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Abstract

Patients with primary mitochondrial diseases present with fatigue and multi-system disease, are often
lean, and die prematurely, but the mechanistic basis for this clinical picture remains unclear. Integrating
data from 17 cohorts of patients with mitochondrial diseases (n=690), we find that clinical mitochondrial
disorders increase resting energy expenditure, a state termed hypermetabolism. In a longitudinal
cellular model of primary patient-derived fibroblasts from multiple donors, we show that genetic and
pharmacological disruptions of oxidative phosphorylation (OxPhos) similarly trigger increased energy
consumption in a cell-autonomous manner, despite near-normal OxPhos coupling efficiency.
Hypermetabolism is associated with mtDNA instability, activation of the integrated stress response,
increased extracellular secretion of age-related cytokines and metabokines including GDF15, as well
as an accelerated rate of telomere erosion and epigenetic aging, and a reduced Hayflick limit. Together
with these dynamic measures, we have generated a longitudinal RNASeq and DNA methylation
resource dataset, which reveals conserved, energetically demanding, genome-wide recalibrations in
response to OxPhos dysfunction. The increased energetic cost of living, or hypermetabolism, in cells

and organisms with OxPhos defects has important biological and clinical implications.

Keywords: mitochondrial disorders, longitudinal, energy expenditure, epigenetics, GDF15, cell-free
mitochondrial DNA
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Introduction

Mitochondrial diseases are caused by mutations in either the mitochondrial (mtDNA) or nuclear
(nDNA) genomes, which impair oxidative phosphorylation (OxPhos) and the ability to convert food
substrates into ATP '. However, cellular dysfunction arises even when ATP levels are normal *
4 suggesting that energy deficiency may not be the primary disease initiator. In animal models, OxPhos
defects trigger nuclear transcriptional responses, including the integrated stress response (ISR) *°?,
and downstream gene products such as growth differentiation factor 15 (GDF15) are secreted
systemically where they impact metabolic functions *'°. This implicates conserved systemic signaling
pathways in the pathogenesis of mitochondrial diseases ''. Considering that these stress pathways
entail fundamentally energetically demanding cellular processes, OxPhos defects could therefore
increase energy consumption at the cellular and organismal levels. However, the metabolic costs of
cellular and systemic recalibrations in mitochondrial disorders have not been defined. Here we examine

this question in clinical datasets and in two in vitro models.

Clinically, OxPhos dysfunction causes a broad spectrum of multi-system disorders where
symptoms include, among others, fatigue and exercise intolerance '*'3. As a result, most patients with
mitochondrial diseases curtail physical activity and exercise *'°. A common misconception arising from
this clinical picture is that a reduced mitochondrial capacity to oxidize substrates'® coupled to minimal
physical activity levels would promote an energy conservation response, resulting in positive energy
balance and body fat accumulation, leading to obesity. However, patients with mitochondrial diseases
are rarely obese. In fact, patients with moderate to severe disease on average classify as underweight
7. Although gastro-intestinal symptoms that limit food intake or absorption could contribute to this
phenotype, the rarity of obesity in mitochondrial disease remains a clinical paradox. This may be
resolved by the counterintuitive notion that mitochondrial OxPhos dysfunction may not decrease energy
consumption and expenditure but may rather increase the energetic cost required to sustain basic

physiological functions.

Living organisms avoid thermodynamic decay to grow and survive by consuming energy. The
amount of energy expended relative to the minimal metabolic rate required to sustain life is defined as
metabolic efficiency. Strong evolutionary pressures have optimized metabolic efficiency in organisms,
thereby minimizing the amount of ATP required to sustain life '®. One evolutionary strategy includes the
choice of metabolic pathways to derive ATP (OxPhos vs glycolysis), which have different ATP yields

1

and metabolic costs '°. Within cells, metabolic costs arise mainly from transcription/translation

processes (~60% of total energy demands), the maintenance of ionic balance, as well as organelle

2021 which includes mitochondrial turnover. Mitochondrial biogenesis

biogenesis and degradation
comes at a substantial cost because of the extensive mitochondrial proteome '°. In mitochondrial

diseases, the intracellular heterogeneous mixture of mitochondria with mutant and wild-type mtDNA

3
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(i.e., heteroplasmy) triggers exaggerated biogenesis %, a phenomenon predicted to increase the basal
metabolic cost of organelle maintenance and total energy expenditure 2°. Accordingly, a re-analysis of
resting energy expenditure (REE) in animal models of mitochondrial OxPhos dysfunction is elevated by
15-85%, including in Crif1” mice with impaired mitochondrial translation '°, Clpp” mice with deficient
proteostasis 24, Polg mutator mice '°, ANT17 mice with impaired ATP/ADP exchange ?°, and ATP6-
mutant flies %, Thus, reasoning from thermodynamics principles, impaired OxPhos capacity may
impede the natural and optimal balance of energy transformation pathways, consequently reducing
metabolic efficiency. Therefore, we reasoned that patients with severe OxPhos defects would similarly
exhibit impaired metabolic efficiency and increased REE — a state known as hypermetabolism. Other
causes of OxPhos dysfunction including mutations in nuclear genes encoding respiratory chain

1 %", which cause disease and decrease lifespan in humans 28, could also

assembly factors like SURF
trigger hypermetabolism.

2931 and most animal

Shortened lifespan is a ubiquitous feature of mitochondrial diseases
models with severe OxPhos dysfunction die prematurely 2. But is there a causal link between
hypermetabolism and lifespan in humans? Among healthy individuals, elevated REE or
hypermetabolism measured by indirect calorimetry (oxygen consumption, VO.) predicts more rapid age-
related physiological decline * and independently predicts 25-53% higher mortality over the following
20-40 years ¥* _ an effect double that incurred by smoking cigarettes . In human stem cells,
hypermetabolism was also correlated with senescence and other aging phenotypes . Mechanistically,

041 particularly under energy-

multiple processes compete for limited energetic resources within cells
restricted conditions. Because some cellular operations are prioritized over others %°, the energetic cost
of stress responses and their associated increase in transcription/translation can inhibit growth and cell
division, even triggering premature senescence >3, Recently, it was reported that excessive activation
of the ISR itself inhibits cell population growth 8. Thus, OxPhos-induced ISR activation and the resulting
hypermetabolism could curtail growth and/or cause premature death by forcing an energetic tradeoff

between stress responses and growth/survival pathways.

Taken together, the observations that: i) genetic mitochondrial OxPhos defects trigger integrated
stress responses, ii) cells operate under energetic constraints where the prioritization of stress
responses and transcription/translation costs can precipitate senescence, and iii) decreased metabolic
efficiency predicts shorter lifespan in humans and other animals, lead to the following hypothesis:
genetic defects causing OxPhos dysfunction trigger hypermetabolism both physiologically and cell-

autonomously, a phenotype associated with reduced lifespan.

Here we test this hypothesis by re-analyzing data from multiple clinical cohorts of primary
mitochondrial diseases with direct and indirect assessments of energy expenditure and lifespan, and

via longitudinal in vitro studies in patient-derived human fibroblasts. We have developed a cellular

4
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system that provides high temporal resolution, repeated-measures of bioenergetic and multi-omic
molecular recalibrations across the cellular lifespan. Using this model, we show that both genetic and
pharmacological mitochondrial OxPhos defects trigger marked hypermetabolism in a cell-autonomous
manner. We identify mtDNA instability, activation of the ISR, increased secretory activity, and
transcriptional upregulation of transcriptional/translational stress pathways as potential contributors to
hypermetabolism. Finally, we report that OxPhos defects and hypermetabolism are linked to
accelerated telomere shortening and epigenetic aging in fibroblasts, and provide a publicly available
longitudinal dataset to query epigenetic and transcriptional signatures conserved across both cellular
models. Our analyses highlight how the associated resource dataset can serve as a discovery platform
to identify potentially targetable pathways contributing to hypermetabolism, as well as downstream
mechanisms linking hypermetabolism to cellular and clinical phenotypes. Together, these translational
data implicate hypermetabolism as a pathophysiological feature of mitochondrial diseases and lifespan

reduction.

Results
Meta-analysis of metabolic rate and physiology in primary mitochondrial disease

To test the hypothesis that mitochondrial OxPhos defects are associated with increased energy
expenditure and shortened lifespan (Figure 1A), we integrated and re-analyzed data from a total of 17
cohorts representing a total of 690 patients with mitochondrial diseases and 225 healthy controls
(provided by the authors or directly from publications) (Table 1). The heterogenous mixture of functional
and dysfunctional mitochondria within single cells is well known to cause mitochondrial

44-47

hyperproliferation and increase mtDNA copy number , as illustrated within a single patient skeletal

muscle cell in Figure 1B. Increased biogenesis must naturally incur increased energy expenditure at

|23

the cellular level ©°, which we reasoned may translate to elevated whole-body REE.

In patients with mitochondrial diseases, resting heart rate, which correlates with whole-body
REE “8, was on average 10.7% higher than healthy controls (p<0.01, Figure 1C). This tachycardia
reached up to +46% when patients and controls performed mild exercise at the same absolute workload
(data not shown). Both at rest and during mild physical activity, as initially reported in a small study *°,
patients had on average 244% higher blood or urine catecholamine levels (p<0.05, Figure 1D),
particularly norepinephrine (NE), a neurohormone sufficient to elevate REE when administered
systemically to healthy individuals *°. To estimate REE in mitochondrial disease patients, we used
resting whole body VO. expressed relative to body weight, which, although imperfect, was available in
the largest number of studies. Strikingly, VO. measured by indirect calorimetry across 6 cohorts of

patients with mtDNA defects was on average 30% higher at rest (p<0.0001) than in healthy controls, a

5
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difference characterized by a very large effect size (Hedge’s g=2.4, Figure 1E). REE estimates using
the Weir equation *' (combining both VO, and VCO,, readily available in 3/6 cohorts) yielded equivalent
results within 1.2% of the group difference derived from VO alone. Notably, VO. was elevated by more
than half (+51%) during mild physical activity in mitochondrial diseases, consistent with hyperkinetic
cardiocirculatory responses to exercise in this population *2. Thus, these gross body mass normalized
REE values reveal increased energy consumption (i.e., lower metabolic efficiency) in mitochondrial

diseases, at rest and particularly during mild physical challenges.
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Figure 1. Meta-analysis of human studies reveals increased energy expenditure and shortened lifespan
in primary mitochondrial diseases. (A) Overall conceptual model linking mtDNA- and nDNA-related OxPhos
defects to impaired metabolic efficiency at the cellular level, impacting whole-body resting energy expenditure and
clinical outcomes. (B) Skeletal muscle biopsy with individual muscle fibers stained with cytochrome c
oxidase/succinate dehydrogenase (COX/SDH) histochemistry to reveal functional (brown) and respiratory chain
deficient (blue) mitochondria. In the affected cell (middle), three sub-regions showing low, intermediate, and high
mtDNA mutation load were captured by laser capture microdissection and subjected to quantitative PCR analysis
as in (Picard et al. 2012). Subcellular regions with high mtDNA mutation load show elevated mtDNA density, which
is predicted to increase the energetic cost due to maintenance and turnover processes. WT, wild type. (C) Meta-
analysis of human mitochondrial disease cohorts showing elevated resting heart rate (n=104 controls, 111
patients), (D) catecholamines (urinary-Cohort 3 and blood-Cohort 6) at rest or during fixed-intensity exercise (n=38
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controls, 19 patients), (E) whole-body oxygen consumption measured by indirect calorimetry at rest or during
response to mild exercise challenge; ' before training, 2 after training. Slope refers to the rate of increase in VO2
relative to work rate, where a higher slope indicates increased energetic cost for a given work rate (n=56 controls,
78 patients). (F) Body mass index (BMI) across mitochondrial disease cohorts and compared to national averages
(USA, UK, ltaly) (n=285 controls, 174 patients). (G) Average life expectancy in individuals with mitochondrial
diseases relative to national averages (n=301 patients). Data are means + SEM, with % difference between
mitochondrial disease and control group where available. (H) Mortality (age of death) over 10 years (2010-2020)
in Cohort 17 compared to national averages for women and men (n=109 patients). See Table 1 for cohort details.
Total n=225 healthy controls, 690 patients. Groups compared by paired t tests (C and F) or one-sample t tests (D
and E), * p<0.05, ** p<0.01, **** p<0.0001.

The increase in REE is particularly striking given that patients with mitochondrial diseases on
average have lower muscle mass '’, which is the major site of activity-dependent energy consumption.
Therefore, the lower muscle mass in patients would be expected to reduce energy expenditure, unless
the tissues intrinsically exhibited impaired metabolic efficiency, and thus consumed more energy per
unit time just to sustain homeostasis. Therefore, the meta-analysis of these clinical data from multiple
cohorts combining hundreds of patients reveals an increased energetic cost of living per unit of body

mass — or hypermetabolism — in mitochondrial diseases.

Physiologically, hypermetabolism is expected to produce a negative energy balance, expending
more energy substrates than are ingested, generally preventing the accumulation of body fat.
Accordingly, body mass index (BMI), a gross estimate of adiposity, was on average 9.8% lower (p<0.05)
patients with mitochondrial diseases compared to controls (23% lower than national averages across 3
countries) (Figure 1F). In one study, fat mass index, a more precise indicator of body fat, was 21.9%
lower in mitochondrial disease patients . Moreover, although not all patients are thin, patients with
more severe disease manifestations tended to have lower BMI (r=-0.25, p=0.018) "7, suggesting that
more severe mitochondrial OxPhos dysfunction in humans contribute to prevent the accumulation of
body fast and obesity. Again, this result is in line with those in animal models of OxPhos defects, which

similarly show hypermetabolism and reduced adiposity '%%°.

This clinical picture of mitochondrial diseases marked by increased REE and reduced body fat
was associated with a 3-4-decade reduction in lifespan among adults (Figure 1G) *'. In a 10-year
longitudinal observational study from the UK, peak mortality in mixed genetic diagnoses of mitochondrial
diseases occurs up to 3 decades earlier than the national reference (Figure 1H). In children with severe
pediatric forms of mitochondrial diseases, including diseases caused by autosomal recessive
respiratory chain defects (e.g., SURF1 mutations: median lifespan 5.4 years %), lifespan can be reduced
by >90%. Heterogeneity between genetic diagnoses also highlights possible mutation-specific effects
on hypermetabolism (Extended Data Figure 1). Together, these multimodal physiological data
establish hypermetabolism as a clinical feature of mitochondrial diseases, which could account for the

rarity of obesity and also contribute to shortened lifespan in this population.

