
 1 

OxPhos Dysfunction Causes Hypermetabolism and Reduces Lifespan in Cells and in  1 
Patients with Mitochondrial Diseases  2 

Gabriel Sturm1, Kalpita R Karan1, Anna Monzel1, Balaji S Santhanam2, Tanja Taivassalo3, Céline Bris4,5,  3 
Sarah A Ware6, Marissa Cross1, Atif Towheed1,7, Albert Higgins-Chen8, Meagan J McManus9,10, Andres 4 
Cardenas11, Jue Lin12, Elissa S Epel13, Shamima Rahman14, John Vissing15, Bruno Grassi16, Morgan Levine17, 5 
Steve Horvath18, Ronald G Haller19, Guy Lenaers4,5, Douglas C Wallace10, Marie-Pierre St-Onge20, Saeed 6 
Tavazoie2, Vincent Procaccio4,5, Brett A Kaufman6, Erin L Seifert21, Michio Hirano22, Martin Picard1,22,23,* 7 
1 Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, 8 
NY, United States 9 
2 Departments of Biological Sciences, Systems Biology, and Biochemistry and Molecular Biophysics, Institute for 10 
Cancer Dynamics, Columbia University, New York, United States 11 
3 Department of Physiology and Functional Genomics, Clinical and Translational Research Building, University of 12 
Florida, Gainesville, FL, United states 13 
4 Department of Genetics, Angers Hospital, Angers, France 14 
5 Angers University, MitoLab team, UMR CNRS 6015 - INSERM U1083, MitoVasc Institute, Angers, France 15 
6 Department of Medicine, Vascular Medicine Institute and Center for Metabolic and Mitochondrial Medicine, University 16 
of Pittsburgh, Pittsburgh, PA, United States 17 
7 Touro College of Osteopathic Medicine, Middletown, NY, United States 18 
8 Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA 19 
9 Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, 20 
United States  21 
10 Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, 22 
United States  23 
11 Department of Environmental Health Sciences and Center for Computational Biology, University of California 24 
Berkeley, Berkeley, CA, United States 25 
12 Department of Biochemistry and Biophysics, University of California, San Francisco, CA, United States 26 
13 Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA, United States 27 
14 Mitochondrial Research Group, UCL Great Ormond Street Institute of Child Health, and Metabolic Unit, Great 28 
Ormond Street Hospital for Children NHS Foundation Trust, London, UK 29 
15 Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, 30 
Copenhagen, Denmark   31 
16 Department of Medicine, University of Udine, Udine, Italy 32 
17 Department of Pathology, Yale University School of Medicine, New Haven, CT, United States 33 
18 Human Genetics, David Geffen School of Medicine, University of California, Los Angeles CA, United States 34 
19 Neuromuscular Center, Institute for Exercise and Environmental Medicine of Texas Health Resources and 35 
Department of Neurology, University of Texas Southwestern Medical Center, United States 36 
20 Sleep Center of Excellence and Division of General Medicine, Department of Medicine, Columbia University Irving 37 
Medical Center, New York, NY, United States 38 
21 Thomas Jefferson University, Department of Pathology, Anatomy and Cell Biology and MitoCare Center, 39 
Philadelphia, PA, United States 40 
22 Department of Neurology, H. Houston Merritt Center, Columbia Translational Neuroscience Initiative, Columbia 41 
University Irving Medical Center, New York, NY, United States 42 
23 New York State Psychiatric Institute, New York, NY, United States 43 
* Correspondence: martin.picard@columbia.edu   44 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 28, 2022. ; https://doi.org/10.1101/2021.11.29.470428doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.29.470428
http://creativecommons.org/licenses/by-nc-nd/4.0/


