

1 OxPhos Dysfunction Causes Hypermetabolism and Reduces Lifespan in Cells and in 2 Patients with Mitochondrial Diseases

3 Gabriel Sturm¹, Kalpita R Karan¹, Anna Monzel¹, Balaji S Santhanam², Tanja Taivassalo³, Céline Bris^{4,5},
4 Sarah A Ware⁶, Marissa Cross¹, Atif Towheed^{1,7}, Albert Higgins-Chen⁸, Meagan J McManus^{9,10}, Andres
5 Cardenas¹¹, Jue Lin¹², Elissa S Epel¹³, Shamima Rahman¹⁴, John Vissing¹⁵, Bruno Grassi¹⁶, Morgan Levine¹⁷,
6 Steve Horvath¹⁸, Ronald G Haller¹⁹, Guy Lenaers^{4,5}, Douglas C Wallace¹⁰, Marie-Pierre St-Onge²⁰, Saeed
7 Tavazoie², Vincent Procaccio^{4,5}, Brett A Kaufman⁶, Erin L Seifert²¹, Michio Hirano²², Martin Picard^{1,22,23,*}

8 ¹ Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York,
9 NY, United States

10 ² Departments of Biological Sciences, Systems Biology, and Biochemistry and Molecular Biophysics, Institute for
11 Cancer Dynamics, Columbia University, New York, United States

12 ³ Department of Physiology and Functional Genomics, Clinical and Translational Research Building, University of
13 Florida, Gainesville, FL, United States

14 ⁴ Department of Genetics, Angers Hospital, Angers, France

15 ⁵ Angers University, MitoLab team, UMR CNRS 6015 - INSERM U1083, MitoVasc Institute, Angers, France

16 ⁶ Department of Medicine, Vascular Medicine Institute and Center for Metabolic and Mitochondrial Medicine, University
17 of Pittsburgh, Pittsburgh, PA, United States

18 ⁷ Touro College of Osteopathic Medicine, Middletown, NY, United States

19 ⁸ Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA

20 ⁹ Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA,
21 United States

22 ¹⁰ Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA,
23 United States

24 ¹¹ Department of Environmental Health Sciences and Center for Computational Biology, University of California
25 Berkeley, Berkeley, CA, United States

26 ¹² Department of Biochemistry and Biophysics, University of California, San Francisco, CA, United States

27 ¹³ Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA, United States

28 ¹⁴ Mitochondrial Research Group, UCL Great Ormond Street Institute of Child Health, and Metabolic Unit, Great
29 Ormond Street Hospital for Children NHS Foundation Trust, London, UK

30 ¹⁵ Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen,
31 Copenhagen, Denmark

32 ¹⁶ Department of Medicine, University of Udine, Udine, Italy

33 ¹⁷ Department of Pathology, Yale University School of Medicine, New Haven, CT, United States

34 ¹⁸ Human Genetics, David Geffen School of Medicine, University of California, Los Angeles CA, United States

35 ¹⁹ Neuromuscular Center, Institute for Exercise and Environmental Medicine of Texas Health Resources and
36 Department of Neurology, University of Texas Southwestern Medical Center, United States

37 ²⁰ Sleep Center of Excellence and Division of General Medicine, Department of Medicine, Columbia University Irving
38 Medical Center, New York, NY, United States

39 ²¹ Thomas Jefferson University, Department of Pathology, Anatomy and Cell Biology and MitoCare Center,
40 Philadelphia, PA, United States

41 ²² Department of Neurology, H. Houston Merritt Center, Columbia Translational Neuroscience Initiative, Columbia
42 University Irving Medical Center, New York, NY, United States

43 ²³ New York State Psychiatric Institute, New York, NY, United States

44 * Correspondence: martin.picard@columbia.edu

1 **Abstract**

2 Patients with primary mitochondrial diseases present with fatigue and multi-system disease, are often
3 lean, and die prematurely, but the mechanistic basis for this clinical picture remains unclear. Integrating
4 data from 17 cohorts of patients with mitochondrial diseases (n=690), we find that clinical mitochondrial
5 disorders increase resting energy expenditure, a state termed *hypermetabolism*. In a longitudinal
6 cellular model of primary patient-derived fibroblasts from multiple donors, we show that genetic and
7 pharmacological disruptions of oxidative phosphorylation (OxPhos) similarly trigger increased energy
8 consumption in a cell-autonomous manner, despite near-normal OxPhos coupling efficiency.
9 Hypermetabolism is associated with mtDNA instability, activation of the integrated stress response,
10 increased extracellular secretion of age-related cytokines and metabokines including GDF15, as well
11 as an accelerated rate of telomere erosion and epigenetic aging, and a reduced Hayflick limit. Together
12 with these dynamic measures, we have generated a longitudinal RNASeq and DNA methylation
13 resource dataset, which reveals conserved, energetically demanding, genome-wide recalibrations in
14 response to OxPhos dysfunction. The increased energetic cost of living, or hypermetabolism, in cells
15 and organisms with OxPhos defects has important biological and clinical implications.

16

17 **Keywords:** mitochondrial disorders, longitudinal, energy expenditure, epigenetics, GDF15, cell-free
18 mitochondrial DNA

1 Introduction

2 Mitochondrial diseases are caused by mutations in either the mitochondrial (mtDNA) or nuclear
3 (nDNA) genomes, which impair oxidative phosphorylation (OxPhos) and the ability to convert food
4 substrates into ATP ¹. However, cellular dysfunction arises even when ATP levels are normal ²⁻⁴,
5 suggesting that energy deficiency may not be the primary disease initiator. In animal models, OxPhos
6 defects trigger nuclear transcriptional responses, including the integrated stress response (ISR) ^{3,5-8},
7 and downstream gene products such as growth differentiation factor 15 (GDF15) are secreted
8 systemically where they impact metabolic functions ^{9,10}. This implicates conserved systemic signaling
9 pathways in the pathogenesis of mitochondrial diseases ¹¹. Considering that these stress pathways
10 entail fundamentally energetically demanding cellular processes, OxPhos defects could therefore
11 increase energy consumption at the cellular and organismal levels. However, the metabolic costs of
12 cellular and systemic recalibrations in mitochondrial disorders have not been defined. Here we examine
13 this question in clinical datasets and in two *in vitro* models.

14 Clinically, OxPhos dysfunction causes a broad spectrum of multi-system disorders where
15 symptoms include, among others, fatigue and exercise intolerance ^{12,13}. As a result, most patients with
16 mitochondrial diseases curtail physical activity and exercise ^{14,15}. A common misconception arising from
17 this clinical picture is that a reduced mitochondrial capacity to oxidize substrates ¹⁶ coupled to minimal
18 physical activity levels would promote an energy conservation response, resulting in positive energy
19 balance and body fat accumulation, leading to obesity. However, patients with mitochondrial diseases
20 are rarely obese. In fact, patients with moderate to severe disease on average classify as underweight
21 ¹⁷. Although gastro-intestinal symptoms that limit food intake or absorption could contribute to this
22 phenotype, the rarity of obesity in mitochondrial disease remains a clinical paradox. This may be
23 resolved by the counterintuitive notion that mitochondrial OxPhos dysfunction may not decrease energy
24 consumption and expenditure but may rather *increase* the energetic cost required to sustain basic
25 physiological functions.

26 Living organisms avoid thermodynamic decay to grow and survive by consuming energy. The
27 amount of energy expended relative to the minimal metabolic rate required to sustain life is defined as
28 *metabolic efficiency*. Strong evolutionary pressures have optimized metabolic efficiency in organisms,
29 thereby minimizing the amount of ATP required to sustain life ¹⁸. One evolutionary strategy includes the
30 choice of metabolic pathways to derive ATP (OxPhos vs glycolysis), which have different ATP yields
31 and metabolic costs ¹⁹. Within cells, metabolic costs arise mainly from transcription/translation
32 processes (~60% of total energy demands), the maintenance of ionic balance, as well as organelle
33 biogenesis and degradation ^{20,21}, which includes mitochondrial turnover. Mitochondrial biogenesis
34 comes at a substantial cost because of the extensive mitochondrial proteome ¹⁹. In mitochondrial
35 diseases, the intracellular heterogeneous mixture of mitochondria with mutant and wild-type mtDNA

1 (i.e., heteroplasmy) triggers exaggerated biogenesis²², a phenomenon predicted to increase the basal
2 metabolic cost of organelle maintenance and total energy expenditure²³. Accordingly, a re-analysis of
3 resting energy expenditure (REE) in animal models of mitochondrial OxPhos dysfunction is elevated by
4 15-85%, including in Crif1^{-/-} mice with impaired mitochondrial translation¹⁰, Clpp^{-/-} mice with deficient
5 proteostasis²⁴, Polg mutator mice¹⁰, ANT1^{-/-} mice with impaired ATP/ADP exchange²⁵, and ATP6-
6 mutant flies²⁶. Thus, reasoning from thermodynamics principles, impaired OxPhos capacity may
7 impede the natural and optimal balance of energy transformation pathways, consequently reducing
8 metabolic efficiency. Therefore, we reasoned that patients with severe OxPhos defects would similarly
9 exhibit impaired metabolic efficiency and increased REE – a state known as *hypermetabolism*. Other
10 causes of OxPhos dysfunction including mutations in nuclear genes encoding respiratory chain
11 assembly factors like SURF1²⁷, which cause disease and decrease lifespan in humans²⁸, could also
12 trigger hypermetabolism.

13 Shortened lifespan is a ubiquitous feature of mitochondrial diseases²⁹⁻³¹ and most animal
14 models with severe OxPhos dysfunction die prematurely³²⁻³⁵. But is there a causal link between
15 hypermetabolism and lifespan in humans? Among healthy individuals, elevated REE or
16 hypermetabolism measured by indirect calorimetry (oxygen consumption, VO₂) predicts more rapid age-
17 related physiological decline³⁶ and independently predicts 25-53% higher mortality over the following
18 20-40 years^{37,38} – an effect double that incurred by smoking cigarettes³⁸. In human stem cells,
19 hypermetabolism was also correlated with senescence and other aging phenotypes³⁹. Mechanistically,
20 multiple processes compete for limited energetic resources within cells^{40,41}, particularly under energy-
21 restricted conditions. Because some cellular operations are prioritized over others²⁰, the energetic cost
22 of stress responses and their associated increase in transcription/translation can inhibit growth and cell
23 division, even triggering premature senescence^{42,43}. Recently, it was reported that excessive activation
24 of the ISR itself inhibits cell population growth⁸. Thus, OxPhos-induced ISR activation and the resulting
25 hypermetabolism could curtail growth and/or cause premature death by forcing an energetic tradeoff
26 between stress responses and growth/survival pathways.

27 Taken together, the observations that: i) genetic mitochondrial OxPhos defects trigger integrated
28 stress responses, ii) cells operate under energetic constraints where the prioritization of stress
29 responses and transcription/translation costs can precipitate senescence, and iii) decreased metabolic
30 efficiency predicts shorter lifespan in humans and other animals, lead to the following hypothesis:
31 genetic defects causing OxPhos dysfunction trigger hypermetabolism both physiologically and cell-
32 autonomously, a phenotype associated with reduced lifespan.

33 Here we test this hypothesis by re-analyzing data from multiple clinical cohorts of primary
34 mitochondrial diseases with direct and indirect assessments of energy expenditure and lifespan, and
35 via longitudinal *in vitro* studies in patient-derived human fibroblasts. We have developed a cellular

1 system that provides high temporal resolution, repeated-measures of bioenergetic and multi-omic
2 molecular recalibrations across the cellular lifespan. Using this model, we show that both genetic and
3 pharmacological mitochondrial OxPhos defects trigger marked hypermetabolism in a cell-autonomous
4 manner. We identify mtDNA instability, activation of the ISR, increased secretory activity, and
5 transcriptional upregulation of transcriptional/translational stress pathways as potential contributors to
6 hypermetabolism. Finally, we report that OxPhos defects and hypermetabolism are linked to
7 accelerated telomere shortening and epigenetic aging in fibroblasts, and provide a publicly available
8 longitudinal dataset to query epigenetic and transcriptional signatures conserved across both cellular
9 models. Our analyses highlight how the associated resource dataset can serve as a discovery platform
10 to identify potentially targetable pathways contributing to hypermetabolism, as well as downstream
11 mechanisms linking hypermetabolism to cellular and clinical phenotypes. Together, these translational
12 data implicate hypermetabolism as a pathophysiological feature of mitochondrial diseases and lifespan
13 reduction.

14

15 **Results**

16 *Meta-analysis of metabolic rate and physiology in primary mitochondrial disease*

17 To test the hypothesis that mitochondrial OxPhos defects are associated with increased energy
18 expenditure and shortened lifespan (**Figure 1A**), we integrated and re-analyzed data from a total of 17
19 cohorts representing a total of 690 patients with mitochondrial diseases and 225 healthy controls
20 (provided by the authors or directly from publications) (**Table 1**). The heterogenous mixture of functional
21 and dysfunctional mitochondria within single cells is well known to cause mitochondrial
22 hyperproliferation and increase mtDNA copy number⁴⁴⁻⁴⁷, as illustrated within a single patient skeletal
23 muscle cell in **Figure 1B**. Increased biogenesis must naturally incur increased energy expenditure at
24 the cellular level²³, which we reasoned may translate to elevated whole-body REE.

25 In patients with mitochondrial diseases, resting heart rate, which correlates with whole-body
26 REE⁴⁸, was on average 10.7% higher than healthy controls ($p<0.01$, **Figure 1C**). This tachycardia
27 reached up to +46% when patients and controls performed mild exercise at the same absolute workload
28 (data not shown). Both at rest and during mild physical activity, as initially reported in a small study⁴⁹,
29 patients had on average 244% higher blood or urine catecholamine levels ($p<0.05$, **Figure 1D**),
30 particularly norepinephrine (NE), a neurohormone sufficient to elevate REE when administered
31 systemically to healthy individuals⁵⁰. To estimate REE in mitochondrial disease patients, we used
32 resting whole body VO_2 expressed relative to body weight, which, although imperfect, was available in
33 the largest number of studies. Strikingly, VO_2 measured by indirect calorimetry across 6 cohorts of
34 patients with mtDNA defects was on average 30% higher at rest ($p<0.0001$) than in healthy controls, a

difference characterized by a very large effect size (Hedge's $g=2.4$, **Figure 1E**). REE estimates using the Weir equation⁵¹ (combining both VO_2 and VCO_2 , readily available in 3/6 cohorts) yielded equivalent results within 1.2% of the group difference derived from VO_2 alone. Notably, VO_2 was elevated by more than half (+51%) during mild physical activity in mitochondrial diseases, consistent with hyperkinetic cardiocirculatory responses to exercise in this population⁵². Thus, these gross body mass normalized REE values reveal increased energy consumption (i.e., lower metabolic efficiency) in mitochondrial diseases, at rest and particularly during mild physical challenges.

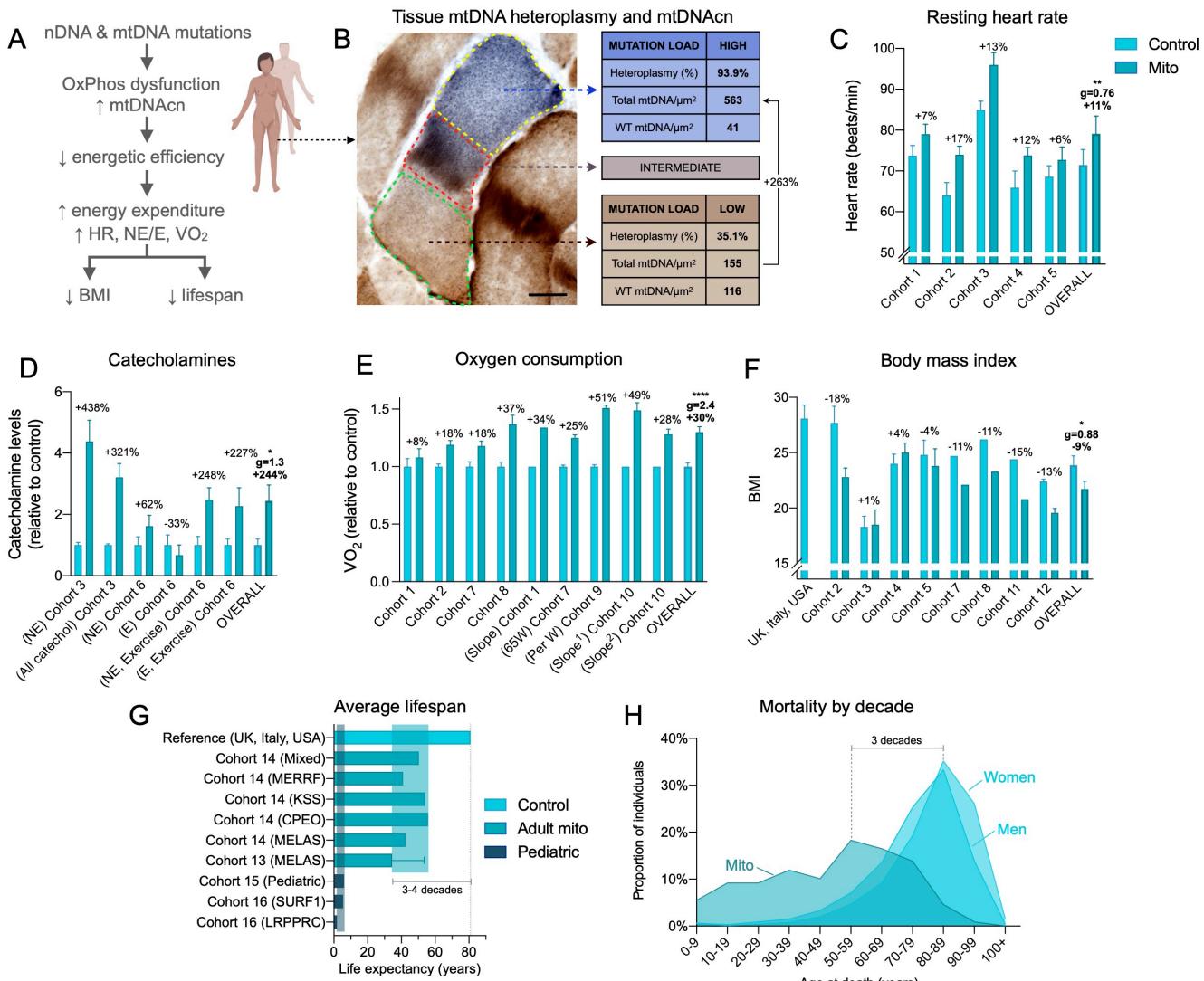


Figure 1. Meta-analysis of human studies reveals increased energy expenditure and shortened lifespan in primary mitochondrial diseases. (A) Overall conceptual model linking mtDNA- and nDNA-related OxPhos defects to impaired metabolic efficiency at the cellular level, impacting whole-body resting energy expenditure and clinical outcomes. (B) Skeletal muscle biopsy with individual muscle fibers stained with cytochrome c oxidase/succinate dehydrogenase (COX/SDH) histochemistry to reveal functional (brown) and respiratory chain deficient (blue) mitochondria. In the affected cell (middle), three sub-regions showing low, intermediate, and high mtDNA mutation load were captured by laser capture microdissection and subjected to quantitative PCR analysis as in (Picard et al. 2012). Subcellular regions with high mtDNA mutation load show elevated mtDNA density, which is predicted to increase the energetic cost due to maintenance and turnover processes. WT, wild type. (C) Meta-analysis of human mitochondrial disease cohorts showing elevated resting heart rate (n=104 controls, 111 patients), (D) catecholamines (urinary-Cohort 3 and blood-Cohort 6) at rest or during fixed-intensity exercise (n=38

1 controls, 19 patients), (E) whole-body oxygen consumption measured by indirect calorimetry at rest or during
2 response to mild exercise challenge;¹ before training, ² after training. Slope refers to the rate of increase in VO_2
3 relative to work rate, where a higher slope indicates increased energetic cost for a given work rate (n=56 controls,
4 78 patients). (F) Body mass index (BMI) across mitochondrial disease cohorts and compared to national averages
5 (USA, UK, Italy) (n=285 controls, 174 patients). (G) Average life expectancy in individuals with mitochondrial
6 diseases relative to national averages (n=301 patients). Data are means \pm SEM, with % difference between
7 mitochondrial disease and control group where available. (H) Mortality (age of death) over 10 years (2010-2020)
8 in Cohort 17 compared to national averages for women and men (n=109 patients). See *Table 1* for cohort details.
9 Total n=225 healthy controls, 690 patients. Groups compared by paired t tests (C and F) or one-sample t tests (D
10 and E), * p<0.05, ** p<0.01, **** p<0.0001.

11 The increase in REE is particularly striking given that patients with mitochondrial diseases on
12 average have lower muscle mass ¹⁷, which is the major site of activity-dependent energy consumption.
13 Therefore, the lower muscle mass in patients would be expected to reduce energy expenditure, unless
14 the tissues intrinsically exhibited impaired metabolic efficiency, and thus consumed more energy per
15 unit time just to sustain homeostasis. Therefore, the meta-analysis of these clinical data from multiple
16 cohorts combining hundreds of patients reveals an increased energetic cost of living per unit of body
17 mass – or *hypermetabolism* – in mitochondrial diseases.

18 Physiologically, hypermetabolism is expected to produce a negative energy balance, expending
19 more energy substrates than are ingested, generally preventing the accumulation of body fat.
20 Accordingly, body mass index (BMI), a gross estimate of adiposity, was on average 9.8% lower (p<0.05)
21 patients with mitochondrial diseases compared to controls (23% lower than national averages across 3
22 countries) (**Figure 1F**). In one study, fat mass index, a more precise indicator of body fat, was 21.9%
23 lower in mitochondrial disease patients ¹⁷. Moreover, although not all patients are thin, patients with
24 more severe disease manifestations tended to have lower BMI ($r=-0.25$, $p=0.018$) ¹⁷, suggesting that
25 more severe mitochondrial OxPhos dysfunction in humans contribute to prevent the accumulation of
26 body fast and obesity. Again, this result is in line with those in animal models of OxPhos defects, which
27 similarly show hypermetabolism and reduced adiposity ^{10,24-26}.

28 This clinical picture of mitochondrial diseases marked by increased REE and reduced body fat
29 was associated with a 3-4-decade reduction in lifespan among adults (**Figure 1G**) ³¹. In a 10-year
30 longitudinal observational study from the UK, peak mortality in mixed genetic diagnoses of mitochondrial
31 diseases occurs up to 3 decades earlier than the national reference (**Figure 1H**). In children with severe
32 pediatric forms of mitochondrial diseases, including diseases caused by autosomal recessive
33 respiratory chain defects (e.g., *SURF1* mutations: median lifespan 5.4 years ²⁸), lifespan can be reduced
34 by >90%. Heterogeneity between genetic diagnoses also highlights possible mutation-specific effects
35 on hypermetabolism (**Extended Data Figure 1**). Together, these multimodal physiological data
36 establish hypermetabolism as a clinical feature of mitochondrial diseases, which could account for the
37 rarity of obesity and also contribute to shortened lifespan in this population.

38 *Longitudinal analysis of primary human fibroblasts with SURF1 mutations*

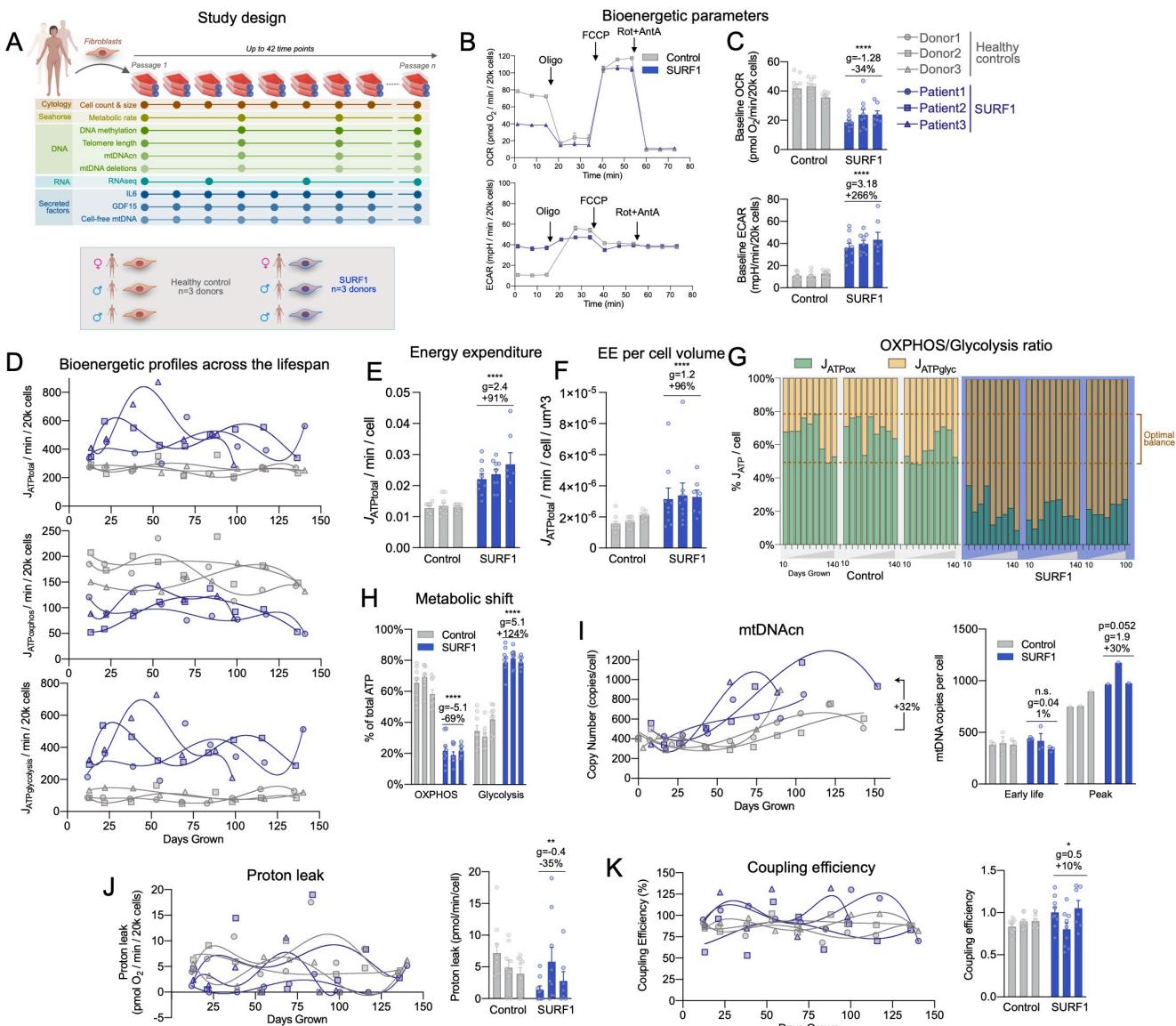
1 To examine if mitochondrial OxPhos dysfunction alters the REE and lifespan in a cell-
2 autonomous manner independent of clinical, medical, and socio-behavioral confounds, we next
3 performed a longitudinal study of primary human fibroblasts with genetically defined or
4 pharmacologically induced OxPhos dysfunction. We used cells with a stable nuclear mutation in *SURF1*
5 (Surfeit Locus Protein 1), which causes partial mis-assembly and dysfunction of respiratory chain
6 complex IV (cytochrome c oxidase, COX)⁵³, leading to Leigh syndrome and death in early childhood
7 (see Figure 1G). Primary dermal fibroblasts were obtained from 3 patients with *SURF1* mutations
8 presenting with Leigh syndrome, and from 3 healthy donors with no known mitochondrial dysfunction
9 (**Control**) (**Extended Data Table 1-2**). Each group included one female and two male donors. To capture
10 both baseline as well as trajectories of metabolic parameters across the entire lifespan, we passaged
11 each fibroblast line over multiple cellular generations until growth arrest, a model that recapitulates *in*
12 *vivo* molecular features of human aging, including canonical age-related changes in telomere length⁵⁴
13 and DNA methylation⁵⁵. By sampling cells across the lifespan, longitudinal profiles of multiple cellular,
14 bioenergetic, transcriptomic, epigenomic, and secreted molecular features can be modeled for each
15 donor (**Figure 2A**). Although healthy cells survive for up to 250 days, here we limit our analyses to the
16 maximal lifespan of *SURF1*-mutant cells, ~150 days.

17 Beyond allowing longitudinal assessments of molecular and bioenergetic parameters as cells
18 transition from early-, mid-, and late-life, one major advantage of time-resolved trajectories with
19 repeated-measures is that this approach de-emphasizes potential bias of any single time-point and
20 provides more accurate estimates of stable cellular phenotypes for each donor and treatment condition.
21 The use of primary human cells obtained from multiple donors, compared to the same experiment
22 repeated in immortalized cell line(s), also provides a more robust test of generalizability of the data.
23 Throughout the text, we report standardized measures of effect sizes (Hedge's g) where g>0.2 is
24 considered a small, g>0.5 a medium, and g>0.8 represents a large effect size, which are considerably
25 more informative to compare small groups (3 donors per group)⁵⁶.

26 *SURF1* mutations cause hypermetabolism

27 We first examined the effect of *SURF1* mutations using extracellular flux analysis (Seahorse
28 XF[®]96) of oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) (**Figure 2B-C**).
29 Using standard stoichiometric ratios for oxygen consumed, protons pumped, and linked ATP synthesis
30 under standard conditions, OCR and ECAR can be transformed into interpretable ATP production rates
31 using the methods described in⁵⁷. When added together, OxPhos-derived ($J_{ATP-OxPhos}$) and Glycolysis-
32 derived ATP flux ($J_{ATP-Glyc}$) reflect the total energetic demand ($J_{ATP-Total}$) of each cell population
33 (**Extended Data Figure 2A**). This approach is the cellular equivalent to REE measurements through
34 indirect calorimetry in humans (Figure 1E) and mice^{10,24,25}.

1 Trajectories of $J_{\text{ATP-OxPhos}}$ and $J_{\text{ATP-Glyc}}$ across 150 days of lifespan are presented in **Figure 2D**.
 2 As expected from the SURF1 deficiency, SURF1-mutant cells (hereafter SURF1 cells) exhibited a 44%
 3 decreased $J_{\text{ATP-OxPhos}}$, but a 3-4-fold increased $J_{\text{ATP-Glyc}}$. Both parameters remained relatively stable
 4 across the lifespan (although a potential oscillatory behavior cannot be ruled out). Computing total
 5 energy expenditure showed that total ATP demand per unit of time was strikingly 91% higher in SURF1
 6 cells relative to control cells ($J_{\text{ATP-Total}}$, $p < 0.001$, $g = 2.4$) (**Figure 2E**). These data demonstrate a robust
 7 SURF1-induced hypermetabolic state similar, albeit of greater magnitude, to that observed in patients
 8 with mitochondrial diseases.



9 **Figure 2. SURF1 defects decrease metabolic efficiency and cause hypermetabolism without affecting**
 10 **coupling efficiency.** (A) Schematic of the study design with primary human fibroblasts, coupled with repeated,
 11 longitidinal measures of cellular, bioenergetic, and molecular profiling across the lifespan. 3 Control and 3 SURF1
 12 donors were used for all experiments. (B) Example oxygen consumption rate (OCR) and extracellular acidification
 13 rate (ECAR) obtained from Seahorse measurements of Control and SURF1 cells. (C) Comparison of average
 14 OCR and ECAR values across the cellular lifespan. (D) Lifespan trajectories of ATP production rates (J_{ATP}) derived
 15 from glycolysis ($J_{\text{ATP-Glyc}}$), oxidative phosphorylation ($J_{\text{ATP-OxPhos}}$), and total ATP ($J_{\text{ATP-Total}}$: Glycolytic- + OxPhos-
 16

1 derived rates) over up to 150 days. Percentages show the average difference between SURF1 and Control across
2 the lifespan. (E) Lifespan average energy expenditure (EE) by cell line, and (F) corrected for cell volume. (G)
3 Balance of J_{ATP} derived from OxPhos and glycolysis and (H) quantified SURF1-induced metabolic shift. Dotted
4 lines in (H) denote the range in control cells. (I) Lifespan trajectory of mtDNAcn and average mtDNAcn at the first
5 3 time points (early life, days 5-40) and peak value across the lifespan. (J) Lifespan trajectories and averages of
6 proton leak and (K) coupling efficiency estimated from Seahorse measurements. n = 3 individuals per group, 7-9
7 timepoints per individual. Data are means \pm SEM. * P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 0.0001, mixed
8 effects model (fixed effect of control/SURF1 group and days grown, random effects of donor or cell line).

