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15

Abstract16

Metabolic oscillations are characterized by alternating phases of high and low respiratory activity,17

associated with transcription of genes involved in biosynthetic pathways and growth, and in18

catabolism and stress response. However, the functional consequences of transcriptome19

oscillations remain unclear, since most proteins are too stable to be affected by oscillatory20

transcript abundances. In this work, we investigate a transcriptome time series during an21

unstable state of the oscillation. Our analyses confirm previous suggestions that the relative22

times spent in the alternative transcription states are coupled to growth rate. This pulse-width23

modulation of transcription provides a simple mechanism for the long-standing question of how24

cells adjust their ribosome content and growth rate to environmental conditions. A mathematical25

model of this idea reproduces both the almost linear relation of transcript and protein26

abundances and the non-linear relation of oscillation periods to growth rate.27

28

Introduction29

When yeast cultures are grown to a high cell density they tend to show collective metabolic dynam-30

ics, alternating between phases of high oxygen consumption (HOC) and low oxygen consumption31

(LOC). Numerous studies have shown that these oscillatory dynamics propagate throughout the32

metabolome, transcriptome and impinge on chromatin organization. The cycle period is depen-33

dent on growth conditions and the strain employed. Long period cycles (periods �osc = 3 h–8 h)34

were explained by a partial synchronization of the cell division cycle (CDC). Glycogen stores are35

filled during LOC phase, which corresponds to the G1 phase of the CDC, and mobilized during36

HOC phase, which corresponds to the budding phase (Küenzi and Fiechter, 1969; von Meyenburg,37

1969a; Sonnleitner and Käppeli, 1986; Münch et al., 1992; Bellgardt, 1994; Hjortso and Nielsen,38

1995; Futcher, 2006). Satroutdinov et al. (1992) then observed much shorter periods in the strain39

IFO 0233 (�osc = 0.7 h–1 h). IFO 0233, a distillery strain, questioned these prior models, as the glyco-40

gen storage cycle is reversed between the phases and ethanol is produced in LOC phase.41
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However, a similar temporal program is observed in both short period and long period exper-42

imental systems (Machné and Murray, 2012). Both show maxima of the cellular ATP/ADP ratio,43

followed by amino acid synthesis and a TORC1-mediated pulse of protein translation during the44

HOC phase (von Meyenburg, 1969b; Satroutdinov et al., 1992; Hans et al., 2003; Xu et al., 2004;45

Müller, 2006; Murray et al., 2007; Machné and Murray, 2012; Amariei et al., 2014; O’ Neill et al.,46

2020). Global remodeling of promoter and gene body nucleosome organization occurs during the47

late LOC phase (Amariei et al., 2014; Nocetti and Whitehouse, 2016). During the HOC phase, tran-48

scription progresses from a ribosome biogenesis cohort (Ribi) and cytoplasmic ribosomal protein49

genes (RP), to amino acid synthesis genes (AA) and mitochondrial ribosomal protein genes (mtRP)50

at the transition to the LOC phase. During the LOC phase, transcripts of a large group of stress-51

response and catabolic proteins (S/C) peak (Klevecz et al., 2004; Tu et al., 2005; Slavov et al., 2011;52

Machné and Murray, 2012).53
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Figure 1. PWM, Pulse-Width Modulation of
Transcription: The oscillation period in continuous culture
is related to the culture growth rate. At slower growth the
period is longer, reflected in a longer LOC phase, while the
HOC phase stays approximately constant. The conserved
temporal program of transcription is coupled to HOC and
LOC phases. Thus, at a longer LOC phase the LOC
phase-specific transcript abundances stay high for a longer
time. This should lead to a overall higher abundance of
LOC phase-specific transcripts (cohort S/C) and lower
abundance of HOC phase-specific transcripts (cohort
Ribi/RP), and thereby also to higher and lower abundances
of the protein products produced (translated) from these
transcripts. This is equivalent to the modulation of visually
perceived intensity of LED lights by varying the fraction of
time they are switched on, i.e., the pulse width.

Several hypotheses on putative functions of the temporal transcription program have been54

suggested. The functional profiles of co-expressed cohorts match metabolic activity, and the ini-55

tial hypothesis was a "just-in-time" model of gene expression (JIT), where enzymes are expressed56

when required within the metabolic cycle (Klevecz et al., 2004; Tu et al., 2005;Murray et al., 2007).57

However, protein half-lives in yeast are now thought to be much longer than initially reported58

(Christiano et al., 2014). This dampens the effect of periodic transcript on protein abundances59

(Lück et al., 2014). Indeed, recent proteomic studies found no (preprint: Feltham et al. (2019))60

or only few (O’ Neill et al., 2020) periodic protein abundances in long period systems. Slavov and61

Botstein (2011) and Burnetti et al. (2016) suggested an alternative hypothesis, based on the ob-62

servation that the relative duration of the LOC phase varies strongly with growth rate while HOC63

phase duration only subtly changes. This would result in different absolute abundances of the pro-64

teins produced fromHOC- and LOC-specific transcripts and could underlie growth rate-dependent65

cellular resource allocation (Maaløe, 1979; Molenaar et al., 2009). Due to the analogy to electrical66

engineering we refer to this idea as the pulse-width modulation (PWM) hypothesis (Fig. 1).67

To test above (non-exclusive) hypotheses, weperformed strand-specific RNA sequencing (RNAseq)68

in high temporal resolution during an unstable state of the short period cycle of the strain IFO 0233.69

Only a few genes that combine high transcript abundance amplitudes with short protein half-lives70

are compatible with the JIT hypothesis. These may point to a feedforward control of the transi-71

tion from catabolic to anabolic flux. However, the bulk of the protein-coding transcriptome codes72

for long-lived proteins. The duration of the LOC phase transcript abundance peak increased, and73

the duration of the HOC phase transcript abundance peak decreased within just two cycles of the74

oscillation. This preceded the transition to a longer period, compatible with the PWM hypothesis.75

Finally, we present a novel mathematical model of the PWM hypothesis that correctly predicts the76

correlations of growth-related protein abundances and oscillation periods to growth rate.77
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Results and Discussion78

Metabolic Context: Period Drift and a Bifurcation79
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Figure 2. Complex Dynamics: Slow Transients and a Sudden Bifurcation. Metabolic dynamics during
continuous culture of the budding yeast strain IFO 0233: panel A shows the full recorded time-series of the
culture, and panels B–F zoom in on the time axis; bullet points P1–P7 serve as a guide between panels and
are discussed in the text. The gray backgrounds show the dissolved O2 concentration (see A for axis) and
serves as a reference to oscillation phase. A: Dissolved O2 (DO) measurement from the start of continuous
feeding (dilution rate � = 0.089 h−1). Line colors are derived from the respiratory quotient RQ (D) and indicate
phases of high O2 consumption (HOC: red) and low O2 consumption (LOC: blue). The cyan line and right axis
show the temporal mean RQ, a moving average over ca. 10 h. B: The cycle periods were derived from a
Wavelet transform of the DO signal and the phase lengths are the time spans of each cycle where oxygen
uptake (-qO2 ) stayed below (red, HOC) or above (blue, LOC) 3.5mmol∕h∕gDCW. C: Zoom on P3–P6 for measured
metabolic rates and concentrations; qO2 , qCO2 and H2S were measured in the offgas of the reactor, corrected
for the measurement delay and H2S concentration was derived via its solubility. Proton export (qH+ ) was
calculated from the NaOH addition rate. D: Zoom on P4–P5 for calculated rates. The respiratory quotient (RQ)
and ATP production rates by respiration (qATPox) or by fermentation (qATPferm) were calculated from qO2 and
qCO2 (Eq. S9–S14 in Appendix A). The RQ color gradient serves as a reference in (A, E,F). E: Phase portrait of qO2
and qCO2 over the time range indicated by bullet points in (A); points are colored by RQ (D) and in 10 s
resolution; background colors indicate RQ ranges and arrows indicate time direction. F: One-hour snapshots
at different times (bullet points 2 and 5). Data are indicated by colored axes and labels, except for RQ which is
shown without axis but color-coded (red-black-blue) as in D and E. All reactor data is available as Datafile S1.

