

1 S-acylation stabilizes ligand-induced receptor kinase complex  
2 formation during plant pattern-triggered immune signalling.

3 Charlotte H. Hurst<sup>1,2</sup>, Dionne Turnbull<sup>1†</sup>, Julien Gronnier<sup>3,4†</sup>, Sally Myles<sup>1</sup>, Robin L. Pflughaupt<sup>5</sup>,  
4 Michaela Kopischke<sup>6</sup>, Paul Davies<sup>5</sup>, Susan Jones<sup>7</sup>, Silke Robatzek<sup>6,8</sup>, Cyril Zipfel<sup>3,6</sup>, Piers A.  
5 Hemsley<sup>1,2\*</sup>

6

7 Affiliations:

8 <sup>1</sup> Division of Plant Sciences, School of Life Sciences, University of Dundee, Dow Street, Dundee,  
9 DD1 5EH, Scotland, UK.

10 <sup>2</sup> Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA,  
11 Scotland, UK.

12 <sup>3</sup> Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich,  
13 8008 Zurich, Switzerland.

14 <sup>4</sup> Present address - ZMBP Universität Tübingen, Auf der Morgenstelle 32, D-72076 Tübingen,  
15 Germany

16 <sup>5</sup> Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life  
17 Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, Scotland, UK.

18 <sup>6</sup> The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, NR4 7UH, Norwich,  
19 England, UK.

20 <sup>7</sup> Information and Computational Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2  
21 5DA, Scotland, UK.

22 <sup>8</sup> LMU Munich Biocenter, Großhadener Strasse 4, 82152 Planegg, DE.

23 <sup>†</sup> These authors contributed equally

24 <sup>\*</sup> Correspondence: [p.a.hemsley@dundee.ac.uk](mailto:p.a.hemsley@dundee.ac.uk)

25 **Summary**

26 Plant receptor kinases are key transducers of physical extracellular stimuli, such as the presence  
27 of beneficial or pathogenic microbes or secreted signalling molecules. Receptor kinases are  
28 regulated by numerous post-translational modifications. Here, using the bacterial flagellin  
29 perceiving receptor kinase FLS2, we show that S-acylation at an evolutionarily conserved cysteine  
30 is crucial for function. S-acylation involves the addition of long-chain fatty acids to cysteine  
31 residues within proteins, altering their biophysical properties and behaviour within the  
32 membrane environment. We observe S-acylation of FLS2 at C-terminal kinase domain cysteine  
33 residues within minutes of treatment with flg22 ligand, and in a BAK1 co-receptor dependent  
34 manner. We demonstrate that S-acylation is essential for FLS2-mediated immune signalling,  
35 including anti-bacterial immunity. Similarly, mutating the corresponding conserved cysteine  
36 residue in the immune receptor kinase EFR suppressed elf18 mediated signalling. Biochemical  
37 analysis of unstimulated and activated FLS2 containing complexes using detergents and native  
38 membrane DIBMA nanodiscs indicates that S-acylation assists the stabilization of activated  
39 receptor kinase complexes within the membrane environment to increase signalling efficiency.

40

41 **Key words**

42 S-acylation; palmitoylation; Receptor-kinase; Receptor-like kinase; FLS2; EFR; microdomain;  
43 nanodomain; membrane; *Arabidopsis*

44

45 **Introduction**

46 The plasma membrane defines the boundary between the cell interior and the external  
47 environment. Receptor kinases (RKs) found in the plasma membrane act as the principle means  
48 of perception for most of the stimuli that a plant encounters, such as hormones, signalling  
49 peptides or microbe associated molecular patterns (MAMPs). RKs comprise the largest single gene  
50 family in plants [1, 2] and are central to current efforts to breed or engineer crops able to  
51 withstand emerging pathogen threats, interact with beneficial microbes or better tolerate abiotic  
52 stress [3-6]. Understanding the mechanisms and principles underlying the formation and  
53 activation of RKs complexes is therefore critical to informing these approaches.

54

55 The RK FLAGELLIN SENSING 2 (FLS2) is the receptor for bacterial flagellin and the flagellin-derived  
56 peptide flg22 [7], and is an archetype for RK research, particularly in the area of host-microbe  
57 interactions. flg22 binding to the extracellular FLS2 leucine-rich repeats promotes interaction with  
58 the extracellular leucine-rich repeats of the co-receptor BAK1/SERK3, with flg22 acting as  
59 molecular glue between FLS2 and BAK1. Subsequent transphosphorylation of FLS2 by BAK1  
60 initiates a cascade of immune signalling to activate anti-bacterial defence responses. As part of  
61 this overall process, flg22 binding by FLS2 has been shown to dictate FLS2 phosphorylation,  
62 SUMOylation and ubiquitination state, indicating a high degree of post-translational regulation.  
63 FLS2 activation also alters overall complex composition [7-17], biophysical properties [18] and  
64 behaviour [19, 20] of the complex. However, the underlying mechanisms and functional relevance  
65 of these changes remain unknown.

66

67 S-acylation is a reversible post-translational modification, whereby long chain fatty acids are  
68 added to cysteine residues by protein S-acyl transferases [21] and removed by acyl-protein  
69 thioesterases [22]. This modification can lead to changes in protein trafficking, stability, and  
70 turnover. S-acylation has been proposed to drive membrane phase partitioning [23, 24] while  
71 changes in protein S-acylation state have been hypothesised to modulate protein-protein and  
72 protein-membrane interactions, or even alter protein activation states [25]. However, direct  
73 experimental evidence to support these ideas is lacking. We recently discovered that FLS2,  
74 alongside all other plant RKs tested, is post-translationally modified by S-acylation [26]. Here we  
75 demonstrate that S-acylation of FLS2, at a site conserved in all RKs across plants, acts as a positive  
76 regulator of signal transduction. Mechanistically, this appears to be driven by S-acylation induced  
77 changes to the physical properties of the protein complex, resulting in enhanced stability within  
78 its lipid environment and more efficient signal propagation.

79

## 80 **Results**

### 81 **FLS2 undergoes ligand responsive S-acylation.**

82 Our previous analysis of FLS2 identified the juxta-transmembrane (TM) domain cysteines  
83 (Cys830,831) as being constitutively S-acylated, but this modification was dispensable for FLS2  
84 function [26]. All RK superfamily members subsequently tested, with or without a juxta-TM S-  
85 acylation site homologous to FLS2 C<sup>830,831</sup>, also appear to be S-acylated [26]. This indicates that  
86 non-juxta-TM S-acylation sites, potentially conserved in all RKs, exist. Other post-translational  
87 modifications affecting FLS2, and the broader RK superfamily, including phosphorylation [27],  
88 ubiquitination [11] and SUMOylation [17] are all responsive to ligand binding. Given the dynamic  
89 nature of S-acylation [22] we were interested to determine whether FLS S-acylation state is also  
90 ligand responsive. In Col-0 wild type plants treated with the eliciting peptide flg22, FLS2 S-  
91 acylation increased by almost 60% above basal levels following 20-min exposure to flg22. FLS2 S-  
92 acylation subsequently returned to basal levels within 1 h (figures 1A and S1A). Consistent with  
93 its ligand-dependency, FLS2 S-acylation was contingent upon the FLS2 co-receptor BAK1 (BRI1-  
94 ASSOCIATED KINASE) (figure 1B). Additionally, flg22 induced S-acylation of FLS2 was unaffected  
95 in *chc2-1* mutants [15] of clathrin heavy chain 2, indicating that S-acylation occurs before  
96 endocytosis (figure 1C). Treatment of *Arabidopsis* Col-0 plants with elf18, a conserved peptide  
97 derived from bacterial elongation factor Tu, recognised by the RK EFR (ELONGATION FACTOR-Tu  
98 RECEPTOR) that acts similarly to FLS2 [28], failed to elevate FLS2 S-acylation (figure 1D). This  
99 demonstrates that the increase in FLS2 S-acylation is specifically linked to activation of FLS2  
100 signalling and not a general phenomenon related to activation of RK-mediated defence responses.

101

102 **FLS2 flg22 responsive S-acylation sites are conserved in the wider Receptor kinase superfamily.**  
103 FLS2 C<sup>830,831</sup>S mutants [26] showed a similar elevation of S-acylation in response to flg22 (figure  
104 S1B). FLS2 therefore contains S-acylation sites in addition to C<sup>830,831</sup> that are responsive to ligand  
105 perception. While FLS2 C<sup>830,831</sup>S expressed at native levels in unstimulated *Arabidopsis* is not S-  
106 acylated [26], we noted that FLS2 C<sup>830,831</sup>S is weakly S-acylated in the absence of flg22 when  
107 overexpressed in *Nicotiana benthamiana*. Mutation of FLS2 Cys 1132 and 1135 in addition to Cys  
108 830 and 831 (FLS2 C<sup>830,831,1132,1135</sup>S) abolished FLS2 S-acylation compared to FLS2 C<sup>830,831</sup>S (figure

109 1E) when expressed in *N. benthamiana*, suggesting that Cys 1132 and 1135 are sites of S-acylation.  
110 Accordingly, *fls2c/proFLS2:FLS2 C<sup>1132,1135</sup>S* Arabidopsis plants (figure S1C) showed no increase in S-  
111 acylation following flg22 treatment (figure 1F). Interestingly, 1-2 conserved cysteine residues at  
112 the C-terminus of the kinase domain (corresponding to FLS2 Cys 1132 and/or 1135) are conserved  
113 across RRs in *Arabidopsis thaliana* (figure S2) and the broader Streptophyte lineage, suggesting a  
114 conserved and important role for these cysteines.

115

116 **Receptor kinase C-terminal S-acylation enhances early immune signalling through FLS2 and EFR**  
117 Consistent with the evolutionarily conserved nature of the FLS2 S-acylated cysteines amongst RRs,  
118 *fls2c/proFLS2:FLS2 C<sup>1132,1135</sup>S* plants are impaired in several aspects of early immune signalling,  
119 such as reactive oxygen species production, MAP kinase activation and pathogen responsive gene  
120 expression (figure 2A, B, C). Both FLS2 and FLS2 C<sup>1132,1135</sup>S show similar accumulation at the plasma  
121 membrane (figure S3A), lateral membrane mobility (figure S3B, C), and association with REM1.3  
122 nanodomains (figure S3D, E, F), indicating that there is no aberrant basal cellular behaviour of the  
123 FLS2 C<sup>1132,1135</sup>S mutant that could be impacting responses to flg22. To determine whether the  
124 conserved C-terminal cysteines have a general role in RR function, we mutated the equivalent  
125 cysteine in EFR (Cys975, figure S2) to serine and transiently expressed EFR-GFP [29] and EFR C<sup>975</sup>S-  
126 GFP in *N. benthamiana*. Elicitation of EFR action with elf18 demonstrated that MAP kinase  
127 activation and immune gene expression was reduced in EFR C<sup>975</sup>S-GFP expressing plants  
128 compared to EFR-GFP (figure 2C, D). This indicates that mutation of the conserved C-terminal  
129 cysteine in both FLS2 and EFR has a similar effect on early outputs. Structural homology modelling  
130 of FLS2 indicates that the C<sup>1132,1135</sup>S mutation does not affect FLS2 kinase domain structure (figure  
131 S4). Kinase activity is also dispensable for activation of signalling by EFR [30]. The observed effects  
132 of the FLS2 C<sup>1132,1135</sup>S and EFR C<sup>975</sup>S mutation on early signalling therefore cannot readily be  
133 explained by effects on kinase activity or structure.

134

135 **FLS2 kinase domain S-acylation is required for sustained signalling and bacterial immunity**  
136 Early signalling outputs resulting from bacterial perception by FLS2 lead to longer term sustained  
137 responses to promote immunity. In line with decreased early immune responses, later flg22-  
138 induced gene expression and physiological outputs, such as *PR1* (PATHOGENESIS-RELATED GENE  
139 1) expression and seedling growth inhibition, were affected in *fls2c/proFLS2:FLS2 C<sup>1132,1135</sup>S* plants  
140 (figure 3A, B). As a result of these cumulative signalling defects, FLS2 C<sup>1132,1135</sup>S failed to  
141 complement the hyper-susceptibility of *fls2* mutant plants to the pathogenic bacterium  
142 *Pseudomonas syringae* pv. *tomato* (*Pto*) DC3000 (figure 3C).

143

144 **S-acylation of FLS2 stabilizes flg22 induced FLS2-BAK1 signalling complexes within the**  
145 **membrane**

146 Differential solubility in cold non-ionic detergents such as IGEPAL CA-630, leading to formation of  
147 detergent soluble or resistant membrane fractions (DSM and DRM respectively), has been used  
148 to characterize changes to protein biophysical properties, particularly in the context of protein S-  
149 acylation [18, 31]. Following flg22 treatment, FLS2 abundance in cold IGEPAL CA-630 derived  
150 DRMs showed a slight reduction, while FLS2 C<sup>1132,1135</sup>S DRM abundance decreased by ~50% (figure

151 4A, B). Overall, while FLS2 containing complex solubility in cold IGEPAL CA-630 fractionally  
152 increases upon activation, suggesting a change in complex protein composition and/or  
153 surrounding membrane order, loss of S-acylation has a dramatic effect. These data indicate that  
154 FLS2 S-acylation is a major contributor to the overall biophysical properties of the stimulated FLS2  
155 containing protein complex when considered in the context of its membrane environment.

