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Abstract

Metabolic oscillations are characterized by alternating phases of high and low respiratory activity,
associated with transcription of genes involved in biosynthetic pathways and growth, and in
catabolism and stress response. However, the functional consequences of transcriptome
oscillations remain unclear, since most proteins are too stable to be affected by oscillatory
transcript abundances. In this work, we investigate a transcriptome time series during an
unstable state of the oscillation. Our analyses confirm previous suggestions that the relative
times spent in the alternative transcription states are coupled to growth rate. This pulse-width
modulation of transcription provides a simple mechanism for the long-standing question of how
cells adjust their ribosome content and growth rate to environmental conditions. A mathematical
model of this idea reproduces both the almost linear relation of transcript and protein
abundances and the non-linear relation of oscillation periods to growth rate.

Introduction

When yeast cultures are grown to a high cell density they tend to show collective metabolic dynam-
ics, alternating between phases of high oxygen consumption (HOC) and low oxygen consumption
(LOC). Numerous studies have shown that these oscillatory dynamics propagate throughout the
metabolome, transcriptome and impinge on chromatin organization. The cycle period is depen-
dent on growth conditions and the strain employed. Long period cycles (periods z,,, = 3h-8h)
were explained by a partial synchronization of the cell division cycle (CDC). Glycogen stores are
filled during LOC phase, which corresponds to the G1 phase of the CDC, and mobilized during
HOC phase, which corresponds to the budding phase (Kiienzi and Fiechter, 1969; von Meyenburg,
1969a; Sonnleitner and Kdppeli, 1986; Miinch et al., 1992; Bellgardt, 1994; Hjortso and Nielsen,
1995; Futcher, 2006). Satroutdinov et al. (1992) then observed much shorter periods in the strain
IFO 0233 (r,,, = 0.7h-1h). IFO 0233, a distillery strain, questioned these prior models, as the glyco-

osc

gen storage cycle is reversed between the phases and ethanol is produced in LOC phase.
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a2 However, a similar temporal program is observed in both short period and long period exper-
43 imental systems (Machné and Murray, 2012). Both show maxima of the cellular ATP/ADP ratio,
. followed by amino acid synthesis and a TORC1-mediated pulse of protein translation during the
s HOC phase (von Meyenburg, 1969b; Satroutdinov et al., 1992; Hans et al., 2003; Xu et al., 2004;
4 Miiller, 2006; Murray et al., 2007, Machné and Murray, 2012; Amariei et al., 2014; O’ Neill et al.,
a7 2020). Global remodeling of promoter and gene body nucleosome organization occurs during the
s late LOC phase (Amariei et al., 2014; Nocetti and Whitehouse, 2016). During the HOC phase, tran-
4 Scription progresses from a ribosome biogenesis cohort (Ribi) and cytoplasmic ribosomal protein
so genes (RP), to amino acid synthesis genes (AA) and mitochondrial ribosomal protein genes (mtRP)
s1  at the transition to the LOC phase. During the LOC phase, transcripts of a large group of stress-
s2 response and catabolic proteins (S/C) peak (Klevecz et al., 2004; Tu et al., 2005; Slavov et al., 20117,
ss  Machné and Murray, 2012).

Figure 1. PWM, Pulse-Width Modulation of
Transcription: The oscillation period in continuous culture
g is related to the culture growth rate. At slower growth the
E period is longer, reflected in a longer LOC phase, while the
HOC phase stays approximately constant. The conserved
X temporal program of transcription is coupled to HOC and
fast growth LOC phases. Thus, at a longer LOC phase the LOC
phase-specific transcript abundances stay high for a longer
time. This should lead to a overall higher abundance of
LOC phase-specific transcripts (cohort S/¢) and lower
abundance of HOC phase-specific transcripts (cohort
Ribi/RP), and thereby also to higher and lower abundances
of the protein products produced (translated) from these
" transcripts. This is equivalent to the modulation of visually
slow growth perceived intensity of LED lights by varying the fraction of
Thoc Tioc time they are switched on, i.e., the pulse width.

mRNA abundance,
time series clusters

54 Several hypotheses on putative functions of the temporal transcription program have been
ss suggested. The functional profiles of co-expressed cohorts match metabolic activity, and the ini-
se tial hypothesis was a "just-in-time" model of gene expression (JIT), where enzymes are expressed
sz when required within the metabolic cycle (Klevecz et al., 2004; Tu et al., 2005; Murray et al., 2007).
ss However, protein half-lives in yeast are now thought to be much longer than initially reported
so (Christiano et al., 2014). This dampens the effect of periodic transcript on protein abundances
6o (Liick et al., 2014). Indeed, recent proteomic studies found no (preprint: Feltham et al. (2019))
e1 oronly few (O’ Neill et al., 2020) periodic protein abundances in long period systems. Slavov and
e2 Botstein (2011) and Burnetti et al. (2016) suggested an alternative hypothesis, based on the ob-
e3 Servation that the relative duration of the LOC phase varies strongly with growth rate while HOC
ea phase duration only subtly changes. This would result in different absolute abundances of the pro-
es teins produced from HOC- and LOC-specific transcripts and could underlie growth rate-dependent
e cellular resource allocation (Maaloe, 1979; Molenaar et al., 2009). Due to the analogy to electrical
ez engineering we refer to this idea as the pulse-width modulation (PWM) hypothesis (Fig. 1).

o8 To test above (non-exclusive) hypotheses, we performed strand-specific RNA sequencing (RNAseq)
e in high temporal resolution during an unstable state of the short period cycle of the strain IFO 0233.
7o Only a few genes that combine high transcript abundance amplitudes with short protein half-lives
71 are compatible with the JIT hypothesis. These may point to a feedforward control of the transi-
72 tion from catabolic to anabolic flux. However, the bulk of the protein-coding transcriptome codes
73 for long-lived proteins. The duration of the LOC phase transcript abundance peak increased, and
za the duration of the HOC phase transcript abundance peak decreased within just two cycles of the
7s oscillation. This preceded the transition to a longer period, compatible with the PWM hypothesis.
ze  Finally, we present a novel mathematical model of the PWM hypothesis that correctly predicts the
7z correlations of growth-related protein abundances and oscillation periods to growth rate.
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Results and Discussion
Metabolic Context: Period Drift and a Bifurcation
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Figure 2. Complex Dynamics: Slow Transients and a Sudden Bifurcation. Metabolic dynamics during
continuous culture of the budding yeast strain IFO 0233: panel A shows the full recorded time-series of the
culture, and panels B-F zoom in on the time axis; bullet points P1-P7 serve as a guide between panels and
are discussed in the text. The gray backgrounds show the dissolved O, concentration (see A for axis) and
serves as a reference to oscillation phase. A: Dissolved O, (DO) measurement from the start of continuous
feeding (dilution rate ¢ = 0.089h~!). Line colors are derived from the respiratory quotient RQ (D) and indicate
phases of high O, consumption (HOC: red) and low O, consumption (LOC: blue). The cyan line and right axis
show the temporal mean RQ, a moving average over ca. 10 h. B: The cycle periods were derived from a
Wavelet transform of the DO signal and the phase lengths are the time spans of each cycle where oxygen
uptake (-90,) stayed below (red, HOC) or above (blue, LOC) 3.5 mmol/h/g. C: Zoom on P3-P6 for measured
metabolic rates and concentrations; qo,, 4co, and H,S were measured in the offgas of the reactor, corrected
for the measurement delay and H,S concentration was derived via its solubility. Proton export (g4+) was
calculated from the NaOH addition rate. D: Zoom on P4-P5 for calculated rates. The respiratory quotient (RQ)
and ATP production rates by respiration (gatpey) OF by fermentation (garpferm) Were calculated from go, and
dco, (Eq. S9-514 in Appendix A). The RQ color gradient serves as a reference in (A, EF). E: Phase portrait of o,
and gco, over the time range indicated by bullet points in (A); points are colored by RQ (D) and in 10
resolution; background colors indicate RQ ranges and arrows indicate time direction. F: One-hour snapshots
at different times (bullet points 2 and 5). Data are indicated by colored axes and labels, except for RQ which is
shown without axis but color-coded (red-black-blue) as in D and E. All reactor data is available as Datafile S1.