 2 

Abstract 1 
Patients with primary mitochondrial diseases present with fatigue and multi-system disease, are often 2 
lean, and die prematurely, but the mechanistic basis for this clinical picture remains unclear. Integrating 3 
data from 17 cohorts of patients with mitochondrial diseases (n=690), we find that clinical mitochondrial 4 
disorders increase resting energy expenditure, a state termed hypermetabolism. In a longitudinal 5 
cellular model of primary patient-derived fibroblasts from multiple donors, we show that genetic and 6 
pharmacological disruptions of oxidative phosphorylation (OxPhos) similarly trigger increased energy 7 
consumption in a cell-autonomous manner, despite near-normal OxPhos coupling efficiency. 8 
Hypermetabolism is associated with mtDNA instability, activation of the integrated stress response, 9 
increased extracellular secretion of age-related cytokines and metabokines including GDF15, as well 10 
as an accelerated rate of telomere erosion and epigenetic aging, and a reduced Hayflick limit. Together 11 
with these dynamic measures, we have generated a longitudinal RNASeq and DNA methylation 12 
resource dataset, which reveals conserved, energetically demanding, genome-wide recalibrations in 13 
response to OxPhos dysfunction. The increased energetic cost of living, or hypermetabolism, in cells 14 
and organisms with OxPhos defects has important biological and clinical implications. 15 
 16 
Keywords: mitochondrial disorders, longitudinal, energy expenditure, epigenetics, GDF15, cell-free 17 
mitochondrial DNA  18 
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Introduction 1 

 Mitochondrial diseases are caused by mutations in either the mitochondrial (mtDNA) or nuclear 2 
(nDNA) genomes, which impair oxidative phosphorylation (OxPhos) and the ability to convert food 3 
substrates into ATP 1. However, cellular dysfunction arises even when ATP levels are normal 2-4 
4, suggesting that energy deficiency may not be the primary disease initiator. In animal models, OxPhos 5 
defects trigger nuclear transcriptional responses, including the integrated stress response (ISR) 3,5-8, 6 
and downstream gene products such as growth differentiation factor 15 (GDF15) are secreted 7 
systemically where they impact metabolic functions 9,10. This implicates conserved systemic signaling 8 
pathways in the pathogenesis of mitochondrial diseases 11. Considering that these stress pathways 9 
entail fundamentally energetically demanding cellular processes, OxPhos defects could therefore 10 
increase energy consumption at the cellular and organismal levels. However, the metabolic costs of 11 
cellular and systemic recalibrations in mitochondrial disorders have not been defined. Here we examine 12 
this question in clinical datasets and in two in vitro models. 13 

Clinically, OxPhos dysfunction causes a broad spectrum of multi-system disorders where 14 
symptoms include, among others, fatigue and exercise intolerance 12,13. As a result, most patients with 15 
mitochondrial diseases curtail physical activity and exercise 14,15. A common misconception arising from 16 
this clinical picture is that a reduced mitochondrial capacity to oxidize substrates16 coupled to minimal 17 
physical activity levels would promote an energy conservation response, resulting in positive energy 18 
balance and body fat accumulation, leading to obesity. However, patients with mitochondrial diseases 19 
are rarely obese. In fact, patients with moderate to severe disease on average classify as underweight 20 
17. Although gastro-intestinal symptoms that limit food intake or absorption could contribute to this 21 
phenotype, the rarity of obesity in mitochondrial disease remains a clinical paradox. This may be 22 
resolved by the counterintuitive notion that mitochondrial OxPhos dysfunction may not decrease energy 23 
consumption and expenditure but may rather increase the energetic cost required to sustain basic 24 
physiological functions. 25 