Longitudinal analysis of primary human fibroblasts with SURF1 mutations
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To examine if mitochondrial OxPhos dysfunction alters the REE and lifespan in a cell-
autonomous manner independent of clinical, medical, and socio-behavioral confounds, we next
performed a longitudinal study of primary human fibroblasts with genetically defined or
pharmacologically induced OxPhos dysfunction. We used cells with a stable nuclear mutation in SURF1
(Surfeit Locus Protein 1), which causes partial mis-assembly and dysfunction of respiratory chain
complex IV (cytochrome ¢ oxidase, COX) *® | leading to Leigh syndrome and death in early childhood
(see Figure 1G). Primary dermal fibroblasts were obtained from 3 patients with SURF1 mutations
presenting with Leigh syndrome, and from 3 healthy donors with no known mitochondrial dysfunction
(Control) (Extended Data Table 1-2). Each group included one female and two male donors. To capture
both baseline as well as trajectories of metabolic parameters across the entire lifespan, we passaged
each fibroblast line over multiple cellular generations until growth arrest, a model that recapitulates in
vivo molecular features of human aging, including canonical age-related changes in telomere length **
and DNA methylation *°. By sampling cells across the lifespan, longitudinal profiles of multiple cellular,
bioenergetic, transcriptomic, epigenomic, and secreted molecular features can be modeled for each
donor (Figure 2A). Although healthy cells survive for up to 250 days, here we limit our analyses to the

maximal lifespan of SURF1-mutant cells, ~150 days.

Beyond allowing longitudinal assessments of molecular and bioenergetic parameters as cells
transition from early-, mid-, and late-life, one major advantage of time-resolved trajectories with
repeated-measures is that this approach de-emphasizes potential bias of any single time-point and
provides more accurate estimates of stable cellular phenotypes for each donor and treatment condition.
The use of primary human cells obtained from multiple donors, compared to the same experiment
repeated in immortalized cell line(s), also provides a more robust test of generalizability of the data.
Throughout the text, we report standardized measures of effect sizes (Hedge’s g) where g>0.2 is
considered a small, g>0.5 a medium, and g>0.8 represents a large effect size, which are considerably

more informative to compare small groups (3 donors per group) °.

SURF1 mutations cause hypermetabolism

We first examined the effect of SURF1 mutations using extracellular flux analysis (Seahorse
XF®96) of oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) (Figure 2B-C).
Using standard stoichiometric ratios for oxygen consumed, protons pumped, and linked ATP synthesis
under standard conditions, OCR and ECAR can be transformed into interpretable ATP production rates
using the methods described in °’. When added together, OxPhos-derived (Jatp-oxphos) and Glycolysis-
derived ATP flux (Jatr.ciyc) reflect the total energetic demand (Jare-tota) Of each cell population
(Extended Data Figure 2A). This approach is the cellular equivalent to REE measurements through

indirect calorimetry in humans (Figure 1E) and mice '024%,
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Trajectories of Jatp-oxrhos @nd Jatp-ciyc across 150 days of lifespan are presented in Figure 2D.
As expected from the SURF1 deficiency, SURF1-mutant cells (hereafter SURF1 cells) exhibited a 44%
decreased Jatp.oxrhos, but a 3-4-fold increased Jatp.ayc. Both parameters remained relatively stable
across the lifespan (although a potential oscillatory behavior cannot be ruled out). Computing total
energy expenditure showed that total ATP demand per unit of time was strikingly 91% higher in SURF1
cells relative to control cells (Jatp-total, p<0.001, g=2.4) (Figure 2E). These data demonstrate a robust
SURF1-induced hypermetabolic state similar, albeit of greater magnitude, to that observed in patients

with mitochondrial diseases.
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Figure 2. SURF1 defects decrease metabolic efficiency and cause hypermetabolism without affecting
coupling efficiency. (A) Schematic of the study design with primary human fibroblasts, coupled with repeated,
longitudinal measures of cellular, bioenergetic, and molecular profiling across the lifespan. 3 Control and 3 SURF1
donors were used for all experiments. (B) Example oxygen consumption rate (OCR) and extracellular acidification
rate (ECAR) obtained from Seahorse measurements of Control and SURF1 cells. (C) Comparison of average
OCR and ECAR values across the cellular lifespan. (D) Lifespan trajectories of ATP production rates (Jatp) derived
from glycolysis (Jatr-ciyc), Oxidative phosphorylation (Jatp-oxphos), and total ATP (Jate-Totai: Glycolytic- + OxPhos-
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derived rates) over up to 150 days. Percentages show the average difference between SURF1 and Control across
the lifespan. (E) Lifespan average energy expenditure (EE) by cell line, and (F) corrected for cell volume. (G)
Balance of Jatp derived from OxPhos and glycolysis and (H) quantified SURF1-induced metabolic shift. Dotted
lines in (H) denote the range in control cells. (I) Lifespan trajectory of mtDNAcn and average mtDNAcn at the first
3 time points (early life, days 5-40) and peak value across the lifespan. (J) Lifespan trajectories and averages of
proton leak and (K) coupling efficiency estimated from Seahorse measurements. n = 3 individuals per group, 7-9
timepoints per individual. Data are means + SEM. * P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 0.0001, mixed
effects model (fixed effect of control/SURF1 group and days grown, random effects of donor or cell line).

To confirm this finding, potential confounds had to be ruled out. Non-glycolytic ECAR could
inflate estimates of Jare.ciyc>>. However, measured resting non-glycolytic ECAR (in the absence of
glucose or in the presence of the glycolysis inhibitor 2-deoxyglucose) was not elevated in SURF1 cells
(it was in fact 31% lower), confirming the specificity of the ECAR signal in SURF1 cells to glycolysis
(Extended Data Figure 3D). We also confirmed that non-OxPhos-related oxygen consumption by
cytoplasmic and other oxidases did not differ between experimental groups (Extended Data Figure
2D). Non-mitochondrial respiration is not included in computing Jare-oxphos, Which formally excludes this

parameter as a potential contributor to the hypermetabolism measured in SURF1 cells.

Primary fibroblasts are continually dividing and a portion of total energy budget is expected to
support cell division-related processes including DNA replication, transcription/translation, and other
intracellular processes . Early in life (20-50 days), when division rates were mostly constant, SURF1
fibroblasts compared to control cells divided on average 31.8% slower (P<0.0001, g=-1.53; and 48.4%
slower when quantified across 150 days). Therefore, hypermetabolism in SURF1 cells cannot be
accounted for by an accelerated division rate. In fact, normalizing Jate-total per rate of division further
exaggerates apparent hypermetabolism, where SURF1 cells expend more than double the amount of
energy than controls to complete each cell cycle. Moreover, optically monitoring cell size at each
passage showed that the SURF1 cell volume were moderately larger in early life and became smaller
with increasing age, reaching similar volume as control cells by 150 days (Extended Data Figure 4A).
Cell death was not significantly elevated (p=0.69, g=0.15, Extended Data Figure 4D-E). After
accounting for cell volume, energy expenditure remained significantly elevated in SURF1 fibroblasts
(p<0.0001, g=1.2, Figure 2F), demonstrating an increase in volume-specific REE. This increase is
consistent in magnitude with that observed in humans (Figure 1) and animals '°?*% with OxPhos

defects.

In control cells, the balance of estimated ATP derived from OxPhos and glycolysis was 64:36%,
such that under our specific tissue culture conditions (physiological 5.5mM glucose, with glutamine,
pyruvate and fatty acids), healthy fibroblasts derived the majority of ATP from OxPhos. In contrast,
SURF1 deficiency robustly shifted the relative OxPhos:Glycolysis contribution to 23:77% (p=4.1e-6, g=-
5.1), reflecting a significant shift in OxPhos-deficient cells towards an alternative, and therefore less

energy efficient, metabolic strategy (Figure 2G-H). As expected, removing glucose from the media did
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not substantially affect growth in control cells, but the absence of glucose was lethal to SURF1 cells

within 5 days, confirming their dependency on glycolysis for survival (Extended Data Figure 3).

In response to this metabolic shift towards glycolysis, we expected SURF1 cells to naturally
decrease maintenance-related energetic costs by decreasing mitochondrial mass and mtDNA copy
number (mtDNAcn). However, in early life, SURF1 cells had the same mtDNAcn as control cells (5-40
days: p=0.99, g=0.04). And across the lifespan, SURF1 cells contained 32% more mtDNA copies, which
manifested as an earlier age-related rise in mtDNAcn that reached maximal levels on average 30%
higher than control cells (p=0.52, g=1.9, Figure 2I). Thus, although total mitochondrial mass was not
directly assessed, elevated mtDNAcn similar to that observed in patient tissues (see Figure 1B) could
contribute to increased maintenance cost and overall hypermetabolism in OxPhos-deficient cells, as

suggested by mathematical modeling studies 3.

One potential mechanism for the lowered metabolic efficiency is a decrease in OxPhos coupling
(i.e., uncoupling) at the inner mitochondrial membrane. However, both estimated proton leak (Figure
2J) and coupling efficiency (Figure 2K) measured by the proportion of OxPhos-dependent respiration
not linked to ATP synthesis, were not different between control and SURF1 groups. These parameters
also did not show measurable drift across the lifespan, thus ruling out mitochondrial uncoupling as a

mechanism for hypermetabolism.

Finally, oxygen tension can have a marked effect on the metabolism and replicative lifespan of
cultured fibroblasts *°, and chronic hypoxia improves survival in fibroblasts with complex | defects and
the Ndufs4 mouse model of Leigh syndrome . We therefore repeated longitudinal experiments in
SURF1 cells at low (3%) O in parallel with atmospheric (~21%) O. (Extended Figure 5A). Compared
to 21% O-, the low oxygen condition did not improve population doubling rates (Extended Data Figure
5B-C), nor did it correct or alter hypermetabolism (Extended Data Figure 5D-E). Results of the low O
“hypoxia” experiments, as well as the full lifespan aging trajectory of control cells beyond 150 days, are

available in the resource dataset (see Data Availability Statement).

Inhibition of the mitochondrial ATP synthase triggers hypermetabolism

Next, to test if hypermetabolism is a specific manifestation in SURF1 cells or a more general
feature of mitochondrial OxPhos dysfunction, we took an orthogonal pharmacological approach to
chronically perturb OxPhos, and repeated the lifespan assessments of energy metabolism. Starting at
day 20, fibroblasts from the same three healthy donors as above were treated chronically with a
sublethal concentration of the mitochondrial ATP synthesis inhibitor oligomycin (Oligo, 1nM), which

induces the ISR *®' (Figure 3A). Oligo reduced cellular oxygen consumption rate by ~90% while largely
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maintaining viability, reflected in only a moderate elevation in cell death over time (2.7% in Oligo-treated
cells vs 1.4% in control cells, 20-50 days: p=0.078, g=0.70) (Extended Data Figure 4D, 6B).

In relation to energy expenditure, Oligo doubled Jatp-total across the lifespan for each of the three
healthy donors (+108%, p=5.9e-9, g=2.2), thereby recapitulating the hypermetabolic state observed in
SURF1 cells (Figure 3B). This robust elevation in cellular energy expenditure was already evident by
5 days of treatment and remained relatively stable across the lifespan, indicating the rapidity and
stability of the adaptive hypermetabolic state. As in SURF1 cells, the hypermetabolic state in Oligo-
treated cells was attributable to a markedly increased Jatr-aiyc in excess of the decline in Jatp-oxphos,
resulting in a shift outside of the optimal (i.e., normal) window of the OxPhos:Glycolysis ratio for these
cells (Figure 3C-D).

Reductions in cell size and division rates are strategies to minimize energetic costs. Oligo
caused a small but stable 4.8% decrease in cell size (p<0.001, g=-0.35), and decreased cell division
rates by 39.1% (days 20-50: p=1.3e-5, g=-1.31; 49.6% slower across 150 days) (Extended Data Figure
4). Taking cell size into consideration showed that Oligo increased energy expenditure per unit of cell
volume by 131% (p<0.001, g=0.97) (Figure 3E-F). Here also, hypermetabolism was not driven by
significant increase in estimated proton leak (p=0.19, g=0.27) (Figure 3G) although we observed a
34.4% reduction in estimated coupling efficiency (p<0.05, g=-0.59) (Figure 3H), likely arising from the
expected elevation in membrane potential from ATP synthase inhibition. Unlike SURF1 mutations, Oligo
decreased mtDNAcn by 39.0% early in life (20-50 days: p=3.1e-5, g=-2.42), which subsequently
normalized; peak levels were similar to control levels (Figure 3I-J).
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Figure 3. Pharmacological inhibition of mitochondrial ATP synthesis triggers hypermetabolism. (A)
Schematic of the study design for fibroblast profiling across the lifespan from 3 Control donors treated with 1nM
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oligomycin. (B) Lifespan trajectories of Jatp (Glycolytic + OxPhos) derived from oxygen consumption rate (OCR)
and extracellular acidification rate (ECAR) obtained from Seahorse measurements across the cells’ lifespan (up
to 150 days). Percentages show the total average difference between Oligo and Control. (C) Balance of Jatp
derived from OxPhos and glycolysis across the lifespan and (D) Oligo-induced metabolic shift. Dotted lines denote
the range in control cells. (E) Relative average lifespan energy expenditure by cell line normalized to control, (F)
corrected for cell volume. (G) Average of proton leak and (H) coupling efficiency measures on the Seahorse
normalized to control. (I) Lifespan trajectories and (J) average mtDNA copy number at the first 3 time points (early
life) and peak value across the lifespan. n = 3 individuals per group, 7-9 timepoints per individual. Data are means
+ SEM. * P <0.05, * P <0.01, ** P < 0.001, **** P < 0.0001, mixed effects model for Oligo vs control.

Monitoring weekly the influence of Oligo on cell morphology also revealed an unexpected
morphological phenotype. Oligo-treated cells developed into a reticular network, which involved
contraction of the cell body and extension of multiple cellular appendages reminiscent of neuronal
dendrites (Extended Data Figure 6). This reversible phenotype exhibited regular oscillatory behavior
(one-week normal morphology, one-week reticular formation). We note that oscillatory behaviors are
naturally energy-dependent %2, and that such dramatic and repeated changes in cell morphology must
necessarily involve the remodeling of cell membranes and cytoskeleton through energy-dependent
motor and cytoskeletal components. This morphological phenotype unique to the Oligo treatment could
contribute to the higher energy expenditure in Oligo-treated cells (+131% ATP consumption per unit of

cell volume) vs SURF1 cells (+91%), which did not exhibit transitory morphological changes.

OxPhos defects trigger the ISR and mtDNA instability

To understand the specific organelle-wide mitochondrial recalibrations in hypermetabolic
SURF1 and Oligo-treated cells, we performed bulk RNA sequencing across the lifespan in each donor
cell line (total 60 time points, average of ~7 timepoints per cell line). We then systematically queried
mitochondrial pathways from MitoCarta 3.0 3, in addition to all mtDNA-encoded transcripts (37 genes),
and core ISR-related genes (ATF4, ATF5, CHOP/DDIT3, GDF15). Both SURF1 defects and Oligo
treatment downregulated the majority of intrinsic mitochondrial pathways, including mtDNA stability and
decay, which was downregulated in both SURF1 (-15%, p=1.7e-8, g=-1.65) and Oligo-treated cells (-
19%, p<0.001, g=-0.57) relative to control (Figure 4A). Although SURF1 and Oligo-treated cells
exhibited similar overall mitochondrial transcriptional changes, some pathways showed opposite
responses (e.g., expression of mtDNA-encoded genes, Pathway 3 in Figure 4B), suggesting the
existence of partially specific mitochondrial recalibrations among SURF1 and Oligo models. In
hierarchical clustering analysis across all pathways, the ISR pathway diverged most strongly from other
pathways, and was upregulated +110% in SURF1 (p=6.5e-7, g=1.76) and +217% in Oligo-treated cells
(p=1.2e-8, g=0.99), reaching up to a 16-fold elevation relative to the average of the young healthy donor

cells (Figure 4B). Thus, both models of OxPhos dysfunction and hypermetabolism were associated
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with upregulation of the ISR, and downregulation of most mitochondrial pathways, notably mtDNA

maintenance, suggesting a potential effect on mtDNA stability.