9 To confirm this finding, potential confounds had to be ruled out. Non-glycolytic ECAR could
10 inflate estimates of $J_{ATP\text{-Glyc}}$ ⁵⁸. However, measured resting non-glycolytic ECAR (in the absence of
11 glucose or in the presence of the glycolysis inhibitor 2-deoxyglucose) was not elevated in SURF1 cells
12 (it was in fact 31% lower), confirming the specificity of the ECAR signal in SURF1 cells to glycolysis
13 (**Extended Data Figure 3D**). We also confirmed that non-OxPhos-related oxygen consumption by
14 cytoplasmic and other oxidases did not differ between experimental groups (**Extended Data Figure**
15 **2D**). Non-mitochondrial respiration is not included in computing $J_{ATP\text{-OxPhos}}$, which formally excludes this
16 parameter as a potential contributor to the hypermetabolism measured in SURF1 cells.

17 Primary fibroblasts are continually dividing and a portion of total energy budget is expected to
18 support cell division-related processes including DNA replication, transcription/translation, and other
19 intracellular processes²⁰. Early in life (20-50 days), when division rates were mostly constant, SURF1
20 fibroblasts compared to control cells divided on average 31.8% slower (P<0.0001, g=-1.53; and 48.4%
21 slower when quantified across 150 days). Therefore, hypermetabolism in SURF1 cells cannot be
22 accounted for by an accelerated division rate. In fact, normalizing $J_{ATP\text{-Total}}$ per rate of division further
23 exaggerates apparent hypermetabolism, where SURF1 cells expend more than double the amount of
24 energy than controls to complete each cell cycle. Moreover, optically monitoring cell size at each
25 passage showed that the SURF1 cell volume were moderately larger in early life and became smaller
26 with increasing age, reaching similar volume as control cells by 150 days (**Extended Data Figure 4A**).
27 Cell death was not significantly elevated (p=0.69, g=0.15, **Extended Data Figure 4D-E**). After
28 accounting for cell volume, energy expenditure remained significantly elevated in SURF1 fibroblasts
29 (p<0.0001, g=1.2, **Figure 2F**), demonstrating an increase in volume-specific REE. This increase is
30 consistent in magnitude with that observed in humans (Figure 1) and animals^{10,24-26} with OxPhos
31 defects.

32 In control cells, the balance of estimated ATP derived from OxPhos and glycolysis was 64:36%,
33 such that under our specific tissue culture conditions (physiological 5.5mM glucose, with glutamine,
34 pyruvate and fatty acids), healthy fibroblasts derived the majority of ATP from OxPhos. In contrast,
35 SURF1 deficiency robustly shifted the relative OxPhos:Glycolysis contribution to 23:77% (p=4.1e-6, g=-
36 5.1), reflecting a significant shift in OxPhos-deficient cells towards an alternative, and therefore less
37 energy efficient, metabolic strategy (**Figure 2G-H**). As expected, removing glucose from the media did

1 not substantially affect growth in control cells, but the absence of glucose was lethal to SURF1 cells
2 within 5 days, confirming their dependency on glycolysis for survival (**Extended Data Figure 3**).

3 In response to this metabolic shift towards glycolysis, we expected SURF1 cells to naturally
4 decrease maintenance-related energetic costs by decreasing mitochondrial mass and mtDNA copy
5 number (mtDNAcn). However, in early life, SURF1 cells had the same mtDNAcn as control cells (5-40
6 days: $p=0.99$, $g=0.04$). And across the lifespan, SURF1 cells contained 32% more mtDNA copies, which
7 manifested as an earlier age-related rise in mtDNAcn that reached maximal levels on average 30%
8 higher than control cells ($p=0.52$, $g=1.9$, **Figure 2I**). Thus, although total mitochondrial mass was not
9 directly assessed, elevated mtDNAcn similar to that observed in patient tissues (see Figure 1B) could
10 contribute to increased maintenance cost and overall hypermetabolism in OxPhos-deficient cells, as
11 suggested by mathematical modeling studies ²³.

12 One potential mechanism for the lowered metabolic efficiency is a decrease in OxPhos coupling
13 (i.e., uncoupling) at the inner mitochondrial membrane. However, both estimated proton leak (**Figure**
14 **2J**) and coupling efficiency (**Figure 2K**) measured by the proportion of OxPhos-dependent respiration
15 not linked to ATP synthesis, were not different between control and SURF1 groups. These parameters
16 also did not show measurable drift across the lifespan, thus ruling out mitochondrial uncoupling as a
17 mechanism for hypermetabolism.

18 Finally, oxygen tension can have a marked effect on the metabolism and replicative lifespan of
19 cultured fibroblasts ⁵⁹, and chronic hypoxia improves survival in fibroblasts with complex I defects and
20 the Ndufs4 mouse model of Leigh syndrome ⁶⁰. We therefore repeated longitudinal experiments in
21 SURF1 cells at low (3%) O₂ in parallel with atmospheric (~21%) O₂ (**Extended Figure 5A**). Compared
22 to 21% O₂, the low oxygen condition did not improve population doubling rates (**Extended Data Figure**
23 **5B-C**), nor did it correct or alter hypermetabolism (**Extended Data Figure 5D-E**). Results of the low O₂
24 “hypoxia” experiments, as well as the full lifespan aging trajectory of control cells beyond 150 days, are
25 available in the resource dataset (see *Data Availability Statement*).

26

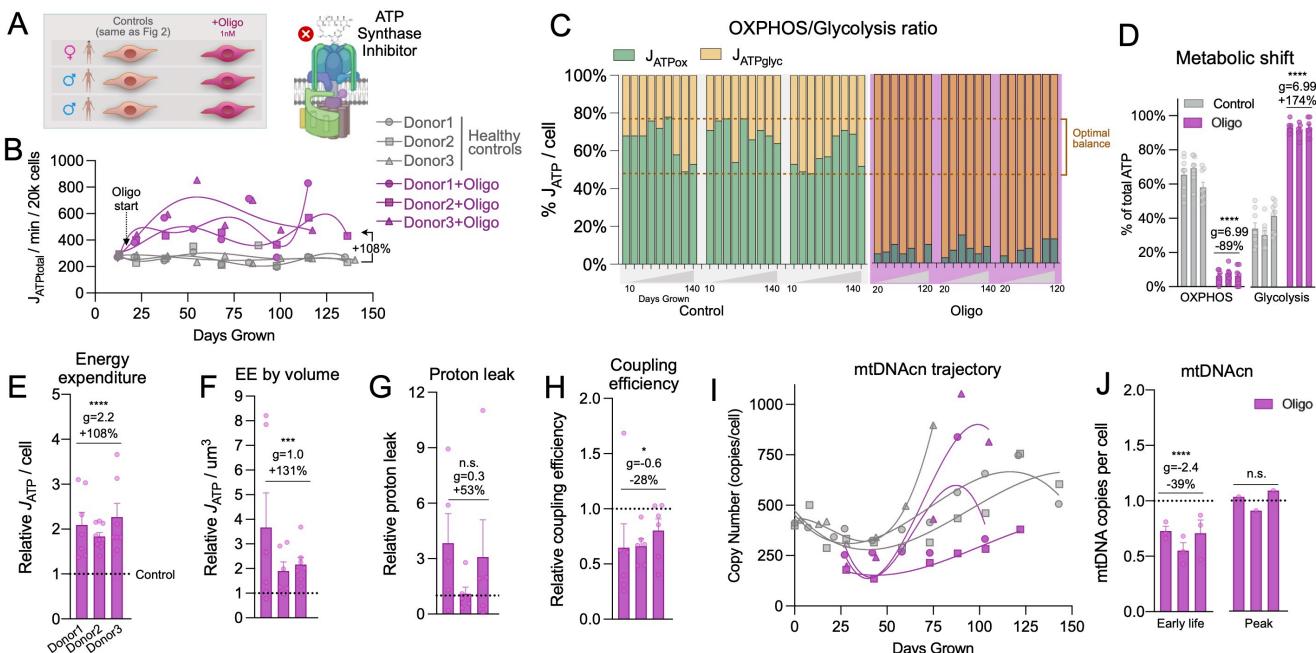
27 *Inhibition of the mitochondrial ATP synthase triggers hypermetabolism*

28 Next, to test if hypermetabolism is a specific manifestation in SURF1 cells or a more general
29 feature of mitochondrial OxPhos dysfunction, we took an orthogonal pharmacological approach to
30 chronically perturb OxPhos, and repeated the lifespan assessments of energy metabolism. Starting at
31 day 20, fibroblasts from the same three healthy donors as above were treated chronically with a
32 sublethal concentration of the mitochondrial ATP synthesis inhibitor oligomycin (Oligo, 1nM), which
33 induces the ISR ^{3,61} (**Figure 3A**). Oligo reduced cellular oxygen consumption rate by ~90% while largely

1 maintaining viability, reflected in only a moderate elevation in cell death over time (2.7% in Oligo-treated
 2 cells vs 1.4% in control cells, 20-50 days: $p=0.078$, $g=0.70$) (**Extended Data Figure 4D, 6B**).

3 In relation to energy expenditure, Oligo doubled $J_{ATP\text{-Total}}$ across the lifespan for each of the three
 4 healthy donors (+108%, $p=5.9\text{e-}9$, $g=2.2$), thereby recapitulating the hypermetabolic state observed in
 5 SURF1 cells (**Figure 3B**). This robust elevation in cellular energy expenditure was already evident by
 6 5 days of treatment and remained relatively stable across the lifespan, indicating the rapidity and
 7 stability of the adaptive hypermetabolic state. As in SURF1 cells, the hypermetabolic state in Oligo-
 8 treated cells was attributable to a markedly increased $J_{ATP\text{-Glyc}}$ in excess of the decline in $J_{ATP\text{-OxPhos}}$,
 9 resulting in a shift outside of the optimal (i.e., normal) window of the OxPhos:Glycolysis ratio for these
 10 cells (**Figure 3C-D**).

11 Reductions in cell size and division rates are strategies to minimize energetic costs. Oligo
 12 caused a small but stable 4.8% decrease in cell size ($p<0.001$, $g=-0.35$), and decreased cell division
 13 rates by 39.1% (days 20-50: $p=1.3\text{e-}5$, $g=-1.31$; 49.6% slower across 150 days) (**Extended Data Figure**
 14 **4**). Taking cell size into consideration showed that Oligo increased energy expenditure per unit of cell
 15 volume by 131% ($p<0.001$, $g=0.97$) (**Figure 3E-F**). Here also, hypermetabolism was not driven by
 16 significant increase in estimated proton leak ($p=0.19$, $g=0.27$) (**Figure 3G**) although we observed a
 17 34.4% reduction in estimated coupling efficiency ($p<0.05$, $g=-0.59$) (**Figure 3H**), likely arising from the
 18 expected elevation in membrane potential from ATP synthase inhibition. Unlike SURF1 mutations, Oligo
 19 decreased mtDNAcn by 39.0% early in life (20-50 days: $p=3.1\text{e-}5$, $g=-2.42$), which subsequently
 20 normalized; peak levels were similar to control levels (**Figure 3I-J**).



21
 22 **Figure 3. Pharmacological inhibition of mitochondrial ATP synthesis triggers hypermetabolism. (A)**
 23 Schematic of the study design for fibroblast profiling across the lifespan from 3 Control donors treated with 1nM

1 oligomycin. **(B)** Lifespan trajectories of J_{ATP} (Glycolytic + OxPhos) derived from oxygen consumption rate (OCR) 2 and extracellular acidification rate (ECAR) obtained from Seahorse measurements across the cells' lifespan (up 3 to 150 days). Percentages show the total average difference between Oligo and Control. **(C)** Balance of J_{ATP} 4 derived from OxPhos and glycolysis across the lifespan and **(D)** Oligo-induced metabolic shift. Dotted lines denote 5 the range in control cells. **(E)** Relative average lifespan energy expenditure by cell line normalized to control, **(F)** 6 corrected for cell volume. **(G)** Average of proton leak and **(H)** coupling efficiency measures on the Seahorse 7 normalized to control. **(I)** Lifespan trajectories and **(J)** average mtDNA copy number at the first 3 time points (early 8 life) and peak value across the lifespan. $n = 3$ individuals per group, 7-9 timepoints per individual. Data are means 9 \pm SEM. * $P < 0.05$, ** $P < 0.01$, *** $P < 0.001$, **** $P < 0.0001$, mixed effects model for Oligo vs control.

10 Monitoring weekly the influence of Oligo on cell morphology also revealed an unexpected 11 morphological phenotype. Oligo-treated cells developed into a reticular network, which involved 12 contraction of the cell body and extension of multiple cellular appendages reminiscent of neuronal 13 dendrites (**Extended Data Figure 6**). This reversible phenotype exhibited regular oscillatory behavior 14 (one-week normal morphology, one-week reticular formation). We note that oscillatory behaviors are 15 naturally energy-dependent⁶², and that such dramatic and repeated changes in cell morphology must 16 necessarily involve the remodeling of cell membranes and cytoskeleton through energy-dependent 17 motor and cytoskeletal components. This morphological phenotype unique to the Oligo treatment could 18 contribute to the higher energy expenditure in Oligo-treated cells (+131% ATP consumption per unit of 19 cell volume) vs SURF1 cells (+91%), which did not exhibit transitory morphological changes.

20

21 *OxPhos defects trigger the ISR and mtDNA instability*

22 To understand the specific organelle-wide mitochondrial recalibrations in hypermetabolic 23 SURF1 and Oligo-treated cells, we performed bulk RNA sequencing across the lifespan in each donor 24 cell line (total 60 time points, average of ~7 timepoints per cell line). We then systematically queried 25 mitochondrial pathways from MitoCarta 3.0⁶³, in addition to all mtDNA-encoded transcripts (37 genes), 26 and core ISR-related genes (ATF4, ATF5, CHOP/DDIT3, GDF15). Both SURF1 defects and Oligo 27 treatment downregulated the majority of intrinsic mitochondrial pathways, including mtDNA stability and 28 decay, which was downregulated in both SURF1 (-15%, $p=1.7e-8$, $g=-1.65$) and Oligo-treated cells (- 29 19%, $p<0.001$, $g=-0.57$) relative to control (**Figure 4A**). Although SURF1 and Oligo-treated cells 30 exhibited similar overall mitochondrial transcriptional changes, some pathways showed opposite 31 responses (e.g., expression of mtDNA-encoded genes, Pathway 3 in Figure 4B), suggesting the 32 existence of partially specific mitochondrial recalibrations among SURF1 and Oligo models. In 33 hierarchical clustering analysis across all pathways, the ISR pathway diverged most strongly from other 34 pathways, and was upregulated +110% in SURF1 ($p=6.5e-7$, $g=1.76$) and +217% in Oligo-treated cells 35 ($p=1.2e-8$, $g=0.99$), reaching up to a 16-fold elevation relative to the average of the young healthy donor 36 cells (**Figure 4B**). Thus, both models of OxPhos dysfunction and hypermetabolism were associated

1 with upregulation of the ISR, and downregulation of most mitochondrial pathways, notably mtDNA
2 maintenance, suggesting a potential effect on mtDNA stability.

3 To our knowledge, neither *SURF1* mutations nor Oligo treatment are established to cause
4 mtDNA instability, but given the transcriptional changes described above and that heteroplasmy among
5 mtDNA species is predicted to increase energetic maintenance costs²³, we directly examined mtDNA
6 stability using two approaches. We first used long-range PCR at multiple time points across the lifespan
7 of control, *SURF1*, and Oligo-treated cells, then validated the presence of mtDNA deletions across the
8 lifespan by mtDNA sequencing, and quantified mtDNA deletion burden using eKLIPse⁶⁴ (**Figure 4C-D**). Circos plots in **Figure 4D** show the break points and heteroplasmy level for each mtDNA deletion,
9 at early and late time points along the cellular lifespan. Circos plots for all timepoints investigated (4-14
10 timepoints per condition) are presented in **Extended Data Figure 7**.

12 Consistent with previous work, healthy fibroblasts do not accumulate appreciable heteroplasmy
13 levels of mtDNA deletions in culture. However, *SURF1* cells contained on average 17-fold more unique
14 mtDNA deletions than control cells ($p<0.01$, $g=1.38$), reaching up to 126 unique deletions at a given
15 time point (**Figure 4E-F**). The effect of Oligo treatment was more modest but reached levels 3-fold
16 higher than untreated cells ($p<0.01$, $g=0.79$), and up to 20 unique deletions per time point. The majority
17 of deletions eliminated segments of the minor arc and were on average 6.8-7.3kb in length; deletion
18 size was similar among the three groups (**Extended Data Figure 8A-C**). Point mutations were not
19 significantly elevated in *SURF1* and Oligo-treated cells, suggesting specificity of mtDNA instability to
20 deletions (**Extended Data Figure 8D**). Compared to controls where the maximal heteroplasmy levels
21 was 0.13%, *SURF1* and Oligo accumulated individual deletions reaching up to 0.40% and 0.19%
22 heteroplasmy among the cell population (**Extended Data Figure 8E-F**), which remains low but similar
23 to that observed with aging in human blood and brain tissues^{65,66}, and possibly noteworthy for
24 replicating fibroblasts.

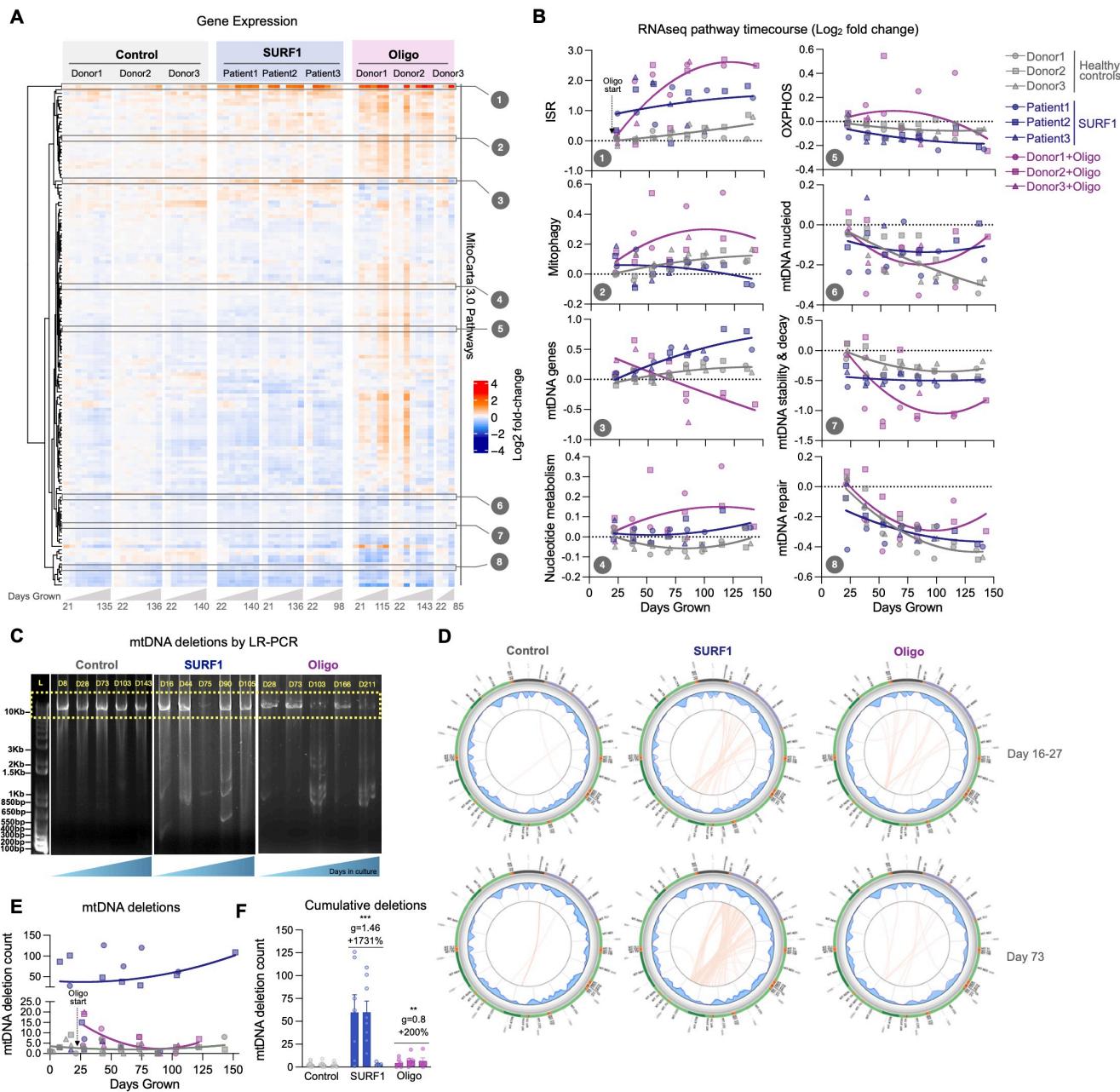


Figure 4. Longitudinal mtDNA deletion profiles in OxPhos deficient SURF1 and Oligo cells. (A) RNAseq gene expression results for all MitoCarta 3.0 pathways, plus all mtDNA genes, and the integrated stress response (ISR, average of ATF4, ATF5, CHOP, GDF15). Values for each pathway are computed from the average expression levels of all genes in each pathway, expressed as the median-centered value relative to the youngest control timepoints for each pathway (rows). Each column represents a single timepoints (n=3-8) along the lifespan of each donor or treatment condition (n=9). (B) Gene expression time course of selected mitochondrial pathways from E, expressed on a Log₂ scale relative to the first control timepoint (baseline). (C) 10Kb long range PCR product resolved by agarose gel electrophoresis for a control fibroblasts cultured up to 166 days (P3 to 31), and passage-matched SURF1 and Oligo-treated cells. (D) Results from mtDNA sequencing and Eklipse analysis. Each line in the circos plots depict a deletion burden in control (Donor2) and SURF1 (Patient2) and Oligo-treated (Donor2) cells from two (early and mid-lifespan) representative passages. The detection limit for mtDNA deletion was set at a call cutoff of 5% heteroplasmy. (E) Timecourse of the number of unique mtDNA deletions in control, SURF1, and Oligo-treated cells. (F) Total deletion burden in cells across 150 days of lifespan. Data are mean ± SEM. ** P < 0.01, *** P < 0.001, mixed effects model (fixed effect of Control/SURF1/Oligo group and days grown, random effects of donor or cell line).

1 *SURF1 mutations increases aging-related secretory activity*

2 We next investigated outputs of the ISR, including the production of metabokines and cytokines.
3 To broadly characterize changes in the cytokine stress response in patient-derived SURF1 cells across
4 the lifespan, we designed a custom Luminex array targeting age-related proteins identified by plasma
5 proteomics to be upregulated with human aging⁶⁷ (**Figure 5**). Compared to healthy donors,
6 hypermetabolic SURF1 cells secreted higher levels of cytokines on a per-cell basis, including several
7 pro-inflammatory cytokines, chemokines, and proteoglycans associated with the senescence-
8 associated secretory phenotype (SASP)⁶⁸ (**Figure 5A**). Of the 27 cytokines detected in extracellular
9 media, SURF1 cells achieved the highest cytokine concentration across the lifespan for 23 (85%) of the
10 cytokines, reaching up to 10-fold higher concentration than control for one of the cytokines (insulin-like
11 growth factor binding protein, IGFbp-rp1) (**Figure 5B**). Upregulated cytokines also included the
12 canonical pro-inflammatory cytokines IL-6 and IL-8. The metabokine GDF15, which is elevated in both
13 mitochondrial disease^{69,70} and human aging^{67,71}, and which also appears sufficient to trigger
14 hypermetabolism in mice¹⁰, was also upregulated by 110% in SURF1 vs control cells (20-80 days,
15 p=0.035, g=1.0, **Figure 5C**).

16 We attempted to validate IL-6 and GDF15 levels in both SURF1 and Oligo-treated cells by
17 ELISAs. The ELISAs confirmed that IL-6 increased exponentially in aging fibroblasts, displaying altered
18 onset and trajectories in both SURF1 (upregulated) and Oligo-treated cells (downregulated) (**Figure**
19 **5D**). Compared to control fibroblasts where GDF15 was undetectable in early passages, SURF1 mutant
20 fibroblasts began to secrete GDF15 prematurely, and Oligo treatment acutely induced robust GDF15
21 secretion by 1-2 orders of magnitude over the first few weeks (**Figure 5E**), consistent with the rapid
22 induction of the ISR particularly in Oligo-treated cells (see Figure 4B).

23 As cell-free mitochondrial DNA (cf-mtDNA) is associated with human aging⁷² and was recently
24 found to be elevated in the plasma of patients with mtDNA mutations/deletions⁷³, we quantified cf-
25 mtDNA in the media along the lifespan. Both mtDNA and nDNA were detectable at appreciable levels
26 (**Extended Data Figure 9A-B**). Compared to media of control cells, cf-mtDNA levels were 73% higher
27 in SURF1 (g=0.5) and 100% higher (g=0.3) in the media of Oligo-treated cells (**Figure 5F**), although
28 these differences did not reach statistical significance due to the high temporal variation of this
29 phenotype. Parallel measurements of cell-free nuclear DNA (cf-nDNA) showed that the released
30 mitochondrial-to-nuclear genome ratio was on average 117% higher in SURF1 than control cells
31 (p<0.01, g=0.85, **Extended Data Figure 9C-D**), indicative of selective mtDNA release. Given the
32 energetic cost associated with protein secretion^{21,74}, we suggest that the cytokine/metabokine and
33 mtDNA hypersecretory phenotype in SURF1 and Oligo cells must contribute to hypermetabolism along
34 with other cellular processes.

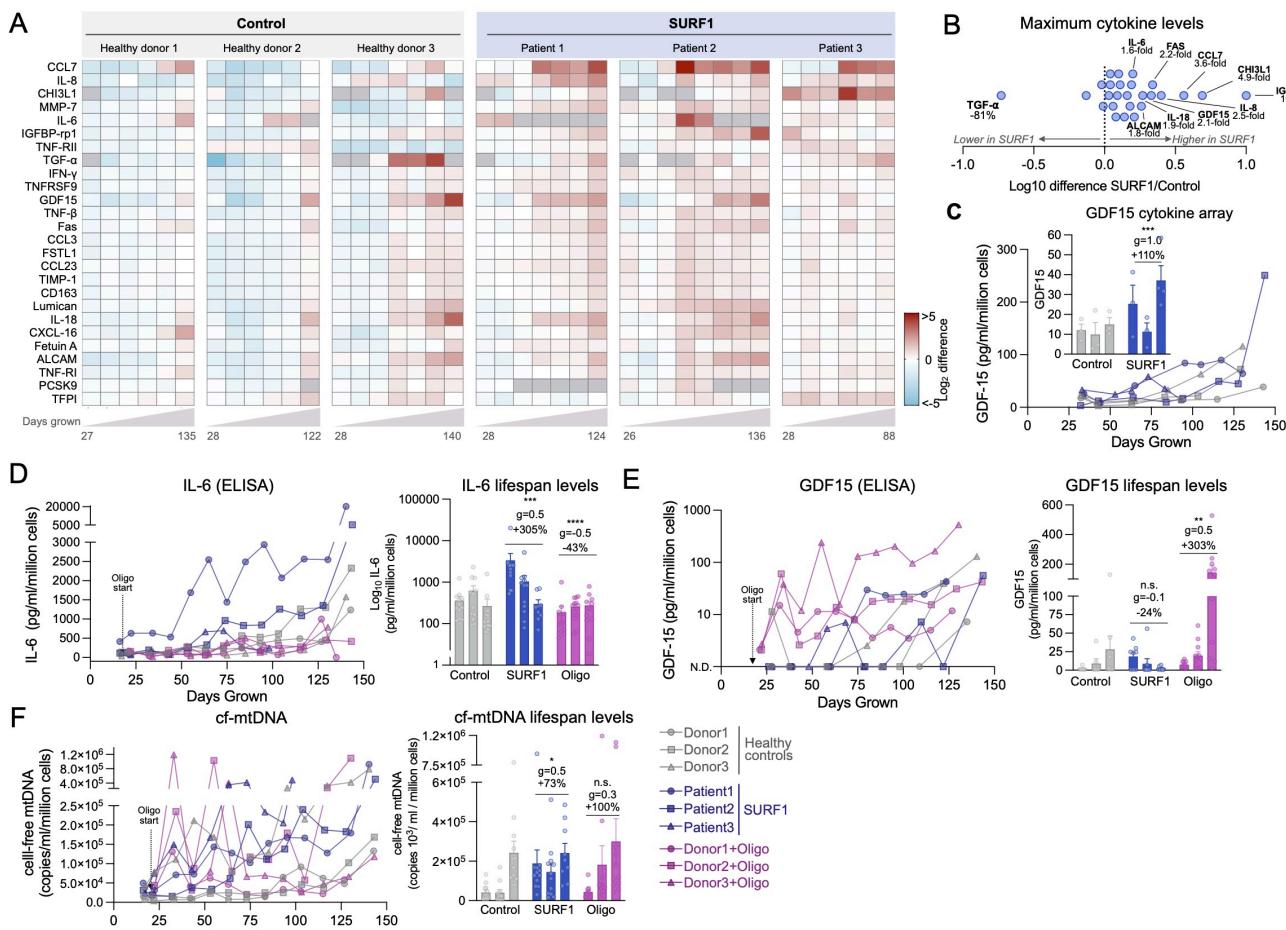


Figure 5. OxPhos defects trigger hypersecretion of metabokines and age-related cytokines. (A) Cytokine dynamics across the lifespan measured on two multiplex (Luminex) arrays. Cytokine levels are normalized to the number of cells at the time of sampling, shown as Log₂ median-centered for each cytokine; samples with undetectable values are shown as grey cells. Columns represent repeated-measures (n=6-8) along the lifespan of each controls and SURF1 donor (n=3 per group). (B) Comparison of maximum cytokine concentration reached in each of the SURF1 and healthy control donors, showing general upregulation of most metabokines and cytokines. The value for TGF- α is heavily influenced by a single very high value in Donor 3. (C) Cell-free GDF15 time course as measured on the Cytokine array. Inset compares early release between 20-80 days. (D) Media IL-6 levels across the cellular lifespan by enzyme-linked immunosorbent assay (ELISA), normalized to the number of cells at time of sampling. (E) Media GDF15 levels across the cellular lifespan measured by ELISA, normalized to the number of cells at time of sampling. Samples with non-detectable values (N.D.) are shown as zero values. (F) Cell-free mitochondrial DNA dynamics across the cellular lifespan using qPCR, normalized to the number of cells at time of sampling. n = 3 per group, 6-13 timepoints per condition. Data are means \pm SEM. * P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 0.0001, mixed effects model (fixed effect of Control/SURF1/Oligo group and days grown, random effects of donor or cell line).