Previously, stable oscillations have been used to elucidate the transcriptome dynamics of con-80

tinuously grown yeast (Klevecz et al., 2004; Li and Klevecz, 2006). Here we observedmore complex81

transient dynamics, that occurred spontaneously (Fig. 2A, S1-S3). We first calculated the oscillation82

periods and metabolic rates from real-time measurements of the culture (Appendix A, Dataset S1)83

to characterize these dynamics. The culture cycled between a phase of low oxygen consumption84

(LOC) and a phase of high oxygen consumption (HOC). The period was 0.6 h–0.7 h (Fig. 2B-C), i.e.,85

the typically observed period for this strain and condition (Satroutdinov et al., 1992;Murray et al.,86

2001). The respiratory quotient, RQ =
qCO2
−qO2

, allows to infer details of the catabolic flux. During the87

LOC phase RQ > 1, i.e., cells produced ethanol and excess CO2 (fermentation). During the HOC88

phase, RQ decreased below 2
3
, i.e., below the stoichiometry of complete ethanol oxidation (Fig. 2D).89

This is consistent with a re-uptake of ethanol during the HOC phase (Satroutdinov et al., 1992) but90
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points to additional contributions to CO2 turnover, i.e., an additional uptake of CO2 during HOC91

phase. Proton export (qH+ , Fig. 2C, E) peaked in early HOC phase, consistent with a higher intracel-92

lular pH during HOC in both short period and long period oscillations (Keulers et al., 1996a;O’ Neill93

et al., 2020). The concentration of H2S peaked at ≈ 3 µM with a sharp increase upon transition to94

LOC (Fig. 2C, F), consistent with its release during amino acid biosynthesis in this transition phase95

(Murray et al., 2007) and its suggested role in population synchronization (Murray et al., 2003).96

The estimated ATP turnover rates (Fig. 2D) were in phase with previously measured ATP/ADP ra-97

tios, peaking in early to mid HOC phase (Machné and Murray, 2012; Amariei et al., 2014). Thus,98

the overall properties of the oscillations were consistent with previous data. During the whole run,99

oscillations appeared and vanished spontaneously twice. Both these events were similar. First,100

period decreased from 0.7 h to 0.6 h within ≈ 30 h (Fig. 2B). This period decrease was reflected in101

a decrease of the LOC phase length, while the HOC phase length even increased. At the end of102

this transient a sudden bifurcation of the dynamics occured. Afterwards periods were longer with103

a maximum of 1 h, but the oscillation was unstable and disappeared within a few cycles. This bi-104

furcation was preceded by an increased and phase-shifted peak of CO2 release at the transition105

from HOC to LOC (Fig. 2C, E, F). The peak of H2S release was delayed, and a novel third phase ap-106

peared between the peaks of CO2 and H2S release. This intermediate phase was purely respiratory107

at RQ = 1, and all metabolic rates had intermediate values.108

In summary, our experiment reflects the previously studied oscillation of the IFO 0233 strain,109

however, we describe complex transient dynamics that appeared twice. Emergence and disappear-110

ance of the oscillations could originate from a loss of oscillatory metabolic dynamics in single cells.111

We favor the alternative hypothesis that culture level oscillations result from a synchronization be-112

tween individually oscillating single cells (Silverman et al., 2010). During the synchronous phases,113

the oscillation period first drifted slowly to a minimum of ≈ 0.6 h; then system dynamics rapidly114

changed (bifurcated) to an unstable state with a longer period (≈ 1 h) and an intermediate phase115

that was purely respiratory (RQ ≈ 1). Low but purely respiratory activity at RQ ≈ 1 is characteristic116

of the LOC phase in CDC-coupled (long period) systems (Münch et al., 1992). The bifurcation was117

accompanied by the appearance of a pulse of CO2 release before, and a delayed pulse of H2S re-118

lease after the intermediate RQ ≈ 1 phase. We interpret the period drift and sudden transition as119

an imbalance between catabolic and anabolic flux.120

Transcriptome Oscillation: A Universal Temporal Program121

Numerous time series of the protein-coding transcriptome have revealed a universal temporal122

program of defined transcript cohorts but with periods ranging from 40min to 7.5 h (Machné, 2017).123

Transient states of the oscillation or non-coding transcription have not been studied. We sampled124

for RNAseq analysis every 4min for 2.5 cycles, just preceding the bifurcation of system dynamics125

(P4 in Fig. 2). The strand-specific sequencing reads were mapped to the reference genome (strain126

S288C, R64-1-1), yielding reads for 76% of the genome (Fig. S5A). A similarity-based segmentation127

algorithm (Machné et al., 2017) yielded ca. 37k segments (Fig. S5D), each a putative individual tran-128

script. All segments were classified by their oscillation p-values, calculated with the rain package129

(Thaben and Westermark, 2014), and by their overlaps with annotated genome features (Tab. S2).130

4,489 segments were classified as open reading frame (ORF) transcripts; 3,378 of these showed131

oscillation and reproduced the previously characterized temporal sequence (Fig. 3A; Machné and132

Murray (2012)). Oscillating non-coding (811 of 9,051) and antisense (232 of 569) segments predom-133

inantly peaked in the LOC phase. Very short and weakly expressed segments were removed from134

further analyses, the remaining 11k segments (Fig. S5G–I) were clustered into ten co-expressed135

clusters, and these were sorted and colored by their peak phase (Fig. S6–S8). These ten clusters136

can be further classified (Fig. S6C) into two groups of five clusters each. The first group (Fig. 3B)137

comprises of longer segments with high amplitudes, and most assigned to protein-coding genes138

(Fig. S7). The second group (Fig. 3C) contains shorter and weakly expressed segments with lower139

amplitudes, mostly non-coding and peaking during the LOC phase (Fig. S8).140
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Figure 3. RNAseq Time Series Clustering. A: Phase-ordered heatmap of the time-courses of segments with
oscillating abundance levels (6344 segments at prain < 0.05, Fig. S5E)). The dissolved O2 (DO, %) is shown as a
color gradient (black: high DO) on the top axis. Left and right panels show local densities (circular moving
average of counts over 1/10 of the total number) of segments overlapping with previously defined (Machné
and Murray, 2012) classes of coding genes (left: Ribi, ribosomal biogenesis and cytoplasmic ribosomal
proteins; AA: amino acid synthesis; mRibi: mitochondrial genes, incl. ribosomal proteins; stress: catabolic and
protein homeostasis genes), or non-coding segments (right: AS, antisense to ORF; NC, no overlap with any
annotated transcribed feature). B: Time series of the five major periodic co-expression clusters. Segment
time-courses (mean RPM) were scaled to a mean of 0 and divided by their standard deviation. The mean of
each cluster is shown as a solid line with points indicating the sampling times, and standard deviations are
shown as transparent ranges; the legends indicate the cluster label, the number of segments in the cluster
and the posterior functional cohort assignment. The gray background indicates the dissolved O2 (DO)
concentration. C: Time series for the cluster 4, 5, 6, 9, 10, which comprise mostly non-coding segments;
plotted as described for (B).