To our knowledge, neither SURF1 mutations nor Oligo treatment are established to cause
mtDNA instability, but given the transcriptional changes described above and that heteroplasmy among
mtDNA species is predicted to increase energetic maintenance costs 2, we directly examined mtDNA
stability using two approaches. We first used long-range PCR at multiple time points across the lifespan
of control, SURF1, and Oligo-treated cells, then validated the presence of mtDNA deletions across the
lifespan by mtDNA sequencing, and quantified mtDNA deletion burden using eKLIPse * (Figure 4C-
D). Circos plots in Figure 4D show the break points and heteroplasmy level for each mtDNA deletion,
at early and late time points along the cellular lifespan. Circos plots for all timepoints investigated (4-14

timepoints per condition) are presented in Extended Data Figure 7.

Consistent with previous work, healthy fibroblasts do not accumulate appreciable heteroplasmy
levels of mtDNA deletions in culture. However, SURF1 cells contained on average 17-fold more unique
mtDNA deletions than control cells (p<0.01, g=1.38), reaching up to 126 unique deletions at a given
time point (Figure 4E-F). The effect of Oligo treatment was more modest but reached levels 3-fold
higher than untreated cells (p<0.01, g=0.79), and up to 20 unique deletions per time point. The majority
of deletions eliminated segments of the minor arc and were on average 6.8-7.3kb in length; deletion
size was similar among the three groups (Extended Data Figure 8A-C). Point mutations were not
significantly elevated in SURF1 and Oligo-treated cells, suggesting specificity of mtDNA instability to
deletions (Extended Data Figure 8D). Compared to controls where the maximal heteroplasmy levels
was 0.13%, SURF1 and Oligo accumulated individual deletions reaching up to 0.40% and 0.19%
heteroplasmy among the cell population (Extended Data Figure 8E-F), which remains low but similar

65,66

to that observed with aging in human blood and brain tissues , and possibly noteworthy for

replicating fibroblasts.
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Figure 4. Longitudinal mtDNA deletion profiles in OxPhos deficient SURF1 and Oligo cells. (A) RNAseq
gene expression results for all MitoCarta 3.0 pathways, plus all mtDNA genes, and the integrated stress response
(ISR, average of ATF4, ATF5, CHOP, GDF15). Values for each pathway are computed from the average
expression levels of all genes in each pathway, expressed as the median-centered value relative to the youngest
control timepoints for each pathway (rows). Each column represents a single timepoints (n=3-8) along the lifespan
of each donor or treatment condition (n=9). (B) Gene expression time course of selected mitochondrial pathways
from E, expressed on a Log2 scale relative to the first control timepoint (baseline). (C) 10Kb long range PCR
product resolved by agarose gel electrophoresis for a control fibroblasts cultured up to 166 days (P3 to 31), and
passage-matched SURF1 and Oligo-treated cells. (D) Results from mtDNA sequencing and Eklipse analysis.
Each line in the circos plots depict a deletion burden in control (Donor2) and SURF1 (Patient2) and Oligo-treated
(Donor2) cells from two (early and mid-lifespan) representative passages. The detection limit for mtDNA deletion
was set at a call cutoff of 5% heteroplasmy. (E) Timecourse of the number of unique mtDNA deletions in control,
SURF1, and Oligo-treated cells. (F) Total deletion burden in cells across 150 days of lifespan. Data are mean +
SEM. ** P < 0.01, *** P < 0.001, mixed effects model (fixed effect of Control/SURF1/Oligo group and days grown,
random effects of donor or cell line).
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SURF1 mutations increases aging-related secretory activity

We next investigated outputs of the ISR, including the production of metabokines and cytokines.
To broadly characterize changes in the cytokine stress response in patient-derived SURF1 cells across
the lifespan, we designed a custom Luminex array targeting age-related proteins identified by plasma
proteomics to be upregulated with human aging ¢ (Figure 5). Compared to healthy donors,
hypermetabolic SURF1 cells secreted higher levels of cytokines on a per-cell basis, including several
pro-inflammatory cytokines, chemokines, and proteoglycans associated with the senescence-
associated secretory phenotype (SASP) % (Figure 5A). Of the 27 cytokines detected in extracellular
media, SURF1 cells achieved the highest cytokine concentration across the lifespan for 23 (85%) of the
cytokines, reaching up to 10-fold higher concentration than control for one of the cytokines (insulin-like
growth factor binding protein, IGFbp-rp1) (Figure 5B). Upregulated cytokines also included the

canonical pro-inflammatory cytokines IL-6 and IL-8. The metabokine GDF15, which is elevated in both

69,70 67,71

mitochondrial disease and human aging , and which also appears sufficient to trigger
hypermetabolism in mice '°, was also upregulated by 110% in SURF1 vs control cells (20-80 days,

p=0.035, g=1.0, Figure 5C).

We attempted to validate IL-6 and GDF15 levels in both SURF1 and Oligo-treated cells by
ELISAs. The ELISAs confirmed that IL-6 increased exponentially in aging fibroblasts, displaying altered
onset and trajectories in both SURF1 (upregulated) and Oligo-treated cells (downregulated) (Figure
5D). Compared to control fibroblasts where GDF15 was undetectable in early passages, SURF1 mutant
fibroblasts began to secrete GDF15 prematurely, and Oligo treatment acutely induced robust GDF15
secretion by 1-2 orders of magnitude over the first few weeks (Figure 5E), consistent with the rapid

induction of the ISR particularly in Oligo-treated cells (see Figure 4B).

As cell-free mitochondrial DNA (cf-mtDNA) is associated with human aging "? and was recently
found to be elevated in the plasma of patients with mtDNA mutations/deletions ", we quantified cf-
mtDNA in the media along the lifespan. Both mtDNA and nDNA were detectable at appreciable levels
(Extended Data Figure 9A-B). Compared to media of control cells, cf-mtDNA levels were 73% higher
in SURF1 (g=0.5) and 100% higher (g=0.3) in the media of Oligo-treated cells (Figure 5F), although
these differences did not reach statistical significance due to the high temporal variation of this
phenotype. Parallel measurements of cell-free nuclear DNA (cf-nDNA) showed that the released
mitochondrial-to-nuclear genome ratio was on average 117% higher in SURF1 than control cells
(p<0.01, g=0.85, Extended Data Figure 9C-D), indicative of selective mtDNA release. Given the

2174 we suggest that the cytokine/metabokine and

energetic cost associated with protein secretion
mtDNA hypersecretory phenotype in SURF1 and Oligo cells must contribute to hypermetabolism along

with other cellular processes.

16


https://doi.org/10.1101/2021.11.29.470428
http://creativecommons.org/licenses/by-nc-nd/4.0/

O 00 ~J\ N B~ W=

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.29.470428; this version posted May 28, 2022. The copyright holder for this preprint (which

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

A Control SURF1 B Maximum cytokine levels
Healthy donor 1 Healthy donor 2 Healthy donor 3 Patient 1 Patient 2 Patient 3 1878 25884 corr
cou7 [T T S E— [ — sed /T o
IL-8 I = | @000 o '
CHI3L1 I [ [ 0 866080 o o— !
MMP-7 TGFx Q0 OO —_ . —— L8
o I T -81% K O\ I8 SDF15 2.5old
L6 [ ALCAW 150ld 2.1-0d
|G':_E”\";-'§I1I I | Lower in SURF1 +————— —2109  pioner in SURF1
- I T T T 1
Tlgz-_s ! =i [ ] -1.0 0.5 0.0 05 1.0
TNFRSF9 LT Log10 difference SURF1/Control
GDF15 [ || | BN 1 . ’
TNF-B (o GDF15 cytokine array
Fas [ |
coL3 s 60 g=1.0
FSTL1 » 3007 50 +110%
ccL23 = ot
TIMP-1 T 1 , O ) O O = z40
cD163 I ] &30
Lumican | = 200 O
IL-18 _ | [ | gy E 20
CXCL-16 . g E 10
Fetuin A g B0 0
ALCAM I 0E &
e 5 = Control SURF1 /@'ﬁ
PCSK9 I 3 I
TFPI | -
<5 8 0 T T T T T 1
Days grown 0 25 50 75 100 125 150
27 135 28 122 28 140 28 124 26 136 28 88 Days Grown
D IL-6 (ELISA) IL-6 lifespan levels E GDF15 (ELISA) GDF15 lifespan levels
100000 —
7 20007 g0 @ 1000 600 .
g 5000 _ +305% g- 05 8 a 400 g=05
c 3000 2 10000 43% s A N v = +303%
S 2500 © S = 100 y b / 8 200
E 2000 =2 1000 £ A/ )
o= , "\ \ f i
£ 150 g3 i s a3 £ E AN | gE0
2 1000 , g 1004 ||l e v N { A 5%
500 Lok = 2] ; J d N\ & 50
© -4 =5 | b ) 25
=) ) g Z S ® L H
= T T T T T T 1 1 . 8 ND | . T T | oleml
0 25 50 75 100 125 150 Control  SURF1 ~ Oligo 0 25 5 75 100 125 150 Control  SURF1  Oligo
Days Grown ) Days Grown
F cf-mtDNA cf-mtDNA lifespan levels
6 —e—Donor1
@1‘2x10 & D o5 | Healthy
B 1.2x10° 4 B ] 3 . ONOTZ | controls
<3 8.0x10° I f < o 7.5x10° 9=05 +—Donor3
© 5 \ / A S 5 9 8
E < 4.0x10f I A ™ o !Z-J‘? 6x10 +703/u gr;g.a —e-Patient!
2 25x108 oigo @l | A\ p E E i +100% —&-Patient2 | SURF1
gg 2,0x105 sart [ /| A ﬁ,,\ 4x10 —&—Patient3
J = O
~E.- % 1.5x10% 2 2 E . —e—Donor1+0ligo
gL 10x10° e, by g 210 ~&-Donor2+0ligo
g 5.0x10* & A @ o K —&—Donor3+0ligo

50 75 100
Days Grown

Figure 5. OxPhos defects trigger hypersecretion of metabokines and age-related cytokines. (A) Cytokine
dynamics across the lifespan measured on two multiplex (Luminex) arrays. Cytokine levels are normalized to the
number of cells at the time of sampling, shown as Logz median-centered for each cytokine; samples with
undetectable values are shown as grey cells. Columns represent repeated-measures (n=6-8) along the lifespan
of each controls and SURF1 donor (n=3 per group). (B) Comparison of maximum cytokine concentration reached
in each of the SURF1 and healthy control donors, showing general upregulation of most metabokines and
cytokines. The value for TGF-a is heavily influenced by a single very high value in Donor 3. (C) Cell-free GDF15
time course as measured on the Cytokine array. Inset compares early release between 20-80 days. (D) Media IL-
6 levels across the cellular lifespan by enzyme-linked immunosorbent assay (ELISA), normalized to the number
of cells at time of sampling. (E) Media GDF15 levels across the cellular lifespan measured by ELISA, normalized
to the number of cells at time of sampling. Samples with non-detectable values (N.D.) are shown as zero values.
(F) Cell-free mitochondrial DNA dynamics across the cellular lifespan using qPCR, normalized to the number of
cells at time of sampling. n = 3 per group, 6-13 timepoints per condition. Data are means + SEM. * P < 0.05, ** P
< 0.01, ** P < 0.001, **** P < 0.0001, mixed effects model (fixed effect of Control/SURF1/Oligo group and days
grown, random effects of donor or cell line).

Abbreviations: CCL7, C-C motif chemokine ligand 7; IL-8, interleukin 8; CHI3L 1, Chitinase-3-like protein 1; MMP?7,
Matrix metallopeptidase 7; IL-6, Interleukin 6; IGFBP-rp1, Insulin-like growth factor binding protein 7; TNF-RII,
tumor necrosis factor receptor superfamily member 1B; TGF-a, Tumor growth factor alpha; IFN-y, Interferon

gamma; TNFRSF9, TNF receptor superfamily member 9; GDF-15, growth differentiation factor 15; TNF-, Tumor
necrosis factor beta; Fas, Fas cell surface death receptor; CCL3, C-C motif chemokine ligand 7; FSTL1, Follistatin
like 1; CCL23, C-C motif chemokine ligand 23; TIMP-1, Tissue inhibitor of metallopeptidase 1; CD163, CD163
antigen; Lumican, keratan sulfate proteoglycan Lumican; /L-18, Interleukin-18; CXCL16, C-X-C motif chemokine
ligand 16; Fetuin A, Alpha 2-HS glycoprotein; ALCAM, activated leukocyte cell adhesion molecule; TNF-RI, TNF
Receptor Superfamily Member 1A; PCSK9, Proprotein convertase subtilisin/kexin type 9; TFPI, Tissue factor
pathway inhibitor.
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OxPhos defects upregulate energy-demanding cellular programs

From our longitudinal RNAseq dataset, we noted changes in the totality of genes related to the
ribosomal machinery, which is produced in proportion with cellular biosynthetic demands (Extended
Data Figure 10A). Despite their significantly reduced growth rate, both SURF1 (+19%, p=2.4e-10,
g=2.59) and Oligo-treated cells (+50%, p<0.01, g=0.86) showed a marked time-dependent upregulation
in the ribosomal machinery, consistent with the hypersecretory phenotype (secreted proteins must be
transcribed and translated) as well as the elevated metabolic demands of translation that competes with
cell growth *™ (Extended Data Figure 10B). To characterize the genome-wide gene regulatory
changes associated with these cellular phenotypes, and to gain insights into the potential cause(s) of
hypermetabolism in response to OxPhos dysfunction, we next deployed time-sensitive models of gene

regulation and DNA methylation.

We first visualized the transcriptomic profiles of SURF1 and Oligo-treated cells using t-
distributed stochastic neighbor embedding (t-SNE). Spatial embedding along the two major tSNE
components captured three main features of the transcriptome: i) substantial interindividual differences
separating each donor/cell line, ii) age-dependent shifts in transcriptional profiles, iii) clustering among
both SURF1 and Oligo cells (Figure 6A). To harness the longitudinal nature of these data, we used a
linear mixed effects model (LMER) to identify time-dependent differentially expressed genes (DEGs,
FDR<0.05 threshold) between SURF1 and Oligo relative to control, across the cellular lifespan
(Supplemental Files 1-2). Consistent with the similar degree of hypermetabolism and metabolic shift
of both cellular models (see Figures 2D-F and 3B-F), there was a relatively high degree of overlap in
DEGs between SURF1 and Oligo-treated cells (Supplemental Files 3-4). Genes with the largest effect
sizes conserved across SURF1 and Oligo showed up to 2-4-fold upregulation (39%, n=1,503) or
downregulation (35%, n=1,344) (Figure 6B-C). Differences were larger and more stable between
SURF1 and control, compared to more progressive effects following the beginning of the Oligo
treatment (Extended Data Figure 11), consistent with the constitutive genetic deficiency in SURF1
cells compared to the novel insult with Oligo treatment. The effects of OxPhos dysfunction on the

expression of the 37 mtDNA genes across the cellular lifespan are shown in Extended Data Figure 12.