156

157 Assessment of flg22-induced FLS2-BAK1 complex formation by co-immunoprecipitation following  
158 solubilisation with cold IGEPAL CA-630 [32] indicated that FLS2-BAK1 interaction was reduced or  
159 less stable in FLS2 C<sup>1132,1135</sup>S mutants (figure 4C). Furthermore, flg22-induced BAK1 S<sup>612</sup> auto-  
160 phosphorylation [33], used as a marker of *in vivo* complex formation, was also consistently weaker  
161 in FLS2 C<sup>1132,1135</sup>S-expressing plants (figure 4C), supporting these biochemical observations. DRM  
162 and co-immunoprecipitation data combined suggests a role for DRM stabilization of observed  
163 FLS2-BAK1 complexes during co-immunoprecipitation. This indicates that FLS2 S-acylation alters  
164 the biophysical properties of FLS2 that will in turn impact upon the strength or stability of FLS2-  
165 BAK1 interactions in the context of cellular membranes.

166

167 In contrast to IGEPAL CA-630, diisobutylene/maleic acid (DIBMA) copolymer disrupts cellular  
168 membranes in an unbiased manner and does not form DRM-like fractions. DIBMA disrupts all  
169 lipid-lipid, but not protein-protein or protein-lipid, interactions to form native membrane  
170 nanodiscs containing proteins and their higher order complexes. Loose conformations of protein  
171 transmembrane domains within a complex will therefore show reduced co-purification compared  
172 to tightly packed transmembrane domains [34]. Comparing the behaviour of proteins and  
173 complexes following solubilization with either IGEPAL CA-630 or DIBMA allows for biochemical  
174 character and properties to be determined. Using DIBMA to solubilize flg22-induced FLS2-BAK1  
175 complexes prior to co-immunoprecipitation (figure 4D) indicates that FLS2-BAK1 complexes are  
176 stabilized by protein-protein and protein-lipid interactions that are reduced or absent from FLS2  
177 C<sup>1132,1135</sup>S-BAK1 complexes. This indicates that S-acylation induced changes to the physical  
178 character of FLS2 promote assembly of a DIBMA resistant complex with tightly packed  
179 transmembrane domains.

180

## 181 **Discussion**

182 FLS2, a prototypical RK, has been shown here to require flg22 ligand-induced S-acylation at  
183 Cys1132,1135 for efficient flg22-triggered signalling and resistance to bacterial infection. FLS2 S-  
184 acylation occurs within minutes of flg22 perception and requires the co-receptor BAK1, but  
185 precedes FLS2 entry into the endocytic pathway (figure 1). Supporting this timescale, preventing  
186 FLS2 S-acylation from occurring impairs early signalling outputs, such as the phosphorylation of  
187 MAPK and the production of ROS (figure 2). This failure to activate initial signalling also explains  
188 the defects in subsequent signalling outputs such as PR1 induction, growth inhibition and,  
189 ultimately, resistance to pathogenic bacteria (figure 3). Sequence analysis of RKS from across the  
190 Streptophyte lineages indicate that the S-acylation site identified here at the C-terminus of the  
191 FLS2 kinase domain is conserved throughout evolutionary history. Mutation of the equivalent  
192 cysteine in EFR (Cys975) recapitulates the defects observed in S-acylation defective FLS2,

193 indicating a conserved function for this site. Recently the P2K1/DORN1/LecRK-I.9 RK was  
194 proposed to undergo de-S-acylation followed by re-S-acylation during immune responses [35].  
195 However, the site proposed is unique to the LecRK family, being distinct in function, location,  
196 sequence, and structure to the universally conserved cysteine identified here that is also present  
197 in P2K1 but was not considered in the previous work. These data demonstrate that, in common  
198 with other post-translational modifications, S-acylation may affect multiple sites within an RK with  
199 differing effects on RK function. The position and effect of the S-acylation site identified here at  
200 the C-terminus of the FLS2 and EFR kinase domains is highly conserved. This opens up the exciting  
201 possibility that S-acylation at the conserved C-terminal kinase site may potentially regulate the  
202 function of all RKs across plants in a similar manner to FLS2 and EFR.

203

204 RK signalling is initiated by binding of a ligand (e.g., flg22) to its receptor (e.g., FLS2), which then  
205 facilitates the binding of a co-receptor (e.g., BAK1/SERK3). While this constitutes the minimal  
206 ligand recognition complex, substantial evidence supports a far larger number of proteins being  
207 intimately associated with both unstimulated and activated receptors and co-receptors. Indeed,  
208 existing data indicates that during the process of activation RKs recruit or eject specific proteins  
209 from their complexes [10, 16, 36, 37], but precise molecular mechanisms determining these  
210 changes are not known. Live cell imaging of unstimulated FLS2 and BAK1 indicates that complex  
211 composition, specifically presence or absence of the RK FERONIA (FER), has marked effects on  
212 nanoscale organisation and mobility of in the plasma membrane. In addition, activation of the RK  
213 FERONIA (FER) by its ligand RALF23 alters BAK1 organisation and mobility [20]. This indicates that  
214 both complex composition, and the activation state of individual components, affects behaviour  
215 of the whole complex. Changes in direct protein-protein interaction can be explained by allosteric  
216 effects. However, it is also possible that alteration of the immediate lipid environment  
217 composition, micro-curvature, or structure, brought about by changes in the biophysical  
218 properties of the complex, would act to recruit or exclude proteins based on their solubility and  
219 packing in the membrane environment surrounding the complex. This is, in essence, one of the  
220 biochemical principles proposed to underlie the formation of membrane nanodomains [38].  
221 Activation of FLS2 by flg22 has been reported to decrease overall plasma membrane fluidity and  
222 increase plasma membrane order [39], while changing sterol abundance in the plasma membrane  
223 affects all stages of FLS2 signalling [40]. This indicates that membrane composition and structure  
224 have profound effects on receptor complex function and supports the principle of protein-lipid  
225 interactions affecting or effecting RK function. S-acylation, being a fatty acid-based modification  
226 of proteins, has been shown to affect protein biophysical character and behaviour in membrane  
227 environments [31, 41]. S-acylation also affects membrane micro-curvature [24], a key theoretical  
228 determinant of membrane component partitioning required for nanodomain formation [38]. S-  
229 acylation therefore represents an ideal mechanism to not only modulate interactions between RK  
230 complexes and their proximal membrane components, but also to effect changes in the  
231 composition of both.

232

233 Altogether our data suggest that flg22-induced, BAK1-dependent S-acylation influences the  
234 biophysical properties of FLS2. Our data supports a model where FLS2 S-acylation changes the

235 transmembrane domain packing or order within the FLS2 complex and alters the FLS2 complex  
236 lipid microenvironment. This process stabilises signalling active FLS2 molecular assemblies. These  
237 data therefore provide a mechanistic basis for the observed phenomenon of activation state  
238 dependent changes in membrane nanodomain content and organisation described for various  
239 RRs, including FLS2 [18, 20, 40, 42].

240

## 241 **Acknowledgments**

242 We would like to thank Antje Heese and Paul Birch for critical discussions and advice during the  
243 preparation of this manuscript. Ari Sadanandom provided *P. syringae* pv. tomato DC3000. This  
244 work was supported by BBSRC EASTBIO-DTP studentship (grant number BB/M010996/1) to SM  
245 and PH, BBSRC grants BB/M024911/1 and BB/P007902/1 to PH, Royal Society Grant RG140531  
246 to PH, a Heisenberg fellowship from the Deutsche Forschungsgemeinschaft to SR, the Gatsby  
247 Charitable Foundation, the University of Zürich, the European Research Council under the Grant  
248 Agreement 773153 (grant IMMUNO-PEPTALK) to CZ, and the European Molecular Biology  
249 Organization (EMBO Long-Term Fellowship 438-2018) to JG. SJ was supported by the Scottish  
250 Government's Rural and Environment Science and Analytical Services division (RESAS).

251

## 252 **Author Contributions:**

### 253 **CRediT statement**

254 **CHH:** Conceptualization, Methodology, Validation, Formal analysis (Equal), Investigation (Lead),  
255 Data curation (Equal), Writing - Review & Editing, Visualization. **DT:** Methodology, Validation,  
256 Investigation (Equal), Writing - Review & Editing. **JG:** Methodology, Formal analysis (Equal),  
257 Investigation (Equal), Data curation (Equal), Writing - Review & Editing, Visualization, Funding  
258 acquisition (Equal). **SM:** Validation, Investigation. **MK:** Investigation. **SJ:** Methodology, Software,  
259 Investigation. **SR:** Resources, Writing - Review & Editing, Supervision, Funding acquisition (Equal).  
260 **CZ:** Resources, Writing - Review & Editing, Supervision, Funding acquisition (Equal). **PAH:**  
261 Conceptualization (Lead), Methodology (Lead), Validation, Formal analysis (Lead), Investigation,  
262 Data curation (Lead), Resources, Writing - Original Draft (Lead), Writing - Review & Editing (Lead),  
263 Visualization (Lead), Supervision (Lead), Project administration (Lead), Funding acquisition  
264 (Equal).

265

266 **Competing Interest Statement:** No competing interests declared.

267

## 268 **Figure Legends**

269 **Figure 1.** FLS2 S-acylation increases upon flg22 perception. **A.** Quantification of changes in FLS2 S-  
270 acylation following flg22 (n = 5, green solid line) or water only control (n = 2, blue short dashed  
271 line) treatment. S-acylation state is shown relative to T0 (black, long dashed line). Error bars show  
272 SEM. Significance of difference between flg22 and water treated at 20 minutes is shown as  
273 determined by Student's t-test. **B.** S-acylation of FLS2 in response to flg22 requires BAK1. S-  
274 acylation state is shown relative to water treated plants of the same genotype (dashed line). Error  
275 bars show SEM, Col-0 +flg22 n=5, Col-0 + H2O n = 2, *bak1-4* n = 4, *chc2-1* n = 2, significant  
276 difference to flg22 treated Col-0 as determined by Student's t-test are shown. Data shown in

277 panels A and B are derived from the same biological repeats, Col-0 controls are therefore shared  
278 between panels. **C.** FLS2 undergoes S-acylation in response to flg22 treatment but not elf18. S-  
279 acylation state is shown relative to untreated plants (black, dashed line). Error bars show SEM,  
280 n = 2, significant differences to flg22 treated Col-0 as determined by Student's t-test are shown.  
281 **D.** Mutation of FLS2 Cys1132,1135 to serine abolishes residual S-acylation observed in the FLS2  
282 C<sup>830,831</sup>S background. EX - indicates S-acylation state, LC - loading control, Hyd - indicates presence  
283 (+) or absence (-) of hydroxylamine. **E.** FLS2 C<sup>1132,1135</sup>S mutants are blocked in flg22 mediated  
284 increases in S-acylation. S-acylation state is shown relative to water treated plants of the same  
285 genotype (black, dashed line). Error bars show SEM, n=3, significant difference to flg22 treated  
286 Col-0 as determined by Student's t-test are shown.  
287

288 **Figure 2.** Acute responses to flg22 perception are reduced in FLS2 C<sup>1132,1135</sup>S expressing plants. **A.**  
289 ROS production induced by 100 nM flg22 treatment. Data points are the sum of the 3 highest  
290 consecutive readings per sample. n = 10 per genotype. Statistical outliers are shown as open  
291 circles. Box shows median and IQR, whiskers show +/- 1.5 x IQR. Statistically significant differences  
292 at p < 0.01 are indicated (a, b) and were calculated using ANOVA and Tukey HSD tests. **B.** MAPK  
293 activation in *fls2/FLS2pro:FLS2 C<sup>1132,1135</sup>S* seedlings in response to 100 nM flg22 as determined  
294 over time by immunoblot analysis. pMAPK6/pMAPK3 show levels of active form of each MAPK.  
295 MAPK6 indicates total levels of MAPK6 as a loading control. Upper shadow band in MAPK6 blot is  
296 RUBISCO detected non-specifically by secondary antibody. **C.** Induction of WRKY40 gene  
297 expression after 1 hour treatment with 1 mM flg22 in *fls2/FLS2pro:FLS2 C<sup>1132,1135</sup>S* seedlings as  
298 determined by qRT-PCR. **D.** Induction of NbACRE31 gene expression after 3-hour treatment with  
299 1 mM elf18 in EFR-GFP and EFR C<sup>975</sup>S-GFP expressing *N. benthamiana* plants as determined by  
300 qRT-PCR. Values were calculated using the  $\Delta\Delta_{CT}$  method, error bars represent RQMIN and RQMAX  
301 and constitute the acceptable error level for a 95% confidence interval according to Student's t-  
302 test. **E.** MAPK activation in EFR-GFP and EFR C<sup>975</sup>S-GFP expressing *N. benthamiana* plants in  
303 response to 15 minutes treatment with 1 mM elf18 as determined by immunoblot analysis.  
304 pSIPK/pWIPK show levels of active form of each MAPK. WIPK indicates total levels of WIPK as a  
305 loading control. EFR-GFP and EFR C<sup>975</sup>S-GFP levels are shown as a control for dosage effects on  
306 MAPK activation.  
307

308 **Figure 3.** FLS2 S-acylation is required for long term immune response outputs **A.** Induction of PR1  
309 gene expression after 24 hours treatment with 1 mM flg22 in *fls2/FLS2pro:FLS2 C<sup>1132,1135</sup>S*  
310 seedlings as determined by qRT-PCR. Values were calculated using the  $\Delta\Delta_{CT}$  method, error bars  
311 represent RQMIN and RQMAX and constitute the acceptable error level for a 95% confidence  
312 interval according to Student's t-test. Significant differences in transcript mRNA detected in  
313 *fls2/FLS2pro:FLS2 C<sup>1132,1135</sup>S* seedlings compared to Col-0 levels in flg22 treated samples are  
314 indicated. Similar data were obtained over 3 biological repeats. **B.** Inhibition of growth after 10  
315 days of 1 mM flg22 treatment is reduced in *fls2/FLS2pro:FLS2 C<sup>1132,1135</sup>S* seedlings. Data are  
316 averages of 3 biological replicates, error bars are SEM, significant differences at p < 0.01 are  
317 indicated (a, b, c) and calculated by ANOVA with Tukey HSD test. **C.** Resistance to *P. syringae*  
318 DC3000 infection is impaired by loss of FLS2 S-acylation. Box and whisker plots show data from 7

319 biological repeats (box denotes median and IQR, whiskers show +/- 1.5 x IQR, outliers are shown  
320 as open circles), significant differences at p < 0.05 are indicated (a, b, c) and calculated by ANOVA  
321 with Tukey HSD test.