Living organisms avoid thermodynamic decay to grow and survive by consuming energy. The 26 
amount of energy expended relative to the minimal metabolic rate required to sustain life is defined as 27 
metabolic efficiency. Strong evolutionary pressures have optimized metabolic efficiency in organisms, 28 
thereby minimizing the amount of ATP required to sustain life 18. One evolutionary strategy includes the 29 
choice of metabolic pathways to derive ATP (OxPhos vs glycolysis), which have different ATP yields 30 
and metabolic costs 19. Within cells, metabolic costs arise mainly from transcription/translation 31 
processes (~60% of total energy demands), the maintenance of ionic balance, as well as organelle 32 
biogenesis and degradation 20,21, which includes mitochondrial turnover. Mitochondrial biogenesis 33 
comes at a substantial cost because of the extensive mitochondrial proteome 19. In mitochondrial 34 
diseases, the intracellular heterogeneous mixture of mitochondria with mutant and wild-type mtDNA 35 
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(i.e., heteroplasmy) triggers exaggerated biogenesis 22, a phenomenon predicted to increase the basal 1 
metabolic cost of organelle maintenance and total energy expenditure 23. Accordingly, a re-analysis of 2 
resting energy expenditure (REE) in animal models of mitochondrial OxPhos dysfunction is elevated by 3 
15-85%, including in Crif1-/- mice with impaired mitochondrial translation 10, Clpp-/- mice with deficient 4 
proteostasis 24, Polg mutator mice 10, ANT1-/- mice with impaired ATP/ADP exchange 25, and ATP6-5 
mutant flies 26. Thus, reasoning from thermodynamics principles, impaired OxPhos capacity may 6 
impede the natural and optimal balance of energy transformation pathways, consequently reducing 7 
metabolic efficiency. Therefore, we reasoned that patients with severe OxPhos defects would similarly 8 
exhibit impaired metabolic efficiency and increased REE – a state known as hypermetabolism. Other 9 
causes of OxPhos dysfunction including mutations in nuclear genes encoding respiratory chain 10 
assembly factors like SURF1 27, which cause disease and decrease lifespan in humans 28, could also 11 
trigger hypermetabolism. 12 

Shortened lifespan is a ubiquitous feature of mitochondrial diseases 29-31 and most animal 13 
models with severe OxPhos dysfunction die prematurely 32-35. But is there a causal link between 14 
hypermetabolism and lifespan in humans? Among healthy individuals, elevated REE or 15 
hypermetabolism measured by indirect calorimetry (oxygen consumption, VO2) predicts more rapid age-16 
related physiological decline 36 and independently predicts 25-53% higher mortality over the following 17 
20-40 years 37,38 – an effect double that incurred by smoking cigarettes 38. In human stem cells, 18 
hypermetabolism was also correlated with senescence and other aging phenotypes 39. Mechanistically, 19 
multiple processes compete for limited energetic resources within cells 40,41, particularly under energy-20 
restricted conditions. Because some cellular operations are prioritized over others 20, the energetic cost 21 
of stress responses and their associated increase in transcription/translation can inhibit growth and cell 22 
division, even triggering premature senescence 42,43. Recently, it was reported that excessive activation 23 
of the ISR itself inhibits cell population growth 8. Thus, OxPhos-induced ISR activation and the resulting 24 
hypermetabolism could curtail growth and/or cause premature death by forcing an energetic tradeoff 25 
between stress responses and growth/survival pathways. 26 

Taken together, the observations that: i) genetic mitochondrial OxPhos defects trigger integrated 27 
stress responses, ii) cells operate under energetic constraints where the prioritization of stress 28 
responses and transcription/translation costs can precipitate senescence, and iii) decreased metabolic 29 
efficiency predicts shorter lifespan in humans and other animals, lead to the following hypothesis: 30 
genetic defects causing OxPhos dysfunction trigger hypermetabolism both physiologically and cell-31 
autonomously, a phenotype associated with reduced lifespan.  32 

