowledge from
computational models of cognition. Current Opinion in Behavioral Sciences 11, 49-54 (2016).
Wilson, R. C. & Collins, A. G. Ten simple rules for the computational modeling of behavioral
data. eLife 8, 1-35 (2019).

Frank, M. J. Dynamic dopamine modulation in the basal ganglia: A neurocomputational account
of cognitive deficits in medicated and nonmedicated Parkinsonism. Journal of Cognitive
Neuroscience 17, 51-72 (2005).

Collins, A. G. E. & Frank, M. J. Opponent actor learning (OpAL): Modeling interactive effects of
striatal dopamine on reinforcement learning and choice incentive. Psychological Review 121,
337-366 (2014).

Cockburn, J., Collins, A. G. E. & Frank, M. J. A reinforcement learning mechanism responsible
for the valuation of free choice. Neuron 83, 551-557 (2014).

Rutledge, R. B. ef al. Dopaminergic drugs modulate learning rates and perseveration in
Parkinson’s patients in a dynamic foraging task. Journal of Neuroscience 29, 15104-15114
(2009).

Behrens, T. E. J., Woolrich, M. W., Walton, M. E. & Rushworth, M. F. S. Learning the value of
information in an uncertain world. Nature Neuroscience 10, 1214-1221 (2007).

Cohen, M. X. & Donner, T. H. Midfrontal conflict-related theta-band power reflects neural
oscillations that predict behavior. Journal of Neurophysiology 110, 2752-2763 (2013).

Cohen, M. X., Wilmes, K. A. & van de Vijver, I. Cortical electrophysiological network dynamics
of feedback learning. Trends in Cognitive Sciences 15, 558-566 (2011).

Bernat, E. M., Nelson, L. D. & Baskin-Sommers, A. R. Time-frequency theta and delta measures
index separable components of feedback processing in a gambling task. Psychophysiology 52,
626-637 (2015).

Cavanagh, J. F. Cortical delta activity reflects reward prediction error and related behavioral
adjustments, but at different times. Neurolmage 110, 205-216 (2015).

Proudfit, G. H. The reward positivity: From basic research on reward to a biomarker for
depression. Psychophysiology 52, 449-459 (2015).

Paul, K., Vassena, E., Severo, M. C. & Pourtois, G. Dissociable effects of reward magnitude on
fronto-medial theta and FRN during performance monitoring. Psychophysiology 57, e13481
(2020).

Sambrook, T. D. & Goslin, J. Principal components analysis of reward prediction errors in a
reinforcement learning task. Neurolmage 124, 276-286 (2016).

Yeung, N. & Sanfey, A. G. Independent coding of reward magnitude and valence in the human
brain. Journal of Neuroscience 24, 6258-6264 (2004).

Kreussel, L. et al. The influence of the magnitude, probability, and valence of potential wins and
losses on the amplitude of the feedback negativity. Psychophysiology 49, 207-219 (2012).
Talmi, D., Atkinson, R. & El-Deredy, W. The feedback-related negativity signals salience
prediction errors, not reward prediction errors. Journal of Neuroscience 33, 8264-8269 (2013).
Sato, A. et al. Effects of value and reward magnitude on feedback negativity and P300.
NeuroReport 16, 407-411 (2005).

Tanner, D., Morgan-Short, K. & Luck, S. J. How inappropriate high-pass filters can produce
artifactual effects and incorrect conclusions in ERP studies of language and cognition.
Psychophysiology 52, 997-1009 (2015).

Foti, D., Weinberg, A., Dien, J. & Hajcak, G. Event-related potential activity in the basal ganglia
differentiates rewards from nonrewards: Temporospatial principal components analysis and
source localization of the feedback negativity. Human Brain Mapping 32, 2207-2216 (2011).


https://doi.org/10.1101/2021.10.03.462927
http://creativecommons.org/licenses/by/4.0/

1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.03.462927; this version posted July 28, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

made available under aCC-BY 4.0 International license.

SUPPLEMENTALS PREFRONTAL SIGNALS PRECEED STRIATAL SIGNALS

23.

24.

25.

26.

27.

28.

57

Wu, Y. & Zhou, X. The P300 and reward valence, magnitude, and expectancy in outcome
evaluation. Brain Research 1286, 114-122 (2009).

Scheeringa, R. et al. Neuronal dynamics underlying high-and low-frequency EEG oscillations
contribute independently to the human BOLD signal. Neuron 69, 572-583 (2011).

Zumer, J. M., Scheeringa, R., Schoffelen, J.-M., Norris, D. G. & Jensen, O. Occipital alpha
activity during stimulus processing gates the information flow to object-selective cortex. PLoS
Biology 12, 1001965 (2014).

Jurkiewicz, M. T., Gaetz, W. C., Bostan, A. C. & Cheyne, D. Post-movement beta rebound is
generated in motor cortex: Evidence from neuromagnetic recordings. Neurolmage 32, 1281-1289
(2006).

Ritter, P., Moosmann, M. & Villringer, A. Rolandic alpha and beta EEG rhythms’ strengths are
inversely related to fMRI-BOLD signal in primary somatosensory and motor cortex. Human
Brain Mapping 30, 1168-1187 (2009).

Klimesch, W. EEG alpha and theta oscillations reflect cognitive and memory performance: A
review and analysis. Brain Research Reviews 29, 169—195 (1999).


https://doi.org/10.1101/2021.10.03.462927
http://creativecommons.org/licenses/by/4.0/