322

323 **Figure 4.** FLS2 C<sup>1132,1135</sup>S shows reduced interaction with BAK1 following flg22 stimulation. **A.**  
324 Arabidopsis flg22 treated seedlings were lysed in cold IGEPAL CA-630 buffer and separated into  
325 detergent soluble (S) and detergent resistant (R) fractions. Relative partitioning of FLS2 into each  
326 fraction was determined by western blotting with anti-FLS2 rabbit polyclonal antibody. Loading  
327 and purity of fractions is shown by Ponceau S staining of the membrane. **B.** Quantification of data  
328 shown in A from 3 biological repeats. Error bars show SEM, significance was calculated using  
329 Student's t-test. **C.** FLS2 was immunoprecipitated from IGEPAL CA-630 solubilised flg22 treated  
330 Arabidopsis seedling lysates using anti-FLS2 rabbit polyclonal antibody. BAK1 recovery was  
331 assessed using rabbit polyclonal anti-BAK1 antibody. flg22 induced BAK1 autophosphorylation at  
332 Ser612 was assessed in input samples using rabbit polyclonal anti-BAK1 pS612 antibody. **D.** FLS2  
333 was immunoprecipitated from DIBMA solubilised flg22 treated Arabidopsis seedling lysates using  
334 anti-FLS2 rabbit polyclonal antibody. BAK1 recovery was assessed using rabbit polyclonal anti-  
335 BAK1 antibody.

336

### 337 **Materials and Methods**

#### 338 **Cloning and constructs**

339 Fully functional *FLS2<sub>pro</sub>:FLS2* was made using the described FLS2 promoter and open reading frame  
340 [43] with stop codon cloned into pENTR D-TOPO [44]. All *FLS2* mutant variants used were based  
341 on this construct and were generated using Q5 site directed mutagenesis kit (NEB) according to  
342 the manufacturer's guidelines. *FLS2<sub>pro</sub>:FLS2-3xMYC-EGFP* and *FLS2<sub>pro</sub>:FLS2 C<sup>1132,1135</sup>S-3xMYC-EGFP*  
343 were made by yeast recombinatorial cloning using a 3xMYC-EGFP PCR fragment amplified from  
344 *FLS2<sub>pro</sub>:FLS2-3xMYC-EGFP* [45] recombined with pENTR D-TOPO *FLS2<sub>pro</sub>:FLS2* or pENTR D-TOPO  
345 *FLS2<sub>pro</sub>:FLS2 C<sup>1132,1135</sup>S*. Entry clones were recombined into pK7WG,0 [46] using Gateway  
346 technology (ThermoFisher) to generate expression constructs. Expression constructs were  
347 transformed into *Agrobacterium tumefaciens* strain GV3101 pMP90 [47] for transformation of  
348 either Arabidopsis or *Nicotiana benthamiana*.

349

#### 350 **Plant lines and growth conditions**

351 All Arabidopsis lines were in the Col-0 accession background. The *fls2* [43], *bak1-4* [48] and *chc2-1*  
352 [15] mutants have all been described previously. Transgenic *fls2/FLS2<sub>pro</sub>:FLS2* [44] and  
353 *fls2/FLS2<sub>pro</sub>:FLS2 C<sup>1132,1135</sup>S* mutant variant lines were generated by Agrobacterium-mediated floral  
354 dip transformation [49]. T<sub>3</sub> homozygous plants were used for all experiments. Plant material for  
355 experiments was grown on 0.5x MS medium, 0.8% phytagar under 16:8 light:dark cycles at 20 °C  
356 in MLR-350 growth chambers (Panasonic). For transient expression *Nicotiana benthamiana* plants  
357 were grown in 16:8 light:dark cycles at 24 °C and used at 4-5 weeks old. A. tumefaciens mediated  
358 transient expression was performed as described [50] using an OD600 of 0.1 of each expression  
359 construct alongside the p19 silencing suppressor at an OD600 of 0.1. Tissue was harvested 48-60  
360 hours post infiltration.

361

### 362 **Eliciting peptides**

363 Flg22 peptide (QRLSTGSRINSAKDDAAGLQIA) was synthesised by Dundee Cell Products (Dundee,  
364 UK). Elf18 peptide (Ac-SKEKFERTKPHVNVTIG) was synthesised by Peptide Protein Research Ltd.  
365 (Bishops Waltham, UK).

366

### 367 **Seedling growth inhibition**

368 For each biological replicate four days post-germination, 10 seedlings of the named genotypes  
369 were transferred to 12-well plates (5 seedlings per well), ensuring the cotyledons were not  
370 submerged. Wells contained 2 mL of 0.5x MS liquid medium with or without 1  $\mu$ M flg22. Seedlings  
371 were incubated for 10 days and the fresh weight of pooled seedlings in each genotype for each  
372 treatment measured and an average taken. Flg22- treated/untreated weights for each genotype  
373 were calculated and presented data is an average of these data over three biological repeats. Fully  
374 independent biological repeats were performed over a period of 6 months with each genotype  
375 only being present once in each repeat.

376

### 377 **MAPK activation**

378 Essentially as for [51]; 6 *Arabidopsis* seedlings of each genotype 10 days post germination were  
379 treated with 100 nM flg22 for the indicated times in 2 mL 0.5x MS medium. The 6 seedlings from  
380 each genotype at each time point for each treatment were pooled before further analysis. Fully  
381 independent biological repeats were performed over a period of 2 years with each genotype only  
382 being present once in each repeat. To assess EFR induced MAPK activation in *N. benthamiana*  
383 leaves from 5-week-old plants were transiently transformed by agrobacterium infiltration (OD600  
384 0.1 of each construct plus p19 at OD600 0.1). 60 hours after transformation, 1  $\mu$ M elf18 peptide  
385 in water or water only was infiltrated into the leaf and samples harvested after 15 minutes.  
386 Samples were subsequently processed as described [51].

387

### 388 **Reactive oxygen species production**

389 Protocol based on Mersmann et al. (2010). Essentially, 10 seedlings of each genotype were grown  
390 for 14 days in 100  $\mu$ L of 0.5x MS medium with 0.5% sucrose, in 96-well plates (PerkinElmer).  
391 Conditions were maintained at 22 °C with 12:12 light:dark cycles. Growth medium was exchanged  
392 for water with 10 nM flg22 for 1 hour, before replacing with water for a further 1 hour. ROS burst  
393 was then induced by replacing with a solution containing 100 nM flg22, 400 nM luminol (Fluka),  
394 and 20  $\mu$ g/mL peroxidase (Sigma). Luminescence in each well was measured every 2 minutes in a  
395 Varioskan Lux (Thermo Fisher) for 30 cycles (approx. 1 hour total).

396

### 397 **Gene expression analysis**

398 Ten seedlings of each genotype 10 days post-germination were treated with 1  $\mu$ M flg22 or water  
399 for the indicated times. The 10 seedlings from each genotype/treatment at each time point for  
400 each treatment were pooled before further analysis. RNA was extracted using RNAeasy Plant kit  
401 with on column DNase digestion according to the manufacturer's instructions (Qiagen). Two  
402 micrograms RNA was reverse transcribed using a High-Capacity cDNA Reverse Transcription kit

403 (Applied Biosystems). All transcripts were amplified using validated gene-specific primers [44].  
404 Expression levels were normalized against *PEX4* (At5g25760) [52]. Each sample was analyses in  
405 triplicate (technical repeats) for each primer pair within each biological repeat. Relative  
406 quantification (RQ) was achieved using the  $\Delta\Delta_{CT}$  (comparative cycle threshold) method [53].  
407 Significant differences between samples were determined from a 95% confidence interval  
408 calculated using the t-distribution. Fully independent biological repeats were performed over a  
409 period of 2 years with each genotype only being present once in each repeat.

410

#### 411 **Bacterial infection assays**

412 Infection assays of *Arabidopsis* lines by *Pseudomonas syringae* pv. tomato DC3000 were  
413 performed using seedling flood inoculation assays as described [54].

414

#### 415 **Western blotting**

416 FLS2 was detected using rabbit polyclonal antisera raised against the C-terminus of FLS2 as  
417 previously described [9, 55]. Anti-p44/42 MAPK (Erk1/2) (Cell Signalling Technology #9102) was  
418 used to detect phosphorylated MAPK3/6 according to manufacturer's recommendations at  
419 1:2000 dilution. Total *Arabidopsis* MAPK6 or *N. benthamiana* WIPK was detected using anti-  
420 *Arabidopsis* MPK6 (Sigma A7104) at 1:2000. Rabbit polyclonal antibodies against BAK1 were as  
421 described [32] or obtained from Agrisera (AS12 1858) and used at 1:5000 dilution. BAK1 phospho-  
422 S612 was detected using polyclonal rabbit antisera as described [33]. HRP conjugated secondary  
423 antibodies were used to visualise antibody reacting proteins, and Clean-Blot HRP (Thermo Fisher)  
424 secondary antibody was used for immunoprecipitation experiments. Western blots were  
425 developed using SuperSignal West pico and femto in a 3:1 ratio by volume and signal captured  
426 using a Syngene G:box storm imager and quantitative photon count data stored as Syngene SGD  
427 files. Signal intensity was quantified from SGD files using Syngene GeneTools software.

428

#### 429 **S-acylation assays**

430 S-acylation assays using acyl-biotin exchange (ABE) were performed exactly as described [55]. For  
431 flg22-dependent changes in FLS2 S-acylation, 7 seedlings 10 days post germination were  
432 transferred to each well of 12-well plates. Each well contained 2 mL 0.5 x MS liquid medium.  
433 Seedling were incubated for 24 hours on an orbital mixer (Luckham R100/TW Rotatest Shaker, 38  
434 mm orbit at 75 RPM). Thereafter, 100  $\mu$ L of 0.5 x MS media containing flg22 was added to give a  
435 final flg22 concentration of 10  $\mu$ M. Seedlings were incubated with continued mixing for the  
436 indicated times before harvesting.

437

#### 438 **Co-immunoprecipitation assays using IGEPAL CA-630**

439 Seedlings grown on solid 1/2 MS for 30-35 days were transferred to wells of a 6-well plates and  
440 grown for 7 days in 1/2 MS 2 mM MES-KOH, pH 5.8. Thereafter, the seedlings were transferred in  
441 beakers containing 40 mL of 1/2 MS 2 mM MES-KOH, pH 5.8 and subsequently treated with sterile  
442 mQ water with or without flg22 (final concentration of 100 nM) and incubated for 10 minutes.  
443 The seedlings were then frozen in liquid nitrogen and proteins extracted in 50 mM Tris-HCl pH  
444 7.5, 150 mM NaCl, 10% glycerol, 5 mM dithiothreitol, 1% protease inhibitor cocktail (Sigma

445 Aldrich), 2 mM Na<sub>2</sub>MoO<sub>4</sub>, 2.5 mM NaF, 1.5 mM activated Na<sub>3</sub>VO<sub>4</sub>, 1 mM phenylmethanesulfonyl  
446 fluoride and 0.5% IGEPAL for 40 minutes at 4 °C. Lysates were clarified at 10,000 g for 20 minutes  
447 at 4 °C and the supernatants were filtered through miracloth. For immunoprecipitations, α-rabbit  
448 Trueblot agarose beads (eBioscience) coupled with α-FLS2 antibodies [8] were incubated with the  
449 crude extract for 3 hours at 4 °C. Subsequently, beads were washed 3 times (50 mM Tris-HCl pH  
450 7.5, 150 mM NaCl, 1 mM phenylmethanesulfonyl fluoride, 0.1% IGEPAL) before adding Laemmli  
451 buffer and incubating for 10 minutes at 95 °C. Protein samples were separated in 10%  
452 bisacrylamide gels at 150 V for approximately 2 hours and transferred into activated PVDF  
453 membranes at 100 V for 90 minutes. Immunoblotting was performed with antibodies diluted in  
454 blocking solution (5% fat-free milk in TBS with 0.1% (v/v) Tween-20). Antibodies used in this study:  
455 α-BAK1 [32] (1:5000); α-FLS2 [8] (1:1000); α-BAK1 pS612 [33] (1:3000). Blots were developed with  
456 Pierce ECL/ ECL Femto Western Blotting Substrate (Thermo Scientific). The following secondary  
457 antibodies were used: anti-rabbit IgG-HRP Trueblot (Rockland, 18-8816-31, dilution 1:10000) for  
458 detection of FLS2-BAK1 co-immunoprecipitation or anti-rabbit IgG (whole molecule)-HRP (A0545,  
459 Sigma, dilution 1:10000) for all other western blots.