Abbreviations: CCL7, C-C motif chemokine ligand 7; IL-8, interleukin 8; CHI3L1, Chitinase-3-like protein 1; MMP7, Matrix metallopeptidase 7; IL-6, Interleukin 6; IGFBP-rp1, Insulin-like growth factor binding protein 7; TNF-RII, tumor necrosis factor receptor superfamily member 1B; TGF- α , Tumor growth factor alpha; IFN- γ , Interferon gamma; TNFRSF9, TNF receptor superfamily member 9; GDF-15, growth differentiation factor 15; TNF- β , Tumor necrosis factor beta; Fas, Fas cell surface death receptor; CCL3, C-C motif chemokine ligand 7; FSTL1, Follistatin like 1; CCL23, C-C motif chemokine ligand 23; TIMP-1, Tissue inhibitor of metallopeptidase 1; CD163, CD163 antigen; Lumican, keratan sulfate proteoglycan Lumican; IL-18, Interleukin-18; CXCL16, C-X-C motif chemokine ligand 16; Fetuin A, Alpha 2-HS glycoprotein; ALCAM, activated leukocyte cell adhesion molecule; TNF-RI, TNF Receptor Superfamily Member 1A; PCSK9, Proprotein convertase subtilisin/kexin type 9; TFPI, Tissue factor pathway inhibitor.

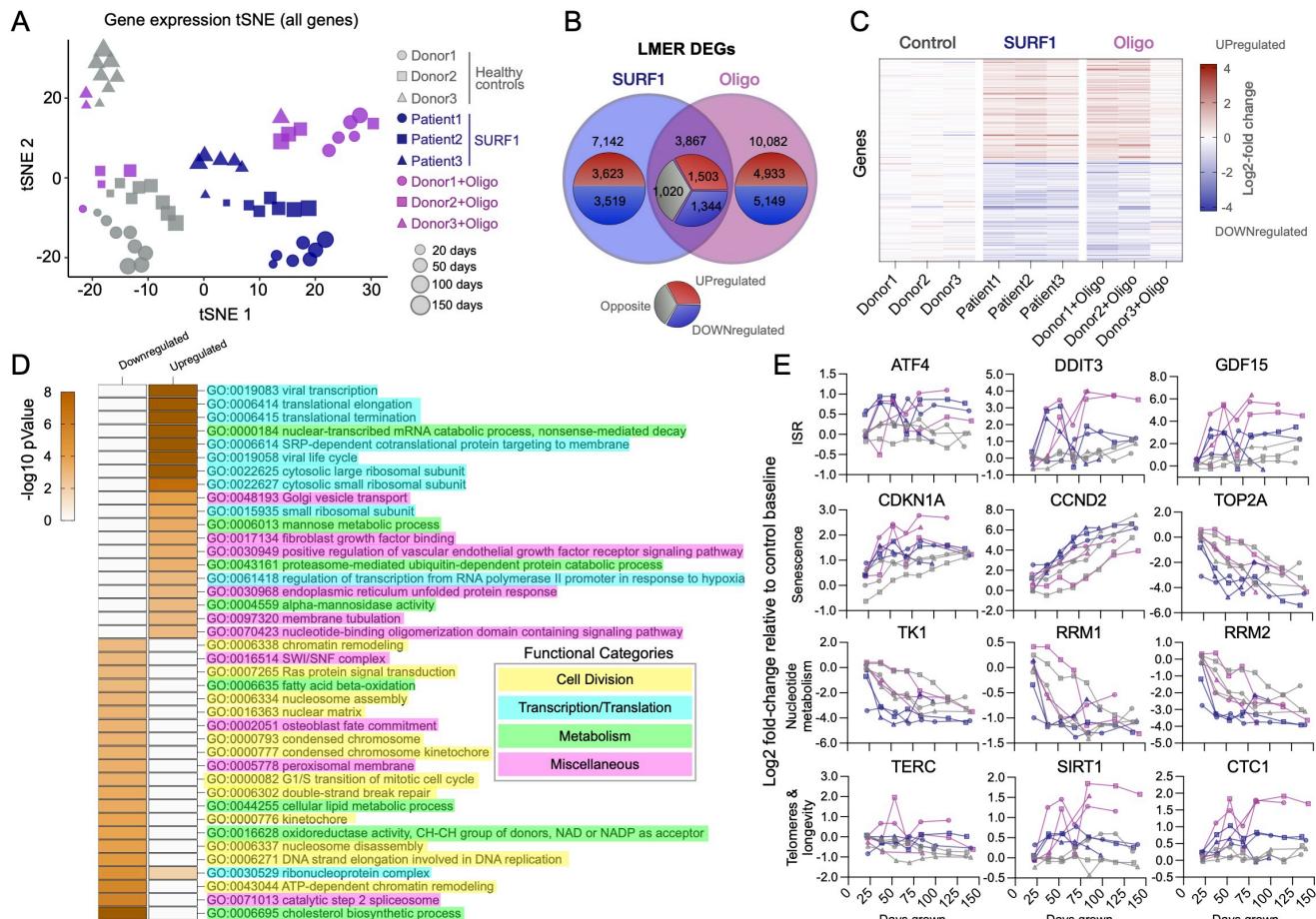
1 *OxPhos defects upregulate energy-demanding cellular programs*

2 From our longitudinal RNAseq dataset, we noted changes in the totality of genes related to the
3 ribosomal machinery, which is produced in proportion with cellular biosynthetic demands (**Extended**
4 **Data Figure 10A**). Despite their significantly reduced growth rate, both SURF1 (+19%, $p=2.4e-10$,
5 $g=2.59$) and Oligo-treated cells (+50%, $p<0.01$, $g=0.86$) showed a marked time-dependent upregulation
6 in the ribosomal machinery, consistent with the hypersecretory phenotype (secreted proteins must be
7 transcribed and translated) as well as the elevated metabolic demands of translation that competes with
8 cell growth ^{42,74} (**Extended Data Figure 10B**). To characterize the genome-wide gene regulatory
9 changes associated with these cellular phenotypes, and to gain insights into the potential cause(s) of
10 hypermetabolism in response to OxPhos dysfunction, we next deployed time-sensitive models of gene
11 regulation and DNA methylation.

12 We first visualized the transcriptomic profiles of SURF1 and Oligo-treated cells using t-
13 distributed stochastic neighbor embedding (t-SNE). Spatial embedding along the two major tSNE
14 components captured three main features of the transcriptome: i) substantial interindividual differences
15 separating each donor/cell line, ii) age-dependent shifts in transcriptional profiles, iii) clustering among
16 both SURF1 and Oligo cells (**Figure 6A**). To harness the longitudinal nature of these data, we used a
17 linear mixed effects model (LMER) to identify time-dependent differentially expressed genes (DEGs,
18 $FDR<0.05$ threshold) between SURF1 and Oligo relative to control, across the cellular lifespan
19 (**Supplemental Files 1-2**). Consistent with the similar degree of hypermetabolism and metabolic shift
20 of both cellular models (see Figures 2D-F and 3B-F), there was a relatively high degree of overlap in
21 DEGs between SURF1 and Oligo-treated cells (**Supplemental Files 3-4**). Genes with the largest effect
22 sizes conserved across SURF1 and Oligo showed up to 2-4-fold upregulation (39%, $n=1,503$) or
23 downregulation (35%, $n=1,344$) (**Figure 6B-C**). Differences were larger and more stable between
24 SURF1 and control, compared to more progressive effects following the beginning of the Oligo
25 treatment (**Extended Data Figure 11**), consistent with the constitutive genetic deficiency in SURF1
26 cells compared to the novel insult with Oligo treatment. The effects of OxPhos dysfunction on the
27 expression of the 37 mtDNA genes across the cellular lifespan are shown in **Extended Data Figure 12**.

28 To identify gene regulatory pathways associated with hypermetabolism, we analyzed gene
29 expression changes using iPAGE, an information-theoretic computational framework that enables the
30 systematic discovery of perturbed cellular pathways from gene expression data ⁷⁵. Both SURF1 and
31 Oligo-treated cells displayed a significant perturbation of transcription and translation processes (**Figure**
32 **6D**). Upregulated genes were enriched for pathways related to Golgi vesicle transport, fibroblast growth
33 factor (FGF) binding, VEGF receptor signaling pathway, and the unfolded protein response, a signature
34 consistent with increased secretion and inter-cellular signaling activity. Downregulated genes were

1 over-represented for processes relating to cell division, consistent with the slower division rates (i.e.,
 2 quiescence or senescence) of SURF1 and Oligo-treated cells.



3
 4 **Figure 6. Mitochondrial defects trigger conserved transcriptional remodeling.** (A) t-distributed stochastic
 5 neighbor embedding (t-SNE) of RNAseq data from control, SURF1, and Oligo-treated human fibroblasts across
 6 the lifespan. (B) Overlap of significantly upregulated (red) or downregulated (blue) genes in SURF1 and Oligo
 7 groups relative to control (linear mixed effects model, FDR-corrected p value < 0.05). Note, outer group counts
 8 include shared counts in overlapping ring. Gray indicates diverging direction of regulation between SURF1 and
 9 Oligo DEGs. (C) Expression levels of the top 100 differentially-expressed genes in SURF1 (<75 days grown) and
 10 Oligo-treated cells (days 35 to 110). (D) iPAGE analysis of RNAseq data showing the top 40 enriched gene
 11 ontology pathways in top overlapping up- and down-regulated genes, conserved across both SURF1 and Oligo
 12 groups relative to control. Note, $-\log(p \text{ value}) > 8$ are mapped as dark orange. (E) Gene expression timecourses
 13 of select genes related to the ISR, senescence, nucleotide metabolism, and telomere maintenance. Log₂
 14 expression values (TPM) are normalized to the median of controls youngest timepoints. n = 3 donors per group,
 15 3-8 timepoints per donor.

16 Lifespan gene expression trajectories in this dataset showed some noteworthy features of
 17 OxPhos dysfunction and hypermetabolism at the single-gene level: i) ISR-related genes are robustly
 18 upregulated in a time-dependent manner by up to ~16-fold for the transcription factor CHOP (DDIT3),
 19 and ~60-fold for its downstream target GDF15; ii) the age-related upregulation of senescence-related
 20 genes (e.g., p21/CDKN1A) occurs prematurely in hypermetabolic SURF1 and Oligo cells; iii) key
 21 nucleotide metabolism enzymes such as thymidine kinase 1 (TK1) are robustly downregulated in
 22 SURF1 cells, possibly contributing to mtDNA instability⁷⁶; and iv) telomere and longevity-related genes

1 such as the metabolic sensor SIRT1 and the telomere protection complex component CTC1 are
2 upregulated 2-4-fold (**Figure 6E**). These broad changes in gene expression, largely consistent with
3 previous *in vitro* work^{3,77}, prompted us to examine another major layer of gene regulation, DNA
4 methylation.

5 *DNA methylation recalibrations in OxPhos-induced hypermetabolism*

6 To examine nuclear DNA methylation (DNAm) and create a resource dataset with broad utility
7 for pathway discovery, we measured DNA methylation levels at 865,817 CpG sites (Illumina EPIC array)
8 in Control, SURF1, and Oligo-treated cells at multiple time points across their cellular lifespan (n=66).
9 We then leveraged these high dimensional data by building mixed-effects models that consider the
10 underlying data structure (donors, longitudinal observations) to identify robust conserved DNA
11 methylation changes associated with OxPhos dysfunction and hypermetabolism. Visualizing the
12 general data structure using t-SNE showed, that: i) as expected, the methylome signature of each donor
13 was relatively distinct; ii) DNAm exhibited consistent age-related shifts, iii) SURF1 cells clustered
14 separately from control, while iv) Oligo cells caused a modest time-dependent shift away from their
15 respective controls (**Figure 7A**). These data therefore add to previous evidence in HEK293 cells⁷⁸ and
16 mice⁷⁹, providing a robust platform for discovering conserved nuclear DNAm signatures associated with
17 hypermetabolism-causing OxPhos defects in primary human cells.

18 At the single CpG level, we asked which differentially methylated positions (DMPs) were stably
19 and consistently either hypo- or hypermethylated in both SURF1 or Oligo-treated cells relative to control.
20 Because transcriptionally relevant DNAm changes may operate across multiple CpGs, we
21 complemented this approach by systematically examining differentially methylated regions (DMRs),
22 which include multiple nearby CpGs exhibiting similar hypo- or hypermethylated changes in our
23 statistical model⁸⁰ (see *Methods* for details). **Figure 7B** shows the overlap in significant DMPs and
24 DMRs (threshold FDR<0.05). Of the overlapping DMPs between SURF1 and Oligo, 14.8% were
25 hypermethylated, and 45.9% were hypomethylated. Global hypomethylation is a feature of human aging
26 and replicative senescence⁵⁵. For DMRs, the corresponding proportions were 11.1% and 46.6%,
27 showing high agreement in the methylome recalibrations between DMPs and DMRs approaches. A
28 notable number of significant and highly differentially methylated changes in either SURF1 or Oligo-
29 treated cells were specific to each condition (**Supplemental Files 5-10**), but here we focus exclusively
30 on the changes conserved across two independent models, which therefore have the highest probability
31 of being specifically caused by OxPhos dysfunction and associated with hypermetabolism (**Figure 7C-**
32 **D**).

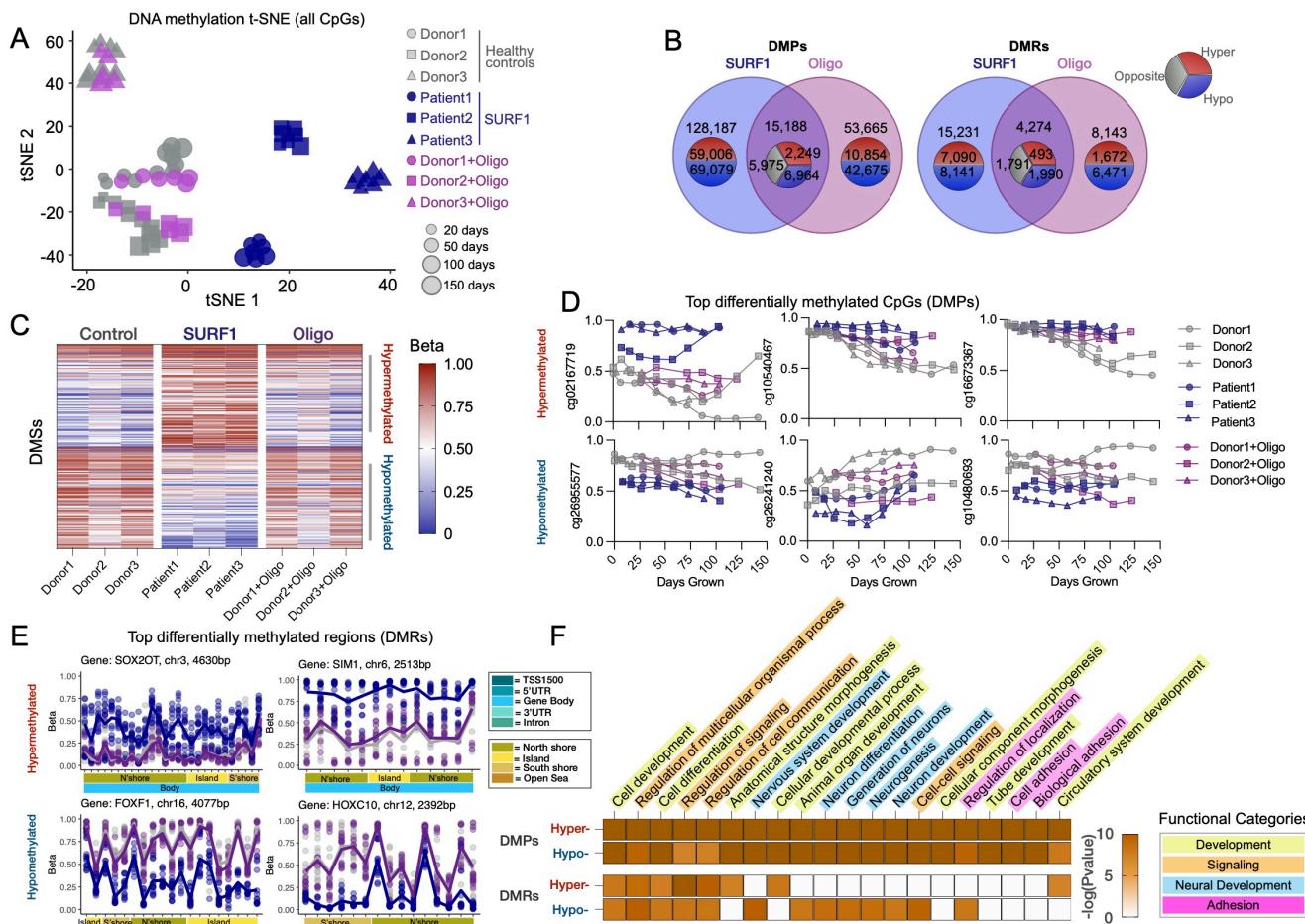


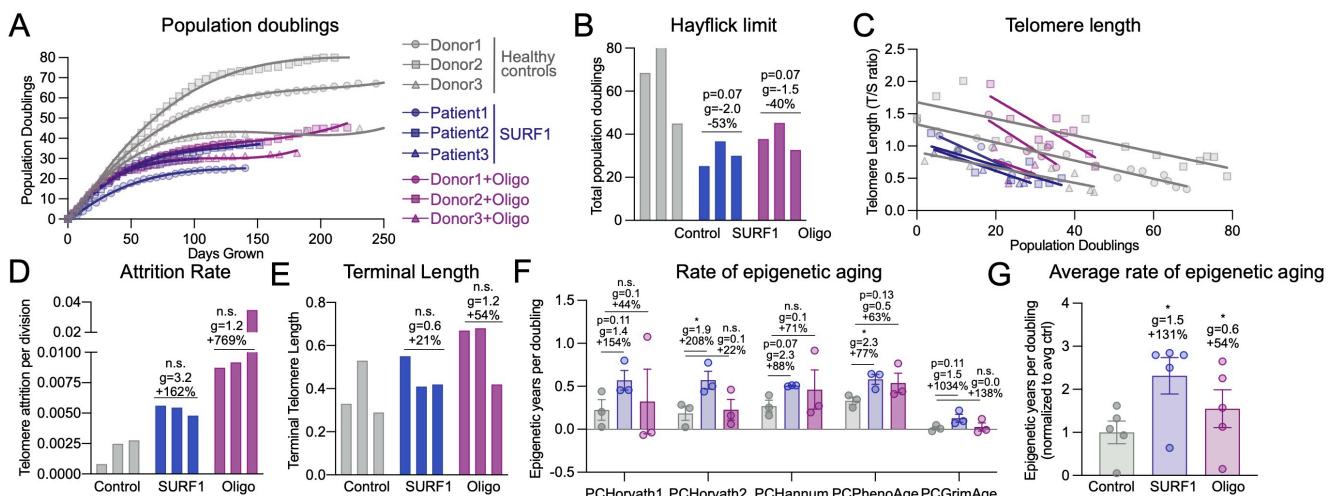
Figure 7. Mitochondrial defects trigger conserved epigenetic remodeling. (A) t-distributed stochastic neighbor embedding (t-SNE) of methylome from control, SURF1-disease (<75 days grown), and oligomycin (35 to 110 days grown) treated fibroblasts across replicative lifespan. (B) Venn diagrams for differentially methylated CpGs (DMPs, left panel) and differentially methylated regions (DMRs, right-panel) generated from mixed effects modeling. Note, outer group counts include shared counts in overlapping ring. (C) Heatmap of top 100 DMPs in SURF1-disease and Oligomycin-treated. DMPs ordered by mean methylation difference between groups. (D) Timecourse of top 3 hyper- and hypo-DMPs for SURF1 disease and oligomycin. (E) Gene regional map of top hyper- and hypo-DMRs for SURF1-disease and Oligomycin-treated fibroblasts. 5'→3' direction. (F) Heatmap of top 20 enriched gene ontology pathways in top 1000 hyper- and hypo-DMPs & DMRs overlapping between SURF1 and Oligomycin. Note, -log(Pvalues) > 10 are mapped as dark orange. n = 3 donors per group, 5-11 timepoints per donor/treatment.

The most robust changes in DNA methylation were targeted at CpG islands near or on gene bodies. Relative to control cells, as in the RNAseq results, the effect sizes were larger for SURF1 compared to Oligo, which induced directionally consistent but smaller effect size changes than SURF1 defects (Figure 7E). A stringent analysis of the most differentially methylated genes (based on both DMSs and DMRs) showed strong enrichment for processes involving: i) development and morphogenesis, ii) regulation of cell-cell signaling and organismal communication, iii) neural development, and iv) cell adhesion (Figure 7F). As highlighted above, increased regulation of signaling and communication, along with development and morphogenesis, must entail energetically dependent processes. These data, supported by the activation of corresponding downstream transcriptional programs (Figure 6) and the observed hypersecretory phenotype in OxPhos-deficient cells (Figure 5),

1 document genome-wide epigenomic recalibrations consistent *not* with energy conservation, but with
 2 increased total energy expenditure. These data also can be further queried with specific genomic
 3 targets in mind.

4 *RC dysfunction accelerates telomere shortening and decreases lifespan*

5 Finally, given the deleterious effect of hypermetabolism-causing OxPhos defects on the lifespan
 6 of patients with mitochondrial diseases and in animal models, these genome-wide data prompted us to
 7 examine how OxPhos dysfunction and hypermetabolism relate to dynamic genomic markers of cellular
 8 aging and senescence. The complete population doubling curves of each donor (**Figure 8A**) provided
 9 initial evidence that cellular lifespan was reduced in SURF1 and Oligo-treated cells. The Hayflick limit
 10 (i.e., total number of cell divisions⁵⁴) was on average 53% lower in SURF1 cells ($p=0.072$, $g=2.0$), and
 11 Oligo decreased the Hayflick limit by 40% ($p<0.066$ $g=2.0$) relative to the untreated cells of the same
 12 donor (**Figure 8A-B**). Interestingly, the magnitude of these effects (40-53%) on total population doubling
 13 loosely corresponds to the 3-4-decade loss in human lifespan documented among adults with
 14 mitochondrial diseases (see Figure 1G-H), which would represent 38-50% for an average 80-year life
 15 expectancy.



16
 17 **Figure 8. Mitochondrial OxPhos defects decrease lifespan and accelerate telomere shortening.** (A) Growth
 18 curves of control, SURF1, and Oligo-treated cells. Population doublings were determined from both live and dead
 19 cell cells at each passage. (B) Hayflick limit defined as the total number of population doublings achieved before
 20 division rate <0.01 divisions/day for at least two passages. (C) Telomere length per population doubling. (D)
 21 rate of telomere attrition per division, and (E) terminal telomere length. (F) Rate of epigenetic aging for control, SURF1,
 22 and oligo-treated cells, calculated from the linear rate between days 25-75 (3-4 timepoints/cell line). (G) Average
 23 rate of epigenetic aging across all PC-based clocks. Each datapoint represents a different clock. (F-G)
 24 Significance values were calculated using a multiple comparison two-way anova. n=3 donors per group, 5-15
 25 timepoints per condition for telomere length. In D, data are the slope estimate for the linear regressions in C. Data
 26 are means \pm SEM. * $P < 0.05$, ** $P < 0.01$.

27 To directly measure the pace of biological aging in response to OxPhos defects, we performed
 28 repeated measures of telomere length across the cellular lifespan. This allowed us to compute the
 29 average rate (i.e. slope) of telomere shortening per population doubling or cell division (**Figure 8C**).

1 Consistent with observations of dramatically shortened telomeres in skeletal muscle of patients with
2 mtDNA mutations⁸¹ and recent work causally linking mitochondrial dysfunction to telomere dysfunction⁸², both SURF1 mutations and Oligo treatment strikingly increased the rate of telomere erosion per
3 population doubling by 162% for SURF1 ($p=0.53$, $g=3.2$) and 769% for Oligo ($p=0.09$, $g=1.2$) (**Figure 8D**). This means that for each cell division, OxPhos-deficient fibroblasts lose 1.6-7.7 times more
4 telomeric repeats than healthy fibroblasts. We note that these results rely on the estimated slope across
5 the whole cellular lifespan (single value per donor, $n=3$ per group) so the p values are less meaningful
6 than the effect sizes, which are large ($g>1$). The terminal telomere length coinciding with growth arrest
7 tended to be moderately higher in SURF1 and Oligo groups (**Figure 8E**). This could suggest that growth
8 arrest is driven by factors other than absolute telomere length, such as the prioritization of
9 transcription/translation over growth-related functions, which are sufficient to induce growth arrest and
10 senescence in human fibroblasts^{42,43}.

13 Next, we leveraged our DNAm dataset to quantify biological age using validated multivariate
14 algorithms or “clocks” (DNAmAge, or epigenetic clocks) trained, in human tissues, to predict
15 chronological age and mortality^{55,83}. Five different validated clocks that rely on different CpG sets and
16 include a modification that improves their accuracy⁸⁴ were applied directly to our fibroblast time series
17 DNAm data. These results showed that relative to the rate of epigenetic aging in control cells with
18 normal OxPhos function, the rates of biological aging per population doubling were accelerated by an
19 average of 131% in SURF1 cells ($p<0.05$, $g=1.5$), and to a lesser extent in Oligo-treated cells (+54%,
20 $p<0.05$, $g=0.6$, **Figure 8F-G**), thus independently supporting the findings of accelerated telomere
21 shortening. Trajectories and DNAm aging rates for each donor using all five epigenetic clocks, including
22 those computed relative to “time in culture” rather than to population doublings, produced variable
23 results and are presented in **Extended Data Figure 13**.

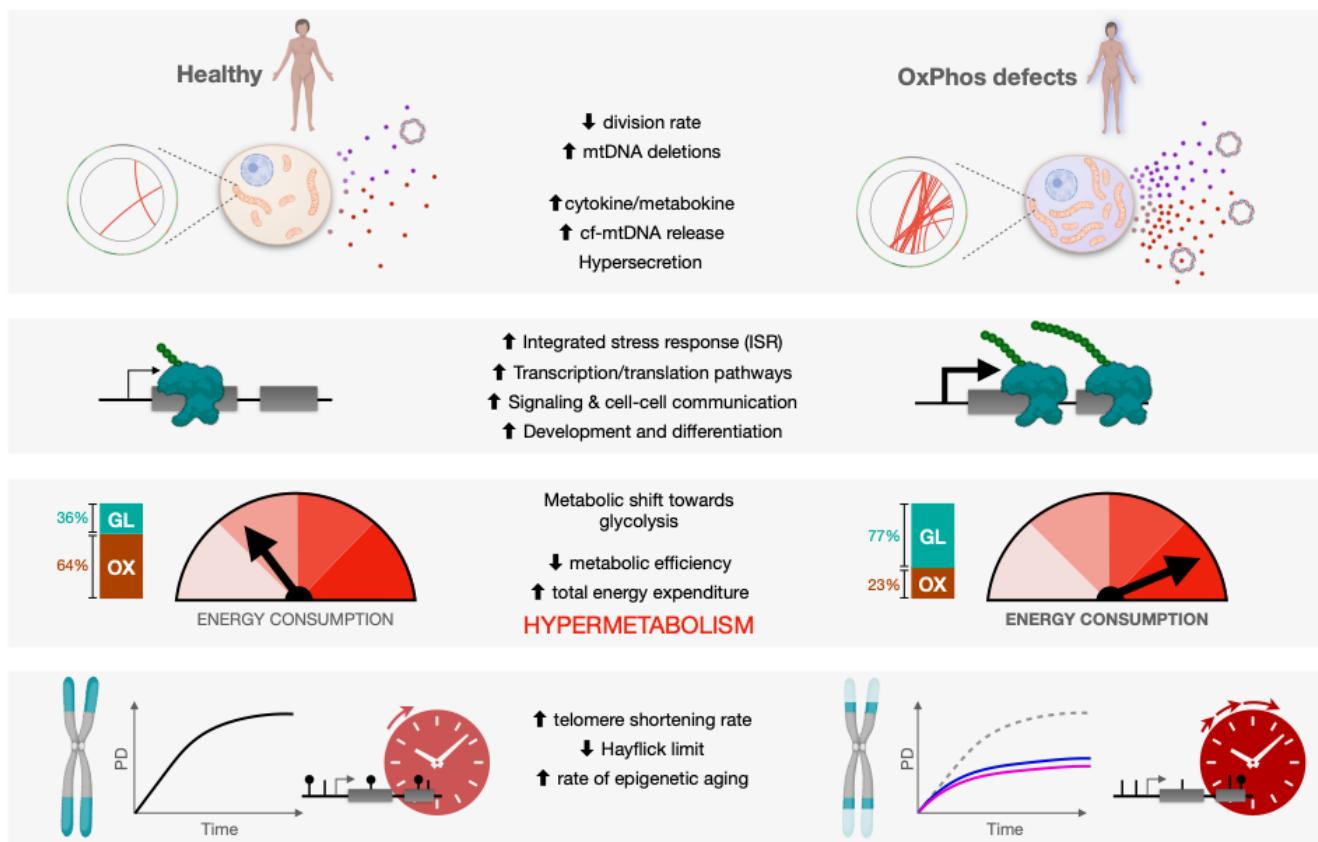
24 Together, the decreased Hayflick limit, the accelerated telomere attrition rate, and increased
25 rate of epigenetic aging converge with the senescence-related secretome and gene expression results
26 to link OxPhos dysfunction to hypermetabolism and reduced cellular lifespan.

27

28 Discussion

29 Integrating available clinical and animal data together with our longitudinal fibroblast studies has
30 revealed hypermetabolism as a conserved feature of mitochondrial OxPhos dysfunction. A major
31 advantage of our cellular system is that it isolates the stable influence of genetic and pharmacological
32 OxPhos perturbations on energy expenditure, independent of other factors that may operate *in vivo*.
33 Thus, these data establish the cell-autonomous nature of hypermetabolism. Moreover, despite the
34 diverging mode of action of SURF1 and Oligo models, as well as some divergent molecular features,

1 both models converge on the same hypermetabolic phenotype, adding confidence around the
2 generalizability of this phenomenon. Our data also rule out mitochondrial uncoupling as a main driver
3 of hypermetabolism in this system, and instead implicate the activation of energy-demanding gene
4 regulatory programs, including but likely not limited to increased metabokine/cytokine secretion, that
5 can compete with growth and longevity (**Figure 9**). Our resource cellular lifespan data provide several
6 novel observations that agree with previous work ⁷⁷, and that are relevant to understanding how primary
7 mitochondrial OxPhos dysfunction triggers some of the physiological and phenotypic hallmarks of aging
8 and mitochondrial diseases.



10 **Figure 9. Conceptual model including putative sources of hypermetabolism in cells and patients with**
11 **mitochondrial diseases.** OxPhos defects trigger mtDNA instability and cell-autonomous stress responses
12 associated with the hypersecretory phenotype, recapitulating findings in plasma from patients with elevated
13 metabokine and cell-free mitochondrial DNA (cf-mtDNA) levels. These responses are linked to the upregulation
14 of energy-dependent transcriptional programs, including the integrated stress response (ISR). We propose that
15 these processes collectively increase energy consumption, leading to *hypermetabolism* in patient-derived
16 fibroblasts, and whole-body hypermetabolism in affected patients, which call for targeted and well-controlled
17 clinical studies of energy expenditure. In dividing human fibroblasts, hypermetabolism-causing OxPhos defects
18 curtails lifespan and accelerate canonical cellular senescence and aging markers, namely telomere length and
19 epigenetic aging, resulting in lifespan shortening effects similar in magnitude with that observed in patients.

20 First, we observed that the mitochondrial disease marker GDF15 was largely undetectable in
21 the media of young, healthy fibroblasts, but increased progressively across the cellular lifespan. This
22 finding recapitulates the age-related increase in GDF15 in humans ^{67,71}, and adds to previous evidence
23 of conserved age-related changes in DNA methylation in primary human fibroblasts cultured over

1 several months⁵⁵. Consistent with the higher GDF15 levels in primary OxPhos disorders in humans⁷⁰
2 and mice¹⁰, extracellular GDF15 tended to be elevated in both models of OxPhos dysfunction. Likewise,
3 OxPhos dysfunction increased extracellular cf-mtDNA levels, in line with recent reports that cf-mtDNA
4 is elevated in primary OxPhos disorders⁷³ and with aging in humans⁷². The link between OxPhos
5 dysfunction and cf-mtDNA release requires further investigation.