To identify gene regulatory pathways associated with hypermetabolism, we analyzed gene
expression changes using iPAGE, an information-theoretic computational framework that enables the
systematic discovery of perturbed cellular pathways from gene expression data "°. Both SURF1 and
Oligo-treated cells displayed a significant perturbation of transcription and translation processes (Figure
6D). Upregulated genes were enriched for pathways related to Golgi vesicle transport, fibroblast growth
factor (FGF) binding, VEGF receptor signaling pathway, and the unfolded protein response, a signature

consistent with increased secretion and inter-cellular signaling activity. Downregulated genes were
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over-represented for processes relating to cell division, consistent with the slower division rates (i.e.,

quiescence or senescence) of SURF1 and Oligo-treated cells.
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Figure 6. Mitochondrial defects trigger conserved transcriptional remodeling. (A) t-distributed stochastic
neighbor embedding (t-SNE) of RNAseq data from control, SURF1, and Oligo-treated human fibroblasts across
the lifespan. (B) Overlap of significantly upregulated (red) or downregulated (blue) genes in SURF1 and Oligo
groups relative to control (linear mixed effects model, FDR-corrected p value < 0.05). Note, outer group counts
include shared counts in overlapping ring. Gray indicates diverging direction of regulation between SURF1 and
Oligo DEGs. (C) Expression levels of the top 100 differentially-expressed genes in SURF1 (<75 days grown) and
Oligo-treated cells (days 35 to 110). (D) iPAGE analysis of RNAseq data showing the top 40 enriched gene
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Lifespan gene expression trajectories in this dataset showed some noteworthy features of
OxPhos dysfunction and hypermetabolism at the single-gene level: i) ISR-related genes are robustly
upregulated in a time-dependent manner by up to ~16-fold for the transcription factor CHOP (DDIT3),
and ~60-fold for its downstream target GDF15; ii) the age-related upregulation of senescence-related
genes (e.g., p21/CDKN1A) occurs prematurely in hypermetabolic SURF1 and Oligo cells; iii) key
nucleotide metabolism enzymes such as thymidine kinase 1 (TK1) are robustly downregulated in

SURF1 cells, possibly contributing to mtDNA instability ’; and iv) telomere and longevity-related genes
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such as the metabolic sensor SIRT1 and the telomere protection complex component CTC1 are
upregulated 2-4-fold (Figure 6E). These broad changes in gene expression, largely consistent with

k 3,77

previous in vitro worl , prompted us to examine another major layer of gene regulation, DNA

methylation.
DNA methylation recalibrations in OxPhos-induced hypermetabolism

To examine nuclear DNA methylation (DNAm) and create a resource dataset with broad utility
for pathway discovery, we measured DNA methylation levels at 865,817 CpG sites (lllumina EPIC array)
in Control, SURF1, and Oligo-treated cells at multiple time points across their cellular lifespan (n=66).
We then leveraged these high dimensional data by building mixed-effects models that consider the
underlying data structure (donors, longitudinal observations) to identify robust conserved DNA
methylation changes associated with OxPhos dysfunction and hypermetabolism. Visualizing the
general data structure using t-SNE showed, that: i) as expected, the methylome signature of each donor
was relatively distinct; ii) DNAm exhibited consistent age-related shifts, iii) SURF1 cells clustered
separately from control, while iv) Oligo cells caused a modest time-dependent shift away from their
respective controls (Figure 7A). These data therefore add to previous evidence in HEK293 cells’® and
mice’®, providing a robust platform for discovering conserved nuclear DNAm signatures associated with

hypermetabolism-causing OxPhos defects in primary human cells.

At the single CpG level, we asked which differentially methylated positions (DMPs) were stably
and consistently either hypo- or hypermethylated in both SURF1 or Oligo-treated cells relative to control.
Because ftranscriptionally relevant DNAm changes may operate across multiple CpGs, we
complemented this approach by systematically examining differentially methylated regions (DMRs),
which include multiple nearby CpGs exhibiting similar hypo- or hypermethylated changes in our
statistical model #° (see Methods for details). Figure 7B shows the overlap in significant DMPs and
DMRs (threshold FDR<0.05). Of the overlapping DMPs between SURF1 and Oligo, 14.8% were
hypermethylated, and 45.9% were hypomethylated. Global hypomethylation is a feature of human aging
and replicative senescence %°. For DMRs, the corresponding proportions were 11.1% and 46.6%,
showing high agreement in the methylome recalibrations between DMPs and DMRs approaches. A
notable number of significant and highly differentially methylated changes in either SURF1 or Oligo-
treated cells were specific to each condition (Supplemental Files 5-10), but here we focus exclusively
on the changes conserved across two independent models, which therefore have the highest probability
of being specifically caused by OxPhos dysfunction and associated with hypermetabolism (Figure 7C-
D).
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Figure 7. Mitochondrial defects trigger conserved epigenetic remodeling. (A) t-distributed stochastic
neighbor embedding (t-SNE) of methylome from control, SURF1-disease (<75 days grown), and oligomycin
(35t0110 days grown) treated fibroblasts across replicative lifespan. (B) Venn diagrams for differentially
methylated CpGs (DMPs, left panel) and differentially methylated regions (DMRs, right-panel) generated from
mixed effects modeling. Note, outer group counts include shared counts in overlapping ring. (C) Heatmap of top
100 DMPs in SURF1-disease and Oligomycin-treated. DMPs ordered by mean methylation difference between
groups. (D) Timecourse of top 3 hyper- and hypo-DMPs for SURF1 disease and oligomycin. (E) Gene regional
map of top hyper- and hypo-DMRs for SURF1-disease and Oligomycin-treated fibroblasts. 5’->3’ direction. (F)
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The most robust changes in DNA methylation were targeted at CpG islands near or on gene
bodies. Relative to control cells, as in the RNAseq results, the effect sizes were larger for SURF1
compared to Oligo, which induced directionally consistent but smaller effect size changes than SURF1
defects (Figure 7E). A stringent analysis of the most differentially methylated genes (based on both
DMSs and DMRs) showed strong enrichment for processes involving: i) development and
morphogenesis, ii) regulation of cell-cell signaling and organismal communication, iii) neural
development, and iv) cell adhesion (Figure 7F). As highlighted above, increased regulation of signaling
and communication, along with development and morphogenesis, must entail energetically dependent
processes. These data, supported by the activation of corresponding downstream transcriptional

programs (Figure 6) and the observed hypersecretory phenotype in OxPhos-deficient cells (Figure 5),
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document genome-wide epigenomic recalibrations consistent not with energy conservation, but with
increased total energy expenditure. These data also can be further queried with specific genomic

targets in mind.
RC dysfunction accelerates telomere shortening and decreases lifespan

Finally, given the deleterious effect of hypermetabolism-causing OxPhos defects on the lifespan
of patients with mitochondrial diseases and in animal models, these genome-wide data prompted us to
examine how OxPhos dysfunction and hypermetabolism relate to dynamic genomic markers of cellular
aging and senescence. The complete population doubling curves of each donor (Figure 8A) provided
initial evidence that cellular lifespan was reduced in SURF1 and Oligo-treated cells. The Hayflick limit
(i.e., total number of cell divisions >*) was on average 53% lower in SURF1 cells (p=0.072, g=2.0), and
Oligo decreased the Hayflick limit by 40% (p<0.066 g=2.0) relative to the untreated cells of the same
donor (Figure 8A-B). Interestingly, the magnitude of these effects (40-53%) on total population doubling
loosely corresponds to the 3-4-decade loss in human lifespan documented among adults with

mitochondrial diseases (see Figure 1G-H), which would represent 38-50% for an average 80-year life

expectancy.
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Figure 8. Mitochondrial OxPhos defects decrease lifespan and accelerate telomere shortening. (A) Growth
curves of control, SURF1, and Oligo-treated cells. Population doublings were determined from both live and dead
cell cells at each passage. (B) Hayflick limit defined as the total number of population doublings achieved before
division rate <0.01 divisions/day for at least two passages. (C) Telomere length per population doubling, (D) rate
of telomere attrition per division, and (E) terminal telomere length. (F) Rate of epigenetic aging for control, SURF1,
and oligo-treated cells, calculated from the linear rate between days 25-75 (3-4 timepoints/cell line). (G) Average
rate of epigenetic aging across all PC-based clocks. Each datapoint represents a different clock. (F-G)
Significance values were calculated using a multiple comparison two-way anova. n=3 donors per group, 5-15
timepoints per condition for telomere length. In D, data are the slope estimate for the linear regressions in C. Data
are means + SEM. * P < 0.05, ** P < 0.01.
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To directly measure the pace of biological aging in response to OxPhos defects, we performed
repeated measures of telomere length across the cellular lifespan. This allowed us to compute the

average rate (i.e. slope) of telomere shortening per population doubling or cell division (Figure 8C).
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Consistent with observations of dramatically shortened telomeres in skeletal muscle of patients with
mtDNA mutations ®' and recent work causally linking mitochondrial dysfunction to telomere dysfunction
8 poth SURF1 mutations and Oligo treatment strikingly increased the rate of telomere erosion per
population doubling by 162% for SURF1 (p=0.53, g=3.2) and 769% for Oligo (p=0.09, g=1.2) (Figure
8D). This means that for each cell division, OxPhos-deficient fibroblasts lose 1.6-7.7 times more
telomeric repeats than healthy fibroblasts. We note that these results rely on the estimated slope across
the whole cellular lifespan (single value per donor, n=3 per group) so the p values are less meaningful
than the effect sizes, which are large (g>1). The terminal telomere length coinciding with growth arrest
tended to be moderately higher in SURF1 and Oligo groups (Figure 8E). This could suggest that growth
arrest is driven by factors other than absolute telomere length, such as the prioritization of
transcription/translation over growth-related functions, which are sufficient to induce growth arrest and

senescence in human fibroblasts 4%,

Next, we leveraged our DNAm dataset to quantify biological age using validated multivariate
algorithms or “clocks” (DNAmAge, or epigenetic clocks) trained, in human tissues, to predict
chronological age and mortality *>%3. Five different validated clocks that rely on different CpG sets and
include a modification that improves their accuracy % were applied directly to our fibroblast time series
DNAm data. These results showed that relative to the rate of epigenetic aging in control cells with
normal OxPhos function, the rates of biological aging per population doubling were accelerated by an
average of 131% in SURF1 cells (p<0.05, g=1.5), and to a lesser extent in Oligo-treated cells (+54%,
p<0.05, g=0.6, Figure 8F-G), thus independently supporting the findings of accelerated telomere
shortening. Trajectories and DNAm aging rates for each donor using all five epigenetic clocks, including
those computed relative to “time in culture” rather than to population doublings, produced variable

results and are presented in Extended Data Figure 13.

Together, the decreased Hayflick limit, the accelerated telomere attrition rate, and increased
rate of epigenetic aging converge with the senescence-related secretome and gene expression results

to link OxPhos dysfunction to hypermetabolism and reduced cellular lifespan.

Discussion

Integrating available clinical and animal data together with our longitudinal fibroblast studies has
revealed hypermetabolism as a conserved feature of mitochondrial OxPhos dysfunction. A major
advantage of our cellular system is that it isolates the stable influence of genetic and pharmacological
OxPhos perturbations on energy expenditure, independent of other factors that may operate in vivo.
Thus, these data establish the cell-autonomous nature of hypermetabolism. Moreover, despite the

diverging mode of action of SURF1 and Oligo models, as well as some divergent molecular features,
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both models converge on the same hypermetabolic phenotype, adding confidence around the
generalizability of this phenomenon. Our data also rule out mitochondrial uncoupling as a main driver
of hypermetabolism in this system, and instead implicate the activation of energy-demanding gene
regulatory programs, including but likely not limited to increased metabokine/cytokine secretion, that
can compete with growth and longevity (Figure 9). Our resource cellular lifespan data provide several
novel observations that agree with previous work ’’, and that are relevant to understanding how primary
mitochondrial OxPhos dysfunction triggers some of the physiological and phenotypic hallmarks of aging

and mitochondrial diseases.

) 0

Healthy OxPhos defects

4 division rate
1 mtDNA deletions

1 cytokine/metabokine
1 cf-mtDNA release
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1 Integrated stress response (ISR)
1 Transcription/translation pathways
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Figure 9. Conceptual model including putative sources of hypermetabolism in cells and patients with
mitochondrial diseases. OxPhos defects trigger mtDNA instability and cell-autonomous stress responses
associated with the hypersecretory phenotype, recapitulating findings in plasma from patients with elevated
metabokine and cell-free mitochondrial DNA (cf-mtDNA) levels. These responses are linked to the upregulation
of energy-dependent transcriptional programs, including the integrated stress response (ISR). We propose that
these processes collectively increase energy consumption, leading to hypermetabolism in patient-derived
fibroblasts, and whole-body hypermetabolism in affected patients, which call for targeted and well-controlled
clinical studies of energy expenditure. In dividing human fibroblasts, hypermetabolism-causing OxPhos defects
curtails lifespan and accelerate canonical cellular senescence and aging markers, namely telomere length and
epigenetic aging, resulting in lifespan shortening effects similar in magnitude with that observed in patients.

First, we observed that the mitochondrial disease marker GDF15 was largely undetectable in
the media of young, healthy fibroblasts, but increased progressively across the cellular lifespan. This

67,71

finding recapitulates the age-related increase in GDF15 in humans , and adds to previous evidence

of conserved age-related changes in DNA methylation in primary human fibroblasts cultured over
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several months *°. Consistent with the higher GDF15 levels in primary OxPhos disorders in humans
and mice '°, extracellular GDF15 tended to be elevated in both models of OxPhos dysfunction. Likewise,
OxPhos dysfunction increased extracellular cf-mtDNA levels, in line with recent reports that cf-mtDNA
is elevated in primary OxPhos disorders " and with aging in humans 2. The link between OxPhos

dysfunction and cf-mtDNA release requires further investigation.

Second, we observed that OxPhos dysfunction from SURF1 mutations, and to a lesser extent
Oligo treatment, both caused secondary mtDNA instability. mtDNA instability was associated with the
variable accumulation of mtDNA deletions, but not point mutations, across the cellular lifespan. Our
confidence in this result is reinforced by the longitudinal nature of the mtDNA sequencing data, from
the same primary cell lines examined at multiple time points. Notably, the time course data also showed
that cell populations can eliminate a large fraction of mtDNA deletions within 12-14 days (mtDNA
deletions are removed from one passage to the next). This is consistent with the fact that replicating
fibroblasts eliminate some deleterious mtDNA deletions ®, and also that several de novo deletions
removed the origin of replication of the light strand (O.), thereby preventing their replication. Whether
the clonal amplification of some mtDNA deletions in SURF1 fibroblasts occurs through population
selection at the cellular level, or through intracellular quality control mechanisms, or a combination of

both, remains to be determined.