460

#### 461 **Co-immunoprecipitation assays using Diisobutylene-maleic acid (DIBMA)**

462 For each genotype, 2 x 10 seedlings 10 days post-germination were transferred to each well of  
463 12-well plate containing 2 mL 0.5 x MS liquid medium and incubated for 24 hours on an orbital  
464 mixer (Luckham R100/TW Rotatest Shaker, 38 mm orbit at 75 RPM). Thereafter, 100 µL of 0.5 x  
465 MS media containing flg22 was added to give a final flg22 concentration of 10 µM. The seedlings  
466 were further incubated with continued mixing for 20 minutes prior to harvesting and blotting dry.  
467 Tissue was lysed in 500 µL of lysis buffer (50 mM Tris-HCl pH 7.2, 10% v/v glycerol, 150 mM NaCl,  
468 1% w/v DIBMA (Anatrace BMA101), with protease inhibitors (1% v/v, Sigma P9599)) and  
469 incubated at room temperature for 1 hour with gentle end-over-end mixing. The lysate was  
470 centrifuged at 5,000 g for 1 minute and the supernatant filtered through 2 layers of miracloth and  
471 combined with an additional 500 µL of filtered lysis buffer (without DIMBA). The clarified lysate  
472 was further centrifuged at 16,000 g for 1 minute and the supernatant applied to Amicon 0.5 mL  
473 100 kDa MWCO spin filtration columns and centrifuged at 14,000 g until the retentate was <50  
474 µL. The retentate was diluted to 500 µL with IP buffer (50 mM Tris-HCl pH 7.2, 10% glycerol, 200  
475 mM L-arginine, with protease inhibitor (0.5% v/v, Sigma P9599) and centrifuged at 14,000 g until  
476 the retentate was <50 µL. The spin column was inverted and eluted into a 1.5 mL microfuge tube  
477 by centrifugation at 100 g for 1 minute. The eluate was diluted to 500 µL with IP buffer, of which  
478 20 µL was retained as an input control. Magnetic protein A beads (20 µL per IP reaction) were  
479 coated with 5 µg αFLS2 antibody overnight at 4 °C. The resulting beads were washed for 5 minutes  
480 with IP buffer containing 0.5 M NaCl followed by 2 washes with IP buffer and resuspended in IP  
481 buffer to 100 µL per IP reaction. The resulting FLS2-coated magnetic protein A beads were added  
482 to the DIBMA solubilised protein solution and incubated for 3 hours at room temperature with  
483 end-over-end mixing. Thereafter, the beads were washed three times with IP buffer, resuspended  
484 in 30 µL 2x LDS sample buffer with 2-mercaptoethanol and incubated at 65 °C for 5 minutes with

485 shaking at 1000 RPM. The samples were separated on a 7.5% SDS-PAGE gel prior to transfer to  
486 PVDF and western blotting.

487

#### 488 **Detergent resistant membrane preparation**

489 To evaluate flg22-dependent changes in FLS2 detergent resistant membrane occupancy, 7  
490 seedlings 10 days post-germination were transferred to each well of a 12-well plate, of which each  
491 well contained 2 mL 0.5 x MS liquid medium. Seedlings were incubated for 24 hours on an orbital  
492 mixer (Luckham R100/TW Rotatest Shaker, 38 mm orbit at 75 RPM), after which 100  $\mu$ L of 0.5 x  
493 MS media containing flg22 was added to give a final flg22 concentration of 10  $\mu$ M. The seedlings  
494 were further incubated with continuous mixing as before for 20 minutes before harvesting and  
495 snap freezing in liquid nitrogen. All subsequent steps were performed at 4 °C or on ice. The  
496 seedlings were then lysed in 0.5 mL ice cold 1% (v/v) IGEPAL CA-630 in 25 mM Tris-HCl pH 7.4,  
497 150 mM NaCl, 2 mM EDTA, and 0.1% (v/v) protease inhibitors (Sigma-Aldrich, P9599). Lysates  
498 were clarified at 500 g and filtered through 1 layer of miracloth. The filtrate was centrifuged at  
499 16,000 g for 30 minutes and the supernatant retained as a detergent soluble fraction (DSM) and  
500 mixed 3:1 with 4x reducing (2-mercaptoethanol) LDS sample buffer. The detergent resistant pellet  
501 (DRM) was gently washed with 1 mL lysis buffer, centrifuged at 16,000 g for 5 minutes, and the  
502 supernatant discarded. The resulting pellet was resuspended in 27  $\mu$ L of 3:1 lysis buffer: 4x  
503 reducing LDS sample buffer, after which 25  $\mu$ L of the DRM and DSM were separated by 7.5% SDS-  
504 PAGE and probed using anti-FLS2 polyclonal antibody as described [55].

505

#### 506 **Variable Angle - Total Internal Reflection Fluorescence (VA-TIRF) microscopy**

507 VA-TIRF microscopy was performed using an inverted Leica GSD equipped with a 160x objective  
508 (NA = 1.43, oil immersion), and an Andor iXon Ultra 897 EMCCD camera. Images were acquired  
509 by illuminating samples with a 488 nm solid state diode laser, a cube filter with an excitation filter  
510 488/10 and an emission filter 535/50 for FLS2-GFP, and a 532 nm solid state diode laser, a cube  
511 filter with an excitation filter 532/10 and an emission filter 600/100 for mRFP-REM1.3. Optimum  
512 critical angle was determined as giving the best signal-to-noise.

513

#### 514 **Single particle tracking analysis**

515 *Nicotiana benthamiana* plants (14-21 days old) were infiltrated with *Agrobacterium tumefaciens*  
516 (strain GV3101) solution of OD = 0.15 and imaged 32 to 40 hours post infiltration. For single  
517 particle tracking experiments, image time series were recorded at 20 frames per second (50 ms  
518 exposure time) by VA-TIRFM. Analyses were carried out as previously described [19], using the  
519 plugin TrackMate 2.7.4 in Fiji. Single particles were segmented frame-by-frame by applying a  
520 Laplacian of Gaussian filter and estimated particle size of 0.4  $\mu$ m. Individual single particle were  
521 localized with sub-pixel resolution using a built-in quadratic fitting scheme. Single particle  
522 trajectories were reconstructed using a simple linear assignment problem [56] with a maximal  
523 linking distance of 0.4  $\mu$ m and without gap-closing. Only tracks with at least ten successive points  
524 (tracked for 500 ms) were selected for further analysis. Diffusion coefficients of individual  
525 particles were determined using TrajClassifier [57]. For each particle, the slope of the first four  
526 time points of their mean square displacement (MSD) plot was used to calculate their diffusion

527 coefficient according to the following equation:  $MSD = (x-x0)^2 + (y-y0)^2$  and  $D = MSD/4t$ , where  $x0$   
528 and  $y0$  are the initial coordinates,  $x$  and  $y$  are the coordinates at any given time, and  $t$  is the time  
529 frame.

530

### 531 **Co-localization analyses**

532 *Nicotiana benthamiana* plants (14-21 days old) were infiltrated with *Agrobacterium tumefaciens*  
533 (strain GV3101) solution of OD = 0.2 and imaged 48 hours post infiltration. Images were recorded  
534 by VA-TIRFM using 250 ms exposure time. As previously reported [42], we emphasised cluster  
535 formation in the presented images by using the 'LoG3D' plugin [58]. Quantitative co-localization  
536 analyses of the FLS2-GFP and mRFP-REM1.3 were carried out as previously described [42], with  
537 minor modification. Using Fiji, images were subjected to a background subtraction using the  
538 "Rolling ball" method (radius = 20 pixels) and smoothed. We selected regions of TIRF micrographs  
539 with homogeneous illumination for both FLS2-GFP and mRFP-REM1.3. The Pearson co-localization  
540 coefficients were assessed using the JACoP plugin of FIJI [59]. For comparison, we determined  
541 values of correlation, which could be observed by chance by calculating the Pearson coefficient  
542 after flipping one of the two images.

543

### 544 **Structural modelling of FLS2 kinase domain**

545 The FLS2 intracellular domain (amino acids 831-1173) was submitted to the phyre2 [60] server  
546 (<http://www.sbg.bio.ic.ac.uk/phyre2/>) in default settings. The solved BIR2 kinase domain  
547 structure (PDB 4L68, residues 272-600) [61] was identified as the best match and FLS2 residues  
548 841-1171 were successfully modelled onto the BIR2 structure (confidence 100%, coverage 89%).  
549 Cys to Ser mutational effects were modelled using Missense3D [62] in default settings.

550

### 551 **Supplemental Figure Legends**

552 **Supplemental figure 1. A.** Example western blot from Col-0 plants treated with or without flg22  
553 used to generate data shown in Figure 1. FLS2 S-acylation state is shown as a function of recovery  
554 on thiopropyl-Sepharose beads in the presence of hydroxylamine (EX+). Samples lacking  
555 hydroxylamine (EX-) demonstrate completeness of blocking and lack of background or non-  
556 specific binding. LC lanes act as input loading controls for standardisation. **B.** Quantification of  
557 changes in FLS2 and FLS2 C<sup>830,831</sup>S S-acylation following flg22 treatment or water only control (n =  
558 2, blue short dashed line) treatment. flg22 induced changes in S-acylation state are shown relative  
559 to water only treatment (black dashed line). Col-0 n = 5, FLS2 C<sup>830,831</sup>S n = 2, error bars show SEM.  
560 Significance of difference in S-acylation state change between FLS2 (Col-0) and FLS2 C<sup>830,831</sup>S is  
561 shown as determined by Student's t-test. **C.** Expression levels of FLS2 C<sup>1132,1135</sup>S in  
562 *fls2/FLS2pro:FLS2* FLS2 C<sup>1132,1135</sup>S transgenic lines used in this study. 50 mg total protein from 7-  
563 day old seedlings was loaded per lane. MYH9.5 is a previously reported cross-reacting protein  
564 with the primary anti-FLS2 antibody used.

565

566 **Supplemental figure 2.** Alignment of a representative member from each of the wider Arabidopsis  
567 RK superfamilies, centred on the conserved C[X]7RP motif found in the loop between the G- and  
568 H-helices of the kinase domain. Putative S-acylation site cysteines are highlighted in teal.

569

570 **Supplemental figure 3.** FLS2-3xMyc-GFP and FLS2 C<sup>1132,1135</sup>S-3xMyc-GFP behave similarly when  
571 expressed in *N. benthamiana* in the absence of flg22. **A.** Fluorescence intensity measurements at  
572 the plasma membrane of single cells using TIRF microscopy. Box plot shows median and IQR,  
573 whiskers indicate 1.5 x IQR. FLS2-3xMyc-GFP n = 59, FLS2 C<sup>1132,1135</sup>S-3xMyc-GFP n = 42. p value  
574 calculated using Student's t-test. Statistical outliers are indicated by open circles. **B.** Single particle  
575 tracking of FLS2-3xMyc-GFP and FLS2 C<sup>1132,1135</sup>S-3xMyc-GFP at the plasma membrane using TIRF  
576 microscopy. **C.** Quantification of data in B. Box plot shows median and IQR, whiskers indicate 1.5  
577 x IQR. n = 13, p value calculated using Student's t-test. Statistical outliers are indicated by open  
578 circles. **D.** FLS2-3xMyc-GFP and FLS2 C<sup>1132,1135</sup>S-3xMyc-GFP form nanodomains in the plasma  
579 membrane and show similar co-localisation with mRFP-REM1.3 nanodomains when transiently  
580 expressed in *N. benthamiana* in the absence of flg22. Representative micrographs of FLS2-3xMyc-  
581 GFP and FLS2 C<sup>1132,1135</sup>S-3xMyc-GFP (green) co-localisation with mRFP-REM1.3 (magenta) at the  
582 plasma membrane of single epidermal cells using TIRF microscopy. **E.** Quantification of FLS2-  
583 3xMyc-GFP or FLS2 C<sup>1132,1135</sup>S-3xMyc-GFP co-localisation with mRFP-REM1.3 at the plasma  
584 membrane of single epidermal cells. FLS2-3xMyc-GFP n = 14, FLS2 C<sup>1132,1135</sup>S-3xMyc-GFP n = 12.  
585 Box plot shows median and IQR, whiskers indicate 1.5 x IQR. p value calculated using Student's t-  
586 test. **F.** To determine whether measured co-localisation values shown in B (original) were  
587 significant, co-localisation analysis was repeated after rotation of the mRFP-REM1.3 image by 90  
588 degrees (rotated). In all cases, co-localisation was reduced and overall, significantly different,  
589 indicating that the co-localisation observed in B is both specific and significant. p values were  
590 calculated using Student's t-test.

591

592 **Supplemental figure 4.** Mutation of kinase domain S-acylation site cysteines to serine in FLS2 is  
593 not predicted to affect kinase domain structure. **A.** Superimposition of the modelled structures of  
594 FLS2 (white) and FLS2 C<sup>1132,1135</sup>S (blue) kinase domains. B. Zoomed in view of Cys1132,1135 in FLS2  
595 (yellow) and substituted serine (red) residues in FLS2 C<sup>1132,1135</sup>S. Only the proton of Ser1132 is  
596 predicted to diverge from the FLS2 structure, being rotated by ~110 degrees compared to the  
597 original cysteine. This rotation does not affect the position or packing of any other amino acid.