6 Second, we observed that OxPhos dysfunction from *SURF1* mutations, and to a lesser extent
7 Oligo treatment, both caused secondary mtDNA instability. mtDNA instability was associated with the
8 variable accumulation of mtDNA deletions, but not point mutations, across the cellular lifespan. Our
9 confidence in this result is reinforced by the longitudinal nature of the mtDNA sequencing data, from
10 the same primary cell lines examined at multiple time points. Notably, the time course data also showed
11 that cell populations can eliminate a large fraction of mtDNA deletions within 12-14 days (mtDNA
12 deletions are removed from one passage to the next). This is consistent with the fact that replicating
13 fibroblasts eliminate some deleterious mtDNA deletions⁸⁵, and also that several *de novo* deletions
14 removed the origin of replication of the light strand (O_L), thereby preventing their replication. Whether
15 the clonal amplification of some mtDNA deletions in *SURF1* fibroblasts occurs through population
16 selection at the cellular level, or through intracellular quality control mechanisms, or a combination of
17 both, remains to be determined.

18 Third, mitochondrial OxPhos dysfunction dramatically increased the telomere erosion rate per
19 cell division, despite the adaptive transcriptional upregulation of telomere protection complex
20 components. This effect of mitochondria on telomeres agrees with the variable telomere maintenance
21 in mtDNA conplastic mice⁸⁶, with the life-shortening effect of pathogenic mtDNA variants³² and OxPhos
22 dysfunction in mice³⁴, and with the reduced lifespan in patients with mtDNA disease shown in Figure
23 1G-H. A study in skeletal muscle of children with high heteroplasmic mtDNA mutations also reported
24 excessively short telomeres, similar in length to the telomeres of healthy 80 year old controls⁸¹.
25 Because skeletal muscle is a post-mitotic tissue, this previous result also implies that OxPhos
26 dysfunction could accelerate telomere attrition at a disproportionate rate, or perhaps independent from
27 cell division, as suggested by the disconnect between the loss of telomeric repeats and genome
28 replication/cell division observed in our hypermetabolic fibroblasts. Beyond severe OxPhos defects,
29 mild alterations of OxPhos function driven by mild, common variants in complex I subunits genes, may
30 also shape disease risk⁸⁷ and influence lifespan⁸⁸.

31 Why OxPhos-induced hypermetabolism is associated with both mtDNA instability and
32 accelerated telomere erosion remains unclear. DNA maintenance (mtDNA, and telomeres) relies on the
33 accuracy of the molecular processes ensuring accurate replication. The energetic tradeoff between
34 translation and growth⁴² could explain why OxPhos-deficient cells, which expend a large fraction of
35 their energy budget to upregulate transcription/translation and secretory, also grow more slowly.

1 Notably, DNA replication is also energetically constrained and sits at the bottom of a hierarchy of
2 energy-consuming processes where vital processes, meaning that in a situation when energy is limited,
3 ionic balance and translation are prioritized over division and DNA replication ²⁰. Furthermore, cells
4 under stress experience an energetic tradeoff between the accuracy of molecular operations and the
5 speed of these processes, known as the energy-speed-accuracy tradeoff ⁸⁹. Hypermetabolism is a
6 global state of the cell, and no currently available approach can selectively manipulate or correct
7 hypermetabolism without introducing unresolvable confounds. For this reason, it is currently not
8 possible to mechanistically test this assertion. We speculate that the diversion of energetic resources,
9 as well as substrates including nucleotides ⁷⁶, may contribute to reduced DNA replication fidelity, which
10 in turn could contribute to both mtDNA instability and telomere attrition, independent of cell division.

11 Fourth, our longitudinal RNASeq and DNAm datasets reveal conserved recalibrations
12 implicating developmental and translation-related pathways, as well as cell-cell communication, with
13 OxPhos dysfunction and hypermetabolism. These identified pathways overlap with previously identified
14 multi-omic overrepresentation analysis performed on iPSC-derived neurons from SURF1 patients ⁹⁰. In
15 both this and our study, neural development, cell signaling, morphogenesis, cell cycle, and metabolism
16 were the predominant processes altered in SURF1-related disease. The induction of these
17 energetically-demanding pathways that constrain growth at the cellular and possibly at the organismal
18 level ⁴¹, could help explain why a major feature of pediatric mitochondrial disorders (including our
19 SURF1 donors) is neurodevelopmental delay, and also why adult patients commonly display short
20 stature (restricted growth) ³⁰. In relation to cell-cell communication, we note that the biomarker picture
21 of adult patients with mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes (MELAS)
22 is dominated, as in our fibroblast models, by elevated (not reduced) signaling and metabolic markers in
23 blood ⁷⁰. Thus, the organism under metabolic stress does not initiate an energy-saving hypometabolic
24 state with reduced signaling activity, but instead activates energivorous integrated stress responses
25 that must divert and consume energetic resources, in a tradeoff with other processes such as growth
26 and longevity pathways.

27 Finally, the OxPhos defects in our fibroblasts triggered a shift towards glycolytic ATP production.
28 The glycolytic shift is consistent with the physiological shift in substrate oxidation from lipids/amino acids
29 to carbohydrates, quantified by the respiratory quotient among patients ⁹¹ and mice ⁹² with OxPhos
30 defects. The active shift towards glycolysis occurs even when OxPhos is not completely obliterated. For
31 example, although basal respiration was markedly lower in SURF1 cells, the maximal FCCP-uncoupled
32 respiration in SURF1 cells was relatively preserved (see Figure 2B & Extended Data Figure 2C). This
33 result implies a cellular decision to route metabolic flux towards an energetically less efficient pathway
34 (i.e., glycolysis). This could be explained on the basis of energetic constraints and proteome efficiency,
35 since the proteome cost of OxPhos is at least double that of glycolytic fermentation ¹⁹. Thus, cells can

1 “choose” to divert metabolic flux towards glycolysis even when OxPhos is at least partially functional,
2 as in cancer, because of rising intracellular energetic constraints driven by hypermetabolism. We note
3 again that hypermetabolism is apparent across multiple animal models of primary OxPhos dysfunction,
4 manifesting as an elevated cost of living, even during rest and sleep in mice^{10,24-26}. In particular, deep
5 phenotyping of *Ant1*^{-/-} mice across three studies^{25,93,94} reveals a systemic physiological picture highly
6 consistent with mitochondrial diseases, including excessive mitochondrial biogenesis, elevated
7 circulating catecholamine levels, severe hypermetabolism (+82-85% REE) when adjusted for lower
8 physical activity levels, reduced adiposity, elevated mtDNAcn and mtDNA instability, and decreased
9 median lifespan. These *in vivo* data thus provide additional converging evidence, beyond the clinical
10 data in Figure 1, that mitochondrial OxPhos dysfunction impairs whole-body energetic efficiency and
11 cause physiological hypermetabolism in mammals.

12 Identifying hypermetabolism as a feature of mitochondrial disease has potential clinical utility as
13 it provides an explanatory framework for some of the major symptoms in affected patients. *First*, fatigue
14 and exercise intolerance are evolutionary conserved, subjective experiences that arise when the
15 organism consumes more energy than it would under optimal conditions (e.g., subjective fatigue during
16 the oxygen debt after strenuous exercise, or during an infection). Thus, symptoms of fatigue could be
17 direct consequences of impaired metabolic efficiency and hypermetabolism. *Second*, as noted above,
18 severely affected patients with mitochondrial disease are usually thin, which may be attributable to not
19 only reduced energy intake or to intestinal malabsorption, but to chronic hypermetabolism, effectively
20 burning excess ingested calories, preventing the accumulation of excess adiposity and muscle mass.
21 *Third*, alcohol appears to be poorly tolerated and associated with symptom onset in some patients with
22 mtDNA defects⁹⁵⁻⁹⁷, but the basis for alcohol intolerance remains unknown. Alcohol itself causes
23 hypermetabolism in healthy individuals – increasing whole-body REE by as much as 16%, and inhibiting
24 lipid oxidation by 31-36%^{98,99}. Alcohol may therefore aggravate pre-existing hypermetabolism, thus
25 imposing further energetic constraints on vital cellular or physiological functions. Finally, chronic
26 hypermetabolism could in part explain why infections can trigger clinical exacerbations, representing
27 the major cause of decompensation and death in this population²⁹. The metabolic cost of immune
28 activation to viral and bacterial infection is high, and cytokine production in human leukocytes is under
29 mitochondrial regulation¹⁰⁰. Thus, immunity must therefore compete with other host maintenance
30 systems¹⁰¹. We speculate that in mitochondrial diseases, because the limited energetic resources are
31 consumed at a higher rate than normal due to systemic hypermetabolism, patients may lack the
32 necessary energetic reserve required to sustain vital organs while mounting adequate immune
33 responses.

34 Together, the meta-analysis of clinical data from 17 cohorts and two cellular models of OxPhos
35 dysfunction identify hypermetabolism as a feature of mitochondrial disease. Our longitudinal patient-

1 derived fibroblasts data delineate some of the cellular and molecular features of OxPhos-induced
2 hypermetabolism, including sustained induction of the ISR, genome instability, hypersecretion of
3 cyto/metabokines, and genome-wide DNA methylation and transcriptional recalibrations that
4 emphasize the upregulation of processes related to signaling and communication (see Figure 9). A
5 resource webtool with all data from this study, including the RNAseq and DNAm data, is available and
6 can be explored for genes or processes of interest (see *Data Availability Statement*). Although further
7 work is needed, these translational data provide a basis to rationalize some unexplained clinical
8 features of mitochondrial diseases. The novel explanatory framework of cellular and physiological
9 hypermetabolism provides a foundation to design well-controlled studies to further understand the
10 extent to which hypermetabolism is a harbinger of morbidity and early mortality in patients with
11 mitochondrial diseases.

12 **Limitations.** A major open question relates to the origin and modifiability of signaling pathway(s)
13 and cellular process(es) that underlie hypermetabolism in OxPhos deficient cells and humans. Rather
14 than pursuing a single potential explanation, here we attempted to deeply phenotype both cellular
15 models of hypermetabolism and to produce a foundational dataset covering several key processes and
16 pathways previously implicated in the pathogenesis of OxPhos defects. Our dataset therefore provides
17 a foundation that can be used as a resource to develop targeted, mechanistic experiments to i)
18 determine the origin and modifiability of hypermetabolism in the context of OxPhos defects *in vitro* and
19 *in vivo*, and ii) resolve the mechanism(s) linking hypermetabolism to human aging biology. The small
20 sample size and the *in vitro* nature of the cellular data could be regarded as limitations of this work,
21 potentially limiting generalizability. However, the stability of metabolic and molecular phenotypes in two
22 distinct experimental models, across three unrelated donors (female and male) repeatedly monitored
23 across the replicative lifespan – when cells undergo dynamic age-related changes – is a strong test of
24 robustness for these findings. We also note that the extracellular flux analysis used to derive ATP
25 consumption rates are indirect⁵⁸, and other approaches such as metabolic tracing experiments would
26 be required to fully understand energy partitioning in hypermetabolic cells. Finally, the clinical
27 phenotyping presented in Figure 1 is not exhaustive, focusing exclusively on available clinical outcomes
28 related to energy expenditure, including indirect calorimetry without careful body composition
29 normalization. Thus, studies are needed to fully define the clinical heterogeneity in energy expenditure
30 among patients, as well as the neuroendocrine and metabolic manifestations of hypermetabolism. Our
31 translational findings highlight more than ever the need for collaborative, multi-center partnerships that
32 bridge the cellular, clinical, and patient-reported aspects of mitochondrial diseases and aging.

1 Methods

2 Human cohorts

3 Data were meta-analyzed from 17 mitochondrial disease cohorts listed in Table 1. Inclusion
4 criteria included 1) cohorts with a genetic diagnosis for all participants and 2) including measures for at
5 least one of the primary outcomes (resting heart rate, catecholamine levels, resting VO_2 or VO_2 relative
6 to work rate, BMI, mortality). Eligible cohorts included participants from 5 countries including China,
7 Denmark, England, Italy, and the USA. Studies were published between 2003 and 2019, covering a 16-
8 year period. Each cohort with its sample size, female/male distribution, genetic diagnoses (nDNA vs
9 mtDNA), and symptomatology is listed in Table 1, with additional information about data extraction
10 provided here. Each cohort included their own control group, so group level averages (not patient-level
11 data) were used to compute effect sizes as % difference between mitochondrial diseases and control,
12 and standardized Hedges g for each outcome measure (e.g., resting heart rate, resting VO_2). Cohorts
13 with available source data to calculate intragroup variance include error bars denoting standard error of
14 the mean in Figure 1.

15 *Cohort 1*⁵² included data on resting HR and resting VO_2 in patients with mixed genetic defects.
16 *Cohort 2* included four sub-studies: a)¹⁰², b)¹⁰³, c)¹⁰⁴, and d) an unpublished cohort of patients with
17 single large-scale mtDNA deletions with measures of resting HR, resting VO_2 , and BMI. *Cohort 3*¹⁰⁵
18 included data on resting HR, resting urinary catecholamines, and BMI. *Cohort 4*¹⁰⁶ included data on
19 resting HR and BMI. *Cohort 5* is an unpublished cohort (the Mitochondrial Stress, Brain Imaging, and
20 Epigenetics Study – MiSBIE) of patients with m.3243A>G mutations, which included data on resting HR
21 and BMI. *Cohort 6*¹⁰⁷ included data on circulating catecholamines at rest and during exercise. *Cohort*
22 7⁹¹ included data on VO_2 during fixed workload (65W) and BMI. *Cohort 8*¹⁰⁸ included data on resting
23 VO_2 and BMI. *Cohort 9*¹⁰⁹ included VO_2 during constant work rate (40% of max), and VO_2 values in
24 ml/kg/min were adjusted to average workload achieved by each group to obtain comparable estimates
25 of energetic demand relative to work performed. *Cohort 10*¹⁴ included metabolic efficiency during
26 constant-rate cycle ergometry (30 watts), including before and after a home-based exercise training
27 protocol, and these values were compared to reference values in healthy individuals from¹⁰⁹. *Cohort*
28 11¹¹⁰ overlaps with Cohorts 9 and 10 and included BMI data. *Cohort 12*¹⁷ included BMI data averaged
29 between both mutation groups. *Cohort 13*³⁰ is a natural history study of adult patients with mortality
30 data. *Cohort 14*²⁹ is a retrospective study of the causes of death in adult patients with mortality data.
31 *Cohort 15*¹¹¹ is a pediatric natural history study with mortality data. *Cohort 16*²⁸ is a multi-center
32 pediatric natural history study with mortality data. *Cohort 17* is an ongoing natural history study
33 (McFarland et al., Newcastle Mitochondrial Disease Cohort) with mortality data.

1 For a subset (3/6) of studies reporting both VO_2 and VCO_2 in the original publication, or reporting
2 both VO_2 and the respiratory quotient (RQ) from which VCO_2 could be derived, we used the Weir
3 equation ⁵¹ to estimate group-level REE differences between patients and controls. Compared to VO_2
4 (mLO₂/min/kg body mass) differences between groups, the Weir equation-derived REE differences
5 (kCal/day/kg) were on average 1.2% higher (range: -0.3% to +2.3%) than the group difference in VO_2
6 (30.0%). Future studies using proper methodology to quantify resting metabolic rate (RMR) or free-
7 living energy expenditure, normalized with sensitive body composition assessments, are needed to fully
8 define the spectrum of hypermetabolism in affected patients.

9 Reference BMI for the USA (29.9 kg/m²) was obtained from the National Health and Nutrition
10 Examination Survey (NHANES) for wave 2015-2016 (n=9,544) ([e-link](#)), for the UK (28.6 kg/m²) from the
11 Health Survey for England 2018 (n=6,600) ([link](#)), and for Italy (25.8 kg/m²) from the NCD Risk factor
12 collaboration ([link](#)), with the combined average presented in Figure 1F. Reference values for life
13 expectancy were obtained from the World Bank (<https://data.worldbank.org/>) and the average value for
14 the USA (78.6 yr), UK (81.2 yr), and Italy (82.9 yr) (representing most cohorts included) is reported in
15 Figure 1G. Data presented in Figure 1H represent mortality rates in the UK (reference population) for
16 2018, and the mortality data for individuals for mitochondrial disease was collected between 2010-2020.

17 The clinical data demonstrating hypermetabolism are derived from more than a dozen
18 laboratories over a >15-year period, illustrating the stability of this finding. The apparent cross-study
19 stability of clinical hypermetabolism is also unlikely to be influenced by publication or reporting bias for
20 three main reasons: *i*) most studies were exploratory (as opposed to confirmatory) in nature, such that
21 the motivation for their publication depended neither on the significance nor direction of these results,
22 *ii*) baseline group differences for most parameters (e.g., resting VO_2) were not primary outcomes in any
23 studies, and in several cases these data were not analyzed nor reported in the original reports, and *iii*)
24 variables such as BMI were ubiquitously reported. Moreover, to further reduce the potential of bias, the
25 overall sample includes new, previously unpublished cohorts of clinically and genetically well-defined
26 patient populations (see Table 1). Together, these factors increase likelihood that the findings revealing
27 the existence of a hypermetabolic state are robust and generalizable to mitochondrial diseases
28 represented here, which includes a relatively broad diversity of mtDNA mutations. Further work is
29 needed to sensitively quantify hypermetabolism across the diurnal cycle, normalized to body
30 composition (fat-free mass), and normed against population references ¹¹². Studies linking
31 hypermetabolism to disease severity and progression are also warranted.

32 *Skeletal muscle histology, mtDNA heteroplasmy, and mtDNA density*

33 Human skeletal muscle from the diaphragm was subjected to sequential cytochrome c oxidase
34 (COX, diaminobenzidine, brown) and succinate dehydrogenase (SDH, nitrobluetetrazolium, blue)

1 staining as described previously ¹¹³. This technique reveals segments of myofibers deficient for mtDNA-
2 encoded COX but positive for exclusively nDNA-encoded SDH ²². Sub-cellular segments of the same
3 myofiber highlighted in Figure 1B were dissected from a 20um-thick cryosection by laser-capture
4 microdissection (LCM) on a Leica AS LMD 6000 microscope, transferred and digested (Tween20,
5 Proteinase K) overnight, and used as template DNA in a multiplex real-time PCR reaction that amplifies
6 *MT-ND4* and *MT-ND1* amplicons within the minor and major arcs of the mtDNA, respectively, to
7 calculate heteroplasmy levels for major arc mtDNA deletions ¹¹⁴. Total mtDNA density was quantified
8 by deriving *MT-ND1* copies from a standard curve, normalized per surface area (um²) of tissue used as
9 input ¹¹³.

10 *Tissue culture*

11 Primary human dermal fibroblasts were obtained from distributor or in local clinic from 3 healthy
12 and 3 SURF1-patient donors (IRB #AAAB0483, see below table for descriptive information and
13 distributor). Fibroblasts were isolated from skin tissue biopsies using standard procedures. After
14 isolation, fibroblasts were stored in 10% DMSO (Sigma-Aldrich #D4540), 90% fetal bovine serum (FBS,
15 Life Technologies #10437036) in cryogenic tube under liquid nitrogen. To avoid freeze-shock necrosis
16 cells were frozen gradually in an isopropanol container (Thermofisher #5100-0001) at -80°C overnight
17 before storage in liquid nitrogen.

18 Genotypes were confirmed by whole genome sequencing. Paired-end (PE) reads were obtained
19 from Illumina HiSeq and processed using SAMtools (v1.2) and BaseSpace workflow (v7.0). PE reads
20 were aligned to hg19 genome reference (UCSC) using Isaac aligner (v04.17.06.15) and BAM files were
21 generated. Small variants including single nucleotide variants (SNVs) and insertion/deletion (Indels)
22 were called from the entire genome using Strelka germline variant caller (v2.8). Variants specific to
23 SURF1 gene were obtained from the genome-wide annotated vcf files using SnpSift and annotated
24 using web ANNOVAR.

25 To initiate cultures, cryopreserved fibroblasts were thawed at 37°C (<4min) and immediately
26 transferred to 20ml of preheated DMEM (Invitrogen #10567022). Cells were cultured in T175 flasks
27 (Eppendorf #0030712129) at standard 5% CO₂ and atmospheric (~21%) O₂ at 37°C in DMEM (5.5 mM
28 glucose) supplemented with 10% FBS, 50 µg/ml uridine (Sigma-Aldrich #U6381), 1% MEM non-
29 essential amino acids (Life Technologies #11140050), 10 µM palmitate (Sigma-Aldrich #P9767)
30 conjugated to 1.7 µM BSA (Sigma-Aldrich #A8806), and 0.001% DMSO (treatment-matched, Sigma-
31 Aldrich #D4540). Cells were passaged approximately every 5 days (+/- 1 day). Oligo-treated healthy
32 control cells were cultured in the same media as control cells supplemented with 1nM oligomycin (in
33 0.001% DMSO, Sigma-Aldrich #75351) starting on Day 15.

1 Brightfield microscopy images (10x, 20x magnification) were taken before each passaged using
 2 inverted phase-contrast microscope (Fisher Scientific #11350119). Cell counts, volume and death were
 3 determined at each passage using the Countess II Automated Cell Counter (ThermoFisher Scientific
 4 #A27977). Growth rates were used to determine replating density, by pre-calculating number of cells
 5 needed to reach ~90% confluence (~2.5 million cells) at time of next passage. Cells were never plated
 6 below 200,000 cells or above 2.5 million cells to avoid plating artifacts of isolation or contact inhibition,
 7 respectively. The timing and frequency of time points collected vary by assay, with an average sampling
 8 frequency of 15 days¹¹⁵. Cell media was collected at each passage. Individual cell lines were terminated
 9 after exhibiting less than one population doubling over a 30-day period. The Hayflick limit was
 10 determined as the total number of population doublings of a cell line at the point of termination.

11 **Extended Data Table 1. Control and SURF1 donor characteristics**

Cell Line	Tissue	Genotype	Sex	Age	Passage*	Source	Cat #
Donor 1	Dermal breast	Normal	male	18	1	Lifeline Cell Technology	FC-0024 Lot # 03099
Donor 2	Dermal breast	Normal	female	18	1	Lifeline Cell Technology	FC-0024 Lot # 00967
Donor 3	Foreskin	Normal	male	0	4	Coriell Institute	AG01439
Patient 1	Dermal upper-arm skin	SURF1 mutation	male	0.25	7	Hirano lab	NA
Patient 2	Dermal upper-arm skin	SURF1 mutation	male	11	5	Hirano lab	NA
Patient 3	Dermal upper-arm skin	SURF1 mutation	female	9	9	Hirano lab	NA

12 *Passage indicates the passage at which cells were obtained before experiment began.

13

14 **Extended Data Table 2. Genotyping results of SURF1 patient-derived fibroblasts**

Cell line	Surf1 mutation	Exonic function	dbSNP id	Clinical significance*
Patient 1	c.518_519del (p.S173Cfs*7) c.845_846del (p.S282Cfs*7)	frameshift deletion	rs782316919	Pathogenic Pathogenic
Patient 2	c.247_248insCTGC (p.R83Pfs*7) c.574_575insCTGC (p.R192Pfs*7)	frameshift insertion	rs782289759	NA
	c.C246G (p.T82T) C573G (p.T191T)	synonymous SNV	rs28715079	Benign Likely Benign
	c.313_321del (p.L105_A107del)	nonframeshift deletion	rs759270179	NA
	c.311_312insA (p.L105Sfs*11)	frameshift insertion	rs764928653	NA
	c.T280C (p.L94L)	synonymous SNV	rs28615629	Benign Likely Benign
Patient 3	c.C246G (p.T82T) c.C573G (p.T191T)	synonymous SNV	rs28715079	Benign Likely Benign
	Homozygous c.313_321del (p.L105_A107del)	nonframeshift deletion	rs759270179	NA

	c.T280C (p.L94L)	synonymous SNV	rs28615629	Benign Likely Benign
--	------------------	----------------	------------	------------------------

Results from whole genome sequencing (WGS). * Clinical interpretation of genetic variants is based on ANNOVAR gene annotation pipeline that uses ClinVar database as a primary reference. SNV, single nucleotide variant.

5 *Mycoplasma testing*

6 Mycoplasma testing was performed according to the manufacturer's instructions (R&D Systems
7 #CUL001B) at the end of lifespan for each treatment and cell line used. All tests were negative.

9 Calculations of energy expenditure and normalization to division rate and cell size

Bioenergetic parameters were measured using the XFe96 Seahorse extracellular flux analyzer (Agilent), oxygen consumption rate (OCR) and extracellular acidification rate (pH change) was measured over confluent cell monolayers. Cells were plated for Seahorse measurement every 3 passages (~15 days) with 10-12 wells plated per treatment group. Each well of a seahorse 96-well plate was plated with 20,000 cells and incubated overnight under standard growth conditions, following the manufacturer's instructions, including a plate wash with complete Seahorse XF Assay media. The complete XF media contains no pH buffers and was supplemented with 5.5 mM glucose, 1 mM pyruvate, 1 mM glutamine, 50 µg/ml uridine, 10 µM palmitate conjugated to 1.7 µM BSA. After washing, the plate was incubated in a non-CO₂ incubator for one hour to equilibrate temperature and atmospheric gases. The instrument was programmed to assess various respiratory states using the manufacturer's MitoStress Test (Brand & Nicholls, 2011). Basal respiration, ATP turnover, proton leak, coupling efficiency, maximum respiration rate, respiratory control ratio, spare respiratory capacity and non-mitochondrial respiration were all determined by the sequential additions of the ATP synthase inhibitor oligomycin (final concentration: 1 µM), the protonophore uncoupler FCCP (4 µM), and the electron transport chain Complex I and III inhibitors, rotenone and antimycin A (1 µM). The optimal number of cells and concentration for the uncoupler FCCP yielding maximal uncoupled respiration was determined based on a titration performed on healthy fibroblasts (data not shown).

27 The final Seahorse injection included Hoechst nuclear fluorescent stain (ThermoFisher Scientific
28 #62249) to allow for automatic cell counting. After each run, cell nuclei were counted automatically using
29 the Cytaion1 Cell Imager (BioTek) and raw bioenergetic measurements were normalized to relative
30 cell counts on a per-well basis. ATP metrics were determined using the P/O ratios of OxPhos and
31 glycolysis as previously described by Mookerjee et al.⁵⁷. These conversions assumed energy sourced
32 was derived entirely by glucose. All J_{ATP} measurements take into account non-mitochondrial and proton
33 leak derived oxygen consumption thereby reflecting the mitochondrial ATP-synthesis related flux

1 **(Extended Data Figure 2A).** The code and raw data are available as detailed in the Data Availability
2 statement.

3 To assess if increased ECAR in experimental conditions were due to non-glycolytic activity, a
4 glucose-dependency test was performed using the Seahorse XF Glycolysis Stress Test Kit (Agilent,
5 103020-100). Prior to extracellular flux measurements, young healthy control (Donor2) and young
6 SURF1 (Patient3) cells were grown overnight in differing nutrient conditions: physiological 5.5mM
7 glucose, 0mM glucose, 25mM glucose. The glycolysis stress test kit was performed according to the
8 manufacturer's protocol. To monitor growth and cell death, cells were cultured for 7 days in each
9 glucose condition and monitored daily (see Extended Data Figure 3).

10 *mtDNA deletions*

11 mtDNA deletions were initially detected by long-range PCR (LR-PCR) from DNA extracted from
12 cultured fibroblasts using DNeasy blood and tissue kit (Qiagen #69504) following manufacturer's
13 instructions. Isolated DNA was amplified using 12 F (np 5855-5875) and D2 R (np 129-110)
14 oligonucleotide primers to yield a 10-Kb product. PCR reactions were carried out using Hot Start
15 TaKaRa LA Taq kit (Takara Biotechnology, #RR042A) with the following cycling conditions: 1 cycle of
16 94°C for 1min; 45 cycles of 94°C for 30sec, 58°C for 30sec, and 68°C for 11min with a final extension
17 of 72°C for 12 min. Amplified PCR products were separated on 1% agarose gels in 1X TBE buffer,
18 stained with GelGreen (Biotium #41005), imaged using a GelDoc Go Imager (Biorad). Primers (5'-3')
19 were: Forward (12F): AGATTACAGTCCAATGCTTC (nucleotide position 5,855-5,875); Reverse
20 (D2R): AGATACTGCGACATAGGGTG (129-110).

21 *mtDNA next-generation sequencing and eKLIPse analysis*

22 The entire mtDNA was amplified in two overlapping fragments using a combination of mtDNA
23 primers. The primer pairs used for PCR amplicons were tested first on Rho zero cells devoid of mtDNA
24 to remove nuclear-encoded mitochondrial pseudogene (NUMTS) amplification (PCR1: 5'-
25 AACCAAACCCCAAAGACACC-3' and 5'-GCCAATAATGACGTGAAGTCC-3'; PCR2: 5'-
26 TCCCACTCCTAACACATCC-3' and 5'-TTTATGGGGTGATGTGAGCC-3'). Long-range PCR was
27 performed with the Kapa Long Range DNA polymerase according to the manufacturer's
28 recommendations (Kapa Biosystems, Boston, MA, mtDNA next-generation sequencing and USA), with
29 0.5µM of each primer and 20ng of DNA. The PCR products were analyzed on a 1% agarose gel
30 electrophoresis.

31 NGS Libraries were generated using an enzymatic DNA fragmentation approach using Ion
32 Xpress Plus Fragment Library Kit. Libraries were diluted at 100 pM before sequencing and pooled by a
33 maximum of 25 samples. Sequencing was performed using an Ion Torrent S5XL platform using Ion 540
34 chipTM. Signal processing and base calling were done by the pre-processing embedded pipeline.

1 Demultiplexed reads were mapped according to the mtDNA reference sequence (NC_012920.1) before
2 being analysed with a dedicated homemade pipeline including eKLIPse (Goudenège et al, GIM, 2019;
3 <https://github.com/dooguypapua/eKLIPse>) using the following settings. Deletion counts were estimated
4 with a variant call cutoff of >5% heteroplasmy, and separately with cutoffs of 1% and 5% heteroplasmy
5 (see **Extended Data Figure 8D**).

- 6 • Read threshold: min Quality=20 | min length =100bp
- 7 • Soft-Clipping threshold: Read threshold: Min soft-clipped length =25pb | Min mapped Part=20
8 bp
- 9 • BLAST thresholds: min=1 | id=80 | cov=70 | gapopen=0 | gapext=2
- 10 • Downsampling: No

11 *mtDNA copy number*

12 Cellular mtDNA content was quantified by qPCR on the same genomic material used for other
13 DNA-based measurements. Duplex qPCR reactions with Taqman chemistry were used to
14 simultaneously quantify mitochondrial (mtDNA, ND1) and nuclear (nDNA, B2M) amplicons, as
15 described previously ⁴. The reaction mixture included TaqMan Universal Master mix fast (life
16 technologies #4444964), 300nM of custom design primers and 100nM probes: ND1-Fwd:
17 GAGCGATGGTGAGAGCTAAGGT, ND1-Rev:CCCTAAAACCCGCCACATCT, ND1-Probe: HEX-
18 CCATCACCCCTCTACATCACCGCCC-3IABkFQ. B2M-Fwd: CCAGCAGAGAATGGAAAGTCAA, B2M-
19 Rev: TCTCTCTCCATTCTTCAGTAAGTCAACT, B2M-Probe: FAM-
20 ATGTGTCTGGGTTTCATCCATCCGACA-3IABkFQ). The samples were cycled in a QuantStudio 7 flex
21 qPCR instrument (Applied Biosystems) at 50°C for 2 min, 95°C for 20 sec, 95°C for 1min, 60°C for 20
22 sec, for 40 cycles. qPCR reactions were setup in triplicates in 384 well qPCR plates using a liquid
23 handling station (epMotion5073, Eppendorf), in volumes of 20ul (12ul mastermix, 8ul template).
24 Triplicate values for each sample were averaged for mtDNA and nDNA. Ct values >33 were discarded.
25 For triplicates with a C.V. > 0.02, the triplicates were individually examined and outlier values removed
26 where appropriate (e.g., >2 standard deviations above the mean), with the remaining duplicates were
27 used. The final cutoff for acceptable values was set at a C.V. = 0.1 (10%); samples with a C.V. > 0.1
28 were discarded. A standard curve along with positive and negative controls were included on each of
29 the seven plates to assess plate-to-plate variability and ensure that values fell within instrument range.
30 The final mtDNAcn was derived using the ΔCt method, calculated by subtracting the average mtDNA
31 Ct from the average nDNA Ct. mtDNAcn was calculated as $2^{\Delta Ct} \times 2$ (to account for the diploid nature of
32 the reference nuclear genome), yielding the estimated number of mtDNA copies per cell.