Third, mitochondrial OxPhos dysfunction dramatically increased the telomere erosion rate per
cell division, despite the adaptive transcriptional upregulation of telomere protection complex
components. This effect of mitochondria on telomeres agrees with the variable telomere maintenance
in mtDNA conplastic mice %, with the life-shortening effect of pathogenic mtDNA variants *? and OxPhos
dysfunction in mice **, and with the reduced lifespan in patients with mtDNA disease shown in Figure
1G-H. A study in skeletal muscle of children with high heteroplasmic mtDNA mutations also reported
excessively short telomeres, similar in length to the telomeres of healthy 80 year old controls 8'.
Because skeletal muscle is a post-mitotic tissue, this previous result also implies that OxPhos
dysfunction could accelerate telomere attrition at a disproportionate rate, or perhaps independent from
cell division, as suggested by the disconnect between the loss of telomeric repeats and genome
replication/cell division observed in our hypermetabolic fibroblasts. Beyond severe OxPhos defects,
mild alterations of OxPhos function driven by mild, common variants in complex | subunits genes, may

also shape disease risk ® and influence lifespan 8.

Why OxPhos-induced hypermetabolism is associated with both mtDNA instability and
accelerated telomere erosion remains unclear. DNA maintenance (mtDNA, and telomeres) relies on the
accuracy of the molecular processes ensuring accurate replication. The energetic tradeoff between
translation and growth *? could explain why OxPhos-deficient cells, which expend a large fraction of

their energy budget to upregulate transcription/translation and secretory, also grow more slowly.
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Notably, DNA replication is also energetically constrained and sits at the bottom of a hierarchy of
energy-consuming processes where vital processes, meaning that in a situation when energy is limited,
ionic balance and translation are prioritized over division and DNA replication 2°. Furthermore, cells
under stress experience an energetic tradeoff between the accuracy of molecular operations and the
speed of these processes, known as the energy-speed-accuracy tradeoff . Hypermetabolism is a
global state of the cell, and no currently available approach can selectively manipulate or correct
hypermetabolism without introducing unresolvable confounds. For this reason, it is currently not
possible to mechanistically test this assertion. We speculate that the diversion of energetic resources,
as well as substrates including nucleotides "¢, may contribute to reduced DNA replication fidelity, which

in turn could contribute to both mtDNA instability and telomere attrition, independent of cell division.

Fourth, our longitudinal RNASeq and DNAm datasets reveal conserved recalibrations
implicating developmental and translation-related pathways, as well as cell-cell communication, with
OxPhos dysfunction and hypermetabolism. These identified pathways overlap with previously identified
multi-omic overrepresentation analysis performed on iPSC-derived neurons from SURF1 patients . In
both this and our study, neural development, cell signaling, morphogenesis, cell cycle, and metabolism
were the predominant processes altered in SURF71-related disease. The induction of these
energetically-demanding pathways that constrain growth at the cellular and possibly at the organismal
level *', could help explain why a major feature of pediatric mitochondrial disorders (including our
SURF1 donors) is neurodevelopmental delay, and also why adult patients commonly display short
stature (restricted growth) *°. In relation to cell-cell communication, we note that the biomarker picture
of adult patients with mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes (MELAS)
is dominated, as in our fibroblast models, by elevated (not reduced) signaling and metabolic markers in
blood "°. Thus, the organism under metabolic stress does not initiate an energy-saving hypometabolic
state with reduced signaling activity, but instead activates energivorous integrated stress responses
that must divert and consume energetic resources, in a tradeoff with other processes such as growth

and longevity pathways.

Finally, the OxPhos defects in our fibroblasts triggered a shift towards glycolytic ATP production.
The glycolytic shift is consistent with the physiological shift in substrate oxidation from lipids/amino acids

' and mice °? with OxPhos

to carbohydrates, quantified by the respiratory quotient among patients °
defects. The active shift towards glycolysis occurs even when OxPhos is not completely obliterated. For
example, although basal respiration was markedly lower in SURF1 cells, the maximal FCCP-uncoupled
respiration in SURF1 cells was relatively preserved (see Figure 2B & Extended Data Figure 2C). This
result implies a cellular decision to route metabolic flux towards an energetically less efficient pathway
(i.e., glycolysis). This could be explained on the basis of energetic constraints and proteome efficiency,

since the proteome cost of OxPhos is at least double that of glycolytic fermentation '°. Thus, cells can
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“choose” to divert metabolic flux towards glycolysis even when OxPhos is at least partially functional,
as in cancer, because of rising intracellular energetic constraints driven by hypermetabolism. We note
again that hypermetabolism is apparent across multiple animal models of primary OxPhos dysfunction,
manifesting as an elevated cost of living, even during rest and sleep in mice 242, In particular, deep

phenotyping of Ant1”" mice across three studies 2939

reveals a systemic physiological picture highly
consistent with mitochondrial diseases, including excessive mitochondrial biogenesis, elevated
circulating catecholamine levels, severe hypermetabolism (+82-85% REE) when adjusted for lower
physical activity levels, reduced adiposity, elevated mtDNAcn and mtDNA instability, and decreased
median lifespan. These in vivo data thus provide additional converging evidence, beyond the clinical
data in Figure 1, that mitochondrial OxPhos dysfunction impairs whole-body energetic efficiency and

cause physiological hypermetabolism in mammals.

Identifying hypermetabolism as a feature of mitochondrial disease has potential clinical utility as
it provides an explanatory framework for some of the major symptoms in affected patients. First, fatigue
and exercise intolerance are evolutionary conserved, subjective experiences that arise when the
organism consumes more energy than it would under optimal conditions (e.g., subjective fatigue during
the oxygen debt after strenuous exercise, or during an infection). Thus, symptoms of fatigue could be
direct consequences of impaired metabolic efficiency and hypermetabolism. Second, as noted above,
severely affected patients with mitochondrial disease are usually thin, which may be attributable to not
only reduced energy intake or to intestinal malabsorption, but to chronic hypermetabolism, effectively
burning excess ingested calories, preventing the accumulation of excess adiposity and muscle mass.
Third, alcohol appears to be poorly tolerated and associated with symptom onset in some patients with
mtDNA defects %%, but the basis for alcohol intolerance remains unknown. Alcohol itself causes
hypermetabolism in healthy individuals — increasing whole-body REE by as much as 16%, and inhibiting
lipid oxidation by 31-36% %¢%°. Alcohol may therefore aggravate pre-existing hypermetabolism, thus
imposing further energetic constraints on vital cellular or physiological functions. Finally, chronic
hypermetabolism could in part explain why infections can trigger clinical exacerbations, representing
the major cause of decompensation and death in this population 2°. The metabolic cost of immune
activation to viral and bacterial infection is high, and cytokine production in human leukocytes is under
mitochondrial regulation . Thus, immunity must therefore compete with other host maintenance

systems '

. We speculate that in mitochondrial diseases, because the limited energetic resources are
consumed at a higher rate than normal due to systemic hypermetabolism, patients may lack the
necessary energetic reserve required to sustain vital organs while mounting adequate immune

responses.

Together, the meta-analysis of clinical data from 17 cohorts and two cellular models of OxPhos

dysfunction identify hypermetabolism as a feature of mitochondrial disease. Our longitudinal patient-
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derived fibroblasts data delineate some of the cellular and molecular features of OxPhos-induced
hypermetabolism, including sustained induction of the ISR, genome instability, hypersecretion of
cyto/metabokines, and genome-wide DNA methylation and transcriptional recalibrations that
emphasize the upregulation of processes related to signaling and communication (see Figure 9). A
resource webtool with all data from this study, including the RNAseq and DNAm data, is available and
can be explored for genes or processes of interest (see Data Availability Statement). Although further
work is needed, these translational data provide a basis to rationalize some unexplained clinical
features of mitochondrial diseases. The novel explanatory framework of cellular and physiological
hypermetabolism provides a foundation to design well-controlled studies to further understand the
extent to which hypermetabolism is a harbinger of morbidity and early mortality in patients with

mitochondrial diseases.

Limitations. A major open question relates to the origin and modifiability of signaling pathway(s)
and cellular process(es) that underlie hypermetabolism in OxPhos deficient cells and humans. Rather
than pursuing a single potential explanation, here we attempted to deeply phenotype both cellular
models of hypermetabolism and to produce a foundational dataset covering several key processes and
pathways previously implicated in the pathogenesis of OxPhos defects. Our dataset therefore provides
a foundation that can be used as a resource to develop targeted, mechanistic experiments to i)
determine the origin and modifiability of hypermetabolism in the context of OxPhos defects in vitro and
in vivo, and ii) resolve the mechanism(s) linking hypermetabolism to human aging biology. The small
sample size and the in vitro nature of the cellular data could be regarded as limitations of this work,
potentially limiting generalizability. However, the stability of metabolic and molecular phenotypes in two
distinct experimental models, across three unrelated donors (female and male) repeatedly monitored
across the replicative lifespan — when cells undergo dynamic age-related changes — is a strong test of
robustness for these findings. We also note that the extracellular flux analysis used to derive ATP
consumption rates are indirect *®, and other approaches such as metabolic tracing experiments would
be required to fully understand energy partitioning in hypermetabolic cells. Finally, the clinical
phenotyping presented in Figure 1 is not exhaustive, focusing exclusively on available clinical outcomes
related to energy expenditure, including indirect calorimetry without careful body composition
normalization. Thus, studies are needed to fully define the clinical heterogeneity in energy expenditure
among patients, as well as the neuroendocrine and metabolic manifestations of hypermetabolism. Our
translational findings highlight more than ever the need for collaborative, multi-center partnerships that

bridge the cellular, clinical, and patient-reported aspects of mitochondrial diseases and aging.
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Methods
Human cohorts

Data were meta-analyzed from 17 mitochondrial disease cohorts listed in Table 1. Inclusion
criteria included 1) cohorts with a genetic diagnosis for all participants and 2) including measures for at
least one of the primary outcomes (resting heart rate, catecholamine levels, resting VO or VO- relative
to work rate, BMI, mortality). Eligible cohorts included participants from 5 countries including China,
Denmark, England, Italy, and the USA. Studies were published between 2003 and 2019, covering a 16-
year period. Each cohort with its sample size, female/male distribution, genetic diagnoses (nDNA vs
mtDNA), and symptomatology is listed in Table 1, with additional information about data extraction
provided here. Each cohort included their own control group, so group level averages (not patient-level
data) were use to compute effect sizes as % difference between mitochondrial diseases and control,
and standardized Hedges g for each outcome measure (e.g., resting heart rate, resting VO_). Cohorts
with available source data to calculate intragroup variance include error bars denoting standard error of

the mean in Figure 1.

Cohort 1°% included data on resting HR and resting VO, in patients with mixed genetic defects.
Cohort 2 included four sub-studies: a) "%, b) '®, ¢) %, and d) an unpublished cohort of patients with
single large-scale mtDNA deletions with measures of resting HR, resting VO, and BMI. Cohort 3 %
included data on resting HR, resting urinary catecholamines, and BMI. Cohort 4 '% included data on
resting HR and BMI. Cohort 5 is an unpublished cohort (the Mitochondrial Stress, Brain Imaging, and
Epigenetics Study — MiSBIE) of patients with m.3243A>G mutations, which included data on resting HR
and BMI. Cohort 6 %7 included data on circulating catecholamines at rest and during exercise. Cohort
7 *' included data on VO during fixed workload (65W) and BMI. Cohort 8 ' included data on resting
VO, and BMI. Cohort 9 ' included VO, during constant work rate (40% of max), and VO, values in
ml/kg/min were adjusted to average workload achieved by each group to obtain comparable estimates
of energetic demand relative to work performed. Cohort 10 ' included metabolic efficiency during
constant-rate cycle ergometry (30 watts), including before and after a home-based exercise training
protocol, and these values were compared to reference values in healthy individuals from '°°. Cohort
11 "% overlaps with Cohorts 9 and 10 and included BMI data. Cohort 12 ' included BMI data averaged
between both mutation groups. Cohort 13 * is a natural history study of adult patients with mortality
data. Cohort 14 # is a retrospective study of the causes of death in adult patients with mortality data.
Cohort 15 """ is a pediatric natural history study with mortality data. Cohort 16 % is a multi-center
pediatric natural history study with mortality data. Cohort 17 is an ongoing natural history study

(McFarland et al., Newcastle Mitochondrial Disease Cohort) with mortality data.
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For a subset (3/6) of studies reporting both VO, and VCO:, in the original publication, or reporting
both VO, and the respiratory quotient (RQ) from which VCO; could be derived, we used the Weir
equation °' to estimate group-level REE differences between patients and controls. Compared to VO
(mlO2/min/kg body mass) differences between groups, the Weir equation-derived REE differences
(kCal/day/kg) were on average 1.2% higher (range: -0.3% to +2.3%) than the group difference in VO,
(30.0%). Future studies using proper methodology to quantify resting metabolic rate (RMR) or free-
living energy expenditure, normalized with sensitive body composition assessments, are needed to fully

define the spectrum of hypermetabolism in affected patients.

Reference BMI for the USA (29.9 kg/m?) was obtained from the National Health and Nutrition
Examination Survey (NHANES) for wave 2015-2016 (n=9,544) (e-link), for the UK (28.6 kg/m?) from the
Health Survey for England 2018 (n=6,600) (link), and for Italy (25.8 kg/m?) from the NCD Risk factor
collaboration (link), with the combined average presented in Figure 1F. Reference values for life
expectancy were obtained from the World Bank (https://data.worldbank.org/) and the average value for
the USA (78.6 yr), UK (81.2 yr), and Italy (82.9 yr) (representing most cohorts included) is reported in
Figure 1G. Data presented in Figure 1H represent mortality rates in the UK (reference population) for

2018, and the mortality data for individuals for mitochondrial disease was collected between 2010-2020.