598

## 599 **References**

- 600 1. Shiu, S.H., and Bleecker, A.B. (2001). Receptor-like kinases from Arabidopsis form a  
601 monophyletic gene family related to animal receptor kinases. PNAS 98, 10763-10768.
- 602 2. Shiu, S.H., and Bleecker, A.B. (2003). Expansion of the receptor-like kinase/Pelle gene  
603 family and receptor-like proteins in Arabidopsis. Plant Physiol 132, 530-543.
- 604 3. Divi, U.K., and Krishna, P. (2009). Brassinosteroid: a biotechnological target for  
605 enhancing crop yield and stress tolerance. N Biotechnol 26, 131-136.
- 606 4. Lacombe, S., Rougon-Cardoso, A., Sherwood, E., Peeters, N., Dahlbeck, D., van Esse,  
607 H.P., Smoker, M., Rallapalli, G., Thomma, B.P., Staskawicz, B., et al. (2010). Interfamily  
608 transfer of a plant pattern-recognition receptor confers broad-spectrum bacterial  
609 resistance. Nature biotechnology 28, 365-369.
- 610 5. Gust, A.A., Brunner, F., and Nurnberger, T. (2010). Biotechnological concepts for  
611 improving plant innate immunity. Curr Opin Biotechnol 21, 204-210.

612 6. Marshall, A., Aalen, R.B., Audenaert, D., Beeckman, T., Broadley, M.R., Butenko, M.A.,  
613 Cano-Delgado, A.I., de Vries, S., Dresselhaus, T., Felix, G., et al. (2012). Tackling drought  
614 stress: receptor-like kinases present new approaches. *Plant Cell* 24, 2262-2278.

615 7. Gomez-Gomez, L., and Boller, T. (2000). FLS2: an LRR receptor-like kinase involved in the  
616 perception of the bacterial elicitor flagellin in *Arabidopsis*. *Mol Cell* 5, 1003-1011.

617 8. Chinchilla, D., Zipfel, C., Robatzek, S., Kemmerling, B., Nurnberger, T., Jones, J.D., Felix,  
618 G., and Boller, T. (2007). A flagellin-induced complex of the receptor FLS2 and BAK1  
619 initiates plant defence. *Nature* 448, 497-500.

620 9. Heese, A., Hann, D.R., Gimenez-Ibanez, S., Jones, A.M., He, K., Li, J., Schroeder, J.I., Peck,  
621 S.C., and Rathjen, J.P. (2007). The receptor-like kinase SERK3/BAK1 is a central regulator  
622 of innate immunity in plants. *PNAS* 104, 12217-12222.

623 10. Lu, D., Wu, S., Gao, X., Zhang, Y., Shan, L., and He, P. (2010). A receptor-like cytoplasmic  
624 kinase, BIK1, associates with a flagellin receptor complex to initiate plant innate  
625 immunity. *PNAS* 107, 496-501.

626 11. Lu, D., Lin, W., Gao, X., Wu, S., Cheng, C., Avila, J., Heese, A., Devarenne, T.P., He, P., and  
627 Shan, L. (2011). Direct ubiquitination of pattern recognition receptor FLS2 attenuates  
628 plant innate immunity. *Science* 332, 1439-1442.

629 12. Spallek, T., Beck, M., Ben Khaled, S., Salomon, S., Bourdais, G., Schellmann, S., and  
630 Robatzek, S. (2013). ESCRT-I mediates FLS2 endosomal sorting and plant immunity. *PLoS*  
631 *Genet* 9, e1004035.

632 13. Smith, J.M., Leslie, M.E., Robinson, S.J., Korasick, D.A., Zhang, T., Backues, S.K., Cornish,  
633 P.V., Koo, A.J., Bednarek, S.Y., and Heese, A. (2014). Loss of *Arabidopsis thaliana*  
634 Dynamin-Related Protein 2B reveals separation of innate immune signaling pathways.  
635 *PLoS Pathog* 10, e1004578.

636 14. Kadota, Y., Sklenar, J., Derbyshire, P., Stransfeld, L., Asai, S., Ntoukakis, V., Jones, J.D.,  
637 Shirasu, K., Menke, F., Jones, A., et al. (2014). Direct regulation of the NADPH oxidase  
638 RBOHD by the PRR-associated kinase BIK1 during plant immunity. *Mol Cell* 54, 43-55.

639 15. Mbengue, M., Bourdais, G., Gervasi, F., Beck, M., Zhou, J., Spallek, T., Bartels, S., Boller,  
640 T., Ueda, T., Kuhn, H., et al. (2016). Clathrin-dependent endocytosis is required for  
641 immunity mediated by pattern recognition receptor kinases. *PNAS* 113, 11034-11039.

642 16. Stegmann, M., Monaghan, J., Smakowska-Luzan, E., Rovenich, H., Lehner, A., Holton, N.,  
643 Belkhadir, Y., and Zipfel, C. (2017). The receptor kinase FER is a RALF-regulated scaffold  
644 controlling plant immune signaling. *Science* 355, 287-289.

645 17. Orosa, B., Yates, G., Verma, V., Srivastava, A.K., Srivastava, M., Campanaro, A., De Vega,  
646 D., Fernandes, A., Zhang, C., Lee, J., et al. (2018). SUMO conjugation to the pattern  
647 recognition receptor FLS2 triggers intracellular signalling in plant innate immunity.  
648 *NatComms* 9, 5185.

649 18. Keinath, N.F., Kierszniowska, S., Lorek, J., Bourdais, G., Kessler, S.A., Asano, H.,  
650 Grossniklaus, U., Schulze, W., Robatzek, S., and Panstruga, R. (2010). PAMP-induced  
651 changes in plasma membrane compartmentalization reveal novel components of plant  
652 immunity. *JBC* 285, 39140-39149.

653 19. Gronnier, J., Franck, C.M., Stegmann, M., DeFalco, T.A., Cifuentes, A.A., Dünser, K., Lin,  
654 W., Yang, Z., Kleine-Vehn, J., Ringli, C., et al. (2020). FERONIA regulates FLS2 plasma  
655 membrane nanoscale dynamics to modulate plant immune signaling. *bioRxiv*.

656 20. Gronnier, J., Franck, C.M., Stegmann, M., DeFalco, T.A., Abarca, A., von Arx, M., Dunser,  
657 K., Lin, W., Yang, Z., Kleine-Vehn, J., et al. (2022). Regulation of immune receptor kinase  
658 plasma membrane nanoscale organization by a plant peptide hormone and its  
659 receptors. *Elife* 11.

660 21. Hemsley, P.A., Kemp, A.C., and Grierson, C.S. (2005). The TIP GROWTH DEFECTIVE1 S-  
661 acyl transferase regulates plant cell growth in *Arabidopsis*. *Plant Cell* **17**, 2554-2563.  
662 22. Martin, B.R., Wang, C., Adibekian, A., Tully, S.E., and Cravatt, B.F. (2011). Global profiling  
663 of dynamic protein palmitoylation. *Nat Met* **9**, 84-89.  
664 23. Hurst, C.H., and Hemsley, P.A. (2015). Current perspective on protein S-acylation in  
665 plants: more than just a fatty anchor? *Journal of Experimental Botany* **66**, 1599-1606.  
666 24. Mesquita, F.S., Abrami, L., Sergeeva, O., Turelli, P., Qing, E., Kunz, B., Raclot, C., Paz  
667 Montoya, J., Abriata, L.A., Gallagher, T., et al. (2021). S-acylation controls SARS-CoV-2  
668 membrane lipid organization and enhances infectivity. *Dev Cell* **56**, 2790-2807 e2798.  
669 25. Turnbull, D., and Hemsley, P.A. (2017). Fats and function: protein lipid modifications in  
670 plant cell signalling. *Curr Opin Plant Biol* **40**, 63-70.  
671 26. Hurst, C.H., Wright, K.M., Turnbull, D., Leslie, K., Jones, S., and Hemsley, P.A. (2019).  
672 Juxta-membrane S-acylation of plant receptor-like kinases is likely fortuitous and does  
673 not necessarily impact upon function. *Sci Rep* **9**, 12818.  
674 27. Wang, Y., Li, Z., Liu, D., Xu, J., Wei, X., Yan, L., Yang, C., Lou, Z., and Shui, W. (2014).  
675 Assessment of BAK1 activity in different plant receptor-like kinase complexes by  
676 quantitative profiling of phosphorylation patterns. *J Proteomics* **108**, 484-493.  
677 28. Zipfel, C., Kunze, G., Chinchilla, D., Caniard, A., Jones, J.D., Boller, T., and Felix, G. (2006).  
678 Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts *Agrobacterium*-  
679 mediated transformation. *Cell* **125**, 749-760.  
680 29. Holton, N., Nekrasov, V., Ronald, P.C., and Zipfel, C. (2015). The phylogenetically-related  
681 pattern recognition receptors EFR and XA21 recruit similar immune signaling  
682 components in monocots and dicots. *PLoS Pathog* **11**, e1004602.  
683 30. Bender, K.W., Couto, D., Kadota, Y., Macho, A.P., Sklenar, J., Bjornson, M., Petriello, A.,  
684 Farre, M.F., Schwessinger, B., Ntoukakis, V., et al. (2021). ACTIVATION LOOP  
685 PHOSPHORYLATION OF A NON-RD RECEPTOR KINASE INITIATES PLANT INNATE IMMUNE  
686 SIGNALING. *bioRxiv*.  
687 31. Abrami, L., Leppla, S.H., and van der Goot, F.G. (2006). Receptor palmitoylation and  
688 ubiquitination regulate anthrax toxin endocytosis. *J Cell Biol* **172**, 309-320.  
689 32. Roux, M., Schwessinger, B., Albrecht, C., Chinchilla, D., Jones, A., Holton, N., Malinovsky,  
690 F.G., Tor, M., de Vries, S., and Zipfel, C. (2011). The *Arabidopsis* leucine-rich repeat  
691 receptor-like kinases BAK1/SERK3 and BKK1/SERK4 are required for innate immunity to  
692 hemibiotrophic and biotrophic pathogens. *Plant Cell* **23**, 2440-2455.  
693 33. Perraki, A., DeFalco, T.A., Derbyshire, P., Avila, J., Sere, D., Sklenar, J., Qi, X., Stransfeld,  
694 L., Schwessinger, B., Kadota, Y., et al. (2018). Phosphocode-dependent functional  
695 dichotomy of a common co-receptor in plant signalling. *Nature* **561**, 248-252.  
696 34. Oluwole, A.O., Danielczak, B., Meister, A., Babalola, J.O., Vargas, C., and Keller, S. (2017).  
697 Solubilization of Membrane Proteins into Functional Lipid-Bilayer Nanodiscs Using a  
698 Diisobutylene/Maleic Acid Copolymer. *Angew Chem Int Ed Engl* **56**, 1919-1924.  
699 35. Chen, D., Hao, F., Mu, H., Ahsan, N., Thelen, J.J., and Stacey, G. (2021). S-acylation of  
700 P2K1 mediates extracellular ATP-induced immune signaling in *Arabidopsis*. *Nat Comms*  
701 **12**, 2750.  
702 36. Yeh, Y.H., Panzeri, D., Kadota, Y., Huang, Y.C., Huang, P.Y., Tao, C.N., Roux, M., Chien,  
703 H.C., Chin, T.C., Chu, P.W., et al. (2016). The *Arabidopsis* Malectin-Like/LRR-RLK IOS1 is  
704 Critical for BAK1-Dependent and BAK1-Independent Pattern-Triggered Immunity. *Plant*  
705 *Cell* **28**, 1701-1721.  
706 37. Imkampe, J., Halter, T., Huang, S., Schulze, S., Mazzotta, S., Schmidt, N., Manstretta, R.,  
707 Postel, S., Wierzba, M., Yang, Y., et al. (2017). The *Arabidopsis* Leucine-Rich Repeat

708 Receptor Kinase BIR3 Negatively Regulates BAK1 Receptor Complex Formation and  
709 Stabilizes BAK1. *Plant Cell* 29, 2285-2303.

710 38. Allender, D.W., Giang, H., and Schick, M. (2020). Model Plasma Membrane Exhibits a  
711 Microemulsion in Both Leaves Providing a Foundation for "Rafts". *Biophys J* 118, 1019-  
712 1031.

713 39. Sandor, R., Der, C., Grosjean, K., Anca, I., Noirot, E., Leborgne-Castel, N., Lochman, J.,  
714 Simon-Plas, F., and Gerbeau-Pissot, P. (2016). Plasma membrane order and fluidity are  
715 diversely triggered by elicitors of plant defence. *JExBot* 67, 5173-5185.

716 40. Cui, Y., Li, X., Yu, M., Li, R., Fan, L., Zhu, Y., and Lin, J. (2018). Sterols regulate endocytic  
717 pathways during flg22-induced defense responses in *Arabidopsis*. *Development* 145.

718 41. Blaskovic, S., Blanc, M., and van der Goot, F.G. (2013). What does S-palmitoylation do to  
719 membrane proteins? *FEBS J* 280, 2766-2774.

720 42. Bucherl, C.A., Jarsch, I.K., Schudoma, C., Segonzac, C., Mbengue, M., Robatzek, S.,  
721 MacLean, D., Ott, T., and Zipfel, C. (2017). Plant immune and growth receptors share  
722 common signalling components but localise to distinct plasma membrane nanodomains.  
723 *Elife* 6, e25114.