Previously, stable oscillations have been used to elucidate the transcriptome dynamics of con-
tinuously grown yeast (Klevecz et al., 2004; Li and Klevecz, 2006). Here we observed more complex
transient dynamics, that occurred spontaneously (Fig. 2A, S1-S3). We first calculated the oscillation
periods and metabolic rates from real-time measurements of the culture (Appendix A, Dataset S1)
to characterize these dynamics. The culture cycled between a phase of low oxygen consumption
(LOCQ) and a phase of high oxygen consumption (HOC). The period was 0.6h-0.7h (Fig. 2B-C), i.e.,
the typically observed period for this strain and condition (Satroutdinov et al., 1992; Murray et al.,
2007). The respiratory quotient, RQ = qcoz , allows to infer details of the catabolic flux. During the

LOC phase RQ > 1, i.e., cells produced ethanol and excess CO, (fermentation). During the HOC
phase, RQ decreased below 2 2. 1.e., below the stoichiometry of complete ethanol oxidation (Fig. 2D).
This is consistent with a re-uptake of ethanol during the HOC phase (Satroutdinov et al., 1992) but
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points to additional contributions to CO, turnover, i.e., an additional uptake of CO, during HOC
phase. Proton export (gy+, Fig. 2C, E) peaked in early HOC phase, consistent with a higher intracel-
lular pH during HOC in both short period and long period oscillations (Keulers et al., 1996a; O’ Neill
et al., 2020). The concentration of H,S peaked at ~ 3 uM with a sharp increase upon transition to
LOC (Fig. 2C, F), consistent with its release during amino acid biosynthesis in this transition phase
(Murray et al., 2007) and its suggested role in population synchronization (Murray et al., 2003).
The estimated ATP turnover rates (Fig. 2D) were in phase with previously measured ATP/ADP ra-
tios, peaking in early to mid HOC phase (Machné and Murray, 2012; Amariei et al., 2014). Thus,
the overall properties of the oscillations were consistent with previous data. During the whole run,
oscillations appeared and vanished spontaneously twice. Both these events were similar. First,
period decreased from 0.7h to 0.6h within ~ 30h (Fig. 2B). This period decrease was reflected in
a decrease of the LOC phase length, while the HOC phase length even increased. At the end of
this transient a sudden bifurcation of the dynamics occured. Afterwards periods were longer with
a maximum of 1h, but the oscillation was unstable and disappeared within a few cycles. This bi-
furcation was preceded by an increased and phase-shifted peak of CO, release at the transition
from HOC to LOC (Fig. 2C, E, F). The peak of H,S release was delayed, and a novel third phase ap-
peared between the peaks of CO, and H,S release. This intermediate phase was purely respiratory
at RQ =1, and all metabolic rates had intermediate values.

In summary, our experiment reflects the previously studied oscillation of the IFO 0233 strain,
however, we describe complex transient dynamics that appeared twice. Emergence and disappear-
ance of the oscillations could originate from a loss of oscillatory metabolic dynamics in single cells.
We favor the alternative hypothesis that culture level oscillations result from a synchronization be-
tween individually oscillating single cells (Silverman et al., 2010). During the synchronous phases,
the oscillation period first drifted slowly to a minimum of ~ 0.6h; then system dynamics rapidly
changed (bifurcated) to an unstable state with a longer period (~ 1h) and an intermediate phase
that was purely respiratory (RQ ~ 1). Low but purely respiratory activity at RQ ~ 1 is characteristic
of the LOC phase in CDC-coupled (long period) systems (Miinch et al., 1992). The bifurcation was
accompanied by the appearance of a pulse of CO, release before, and a delayed pulse of H,S re-
lease after the intermediate RQ ~ 1 phase. We interpret the period drift and sudden transition as
an imbalance between catabolic and anabolic flux.

Transcriptome Oscillation: A Universal Temporal Program

Numerous time series of the protein-coding transcriptome have revealed a universal temporal
program of defined transcript cohorts but with periods ranging from 40 min to 7.5h (Machné, 2017).
Transient states of the oscillation or non-coding transcription have not been studied. We sampled
for RNAseq analysis every 4 min for 2.5 cycles, just preceding the bifurcation of system dynamics
(P4 in Fig. 2). The strand-specific sequencing reads were mapped to the reference genome (strain
S288C, R64-1-1), yielding reads for 76 % of the genome (Fig. S5A). A similarity-based segmentation
algorithm (Machné et al., 2017) yielded ca. 37k segments (Fig. S5D), each a putative individual tran-
script. All segments were classified by their oscillation p-values, calculated with the rain package
(Thaben and Westermark, 2014), and by their overlaps with annotated genome features (Tab. S2).
4,489 segments were classified as open reading frame (ORF) transcripts; 3,378 of these showed
oscillation and reproduced the previously characterized temporal sequence (Fig. 3A; Machné and
Murray (2012)). Oscillating non-coding (811 of 9,051) and antisense (232 of 569) segments predom-
inantly peaked in the LOC phase. Very short and weakly expressed segments were removed from
further analyses, the remaining 11k segments (Fig. S5G-I) were clustered into ten co-expressed
clusters, and these were sorted and colored by their peak phase (Fig. S6-5S8). These ten clusters
can be further classified (Fig. S6C) into two groups of five clusters each. The first group (Fig. 3B)
comprises of longer segments with high amplitudes, and most assigned to protein-coding genes
(Fig. S7). The second group (Fig. 3C) contains shorter and weakly expressed segments with lower
amplitudes, mostly non-coding and peaking during the LOC phase (Fig. S8).
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Figure 3. RNAseq Time Series Clustering. A: Phase-ordered heatmap of the time-courses of segments with
oscillating abundance levels (6344 segments at p,4i, < 0.05, Fig. S5E)). The dissolved O, (DO, %) is shown as a
color gradient (black: high DO) on the top axis. Left and right panels show local densities (circular moving
average of counts over 1/10 of the total number) of segments overlapping with previously defined (Machné
and Murray, 2012) classes of coding genes (left: Ribi, ribosomal biogenesis and cytoplasmic ribosomal
proteins; AA: amino acid synthesis; mRibi: mitochondrial genes, incl. ribosomal proteins; stress: catabolic and
protein homeostasis genes), or non-coding segments (right: AS, antisense to ORF; NC, no overlap with any
annotated transcribed feature). B: Time series of the five major periodic co-expression clusters. Segment
time-courses (mean RPM) were scaled to a mean of 0 and divided by their standard deviation. The mean of
each cluster is shown as a solid line with points indicating the sampling times, and standard deviations are
shown as transparent ranges; the legends indicate the cluster label, the number of segments in the cluster
and the posterior functional cohort assignment. The gray background indicates the dissolved O, (DO)
concentration. C: Time series for the cluster 4, 5, 6, 9, 10, which comprise mostly non-coding segments;
plotted as described for (B).

A Conserved Temporal Program Runs at Different Time Scales.