A Conserved Temporal Program Runs at Different Time Scales.141

Gene Ontology (GO) enrichment analysis of the protein coding cohorts (Fig. 4A and S9) recapitu-142

lates previous data (Klevecz et al., 2004; Machné and Murray, 2012). The ribosomal biogenesis143

regulon (Jorgensen et al., 2004) peaks in early to mid HOC phase (cluster 1: Ribi), followed by144

clusters encoding for cytoplasmic ribosomal proteins (cluster 2: cRP), and amino acid biosynthetic145

pathways (cluster 3: AA) at the transition to LOC phase. During the LOC phase, mitochondrial pro-146

teins, including mitochondrial ribosomal proteins (cluster 7: mRP) are co-expressed with a regulon147

associated with stress response (Gasch et al., 2000; Brauer et al., 2005) and G1 phase (O’Duibhir148

et al., 2014). The latter comprises of proteins involved in the general stress response (chaperones)149

and in carbohydrate, fatty acid and protein catabolism (cluster 8: S/C). We used this clustering to re-150

analyze eight data sets from different strains and conditions and with periods ranging from 40min151

to 7.5 h (Fig. S10–S11, data from Li and Klevecz (2006); Tu et al. (2005); Slavov et al. (2011); Chin et al.152

(2012); Kuang et al. (2014);Wang et al. (2015); Nocetti and Whitehouse (2016)). This meta-analysis153

reveals common patterns. A temporally constrained program (0.5 h–2 h) leads from Ribi/cRP via AA154

to mRP, ending with the transition from HOC to LOC phase. Increases of the total period are mostly155

reflected by increased duration of the LOC phase and the associated S/C cohort expression. The156

same temporal program can be observed in six distinct cell cycle arrest & release experiments (Fig.157

S12) (Orlando et al., 2008; Bristow et al., 2014).158
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Figure 4. A Universal Temporal Program. A: Sorted cluster enrichment profiles for the GO category “cellular
component”. The p-values were calculated by cumulative hypergeometric distribution tests and are shown as
gray-scale. Only categories with p < 0.001 (white text) and more then 10 genes in one of the clusters are
shown. See Figure S9 for all clusters and GO categories. B: Boxplots of cluster distributions of predicted
relative protein amplitudes (AP, in % of their mean abundance), estimated from transcript amplitudes and
protein half-lives (Fig. S13). The horizontal line indicates the the top 100 oscillators listed in Table S3. The top
predicted oscillators of class enzyme or membrane transporter of each cluster are indicated. C: Boxplots of
cluster distributions of transcript abundance peak width differences ΔW = W2 −W1 between the second and
first full expression cycle. Figure S16 provides details on the calculation. D: Boxplots of the transcript
abundance peak width differences between two experiments from the same culture but at different growth
rates (left: Chin et al. (2012), right: Wang et al. (2015)). See Fig. S10B for raw peak widths. E: Peak width ratio
vs. growth rate for all experiments analyzed in Figure S10B. The ratio of the mean peak widths of cluster 2
(W RP) and cluster 8 (W S/C) is correlated to the strain-specific relative growth rate (�∕�f , see Fig. S10B for �
and Tab. S5 for �f values). Experiments are indicated by the first author and year in the legend. The line
indicates a linear regression, and r and p are the Pearson correlation and p-value, all calculated without the
outlier at � = 0 h−1 (slavov11) which was taken from an oscillation at the end of a batch growth phase on
ethanol medium.

Testing Hypotheses: Putative Functions of the Temporal Program159

Next, we analzyed the two hypotheses on putative functions of this universal temporal program;160

the just-in-time production (JIT) and the pulse-width modulation (PWM) hypothesis.161

Carbonic Anhydrase and the Glyoxylate Cycle are Novel Feedback Candidates.162

The temporal order of mRNA abundances makes intuitive sense as a just-in-time gene expres-163

sion program (JIT) coordinated with metabolic events. However, oscillations on transcript level are164

dampened by long protein half-lives (Lück et al., 2014). Thus, we estimated relative protein am-165

plitudes (Fig. 4B, S13A–C) from our RNA abundance time series and from protein half-life data by166

Christiano et al. (2014), using a mathematical model of periodic gene expression by Lück et al.167

(2014). Most proteins are predicted to vary by 0.1%–0.5% of their mean abundance (Fig. 4B and168

S13C). Only 23 proteins have predicted relative protein amplitudes ≥2%; and oscillators are en-169

riched in the Ribi and AA cohorts (Fig. S13C). These low amplitudes probably do not have a strong170

effect onmetabolic dynamics, but themodel is based on sine approximations of transcript time se-171

ries and protein half-lives measured in asynchronous conditions; it may understimate amplitudes172

and it completely neglects potential effects of induced protein degradation and post-translational173

modifications. Thus, we tested our predicted againstmeasured protein amplitudes in a long period174

oscillation (O’ Neill et al., 2020). The genome-wide correlation between these amplitude sets was175

weak but significantly positive (Fig. S14). However, the top oscillator estimates of both data sets176

overlapped (Fig. S13D, E). Notably, 60 of the top 100 oscillators in our analysis were not detected in177

the proteomics measurement. These include several transcription factors (e.g. BDF2, CLB2, GZF3,178
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MET28, SWI5, MSN4) which are known to be expressed at low levels. Thus, our analysis reveals179

putative oscillators that are potentially missed by proteomics analysis.180

Both top oscillator lists share cell wall proteins, nutrient transporters, and metabolic enzymes.181

Several enzymes of the sulfate uptake pathway (MET genes) are expressed in Ribi and peaked182

prior to the pathway intermediate H2S at the HOC/LOC transition (Fig. 2). The carbonic anhydrase183

(NCE103, in Ribi) catalyzes the interconversion of carbon dioxide and bicarbonate (CO2 + H2O ↔184

HCO−
3 + H+), and is essential in aerated cultures (Aguilera et al., 2005). During the second sampled185

cycle the Ribi cohort was downregulated early (Fig. 3A, Fig. 4C) and this correlated with the appear-186

ance of the CO2 and the delay of H2S release pulses at transition to LOC (Fig. 2C–F). Both, CO2 and187

H2S, were previously suggested to contribute to population synchronization (Keulers et al., 1996a;188

Murray et al., 1999, 2003), and both are substrates of biosynthetic metabolism. However, the189

strongest synchronizing activity was found for the acetaldehyde (Murray et al., 2003), a futile inter-190

mediate of fermentation or, more generally, of overflowmetabolism around the pyruvate node of191

metabolism, between glycolysis, respiration and biosynthesis (Pronk et al., 1996; Sonnleitner and192

Käppeli, 1986). The switch from catabolism in HOC phase to anabolism at the transition to LOC193

phase likely involves regulation around this central node of metabolism. We find several biosyn-194

thetic enzymes among the top 100 predicted oscillators (Fig. S15), most notably three enzymes of195

the glyoxylate cycle (ICL1, CIT2, MDH2, all in the AA cohort), a shorter and purely biosynthetic ver-196

sion of the tricarboxylic acid cycle. It is for example required to synthesize glucose, when ethanol is197

the only carbon source. This cycle is autocatalytic (Barenholz et al., 2017) and serves as metabolic198

switch in response to changes in carbon source (Nakatsukasa et al., 2015).199

All discussed pathways also appear in the proteome-based list of top oscillators (Fig. S13D,E,200

S14), supporting their general relevance for metabolic oscillations. As outlined in Figure S15, these201

short-lived enzymes could be involved in gating the transition from the catabolic to the anabolic202

phase of the cycle.203

Resource Allocation by Pulse-Width Modulation (PWM).204

Most proteins are too stable for an effect of oscillatory transcript on protein abundances. Slavov205

and Botstein (2011) and Burnetti et al. (2016) suggested an alternative interpretation of periodic206

transcription. Variation of the relative times spent in HOC phase- and LOC phase-specific tran-207

scription states could serve to tune steady-state protein abundances. The LOC phase duration de-208

creases with increasing growth rates, while HOC phase duration remains approximately constant209

or even slightly increases (von Meyenburg, 1969a; Strässle et al., 1989; Slavov and Botstein, 2011;210