Here we test this hypothesis by re-analyzing data from multiple clinical cohorts of primary 33 
mitochondrial diseases with direct and indirect assessments of energy expenditure and lifespan, and 34 
via longitudinal in vitro studies in patient-derived human fibroblasts. We have developed a cellular 35 
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system that provides high temporal resolution, repeated-measures of bioenergetic and multi-omic 1 
molecular recalibrations across the cellular lifespan. Using this model, we show that both genetic and 2 
pharmacological mitochondrial OxPhos defects trigger marked hypermetabolism in a cell-autonomous 3 
manner. We identify mtDNA instability, activation of the ISR, increased secretory activity, and 4 
transcriptional upregulation of transcriptional/translational stress pathways as potential contributors to 5 
hypermetabolism. Finally, we report that OxPhos defects and hypermetabolism are linked to 6 
accelerated telomere shortening and epigenetic aging in fibroblasts, and provide a publicly available 7 
longitudinal dataset to query epigenetic and transcriptional signatures conserved across both cellular 8 
models. Our analyses highlight how the associated resource dataset can serve as a discovery platform 9 
to identify potentially targetable pathways contributing to hypermetabolism, as well as downstream 10 
mechanisms linking hypermetabolism to cellular and clinical phenotypes. Together, these translational 11 
data implicate hypermetabolism as a pathophysiological feature of mitochondrial diseases and lifespan 12 
reduction.  13 

 14 

Results 15 

Meta-analysis of metabolic rate and physiology in primary mitochondrial disease 16 

To test the hypothesis that mitochondrial OxPhos defects are associated with increased energy 17 
expenditure and shortened lifespan (Figure 1A), we integrated and re-analyzed data from a total of 17 18 
cohorts representing a total of 690 patients with mitochondrial diseases and 225 healthy controls 19 
(provided by the authors or directly from publications) (Table 1). The heterogenous mixture of functional 20 
and dysfunctional mitochondria within single cells is well known to cause mitochondrial 21 
hyperproliferation and increase mtDNA copy number 44-47, as illustrated within a single patient skeletal 22 
muscle cell in Figure 1B. Increased biogenesis must naturally incur increased energy expenditure at 23 
the cellular level 23, which we reasoned may translate to elevated whole-body REE.  24 

 In patients with mitochondrial diseases, resting heart rate, which correlates with whole-body 25 
REE 48, was on average 10.7% higher than healthy controls (p<0.01, Figure 1C). This tachycardia 26 
reached up to +46% when patients and controls performed mild exercise at the same absolute workload 27 
(data not shown). Both at rest and during mild physical activity, as initially reported in a small study 49, 28 
patients had on average 244% higher blood or urine catecholamine levels (p<0.05, Figure 1D), 29 
particularly norepinephrine (NE), a neurohormone sufficient to elevate REE when administered 30 
systemically to healthy individuals 50. To estimate REE in mitochondrial disease patients, we used 31 
resting whole body VO2 expressed relative to body weight, which, although imperfect, was available in 32 
the largest number of studies. Strikingly, VO2 measured by indirect calorimetry across 6 cohorts of 33 
patients with mtDNA defects was on average 30% higher at rest (p<0.0001) than in healthy controls, a 34 
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difference characterized by a very large effect size (Hedge’s g=2.4, Figure 1E). REE estimates using 1 
the Weir equation 51 (combining both VO2 and VCO2, readily available in 3/6 cohorts) yielded equivalent 2 
results within 1.2% of the group difference derived from VO2 alone. Notably, VO2 was elevated by more 3 
than half (+51%) during mild physical activity in mitochondrial diseases, consistent with hyperkinetic 4 
cardiocirculatory responses to exercise in this population 52. Thus, these gross body mass normalized 5 
REE values reveal increased energy consumption (i.e., lower metabolic efficiency) in mitochondrial 6 
diseases, at rest and particularly during mild physical challenges.  7 