Gene Ontology (GO) enrichment analysis of the protein coding cohorts (Fig. 4A and S9) recapitu-
lates previous data (Klevecz et al., 2004; Machné and Murray, 2012). The ribosomal biogenesis
regulon (Jorgensen et al., 2004) peaks in early to mid HOC phase (cluster 1: Ribi), followed by
clusters encoding for cytoplasmic ribosomal proteins (cluster 2: cRP), and amino acid biosynthetic
pathways (cluster 3: AA) at the transition to LOC phase. During the LOC phase, mitochondrial pro-
teins, including mitochondrial ribosomal proteins (cluster 7: mRP) are co-expressed with a regulon
associated with stress response (Gasch et al., 2000; Brauer et al., 2005) and G1 phase (0'Duibhir
et al., 2074). The latter comprises of proteins involved in the general stress response (chaperones)
and in carbohydrate, fatty acid and protein catabolism (cluster 8: S/C). We used this clustering to re-
analyze eight data sets from different strains and conditions and with periods ranging from 40 min
to 7.5h (Fig. S10-S11, data from Li and Klevecz (2006); Tu et al. (2005); Slavov et al. (2011); Chin et al.
(2012); Kuang et al. (2014); Wang et al. (2015); Nocetti and Whitehouse (2016)). This meta-analysis
reveals common patterns. A temporally constrained program (0.5h-2h) leads from Ribi/cRP via AA
to mRP, ending with the transition from HOC to LOC phase. Increases of the total period are mostly
reflected by increased duration of the LOC phase and the associated S/C cohort expression. The
same temporal program can be observed in six distinct cell cycle arrest & release experiments (Fig.
S12) (Orlando et al., 2008; Bristow et al., 2014).
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Figure 4. A Universal Temporal Program. A: Sorted cluster enrichment profiles for the GO category “cellular
component”. The p-values were calculated by cumulative hypergeometric distribution tests and are shown as
gray-scale. Only categories with p < 0.001 (white text) and more then 10 genes in one of the clusters are
shown. See Figure S9 for all clusters and GO categories. B: Boxplots of cluster distributions of predicted
relative protein amplitudes (Ap, in % of their mean abundance), estimated from transcript amplitudes and
protein half-lives (Fig. S13). The horizontal line indicates the the top 100 oscillators listed in Table S3. The top
predicted oscillators of class enzyme or membrane transporter of each cluster are indicated. C: Boxplots of
cluster distributions of transcript abundance peak width differences AW = W, — W, between the second and
first full expression cycle. Figure S16 provides details on the calculation. D: Boxplots of the transcript
abundance peak width differences between two experiments from the same culture but at different growth
rates (left: Chin et al. (2012), right: Wang et al. (2015)). See Fig. S10B for raw peak widths. E: Peak width ratio
vs. growth rate for all experiments analyzed in Figure S10B. The ratio of the mean peak widths of cluster 2

(W gp) and cluster 8 (W,c) is correlated to the strain-specific relative growth rate (u/uys, see Fig. S10B for u
and Tab. S5 for u, values). Experiments are indicated by the first author and year in the legend. The line
indicates a linear regression, and r and p are the Pearson correlation and p-value, all calculated without the
outlier at 4 = 0h~! (slavov11) which was taken from an oscillation at the end of a batch growth phase on
ethanol medium.

Testing Hypotheses: Putative Functions of the Temporal Program
Next, we analzyed the two hypotheses on putative functions of this universal temporal program;
the just-in-time production (JIT) and the pulse-width modulation (PWM) hypothesis.

Carbonic Anhydrase and the Glyoxylate Cycle are Novel Feedback Candidates.

The temporal order of mMRNA abundances makes intuitive sense as a just-in-time gene expres-
sion program (JIT) coordinated with metabolic events. However, oscillations on transcript level are
dampened by long protein half-lives (Liick et al., 20714). Thus, we estimated relative protein am-
plitudes (Fig. 4B, S13A-C) from our RNA abundance time series and from protein half-life data by
Christiano et al. (2014), using a mathematical model of periodic gene expression by Liick et al.
(2074). Most proteins are predicted to vary by 0.1 %-0.5 % of their mean abundance (Fig. 4B and
S13C). Only 23 proteins have predicted relative protein amplitudes >2 %; and oscillators are en-
riched in the Ribi and AA cohorts (Fig. S13C). These low amplitudes probably do not have a strong
effect on metabolic dynamics, but the model is based on sine approximations of transcript time se-
ries and protein half-lives measured in asynchronous conditions; it may understimate amplitudes
and it completely neglects potential effects of induced protein degradation and post-translational
modifications. Thus, we tested our predicted against measured protein amplitudesin a long period
oscillation (O’ Neill et al., 2020). The genome-wide correlation between these amplitude sets was
weak but significantly positive (Fig. S14). However, the top oscillator estimates of both data sets
overlapped (Fig. S13D, E). Notably, 60 of the top 100 oscillators in our analysis were not detected in
the proteomics measurement. These include several transcription factors (e.g. BDF2, CLB2, GZF3,
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MET28, SWI5, MSN4) which are known to be expressed at low levels. Thus, our analysis reveals
putative oscillators that are potentially missed by proteomics analysis.

Both top oscillator lists share cell wall proteins, nutrient transporters, and metabolic enzymes.
Several enzymes of the sulfate uptake pathway (MET genes) are expressed in Ribi and peaked
prior to the pathway intermediate H,S at the HOC/LOC transition (Fig. 2). The carbonic anhydrase
(NCE103, in Ribi) catalyzes the interconversion of carbon dioxide and bicarbonate (CO, + H,0 <
HCO; + H*), and is essential in aerated cultures (Aguilera et al., 2005). During the second sampled
cycle the Ribi cohort was downregulated early (Fig. 3A, Fig. 4C) and this correlated with the appear-
ance of the CO, and the delay of H,S release pulses at transition to LOC (Fig. 2C-F). Both, CO, and
H,S, were previously suggested to contribute to population synchronization (Keulers et al., 1996a;
Murray et al., 1999, 2003), and both are substrates of biosynthetic metabolism. However, the
strongest synchronizing activity was found for the acetaldehyde (Murray et al., 2003), a futile inter-
mediate of fermentation or, more generally, of overflow metabolism around the pyruvate node of
metabolism, between glycolysis, respiration and biosynthesis (Pronk et al., 1996; Sonnleitner and
Kdppeli, 1986). The switch from catabolism in HOC phase to anabolism at the transition to LOC
phase likely involves regulation around this central node of metabolism. We find several biosyn-
thetic enzymes among the top 100 predicted oscillators (Fig. S15), most notably three enzymes of
the glyoxylate cycle (ICL1, CIT2, MDH2, all in the AA cohort), a shorter and purely biosynthetic ver-
sion of the tricarboxylic acid cycle. Itis for example required to synthesize glucose, when ethanol is
the only carbon source. This cycle is autocatalytic (Barenholz et al., 2017) and serves as metabolic
switch in response to changes in carbon source (Nakatsukasa et al., 2015).

All discussed pathways also appear in the proteome-based list of top oscillators (Fig. S13D,E,
S14), supporting their general relevance for metabolic oscillations. As outlined in Figure S15, these
short-lived enzymes could be involved in gating the transition from the catabolic to the anabolic
phase of the cycle.

Resource Allocation by Pulse-Width Modulation (PWM).