Burnetti et al., 2016; O’ Neill et al., 2020). This would lead to a higher relative biomass fraction211

of proteins from HOC phase-specific transcripts, i.e. of the Ribi and the cRP cohorts. During our212

experiment a similar shift of the relative times spent with HOC or LOC phase-specific expression213

occured (horizontal bars in Fig. 3A). We quantified and compared the peak widths between the214

two cycles (Fig. S16). The S/C cohort peak width increased on average by ≈ 3min, while the Ribi215

cohort peak width decreased by ≈ −5min (Fig. 4C). This occured without comparable changes of216

the duration of HOC and LOC phases, i.e., the transcription was notmerely an output of respiratory217

dynamics. Thus, the relative duration of expression phases can be adapted rapidly and affect the218

metabolic dynamics in subsequent cycles.219

So we next looked for evidence of PWM of transcription in the previous data sets and calcu-220

lated peak widths for all transcripts (Fig. S10B). When growth rate was decreased in dilution rate221

shift experiments (Chin et al., 2012; Wang et al., 2015) the period increased, as expected. Most222

transcript abundance peak widths increased with period, but this increase was significantly higher223

for the LOC-phase specific cohorts (Fig. 4D). Thus, the peak widths of HOC phase-specific and LOC224

phase-specific co-expression cohorts indeed changed with growth rate. The oscillation periods225

tend to reach a minimum towards a strain-specific critical growth rate (�f ) where fermentation226

sets in (Burnetti et al., 2016; Machné et al., 2017). We calculated the mean peak widths of the RP227

cohort (cluster 2) and the S/C cohort (cluster 8), and a relative growth rate for each experiment,228
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i.e., the growth rate (dilution rate) of the continuous culture divided by the strain-specific critical229

growth rate ( �
�f
). This reveals a good correlation between the RP to S/C peak width ratio and the230

relative growth rate of the cultures (Fig. 4E). The only outlier is the transcriptome data taken at the231

end of a batch growth phase, i.e. at � ≈ 0 h−1, on ethanol medium (Slavov et al., 2011).232

An increase of ribosome content is directly and causally related to higher growth rates, consti-233

tuting a fundamental principle of microbial growth physiology (Schaechter et al., 1958; Waldron234

and Lacroute, 1975; Koch, 1988; Scott et al., 2010). This relation is reflected in continuous changes235

of relative abundances of different transcript and protein classes with growth rate (Brauer et al.,236

2005; Airoldi et al., 2009;Molenaar et al., 2009;Metzl-Raz et al., 2017). Nomechanism for this con-237

tinous variation of gene expression is known in eukaryotes. A temporal regulation, via continuous238

changes of the relative durations of LOC and HOC phases generates this relation in synchronously239

oscillating continous culture. Even in asynchronous cultures, individual cells appear to oscillate240

(Silverman et al., 2010), thus this mechanism is likely general.241

The PWMModel Explains Period and Proteome Relations to Growth Rate242

Consistent Prediction of Transcript and Protein Abundances.243

Next, we set out to explore the predictive power of the PWM hypothesis. In short, we assume a244

step function of transcriptional activity, such that genes are transcribed at maximal rate during245

their respective expression phase (HOC or LOC) and not transcribed in the other phase. The mean246

concentrations (over time) of an mRNA that is transcribed only in HOC phase (Rℎoc), and of its247

protein product (Pℎoc ) are:248

Rℎoc =
�ℎock
� + �r

Pℎoc = Rℎoc
nBl
� + �p

,
(1)

where �ℎoc = �ℎoc∕�osc is the fraction of the total period (�osc ) spent in HOC phase (�ℎoc ), k and l249

are transcription and translation elongation rates, nB is the ribosome density (ribosomes per RP250

mRNA); �r and �p are themRNA and protein degradation rates; and � is the culture growth rate. The251

samemodel can be used for LOC phase-specific genes, with transcription restricted to�loc = 1−�ℎoc .252

See Appendix B for a detailed derivation of the model.253

The period �osc decreases with increasing growth rate (Fig. 5A, S17A). This period decrease is254

reflected in a decrease of the time spent in LOC phase (�loc ), while the duration of the HOC phase255

stays approximately constant or even slightly increases (von Meyenburg, 1969a; Strässle et al.,256

1989; Bellgardt, 1994; Slavov and Botstein, 2011; Burnetti et al., 2016; O’ Neill et al., 2020). Sim-257

ilarly, �loc decreased with period �osc , while �ℎoc changed less and in opposite direction during our258

experiment (Fig. 2B). We thus estimated a �ℎoc = f (�) from data from the IFO 0233 strain (Fig.259

5A, Murray et al. (2001)), used our classification into HOC phase and LOC phase genes (Fig. 3, 4),260

and collected gene-specific parameters for the production and degradation rates for each gene261

(Fig. S18). The model assumes that all regulation occurs through initiation of transcription at a262

maximal rate in HOC or LOC phase. The maximal transcription and translation rates merely de-263

pend on the gene and proteins lengths, while ribosome densities (per mRNA) and degradation264

rates are derived from genome-wide experimental data (Tab. S5). These assumptions and data265

allowed to estimate growth rate-dependent mean transcript and protein abundances from Eq. 1266

for 1,197 genes (Fig. 5C–F, S21). To estimate the predictive power we calculated the slopes dmRNA
d�

,267

and find a good correlation (Spearman’s � = 0.66) with the slopes reported for 35 signature genes268

of the Universal Growth Rate Response (UGRR) model (Fig. 5D, Airoldi et al. (2009); Slavov and269

Botstein (2011)). Next, we calculated slopes for absolute transcript counts measured in chemostat270

cultures at different growth rates by Xia et al. (2022). The correlation is overall weak (� = 0.35, Fig.271

S21C), but better for smaller gene sets from amore stringent consensus classification (� = 0.74, Fig.272
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Figure 5. The PWMModel. A: Oscillation periods are non-linearly related to growth rate, here shown for four
different strains (colored points, cf. Fig. S17A). The periods expected from partial CDC-synchronization (CDC
range) in modes 1:1, 1:2 and 1:3 are shown as black solid lines (Bellgardt, 1994), via Eq. S31-S32. The PWM
model (colored lines, Tab. S6) can re-produce the observed periods, incl. at � → 0, and the relation to the
strain-specific critical growth rate �f (colored ticks on the x-axis). Solid lines indicate a PWMmodel with
constant ribosome concentration calculated via �f , and dashed lines with linearly increasing ribosome
concentration and the additional assumption of a �max; �ℎoc (colored ticks on the right y-axis) was manually
adjusted. B: Periods predicted by the base model (Eq. 2, solid green line) and the extended model with
variable ribosome concentration B(�) (Eq. S25, solid red line), with parameters from Table S5. The colored
dashed lines are the ribosome concentrations (right y-axis) used for each model. Alternatively, ribosome
parameters can be estimated via the �f -constraint (Eq. S26, solid blue line). C:Median (lines) and 25%/75%
quantiles (transparent range) of all mRNA abundances predicted by the PWMmodel (Eq. 1) from �ℎoc
(IFO 0233 parameters in (A)), and from gene-specific production and degradation rates (Tab. S18B), and
classification to either HOC (clusters 1, 2 and 10) or LOC (clusters 6, 7, 8 and 8) phase. The legend indicates
the number of genes for which all data was available. D: Comparison of the mRNA slopes, derived from a
linear regression of the data in (C), and the slopes provided for signature genes of the UGRR model (Slavov
and Botstein, 2011). All data required for the PWM-based prediction was available for the shown 35 of 58
signature genes. Gene names are provided for the outliers, two mitochondrial and one ER-associated. The
straight line is a linear regression, and � is the Spearman correlation, �abs removes the influence of the
classification by taking the absolute slopes in both data sets, and �ℎoc and �loc are correlations calculated for
only the HOC- or LOC-specific signature genes (red and blue point symbols). E: Fractions of the total protein
abundance predicted by the PWMmodel (Eq. 1) for the gene lists used to analyze proteome fractions in
Metzl-Raz et al. (2017); gene numbers in brackets. F: Total protein abundances predicted by the PWMmodel
for HOC and LOC phase genes ; calculated without (solid lines, Eq. 1) or with (dashed lines, Eq. S27) an
additional restriction of translation to HOC phase. The vertical black arrow indicates the total protein content
estimation byMilo (2013). All rates required for mRNA and protein prediction are available in Dataset S3.