The clinical data demonstrating hypermetabolism are derived from more than a dozen
laboratories over a >15-year period, illustrating the stability of this finding. The apparent cross-study
stability of clinical hypermetabolism is also unlikely to be influenced by publication or reporting bias for
three main reasons: i) most studies were exploratory (as opposed to confirmatory) in nature, such that
the motivation for their publication depended neither on the significance nor direction of these results,
i) baseline group differences for most parameters (e.g., resting VO2) were not primary outcomes in any
studies, and in several cases these data were not analyzed nor reported in the original reports, and iii)
variables such as BMI were ubiquitously reported. Moreover, to further reduce the potential of bias, the
overall sample includes new, previously unpublished cohorts of clinically and genetically well-defined
patient populations (see Table 1). Together, these factors increase likelihood that the findings revealing
the existence of a hypermetabolic state are robust and generalizable to mitochondrial diseases
represented here, which includes a relatively broad diversity of mtDNA mutations. Further work is
needed to sensitively quantify hypermetabolism across the diurnal cycle, normalized to body

112

composition (fat-free mass), and normed against population references Studies linking

hypermetabolism to disease severity and progression are also warranted.
Skeletal muscle histology, mtDNA heteroplasmy, and mtDNA density

Human skeletal muscle from the diaphragm was subjected to sequential cytochrome c oxidase

(COX, diaminobenzidine, brown) and succinate dehydrogenase (SDH, nitrobluetetrazolium, blue)
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staining as described previously '*. This technique reveals segments of myofibers deficient for mtDNA-
encoded COX but positive for exclusively nDNA-encoded SDH ?2. Sub-cellular segments of the same
myofiber highlighted in Figure 1B were dissected from a 20um-thick cryosection by laser-capture
microdissection (LCM) on a Leica AS LMD 6000 microscope, transferred and digested (Tween20,
Proteinase K) overnight, and used as template DNA in a multiplex real-time PCR reaction that amplifies
MT-ND4 and MT-ND1 amplicons within the minor and major arcs of the mtDNA, respectively, to
calculate heteroplasmy levels for major arc mtDNA deletions ™. Total mtDNA density was quantified
by deriving MT-ND1 copies from a standard curve, normalized per surface area (um?) of tissue used as

input '3,

Tissue culture

Primary human dermal fibroblasts were obtained from distributor or in local clinic from 3 healthy
and 3 SURF1-patient donors (IRB #AAAB0483, see below table for descriptive information and
distributor). Fibroblasts were isolated from skin tissue biopsies using standard procedures. After
isolation, fibroblasts were stored in 10% DMSO (Sigma-Aldrich #D4540), 90% fetal bovine serum (FBS,
Life Technologies #10437036) in cryogenic tube under liquid nitrogen. To avoid freeze-shock necrosis
cells were frozen gradually in an isopropanol container (Thermofisher #5100-0001) at -80°C overnight

before storage in liquid nitrogen.

Genotypes were confirmed by whole genome sequencing. Paired-end (PE) reads were obtained
from lllumina HiSeq and processed using SAMtools (v1.2) and BaseSpace workflow (v7.0). PE reads
were aligned to hg19 genome reference (UCSC) using Isaac aligner (v04.17.06.15) and BAM files were
generated. Small variants including single nucleotide variants (SNVs) and insertion/deletion (Indels)
were called from the entire genome using Strelka germline variant caller (v2.8). Variants specific to
SURF1 gene were obtained from the genome-wide annotated vcf files using SnpSift and annotated
using web ANNOVAR.

To initiate cultures, cryopreserved fibroblasts were thawed at 37°C (<4min) and immediately
transferred to 20ml of preheated DMEM (Invitrogen #10567022). Cells were cultured in T175 flasks
(Eppendorf #0030712129) at standard 5% CO2 and atmospheric (~21%) O at 37°C in DMEM (5.5 mM
glucose) supplemented with 10% FBS, 50 pg/ml uridine (Sigma-Aldrich #U6381), 1% MEM non-
essential amino acids (Life Technologies #11140050), 10 yM palmitate (Sigma-Aldrich #P9767)
conjugated to 1.7 uM BSA (Sigma-Aldrich #A8806), and 0.001% DMSO (treatment-matched, Sigma-
Aldrich #D4540). Cells were passaged approximately every 5 days (+/- 1 day). Oligo-treated healthy
control cells were cultured in the same media as control cells supplemented with 1nM oligomycin (in
0.001% DMSO, Sigma-Aldrich #75351) starting on Day 15.
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1 Brightfield microscopy images (10x, 20x magnification) were taken before each passaged using
2 inverted phase-contrast microscope (Fisher Scientific #11350119). Cell counts, volume and death were
3 determined at each passage using the Countess Il Automated Cell Counter (ThermoFisher Scientific
4  #A27977). Growth rates were used to determine replating density, by pre-calculating number of cells
5  needed to reach ~90% confluency (~2.5 million cells) at time of next passage. Cells were never plated
6  below 200,000 cells or above 2.5 million cells to avoid plating artifacts of isolation or contact inhibition,
7  respectively. The timing and frequency of time points collected vary by assay, with an average sampling
8  frequency of 15 days'"®. Cell media was collected at each passage. Individual cell lines were terminated
9  after exhibiting less than one population doubling over a 30-day period. The Hayflick limit was
10  determined as the total number of population doublings of a cell line at the point of termination.
11  Extended Data Table 1. Control and SURF1 donor characteristics
Cell Line Tissue Genotype Sex Age Passage* Source Cat#
Lifeline Cell FC-0024 Lot
Donor 1 Dermal breast Normal male 18 1 Technology # 03099
Lifeline Cell FC-0024 Lot
Donor 2 Dermal breast Normal female 18 1 Technology # 00967
. Coriell
Donor 3 Foreskin Normal male 0 4 Institute AG01439
Patient 1 Dermal upper-arm skin rf&ftli-;]n male 0.25 7 Hirano lab NA
Patient 2 Dermal upper-arm skin SURI.:1 male 11 5 Hirano lab NA
mutation
Patient 3 Dermal upper-arm skin SURI.:1 female 9 9 Hirano lab NA
mutation
12 *Passage indicates the passage at which cells were obtained before experiment began.
13
14  Extended Data Table 2. Genotyping results of SURF1 patient-derived fibroblasts
Cell line Surf1 mutation Exonic function dbSNP id _ Clinical
significance*
. ¢.518_519del (p.S173Cfs*7) . . Pathogenic |
Patient 1 ¢.845_846del (p.S282Cfs*7) frameshift deletion rs782316919 Pathogenic
€.247_248insCTGC (p.R83Pfs*7) o .
¢.574 575insCTGC (p.R192Pfs*7) frameshift insertion rs782289759 NA
c.C246G (p.T82T) Benign | Likely
C573G (p.T191T) synonymous SNV rs28715079 Benign
Patient2 | 313 321del (p.L105_A107del)  nonframeshift deletion rs759270179 NA
¢.311_312insA (p.L105Sfs*11) frameshift insertion rs764928653 NA
¢.T280C (p.L94L) synonymous SNV 1528615629 Benan | Likely
enign
c.C246G (p.T82T) Benign | Likely
¢.C573G (p.T191T) synonymous SNV rs28715079 Benign
Patient 3
Homozygous ) .
nonframeshift deletion rs759270179 NA
¢.313_321del (p.L105_A107del)
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Benign | Likely

c.T280C (p.L94L) synonymous SNV rs28615629 Benign

Results from whole genome sequencing (WGS). * Clinical interpretation of genetic variants is based on ANNOVAR gene
annotation pipeline that uses ClinVar database as a primary reference. SNV, single nucleotide variant.

Mycoplasma testing

Mycoplasma testing was performed according to the manufacturer's instructions (R&D Systems

#CULOO1B) at the end of lifespan for each treatment and cell line used. All tests were negative.

Calculations of energy expenditure and normalization to division rate and cell size

Bioenergetic parameters were measured using the XFe96 Seahorse extracellular flux analyzer
(Agilent), oxygen consumption rate (OCR) and extracellular acidification rate (pH change) was
measured over confluent cell monolayers. Cells were plated for Seahorse measurement every 3
passages (~15 days) with 10-12 wells plated per treatment group. Each well of a seahorse 96-well plate
was plated with 20,000 cells and incubated overnight under standard growth conditions, following the
manufacturer’s instructions, including a plate wash with complete Seahorse XF Assay media. The
complete XF media contains no pH buffers and was supplemented with 5.5 mM glucose, 1 mM
pyruvate, 1 mM glutamine, 50 pug/ml uridine, 10 uM palmitate conjugated to 1.7 uM BSA. After washing,
the plate was incubated in a non-CQO; incubator for one hour to equilibrate temperature and atmospheric
gases. The instrument was programmed to assess various respiratory states using the manufacturer’s
MitoStress Test (Brand & Nicholls, 2011). Basal respiration, ATP turnover, proton leak, coupling
efficiency, maximum respiration rate, respiratory control ratio, spare respiratory capacity and non-
mitochondrial respiration were all determined by the sequential additions of the ATP synthase inhibitor
oligomycin (final concentration: 1 uM), the protonophore uncoupler FCCP (4 uM), and the electron
transport chain Complex | and Il inhibitors, rotenone and antimycin A (1 uM). The optimal number of
cells and concentration for the uncoupler FCCP yielding maximal uncoupled respiration was determined

based on a titration performed on healthy fibroblasts (data not shown).

The final Seahorse injection included Hoechst nuclear fluorescent stain (ThermoFisher Scientific
#62249) to allow for automatic cell counting. After each run, cell nuclei were counted automatically using
the Cytation1 Cell Imager (BioTek) and raw bioenergetic measurements were normalized to relative
cell counts on a per-well basis. ATP metrics were determined using the P/O ratios of OxPhos and
glycolysis as previously described by Mookerjee et al. *’. These conversions assumed energy sourced
was derived entirely by glucose. All Jatr measurements take into account non-mitochondrial and proton

leak derived oxygen consumption thereby reflecting the mitochondrial ATP-synthesis related flux
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(Extended Data Figure 2A). The code and raw data are available as detailed in the Data Availability

statement.

To assess if increased ECAR in experimental conditions were due to non-glycolytic activity, a
glucose-dependency test was performed using the Seahorse XF Glycolysis Stress Test Kit (Agilent,
103020-100). Prior to extracellular flux measurements, young healthy control (Donor2) and young
SURF1 (Patient3) cells were grown overnight in differing nutrient conditions: physiological 5.5mM
glucose, OmM glucose, 25mM glucose. The glycolysis stress test kit was performed according to the
manufacturer’s protocol. To monitor growth and cell death, cells were cultured for 7 days in each

glucose condition and monitored daily (see Extended Data Figure 3).
mtDNA deletions

mtDNA deletions were initially detected by long-range PCR (LR-PCR) from DNA extracted from
cultured fibroblasts using DNeasy blood and tissue kit (Qiagen #69504) following manufacturer’s
instructions. Isolated DNA was amplified using 12 F (np 5855-5875) and D2 R (np 129-110)
oligonucleotide primers to yield a 10-Kb product. PCR reactions were carried out using Hot Start
TaKaRa LA Taq kit (Takara Biotechnology, #RR042A) with the following cycling conditions: 1 cycle of
94°C for 1min; 45 cycles of 94°C for 30sec, 58°C for 30sec, and 68°C for 11min with a final extension
of 72°C for 12 min. Amplified PCR products were separated on 1% agarose gels in 1X TBE buffer,
stained with GelGreen (Biotium #41005), imaged using a GelDoc Go Imager (Biorad). Primers (5-3)
were: Forward (12F): AGATTTACAGTCCAATGCTTC (nucleotide position 5,855-5,875); Reverse
(D2R): AGATACTGCGACATAGGGTG (129-110).

mtDNA next-generation sequencing and eKLIPse analysis

The entire mMtDNA was amplified in two overlapping fragments using a combination of mtDNA
primers. The primer pairs used for PCR amplicons were tested first on Rho zero cells devoid of mtDNA
to remove nuclear-encoded mitochondrial pseudogene (NUMTS) amplification (PCR1: 5'-
AACCAAACCCCAAAGACACC-3 and  5-GCCAATAATGACGTGAAGTCC-3’; PCR2: 5’-
TCCCACTCCTAAACACATCC-3 and 5-TTTATGGGGTGATGTGAGCC-3’). Long-range PCR was
performed with the Kapa Long Range DNA polymerase according to the manufacturer’s
recommendations (Kapa Biosystems, Boston, MA, mtDNA next-generation sequencing and USA), with
0.5uM of each primer and 20ng of DNA. The PCR products were analyzed on a 1% agarose gel

electrophoresis.

NGS Libraries were generated using an enzymatic DNA fragmentation approach using lon
Xpress Plus Fragment Library Kit. Libraries were diluted at 100 pM before sequencing and pooled by a
maximum of 25 samples. Sequencing was performed using an lon Torrent S5XL platform using lon 540

chipTM. Signal processing and base calling were done by the pre-processing embedded pipeline.
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Demultiplexed reads were mapped according to the mtDNA reference sequence (NC_012920.1) before
being analysed with a dedicated homemade pipeline including eKLIPse (Goudenege et al, GIM, 2019;
https://github.com/dooguypapua/eKLIPse) using the following settings. Deletion counts were estimated
with a variant call cutoff of >5% heteroplasmy, and separately with cutoffs of 1% and 5% heteroplasmy
(see Extended Data Figure 8D).

e Read threshold: min Quality=20 | min length =100bp

o Soft-Clipping threshold: Read threshold: Min soft-clipped length =25pb | Min mapped Part=20

bp

e BLAST thresholds: min=1 | id=80 | cov=70 | gapopen=0 | gapext=2
o Downsampling: No

mtDNA copy number

Cellular mtDNA content was quantified by gPCR on the same genomic material used for other
DNA-based measurements. Duplex gqPCR reactions with Tagman chemistry were used to
simultaneously quantify mitochondrial (mtDNA, ND1) and nuclear (nDNA, B2M) amplicons, as
described previously *. The reaction mixture included TagMan Universal Master mix fast (life
technologies #4444964), 300nM of custom design primers and 100nM probes: ND1-Fwd:
GAGCGATGGTGAGAGCTAAGGT, ND1-Rev:CCCTAAAACCCGCCACATCT, ND1-Probe: HEX-
CCATCACCCTCTACATCACCGCCC-3IABkKFQ. B2M-Fwd: CCAGCAGAGAATGGAAAGTCAA, B2M-
Rev: TCTCTCTCCATTCTTCAGTAAGTCAACT, B2M-Probe: FAM-
ATGTGTCTGGGTTTCATCCATCCGACA-3IABKFQ). The samples were cycled in a QuantStudio 7 flex
gPCR instrument (Applied Biosystems) at 50°C for 2 min, 95°C for 20 sec, 95°C for 1min, 60°C for 20
sec, for 40 cycles. gPCR reactions were setup in triplicates in 384 well gPCR plates using a liquid
handling station (epMotion5073, Eppendorf), in volumes of 20ul (12ul mastermix, 8ul template).
Triplicate values for each sample were averaged for mtDNA and nDNA. Ct values >33 were discarded.
For triplicates with a C.V. > 0.02, the triplicates were individually examined and outlier values removed
where appropriate (e.g., >2 standard deviations above the mean), with the remaining duplicates were
used. The final cutoff for acceptable values was set at a C.V. = 0.1 (10%); samples with a C.V. > 0.1
were discarded. A standard curve along with positive and negative controls were included on each of
the seven plates to assess plate-to-plate variability and ensure that values fell within instrument range.
The final mMtDNAcn was derived using the ACt method, calculated by subtracting the average mtDNA
Ct from the average nDNA Ct. mtDNAcn was calculated as 2°°! x 2 (to account for the diploid nature of

the reference nuclear genome), yielding the estimated number of mtDNA copies per cell.
Cytokines

Two multiplex fluorescence-based arrays were custom-designed with selected cytokines and

chemokines most highly correlated with age in human plasma from ¢, listed as available analytes on

35


https://doi.org/10.1101/2021.11.29.470428
http://creativecommons.org/licenses/by-nc-nd/4.0/

O 0 O &N »n b~ W N =

—_—
e ]

12

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.29.470428; this version posted May 28, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

the R&D custom Luminex arrays (R&D, Luminex Human Discovery Assay (33-Plex) LXSAHM-33 and
LXSAHM-15, http://biotechne.com/l/rl/YyZYM7n3). Media samples were collected at selected passages

across cellular lifespan and frozen at -80°C. After thawing, samples were centrifuged at 500xg for 5min
and supernatant moved to a new tube. Wells were loaded with media samples diluted 1:5 with assay
diluent, incubated, washed, and read on a Luminex 200 (Luminex, USA) as per the manufacturer’s
instructions. Positive (aged healthy fibroblast) and negative controls (fresh untreated media) samples
were used in duplicates on each plate to quantify batch variations. Data were fitted and final values
interpolated from a standard curve in XPONENT (v4.2), normalized to the cell number at the time of
collection to produce estimates of cytokine production on a per-cell basis. IL-6 and GDF15 measures
were repeated using enzyme-linked immunosorbent assays (ELISA), according to the manufacturer’s
instructions (Abcam #ab229434 and R&D #DGD150).