Most proteins are too stable for an effect of oscillatory transcript on protein abundances. Slavov
and Botstein (2011) and Burnetti et al. (2016) suggested an alternative interpretation of periodic
transcription. Variation of the relative times spent in HOC phase- and LOC phase-specific tran-
scription states could serve to tune steady-state protein abundances. The LOC phase duration de-
creases with increasing growth rates, while HOC phase duration remains approximately constant
or even slightly increases (von Meyenburg, 1969a; Strdssle et al., 1989; Slavov and Botstein, 2011;
Burnetti et al., 2016; O’ Neill et al., 2020). This would lead to a higher relative biomass fraction
of proteins from HOC phase-specific transcripts, i.e. of the Ribi and the cRP cohorts. During our
experiment a similar shift of the relative times spent with HOC or LOC phase-specific expression
occured (horizontal bars in Fig. 3A). We quantified and compared the peak widths between the
two cycles (Fig. S16). The s/C cohort peak width increased on average by ~ 3 min, while the Ribi
cohort peak width decreased by ~ —5min (Fig. 4C). This occured without comparable changes of
the duration of HOC and LOC phases, i.e., the transcription was not merely an output of respiratory
dynamics. Thus, the relative duration of expression phases can be adapted rapidly and affect the
metabolic dynamics in subsequent cycles.

So we next looked for evidence of PWM of transcription in the previous data sets and calcu-
lated peak widths for all transcripts (Fig. S10B). When growth rate was decreased in dilution rate
shift experiments (Chin et al., 2012; Wang et al., 2015) the period increased, as expected. Most
transcript abundance peak widths increased with period, but this increase was significantly higher
for the LOC-phase specific cohorts (Fig. 4D). Thus, the peak widths of HOC phase-specific and LOC
phase-specific co-expression cohorts indeed changed with growth rate. The oscillation periods
tend to reach a minimum towards a strain-specific critical growth rate (u,) where fermentation
sets in (Burnetti et al., 2016; Machné et al., 2017). We calculated the mean peak widths of the RP
cohort (cluster 2) and the s/ cohort (cluster 8), and a relative growth rate for each experiment,
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i.e., the growth rate (dilution rate) of the continuous culture divided by the strain-specific critical
growth rate (%). This reveals a good correlation between the RP to S/C peak width ratio and the
relative growth rate of the cultures (Fig. 4E). The only outlier is the transcriptome data taken at the
end of a batch growth phase, i.e. at u ~ 0h~!, on ethanol medium (Slavov et al., 2011).

An increase of ribosome content is directly and causally related to higher growth rates, consti-
tuting a fundamental principle of microbial growth physiology (Schaechter et al., 1958; Waldron
and Lacroute, 1975; Koch, 1988; Scott et al., 2010). This relation is reflected in continuous changes
of relative abundances of different transcript and protein classes with growth rate (Brauer et al.,
2005; Airoldi et al., 2009; Molenaar et al., 2009; Metzl-Raz et al., 2017). No mechanism for this con-
tinous variation of gene expression is known in eukaryotes. A temporal regulation, via continuous
changes of the relative durations of LOC and HOC phases generates this relation in synchronously
oscillating continous culture. Even in asynchronous cultures, individual cells appear to oscillate
(Silverman et al., 2010), thus this mechanism is likely general.

The PWM Model Explains Period and Proteome Relations to Growth Rate
Consistent Prediction of Transcript and Protein Abundances.

Next, we set out to explore the predictive power of the PWM hypothesis. In short, we assume a
step function of transcriptional activity, such that genes are transcribed at maximal rate during
their respective expression phase (HOC or LOC) and not transcribed in the other phase. The mean
concentrations (over time) of an mRNA that is transcribed only in HOC phase (R,,.), and of its
protein product (P,,.) are:

Phock
H+9,

ngt
pre

hoe =

(1
P,

hoc

=R

hoc

where ¢, = Thoe/ Tose ) spent in HOC phase (z,,.), k and ¢
are transcription and translation elongation rates, ny is the ribosome density (ribosomes per RP
mRNA); 5, and 6, are the mRNA and protein degradation rates; and y is the culture growth rate. The
same model can be used for LOC phase-specific genes, with transcription restricted to ¢,,. = 1—¢,,,-
See Appendix B for a detailed derivation of the model.

The period r,,, decreases with increasing growth rate (Fig. 5A, S17A). This period decrease is
reflected in a decrease of the time spent in LOC phase (z,,.), while the duration of the HOC phase
stays approximately constant or even slightly increases (von Meyenburg, 1969a; Strissle et al.,
1989; Bellgardt, 1994; Slavov and Botstein, 2011; Burnetti et al., 2016; O’ Neill et al., 2020). Sim-
ilarly, z,,, decreased with period z,,,, while z,,. changed less and in opposite direction during our
experiment (Fig. 2B). We thus estimated a ¢,,, = f(u) from data from the IFO 0233 strain (Fig.
5A, Murray et al. (2007)), used our classification into HOC phase and LOC phase genes (Fig. 3, 4),
and collected gene-specific parameters for the production and degradation rates for each gene
(Fig. S18). The model assumes that all regulation occurs through initiation of transcription at a
maximal rate in HOC or LOC phase. The maximal transcription and translation rates merely de-
pend on the gene and proteins lengths, while ribosome densities (per mRNA) and degradation
rates are derived from genome-wide experimental data (Tab. S5). These assumptions and data
allowed to estimate growth rate-dependent mean transcript and protein abundances from Eq. 1
for 1,197 genes (Fig. 5C-F, S21). To estimate the predictive power we calculated the slopes "miNA,
and find a good correlation (Spearman'’s p = 0.66) with the slopes reported for 35 signature genes
of the Universal Growth Rate Response (UGRR) model (Fig. 5D, Airoldi et al. (2009); Slavov and
Botstein (2011)). Next, we calculated slopes for absolute transcript counts measured in chemostat
cultures at different growth rates by Xia et al. (2022). The correlation is overall weak (p = 0.35, Fig.

S21C), but better for smaller gene sets from a more stringent consensus classification (p = 0.74, Fig.

is the fraction of the total period (r

osc
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Figure 5. The PWM Model. A: Oscillation periods are non-linearly related to growth rate, here shown for four
different strains (colored points, cf. Fig. S17A). The periods expected from partial CDC-synchronization (CDC
range) in modes 1:1, 1:2 and 1:3 are shown as black solid lines (Bellgardt, 1994), via Eq. S31-S32. The PWM
model (colored lines, Tab. S6) can re-produce the observed periods, incl. at 4 — 0, and the relation to the
strain-specific critical growth rate u, (colored ticks on the x-axis). Solid lines indicate a PWM model with
constant ribosome concentration calculated via u, and dashed lines with linearly increasing ribosome
concentration and the additional assumption of a 7,,,,; 75, (colored ticks on the right y-axis) was manually
adjusted. B: Periods predicted by the base model (Eq. 2, solid green line) and the extended model with
variable ribosome concentration B(u) (Eq. S25, solid red line), with parameters from Table S5. The colored
dashed lines are the ribosome concentrations (right y-axis) used for each model. Alternatively, ribosome
parameters can be estimated via the u,-constraint (Eqg. S26, solid blue line). C: Median (lines) and 25%/75%
quantiles (transparent range) of all MRNA abundances predicted by the PWM model (Eq. 1) from ¢,

(IFO 0233 parameters in (A)), and from gene-specific production and degradation rates (Tab. S18B), and
classification to either HOC (clusters 1, 2 and 10) or LOC (clusters 6, 7, 8 and 8) phase. The legend indicates
the number of genes for which all data was available. D: Comparison of the mRNA slopes, derived from a
linear regression of the data in (C), and the slopes provided for signature genes of the UGRR model (Slavov
and Botstein, 2011). All data required for the PWM-based prediction was available for the shown 35 of 58
signature genes. Gene names are provided for the outliers, two mitochondrial and one ER-associated. The
straight line is a linear regression, and p is the Spearman correlation, p,,, removes the influence of the
classification by taking the absolute slopes in both data sets, and p,,. and p,,. are correlations calculated for
only the HOC- or LOC-specific signature genes (red and blue point symbols). E: Fractions of the total protein
abundance predicted by the PWM model (Eq. 1) for the gene lists used to analyze proteome fractions in
Metzl-Raz et al. (2017); gene numbers in brackets. F: Total protein abundances predicted by the PWM model
for HOC and LOC phase genes ; calculated without (solid lines, Eq. 1) or with (dashed lines, Eq. S27) an
additional restriction of translation to HOC phase. The vertical black arrow indicates the total protein content
estimation by Milo (2013). All rates required for mRNA and protein prediction are available in Dataset S3.