33 *Cytokines*

34 Two multiplex fluorescence-based arrays were custom-designed with selected cytokines and
35 chemokines most highly correlated with age in human plasma from ⁶⁷, listed as available analytes on

1 the R&D custom Luminex arrays (R&D, Luminex Human Discovery Assay (33-Plex) LXSAHM-33 and
2 LXSAHM-15, <http://biotechne.com/l/rl/YyZYM7n3>). Media samples were collected at selected passages
3 across cellular lifespan and frozen at -80°C. After thawing, samples were centrifuged at 500xg for 5min
4 and supernatant moved to a new tube. Wells were loaded with media samples diluted 1:5 with assay
5 diluent, incubated, washed, and read on a Luminex 200 (Luminex, USA) as per the manufacturer's
6 instructions. Positive (aged healthy fibroblast) and negative controls (fresh untreated media) samples
7 were used in duplicates on each plate to quantify batch variations. Data were fitted and final values
8 interpolated from a standard curve in xPONENT (v4.2), normalized to the cell number at the time of
9 collection to produce estimates of cytokine production on a per-cell basis. IL-6 and GDF15 measures
10 were repeated using enzyme-linked immunosorbent assays (ELISA), according to the manufacturer's
11 instructions (Abcam #ab229434 and R&D #DGD150).

12 *Media cell-free DNA*

13 Total cell-free DNA (cf-DNA) was isolated from cell culture media using a previously published
14 automated, high throughput methodology (Ware et al. 2020). Quantitative polymerase chain reaction
15 (qPCR): cf-mtDNA and cf-nDNA levels were measured simultaneously by qPCR. Taqman-based duplex
16 qPCR reactions targeted mitochondrial-encoded ND1 and nuclear-encoded B2M sequences as
17 described previously^{116,117}. Each gene assay contained two primers and a fluorescent probe and were
18 assembled as a 20X working solution according to the manufacturer's recommendations (Integrated
19 DNA Technologies). The assay sequences are: ND1 forward 5'-GAGCGATGGTGAGAGCTAAGGT-3',
20 ND1 reverse 5'-CCCTAAAACCCGCCACATCT-3', ND1 probe 5'-
21 /5HEX/CCATCACCC/ZEN/TCTACATCACCGCCC/2IABkGQ/-3', B2M forward 5'-
22 TCTCTCTCCATTCTTCAGTAAGTCAACT-3', B2M reverse 5'-CCAGCAGAGAATGGAAAGTCAA-3',
23 and B2M probe 5'-/56-FAM/ATGTGTCTG/ZEN/GGTTTCATCCATCCGACCA/3IABkFQ/-3'. Each
24 reaction contained 4 µL of 2X Luna Universal qPCR Master Mix (New England Biolabs, cat#M3003E),
25 0.4 µL of each 20X primer assay, and 3.2 µL of template cf-DNA for a final volume of 8 µL. The qPCR
26 reactions were performed in triplicates using a QuantStudio 5 Real-time PCR System (Thermo Fisher,
27 cat#A34322) using the following thermocycling conditions: 95°C for 20 s followed by 40 cycles of 95°C
28 for 1 s, 63°C for 20 s, and 60°C for 20 s. Serial dilutions of pooled human placenta DNA were used as
29 a standard curve.

30 Digital PCR (dPCR): mtDNA and nDNA copy number (copies/µL) of the standard curve used in
31 cf-mtDNA/cf-nDNA assessment were measured separately using singleplex ND1 and B2M assays
32 using a QuantStudio 3D Digital PCR System and associated reagents (Thermo Fisher, cat#A29154)
33 according to the manufacturer's protocol. The values obtained for the standard curve were used to
34 calculate the copy number for the experimental samples. All reactions were performed in duplicate (two

1 chips). Because the same standard curve was used on all plates, its copy number was applied uniformly
2 to all qPCR plates.

3 *RNA sequencing and transcriptomic analyses*

4 Total genomic RNA was isolated every ~11days across cellular lifespan and stored in 1ml TRIzol
5 (Invitrogen #15596026). RNA was extracted on-column using the RNeasy kit (Qiagen #74104), DNase
6 treated according to the manufacturer's instructions, and quantified using the QUBIT high sensitivity kit
7 (Thermo Fisher Scientific #Q32852). RNA samples underwent QC on bioanalyzer and Nanodrop 2000,
8 all samples had a RIN score >8.0 and no detectable levels of DNA. RNA (1500ng/sample, 50ng/ μ l) was
9 then submitted for sequencing at Genewiz Inc. (Illumina HiSeq, single index, 10 samples/lane), and
10 underwent RiboZero Gold purification. Sequenced reads yielding approximately 40 million paired-end
11 150bp single-end reads per sample. Sequenced reads were then aligned using the pseudoalignment
12 tool, kallisto (v0.44.0)¹¹⁸. These data were imported using txi import ('tximport', v1.18.0, length-scaled
13 TPM), and vst normalized ('DEseq2', v1.30.1).

14 Dimensionality reduction was performed using 'Rtsne' (v0.15) with perplexity value of 10 and
15 initial dimensions of 30 on the log2 transformed normalized expression values after removing genes
16 without any variation in expression across all samples. Linear mixed modeling was performed using the
17 'lme4' (v1.1) R package with the fixed effects of time grown and clinical group for SURF1-differential
18 expression and fixed effects of time grown and treatment with a mixed effects of the cell line for Oligo-
19 differential expression. P values were obtained by running an Anova comparing the model for each
20 gene to a null model that had a fixed effect of days grown (mixed effects of cell line for Oligo models)
21 and then the value was corrected for multiple comparisons using FDR-adjustment (p<0.05). We used
22 iPAGE to discover perturbed pathways in SURF1 and Oligo-treated cells
23 (<https://tavazoielab.c2b2.columbia.edu/iPAGE/>)⁷⁵. iPAGE enables the systematic and comprehensive
24 discovery of pathways that are significantly informative of gene expression measurements without any
25 explicit thresholding requirements. Additionally, iPAGE is also able to detect pathways whose
26 constituent genes are both up- and down-regulated in the treatments. Input to iPAGE included gene
27 symbols and for each gene, a cluster identifier indicating if it was upregulated, downregulated or not
28 differentially expressed in both (i.e. intersection) SURF1-mutant and Oligo-treated cells compared to
29 controls. For discovering significantly over- and under-represented pathways using iPAGE, we used a
30 stringent p value cutoff of 0.001 along with minr=1, ind=0 (to produce the most expansive set of pathway
31 terms) and, catMin=30 (to exclude pathways with fewer than 30 genes). Timecourse and heatmaps
32 show transcript levels relative to the median of the youngest control timepoints. Categorized genes
33 were selected based on known mitochondrial and aging literature. Categorized pathways were
34 categorized into meta-categories based on shared gene ontology parent processes.

1 *DNA methylation and methylome analysis*

2 Global DNA methylation was measured using the Illumina EPIC microarray ran at the UCLA
3 Neuroscience Genomic Core (UNGC). DNA was extracted using the DNeasy kit (Qiagen cat#69506)
4 according to the manufacturer's protocol and quantified using QUBIT broad range kit (Thermo Fisher
5 Scientific cat#Q32852). At least 375 ng of DNA was submitted in 30 μ l of ddH₂O to UNGC for bisulfite
6 conversion and hybridization using the Infinium Methylation EPIC BeadChip kit. Sample positions
7 across plates were randomized to avoid batch variation effects on group or time-based comparisons.
8 All DNA methylation data were processed in R (v4.0.2), using the 'minfi' package (v1.36.0). Quality
9 control preprocessing was applied by checking for correct sex prediction, probe quality, sample
10 intensities, and excluding SNPs and non-CpG probes. Data were then normalized using Functional
11 Normalization. Using the R package 'sva' (v3.12.0), both RCP and ComBat adjustments were applied
12 to correct for probe-type and plate bias, respectively. After quality control, DNAm levels were quantified
13 for 865,817 CpG Sites.

14 Dimensionality reduction was performed using the 'Rtsne' package (v0.15) with a perplexity
15 value of 10 and initial dimensions of 30 on the normalized beta values. We ran linear mixed effects
16 models (LMER) using 'lme4' (v1.1). For our differential methylation analysis of SURF1, the fixed effects
17 were assigned to 'days_grown' and 'clinical_group'. For the Oligomycin treatment, the fixed effects
18 'time_grown' and 'treatment' and the mixed effect was assigned of the 'cell_lines' (i.e., donors). P values
19 were obtained from an analysis of variance (ANOVA) comparing the model for each CpG to a null model
20 with a fixed effect of days grown (mixed effects of cell line for Oligomycin models) and then corrected
21 for multiple comparisons using FDR-adjustment ($p < 0.05$) to identify differentially methylated CpGs
22 (DMPs). Differentially methylated regions (DMRs) were derived using the modified comb-p method in
23 the 'Enmix' package (v1.26.8), with a maximum distance for DMR combination of 1000bp, a bin size for
24 autocorrelation of 310, and FDR-adjustment cutoff of 0.01, and minimum of 3 CpGs per a DMR. Each
25 DMP and DMR were assigned to the nearest annotated gene
26 (IlluminaHumanMethylationEPICanNo.ilm10b4.hg19 package, v0.6.0). Gene set enrichment analysis
27 was then performed using ShinyGO ¹¹⁹ (v0.66, <http://bioinformatics.sdsu.edu/go/>) on the top 1,000
28 DMPs- or DMRs-associated genes based on the combined negative log p value across hyper- and
29 hypo-methylated DMPs and DMRs.

30 *Relative telomere length*

31 Relative telomere length was measured by quantitative polymerase chain reaction (qPCR),
32 expressed as the ratio of telomere to single-copy gene abundance (T/S ratio). The telomere length
33 measurement assay was adapted from the published original method by Cawthon ^{120,121}. The telomere
34 thermal cycling profile consisted of: Cycling for T(celomic) PCR: Denature at 96°C for 1 minute, one

1 cycle; denature at 96°C for 1 second, anneal/extend at 54°C for 60 seconds, with fluorescence data
2 collection, 30 cycles. Cycling for S (single copy gene) PCR: Denature at 96°C for 1 minute, one cycle;
3 denature at 95°C for 15 seconds, anneal at 58°C for 1 second, extend at 72°C for 20 seconds, 8 cycles;
4 followed by denature at 96°C for 1 second, anneal at 58°C for 1 second, extend at 72°C for 20 seconds,
5 hold at 83°C for 5 seconds with data collection, 35 cycles. The primers for the telomere PCR are tel1b
6 [5'-CGGTTT(GTTTGG)₅GTT-3'], used at a final concentration of 100 nM, and tel2b [5'-
7 GGCTTG(CCTTAC)₅CCT-3'], used at a final concentration of 900 nM. The primers for the single-copy
8 gene (human beta-globin) PCR are hbg1 [5' GCTTCTGACACAACGTGTTCACTAGC-3'], used at a final
9 concentration of 300 nM, and hbg2 [5'-CACCAACTTCATCCACGTTCAACC-3'], used at a final
10 concentration of 700 nM. The final reaction mix contained 20 mM Tris-HCl, pH 8.4; 50 mM KCl; 200 μM
11 each dNTP; 1% DMSO; 0.4x SYBR Green I; 22 ng E. coli DNA; 0.4 Units of Platinum Taq DNA
12 polymerase (Invitrogen Inc.); approximately 6.6 ng of genomic DNA per 11 microliter reaction. Tubes
13 containing 26, 8.75, 2.9, 0.97, 0.324 and 0.108ng of a reference DNA (Human genomic DNA from buffy
14 coat, Sigma cat# 11691112001) are included in each PCR run so that the quantity of targeted templates
15 in each research sample can be determined relative to the reference DNA sample by the standard curve
16 method. The same reference DNA was used for all PCR runs. Assays were run in triplicate wells on
17 384-well assay plates in a Roche LightCycler 480. The average concentrations of T and S from the
18 triplicate wells were used to calculate the T/S ratios after a Dixon's Q test to remove outlier wells from
19 the triplicates. T/S ratio for each sample was measured twice. When the duplicate T/S value and the
20 initial value varied by more than 7%, the sample was run the third time and the two closest values were
21 reported. 26 out of the 512 samples (5%) has a CV greater than 10% after the third measurement. The
22 inter-assay coefficient of variation (CV) for this study is 3.0%±4.3% (including the 26 samples) and
23 2.2%±2.0% (excluding the 26 samples). Telomere length assay for the entire study were performed
24 using the same lots of reagents. Lab personnel lab who performed the assays were provided with de-
25 identified samples and were blind to other data.

26 DNA_{Am}Age

27 DNA_{Am}Age was calculated using the online calculator (<https://dnamage.genetics.ucla.edu/new>)
28 with normalization using the age of cell line donor as the input age. This outputted the Horvath1 (i.e.
29 PanTissue clock), Horvath2 (Skin&Blood clock), PhenoAge, Hannum, and GrimAge estimated
30 DNA_{Am}ages. PC-based DNA_{Am}ages were then obtained using the principal component method
31 (<https://github.com/MorganLevineLab/PC-Clocks>)⁸⁴. The rates of epigenetic aging for each cell line
32 were determined from the linear slope of timepoints between 25 to 75 days. This period ensures that
33 Oligo treatment has taken effect, and avoids late-life changes in the behavior of DNA_{Am} clocks, providing
34 the time window where the signal is most stable.

35 Data analysis and statistics

1 All statistical analyses were performed using GraphPad Prism (v9.0) and RStudio (v1.3.1056)
2 using R (v4.0.2). Comparisons of groups between control, SURF1 and treatment groups were
3 performed using mixed effects model, except for peak and rate measurements (unpaired T-test,
4 assuming unequal variance or two-way ANOVA for concurrent measures). Interpolated curves for each
5 experimental group is the best fit non-linear third order or fifth order polynomial functions depending on
6 the kinetic complexity a given measurement. Data visualization and statistical analyses were generated
7 in R ('ggplot2', v3.3.5) and Prism 8.

8 The time windows for specific statistical analyses were selected based on a combination of
9 cellular growth behavior including: i) population doubling curves (e.g., stable division rates for all groups
10 early in the cellular lifespan between days 20-50), ii) the availability of matching timepoints between
11 treatment groups (at least 3 timepoints for all groups), and iii) potential delay to reach stable cellular
12 phenotypes in Oligo-treated cells. To allow for adjustment to the *in vitro* environment, treatments began
13 after 15 days of culture. Therefore, overall "lifespan effects" were determined between 20-150 days,
14 which represents the maximal replicative lifespan of SURF1 cells. "Early life" effects that isolate most
15 clearly the effects of OxPhos dysfunction, and avoid the potential accelerated aging phenotypes in
16 SURF1 and Oligo cells, were examined using timepoints between 20-50 days. For analyses of
17 differentially expressed genes (RNASeq, Figure 6) and differential methylation (DNAm, Figure 7) where
18 a greater datapoint density was necessary to achieve robust mixed effects models, SURF1 cells were
19 analyzed between 0 and 75 days (genetic defects in *SURF1* are constitutive so do not require time in
20 culture to manifest) whereas models for Oligo-treated cells used timepoints between days 35 to 110
21 (allowing 15 days for the effects of ATP synthase inhibition to manifest in the transcriptome, while
22 avoiding late-life changes). All timepoints are shown in time series graphs.

23

24 **Supplementary Material**

25 Extended Data Figures 1-13, Extended Data Table 1-2, and Supplemental Files 1-10 are
26 available in the online supplement to this article.

27

28 **Author contributions**

29 G.S. and M.P. designed experiments. M.H. provided cell lines. G.S. performed cellular studies
30 and processed samples with assistance from A.S.M and A.T. G.S. analyzed data with assistance from
31 A.S.M., B.S.S. and A.C. K.R.K. performed long-range PCR, cytokine arrays, and WGS analysis. S.A.D.
32 and B.K. measured cf-mtDNA. J.L. and E.S.E. measured telomere length. A.H.C., M.L., and S.H.
33 contributed epigenetic clocks. B.S.S. and S.T. performed the iPAGE analyses. C.B., V.P., G.L.

1 performed mtDNA sequencing. T.T., S.R., R.S., V.K.M., B.G., R.K.M., R.H. provided data for the meta-
2 analysis of clinical data. M.P., G.S., M.H., and E.L.S. drafted the manuscript. All authors reviewed the
3 final version of the manuscript.

4

5 **Acknowledgements**

6 We are grateful to Jane Newman, Renae Stefanetti, Robert W Taylor, and Gráinne S Gorman
7 (Wellcome Center for Mitochondrial Research) for contributing data for Cohort 2, Rohit Sharma and
8 Vamsi Mootha (Massachusetts General Hospital) for contributing data for Cohort 4, Robert McFarland
9 (Wellcome Center for Mitochondrial Research) for contributing data for Cohort 17, and other
10 investigators whose work contributed to the meta-analysis in Figure 1. We thank Marlon McGill for
11 technical assistance with parts of this project. The cellular studies and analyses were supported by NIH
12 grant AG066828 and the Baszucki Brain Research Fund to M.P., the J. Willard and Alice S. Marriott
13 Foundation, Muscular Dystrophy Association, Nicholas Nunno Foundation, JDF Fund for Mitochondrial
14 Research, and Shuman Mitochondrial Disease Fund to M.H. All research at Great Ormond Street
15 Hospital NHS Foundation Trust and UCL Great Ormond Street Institute of Child Health is made possible
16 by the NIHR Great Ormond Street Hospital Biomedical Research Centre. The views expressed are
17 those of the author(s) and not necessarily those of the NIH, NHS, the NIHR, or the Department of
18 Health.

19

20 **Data availability statement**

21 The RNAseq and DNA methylation datasets for this project are available under the GEO
22 SuperSeries [GSE179849](https://www.ncbi.nlm.nih.gov/geo/study/GSE179849). All data preprocessing and analysis code is available on GitHub
23 (https://github.com/gav-sturm/Cellular_Lifespan_Study). Data presented in this manuscript was
24 generated as part of the Cellular Lifespan Study, which includes metabolic and endocrine experimental
25 treatments across multiple donors described in detail in ¹¹⁵. The complete fibroblast dataset for the
26 present study is available without restriction and can be accessed, visualized, and downloaded using
27 our webtool: https://columbia-picard.shinyapps.io/shinyapp-Lifespan_Study/. The meta-analyzed
28 clinical data of mitochondrial disease cohorts (Figure 1) can be obtained from the original publications
29 listed in Table 1. Requests for any other information will be provided upon request by the corresponding
30 author.

31

32 **Conflict of interests**

33 The authors have no conflict of interest to declare.

1 **References**

- 2 1. Gorman, G.S., *et al.* Mitochondrial diseases. *Nat Rev Dis Primers* **2**, 16080 (2016).
- 3 2. Rossignol, R., *et al.* Mitochondrial threshold effects. *Biochem J* **370**, 751-762 (2003).
- 4 3. Mick, E., *et al.* Distinct mitochondrial defects trigger the integrated stress response depending
5 on the metabolic state of the cell. *eLife* **9**(2020).
- 6 4. Picard, M., *et al.* Progressive increase in mtDNA 3243A>G heteroplasmy causes abrupt
7 transcriptional reprogramming. *Proc Natl Acad Sci U S A* **111**, E4033-4042 (2014).
- 8 5. Quiros, P.M., *et al.* Multi-omics analysis identifies ATF4 as a key regulator of the mitochondrial
9 stress response in mammals. *J Cell Biol* **216**, 2027-2045 (2017).
- 10 6. Khan, N.A., *et al.* mTORC1 Regulates Mitochondrial Integrated Stress Response and
11 Mitochondrial Myopathy Progression. *Cell Metab* **26**, 419-428 e415 (2017).
- 12 7. Kuhl, I., *et al.* Transcriptomic and proteomic landscape of mitochondrial dysfunction reveals
13 secondary coenzyme Q deficiency in mammals. *eLife* **6**(2017).
- 14 8. Kaspar, S., *et al.* Adaptation to mitochondrial stress requires CHOP-directed tuning of ISR. *Sci
15 Adv* **7**(2021).
- 16 9. Forsstrom, S., *et al.* Fibroblast Growth Factor 21 Drives Dynamics of Local and Systemic
17 Stress Responses in Mitochondrial Myopathy with mtDNA Deletions. *Cell Metab* **30**, 1040-
18 1054 e1047 (2019).
- 19 10. Chung, H.K., *et al.* Growth differentiation factor 15 is a myomitokine governing systemic
20 energy homeostasis. *J Cell Biol* **216**, 149-165 (2017).
- 21 11. Suomalainen, A. & Battersby, B.J. Mitochondrial diseases: the contribution of organelle stress
22 responses to pathology. *Nat Rev Mol Cell Biol* **19**, 77-92 (2018).
- 23 12. Gorman, G.S., *et al.* Perceived fatigue is highly prevalent and debilitating in patients with
24 mitochondrial disease. *Neuromuscul Disord* **25**, 563-566 (2015).
- 25 13. Kaufmann, P., *et al.* Protean phenotypic features of the A3243G mitochondrial DNA mutation.
26 *Arch Neurol* **66**, 85-91 (2009).
- 27 14. Porcelli, S., Marzorati, M., Morandi, L. & Grassi, B. Home-based aerobic exercise training
28 improves skeletal muscle oxidative metabolism in patients with metabolic myopathies. *J Appl
29 Physiol* (1985) **121**, 699-708 (2016).
- 30 15. Apabhai, S., *et al.* Habitual physical activity in mitochondrial disease. *PLoS One* **6**, e22294
31 (2011).
- 32 16. Lowell, B.B. & Shulman, G.I. Mitochondrial dysfunction and type 2 diabetes. *Science* **307**, 384-
33 387 (2005).
- 34 17. Hou, Y., *et al.* Appendicular skeletal muscle mass: A more sensitive biomarker of disease
35 severity than BMI in adults with mitochondrial diseases. *PLoS One* **14**, e0219628 (2019).
- 36 18. Makarieva, A.M., *et al.* Mean mass-specific metabolic rates are strikingly similar across life's
37 major domains: Evidence for life's metabolic optimum. *Proc Natl Acad Sci U S A* **105**, 16994-
38 16999 (2008).
- 39 19. Basan, M., *et al.* Overflow metabolism in *Escherichia coli* results from efficient proteome
40 allocation. *Nature* **528**, 99-104 (2015).
- 41 20. Buttgereit, F. & Brand, M.D. A hierarchy of ATP-consuming processes in mammalian cells.
42 *Biochem J* **312** (Pt 1), 163-167 (1995).

1 21. Kafri, M., Metzl-Raz, E., Jona, G. & Barkai, N. The Cost of Protein Production. *Cell Rep* **14**,
2 22-31 (2016).

3 22. Vincent, A.E. & Picard, M. Multilevel heterogeneity of mitochondrial respiratory chain
4 deficiency. *J Pathol* **246**, 261-265 (2018).

5 23. Hoitzing, H., et al. Energetic costs of cellular and therapeutic control of stochastic
6 mitochondrial DNA populations. *PLoS Comput Biol* **15**, e1007023 (2019).

7 24. Becker, C., et al. CLPP deficiency protects against metabolic syndrome but hinders adaptive
8 thermogenesis. *EMBO Rep* **19**(2018).

9 25. Morrow, R.M., et al. Mitochondrial energy deficiency leads to hyperproliferation of skeletal
10 muscle mitochondria and enhanced insulin sensitivity. *Proc Natl Acad Sci U S A* **114**, 2705-
11 2710 (2017).

12 26. Celotto, A.M., Chiu, W.K., Van Voorhies, W. & Palladino, M.J. Modes of metabolic
13 compensation during mitochondrial disease using the Drosophila model of ATP6 dysfunction.
14 *PLoS One* **6**, e25823 (2011).

15 27. Agostino, A., et al. Constitutive knockout of Surf1 is associated with high embryonic lethality,
16 mitochondrial disease and cytochrome c oxidase deficiency in mice. *Hum Mol Genet* **12**, 399-
17 413 (2003).

18 28. Wedatilake, Y., et al. SURF1 deficiency: a multi-centre natural history study. *Orphanet J Rare
19 Dis* **8**, 96 (2013).

20 29. Barends, M., et al. Causes of Death in Adults with Mitochondrial Disease. *JIMD reports* **26**,
21 103-113 (2016).

22 30. Kaufmann, P., et al. Natural history of MELAS associated with mitochondrial DNA m.3243A>G
23 genotype. *Neurology* **77**, 1965-1971 (2011).

24 31. Keshavan, N. & Rahman, S. Natural history of mitochondrial disorders: a systematic review.
25 *Essays Biochem* **62**, 423-442 (2018).

26 32. Trifunovic, A., et al. Premature ageing in mice expressing defective mitochondrial DNA
27 polymerase. *Nature* **429**, 417-423 (2004).

28 33. Kujoth, G.C., et al. Mitochondrial DNA mutations, oxidative stress, and apoptosis in
29 mammalian aging. *Science* **309**, 481-484 (2005).

30 34. Quintana, A., Kruse, S.E., Kapur, R.P., Sanz, E. & Palmiter, R.D. Complex I deficiency due to
31 loss of Ndufs4 in the brain results in progressive encephalopathy resembling Leigh syndrome.
32 *Proc Natl Acad Sci U S A* **107**, 10996-11001 (2010).

33 35. Quadalti, C., et al. SURF1 knockout cloned pigs: Early onset of a severe lethal phenotype.
34 *Biochim Biophys Acta Mol Basis Dis* **1864**, 2131-2142 (2018).

35 36. Schrack, J.A., Knuth, N.D., Simonsick, E.M. & Ferrucci, L. "IDEAL" aging is associated with
36 lower resting metabolic rate: the Baltimore Longitudinal Study of Aging. *J Am Geriatr Soc* **62**,
37 667-672 (2014).

38 37. Jumpertz, R., et al. Higher energy expenditure in humans predicts natural mortality. *J Clin
39 Endocrinol Metab* **96**, E972-976 (2011).

40 38. Ruggiero, C., et al. High basal metabolic rate is a risk factor for mortality: the Baltimore
41 Longitudinal Study of Aging. *J Gerontol A Biol Sci Med Sci* **63**, 698-706 (2008).

42 39. Tencerova, M., et al. Obesity-Associated Hypermetabolism and Accelerated Senescence of
43 Bone Marrow Stromal Stem Cells Suggest a Potential Mechanism for Bone Fragility. *Cell Rep*
44 **27**, 2050-2062 e2056 (2019).

1 40. Molenaar, D., van Berlo, R., de Ridder, D. & Teusink, B. Shifts in growth strategies reflect
2 tradeoffs in cellular economics. *Mol Syst Biol* **5**, 323 (2009).

3 41. Yang, X., et al. Physical bioenergetics: Energy fluxes, budgets, and constraints in cells. *Proc
4 Natl Acad Sci U S A* **118**(2021).

5 42. Takauji, Y., et al. Restriction of protein synthesis abolishes senescence features at cellular and
6 organismal levels. *Scientific reports* **6**, 18722 (2016).

7 43. Takauji, Y., En, A., Miki, K., Ayusawa, D. & Fujii, M. Combinatorial effects of continuous
8 protein synthesis, ERK-signaling, and reactive oxygen species on induction of cellular
9 senescence. *Exp Cell Res* **345**, 239-246 (2016).

10 44. Moraes, C.T., et al. Molecular analysis of the muscle pathology associated with mitochondrial
11 DNA deletions. *Nat Genet* **1**, 359-367 (1992).

12 45. Yu-Wai-Man, P., et al. OPA1 mutations cause cytochrome c oxidase deficiency due to loss of
13 wild-type mtDNA molecules. *Hum Mol Genet* **19**, 3043-3052 (2010).

14 46. Lehmann, D., et al. Understanding mitochondrial DNA maintenance disorders at the single
15 muscle fibre level. *Nucleic Acids Res* **47**, 7430-7443 (2019).

16 47. Vincent, A.E., et al. Subcellular origin of mitochondrial DNA deletions in human skeletal
17 muscle. *Ann Neurol* **84**, 289-301 (2018).

18 48. Green, J.A. The heart rate method for estimating metabolic rate: review and
19 recommendations. *Comp Biochem Physiol A Mol Integr Physiol* **158**, 287-304 (2011).

20 49. Vissing, J., Galbo, H. & Haller, R.G. Exercise fuel mobilization in mitochondrial myopathy: a
21 metabolic dilemma. *Ann Neurol* **40**, 655-662 (1996).

22 50. Ratheiser, K.M., Brillon, D.J., Campbell, R.G. & Matthews, D.E. Epinephrine produces a
23 prolonged elevation in metabolic rate in humans. *Am J Clin Nutr* **68**, 1046-1052 (1998).

24 51. Mehta, N.M., et al. Accuracy of a simplified equation for energy expenditure based on bedside
25 volumetric carbon dioxide elimination measurement--a two-center study. *Clin Nutr* **34**, 151-155
26 (2015).

27 52. Taivassalo, T., et al. The spectrum of exercise tolerance in mitochondrial myopathies: a study
28 of 40 patients. *Brain* **126**, 413-423 (2003).

29 53. Tiranti, V., et al. Mutations of SURF-1 in Leigh disease associated with cytochrome c oxidase
30 deficiency. *Am J Hum Genet* **63**, 1609-1621 (1998).

31 54. Hayflick, L. & Moorhead, P.S. The serial cultivation of human diploid cell strains. *Exp Cell Res*
32 **25**, 585-621 (1961).

33 55. Sturm, G., et al. Human aging DNA methylation signatures are conserved but accelerated in
34 cultured fibroblasts. *Epigenetics* **14**, 961-976 (2019).

35 56. Brydges, C.R. Effect Size Guidelines, Sample Size Calculations, and Statistical Power in
36 Gerontology. *Innov Aging* **3**, igz036 (2019).

37 57. Mookerjee, S.A., Gerencser, A.A., Nicholls, D.G. & Brand, M.D. Quantifying intracellular rates
38 of glycolytic and oxidative ATP production and consumption using extracellular flux
39 measurements. *J Biol Chem* **292**, 7189-7207 (2017).

40 58. Schmidt, C.A., Fisher-Wellman, K.H. & Neufer, P.D. From OCR and ECAR to energy:
41 Perspectives on the design and interpretation of bioenergetics studies. *J Biol Chem* **297**,
42 101140 (2021).

43 59. Parrinello, S., et al. Oxygen sensitivity severely limits the replicative lifespan of murine
44 fibroblasts. *Nat Cell Biol* **5**, 741-747 (2003).

1 60. Jain, I.H., *et al.* Hypoxia as a therapy for mitochondrial disease. *Science* **352**, 54-61 (2016).

2 61. Guo, X., *et al.* Mitochondrial stress is relayed to the cytosol by an OMA1-DELE1-HRI pathway. *Nature* **579**, 427-432 (2020).

3 62. Cao, Y., Wang, H., Ouyang, Q. & Tu, Y. The free energy cost of accurate biochemical oscillations. *Nat Phys* **11**, 772-778 (2015).

4 63. Rath, S., *et al.* MitoCarta3.0: an updated mitochondrial proteome now with sub-organelle 7 localization and pathway annotations. *Nucleic Acids Res* **49**, D1541-D1547 (2021).

5 64. Bris, C., *et al.* Improved detection of mitochondrial DNA instability in mitochondrial genome 9 maintenance disorders. *Genet Med* (2021).

10 65. Ye, K., Lu, J., Ma, F., Keinan, A. & Gu, Z. Extensive pathogenicity of mitochondrial 11 heteroplasmy in healthy human individuals. *Proc Natl Acad Sci U S A* **111**, 10654-10659 12 (2014).