S21D). Similarly, we found good overall agreement of the relative proteome fractions at different273

growth rates of gene groups selected by Metzl-Raz et al. (2017) (Fig. 5E). For example, the pro-274

teome fraction of mitochondrial genes decreases, while the fraction of genes involved with transla-275

tion increases with growth rate, reflecting measurements (Metzl-Raz et al., 2017). The correlation276

with measured growth rate-slopes of proteins (Xia et al., 2022) were higher than for transcripts277

(� = 0.42, and � = 0.78 for the consensus set; Fig. S21G,H). However, the strongest contribution to278

these correlations comes from our accurate classification into HOC and LOC phase genes, while279

the correlation for the HOC phase-specific transcripts was even negative (Fig. S21C).280

The model neglects all other types of regulation such as targeted degradation, or intrinsic bias281

such as sequence-dependent differences of elongation rates; thus, it is not suprising that on a282
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genome-wide scale the predictive power is weak. Appendix B.6 discusses potential reasons for283

these discrepancies. A more fundamental problem of the model is that translation is unlimited.284

The total protein abundance increases strongly at � → 0, while it is very close to estimates from285

experimental data (Milo, 2013) at high � (Fig. 5F). As outlined in Appendix B.5, previous data point to286

a pulse of translational activity at the HOC-to-LOC transition. The majority of ATP synthesis occurs287

in HOC phase; as a simple approximation, we restricted the translation of all transcripts (HOC and288

LOC phase) to HOC phase (Eq. S27). This reduced the total protein abundance at � → 0 to about289

twice the estimate for cells in exponential growth (Milo, 2013), thus into a more realistic range.290

The PWM Model Predicts Oscillation Periods.291

We further noted, that the model yields a strict constraint between oscillation parameters, the292

life cycle rates and concentration of proteins, and growth rate. Ribosomal proteins (RP) are (a)293

transcribed within the HOC phase clusters (Klevecz et al., 2004;Machné andMurray, 2012) (Fig. 4A,294

D), and (b) their relative fraction of total biomass increases with growth rate (Fig. S18C–E, (Waldron295

and Lacroute, 1975)). Thus, we can use this constraint to predict oscillation periods frommeasured296

ribosome concentrations and life cycle parameters. Assuming that each RP is associated with one297

ribosome (Appendix B.2), we get:298

�osc
�ℎoc

= k
� + �r

l
� + �p

nB
B(�)

, (2)

whereB(�) is the total concentration of (cytoplasmic) ribosomes, and all other parameters refer299

to an average RP (Tab. S5, Fig. S18A). Remarkably, the collected literature parameters already yield300

(i) realistic periods and (ii) the non-linear dependence of periods on growth rates (green line, Fig.301

5B). Linearly varying the ribosome concentration with growth rate (Fig. S18C) makes the period302

function steeper (red line, Fig. 5B).303

Experimentally observed periods reach a minimum towards the strain-specific growth rates �f ,304

where yeast metabolism switches from purely respiratory to respiro-fermentative metabolism of305

glucose (Burnetti et al., 2016; Machné, 2017). In the IFO 0233 strain, fermentation sets in early,306

at growth rates �f = 0.11 h−1–0.15 h−1 (Hansson and Häggström, 1983; Satroutdinov et al., 1992)307

consistent with its short period cycles. This constraint allows to estimate strain-specific values308

for the RP and ribosome-related parameters via published values for �f (Appendix B.3, Fig. 5A,309

S17D, Tab. S6). The model with variable ribosomes is required to fit data from the two strains with310

longer periods (CDC range), or, alternatively, very low degradation rates (Fig. S17C). This pattern is311

confirmed when fitting Eq. 2 separately to 20 independent data sets (Fig. S19, S20). Long period312

data sets require to set at least one of the degradation parameters (�r, �p) to 0. This may be due313

to a phase-locking with the CDC (gray areas in Fig. 5A, B), where the HOC phase aligns with the314

budding phase of the CDC and LOC phase is purely respiratory (RQ ≈ 1) and corresponds to the G1315

phase of the CDC (Münch et al., 1992). When such phase-locking with the CDC occurs, PWM and316

oscillation parameters may not be directly coupled anymore.317

Previously suggested models based on partial synchrony of the asymmetric cell division cy-318

cle fit long period data well (Bellgardt, 1994; Hjortso and Nielsen, 1995; Duboc and von Stockar,319

2000). However, thesemodels can not account for oscillations in batch culture andwithout division320

(Mochan and Pye, 1973;Murray, 2004; Slavov et al., 2011) and for periods that are longer than the321

culture doubling time (Heinzle et al., 1983; Porro et al., 1988). Burnetti et al. (2016) suggested a322

purely empirical model for these relations. The PWM model is the first mechanistic model of the323

oscillation that can account for all experimentally observed periods; although only with unrealis-324

tic parameter choices for long periods. Future work based on this novel theoretical framework325

should explicitly account for energetic constraints on the protein synthesis capacity during the cy-326

cle, and could explore the effects of additional regulatory mechanisms or systematic differences327

in production and degradation rates.328
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Conclusion329

The phenomenon of metabolic auto-synchronization in budding yeast continuous culture was in-330

strumental for the clarification of the asymmetric CDC of budding yeast (Küenzi and Fiechter, 1969;331

von Meyenburg, 1969a). The discovery of stable short period cycles in the distillery strain IFO 0233332

(Satroutdinov et al., 1992) fortified early indications (von Meyenburg, 1969b; Mochan and Pye,333

1973) that the system ismore than just synchronization of the CDC. Here, we first explored the com-334

plexity of dynamics observable in budding yeast continuous culture, a long-term transient and a335

sudden bifurcation. We then tested the twomain hypotheses on putative functions of the periodic336

transcriptome (JIT and PWM).337

We presented four independent lines of evidence in support of the PWM hypothesis (Burnetti338

et al., 2016; Slavov and Botstein, 2011): (i) transcript abundance peak widths changed as predicted339

in two dilution rate shift experiments, (ii) the relative peakwidths correlated verywell to the relative340

growth rate, i.e., the growth rate divided by the strain-specific critical growth rate, (iii) the PWM341

model predicts measured growth rate-dependent transcript and protein abundances reasonably342

well, despite its simplicity, and (iv) the PWM model predicts the dependence of oscillation periods343

on growth rate. The coupling is consistent over periods ranging from 40min to 7.5 h. We further344

note that circadian biology faces a similar problem, low protein abundance amplitudes despite345

significant transcript abundance oscillations (Lück et al., 2014; Wang et al., 2018; Krahmer et al.,346