S21D). Similarly, we found good overall agreement of the relative proteome fractions at different
growth rates of gene groups selected by Metzl-Raz et al. (2017) (Fig. 5E). For example, the pro-
teome fraction of mitochondrial genes decreases, while the fraction of genes involved with transla-
tion increases with growth rate, reflecting measurements (Metz/-Raz et al., 2017). The correlation
with measured growth rate-slopes of proteins (Xia et al., 2022) were higher than for transcripts
(p = 0.42, and p = 0.78 for the consensus set; Fig. S21G,H). However, the strongest contribution to
these correlations comes from our accurate classification into HOC and LOC phase genes, while
the correlation for the HOC phase-specific transcripts was even negative (Fig. S21C).

The model neglects all other types of regulation such as targeted degradation, or intrinsic bias
such as sequence-dependent differences of elongation rates; thus, it is not suprising that on a
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genome-wide scale the predictive power is weak. Appendix B.6 discusses potential reasons for
these discrepancies. A more fundamental problem of the model is that translation is unlimited.
The total protein abundance increases strongly at 4 — 0, while it is very close to estimates from
experimental data (Milo, 2013) at high p (Fig. 5F). As outlined in Appendix B.5, previous data point to
a pulse of translational activity at the HOC-to-LOC transition. The majority of ATP synthesis occurs
in HOC phase; as a simple approximation, we restricted the translation of all transcripts (HOC and
LOC phase) to HOC phase (Eq. S27). This reduced the total protein abundance at x — 0 to about
twice the estimate for cells in exponential growth (Milo, 2013), thus into a more realistic range.

The PWM Model Predicts Oscillation Periods.

We further noted, that the model yields a strict constraint between oscillation parameters, the
life cycle rates and concentration of proteins, and growth rate. Ribosomal proteins (RP) are (a)
transcribed within the HOC phase clusters (Klevecz et al., 2004; Machné and Murray, 2012) (Fig. 4A,
D), and (b) their relative fraction of total biomass increases with growth rate (Fig. S18C-E, (Waldron
and Lacroute, 1975)). Thus, we can use this constraint to predict oscillation periods from measured
ribosome concentrations and life cycle parameters. Assuming that each RP is associated with one
ribosome (Appendix B.2), we get:

Twe __k 2 "
Thoe H+6, u+68, B(u)’

2

where B(u) is the total concentration of (cytoplasmic) ribosomes, and all other parameters refer
to an average RP (Tab. S5, Fig. S18A). Remarkably, the collected literature parameters already yield
(i) realistic periods and (ii) the non-linear dependence of periods on growth rates (green line, Fig.
5B). Linearly varying the ribosome concentration with growth rate (Fig. S18C) makes the period
function steeper (red line, Fig. 5B).

Experimentally observed periods reach a minimum towards the strain-specific growth rates u,,
where yeast metabolism switches from purely respiratory to respiro-fermentative metabolism of
glucose (Burnetti et al., 2016; Machné, 2017). In the IFO 0233 strain, fermentation sets in early,
at growth rates u, = 0.11h™'-0.15h~! (Hansson and Higgstrém, 1983; Satroutdinov et al., 1992)
consistent with its short period cycles. This constraint allows to estimate strain-specific values
for the RP and ribosome-related parameters via published values for u, (Appendix B.3, Fig. 5A,
S17D, Tab. S6). The model with variable ribosomes is required to fit data from the two strains with
longer periods (CDC range), or, alternatively, very low degradation rates (Fig. S17C). This pattern is
confirmed when fitting Eq. 2 separately to 20 independent data sets (Fig. S19, S20). Long period
data sets require to set at least one of the degradation parameters (5,, §,) to 0. This may be due
to a phase-locking with the CDC (gray areas in Fig. 5A, B), where the HOC phase aligns with the
budding phase of the CDC and LOC phase is purely respiratory (RQ ~ 1) and corresponds to the G1
phase of the CDC (Miinch et al., 1992). When such phase-locking with the CDC occurs, PWM and
oscillation parameters may not be directly coupled anymore.

Previously suggested models based on partial synchrony of the asymmetric cell division cy-
cle fit long period data well (Bellgardt, 1994, Hjortso and Nielsen, 1995; Duboc and von Stockar,
2000). However, these models can not account for oscillations in batch culture and without division
(Mochan and Pye, 1973; Murray, 2004; Slavov et al., 2011) and for periods that are longer than the
culture doubling time (Heinzle et al., 1983; Porro et al., 1988). Burnetti et al. (2016) suggested a
purely empirical model for these relations. The PWM model is the first mechanistic model of the
oscillation that can account for all experimentally observed periods; although only with unrealis-
tic parameter choices for long periods. Future work based on this novel theoretical framework
should explicitly account for energetic constraints on the protein synthesis capacity during the cy-
cle, and could explore the effects of additional regulatory mechanisms or systematic differences
in production and degradation rates.
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Conclusion

The phenomenon of metabolic auto-synchronization in budding yeast continuous culture was in-
strumental for the clarification of the asymmetric CDC of budding yeast (Kiienzi and Fiechter, 1969;
von Meyenburg, 1969a). The discovery of stable short period cycles in the distillery strain IFO 0233
(Satroutdinov et al., 1992) fortified early indications (von Meyenburg, 1969b; Mochan and Pye,
1973) that the system is more than just synchronization of the CDC. Here, we first explored the com-
plexity of dynamics observable in budding yeast continuous culture, a long-term transient and a
sudden bifurcation. We then tested the two main hypotheses on putative functions of the periodic
transcriptome (JIT and PWM).

We presented four independent lines of evidence in support of the PWM hypothesis (Burnetti
et al., 2016; Slavov and Botstein, 2011): (i) transcript abundance peak widths changed as predicted
in two dilution rate shift experiments, (ii) the relative peak widths correlated very well to the relative
growth rate, i.e., the growth rate divided by the strain-specific critical growth rate, (iii) the PWM
model predicts measured growth rate-dependent transcript and protein abundances reasonably
well, despite its simplicity, and (iv) the PWM model predicts the dependence of oscillation periods
on growth rate. The coupling is consistent over periods ranging from 40 min to 7.5h. We further
note that circadian biology faces a similar problem, low protein abundance amplitudes despite
significant transcript abundance oscillations (Liick et al., 2014; Wang et al., 2018; Krahmer et al.,
2021; Karlsen et al., 2021). While the period is fixed, seasonal variation of light/dark cycle phase
lengths could mediate PWM-based control of steady state protein abundances.