 8 
Figure 1. Meta-analysis of human studies reveals increased energy expenditure and shortened lifespan 9 
in primary mitochondrial diseases. (A) Overall conceptual model linking mtDNA- and nDNA-related OxPhos 10 
defects to impaired metabolic efficiency at the cellular level, impacting whole-body resting energy expenditure and 11 
clinical outcomes. (B) Skeletal muscle biopsy with individual muscle fibers stained with cytochrome c 12 
oxidase/succinate dehydrogenase (COX/SDH) histochemistry to reveal functional (brown) and respiratory chain 13 
deficient (blue) mitochondria. In the affected cell (middle), three sub-regions showing low, intermediate, and high 14 
mtDNA mutation load were captured by laser capture microdissection and subjected to quantitative PCR analysis 15 
as in (Picard et al. 2012). Subcellular regions with high mtDNA mutation load show elevated mtDNA density, which 16 
is predicted to increase the energetic cost due to maintenance and turnover processes. WT, wild type. (C) Meta-17 
analysis of human mitochondrial disease cohorts showing elevated resting heart rate (n=104 controls, 111 18 
patients), (D) catecholamines (urinary-Cohort 3 and blood-Cohort 6) at rest or during fixed-intensity exercise (n=38 19 
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controls, 19 patients), (E) whole-body oxygen consumption measured by indirect calorimetry at rest or during 1 
response to mild exercise challenge; 1 before training, 2 after training. Slope refers to the rate of increase in VO2 2 
relative to work rate, where a higher slope indicates increased energetic cost for a given work rate (n=56 controls, 3 
78 patients). (F) Body mass index (BMI) across mitochondrial disease cohorts and compared to national averages 4 
(USA, UK, Italy) (n=285 controls, 174 patients). (G) Average life expectancy in individuals with mitochondrial 5 
diseases relative to national averages (n=301 patients). Data are means ± SEM, with % difference between 6 
mitochondrial disease and control group where available. (H) Mortality (age of death) over 10 years (2010-2020) 7 
in Cohort 17 compared to national averages for women and men (n=109 patients). See Table 1 for cohort details. 8 
Total n=225 healthy controls, 690 patients. Groups compared by paired t tests (C and F) or one-sample t tests (D 9 
and E), * p<0.05, ** p<0.01, **** p<0.0001. 10 

The increase in REE is particularly striking given that patients with mitochondrial diseases on 11 
average have lower muscle mass 17, which is the major site of activity-dependent energy consumption. 12 
Therefore, the lower muscle mass in patients would be expected to reduce energy expenditure, unless 13 
the tissues intrinsically exhibited impaired metabolic efficiency, and thus consumed more energy per 14 
unit time just to sustain homeostasis. Therefore, the meta-analysis of these clinical data from multiple 15 
cohorts combining hundreds of patients reveals an increased energetic cost of living per unit of body 16 
mass – or hypermetabolism – in mitochondrial diseases. 17 

Physiologically, hypermetabolism is expected to produce a negative energy balance, expending 18 
more energy substrates than are ingested, generally preventing the accumulation of body fat. 19 
Accordingly, body mass index (BMI), a gross estimate of adiposity, was on average 9.8% lower (p<0.05) 20 
patients with mitochondrial diseases compared to controls (23% lower than national averages across 3 21 
countries) (Figure 1F). In one study, fat mass index, a more precise indicator of body fat, was 21.9% 22 
lower in mitochondrial disease patients 17. Moreover, although not all patients are thin, patients with 23 
more severe disease manifestations tended to have lower BMI (r=-0.25, p=0.018) 17, suggesting that 24 
more severe mitochondrial OxPhos dysfunction in humans contribute to prevent the accumulation of 25 
body fast and obesity. Again, this result is in line with those in animal models of OxPhos defects, which 26 
similarly show hypermetabolism and reduced adiposity 10,24-26.   27 

This clinical picture of mitochondrial diseases marked by increased REE and reduced body fat 28 
was associated with a 3-4-decade reduction in lifespan among adults (Figure 1G) 31. In a 10-year 29 
longitudinal observational study from the UK, peak mortality in mixed genetic diagnoses of mitochondrial 30 
diseases occurs up to 3 decades earlier than the national reference (Figure 1H). In children with severe 31 
pediatric forms of mitochondrial diseases, including diseases caused by autosomal recessive 32 
respiratory chain defects (e.g., SURF1 mutations: median lifespan 5.4 years 28), lifespan can be reduced 33 
by >90%. Heterogeneity between genetic diagnoses also highlights possible mutation-specific effects 34 
on hypermetabolism (Extended Data Figure 1). Together, these multimodal physiological data 35 
establish hypermetabolism as a clinical feature of mitochondrial diseases, which could account for the 36 
rarity of obesity and also contribute to shortened lifespan in this population. 37 