724 43. Zipfel, C., Robatzek, S., Navarro, L., Oakeley, E.J., Jones, J.D., Felix, G., and Boller, T.  
725 (2004). Bacterial disease resistance in *Arabidopsis* through flagellin perception. *Nature*  
726 428, 764-767.

727 44. Hurst, C.H., Turnbull, D., Myles, S.M., Leslie, K., Keinath, N.F., and Hemsley, P.A. (2018).  
728 Variable Effects of C-Terminal Fusions on FLS2 Function: Not All Epitope Tags Are  
729 Created Equal. *Plant Physiol* 177, 522-531.

730 45. Robatzek, S., Chinchilla, D., and Boller, T. (2006). Ligand-induced endocytosis of the  
731 pattern recognition receptor FLS2 in *Arabidopsis*. *Genes Dev* 20, 537-542.

732 46. Karimi, M., Inze, D., and Depicker, A. (2002). GATEWAY vectors for Agrobacterium-  
733 mediated plant transformation. *Trends Plant Sci* 7, 193-195.

734 47. Koncz, C., and Schell, J. (1986). The promoter of TL-DNA gene 5 controls the tissue-  
735 specific expression of chimaeric genes carried by a novel type of Agrobacterium binary  
736 vector. *Mol. Gen. Genet.* 204.

737 48. Kemmerling, B., Schwedt, A., Rodriguez, P., Mazzotta, S., Frank, M., Qamar, S.A.,  
738 Mengiste, T., Betsuyaku, S., Parker, J.E., Mussig, C., et al. (2007). The BRI1-associated  
739 kinase 1, BAK1, has a brassinolide-independent role in plant cell-death control. *Curr Biol*  
740 17, 1116-1122.

741 49. Clough, S.J., and Bent, A.F. (1998). Floral dip: a simplified method for Agrobacterium-  
742 mediated transformation of *Arabidopsis thaliana*. *Plant J* 16, 735-743.

743 50. Turnbull, D., Yang, L., Naqvi, S., Breen, S., Welsh, L., Stephens, J., Morris, J., Boevink,  
744 P.C., Hedley, P.E., Zhan, J., et al. (2017). RXLR Effector AVR2 Up-Regulates a  
745 Brassinosteroid-Responsive bHLH Transcription Factor to Suppress Immunity. *Plant*  
746 *Physiol* 174, 356-369.

747 51. Schwessinger, B., Roux, M., Kadota, Y., Ntoukakis, V., Sklenar, J., Jones, A., and Zipfel, C.  
748 (2011). Phosphorylation-dependent differential regulation of plant growth, cell death,  
749 and innate immunity by the regulatory receptor-like kinase BAK1. *PLoS Genet* 7,  
750 e1002046.

751 52. Wathugala, D.L., Hemsley, P.A., Moffat, C.S., Cremelie, P., Knight, M.R., and Knight, H.  
752 (2012). The Mediator subunit SFR6/MED16 controls defence gene expression mediated  
753 by salicylic acid and jasmonate responsive pathways. *New Phytologist* 195, 217-230.

754 53. Schmittgen, T.D., and Livak, K.J. (2008). Analyzing real-time PCR data by the comparative  
755 C(T) method. *Nat Protoc* 3, 1101-1108.

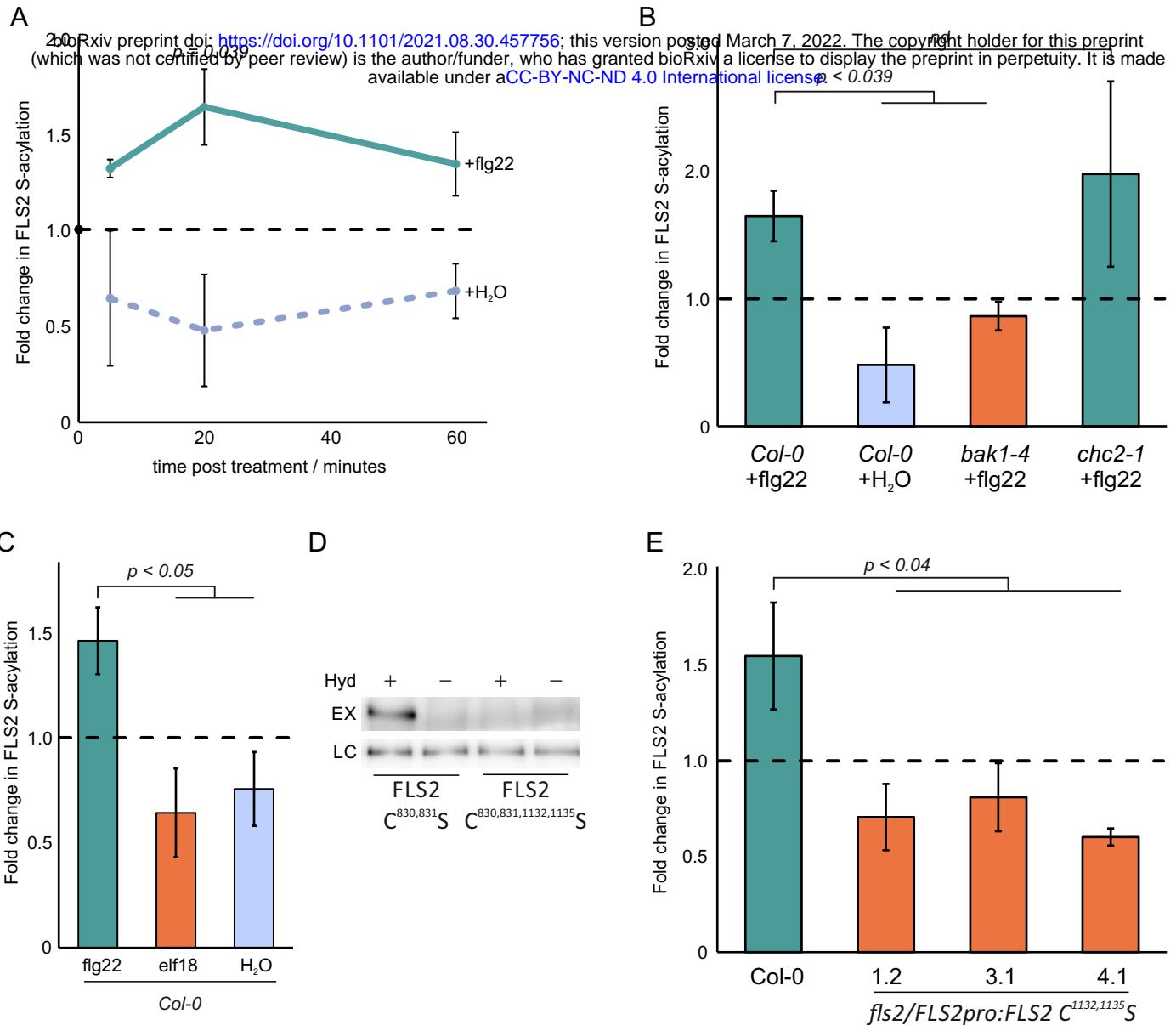
756 54. Ishiga, Y., Ishiga, T., Uppalapati, S.R., and Mysore, K.S. (2011). Arabidopsis seedling  
757 flood-inoculation technique: a rapid and reliable assay for studying plant-bacterial  
758 interactions. *Plant Methods* 7, 32.

759 55. Hurst, C.H., Turnbull, D., Plain, F., Fuller, W., and Hemsley, P.A. (2017). Maleimide  
760 scavenging enhances determination of protein S-palmitoylation state in acyl-exchange  
761 methods. *Biotechniques* 62, 69-75.

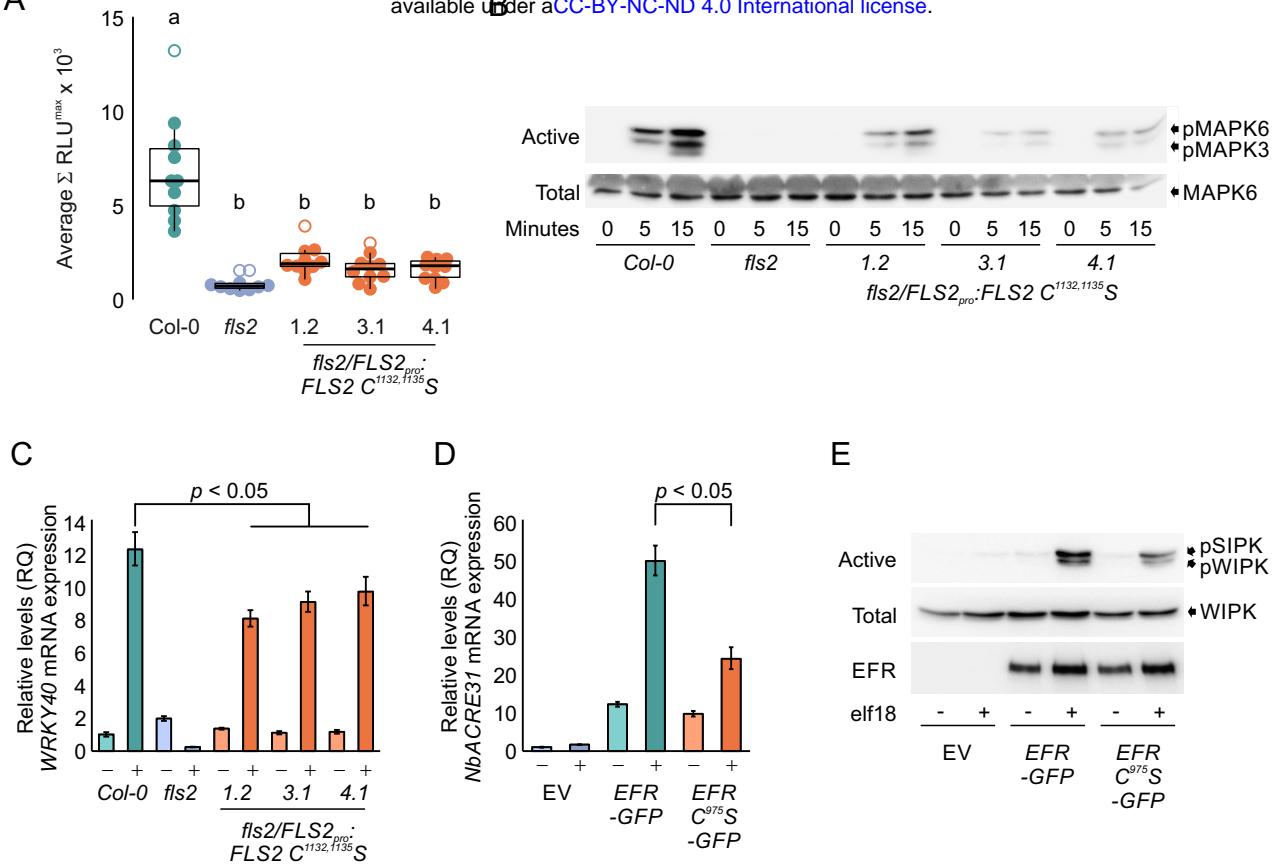
762 56. Jaqaman, K., Loerke, D., Mettlen, M., Kuwata, H., Grinstein, S., Schmid, S.L., and  
763 Danuser, G. (2008). Robust single-particle tracking in live-cell time-lapse sequences.  
764 *NatMet* 5, 695-702.

765 57. Wagner, T., Kroll, A., Haramagatti, C.R., Lipinski, H.G., and Wiemann, M. (2017).  
766 Classification and Segmentation of Nanoparticle Diffusion Trajectories in Cellular Micro  
767 Environments. *PLoS One* 12, e0170165.

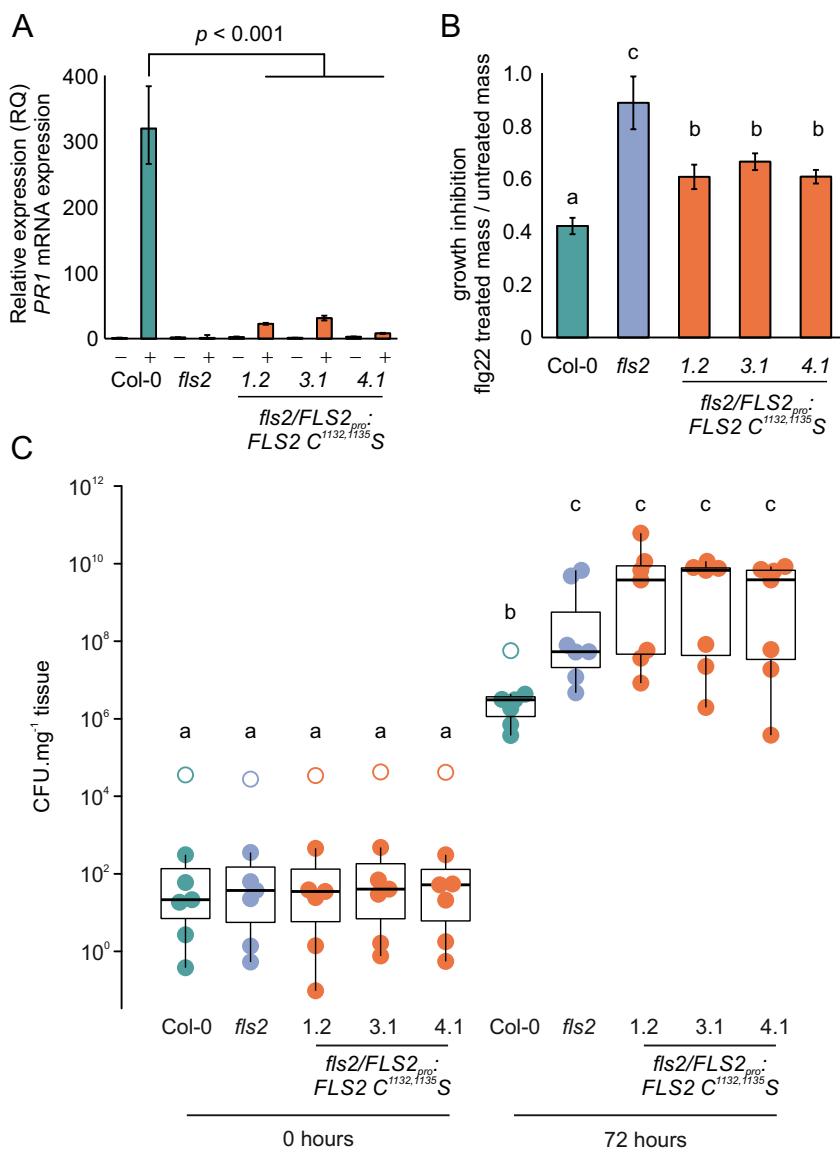
768 58. Sage, D., Neumann, F.R., Hediger, F., Gasser, S.M., and Unser, M. (2005). Automatic  
769 tracking of individual fluorescence particles: application to the study of chromosome  
770 dynamics. *IEEE Transactions on Image Processing* 14, 1372-1383.