And finally, the prediction of periodic proteins (JIT analysis) and the metabolic dynamics during
our experiment underpin previous data on H,S and CO, as population synchronizers (Keulers et al.,
1996a; Murray et al., 2003, 2007). The accumulating evidence suggests that the involved pathways
could gate the switching from catabolic to anabolic flux at the transition from HOC phase to LOC
phase (Fig. S15). The metabolic mechanisms behind CDC-coupled long period oscillations were con-
sidered to lie in a cycle of glycogen build-up during LOC phase and mobilization during HOC phase,
where the respiratory electron transport chain becomes limiting and overflow metabolism at the
pyruvate node (ethanol, acetate or acetaldehyde accumulation and secretion) induces the switch
to LOC phase and synchronizes the culture (Kiienzi and Fiechter, 1969; Strdissle et al., 1989; Miinch
et al., 1992). However, glycogen content oscillates at low amplitude and peaks in the wrong phase
in IFO 0233 (Satroutdinov et al., 1992) and glycogen is not produced during oscillatory growth on
ethanol-based medium (Keulers et al., 1996b). Thus, the glycogen cycle model is either wrong
or not generally valid. The next big question is thus to clarify the metabolic mechanisms behind
switching between the HOC and LOC phases of this cycle. What is the nature of the metabolic
limitation in continuous culture, and how does it determine the relative lengths of the phases?

Supporting Information and Data
The RNA sequencing reads are available at ArrayExpress (http://www.ebi.ac.uk/arrayexpress/, Athar
et al. (2019)) with accession number E-MTAB-11901.

Supporting Information File:
Appendices A (calculation of metabolic rates from bioreactor online measurements), B (detailed
formulation of the PWM model), and all Supporting Figures.

Dataset S1:
Reactor data, including all calculated rates and RNAseq sampl timess.

Dataset S2:

All 36,928 segments reported by segmenTier, incl. genome coordinates, cluster labels, read-counts,
oscillation values (amplitude A,, phase ¢,, p-value p,,,), coding gene and SUT overlaps, and all time
points, using the sampling IDs (2-25) indicated in the reactor data.
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s7e  Dataset S3:

377 Data for 3,849 coding genes that overlap with a segment with J > 0: relative mRNA and protein
szs  amplitudes and protein half-lives for prediction of protein amplitudes (Fig. S13), and production
370 and degradation rates as used for period, mRNA and protein abundance predictions, incl. cluster
380 associations and classification as RP gene (Fig. S18A/B, Tab. S5).

;22 Materials and Methods

.2 Strain HiStOI’y

3s3  Kuriyama'’s lab first reported oscillations in continuous culture of the Saccharomyces cerevisiae
ssa  strain IFO 0233 (Satroutdinov et al., 1992). The strain number is from the Japanese culture col-
sss  lection NBRC and is identified there as “Distillery yeast Rasse II”, “accepted” in 1941, and as
sss  ATCC 560 in the US American culture collection. These strains can be traced back to the “Bren-
ssz  nereihefe, Rasse 11" isolated as “Hefe 128" axenic culture by Paul Lindner at the Berlin Institut fur
s Garungsgewerbe in 1889 from samples of a distillery in Gronowo (West Prussia, now Poland) which
380 Obtained their yeast from a dry yeast supplier in the city Thorn (now Torun, Poland) (Lindner, 1895).
390 The strain and its descendant “Rasse XII” became commercially successful distillery strains within
301 hybrid formulations (“Rasse M"), and was at the time an intensively studied strain in basic research,
302 e.g., in the search for the nature of “bios” (Lindner, 1919).

303 Continuous Culture

s0a  Pre-Culture

3es  Saccharomyces cerevisiae (strain IFO 0233) were maintained on yeast nitrogen base agar plates
306 (2% glucose, 1.5% agar; Difco, Japan) at 4 °C, sub-cultured from frozen stock cultures (-80°C; 1 mL;
307 15% glycerol; 5 x 10® cells). Pre-cultures were inoculated into Yeast Extract Peptone Dextrose me-
3¢ dia (10mL; 1% yeast extract, 2% peptone, 2% glucose) and grown at 30°C in an orbital incubator
399 (200 rpm) for 24h.

200 Continuous Culture Medium & Inoculation

a1 The culture medium consisted of D-glucose (20 gL'), (NH4)2S04 (5 g L), KH2PO4 (2 g L~1), MgS04.7H20
w2 (0.5gL7"), CaCl2.2H20 (0.1 gL™!), FeSO4.7H20 (20mgL~'), ZnS04.7H20 (10 mgL~!), CuSO4.5H20
a3 (SmgL~!), MnCI2.4H20 (1 mgL™!), 70 % H2S04, (1 mL L™!), Difco yeast extract (1 gL-') and Sigma An-
s0a tifoam A (0.2mLL™!). All chemicals were supplied by Wako Pure Chemical Industries Ltd., Japan. The
205 medium prepared with this recipe has a pH of ca. 2.5 which allows for autoclaving of media with
a6 both sugar and ammonium without browning (caramelization) and further avoids precipitation
207 Of salts in feed medium bottles during continuous culture. A custom-built bioreactor as outlined
s0s below was filled with 0.635L of medium and autoclaved (121 °C; 15min). Aeration (0.15 L min™!), ag-
200 itation (750rpm), and temperature (30°C) and pH (3.4) control were switched on, until the system
a0 Was equilibrated. Then, the dissolved oxygen probe was 2-point calibrated by flushing with pure
a1 nitrogen (0 %) and switching back to air (100 %). The equilibrated and fully calibrated reactor was in-
a1z oculated with ~ 1 x 10° pre-culture yeast cells. A batch phase continued for ~40h until the cells had
a1z reached stationary phase, indicated by a sharp decrease in respiratory activity. Then continuous
aia  culture, i.e., feeding with fresh medium, was initiated (at 44.5h in Figure 2).

a5 Culture Control & Monitoring

a16  Continuous culture was performed in a custom-built bioreactor. The culture vessel was a jar fer-
a1z mentor (Eyela, Japan) with a total volume of 2.667 L. Culture volume was measured using a balance
a1is (SB16001, Mettler Toledo, Japan), and continuous dilution with fresh medium was performed using
410 @ peristaltic pump (AC2110, ATTA, Japan) with a six roller planetary design which minimizes puls-
a20 ing during rotation (about 10 rpm), and medium was pumped through 1 mm tubing (inner diameter;
«21  Masterflex, Cole Palmer, USA) and a 23 gauge steel needle. This ensured that the media was intro-
422 duced in a stream of <20 uL droplets and just under a droplet per second at the operating dilution
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rate. Feed medium bottle weight was monitored by a balance (PMK-16, Mettler Toledo, Japan),
set up to read from unstable environments and shielded from direct breezes. The culture was
agitated at 750 rpm and aerated at 0.150 Lmin~! by a mass flow controller (B.E. Marubishi, Japan).
Dissolved oxygen was measured using an InPro 6800 sensor and pH with an InPro 3030 (both:
Mettler Toledo, Japan). Culture pH was maintained at 3.4 by the automatic addition of 2.5 mol !
NaOH, and the weight of the NaOH bottle was monitored on a balance (PM400). Local control of
agitation and pH was carried out by Labo controllers (B.E. Marubishi, Japan). The reactor pressure
was monitored by a manometer (DM-760, Comfix, Japan) installed on a split outlet flow stream.
The culture temperature was controlled at 30°C by an external sensor connected to a circulating
water bath (F25-ME, Julabo, Japan). Partial pressure of oxygen and carbon dioxide in the off-gas
were measured by an Enoki-lll gas analyzer (Figaro engineering, Japan). The partial pressure of
hydrogen sulfide in the off-gas was measured using an electrode based gas monitor (HSC-1050HL,
GASTEC, Japan). Instruments were calibrated as per manufacturer’s instruction.