Longitudinal analysis of primary human fibroblasts with SURF1 mutations 38 
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To examine if mitochondrial OxPhos dysfunction alters the REE and lifespan in a cell-1 
autonomous manner independent of clinical, medical, and socio-behavioral confounds, we next 2 
performed a longitudinal study of primary human fibroblasts with genetically defined or 3 
pharmacologically induced OxPhos dysfunction. We used cells with a stable nuclear mutation in SURF1 4 
(Surfeit Locus Protein 1), which causes partial mis-assembly and dysfunction of respiratory chain 5 
complex IV (cytochrome c oxidase, COX) 53 , leading to Leigh syndrome and death in early childhood 6 
(see Figure 1G). Primary dermal fibroblasts were obtained from 3 patients with SURF1 mutations 7 
presenting with Leigh syndrome, and from 3 healthy donors with no known mitochondrial dysfunction 8 
(Control) (Extended Data Table 1-2). Each group included one female and two male donors. To capture 9 
both baseline as well as trajectories of metabolic parameters across the entire lifespan, we passaged 10 
each fibroblast line over multiple cellular generations until growth arrest, a model that recapitulates in 11 
vivo molecular features of human aging, including canonical age-related changes in telomere length 54 12 
and DNA methylation 55. By sampling cells across the lifespan, longitudinal profiles of multiple cellular, 13 
bioenergetic, transcriptomic, epigenomic, and secreted molecular features can be modeled for each 14 
donor (Figure 2A). Although healthy cells survive for up to 250 days, here we limit our analyses to the 15 
maximal lifespan of SURF1-mutant cells, ~150 days.  16 

Beyond allowing longitudinal assessments of molecular and bioenergetic parameters as cells 17 
transition from early-, mid-, and late-life, one major advantage of time-resolved trajectories with 18 
repeated-measures is that this approach de-emphasizes potential bias of any single time-point and 19 
provides more accurate estimates of stable cellular phenotypes for each donor and treatment condition. 20 
The use of primary human cells obtained from multiple donors, compared to the same experiment 21 
repeated in immortalized cell line(s), also provides a more robust test of generalizability of the data. 22 
Throughout the text, we report standardized measures of effect sizes (Hedge’s g) where g>0.2 is 23 
considered a small, g>0.5 a medium, and g>0.8 represents a large effect size, which are considerably 24 
more informative to compare small groups (3 donors per group) 56. 25 

SURF1 mutations cause hypermetabolism 26 

We first examined the effect of SURF1 mutations using extracellular flux analysis (Seahorse 27 
XFe96) of oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) (Figure 2B-C). 28 
Using standard stoichiometric ratios for oxygen consumed, protons pumped, and linked ATP synthesis 29 
under standard conditions, OCR and ECAR can be transformed into interpretable ATP production rates 30 
using the methods described in 57. When added together, OxPhos-derived (JATP-OxPhos) and Glycolysis-31 
derived ATP flux (JATP-Glyc) reflect the total energetic demand (JATP-Total) of each cell population 32 
(Extended Data Figure 2A). This approach is the cellular equivalent to REE measurements through 33 
indirect calorimetry in humans (Figure 1E) and mice 10,24,25.  34 
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 9 