2021; Karlsen et al., 2021). While the period is fixed, seasonal variation of light/dark cycle phase347

lengths could mediate PWM-based control of steady state protein abundances.348

And finally, the prediction of periodic proteins (JIT analysis) and the metabolic dynamics during349

our experiment underpin previous data onH2S and CO2 as population synchronizers (Keulers et al.,350

1996a;Murray et al., 2003, 2007). The accumulating evidence suggests that the involved pathways351

could gate the switching from catabolic to anabolic flux at the transition from HOC phase to LOC352

phase (Fig. S15). ThemetabolicmechanismsbehindCDC-coupled longperiod oscillationswere con-353

sidered to lie in a cycle of glycogen build-up during LOC phase andmobilization during HOC phase,354

where the respiratory electron transport chain becomes limiting and overflow metabolism at the355

pyruvate node (ethanol, acetate or acetaldehyde accumulation and secretion) induces the switch356

to LOC phase and synchronizes the culture (Küenzi and Fiechter, 1969; Strässle et al., 1989;Münch357

et al., 1992). However, glycogen content oscillates at low amplitude and peaks in the wrong phase358

in IFO 0233 (Satroutdinov et al., 1992) and glycogen is not produced during oscillatory growth on359

ethanol-based medium (Keulers et al., 1996b). Thus, the glycogen cycle model is either wrong360

or not generally valid. The next big question is thus to clarify the metabolic mechanisms behind361

switching between the HOC and LOC phases of this cycle. What is the nature of the metabolic362

limitation in continuous culture, and how does it determine the relative lengths of the phases?363

Supporting Information and Data364

The RNA sequencing reads are available at ArrayExpress (http://www.ebi.ac.uk/arrayexpress/, Athar365

et al. (2019)) with accession number E-MTAB-11901.366

Supporting Information File:367

Appendices A (calculation of metabolic rates from bioreactor online measurements), B (detailed368

formulation of the PWMmodel), and all Supporting Figures.369

Dataset S1:370

Reactor data, including all calculated rates and RNAseq sampl timess.371

Dataset S2:372

All 36,928 segments reported by segmenTier, incl. genome coordinates, cluster labels, read-counts,373

oscillation values (amplitudeA2, phase �2, p-value prain), coding gene and SUT overlaps, and all time374

points, using the sampling IDs (2–25) indicated in the reactor data.375
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Dataset S3:376

Data for 3,849 coding genes that overlap with a segment with J > 0: relative mRNA and protein377

amplitudes and protein half-lives for prediction of protein amplitudes (Fig. S13), and production378

and degradation rates as used for period, mRNA and protein abundance predictions, incl. cluster379

associations and classification as RP gene (Fig. S18A/B, Tab. S5).380

Materials and Methods381

Strain History382

Kuriyama’s lab first reported oscillations in continuous culture of the Saccharomyces cerevisiae383

strain IFO 0233 (Satroutdinov et al., 1992). The strain number is from the Japanese culture col-384

lection NBRC and is identified there as “Distillery yeast Rasse II”, “accepted” in 1941, and as385

ATCC 560 in the US American culture collection. These strains can be traced back to the “Bren-386

nereihefe, Rasse II” isolated as “Hefe 128” axenic culture by Paul Lindner at the Berlin Institut für387

Gärungsgewerbe in 1889 from samples of a distillery in Gronowo (West Prussia, now Poland) which388

obtained their yeast from a dry yeast supplier in the city Thorn (now Toruń, Poland) (Lindner, 1895).389

The strain and its descendant “Rasse XII” became commercially successful distillery strains within390

hybrid formulations (“Rasse M”), and was at the time an intensively studied strain in basic research,391

e.g., in the search for the nature of “bios” (Lindner, 1919).392

Continuous Culture393

Pre-Culture394

Saccharomyces cerevisiae (strain IFO 0233) were maintained on yeast nitrogen base agar plates395

(2% glucose, 1.5% agar; Difco, Japan) at 4 ◦C, sub-cultured from frozen stock cultures (-80 ◦C; 1mL;396

15% glycerol; 5 × 108 cells). Pre-cultures were inoculated into Yeast Extract Peptone Dextrose me-397

dia (10mL; 1% yeast extract, 2% peptone, 2% glucose) and grown at 30 ◦C in an orbital incubator398

(200 rpm) for 24 h.399

Continuous Culture Medium & Inoculation400

The culturemediumconsisted ofD-glucose (20 gL−1), (NH4)2SO4 (5 gL−1), KH2PO4 (2 gL−1), MgSO4.7H2O401

(0.5 gL−1), CaCl2.2H2O (0.1 gL−1), FeSO4.7H2O (20mgL−1), ZnSO4.7H2O (10mgL−1), CuSO4.5H2O402

(5mgL−1), MnCl2.4H2O (1mgL−1), 70% H2SO4, (1mLL−1), Difco yeast extract (1 gL−1) and Sigma An-403

tifoamA (0.2mLL−1). All chemicals were supplied byWako Pure Chemical Industries Ltd., Japan. The404

medium prepared with this recipe has a pH of ca. 2.5 which allows for autoclaving of media with405

both sugar and ammonium without browning (caramelization) and further avoids precipitation406

of salts in feed medium bottles during continuous culture. A custom-built bioreactor as outlined407

below was filled with 0.635 L of medium and autoclaved (121 ◦C; 15min). Aeration (0.15 Lmin−1), ag-408

itation (750 rpm), and temperature (30 ◦C) and pH (3.4) control were switched on, until the system409

was equilibrated. Then, the dissolved oxygen probe was 2-point calibrated by flushing with pure410

nitrogen (0%) and switching back to air (100%). The equilibrated and fully calibrated reactor was in-411

oculated with ≈ 1×109 pre-culture yeast cells. A batch phase continued for ≈40 h until the cells had412

reached stationary phase, indicated by a sharp decrease in respiratory activity. Then continuous413

culture, i.e., feeding with fresh medium, was initiated (at 44.5 h in Figure 2).414

Culture Control & Monitoring415

Continuous culture was performed in a custom-built bioreactor. The culture vessel was a jar fer-416

mentor (Eyela, Japan) with a total volume of 2.667 L. Culture volume wasmeasured using a balance417

(SB16001, Mettler Toledo, Japan), and continuous dilution with freshmediumwas performed using418

a peristaltic pump (AC2110, ATTA, Japan) with a six roller planetary design which minimizes puls-419

ing during rotation (about 10 rpm), and mediumwas pumped through 1mm tubing (inner diameter;420

Masterflex, Cole Palmer, USA) and a 23 gauge steel needle. This ensured that the media was intro-421

duced in a stream of <20 µL droplets and just under a droplet per second at the operating dilution422
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rate. Feed medium bottle weight was monitored by a balance (PMK-16, Mettler Toledo, Japan),423

set up to read from unstable environments and shielded from direct breezes. The culture was424

agitated at 750 rpm and aerated at 0.150 Lmin−1 by a mass flow controller (B.E. Marubishi, Japan).425

Dissolved oxygen was measured using an InPro 6800 sensor and pH with an InPro 3030 (both:426

Mettler Toledo, Japan). Culture pH was maintained at 3.4 by the automatic addition of 2.5mol L−1427

NaOH, and the weight of the NaOH bottle was monitored on a balance (PM400). Local control of428

agitation and pH was carried out by Labo controllers (B.E. Marubishi, Japan). The reactor pressure429

was monitored by a manometer (DM-760, Comfix, Japan) installed on a split outlet flow stream.430

The culture temperature was controlled at 30 ◦C by an external sensor connected to a circulating431

water bath (F25-ME, Julabo, Japan). Partial pressure of oxygen and carbon dioxide in the off-gas432

were measured by an Enoki-III gas analyzer (Figaro engineering, Japan). The partial pressure of433

hydrogen sulfide in the off-gas was measured using an electrode based gas monitor (HSC-1050HL,434