Reactor Data Acquisition and Calculation of Metabolic Rates

Data were acquired via the in-house FERMtastic software at 0.1 Hz. Metabolic rates were calcu-
lated as described previously (von Meyenburg, 1969a; Heinzle, 1987; Verduyn et al., 1991; Mari-
son et al., 1998; Murray et al., 2007) from the online recorded data. Details and all equations
are provided in Appendix A of the supporting information. All data were processed in the script
samplingSeq_2019.R of the yeastSeq2016 git repository. All calculated rates are provided in Dataset
S1.

RNA Sequencing & Read Mapping

Sampling, RNA Extraction & Sequencing Library Generation

Total RNA was extracted as previously described (Sasidharan et al., 2012) from 24 samples taken
every 4 min, covering ca. 2.5 cycles of the respiratory oscillation.

Culture samples were immediately quenched in ethanol and disrupted using acid-washed zir-
conia/silica beads (0.5 mm; Tomy Seiko Co., Ltd., Japan) with sodium acetate buffer (250 uL; sodium
acetate 300mM, Na2-EDTA 10mM , pH 4.5-5.0) and one volume of TE-saturated phenol (Nacalai
Tesque) equilibrated with sodium acetate buffer (250 uL).

The samples were then centrifuged (12000 g, 15min, 4°C) and the aqueous phase transferred
to fresh 1.5mL microcentrifuge tubes. Back-extraction was performed by adding sodium acetate
buffer (125 uL) to the bead-beat tubes, vortex (10s), centrifuging (12000 g, 15 min, 4 °C) and adding the
aqueous phase to the first aqueous phase. 2.5 volumes ice-cold 99.5 % ethanol were added to the
aqueous phase and RNA/DNA precipitated at —20 °C overnight. The samples were then centrifuged
(12000 g, 30 min, 4 °C), the supernatant removed by aspiration, and pellets washed 3x in 500 uL 70 %
ethanol and air-dried (10 min, room temperature). DNA was removed (RNase-Free DNase Set; Qia-
gen, Japan) and RNA recovered by column purification (QIAquick PCR Purification Kit; Qiagen, Japan)
in 50 uL UltraPure water, and stored at —80 °C prior to analysis. Total RNA had an RNA integrity num-
ber >7 and 260nm:230nm and 260nm:230nm ratios >2.14. All cDNA libraries were then generated
and sequenced by the Beijing Genome Institute (BGI), China. Strand specific cDNA libraries were
created using the “dUTP method” (Parkhomchuk et al., 2009; Levin et al., 2070) and sequencing
was carried out on an lllumina 1G sequencer.

RNAseq Read Mapping

RNAseq reads were mapped against the yeast reference genome (strain S288C, release R64-1-1)
using segemehl (version 0.1.4) (Hoffmann et al., 2014) with default parameters and spliced read
mapping enabled. Initially unmatched reads were mapped again using the remapping tool from
the segemehl package and the resulting files were merged. Coverage (read-counts per nucleotide)
was normalized for total library size to reads-per-million (RPM) and RPM values were stored in a
bedgraph file for further analysis.
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RNAseq Time Series Analysis

Analysis Strategy and R Code

All analyses were performed with bash and R. The full analysis pipeline is available in a git repos-
itory at https://gitlab.com/raim/yeastSeq2016. Analysis and plotting tools developed for this work
are available in an git repository with scripts and an R package available at https://github.com/
raim/segmenTools. RNAseq segmentation was performed with the segmenTier R package (Machné
et al., 2017), available at https://cran.r-project.org/package=segmenTier. Scripts for genome-wide
data collections and mapping to the yeast S288C reference genome (release R64-1-1) as well as
the genomeBrowser plots are available at the git repository https://gitlab.com/raim/genomeBrowser.
The collection of oscillation period data and the scripts for the PWM model analysis are available
at the https://gitlab.com/raim/ChemostatData repository, generated originally for Machné (2017).

Additional Data Sources

Genome annotations including Gene Ontology (GO) terms were taken directly from the gff genome
file from the Saccharomyces genome database (SGD, release R64-1-1, 2011-02-08, same as for
RNAseq mapping). Published transcript data sets (XUT, SUT, etc.) were also obtained from SGD
for the same genome release. Protein complex annotation CYC2008 (Pu et al., 2009) was down-
loaded from http://wodaklab.org/cyc2008/resources/CYC2008 complex.tab on 2019-06-04. All other
data were obtained from the supporting material of publications: half-live data for mRNAs and
proteins from Geisberg et al. (2014) and Christiano et al. (2014); ribosome density data from Ar-
ava et al. (2003); the consensus clustering of periodically expressed transcripts from Machné and
Murray (2012); UGRR expression data and slopes from Slavov and Botstein (2011); protein abun-
dance data from Paulo et al. (2016), where growth rate data was sent in personal communication;
and functional gene groups from (Metzl-Raz et al., 2017).

Discrete Fourier Transform.
Atime series of N measurements x = {x,, ..., xy_, }, taken atequally spaced time points {#,, ..., txy_; },
can be transformed to frequency-space by the Discrete Fourier Transform (DFT):

X,= Y x,e N | k={0....N-1) 3)

where X, is a vector of complex numbers representing the decomposition of the original time
series into a constant (mean) component (at k = 0) and a series of harmonic oscillations around
this mean with periods P,, amplitudes 4, and phase angles ¢,:

Po=noy —1)/k,
A =X /N, (4)
¢, = —atan2(Im(X,), Re(X,)).
All DFT were performed with R's ££t function.
For DFT-based clustering and segmentation analysis, it proved useful to scale DFT components
by the mean amplitude of all other components k > 0:

X/ _ Xk>0 , (5)

k>0 —
|X|k;e(o,k1

and the constant component (k = 0) by the arcsinh transformation:

Xé:ln(|X0|+\/Xg+1>. (6)

For analysis of read-count data x, were the raw read-counts, for analysis of segments x, were
the mean of all read-counts of the segment.
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507 The index k corresponds to the number of full cycles with period P, in the time series. Only
soe  the first 19 time points, covering two full cycles of the oscillation were used for the calculation of
so0 phases and p-values, such that k = 2 reflects the main oscillation. For all plots, phases were shifted
s10  such that ¢, = 0 corresponds to the transition from LOC to HOC.

su  Oscillation p-Values

s12  For calculation of oscillation p-values pper on read-count level the time series were permutated
si3 N, = 10,000 times, and random amplitude A, calculated. The p-value was estimated as the frac-
s1a  tion of permutations for which the random amplitude was larger than the observed amplitude 4,
s15 (eqn. 4). This analysis was performed with the script genomeOscillation.R from the segmenTools
s16  git repository. Oscillation p-values p,,;, on segment level were calculated with the R package rain
s1z  (Thaben and Westermark, 2014) using period P = 0.65h and time step 6t = 4 min. This analysis was
s1s done with the script segmentDynamics.R from the segmenTools git repository.

s10  Segmentation of RNAseq Read-Counts & Segment Classification

s20 The data were pre-segmented into expressed and weakly expressed chromosomal domains by a
s21 previously described heuristic (Machné et al., 2017) with a minor correction that splits pre-segments
s22  atchromosome ends. Pre-segmentation was done with the script presegment . R from the segmenTools
s23  SCript collection; Figure S4 provides pre-segment length distributions and run parameters. Pre-
s2a segments were then individually split into non-overlapping segments with coherent temporal ex-
s2s  pression profiles by the segmenTier algorithm, using optimized parameters from our previous
s26  study (Machné et al., 2017). Shortly, the arcsinh-transformed read-count data was Fourier-transformed
sz (Eq. 3); the first component (k = 0), reflecting the mean expression level, was arcsinh-transformed
s2s  (EQ. 6); and all other (k > 0) components were amplitude-scaled (Eq. 5). The real and imaginary
s20  parts of the scaled DFT components X;_, . were then clustered into 12 groups with R's implemen-
s30 tation of k-means (using the Hartigan-Wong method or if that failed, the MacQueen method). This
sa1  clustering then provided the anchors for the similarity-based segmentation by the segmenTier,
sa2  Where we used the icor scoring function with exponent ¢ = 2, length penalty M = 150, nuis-
s33  sance cluster penalty M, = 100, and nuissance cluster exponent v = 3. This combination of
s3a  parametersis achieved by arguments -trafo "ash" -dc.trafo "ash" -dft.range 1,2,3,4,5,6,7
s3s -K 12 -Mn 100 -scores "icor" -scales 2 -M 150 -nui.cr 3totherunSegmentier.Rscriptinthe
s3s segmenTools/scripts collection. All segments are provided in Dataset S2.