Media cell-free DNA

Total cell-free DNA (cf-DNA) was isolated from cell culture media using a previously published
automated, high throughput methodology (Ware et al. 2020). Quantitative polymerase chain reaction
(gPCR): cf-mtDNA and cf-nDNA levels were measured simultaneously by qPCR. Tagman-based duplex
gPCR reactions targeted mitochondrial-encoded ND1 and nuclear-encoded B2M sequences as
described previously "'®'"". Each gene assay contained two primers and a fluorescent probe and were
assembled as a 20X working solution according to the manufacturer's recommendations (Integrated
DNA Technologies). The assay sequences are: ND1 forward 5-GAGCGATGGTGAGAGCTAAGGT-3,
ND1 reverse 5-CCCTAAAACCCGCCACATCT-3, ND1 probe 5-
/SHEX/CCATCACCC/ZEN/TCTACATCACCGCCC/2IABKGQ/-3’, B2M forward 5’-
TCTCTCTCCATTCTTCAGTAAGTCAACT-3, B2M reverse 5-CCAGCAGAGAATGGAAAGTCAA-3’,
and B2M probe 5-/56-FAM/ATGTGTCTG/ZEN/GGTTTCATCCATCCGACCA/3IABKFQ/-3’. Each
reaction contained 4 pL of 2X Luna Universal gPCR Master Mix (New England Biolabs, cat#M3003E),
0.4 pL of each 20X primer assay, and 3.2 pL of template cf-DNA for a final volume of 8 uL. The gPCR
reactions were performed in triplicates using a QuantStudio 5 Real-time PCR System (Thermo Fisher,
cat#A34322) using the following thermocycling conditions: 95°C for 20 s followed by 40 cycles of 95°C
for 1's, 63°C for 20 s, and 60°C for 20 s. Serial dilutions of pooled human placenta DNA were used as
a standard curve.

Digital PCR (dPCR): mtDNA and nDNA copy number (copies/pL) of the standard curve used in
cf-mtDNA/cf-nDNA assessment were measured separately using singleplex ND1 and B2M assays
using a QuantStudio 3D Digital PCR System and associated reagents (Thermo Fisher, cat#A29154)
according to the manufacturer’s protocol. The values obtained for the standard curve were used to

calculate the copy number for the experimental samples. All reactions were performed in duplicate (two
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chips). Because the same standard curve was used on all plates, its copy number was applied uniformly

to all gPCR plates.

RNA sequencing and transcriptomic analyses

Total genomic RNA was isolated every ~11days across cellular lifespan and stored in 1ml TRIzol
(Invitrogen #15596026). RNA was extracted on-column using the RNeasy kit (Qiagen #74104), DNase
treated according to the manufacturer’s instructions, and quantified using the QUBIT high sensitivity kit
(Thermo Fisher Scientific #Q32852). RNA samples underwent QC on bioanalyzer and Nanodrop 2000,
all samples had a RIN score >8.0 and no detectable levels of DNA. RNA (1500ng/sample, 50ng/ul) was
then submitted for sequencing at Genewiz Inc. (lllumina HiSeq, single index, 10 samples/lane), and
underwent RiboZero Gold purification. Sequenced reads yielding approximately 40 million paired-end
150bp single-end reads per sample. Sequenced reads were then aligned using the pseudoalignment
tool, kallisto (v0.44.0) '*®. These data were imported using txi import (‘tximport’, v1.18.0, length-scaled
TPM), and vst normalized (‘DEseq2’, v1.30.1).

Dimensionality reduction was performed using ‘Rtsne’ (v0.15) with perplexity value of 10 and
initial dimensions of 30 on the log2 transformed normalized expression values after removing genes
without any variation in expression across all samples. Linear mixed modeling was performed using the
me4’ (v1.1) R package with the fixed effects of time grown and clinical group for SURF1-differential
expression and fixed effects of time grown and treatment with a mixed effects of the cell line for Oligo-
differential expression. P values were obtained by running an Anova comparing the model for each
gene to a null model that had a fixed effect of days grown (mixed effects of cell line for Oligo models)
and then the value was corrected for multiple comparisons using FDR-adjustment (p<0.05). We used
iPAGE to  discover perturbed pathways in  SURF1 and  Oligo-treated  cells

(https://tavazoielab.c2b2.columbia.edu/iPAGE/) . iPAGE enables the systematic and comprehensive

discovery of pathways that are significantly informative of gene expression measurements without any
explicit thresholding requirements. Additionally, iPAGE is also able to detect pathways whose
constituent genes are both up- and down-regulated in the treatments. Input to iPAGE included gene
symbols and for each gene, a cluster identifier indicating if it was upregulated, downregulated or not
differentially expressed in both (i.e. intersection) SURF1-mutant and Oligo-treated cells compared to
controls. For discovering significantly over- and under-represented pathways using iPAGE, we used a
stringent p value cutoff of 0.001 along with minr=1, ind=0 (to produce the most expansive set of pathway
terms) and, catMin=30 (to exclude pathways with fewer than 30 genes). Timecourse and heatmaps
show transcript levels relative to the median of the youngest control timepoints. Categorized genes
were selected based on known mitochondrial and aging literature. Categorized pathways were

categorized into meta-categories based on shared gene ontology parent processes.
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DNA methylation and methylome analysis

Global DNA methylation was measured using the lllumina EPIC microarray ran at the UCLA
Neuroscience Genomic Core (UNGC). DNA was extracted using the DNeasy kit (Qiagen cat#69506)
according to the manufacturer’s protocol and quantified using QUBIT broad range kit (Thermo Fisher
Scientific cat#Q32852). At least 375 ng of DNA was submitted in 30 pl of ddH-O to UNGC for bisulfite
conversion and hybridization using the Infinium Methylation EPIC BeadChip kit. Sample positions
across plates were randomized to avoid batch variation effects on group or time-based comparisons.
All DNA methylation data were processed in R (v4.0.2), using the ‘minfi’ package (v1.36.0). Quality
control preprocessing was applied by checking for correct sex prediction, probe quality, sample
intensities, and excluding SNPs and non-CpG probes. Data were then normalized using Functional
Normalization. Using the R package ‘sva’ (v3.12.0), both RCP and ComBat adjustments were applied
to correct for probe-type and plate bias, respectively. After quality control, DNAm levels were quantified
for 865,817 CpG Sites.

Dimensionality reduction was performed using the ‘Rtsne’ package (v0.15) with a perplexity
value of 10 and initial dimensions of 30 on the normalized beta values. We ran linear mixed effects
models (LMER) using ‘Ime4’ (v1.1). For our differential methylation analysis of SURF1, the fixed effects
were assigned to ‘days_grown’ and ‘clinical_group’. For the Oligomycin treatment, the fixed effects
‘time_grown’ and ‘treatment’ and the mixed effect was assigned of the ‘cell_lines’(i.e., donors). P values
were obtained from an analysis of variance (ANOVA) comparing the model for each CpG to a null model
with a fixed effect of days grown (mixed effects of cell line for Oligomycin models) and then corrected
for multiple comparisons using FDR-adjustment (p < 0.05) to identify differentially methylated CpGs
(DMPs). Differentially methylated regions (DMRs) were derived using the modified comb-p method in
the ‘Enmix’ package (v1.26.8), with a maximum distance for DMR combination of 1000bp, a bin size for
autocorrelation of 310, and FDR-adjustment cutoff of 0.01, and minimum of 3 CpGs per a DMR. Each
DMP and DMR were assigned to the nearest annotated gene
(NMluminaHumanMethylationEPICanno.iim10b4.hg19 package, v0.6.0). Gene set enrichment analysis

was then performed using ShinyGO ' (v0.66, http://bioinformatics.sdstate.edu/go/) on the top 1,000

DMPs- or DMRs-associated genes based on the combined negative log p value across hyper- and
hypo-methylated DMPs and DMRs.

Relative telomere length

Relative telomere length was measured by quantitative polymerase chain reaction (QPCR),
expressed as the ratio of telomere to single-copy gene abundance (T/S ratio). The telomere length
measurement assay was adapted from the published original method by Cawthon '2°'?', The telomere

thermal cycling profile consisted of: Cycling for T(celomic) PCR: Denature at 96°C for 1 minute, one

38


https://doi.org/10.1101/2021.11.29.470428
http://creativecommons.org/licenses/by-nc-nd/4.0/

O 0 O &N »n b~ W N =

[\ TR NG TR NG T NG T NG T NG TR NG S S e T e T T Y S
AN O A WD = O O 0NN R W NN = O

W W W W W N NN
B LW D = O O 0

(98]
N

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.29.470428; this version posted May 28, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

cycle; denature at 96°C for 1 second, anneal/extend at 54°C for 60 seconds, with fluorescence data
collection, 30 cycles. Cycling for S (single copy gene) PCR: Denature at 96°C for 1 minute, one cycle;
denature at 95°C for 15 seconds, anneal at 58°C for 1 second, extend at 72°C for 20 seconds, 8 cycles;
followed by denature at 96°C for 1 second, anneal at 58°C for 1 second, extend at 72°C for 20 seconds,
hold at 83°C for 5 seconds with data collection, 35 cycles. The primers for the telomere PCR are tel1b
[6-CGGTTT(GTTTGG)sGTT-3'], used at a final concentration of 100 nM, and tel2b [5'-
GGCTTG(CCTTAC)sCCT-3", used at a final concentration of 900 nM. The primers for the single-copy
gene (human beta-globin) PCR are hbg1 [5' GCTTCTGACACAACTGTGTTCACTAGC-3'], used at a
final concentration of 300 nM, and hbg2 [5'-CACCAACTTCATCCACGTTCACC-3", used at a final
concentration of 700 nM. The final reaction mix contained 20 mM Tris-HCI, pH 8.4; 50 mM KCI; 200 uM
each dNTP; 1% DMSO; 0.4x SYBR Green |; 22 ng E. coli DNA; 0.4 Units of Platinum Tag DNA
polymerase (Invitrogen Inc.); approximately 6.6 ng of genomic DNA per 11 microliter reaction. Tubes
containing 26, 8.75, 2.9, 0.97, 0.324 and 0.108ng of a reference DNA (Human genomic DNA from buffy
coat, Sigma cat# 11691112001) are included in each PCR run so that the quantity of targeted templates
in each research sample can be determined relative to the reference DNA sample by the standard curve
method. The same reference DNA was used for all PCR runs. Assays were run in triplicate wells on
384-well assay plates in a Roche LightCycler 480. The average concentrations of T and S from the
triplicate wells were used to calculate the T/S ratios after a Dixon’s Q test to remove outlier wells from
the triplicates. T/S ratio for each sample was measured twice. When the duplicate T/S value and the
initial value varied by more than 7%, the sample was run the third time and the two closest values were
reported. 26 out of the 512 samples (5%) has a CV greater than 10% after the third measurement. The
inter-assay coefficient of variation (CV) for this study is 3.0%+4.3% (including the 26 samples) and
2.2%%2.0% (excluding the 26 samples). Telomere length assay for the entire study were performed
using the same lots of reagents. Lab personnel lab who performed the assays were provided with de-
identified samples and were blind to other data.

DNAmAge

DNAmAge was calculated using the online calculator (https://dnamage.genetics.ucla.edu/new)

with normalization using the age of cell line donor as the input age. This outputted the Horvath1 (i.e.
PanTissue clock), Horvath2 (Skin&Blood clock), PhenoAge, Hannum, and GrimAge estimated
DNAmAges. PC-based DNAmAges were then obtained using the principal component method
(https://github.com/MorganLevineLab/PC-Clocks) ®. The rates of epigenetic aging for each cell line

were determined from the linear slope of timepoints between 25 to 75 days. This period ensures that
Oligo treatment has taken effect, and avoids late-life changes in the behavior of DNAm clocks, providing

the time window where the signal is most stable.

Data analysis and statistics
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All statistical analyses were performed using GraphPad Prism (v9.0) and RStudio (v1.3.1056)
using R (v4.0.2). Comparisons of groups between control, SURF1 and treatment groups were
performed using mixed effects model, except for peak and rate measurements (unpaired T-test,
assuming unequal variance or two-way ANOVA for concurrent measures). Interpolated curves for each
experimental group is the best fit non-linear third order or fifth order polynomial functions depending on
the kinetic complexity a given measurement. Data visualization and statistical analyses were generated
in R (‘ggplot2’, v3.3.5) and Prism 8.

The time windows for specific statistical analyses were selected based on a combination of
cellular growth behavior including: i) population doubling curves (e.g., stable division rates for all groups
early in the cellular lifespan between days 20-50), ii) the availability of matching timepoints between
treatment groups (at least 3 timepoints for all groups), and iii) potential delay to reach stable cellular
phenotypes in Oligo-treated cells. To allow for adjustment to the in vitro environment, treatments began
after 15 days of culture. Therefore, overall “lifespan effects” were determined between 20-150 days,
which represents the maximal replicative lifespan of SURF1 cells. “Early life” effects that isolate most
clearly the effects of OxPhos dysfunction, and avoid the potential accelerated aging phenotypes in
SURF1 and Oligo cells, were examined using timepoints between 20-50 days. For analyses of
differentially expressed genes (RNASeq, Figure 6) and differential methylation (DNAm, Figure 7) where
a greater datapoint density was necessary to achieve robust mixed effects models, SURF1 cells were
analyzed between 0 and 75 days (genetic defects in SURF1 are constitutive so do not require time in
culture to manifest) whereas models for Oligo-treated cells used timepoints between days 35 to 110
(allowing 15 days for the effects of ATP synthase inhibition to manifest in the transcriptome, while

avoiding late-life changes). All timepoints are shown in time series graphs.