GASTEC, Japan). Instruments were calibrated as per manufacturer’s instruction.435

Reactor Data Acquisition and Calculation of Metabolic Rates436

Data were acquired via the in-house FERMtastic software at 0.1Hz. Metabolic rates were calcu-437

lated as described previously (von Meyenburg, 1969a; Heinzle, 1987; Verduyn et al., 1991; Mari-438

son et al., 1998; Murray et al., 2007) from the online recorded data. Details and all equations439

are provided in Appendix A of the supporting information. All data were processed in the script440

samplingSeq_2019.R of the yeastSeq2016 git repository. All calculated rates are provided in Dataset441

S1.442

RNA Sequencing & Read Mapping443

Sampling, RNA Extraction & Sequencing Library Generation444

Total RNA was extracted as previously described (Sasidharan et al., 2012) from 24 samples taken445

every 4min, covering ca. 2.5 cycles of the respiratory oscillation.446

Culture samples were immediately quenched in ethanol and disrupted using acid-washed zir-447

conia/silica beads (0.5mm; Tomy Seiko Co., Ltd., Japan) with sodium acetate buffer (250 µL; sodium448

acetate 300mM, Na2-EDTA 10mM , pH 4.5–5.0) and one volume of TE-saturated phenol (Nacalai449

Tesque) equilibrated with sodium acetate buffer (250 µL).450

The samples were then centrifuged (12 000 g, 15min, 4 ◦C) and the aqueous phase transferred451

to fresh 1.5mL microcentrifuge tubes. Back-extraction was performed by adding sodium acetate452

buffer (125 µL) to the bead-beat tubes, vortex (10 s), centrifuging (12 000 g, 15min, 4 ◦C) and adding the453

aqueous phase to the first aqueous phase. 2.5 volumes ice-cold 99.5% ethanol were added to the454

aqueous phase and RNA/DNA precipitated at −20 ◦C overnight. The samples were then centrifuged455

(12 000 g, 30min, 4 ◦C), the supernatant removed by aspiration, and pellets washed 3× in 500 µL 70%456

ethanol and air-dried (10min, room temperature). DNA was removed (RNase-Free DNase Set; Qia-457

gen, Japan) andRNA recoveredby columnpurification (QIAquick PCRPurification Kit; Qiagen, Japan)458

in 50 µLUltraPure water, and stored at−80 ◦C prior to analysis. Total RNA had an RNA integrity num-459

ber >7 and 260nm:230nm and 260nm:230nm ratios >2.14. All cDNA libraries were then generated460

and sequenced by the Beijing Genome Institute (BGI), China. Strand specific cDNA libraries were461

created using the “dUTP method” (Parkhomchuk et al., 2009; Levin et al., 2010) and sequencing462

was carried out on an Illumina 1G sequencer.463

RNAseq Read Mapping464

RNAseq reads were mapped against the yeast reference genome (strain S288C, release R64-1-1)465

using segemehl (version 0.1.4) (Hoffmann et al., 2014) with default parameters and spliced read466

mapping enabled. Initially unmatched reads were mapped again using the remapping tool from467

the segemehl package and the resulting files were merged. Coverage (read-counts per nucleotide)468

was normalized for total library size to reads-per-million (RPM) and RPM values were stored in a469

bedgraph file for further analysis.470
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RNAseq Time Series Analysis471

Analysis Strategy and R Code472

All analyses were performed with bash and R. The full analysis pipeline is available in a git repos-473

itory at https://gitlab.com/raim/yeastSeq2016. Analysis and plotting tools developed for this work474

are available in an git repository with scripts and an R package available at https://github.com/475

raim/segmenTools. RNAseq segmentation was performed with the segmenTier R package (Machné476

et al., 2017), available at https://cran.r-project.org/package=segmenTier. Scripts for genome-wide477

data collections and mapping to the yeast S288C reference genome (release R64-1-1) as well as478

the genomeBrowser plots are available at the git repository https://gitlab.com/raim/genomeBrowser.479

The collection of oscillation period data and the scripts for the PWM model analysis are available480

at the https://gitlab.com/raim/ChemostatData repository, generated originally forMachné (2017).481

Additional Data Sources482

Genome annotations including GeneOntology (GO) termswere taken directly from the gff genome483

file from the Saccharomyces genome database (SGD, release R64-1-1, 2011-02-08, same as for484

RNAseq mapping). Published transcript data sets (XUT, SUT, etc.) were also obtained from SGD485

for the same genome release. Protein complex annotation CYC2008 (Pu et al., 2009) was down-486

loaded from http://wodaklab.org/cyc2008/resources/CYC2008_complex.tab on 2019-06-04. All other487

data were obtained from the supporting material of publications: half-live data for mRNAs and488

proteins from Geisberg et al. (2014) and Christiano et al. (2014); ribosome density data from Ar-489

ava et al. (2003); the consensus clustering of periodically expressed transcripts fromMachné and490

Murray (2012); UGRR expression data and slopes from Slavov and Botstein (2011); protein abun-491

dance data from Paulo et al. (2016), where growth rate data was sent in personal communication;492

and functional gene groups from (Metzl-Raz et al., 2017).493

Discrete Fourier Transform.494

A time series ofNmeasurements x = {x0,… , xN−1}, taken at equally spaced timepoints {t0,… , tN−1},495

can be transformed to frequency-space by the Discrete Fourier Transform (DFT):496

497

Xk =
N−1
∑

n=0
xne

−2�i knN , k = {0,… , N − 1} (3)

where Xk is a vector of complex numbers representing the decomposition of the original time498

series into a constant (mean) component (at k = 0) and a series of harmonic oscillations around499

this mean with periods Pk, amplitudes Ak and phase angles �k:500

Pk = (tN−1 − t0)∕k ,

Ak = |Xk|∕N ,

�k = −atan2(Im(Xk),Re(Xk)) .

(4)

All DFT were performed with R’s fft function.501

For DFT-based clustering and segmentation analysis, it proved useful to scale DFT components502

by the mean amplitude of all other components k > 0:503

X′
k>0 =

Xk>0

|X|k≠{0,k}

, (5)

and the constant component (k = 0) by the arcsinh transformation:504

X′
0 = ln

(

|X0| +
√

X2
0 + 1

)

. (6)

For analysis of read-count data xn were the raw read-counts, for analysis of segments xn were505

the mean of all read-counts of the segment.506
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The index k corresponds to the number of full cycles with period Pk in the time series. Only507

the first 19 time points, covering two full cycles of the oscillation were used for the calculation of508

phases and p-values, such that k = 2 reflects the main oscillation. For all plots, phases were shifted509

such that �2 = 0 corresponds to the transition from LOC to HOC.510

Oscillation p-Values511

For calculation of oscillation p-values pDFT on read-count level the time series were permutated512

Np = 10, 000 times, and random amplitude Ã2 calculated. The p-value was estimated as the frac-513

tion of permutations for which the random amplitude was larger than the observed amplitude A2514

(eqn. 4). This analysis was performed with the script genomeOscillation.R from the segmenTools515

git repository. Oscillation p-values prain on segment level were calculated with the R package rain516

(Thaben and Westermark, 2014) using period P = 0.65 h and time step �t = 4min. This analysis was517

done with the script segmentDynamics.R from the segmenTools git repository.518

Segmentation of RNAseq Read-Counts & Segment Classification519

The data were pre-segmented into expressed and weakly expressed chromosomal domains by a520

previously describedheuristic (Machné et al., 2017) with aminor correction that splits pre-segments521

at chromosomeends. Pre-segmentationwasdonewith the script presegment.R from the segmenTools522

script collection; Figure S4 provides pre-segment length distributions and run parameters. Pre-523

segments were then individually split into non-overlapping segments with coherent temporal ex-524

pression profiles by the segmenTier algorithm, using optimized parameters from our previous525

study (Machné et al., 2017). Shortly, the arcsinh-transformed read-count datawas Fourier-transformed526