13 66. Klein, H.U., *et al.* Characterization of mitochondrial DNA quantity and quality in the human 14 aged and Alzheimer's disease brain. *Mol Neurodegener* **16**, 75 (2021).

15 67. Tanaka, T., *et al.* Plasma proteomic signature of age in healthy humans. *Aging Cell* **17**, 16 e12799 (2018).

17 68. Basisty, N., *et al.* A proteomic atlas of senescence-associated secretomes for aging biomarker 18 development. *PLoS Biol* **18**, e3000599 (2020).

19 69. Lehtonen, J.M., *et al.* FGF21 is a biomarker for mitochondrial translation and mtDNA 20 maintenance disorders. *Neurology* (2016).

21 70. Sharma, R., *et al.* Circulating markers of NADH-reductive stress correlate with mitochondrial 22 disease severity. *J Clin Invest* **131**(2021).

23 71. Lehallier, B., *et al.* Undulating changes in human plasma proteome profiles across the 24 lifespan. *Nat Med* **25**, 1843-1850 (2019).

25 72. Pinti, M., *et al.* Circulating mitochondrial DNA increases with age and is a familiar trait: 26 Implications for "inflamm-aging". *European journal of immunology* **44**, 1552-1562 (2014).

27 73. Maresca, A., *et al.* Expanding and validating the biomarkers for mitochondrial diseases. *J Mol 28 Med (Berl)* **98**, 1467-1478 (2020).

29 74. Gutierrez, J.M., *et al.* Genome-scale reconstructions of the mammalian secretory pathway 30 predict metabolic costs and limitations of protein secretion. *Nat Commun* **11**, 68 (2020).

31 75. Goodarzi, H., Elemento, O. & Tavazoie, S. Revealing global regulatory perturbations across 32 human cancers. *Mol Cell* **36**, 900-911 (2009).

33 76. Hämäläinen, R.H., *et al.* Defects in mtDNA replication challenge nuclear genome stability 34 through nucleotide depletion and provide a unifying mechanism for mouse progerias. *Nature 35 Metabolism* **1**, 958-965 (2019).

36 77. Wiley, C.D., *et al.* Mitochondrial Dysfunction Induces Senescence with a Distinct Secretory 37 Phenotype. *Cell Metab* **23**, 303-314 (2016).

38 78. Lozoya, O.A., *et al.* Mitochondrial nicotinamide adenine dinucleotide reduced (NADH) 39 oxidation links the tricarboxylic acid (TCA) cycle with methionine metabolism and nuclear DNA 40 methylation. *PLoS Biol* **16**, e2005707 (2018).

41 79. Lozoya, O.A., *et al.* Single Nucleotide Resolution Analysis Reveals Pervasive, Long-Lasting 42 DNA Methylation Changes by Developmental Exposure to a Mitochondrial Toxicant. *Cell Rep* 43 **32**, 108131 (2020).

1 80. Chen, D.P., Lin, Y.C. & Fann, C.S. Methods for identifying differentially methylated regions for
2 sequence- and array-based data. *Brief Funct Genomics* **15**, 485-490 (2016).

3 81. Oexle, K. & Zwirner, A. Advanced telomere shortening in respiratory chain disorders. *Hum Mol*
4 *Genet* **6**, 905-908 (1997).

5 82. Qian, W., et al. Chemoptogenetic damage to mitochondria causes rapid telomere dysfunction.
6 *Proc Natl Acad Sci U S A* **116**, 18435-18444 (2019).

7 83. Horvath, S. & Raj, K. DNA methylation-based biomarkers and the epigenetic clock theory of
8 ageing. *Nat Rev Genet* **19**, 371-384 (2018).

9 84. Higgins-Chen, A.T., et al. A computational solution for bolstering reliability of epigenetic clocks:
10 Implications for clinical trials and longitudinal tracking. *bioRxiv*, 2021.2004.2016.440205
11 (2021).

12 85. Spendiff, S., et al. Mitochondrial DNA deletions in muscle satellite cells: implications for
13 therapies. *Hum Mol Genet* **22**, 4739-4747 (2013).

14 86. Latorre-Pellicer, A., et al. Mitochondrial and nuclear DNA matching shapes metabolism and
15 healthy ageing. *Nature* **535**, 561-565 (2016).

16 87. Caporali, L., et al. Peculiar combinations of individually non-pathogenic missense
17 mitochondrial DNA variants cause low penetrance Leber's hereditary optic neuropathy. *PLoS*
18 *Genet* **14**, e1007210 (2018).

19 88. Raule, N., et al. The co-occurrence of mtDNA mutations on different oxidative phosphorylation
20 subunits, not detected by haplogroup analysis, affects human longevity and is population
21 specific. *Aging Cell* **13**, 401-407 (2014).

22 89. Lan, G., Sartori, P., Neumann, S., Sourjik, V. & Tu, Y. The energy-speed-accuracy tradeoff in
23 sensory adaptation. *Nat Phys* **8**, 422-428 (2012).

24 90. Inak, G., et al. Defective metabolic programming impairs early neuronal morphogenesis in
25 neural cultures and an organoid model of Leigh syndrome. *Nat Commun* **12**, 1929 (2021).

26 91. Jeppesen, T.D., Orngreen, M.C., van Hall, G., Haller, R.G. & Vissing, J. Fat metabolism during
27 exercise in patients with mitochondrial disease. *Arch Neurol* **66**, 365-370 (2009).

28 92. Saleem, A., et al. Polymerase gamma mutator mice rely on increased glycolytic flux for energy
29 production. *Mitochondrion* **21**, 19-26 (2015).

30 93. Picard, M., et al. Mitochondrial functions modulate neuroendocrine, metabolic, inflammatory,
31 and transcriptional responses to acute psychological stress. *Proc Natl Acad Sci U S A* **112**,
32 E6614-6623 (2015).

33 94. McManus, M.J., et al. Mitochondrial DNA Variation Dictates Expressivity and Progression of
34 Nuclear DNA Mutations Causing Cardiomyopathy. *Cell Metab* **29**, 78-90 e75 (2019).

35 95. Kirkman, M.A., et al. Gene-environment interactions in Leber hereditary optic neuropathy.
36 *Brain* **132**, 2317-2326 (2009).

37 96. Rabenstein, A., et al. Smoking and alcohol, health-related quality of life and psychiatric
38 comorbidities in Leber's Hereditary Optic Neuropathy mutation carriers: a prospective cohort
39 study. *Orphanet J Rare Dis* **16**, 127 (2021).

40 97. Guimier, A., et al. PPA2-associated sudden cardiac death: extending the clinical and allelic
41 spectrum in 20 new families. *Genet Med* (2021).

42 98. Suter, P.M., Schutz, Y. & Jequier, E. The effect of ethanol on fat storage in healthy subjects. *N*
43 *Engl J Med* **326**, 983-987 (1992).

1 99. Shelmet, J.J., *et al.* Ethanol causes acute inhibition of carbohydrate, fat, and protein oxidation
2 and insulin resistance. *J Clin Invest* **81**, 1137-1145 (1988).

3 100. Karan, K.R., *et al.* Mitochondrial respiratory capacity modulates LPS-induced inflammatory
4 signatures in human blood. *Brain Behav Immun Health* **5**(2020).

5 101. Ganeshan, K., *et al.* Energetic Trade-Offs and Hypometabolic States Promote Disease
6 Tolerance. *Cell* **177**, 399-413 e312 (2019).

7 102. Bates, M.G., *et al.* Defining cardiac adaptations and safety of endurance training in patients
8 with m.3243A>G-related mitochondrial disease. *Int J Cardiol* **168**, 3599-3608 (2013).

9 103. Newman, J., *et al.* Preliminary Evaluation of Clinician Rated Outcome Measures in
10 Mitochondrial Disease. *J Neuromuscul Dis* **2**, 151-155 (2015).

11 104. Galna, B., *et al.* Discrete gait characteristics are associated with m.3243A>G and m.8344A>G
12 variants of mitochondrial disease and its pathological consequences. *J Neurol* **261**, 73-82
13 (2014).

14 105. Strauss, K.A., *et al.* Severity of cardiomyopathy associated with adenine nucleotide
15 translocator-1 deficiency correlates with mtDNA haplogroup. *Proc Natl Acad Sci U S A* **110**,
16 3453-3458 (2013).

17 106. Delaney, N.F., *et al.* Metabolic profiles of exercise in patients with McArdle disease or
18 mitochondrial myopathy. *Proc Natl Acad Sci U S A* **114**, 8402-8407 (2017).

19 107. Jeppesen, T.D., Orngreen, M.C., Van Hall, G. & Vissing, J. Lactate metabolism during
20 exercise in patients with mitochondrial myopathy. *Neuromuscul Disord* **23**, 629-636 (2013).

21 108. Heinicke, K., *et al.* Exertional dyspnea in mitochondrial myopathy: clinical features and
22 physiological mechanisms. *Am J Physiol Regul Integr Comp Physiol* **301**, R873-884 (2011).

23 109. Grassi, B., *et al.* Metabolic myopathies: functional evaluation by analysis of oxygen uptake
24 kinetics. *Med Sci Sports Exerc* **41**, 2120-2127 (2009).

25 110. Grassi, B., *et al.* Impaired oxygen extraction in metabolic myopathies: detection and
26 quantification by near-infrared spectroscopy. *Muscle Nerve* **35**, 510-520 (2007).

27 111. Eom, S., *et al.* Cause of Death in Children With Mitochondrial Diseases. *Pediatr Neurol* **66**, 82-
28 88 (2017).

29 112. Pontzer, H., *et al.* Daily energy expenditure through the human life course. *Science* **373**, 808-
30 812 (2021).

31 113. Picard, M., *et al.* Mitochondrial dysfunction and lipid accumulation in the human diaphragm
32 during mechanical ventilation. *Am J Respir Crit Care Med* **186**, 1140-1149 (2012).

33 114. Krishnan, K.J., Bender, A., Taylor, R.W. & Turnbull, D.M. A multiplex real-time PCR method to
34 detect and quantify mitochondrial DNA deletions in individual cells. *Anal Biochem* **370**, 127-
35 129 (2007).

36 115. Sturm, G., *et al.* A Multi-Omics and Bioenergetics Longitudinal Aging Dataset in Primary
37 Human Fibroblasts with Mitochondrial Perturbations. *bioRxiv*, 2021.2011.2012.468448 (2021).

38 116. Ware, S.A., *et al.* An automated, high-throughput methodology optimized for quantitative cell-
39 free mitochondrial and nuclear DNA isolation from plasma. *J Biol Chem* **295**, 15677-15691
40 (2020).

41 117. Belmonte, F.R., *et al.* Digital PCR methods improve detection sensitivity and measurement
42 precision of low abundance mtDNA deletions. *Scientific reports* **6**, 25186 (2016).

43 118. Bray, N.L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic RNA-seq
44 quantification. *Nat Biotechnol* **34**, 525-527 (2016).

1 119. Ge, S.X., Jung, D. & Yao, R. ShinyGO: a graphical gene-set enrichment tool for animals and
2 plants. *Bioinformatics* **36**, 2628-2629 (2020).

3 120. Cawthon, R.M. Telomere measurement by quantitative PCR. *Nucleic Acids Res* **30**, e47
4 (2002).

5 121. Lin, J., et al. Analyses and comparisons of telomerase activity and telomere length in human T
6 and B cells: insights for epidemiology of telomere maintenance. *Journal of immunological*
7 *methods* **352**, 71-80 (2010).

8

Cohort #	Author (year)	N= (W/M)	Age	Genetics	Mutations	Clinical
Cohort 1	Taivassalo (2003)	40 Mito (22/18) 32 Ctrl (9/22)	37 39	mtDNA (n=35) nDNA (n=5)	m.3242A>G, m.8344A>G, m.14710G>A, m.5543T>C, m.4409T>C, m.14846G>A, m.5920G>A, ND2 and COXIII microdeletions, sDel, mDel, other (3), unknown (4)	CPEO, MELAS, MERRF, EI, mixed
Cohort 2	5a: Bates (2013) 5b: Newman (2015) 5c: Galna (2014) 5d: Unpublished	a:10 Mito (4/6) 10 Ctrl (4/6) b:8 Mito (5/3) c:6 Mito (1/5) d:8 Mito (2/6)	42.4 39.0 42 40.5 42	mtDNA	5a:m.3243A>G 5b:m.3243A>G 5c:m.8344A>G + 3243A>G 5d:sDel	SNHL, DM, EI, AT, FT, DP, mixed
Cohort 3	Strauss (2013)	9 Mito (7/2) 28 Ctrl	14.6 14.0	nDNA	SLC25A4 (ANT1) mutations (c.523delC, p.Q175RfsX38)	CM, EI, insomnia, DP, anxiety
Cohort 4	Delaney (2017)	21 Mito (15/6) 12 Ctrl (8/4)	44 34	mtDNA	sDel, mDel, m.3243A>G, m.10010T>C, m.12261T>C, ISCU, m.4281A>G, CYTB, m.8344A>G, m.5543T>C	Mild to severe mixed
Cohort 5	MiSBIE (unpublished)	23 Ctrl (15/8) 12 Mito (8/4)	34.0 32.9	mtDNA	m.3243A>G	MELAS, mixed
Cohort 6	Jeppesen (2013)	10 Mito (6/4) 10 Ctrl (6/4)	39 39	mtDNA	m.3243A>G, 8344A>T, 4409T>C, 8340G>A, 2-bp deletion, 12,113–14422, 7177–13767	CPEO, EI, HI, GI, Enc, SS, DM, ME, AT
Cohort 7	Jeppesen (2009)	10 Mito (5/5) 10 Ctrl (5/5)	39 40	mtDNA	m.3243A>G, m.8344A>T, m.5543t>C, sDel	CPEO, EI, HI, GI, Enc, SS, DM, ME, AT
Cohort 8	Heinicke (2011)	5 Mito (2/3) 4 Ctrl (2/2)	42 34	mtDNA nDNA	m.3243A>G, m.5543T>C, m.14846G>A, ISCU	Myopathy
Cohort 9	Grassi (2009)	15 Mito (7/8) 21 PCtrl ² (7/14) 22 Ctrl (9/13)	40.1 38.3 37.9	mtDNA	sDel, mDel, m.8344A>G	Myopathy
Cohort 10	Porcelli (2016)	6 Mito (2/4)	51	mtDNA	mDel, sDel, m.3255G>A, m.3243A>G	Myopathy
Cohort 11	Grassi (2007)	6 Mito (1/5) 25 PCtrl ² (5/20) 20 Ctrl (8/12)	37.8 31.6 32.7	mtDNA	mDel, m.8344A>G	Myopathy
Cohort 12	Hou (2019)	89 Mito (57/32)	30.4	mtDNA nDNA	sDel, POLG, RRM2B, Twinkle, TK2, m.3243A>G, m.8344A>G, m.5541C>T, m.10158C>T	MELAS, CPEO
Cohort 13	Kaufman (2011)	31 Mito (16/15) 54 Ctrl ¹ (15/39)	30 38	mtDNA	m.3243A>G	MELAS
Cohort 14	Barends (2015)	30 Mito (15/15)	50.4 ³	mtDNA nDNA	m.3243A>G, sDel, mDel, c.1635C>G, m.8344A>G, m.13094T>C, m.14709T>C, m.5816A>G, m.14484T>C, m.12258G>A, POLG mutations	MELAS, CPEO, KSS, MERRF, mixed
Cohort 15	Eom (2017)	221 Mito <i>Pediatric</i>	6.0 ³	mtDNA nDNA	m.3243A>G, LS mutations	LS, MELAS, mixed
Cohort 16	Wedatilake (2013)	44 Mito (20/24) <i>Pediatric</i>	<14 ³	nDNA	SURF1 mutations	Poor feeding/vomiting, PWG, DD, HT, MD, AT
Cohort 17	Newcastle cohort (unpublished)	109 Mito (56/53)	48.1	nDNA, mtDNA	In addition to Cohort 14: AGK, ETFDH, m.10010T>C, m.11778G>A, m.13513G>A, m.8993T>C, m.8993T>G, m.9176T>C, m.9997T>C, MRPL44, NDUFAF6, NDUFS1, RRM2B, SDHA, SURF1, TYMP	MELAS, PMM, MERRF, MIDD, MNGIE, KSS, CM, mixed

1 **Table 1. Human cohorts included in the quantitative meta-analysis of energy expenditure and related**
2 **clinical phenotypes in patients with mitochondrial diseases (Figure 1). Abbreviations:** *ANT1*: adenine
3 nucleotide translocator 1; *AT*: ataxia; *CM*: cardiomyopathy; *CPEO*: chronic progressive external ophthalmoplegia;
4 *DD*: developmental delay; *Dm*: diabetes mellitus; *DP*: depression; *EI*: pure exercise intolerance; *Enc*:
5 encephalopathy; *FT*: fatigue; *Gl*: glucose intolerance; *HI*: hearing impairment; *HT*: hypotonia; *KSS*: Kearns-Sayre
6 Syndrome; *LS*: Leigh Syndrome; *MD*: movement disorder; *mDel*: multiple mtDNA deletions; *ME*: myoclonic
7 epilepsy; *MELAS*: mitochondrial encephalopathy, lactic acidosis, stroke-like episodes; *MERRF*: myoclonus
8 epilepsy with ragged red fibres; *MiSBIE*: Mitochondrial Stress, Brain Imaging, and Epigenetics study; *mtDNA*:
9 mitochondrial DNA; *nDNA*: nuclear DNA; *PWG*: poor weight gain; *sDel*: single, large-scale mtDNA deletion; *SNHL*:
10 sensorineural hearing loss; *SS*: short stature. ¹: controls were m.3243A>G carrier relatives without MELAS. ²:
11 PCtrl: “patient controls” with symptoms of mitochondrial myopathy but with negative biopsy. ³: based on age at
12 death. Number of women (W) and men (M) are shown in parentheses.
13

1 **SUPPLEMENTAL MATERIAL**
2

3 **Supplemental File 1.** Table of differentially expressed genes for SURF1 cells over 0 to 75 days of growth.
4

5 **Supplemental File 2.** Table of differentially expressed genes for Oligo cells over 35 to 110 days of growth.
6

7 **Supplemental File 3.** Table of differentially expressed genes shared across SURF1 and Oligo cells.
8

9 **Supplemental File 4.** Gene expression heatmaps of select pathways in control, SURF1, and Oligo cells.
10

11 **Supplemental File 5.** Differentially methylated CpGs for SURF1 cells over 0 to 75 days of growth.
12

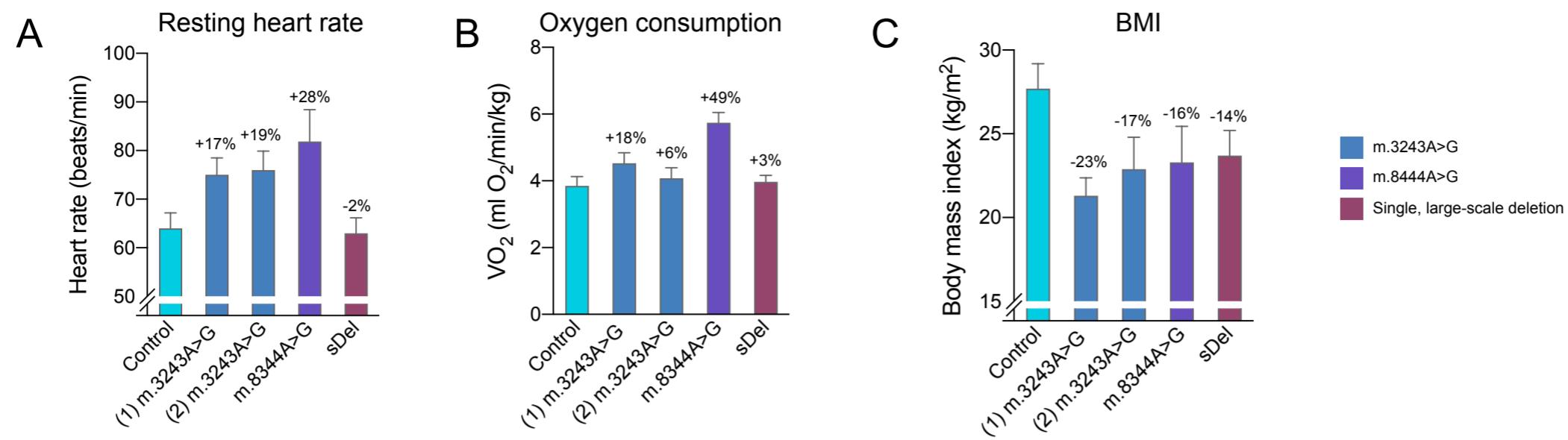
13 **Supplemental File 6.** Differentially methylated CpGs for Oligo cells over 35 to 110 days of growth.
14

15 **Supplemental File 7.** Differentially methylated CpGs shared across SURF1 and Oligo cells.
16

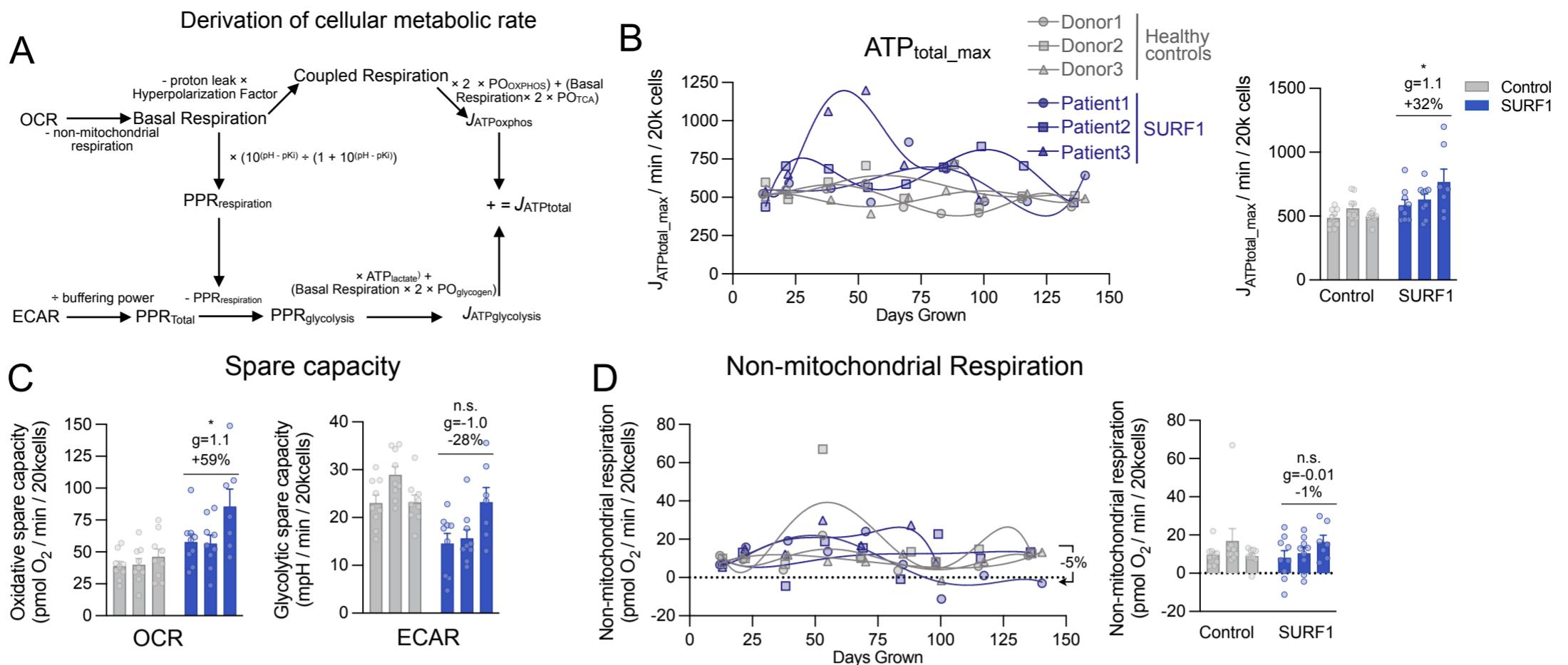
17 **Supplemental File 8.** Differentially methylated regions for SURF1 cells over 0 to 75 days of growth.
18

19 **Supplemental File 9.** Differentially methylated regions for Oligo cells over 35 to 110 days of growth.
20

21 **Supplemental File 10.** Differentially methylated regions shared in both SURF1 and Oligo cells.



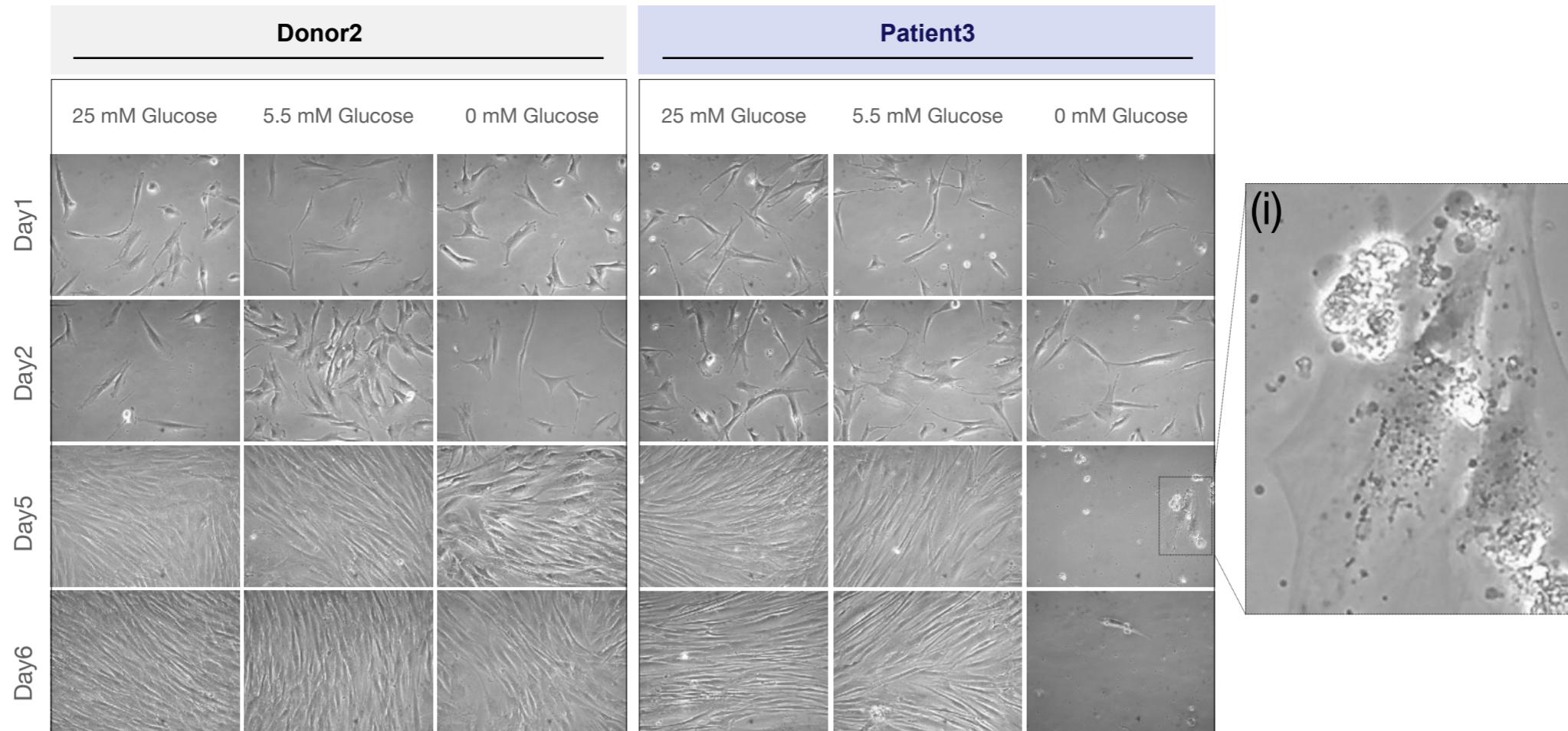
Extended Data Figure 1. Physiological profiles of mitochondrial disease in Cohort 2 by genetic diagnosis. (A) Resting heart rate (HR, $P<0.05$), (B) resting whole body oxygen consumption (VO_2 , $P<0.001$), and (C) body mass index (BMI, $P=0.061$) in 4 different groups with mtDNA defects. Controls and m.3243A>G (1) groups are described in Bates et al. (2013), m.3243A>G (2) in Newman et al. (2015), m.8344A>G in Galna et al. 2013, and sDel is an unpublished cohort from the same laboratory. Data are means \pm SEM. P values from Brown-Forsythe ANOVA.