537 The resulting segments were then filtered and classified by their oscillation p-values (p,,;,, see
s3s above) and their overlaps with transcribed features annotated in the reference genome (release
s30  R64-1-1), using segmentOverlaps.R and segmentAnnotation.R in the segmenTools/scripts collec-
sa0  tion. Overlaps were quantified as the Jaccard index, J = 5 where I is the intersect, the number of
sa1  overlapping nucleotides, and U the union, the number of nucleotides covered by both, the segment
sa2 and the annotated feature. Table S2 provides details on filtering and the resulting sizes (numbers)
sa3  Of analyzed segment sets. Figure S5 provides the full data structure which guided these threshold
saa  Choices.

sas  Segment Clustering

sas  The means of read-counts covered by a segment were taken as segment time series. Periodic
sa7  €xpression was analyzed by permutation analysis and DFT and by the R package rain. 11,248
sas  Segments with p.,,, < 0.85 were chosen for further analysis (Fig. S5E-F). The DFT of the segment
sa0 time series was amplitude-scaled (Eq. 5, Fig. S6A) and the first (constant) component (k = 0) was
sso arcsinh-transformed (Eq. 6). Real and imaginary parts of the scaled DFT components X;_, were
ss1 then clustered with the flowClust algorithm (Lo et al., 2009) for cluster numbers K = 2,...,16.
ss2 The clustering with the maximal Bayesian Information Criterion, as reported by flowClust (Fig.
ss3  S6B), was selected for further analysis. Clustering was performed by clusterTimeseries2 function
ssa Of segmenTools vig the segmentDynamics.R script). The resulting clustering was sorted, re-labeled
sss and colored automatically based on the means of their segments’ expression phases (Eq. 4). The
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sse  Clustering was further sub-divided into high-amplitude clusters enriched for coding genes and low-
ss7 amplitude clusters (compare Fig. S7 and S8).

sss  Relative Protein Amplitudes

sso 3,189 segments overlapping with a coding region with Jaccard index J > 0.5 and with protein half-
se0 live (7,,) annotation in (Christiano et al., 2014) were considered. Proteins with half-life annotation
ser “>=100" were treated as 7, = oo. The relative mRNA amplitudes were calculated from the DFT X,
se2  (EQ. 3-4) of the first 19 time points (2 full cycles) of the RNAseq read count time series as Az = X,/ X,
ses  I.e., the ratio of the amplitudes of the 2" component X, (2 cycles) over the 0* component X,
sea (COrresponds to the mean over all time points) of the DFT. Relative protein amplitudes A, were then
ses Calculated with the analytical solution to an ordinary differential equation of rhythmic production,
ses after equation S8 of (Liick et al., 2014), as

Ap = Ag—Ft | @)
A /7/2 + a)2
s67 with angular frequency = == and z,,, = 0.67h; the total protein degradation rate y = 6, +

ses u, Where the actual protein degradatlon rates 6, were taken from (Christiano et al., 2014); and
seo the growth rate equals the chemostat dilution rate 4 = ¢ = 0.089h~!. In this model, the relative
s70 amplitude Ag is assumed to directly reflect periodic production,i.e., translational activity. Total
s71 amounts or translation rates are not required, and only a relative amplitude of protein amount
s72 can be calculated. Predicted protein amplitudes are provided in Dataset S3.

sz Transcript Abundance Peak Width Analysis

s7a  For each high-amplitude segment (2,505 segments with p,,;, < 0.0001) the time series was interpo-
s7s  lated to 1° resolution (0.105 min), and the oscillation phase ¢, (Eq. 4) was used as anchors to scan for
s76 times spent above the temporal median % during the first and the second full cycle in the data set
s77  (horizontal arrows in Fig. 3A). These times were recorded as the peak widths W, and W,. The peak
s7e  width change is the difference AW = W, — W,. Only segments with peak phases with >60° distance
s7o  to the start or end of the timeseries and where the median expression was traversed twice within
sso One cycle were considered, resulting in 2,357 segments with AW values. See Figure S16 for an
ss1  example and all data. Peak widths of other transcriptome data sets (Fig. S10B) were calculated for
ss2 the first full cycle of each experiment, simply as the time spent above the mean of transcript abun-
sss dance over the first cycle. Data that were not sampled equispaced were interpolated at equispaced
ssa time points using the minimal time step of the original sampling.

sss  Cluster Enrichment Analyses

sss  Cluster-Cluster Enrichment Tests

ss7 Categorical enrichments, e.g. coding gene co-expression cohorts vs. gene annotations, were ana-
sss lyzed by cumulative hypergeometric distribution tests (R's phyper) using segmenTools's clusterCluster
sso function and the clusterAnnotation wrapper for GO and and protein complex analysis, which com-
se0 pares overlaps of each pair of two distinct classifications into multiple classes, and stores overlap
se1 counts and p-values (“enrichment tables”) for informative plots (see “Enrichment Profiles”).

502 In these tests, the complete set of ORF annotated in the reference genome was analyzed (urn
so3  Size: 5,795). Of these, 4,489 ORF that overlapped with an segment (Tab. S2) with a Jaccard index
sea J > 0.5 were assigned to this segment’s cluster, where non-clustered segments (p,,;, > 0.85) were
sos assigned to cluster “0”, and all non-overlapping ORF (Joge max < 0.5) assigned to the “n.a” cluster. For
sos the analysis of protein complex analysis, all 5,524 ORF that overlapped with a segment with Joge > 0,
soz and the one with the maximal Jog: was used for cluster assignment. This relaxed assignment was
sos Used to comprehensively capture complex co-expression and differential expression.
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Enrichment Profiles

The results of multi-class enrichment tests (segment overlaps or cluster-cluster categorical over-
laps) were visualized as colored table plots, e.g. Figure 4A), using segmenTools’ function plotOverlaps.
The total counts of overlapping pairs are plotted as text, where the text color is selected based on
a p-value cutoff p, (as indicated). The background color gray level of each field scales with log,(p),
such that fields with a minimal p-value p,, (as indicated) are black.

For intuitively informative plots the enrichment tables were sorted. Table rows were sorted
along the other dimension (table columns) such that all categories enriched above a certain thresh-
old ps in the first column cluster are moved to the top, and, within, sorted by increasing p-values.
Next, the same sorting is applied to all remaining row clusters for the second column cluster, and
so on until the last column cluster. Remaining row clusters are either plotted unsorted below a red
line or removed. This is especially useful to visualize enrichment of functional categories along the
temporal program of co-expression cohorts, e.g., Figure 4A and D. This sorting is implemented in
segmenTools’ function sortOverlaps.
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