(Eq. 3); the first component (k = 0), reflecting the mean expression level, was arcsinh-transformed527

(Eq. 6); and all other (k > 0) components were amplitude-scaled (Eq. 5). The real and imaginary528

parts of the scaled DFT components X′
k=0,..,6 were then clustered into 12 groups with R’s implemen-529

tation of k-means (using the Hartigan-Wong method or if that failed, the MacQueen method). This530

clustering then provided the anchors for the similarity-based segmentation by the segmenTier,531

where we used the icor scoring function with exponent � = 2, length penalty M = 150, nuis-532

sance cluster penalty M0 = 100, and nuissance cluster exponent � = 3. This combination of533

parameters is achieved by arguments –trafo "ash" –dc.trafo "ash" –dft.range 1,2,3,4,5,6,7534

–K 12 –Mn 100 –scores "icor" –scales 2 –M 150 –nui.cr 3 to the runSegmentier.R script in the535

segmenTools/scripts collection. All segments are provided in Dataset S2.536

The resulting segments were then filtered and classified by their oscillation p-values (prain, see537

above) and their overlaps with transcribed features annotated in the reference genome (release538

R64-1-1), using segmentOverlaps.R and segmentAnnotation.R in the segmenTools/scripts collec-539

tion. Overlaps were quantified as the Jaccard index, J = I
U
, where I is the intersect, the number of540

overlapping nucleotides, andU the union, the number of nucleotides covered by both, the segment541

and the annotated feature. Table S2 provides details on filtering and the resulting sizes (numbers)542

of analyzed segment sets. Figure S5 provides the full data structure which guided these threshold543

choices.544

Segment Clustering545

The means of read-counts covered by a segment were taken as segment time series. Periodic546

expression was analyzed by permutation analysis and DFT and by the R package rain. 11,248547

segments with prain < 0.85 were chosen for further analysis (Fig. S5E-F). The DFT of the segment548

time series was amplitude-scaled (Eq. 5, Fig. S6A) and the first (constant) component (k = 0) was549

arcsinh-transformed (Eq. 6). Real and imaginary parts of the scaled DFT components X′
k=0,..,6 were550

then clustered with the flowClust algorithm (Lo et al., 2009) for cluster numbers K = 2,… , 16.551

The clustering with the maximal Bayesian Information Criterion, as reported by flowClust (Fig.552

S6B), was selected for further analysis. Clustering was performed by clusterTimeseries2 function553

of segmenTools via the segmentDynamics.R script). The resulting clustering was sorted, re-labeled554

and colored automatically based on the means of their segments’ expression phases (Eq. 4). The555
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clustering was further sub-divided into high-amplitude clusters enriched for coding genes and low-556

amplitude clusters (compare Fig. S7 and S8).557

Relative Protein Amplitudes558

3,189 segments overlapping with a coding region with Jaccard index J > 0.5 and with protein half-559

live (�1∕2) annotation in (Christiano et al., 2014) were considered. Proteins with half-life annotation560

“>=100” were treated as �1∕2 = ∞. The relative mRNA amplitudes were calculated from the DFT Xk561

(Eq. 3-4) of the first 19 time points (2 full cycles) of the RNAseq read count time series asAR = X2∕X0,562

i.e., the ratio of the amplitudes of the 2nd component X2 (2 cycles) over the 0tℎ component X0563

(corresponds to themean over all time points) of the DFT. Relative protein amplitudesAP were then564

calculated with the analytical solution to an ordinary differential equation of rhythmic production,565

after equation S8 of (Lück et al., 2014), as566

AP = AR



√


2 + !2
, (7)

with angular frequency ! = 2�
�osc

and �osc = 0.67 h; the total protein degradation rate 
 = �p +567

�, where the actual protein degradation rates �p were taken from (Christiano et al., 2014); and568

the growth rate equals the chemostat dilution rate � = � = 0.089 h−1. In this model, the relative569

amplitude AR is assumed to directly reflect periodic production,i.e., translational activity. Total570

amounts or translation rates are not required, and only a relative amplitude of protein amount571

can be calculated. Predicted protein amplitudes are provided in Dataset S3.572

Transcript Abundance Peak Width Analysis573

For each high-amplitude segment (2,505 segments with prain < 0.0001) the time series was interpo-574

lated to 1◦ resolution (0.105min), and the oscillation phase �2 (Eq. 4) was used as anchors to scan for575

times spent above the temporal median x̃ during the first and the second full cycle in the data set576

(horizontal arrows in Fig. 3A). These times were recorded as the peak widthsW1 andW2. The peak577

width change is the difference ΔW = W2−W1. Only segments with peak phases with ≥60◦ distance578

to the start or end of the timeseries and where the median expression was traversed twice within579

one cycle were considered, resulting in 2,357 segments with ΔW values. See Figure S16 for an580

example and all data. Peak widths of other transcriptome data sets (Fig. S10B) were calculated for581

the first full cycle of each experiment, simply as the time spent above the mean of transcript abun-582

dance over the first cycle. Data that were not sampled equispacedwere interpolated at equispaced583

time points using the minimal time step of the original sampling.584

Cluster Enrichment Analyses585

Cluster-Cluster Enrichment Tests586

Categorical enrichments, e.g. coding gene co-expression cohorts vs. gene annotations, were ana-587

lyzedby cumulative hypergeometric distribution tests (R’s phyper) using segmenTools’s clusterCluster588

function and the clusterAnnotationwrapper for GO and and protein complex analysis, which com-589

pares overlaps of each pair of two distinct classifications into multiple classes, and stores overlap590

counts and p-values (“enrichment tables”) for informative plots (see “Enrichment Profiles”).591

In these tests, the complete set of ORF annotated in the reference genome was analyzed (urn592

size: 5,795). Of these, 4,489 ORF that overlapped with an segment (Tab. S2) with a Jaccard index593

J > 0.5 were assigned to this segment’s cluster, where non-clustered segments (prain ≥ 0.85) were594

assigned to cluster “0”, and all non-overlapping ORF (JORF,max < 0.5) assigned to the “n.a” cluster. For595

the analysis of protein complex analysis, all 5,524ORF that overlappedwith a segmentwith JORF > 0,596

and the one with the maximal JORF was used for cluster assignment. This relaxed assignment was597

used to comprehensively capture complex co-expression and differential expression.598
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Enrichment Profiles599

The results of multi-class enrichment tests (segment overlaps or cluster-cluster categorical over-600

laps)were visualized as colored table plots, e.g. Figure 4A), using segmenTools’ function plotOverlaps.601

The total counts of overlapping pairs are plotted as text, where the text color is selected based on602

a p-value cutoff ptxt (as indicated). The background color gray level of each field scales with log2(p),603

such that fields with a minimal p-value pmin (as indicated) are black.604

For intuitively informative plots the enrichment tables were sorted. Table rows were sorted605

along the other dimension (table columns) such that all categories enriched above a certain thresh-606

old psort in the first column cluster are moved to the top, and, within, sorted by increasing p-values.607

Next, the same sorting is applied to all remaining row clusters for the second column cluster, and608

so on until the last column cluster. Remaining row clusters are either plotted unsorted below a red609

line or removed. This is especially useful to visualize enrichment of functional categories along the610

temporal program of co-expression cohorts, e.g., Figure 4A and D. This sorting is implemented in611

segmenTools’ function sortOverlaps.612
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