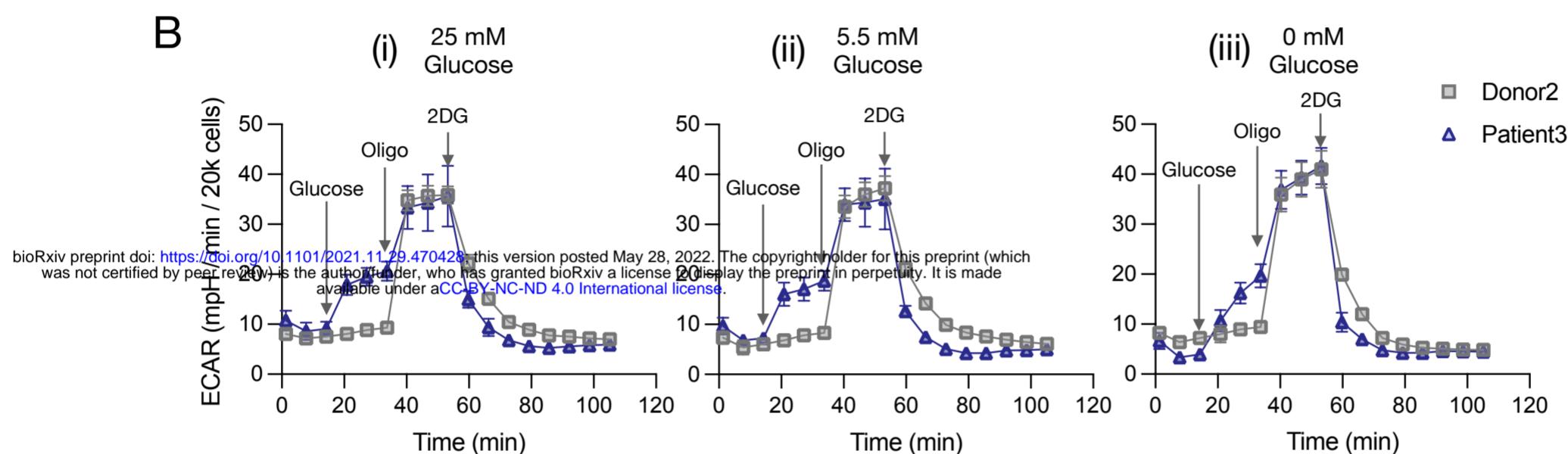
Extended Data Figure 2. Bioenergetic profiling of SURF1-mutant cells. (A) Conversion of OCR and ECAR values into ATP production rates (J_{ATP} , pmol ATP per minute) (B) Lifespan trajectories of $J_{ATPtotal}$ at maximal uncoupling (FCCP injection) across the SURF1 lifespan (up to 150 days). Percentages show the total average difference between SURF1 and Control. (C) Spare capacity for respiration (left) and glycolysis (right), measured as the difference between maximal uncoupled to baseline values. (D) Lifespan trajectories of non-mitochondrial respiration after shutdown of the ETC (R+A injection) across the SURF1 lifespan (up to 150 days). $n = 3$ individuals per group, 7-9 timepoints per individual. Data are means \pm SEM., * $P < 0.05$, ** $P < 0.01$, *** $P < 0.001$, **** $P < 0.0001$, unpaired two-tailed t-test.

bioRxiv preprint doi: <https://doi.org/10.1101/2021.11.29.470428>; this version posted May 28, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

A

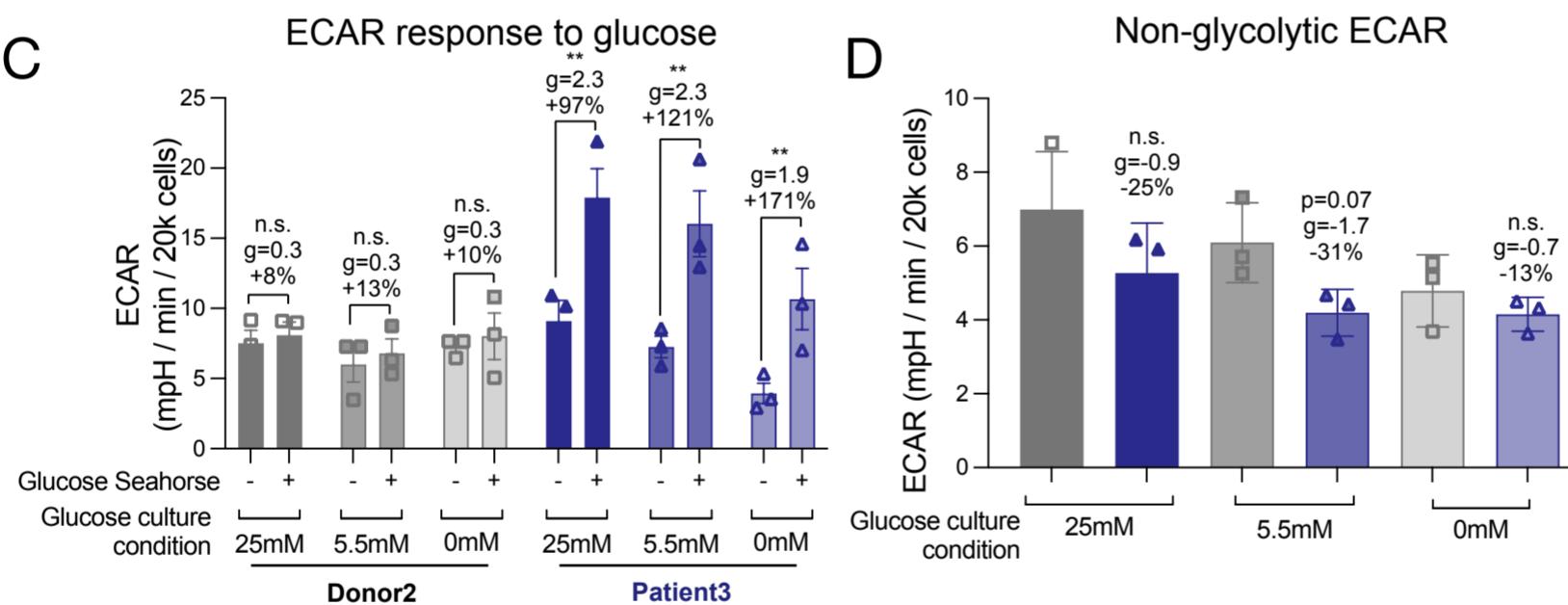


B

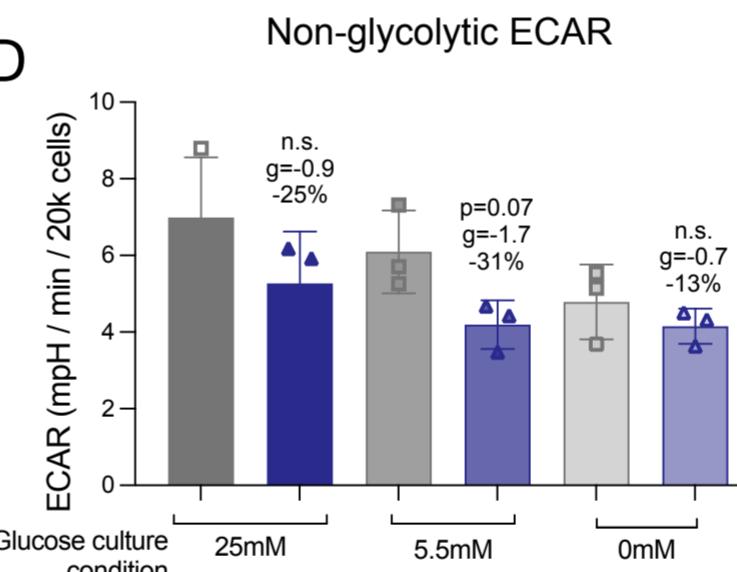


bioRxiv preprint doi: <https://doi.org/10.1101/2021.11.29.470428>; this version posted May 28, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

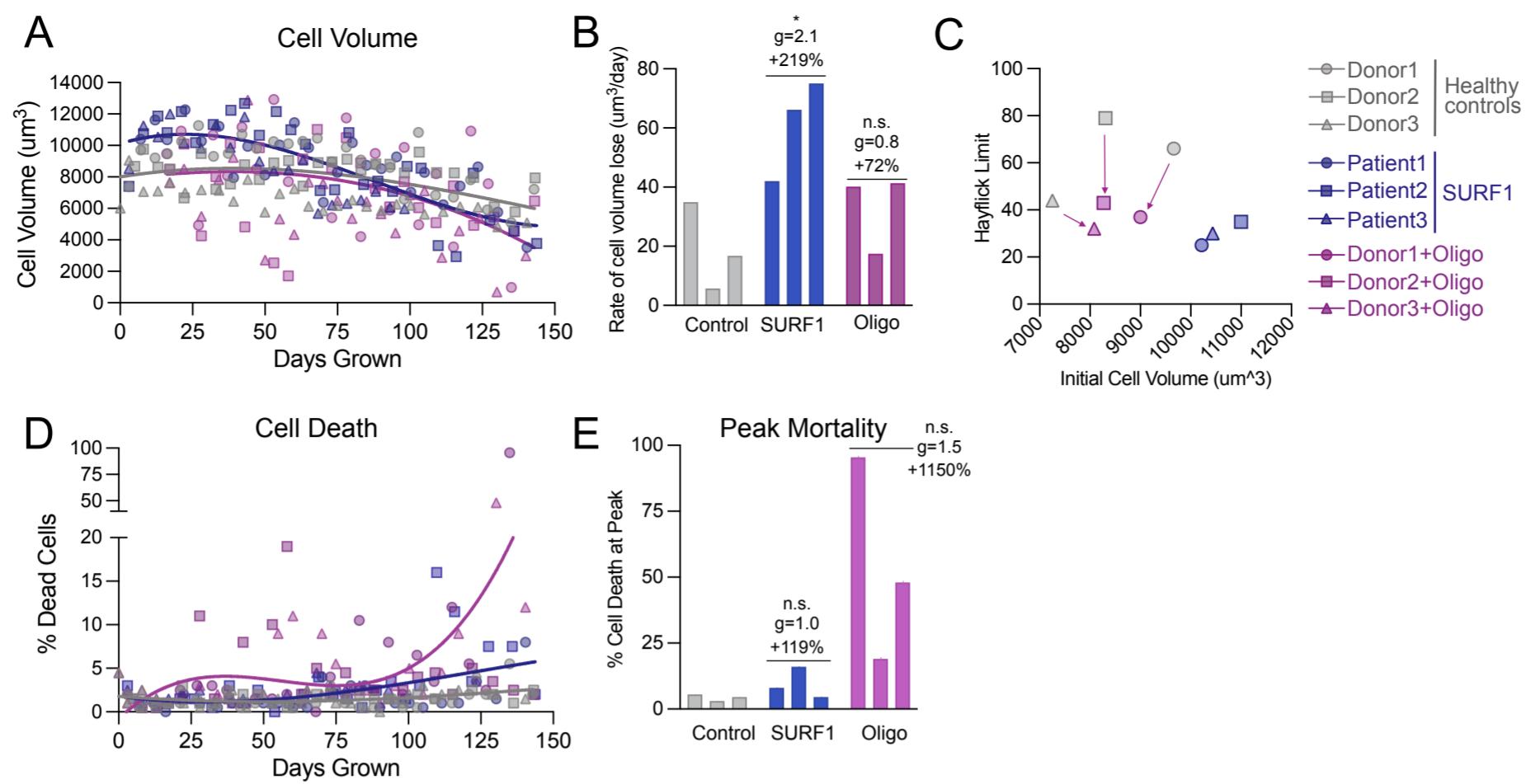
C



D

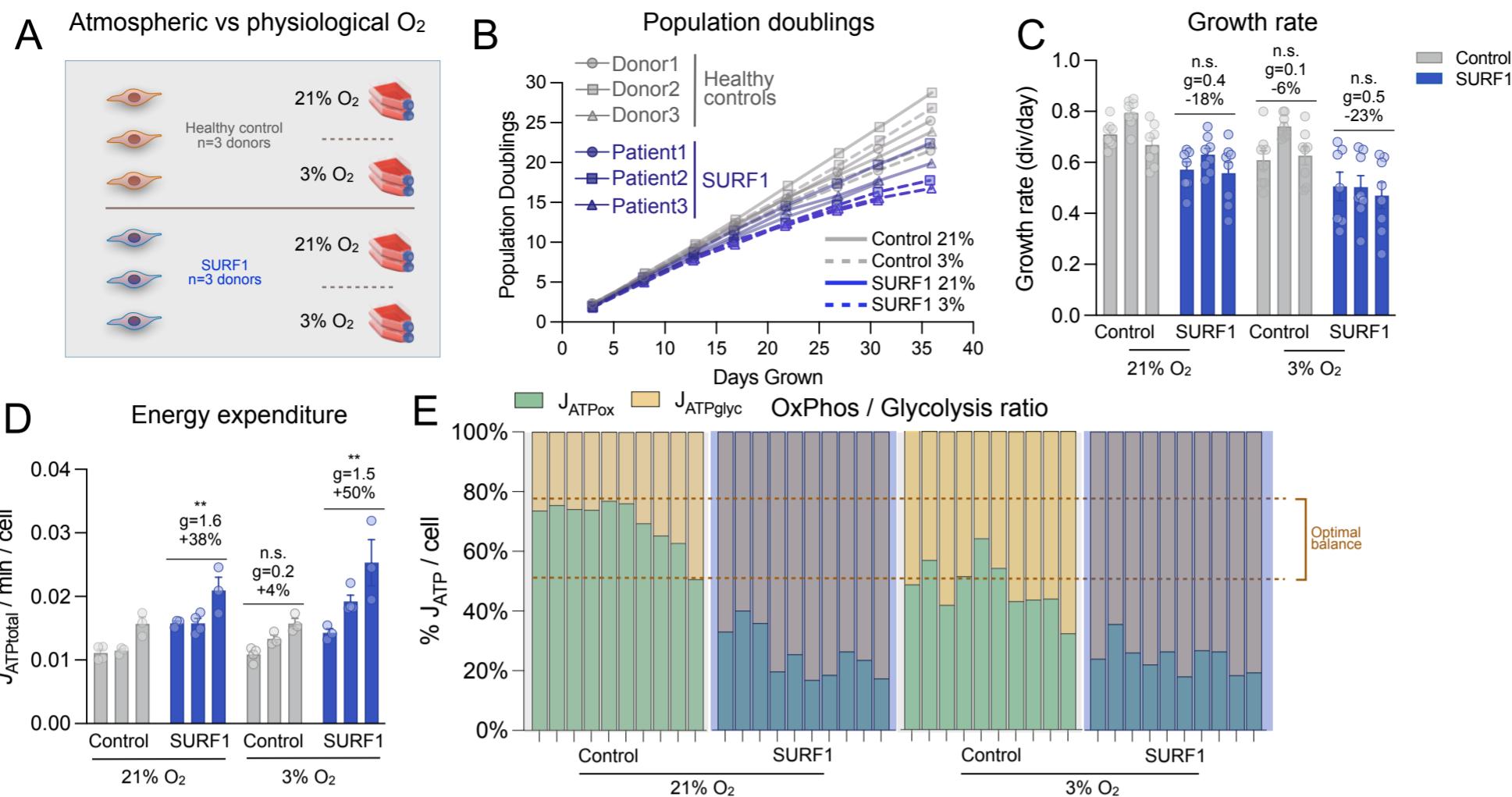


Extended Data Figure 3. Glucose dependency of SURF1-mutant cells. (A) Brightfield images of human fibroblasts from Donor 2 (left panel) and Patient 2 (right panel) cultured under different glucose conditions for 6 days: high glucose (25mM), low/normal glucose (5.5 mM), and no glucose (0 mM). After 5 days, fibroblasts from Patient3 display massive cell death when cultured without glucose (i), suggesting increased glucose dependency. (B) Glucose dependency test with sequential injections of glucose, oligomycin, and 2-deoxyglucose on a single healthy control (Donor 2) and SURF1-disease (Patient 2) fibroblasts cell line after overnight treatment in (i) 25 mM Glucose, (ii) 5.5 mM Glucose, or (iii) 0 mM Glucose. (C) ECAR measured before (-) and after (+) glucose injection across three independent experiments on the same control and SURF1 cell lines in different glucose conditions as shown in and (B). SURF1 cells show a more rapid increase in ECAR following glucose injection compared to control cells, highlighting their propensity to oxidize glucose. Statistical test performed using Šídák's multiple comparisons test on a two-way anova. (D) ECAR measured after 2DG injection across three independent experiments on the same control and SURF1 cell lines in different glucose conditions as shown in and (B). Data are means \pm SEM. * P < 0.05, ** P < 0.01.



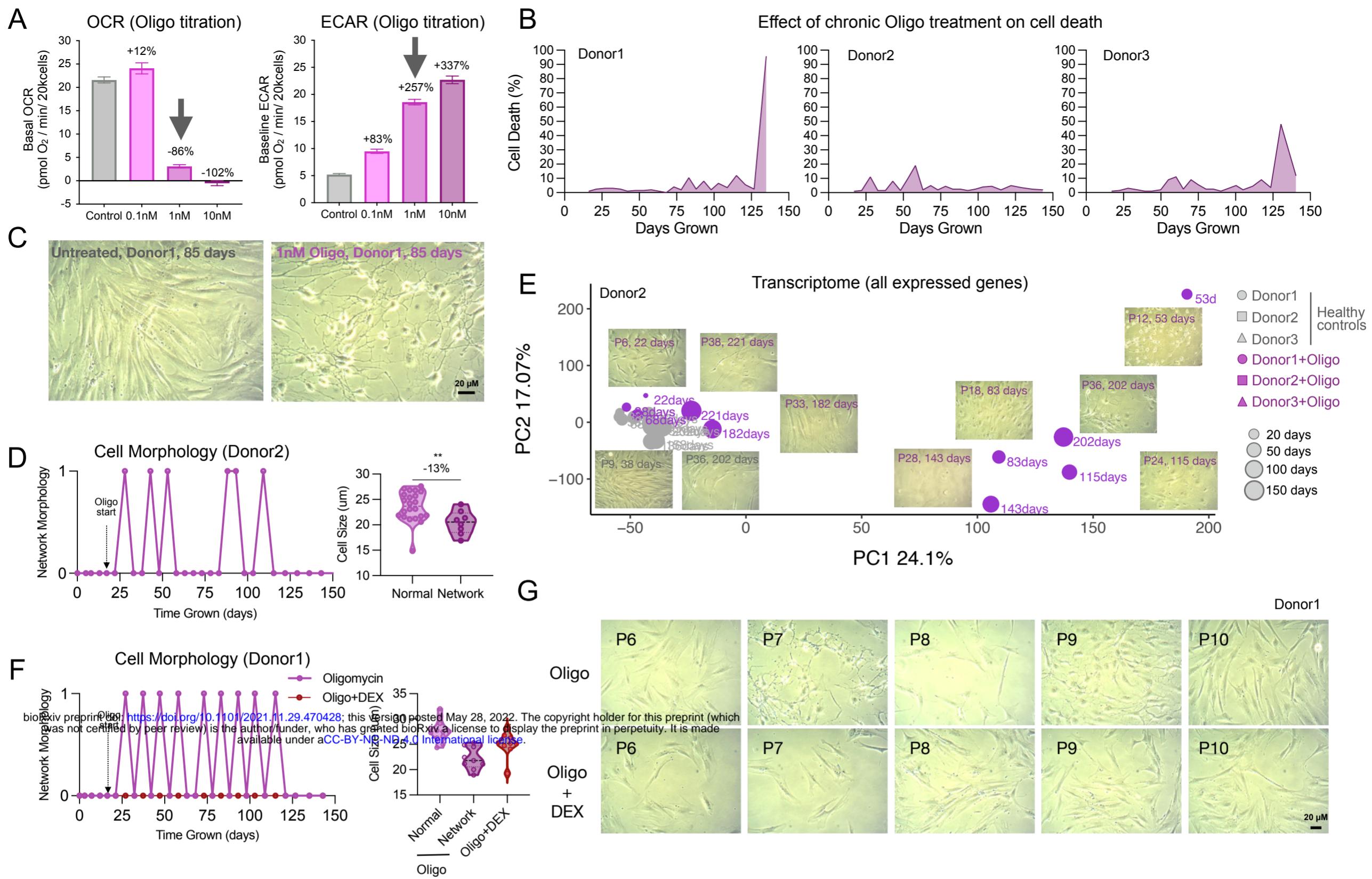
Extended Data Figure 4. Mitochondrial defects show altered rates of cytological aging. (A) Timecourse of cell volume across cellular lifespan. (B) Rate of volume loss for each cell line. Rates are determined using a linear slope. (C) Hayflick limit compared to initial cell volume of each line for Control, SURF1-disease, and Oligo-treated cells. (D) Timecourse of cell death across cellular lifespan. (E) Maximum percentage of dead cells for each cell line.

bioRxiv preprint doi: <https://doi.org/10.1101/2021.11.29.470428>; this version posted May 28, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

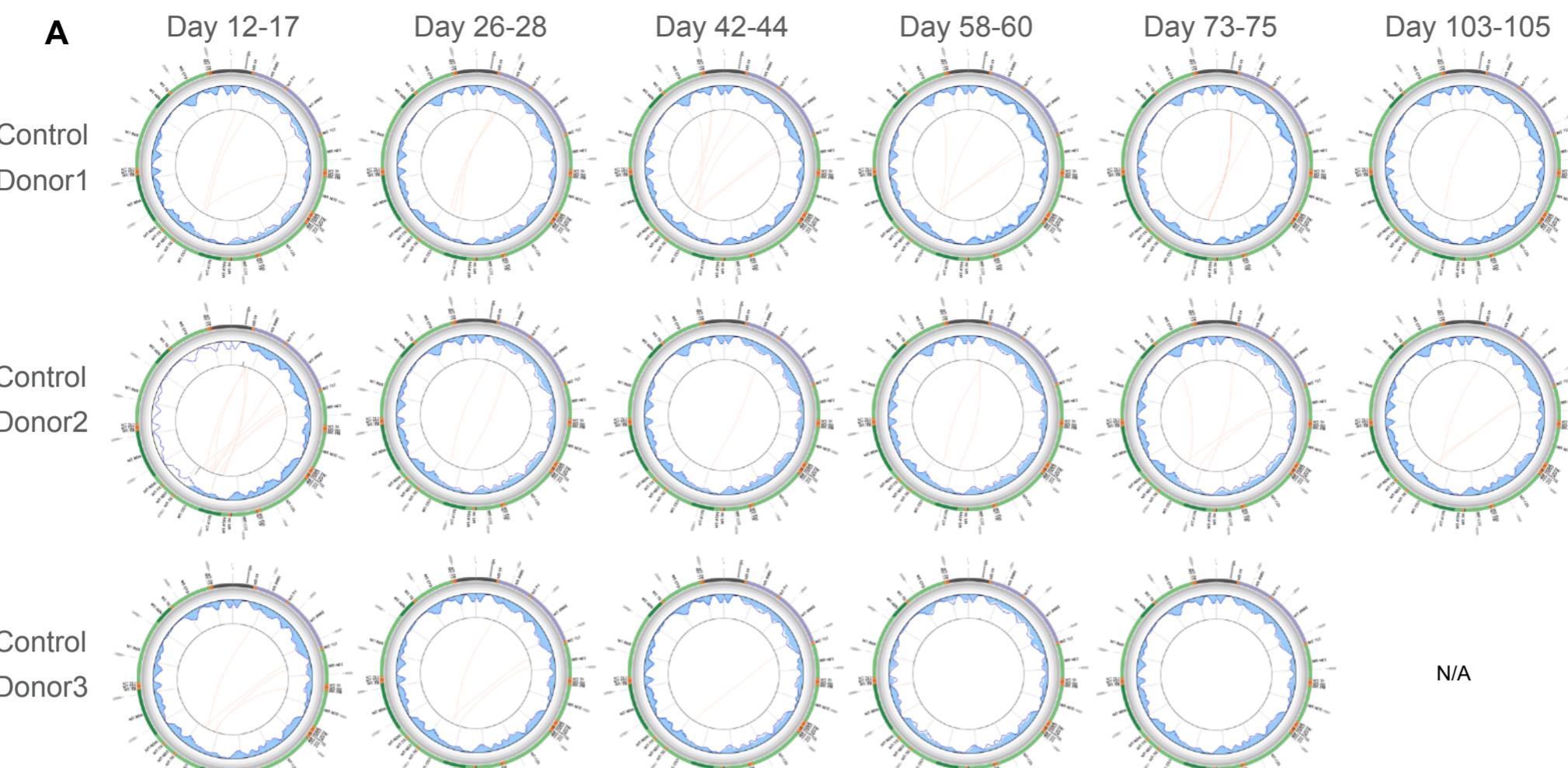


Extended Data Figure 5. Effect of oxygen concentration on SURF1-mutant cells growth and metabolism. (A) Experimental schematic for repeat experiment comparing atmospheric (21%) to physiological (3%) oxygen levels. (B) Growth curves of control and SURF1 cells under different oxygen levels. (C) Growth rate of control and SURF1 cells under 21% and 3% O₂. (D) Energy expenditure of control and SURF1 cells under 21% or 3% O₂. (E) Balance of J_{ATP} derived from OxPhos and glycolysis in oxygen experiment. Dotted lines denote the range in 21% control cells. Data includes 30/40 independent individual experiments taken from 0 to 10 days of cellular lifespan. Data are means \pm SEM., * $P < 0.05$, ** $P < 0.01$, unpaired two-tailed t-test relative to control at 21% O₂.

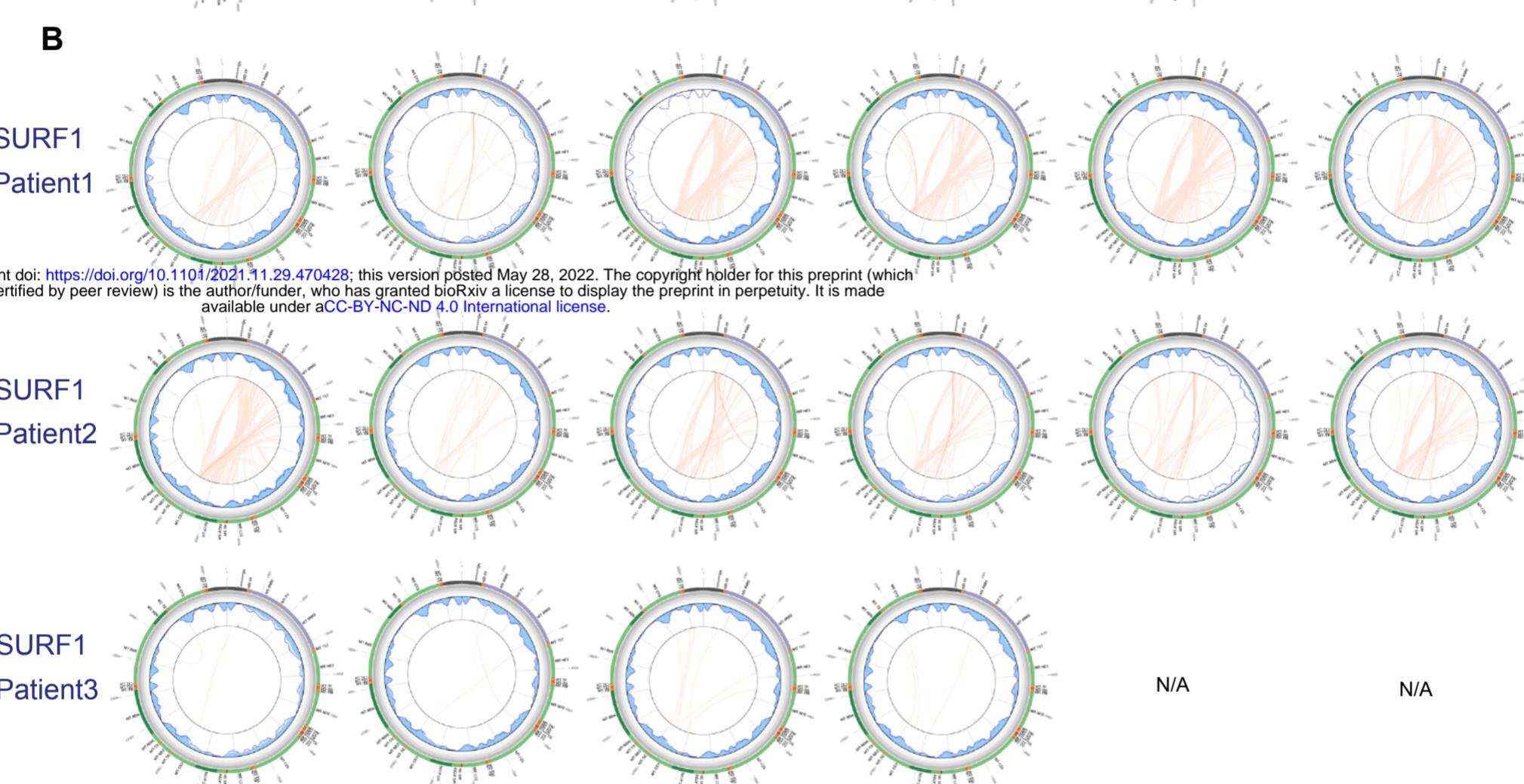
bioRxiv preprint doi: <https://doi.org/10.1101/294746>; this version posted January 18, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.



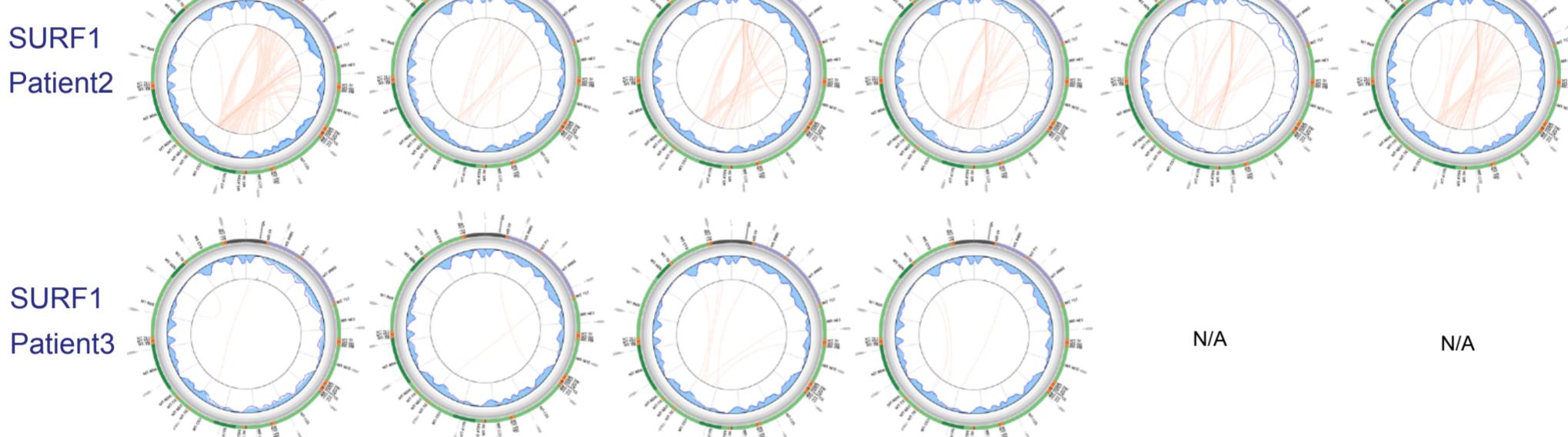
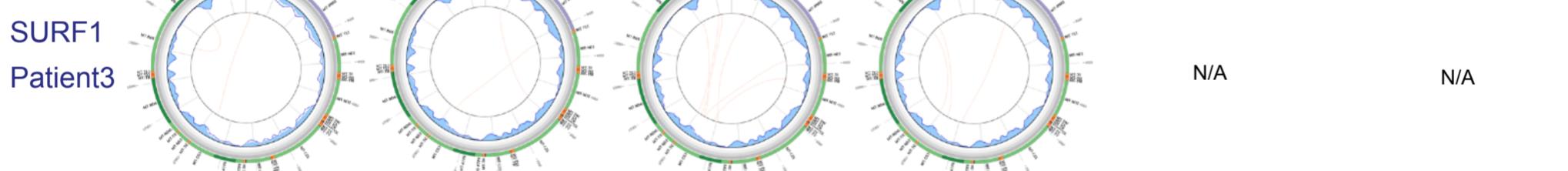
Extended Data Figure 6. Cellular morphological oscillations of oligomycin-treated fibroblasts **(A)** Titration of oligomycin on basal OCR and ECAR measures (n=20-23 technical replicates, error-bars=SEM) in Donor 5. Arrows show the selected concentration for chronic treatment (1nM) which induces a 86% decrease in OCR and elevate ECAR by 257%, reflecting a robust metabolic recalibration in response to ATP synthesis from OxPhos. **(B)** Timecourses of the percent of dead cells at each passage across the cellular lifespan. Measurements were taken at each passage using trypan blue. **(C)** Bright-field imaging of control (left) and 1nM oligo-treated cells (right) using a 20x magnification. **(D)** Timecourse of morphological classification across the cellular lifespan. Cells were crudely characterized as either normal or 'network-like' at each passage by eye. **(E)** Networked oligo-treated cells show robust shift in the transcriptional space in principal component analysis. **(F)** Rescue experiment using a combination of 1nM oligo and 100nM dexamethasone (DEX). **(G)** Bright-field imaging of oligo-treated cells (top-panel) and a combination of oligo and dexamethasone (bottom-panel). Oligo+DEX cells show no signs of network morphology. Treatment conditions for healthy controls include chronic addition of 1nM oligomycin (Sigma-Aldrich #75351), 100nM dexamethasone (DEX, Sigma-Aldrich #D4902) and a combination of 1nM oligomycin and 100nM DEX.