771 59. Bolte, S., and Cordelieres, F.P. (2006). A guided tour into subcellular colocalization  
772 analysis in light microscopy. *J Microsc* 224, 213-232.

773 60. Kelley, L.A., Mezulis, S., Yates, C.M., Wass, M.N., and Sternberg, M.J. (2015). The Phyre2  
774 web portal for protein modeling, prediction and analysis. *Nat Protoc* 10, 845-858.

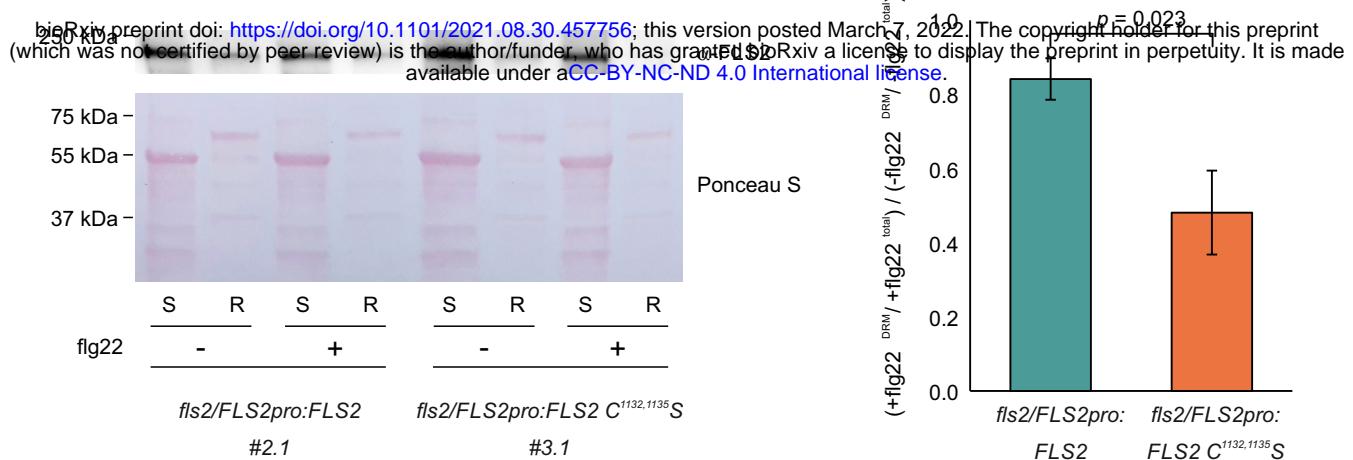

775 61. Blaum, B.S., Mazzotta, S., Noldeke, E.R., Halter, T., Madlung, J., Kemmerling, B., and  
776 Stehle, T. (2014). Structure of the pseudokinase domain of BIR2, a regulator of BAK1-  
777 mediated immune signaling in Arabidopsis. *J Struct Biol* 186, 112-121.

778 62. Ittisoponpisan, S., Islam, S.A., Khanna, T., Alhuzimi, E., David, A., and Sternberg, M.J.E.  
779 (2019). Can Predicted Protein 3D Structures Provide Reliable Insights into whether  
780 Missense Variants Are Disease Associated? *J Mol Biol* 431, 2197-2212.


781

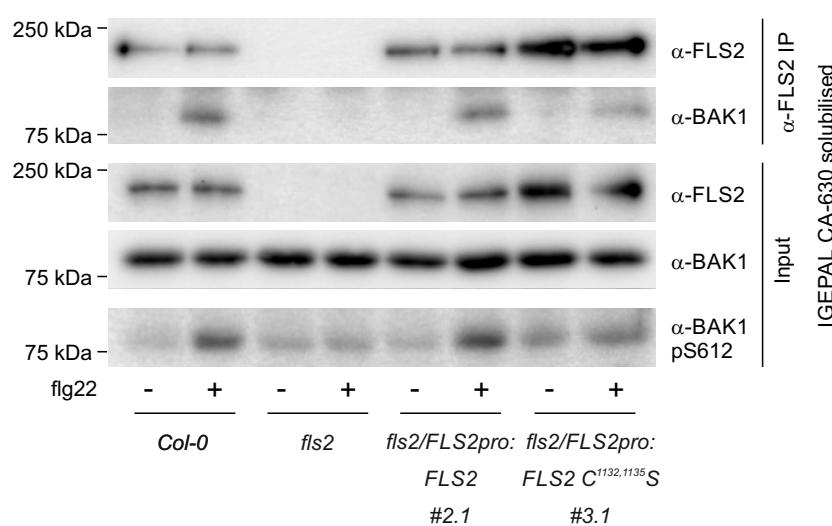


**Figure 1. FLS2 S-acylation increases upon flg22 perception.** **A.** Quantification of changes in FLS2 S-acylation following flg22 ( $n = 5$ , green solid line) or water only control ( $n = 2$ , blue short dashed line) treatment. S-acylation state is shown relative to  $T_0$  (black, long dashed line). Error bars show SEM. Significance of difference between flg22 and water treated at 20 minutes is shown as determined by Student's t-test. **B.** S-acylation of FLS2 in response to flg22 requires BAK1. S-acylation state is shown relative to water treated plants of the same genotype (dashed line). Error bars show SEM, *Col-0* +flg22  $n=5$ , *Col-0* + H<sub>2</sub>O  $n = 2$ , *bak1-4*  $n = 4$ , *chc2-1*  $n = 2$ , significant difference to flg22 treated *Col-0* as determined by Student's t-test are shown. Data shown in panels A and B are derived from the same biological repeats, *Col-0* controls are therefore shared between panels. **C.** FLS2 undergoes S-acylation in response to flg22 treatment but not elf18. S-acylation state is shown relative to untreated plants (black, dashed line). Error bars show SEM,  $n = 2$ , significant differences to flg22 treated *Col-0* as determined by Student's t-test are shown. **D.** Mutation of FLS2 Cys1132,1135 to serine abolishes residual S-acylation observed in the FLS2 C<sup>830,831</sup>S background. EX - indicates S-acylation state, LC - loading control, Hyd - indicates presence (+) or absence (-) of hydroxylamine. **E.** FLS2 C<sup>1132,1135</sup>S mutants are blocked in flg22 mediated increases in S-acylation. S-acylation state is shown relative to water treated plants of the same genotype (black, dashed line). Error bars show SEM,  $n=3$ , significant difference to flg22 treated *Col-0* as determined by Student's t-test are shown.

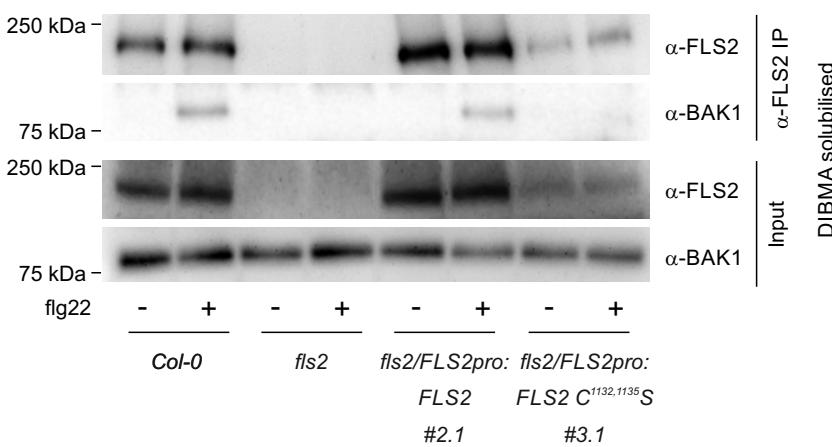



**Figure 2. Acute responses to flg22 perception are reduced in FLS2 C<sup>1132,1135</sup> S expressing plants. A.** ROS production induced by 100 nM flg22 treatment. Data points are the sum of the 3 highest consecutive readings per sample. n = 10 per genotype. Statistical outliers are shown as open circles. Box shows median and IQR, whiskers show +/- 1.5 x IQR. Statistically significant differences at p < 0.01 are indicated (a, b) and were calculated using ANOVA and Tukey HSD tests. **B.** MAPK activation in fls2/FLS2pro:FLS2 C<sup>1132,1135</sup> S seedlings in response to 100 nM flg22 as determined over time by immunoblot analysis. pMAPK6/pMAPK3 show levels of active form of each MAPK. MAPK6 indicates total levels of MAPK6 as a loading control. Upper shadow band in MAPK6 blot is RUBISCO detected non-specifically by secondary antibody. **C.** Induction of WRKY40 gene expression after 1 hour treatment with 1  $\mu$ M flg22 in fls2/FLS2pro:FLS2 C<sup>1132,1135</sup> S seedlings as determined by qRT-PCR. **D.** Induction of NbACRE31 gene expression after 3 hour treatment with 1  $\mu$ M elf18 in EFR-GFP and EFR C<sup>975</sup>S-GFP expressing *N. benthamiana* plants as determined by qRT-PCR. Values were calculated using the  $\Delta\Delta C_T$  method, error bars represent RQ<sub>MIN</sub> and RQ<sub>MAX</sub> and constitute the acceptable error level for a 95% confidence interval according to Student's t-test. **E.** MAPK activation in EFR-GFP and EFR C<sup>975</sup>S-GFP expressing *N. benthamiana* plants in response to 15 minutes treatment with 1  $\mu$ M elf18 as determined by immunoblot analysis. pSIPK/pWIPK show levels of active form of each MAPK. WIPK indicates total levels of WIPK as a loading control. EFR-GFP and EFR C<sup>975</sup>S-GFP levels are shown as a control for dosage effects on MAPK activation.

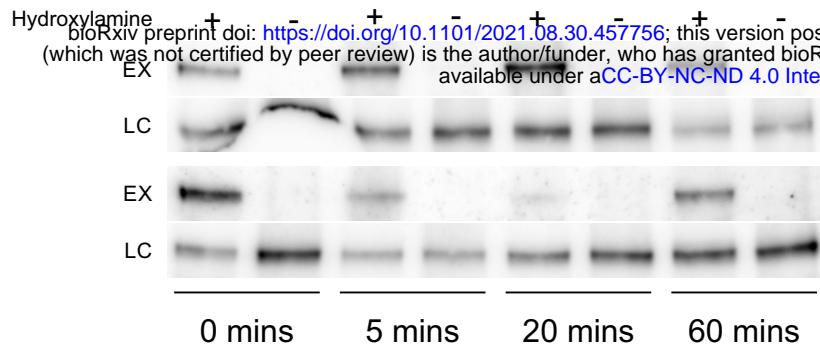
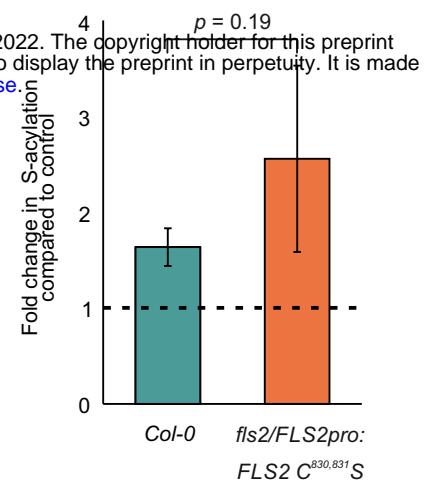



**Figure 3. FLS2 S-acylation is required for long term immune response outputs (A).** Induction of *PR1* gene expression after 24 hours treatment with 1  $\mu$ M flg22 in *fls2/FLS2pro:FLS2 C<sup>1132,1135</sup>* S seedlings as determined by qRT-PCR. Values were calculated using the  $\Delta\Delta C_T$  method, error bars represent RQMIN and RQMAX and constitute the acceptable error level for a 95% confidence interval according to Student's t-test. Significant differences in transcript mRNA detected in *fls2/FLS2pro:FLS2 C<sup>1132,1135</sup>* S seedlings compared to Col-0 levels in flg22 treated samples are indicated. Similar data were obtained over 3 biological repeats. **(B).** Inhibition of growth after 10 days of 1  $\mu$ M flg22 treatment is reduced in *fls2/FLS2pro:FLS2 C<sup>1132,1135</sup>* S seedlings. Data are averages of 3 biological replicates, error bars are SEM, significant differences at  $p < 0.01$  are indicated (a, b, c) and calculated by ANOVA with Tukey HSD test. **(C).** Resistance to *P. syringae* DC3000 infection is impaired by loss of FLS2 S-acylation. Box and whisker plots show data from 7 biological repeats (box denotes median and IQR, whiskers show  $\pm 1.5 \times$  IQR, outliers are shown as open circles), significant differences at  $p < 0.05$  are indicated (a, b, c) and calculated by ANOVA with Tukey HSD test.