Supplementary Material

Extended Data Figures 1-13, Extended Data Table 1-2, and Supplemental Files 1-10 are

available in the online supplement to this article.
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Cohort #

Cohort 1

Cohort 2

Cohort 3

Cohort 4

Cohort 5

Cohort 6

Cohort 7

Cohort 8

Cohort 9

Cohort 10

Cohort 11

Cohort 12

Cohort 13

Cohort 14

Cohort 15

Cohort 16

Cohort 17

Author (year)

Taivassalo
(2003)

5a:Bates (2013)
5b:Newman
(2015)
5c:Galna (2014)
5d:Unpublished

Strauss (2013)

Delaney (2017)

MiSBIE
(unpublished)

Jeppesen (2013)

Jeppesen (2009)
Heinicke (2011)
Grassi (2009)
Porcelli (2016)

Grassi (2007)

Hou (2019)

Kaufman (2011)

Barends (2015)

Eom (2017)

Wedatilake
(2013)

Newcastle cohort
(unpublished)

N= (W/M)

40 Mito (22/18)
32 Ctrl (9/22)

a:10 Mito (4/6)
10 Ctrl (4/6)
b:8 Mito (5/3)
c:6 Mito (1/5)
d:8 Mito (2/6)

9 Mito (7/2)
28 Cirl

21 Mito (15/6)
12 Ctrl (8/4)

23 Ctrl (15/8)
12 Mito (8/4)

10 Mito (6/4)
10 Ctrl (6/4)

10 Mito (5/5)
10 Ctrl (5/5)

5 Mito (2/3)
4 Ctrl (2/2)
15 Mito (7/8)
21 PCtr2 (7/14)
22 Ctrl (9/13)

6 Mito (2/4)

6 Mito (1/5)
25 PCtrl2 (5/20)
20 Ctrl (8/12)

89 Mito (57/32)

31 Mito (16/15)
54 Ctrl' (15/39)

30 Mito (15/15)

221 Mito
Pediatric

44 Mito (20/24)
Pediatric

109 Mito
(56/53)

Age

37
39

42.4
39.0
42
40.5
42

14.6
14.0

44
34

34.0
32.9

39
39

39
40

42
34
40.1
38.3
37.9

51

37.8
31.6
32.7

30.4

30
38

50.43

6.0°

<143

48.1

Genetics

mtDNA
(n=35)
nDNA (n=5)

mtDNA

nDNA

mtDNA

mtDNA

mtDNA

mtDNA

mtDNA
nDNA

mtDNA

mtDNA

mtDNA

mtDNA
nDNA

mtDNA

mtDNA
nDNA

mtDNA
nDNA

nDNA

nDNA,
mtDNA

Mutations
m.3242A>G, m.8344A>G,
m.14710G>A, m.5543T>C,
m.4409T>C, m.14846G>A,

m.5920G>A, ND2 and
COXIII microdeletions, sDel,
mDel, other (3), unknown (4)

5a:m.3243A>G
5b:m.3243A>G
5c:m.8344A>G + 3243A>G
5d:sDel

SLC25A4 (ANT1) mutations
(c.523delC, p.Q175RfsX38)

sDel, mDel, m.3243A>G,
m.10010T>C, m.12261T>C,
ISCU, m.4281A>G, CYTB,

m.8344A>G, m.5543T>C

m.3243A>G

m.3243A>G, 8344A>T,
4409T>C, 8340G>A, 2-bp
deletion, 12,113-14422,
7177-13767

m.3243A>G, m.8344A>T,
m.5543t>C, sDel

m.3243A>G, m.5543T>C,
m.14846G>A, ISCU

sDel, mDel, m.8344A>G

mDel, sDel, m.3255G>A,
m.3243A>G

mDel, m.8344A>G

sDel, POLG, RRM2B,
Twinkle, TK2, m.3243A>G,
m.8344A>G, m.5541C>T,
m.10158C>T

m.3243A>G

m.3243A>G, sDel, mDel,
c.1635C>G, m.8344A>G,
m.13094T>C, m.14709T>C,
m.5816A>G, m.14484T>C,
m.12258G>A, POLG
mutations

m.3243A>G, LS mutations

SURF1 mutations

In addition to Cohort 14:
AGK, ETFDH, m.10010T>C,
m.11778G>A, m.13513G>A,

m.8993T>C, m.8993T>G,
m.9176T>C, m.9997T>C,
MRPL44, NDUFAF®6,
NDUFS1, RRM2B, SDHA,
SURF1, TYMP

Clinical

CPEO, MELAS,
MERREF, El,
mixed

SNHL, DM, Ei,
AT, FT, DP,
mixed

CM, El,
insomnia, DP,
anxiety

Mild to severe
mixed

MELAS, mixed

CPEQ, El, HI,
Gl, Enc, SS, DM,
ME, AT

CPEO, El, HI,
Gl, Enc, SS, DM,
ME, AT

Myopathy

Myopathy

Myopathy

Myopathy

MELAS, CPEO

MELAS

MELAS, CPEO,
KSS, MERREF,
mixed

LS, MELAS,
mixed
Poor

feeding/vomiting,
PWG, DD, HT,
MD, AT

MELAS, PMM,
MERRF, MIDD,
MNGIE, KSS,
CM, mixed
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Table 1. Human cohorts included in the quantitative meta-analysis of energy expenditure and related
clinical phenotypes in patients with mitochondrial diseases (Figure 1). Abbreviations: ANT1: adenine
nucleotide translocator 1; AT: ataxia; CM: cardiomyopathy; CPEOQ: chronic progressive external ophthalmoplegia;
DD: developmental delay; Dm: diabetes mellitus; DP: depression; El: pure exercise intolerance; Enc:
encephalopathy; FT: fatigue; GI: glucose intolerance; HI: hearing impairment; HT: hypotonia; KSS: Kearns-Sayre
Syndrome; LS: Leigh Syndrome; MD: movement disorder; mDel: multiple mtDNA deletions; ME: myoclonic
epilepsy; MELAS: mitochondrial encephalopathy, lactic acidosis, stroke-like episodes; MERRF:. myoclonus
epilepsy with ragged red fibres; MiSBIE: Mitochondrial Stress, Brain Imaging, and Epigenetics study; mtDNA:
mitochondrial DNA; nDNA: nuclear DNA; PWG: poor weight gain; sDel: single, large-scale mtDNA deletion; SNHL:
sensorineural hearing loss; SS: short stature. ': controls were m.3243A>G carrier relatives without MELAS. 2:
PCtrl: “patient controls” with symptoms of mitochondrial myopathy but with negative biopsy. 3: based on age at
death. Number of women (W) and men (M) are shown in parentheses.
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SUPPLEMENTAL MATERIAL

Supplemental File 1. Table of differentially expressed genes for SURF1 cells over 0 to 75 days of growth.

Supplemental File 2. Table of differentially expressed genes for Oligo cells over 35 to 110 days of growth.

Supplemental File 3. Table of differentially expressed genes shared across SURF1 and Oligo cells.

Supplemental File 4. Gene expression heatmaps of select pathways in control, SURF1, and Oligo cells.

Supplemental File 5. Differentially methylated CpGs for SURF1 cells over 0 to 75 days of growth.

Supplemental File 6. Differentially methylated CpGs for Oligo cells over 35 to 110 days of growth.

Supplemental File 7. Differentially methylated CpGs shared across SURF1 and Oligo cells.

Supplemental File 8. Differentially methylated regions for SURF1 cells over 0 to 75 days of growth.

Supplemental File 9. Differentially methylated regions for Oligo cells over 35 to 110 days of growth.

Supplemental File 10. Differentially methylated regions shared in both SURF1 and Oligo cells.
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Extended Data Figure 1. Physiological profiles of mitochondrial disease in Cohort 2 by genetic diagnosis. (A) Resting heart rate (HR,
P<0.05), (B) resting whole body oxygen consumption (VO2, P<0.001), and (C) body mass index (BMI, P=0.061) in 4 different groups with mtDNA
defects. Controls and m.3243A>G (1) groups are described in Bates et al. (2013), m.3243A>G (2) in Newman et al. (2015), m.8344A>G in Galna
et al. 2013, and sDel is an unpublished cohort from the same laboratory. Data are means + SEM. P values from Brown-Forsythe ANOVA.
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Extended Data Figure 2. Bioenergetic profiling of SURF1-mutant cells. (A) Conversion of OCR and ECAR values into ATP production rates
(Jate, pmol ATP per minute) (B) Lifespan trajectories of Jatptota at maximal uncoupling (FCCP injection) across the SURF1 lifespan (up to 150 days).
Percentages show the total average difference between SURF1 and Control. (C) Spare capacity for respiration (left) and glycolysis (right), measured
as the difference between maximal uncoupled to baseline values. (D) Lifespan trajectories of non-mitochondrial respiration after shutdown of the
ETC (R+A injection) across the SURF1 lifespan (up to 150 days). n = 3 individuals per group, 7-9 timepoints per individual. Data are means + SEM.,,
*P<0.05 " P<0.01, ™ P <0.001, *™** P <0.0001, unpaired two-tailed t-test.
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Extended Data Figure 3. Glucose dependency of SURF1-mutant cells. (A) Brightfield images of human fibroblasts from Donor 2 (left panel) and
Patient 2 (right panel) cultured under different glucose conditions for 6 days: high glucose (25mM), low/normal glucose (5.5 mM), and no glucose (0
mM). After 5 days, fibroblasts from Patient3 display massive cell death when cultured without glucose (i), suggesting increased glucose dependency.
(B) Glucose dependency test with sequential injections of glucose, oligomycin, and 2-deoxyglucose on a single healthy control (Donor 2) and
SURF1-disease (Patient 2) fibroblasts cell line after overnight treatment in (i) 25 mM Glucose, (ii) 5.5 mM Glucose, or (iii) 0 mM Glucose. (C) ECAR
measured before (-) and after (+) glucose injection across three independent experiments on the same control and SURF1 cell lines in different
glucose conditions as shown in and (B). SURF1 cells show a more rapid increase in ECAR following glucose injection compared to control cells,
highlighting their propensity to oxidize glucose. Statistical test performed using Sidak’s multiple comparisons test on a two-way anova. (D) ECAR
measured after 2DG injection across three independent experiments on the same control and SURF1 cell lines in different glucose conditions as
shown in and (B). Data are means + SEM. * P < 0.05, ** P < 0.01.
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Extended Data Figure 4. Mitochondrial defects show altered rates of cytological aging. (A) Timecourse of cell volume across cellular lifespan.
(B) Rate of volume loss for each cell line. Rates are determined using a linear slope. (C) Hayflick limit compared to initial cell volume of each line for
Control, SURF1-disease, and Oligo-treated cells. (D) Timecourse of cell death across cellular lifespan. (E) Maximum percentage of dead cells for

each cell line.
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Extended Data Figure 5. Effect of oxygen concentration on SURF1-mutant cells growth and metabolism. (A) Experimental schematic for
repeat experiment comparing atmospheric (21%) to physiological (3%) oxygen levels. (B) Growth curves of control and SURF1 cells under different
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Extended Data Figure 6. Cellular morphological oscillations of oligomycin-treated fibroblasts (A) Titration of oligomycin on basal OCR and
ECAR measures (n=20-23 technical replicates, error-bars=SEM) in Donor 5. Arrows show the selected concentration for chronic treatment (1nM)
which induces a 86% decrease in OCR and elevate ECAR by 257%, reflecting a robust metabolic recalibration in response to ATP synthesis from
OxPhos. (B) Timecourses of the percent of dead cells at each passage across the cellular lifespan. Measurements were taken at each passage

using trypan blue. (C) Bright-field imaging of control (left) and 1nM oligo-treated cells (right) using a 20x magnification.

(D) Timecourse of

morphological classification across the cellular lifespan. Cells were crudely characterized as either normal or ‘network-like’ at each passage by eye.
(E) Networked oligo-treated cells show robust shift in the transcriptional space in principled component analysis. (F) Rescue experiment using a
combination of 1nM oligo and 100nM dexamethasone (DEX). (G) Bright-field imaging of oligo-treated cells (top-panel) and a combination of oligo
and dexamethasone (bottom-panel). Oligo+DEX cells show no signs of network morphology. Treatment conditions for healthy controls include
chronic addition of 1nM oligomycin (Sigma-Aldrich #75351), 100nM dexamethasone (DEX, Sigma-Aldrich #D4902) and a combination of 1nM

oligomycin and 100nM DEX.
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Extended Data Figure 7. Circos plots depicting the time course of mtDNA deletions in Control and SURF1 fibroblasts. Each circos plot
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Extended Data Figure 9. Cell-free molecules. (A-B) Cell-free nuclear DNA dynamics using grt-PCR, normalized to the number of cells at time of
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lifespan trajectories (C) and averages (D). Data are mean + SEM. * P < 0.05, ** P < 0.01, *** P < 0.001, *** P < 0.0001, mixed effects model (fixed
effect of clinical condition and days grown, random effects of cell line).
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Extended Data Figure 10. Ribosomal gene expression. (A) Heatmap of ribosomal gene expression. Ribosomal genes were selected from the
KEGG database (https://www.genome.jp/kegg/pathway/hsa/hsa03010.html). Values are derived from normalized expression centered to the median
of the youngest control timepoints. (B) Barplot of ribosomal gene expression between control, SURF1-mutant, and oligo-treated timepoints. Each
datapoint is the median normalized expression across all ribosomal subunit genes. Data are mean + SEM. * P < 0.05, ** P < 0.01, *** P < 0.001, ****
P < 0.0001, mixed effects model (fixed affect of clinical condition and days grown, random effects of cell line).
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Extended Data Figure 11. Transcriptomic Remodeling. (A) Volcano plots of differential expressed genes (DEGs) for LMER model of SURF1-
mutant fibroblasts (top-panel) and Oligo-treated fibroblasts (bottom-panel). (B) Timecourse of top 3 up- and down-regulated DEGs in both SURF1-
disease and Oligo-treated fibroblasts.
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Extended Data Figure 12. mtDNA gene expression of coding genes and tRNAs. Circular mtDNA map with its 37 genes annotated. Graphs show
normalized expression values (log2 fold-change relative to median of control replicates) for control, SURF1 mutant donors, and Oligo-treated healthy
donors. Each point represents the median of all timepoints for a given cell line (35t0150 days). The inner ring induces all transfer RNAs (tRNAs); the

outer ring includes ribosomal and messenger RNA (rRNA and mRNA) genes.
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Extended Data Figure 13. DNAmAge clocks. (A) Rate of epigenetic aging using original DNAmAge clocks for control, SURF1, and oligo-treated
cells per population doubling. (B) Average rate of epigenetic aging across all original clocks. Each datapoint represents a different clock. (C-D)
Epigenetic age across replicative lifespan calculated using original epigenetic clocks (C) and PC-based clocks (D). Values are baselined to youngest
timepoint of each cell group. (E-F) Rate of epigenetic aging for control, SURF1, and oligo-treated cells per year grown for (E) PC-based and (F)
original DNAmMAge clocks. Rates are defined as the linear rate between 25-75 days (3-4 timepoints/cell line). Significance values were calculated
using a multiple comparison two-way anova. Data are means £ SEM. * P < 0.05, ** P < 0.01.
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