N/A

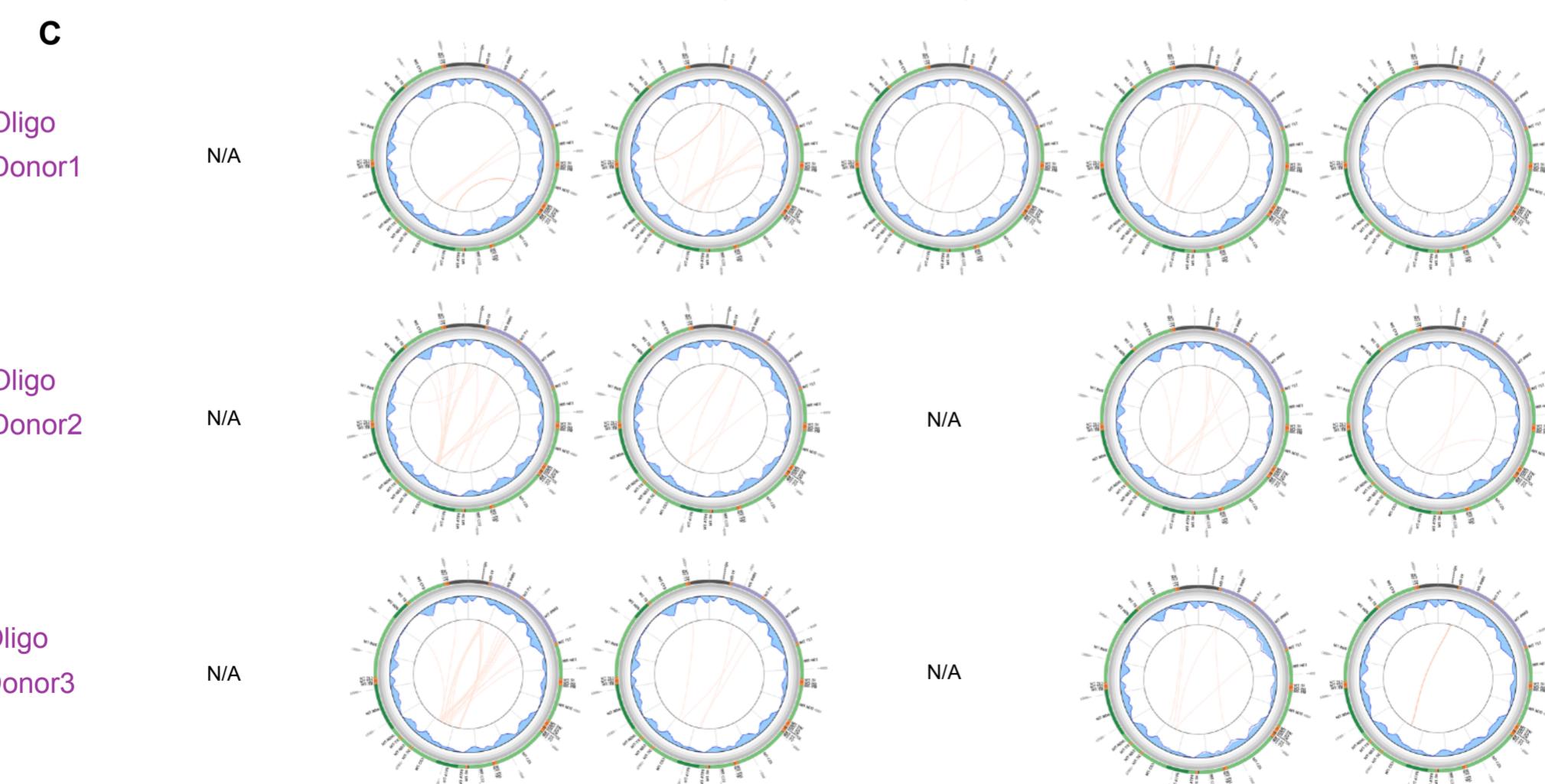


N/A

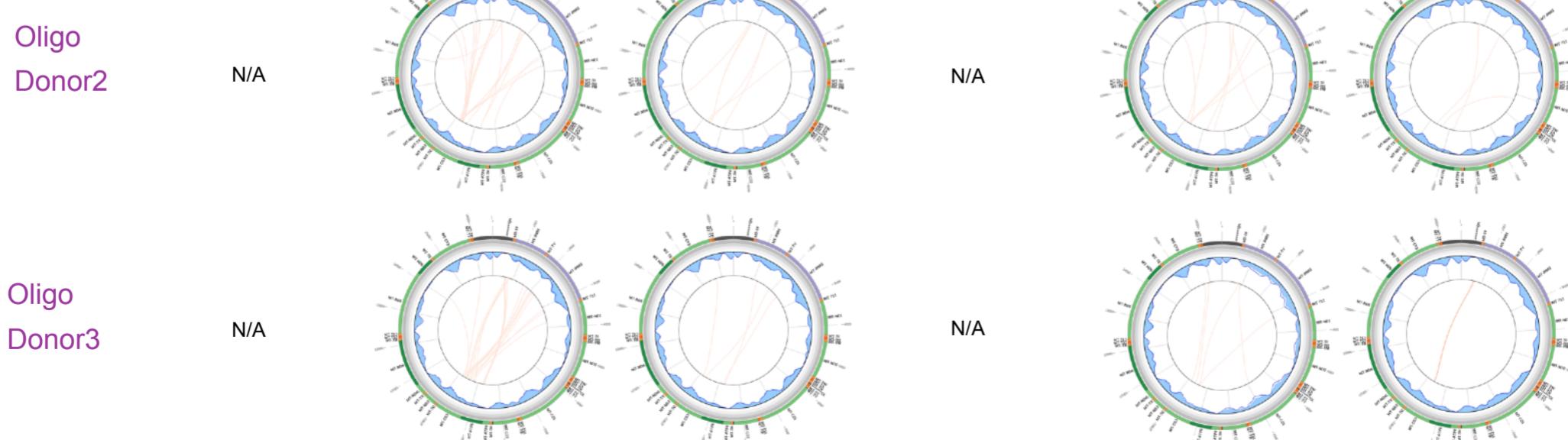


N/A

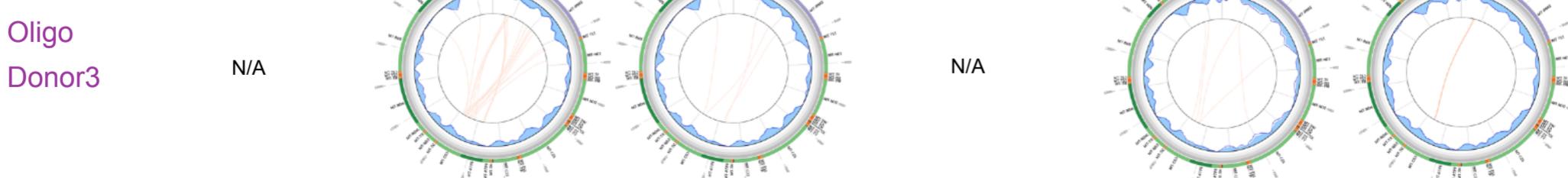
N/A



N/A

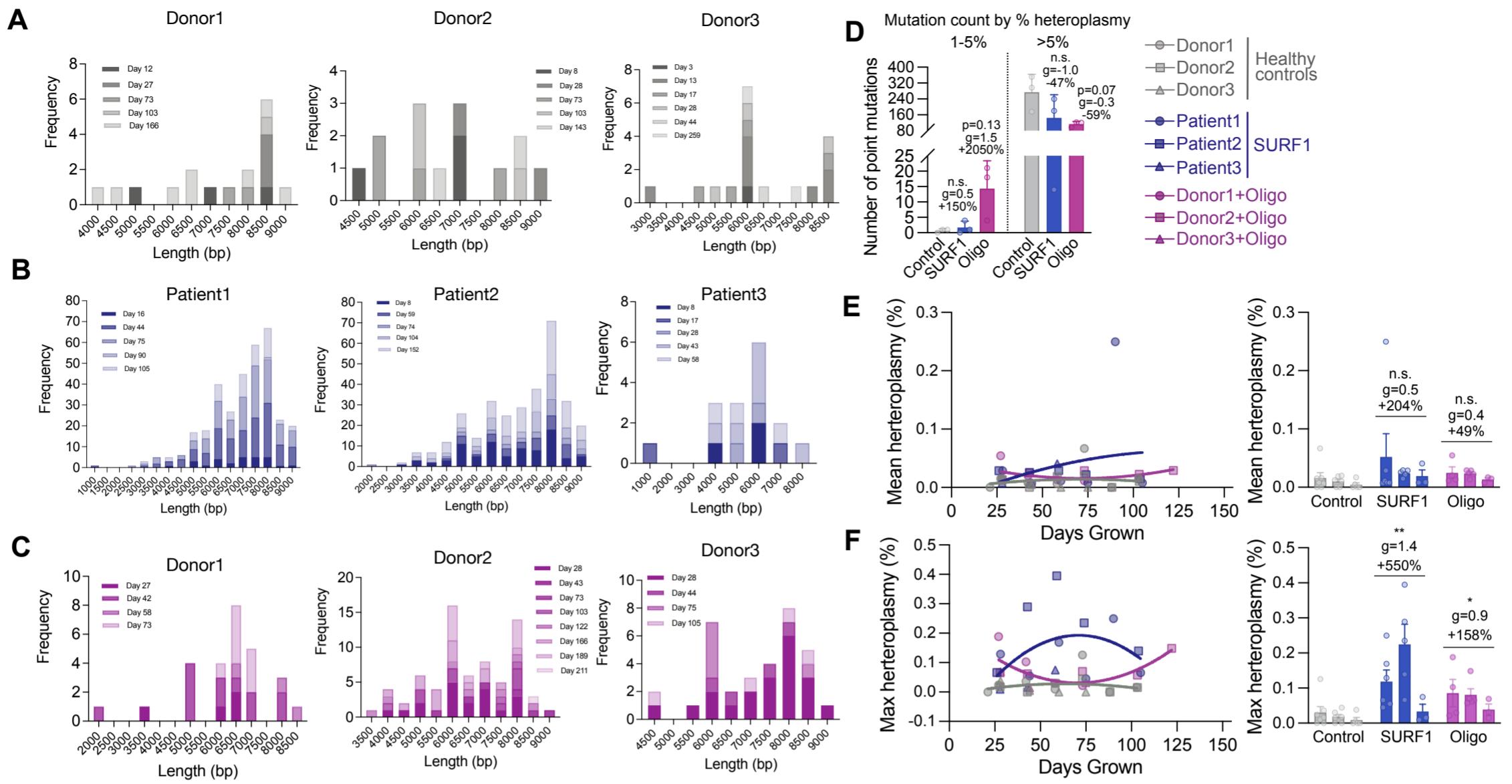


N/A

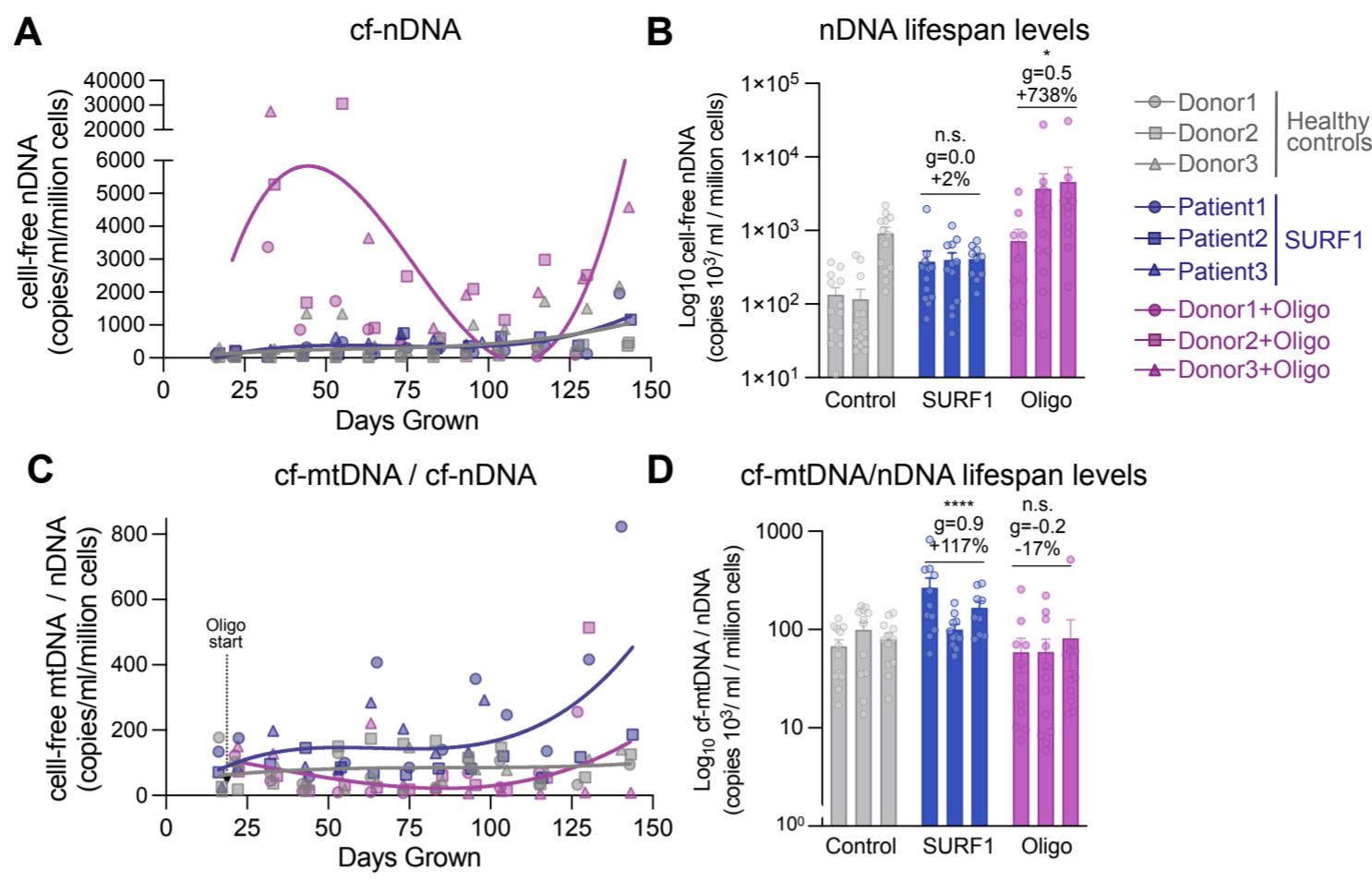


N/A

Extended Data Figure 7. Circos plots depicting the time course of mtDNA deletions in Control and SURF1 fibroblasts. Each circos plot depicts mitochondrial genome annotations (outer circle), percentage of deletions (gray gradient), depth of base coverage (blue area), soft-clipping BLASTn links (red arcs) and percent heteroplasmy (intensity of red arcs) [REF: Goudenège et al. 2019] (A) mtDNA deletion time-course of a control fibroblast from a healthy donor. (B) mtDNA deletion time-course of a patient fibroblast with SURF1 mutation. (C) mtDNA deletion time-course of a healthy fibroblast treated with 1nM Oligomycin-treated cells. N/A indicates data not available for given timepoint.

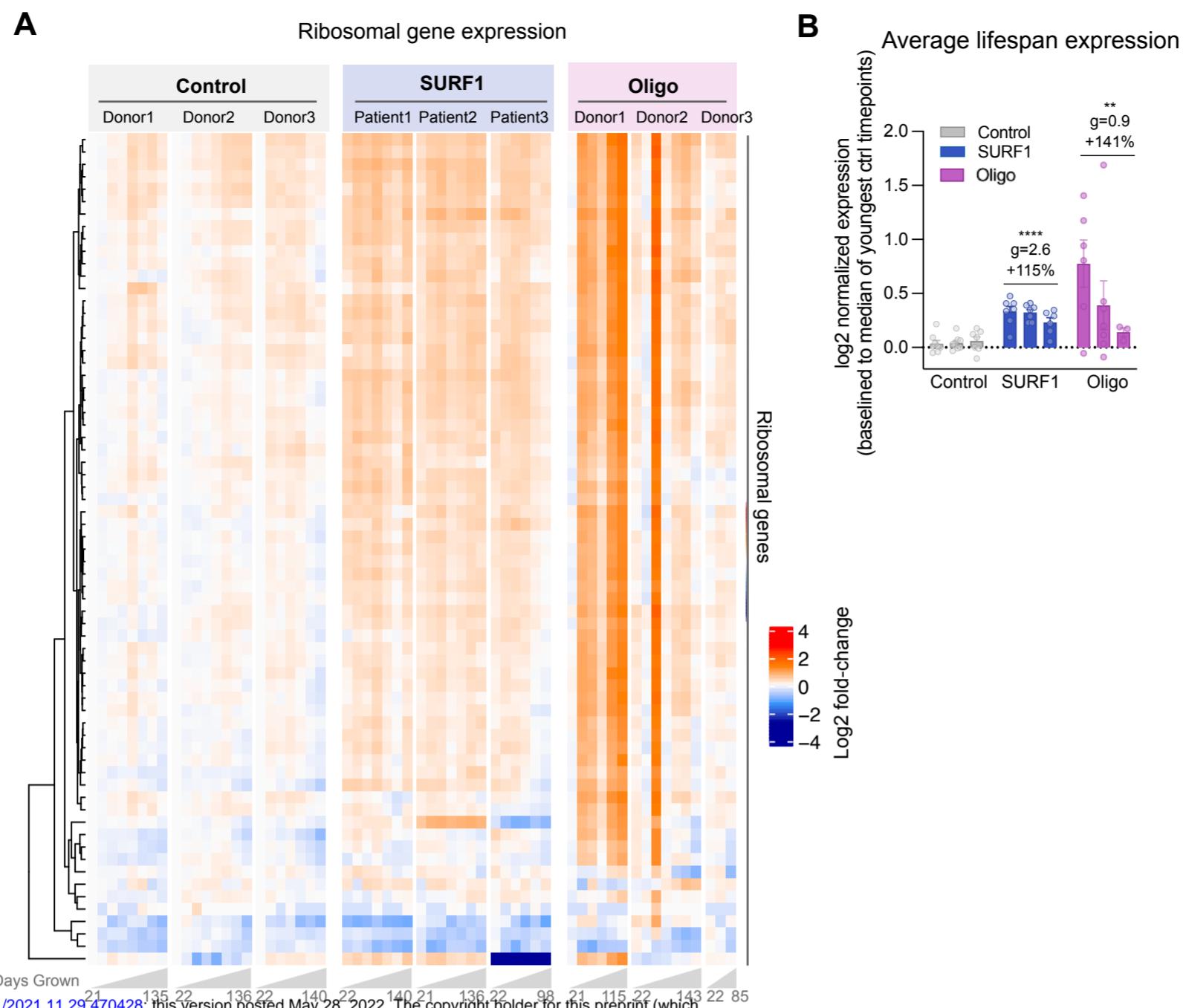


Extended Data Figure 8. Length distribution of mtDNA deletion fragments days in culture. (A) Frequency distribution of mtDNA deletions and length of deletion in three healthy donors across time. (B) High deletion frequency and length distribution of mtDNA fragments in three patients with SURF1 mutation, and (C) in Oligo-treated cells. (D) Mitochondrial mutation count in control, SURF1-mutant, and Oligo-treated fibroblasts at 1-5% and greater than 5% heteroplasmy. (E) Mean and (F) max mtDNA heteroplasmy levels across the cellular lifespan. We note that our longitudinal analysis demonstrated the spontaneous occurrence of a m.3243A>G mutation in the Oligo-treated cells of Donor2, which appeared at passage 22 and persisted at all timepoints until passage 34 (time elapsed = 86 days). Data are mean \pm SEM.* P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 0.0001, mixed effects model (fixed effect of clinical condition and days grown, random effects of cell line).



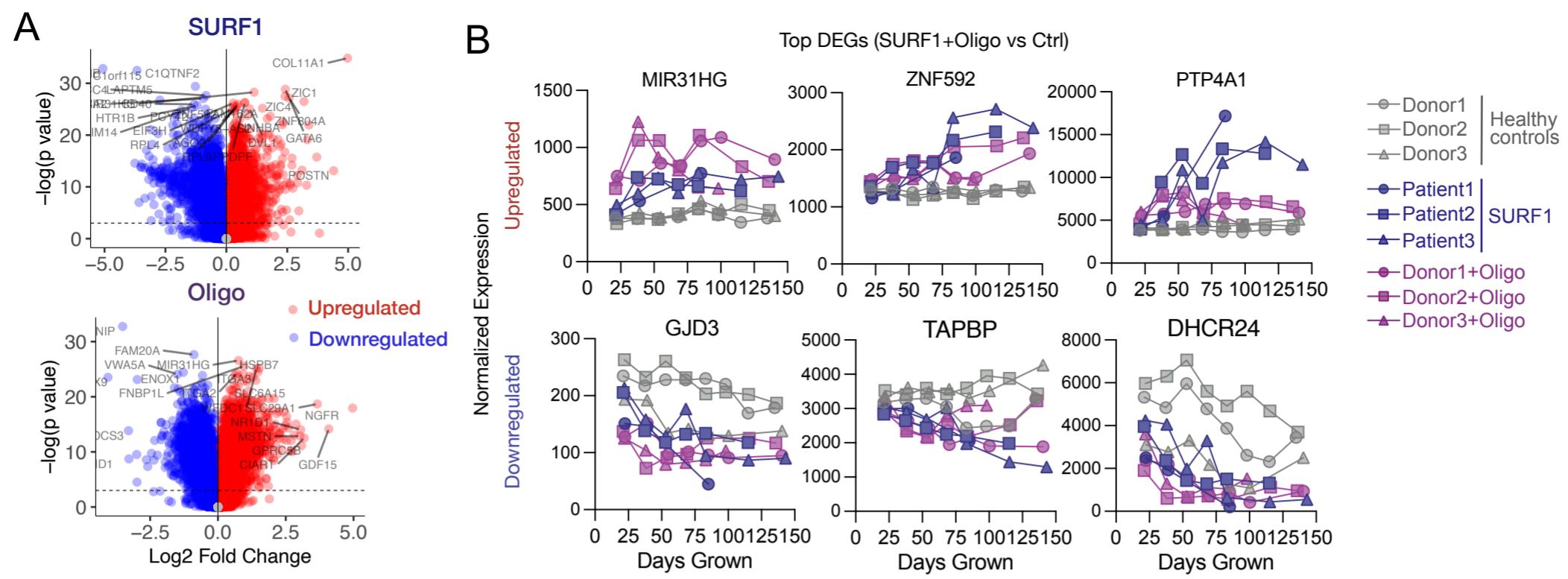
Extended Data Figure 9. Cell-free molecules. (A-B) Cell-free nuclear DNA dynamics using qrt-PCR, normalized to the number of cells at time of sampling, across the cellular lifespan trajectories (A) and averages (B). (C-D) Cell-free mitochondrial DNA per nuclear DNA across the cellular lifespan trajectories (C) and averages (D). Data are mean \pm SEM. * $P < 0.05$, ** $P < 0.01$, *** $P < 0.001$, **** $P < 0.0001$, mixed effects model (fixed effect of clinical condition and days grown, random effects of cell line).

bioRxiv preprint doi: <https://doi.org/10.1101/2021.11.29.470428>; this version posted May 28, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.



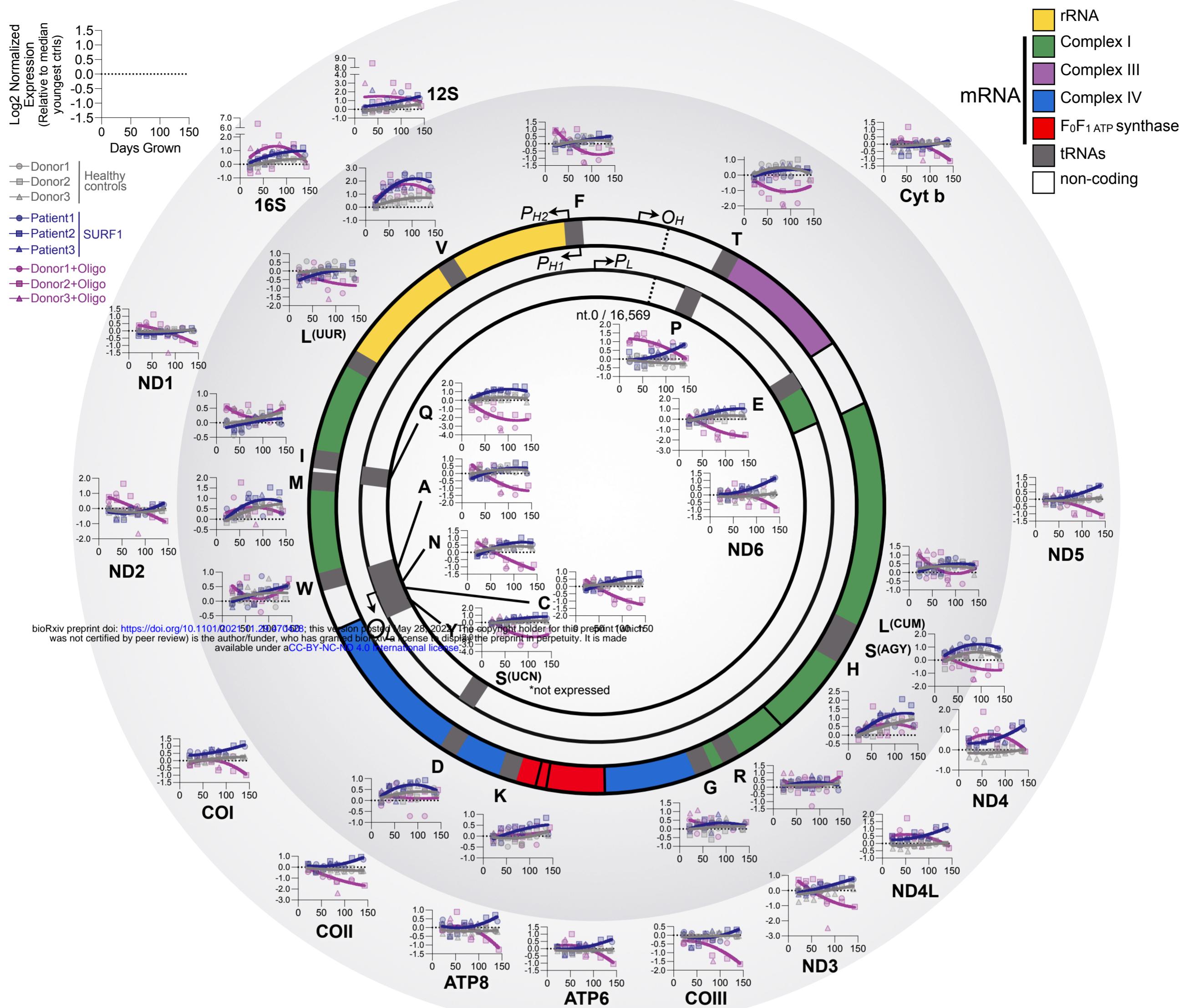
bioRxiv preprint doi: <https://doi.org/10.1101/2021.11.29.470428>; this version posted May 28, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Extended Data Figure 10. Ribosomal gene expression. (A) Heatmap of ribosomal gene expression. Ribosomal genes were selected from the KEGG database (<https://www.genome.jp/kegg/pathway/hsa/hsa03010.html>). Values are derived from normalized expression centered to the median of the youngest control timepoints. (B) Barplot of ribosomal gene expression between control, SURF1-mutant, and oligo-treated timepoints. Each datapoint is the median normalized expression across all ribosomal subunit genes. Data are mean \pm SEM. * $P < 0.05$, ** $P < 0.01$, *** $P < 0.001$, **** $P < 0.0001$, mixed effects model (fixed effect of clinical condition and days grown, random effects of cell line).

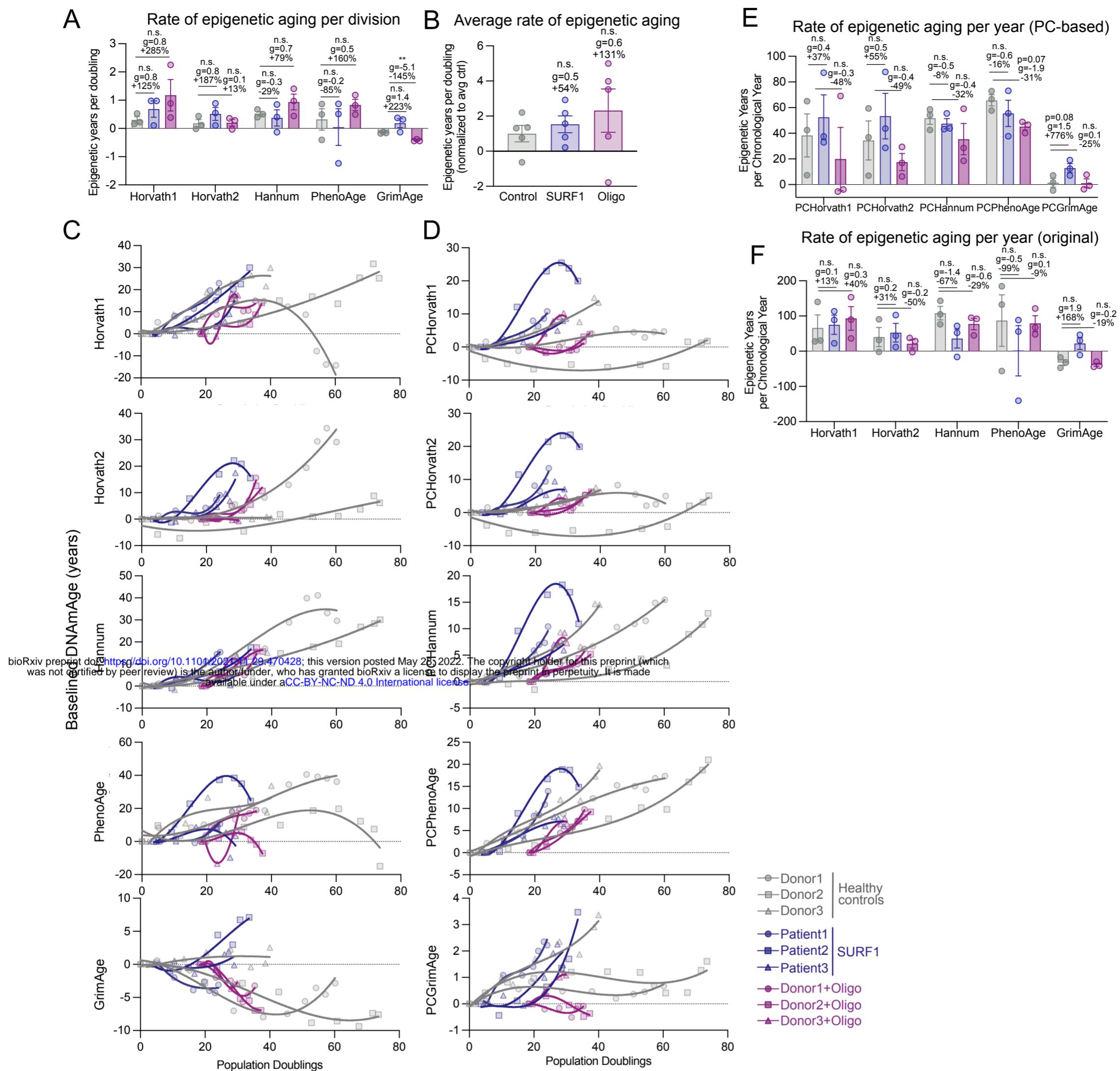


Extended Data Figure 11. Transcriptomic Remodeling. (A) Volcano plots of differential expressed genes (DEGs) for LMER model of SURF1-mutant fibroblasts (top-panel) and Oligo-treated fibroblasts (bottom-panel). (B) Timecourse of top 3 up- and down-regulated DEGs in both SURF1-disease and Oligo-treated fibroblasts.

bioRxiv preprint doi: <https://doi.org/10.1101/2021.11.29.470428>; this version posted May 28, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.



Extended Data Figure 12. mtDNA gene expression of coding genes and tRNAs. Circular mtDNA map with its 37 genes annotated. Graphs show normalized expression values (log₂ fold-change relative to median of control replicates) for control, SURF1 mutant donors, and Oligo-treated healthy donors. Each point represents the median of all timepoints for a given cell line (35 to 150 days). The inner ring includes all transfer RNAs (tRNAs); the outer ring includes ribosomal and messenger RNA (rRNA and mRNA) genes.



Extended Data Figure 13. DNAmAge clocks. **(A)** Rate of epigenetic aging using original DNAmAge clocks for control, SURF1, and oligo-treated cells per population doubling. **(B)** Average rate of epigenetic aging across all original clocks. Each datapoint represents a different clock. **(C-D)** Epigenetic age across replicative lifespan calculated using original epigenetic clocks (C) and PC-based clocks (D). Values are baselined to youngest timepoint of each cell group. **(E-F)** Rate of epigenetic aging for control, SURF1, and oligo-treated cells per year grown for **(E)** PC-based and **(F)** original DNAmAge clocks. Rates are defined as the linear rate between 25-75 days (3-4 timepoints/cell line). Significance values were calculated using a multiple comparison two-way anova. Data are means \pm SEM. * $P < 0.05$, ** $P < 0.01$.