A



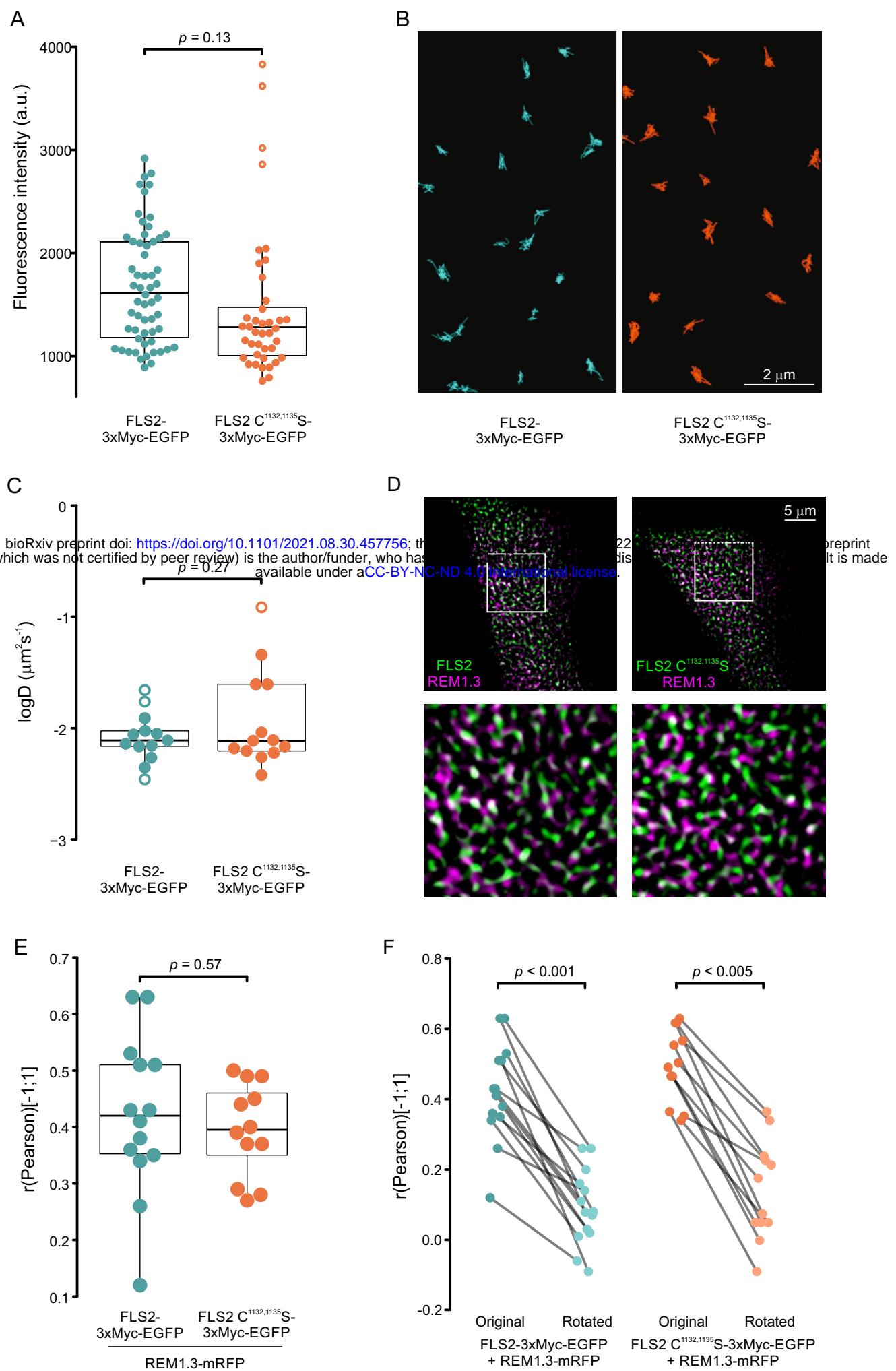

B



C



D




**Figure 4. FLS2 C<sup>1132,1135</sup>S shows reduced interaction with BAK1 following flg22 stimulation. A.** Arabidopsis flg22 treated seedlings were lysed in cold IGEPAL CA-630 buffer and separated into detergent soluble (S) and detergent resistant (R) fractions. Relative partitioning of FLS2 into each fraction was determined by western blotting with anti-FLS2 rabbit polyclonal antibody. Loading and purity of fractions is shown by Ponceau S staining of the membrane. **B.** Quantification of data shown in A from 3 biological repeats. Error bars show SEM, significance was calculated using Student's t-test. **C.** FLS2 was immunoprecipitated from IGEPAL CA-630 solubilised flg22 treated Arabidopsis seedling lysates using anti-FLS2 rabbit polyclonal antibody. BAK1 recovery was assessed using rabbit polyclonal anti-BAK1 antibody. flg22 induced BAK1 autophosphorylation at Ser612 was assessed in input samples using rabbit polyclonal anti-BAK1 pS612 antibody. **D.** FLS2 was immunoprecipitated from DIBMA solubilised flg22 treated Arabidopsis seedling lysates using anti-FLS2 rabbit polyclonal antibody. BAK1 recovery was assessed using rabbit polyclonal anti-BAK1 antibody.

**A****B**

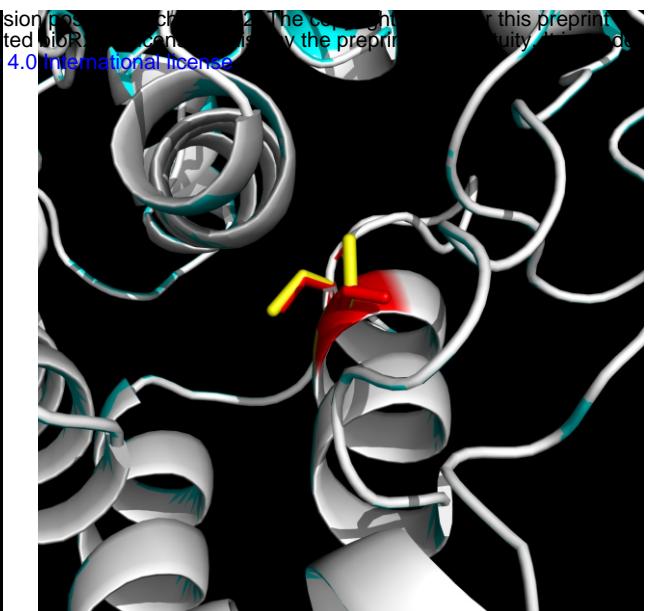
**Supplemental figure 1. A.** Example western blot from *Col-0* plants treated with or without flg22 used to generate data shown in Figure 1. FLS2 S-acylation state is shown as a function of recovery on thiopropyl-Sepharose beads in the presence of hydroxylamine (EX+). Samples lacking hydroxylamine (EX-) demonstrate completeness of blocking and lack of background or non-specific binding. LC lanes act as input loading controls for standardisation. **B.** Quantification of changes in FLS2 and FLS2 C<sup>830,831</sup> S S-acylation following flg22 treatment or water only control (n = 2, blue short dashed line) treatment. flg22 induced changes in S-acylation state are shown relative to water only treatment (black dashed line). *Col-0* n = 5, FLS2 C<sup>830,831</sup> S n = 2, error bars show SEM. Significance of difference in S-acylation state change between FLS2 (*Col-0*) and FLS2 C<sup>830,831</sup> S is shown as determined by Student's t-test.

|           |              |      |                                 |      |
|-----------|--------------|------|---------------------------------|------|
| At5g46330 | FLS2         | 1125 | IEDFLKLCLFCTSSRPEDRPDMNEILTHLM  | 1154 |
| At5g20480 | EFR          | 965  | LRLVLQVGIKCSEYYPRDRMRTDEAVRELI  | 994  |
| At3g24550 | AtPERK1      | 525  | MARMVACAAACVRHSARRPRMSQIVRALE   | 554  |
| At2g48010 | RKF3         | 529  | LEKYVLIAVLCSHPQLHARPTMDQVVKMLE  | 558  |
| At3g51550 | FERONIA      | 779  | FKKFAETAMKCVLDDQGIERPSMGSVNLWNL | 808  |
| At1g18390 | AtLRK10L-1.2 | 582  | VIAVAELAFQCLQSDKDLRPCMSHVQDTLT  | 611  |
| At2g20300 | AtALE2       | 588  | MAKVAIAASMCVHQEVSHRPFMGEVVQALK  | 617  |
| At1g52310 |              | 514  | VQKVVDLVYSCTQNVPSPMRPRMSHVHQLQ  | 543  |
| At3g26700 |              | 320  | VEELITLTLRQCVDSSEKRPTMSFVVTELE  | 349  |
| At1g21250 | WAK1         | 651  | IQEAAARIAAECTRIMGEERPRMKEVAAKLE | 680  |
| At5g38280 | AtPR5K1      | 577  | AKKLVIVALWCIQMNPSPDRPPMIKVIEMLE | 606  |
| At5g60300 | AtP2K1       | 584  | VEMVMKLGILCSNIVPESRPTMEQVVLN    | 613  |
| At1g19090 | AtCRK1       | 543  | ALKVLQIGLLCVQSSVELRPSMSEIVFMLQ  | 572  |
| At1g11330 |              | 765  | IEKCVHIGLLCVQEVANDRPNVNSVIWMLT  | 794  |
| At3g59420 | AtCR4        | 567  | LKRIVSVACKCVRMRGKDRPSMDKVTTALE  | 596  |
| consensus |              |      | -----C-----RP-----              |      |

**Supplemental figure 2.** Alignment of a representative member from each of the wider *Arabidopsis* RK superfamilies, centred on the conserved C[X]<sub>7</sub>RP motif found in the loop between the G- and H-helices of the kinase domain. Putative S-acylation site cysteines are highlighted in teal.



**Supplemental figure 3.** FLS2-3xMyc-GFP and FLS2 C<sup>1132,1135</sup>S-3xMyc-GFP behave similarly when expressed in *N. benthamiana* in the absence of flg22. **A.** Fluorescence intensity measurements at the plasma membrane of single cells using TIRF microscopy. Box plot shows median and IQR, whiskers indicate 1.5 x IQR. FLS2-3xMyc-GFP n = 59, FLS2 C<sup>1132,1135</sup>S-3xMyc-GFP n = 42. p value calculated using Student's t-test. Statistical outliers are indicated by open circles. **B.** Single particle tracking of FLS2-3xMyc-GFP and FLS2 C<sup>1132,1135</sup>S-3xMyc-GFP at the plasma membrane using TIRF microscopy. **C.** Quantification of data in B. Box plot shows median and IQR, whiskers indicate 1.5 x IQR. n = 13, p value calculated using Student's t-test. Statistical outliers are indicated by open circles. **D.** FLS2-3xMyc-GFP and FLS2 C<sup>1132,1135</sup>S-3xMyc-GFP form nanodomains in the plasma membrane and show similar co-localisation with mRFP-REM1.3 nanodomains when transiently expressed in *N. benthamiana* in the absence of flg22. Representative micrographs of FLS2-3xMyc-GFP and FLS2 C<sup>1132,1135</sup>S-3xMyc-GFP (green) co-localisation with mRFP-REM1.3 (magenta) at the plasma membrane of single epidermal cells using TIRF microscopy. **E.** Quantification of FLS2-3xMyc-GFP or FLS2 C<sup>1132,1135</sup>S-3xMyc-GFP co-localisation with mRFP-REM1.3 at the plasma membrane of single epidermal cells. FLS2-3xMyc-GFP n = 14, FLS2 C<sup>1132,1135</sup>S-3xMyc-GFP n = 12. Box plot shows median and IQR, whiskers indicate 1.5 x IQR. p value calculated using Student's t-test. **F.** To determine whether measured co-localisation values shown in B (original) were significant, co-localisation analysis was repeated after rotation of the mRFP-REM1.3 image by 90 degrees (rotated). In all cases, co-localisation was reduced and overall significantly different, indicating that the co-localisation observed in B is both specific and significant. p values were calculated using Student's t-test.


A

<https://doi.org/10.1101/2021.08.30.457756>

CC-BY-NC-ND 4.0 International license



B



**Supplemental figure 4. Mutation of kinase domain S-acylation site cysteines to serine in FLS2 is not predicted to affect kinase domain structure.** **A.** Superimposition of the modelled structures of FLS2 (white) and FLS2 C<sup>1132,1135</sup>S (blue) kinase domains. **B.** Zoomed in view of Cys1132,1135 in FLS2 (yellow) and substituted serine (red) residues in FLS2 C<sup>1132,1135</sup>S. Only the proton of Ser1132 is predicted to diverge from the FLS2 structure, being rotated by ~110 degrees compared to the original cysteine. This rotation does not affect the position or packing of any other amino acid.