Trajectories of JATP-OxPhos and JATP-Glyc across 150 days of lifespan are presented in Figure 2D. 1 
As expected from the SURF1 deficiency, SURF1-mutant cells (hereafter SURF1 cells) exhibited a 44% 2 
decreased JATP-OxPhos, but a 3-4-fold increased JATP-Glyc. Both parameters remained relatively stable 3 
across the lifespan (although a potential oscillatory behavior cannot be ruled out). Computing total 4 
energy expenditure showed that total ATP demand per unit of time was strikingly 91% higher in SURF1 5 
cells relative to control cells (JATP-Total, p<0.001, g=2.4) (Figure 2E). These data demonstrate a robust 6 
SURF1-induced hypermetabolic state similar, albeit of greater magnitude, to that observed in patients 7 
with mitochondrial diseases.  8 

 9 
Figure 2. SURF1 defects decrease metabolic efficiency and cause hypermetabolism without affecting 10 
coupling efficiency. (A) Schematic of the study design with primary human fibroblasts, coupled with repeated, 11 
longitudinal measures of cellular, bioenergetic, and molecular profiling across the lifespan. 3 Control and 3 SURF1 12 
donors were used for all experiments. (B) Example oxygen consumption rate (OCR) and extracellular acidification 13 
rate (ECAR) obtained from Seahorse measurements of Control and SURF1 cells. (C) Comparison of average 14 
OCR and ECAR values across the cellular lifespan. (D) Lifespan trajectories of ATP production rates (JATP) derived 15 
from glycolysis (JATP-Glyc), oxidative phosphorylation (JATP-OxPhos), and total ATP (JATP-Total: Glycolytic- + OxPhos-16 
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derived rates) over up to 150 days. Percentages show the average difference between SURF1 and Control across 1 
the lifespan. (E) Lifespan average energy expenditure (EE) by cell line, and (F) corrected for cell volume. (G) 2 
Balance of JATP derived from OxPhos and glycolysis and (H) quantified SURF1-induced metabolic shift. Dotted 3 
lines in (H) denote the range in control cells. (I) Lifespan trajectory of mtDNAcn and average mtDNAcn at the first 4 
3 time points (early life, days 5-40) and peak value across the lifespan. (J) Lifespan trajectories and averages of 5 
proton leak and (K) coupling efficiency estimated from Seahorse measurements. n = 3 individuals per group, 7-9 6 
timepoints per individual. Data are means ± SEM. * P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 0.0001, mixed 7 
effects model (fixed effect of control/SURF1 group and days grown, random effects of donor or cell line). 8 

To confirm this finding, potential confounds had to be ruled out. Non-glycolytic ECAR could 9 
inflate estimates of JATP-Glyc58. However, measured resting non-glycolytic ECAR (in the absence of 10 
glucose or in the presence of the glycolysis inhibitor 2-deoxyglucose) was not elevated in SURF1 cells 11 
(it was in fact 31% lower), confirming the specificity of the ECAR signal in SURF1 cells to glycolysis 12 
(Extended Data Figure 3D). We also confirmed that non-OxPhos-related oxygen consumption by 13 
cytoplasmic and other oxidases did not differ between experimental groups (Extended Data Figure 14 
2D). Non-mitochondrial respiration is not included in computing JATP-OxPhos, which formally excludes this 15 
parameter as a potential contributor to the hypermetabolism measured in SURF1 cells.  16 

Primary fibroblasts are continually dividing and a portion of total energy budget is expected to 17 
support cell division-related processes including DNA replication, transcription/translation, and other 18 
intracellular processes 20. Early in life (20-50 days), when division rates were mostly constant, SURF1 19 
fibroblasts compared to control cells divided on average 31.8% slower (P<0.0001, g=-1.53; and 48.4% 20 
slower when quantified across 150 days). Therefore, hypermetabolism in SURF1 cells cannot be 21 
accounted for by an accelerated division rate. In fact, normalizing JATP-Total per rate of division further 22 
exaggerates apparent hypermetabolism, where SURF1 cells expend more than double the amount of 23 
energy than controls to complete each cell cycle. Moreover, optically monitoring cell size at each 24 
passage showed that the SURF1 cell volume were moderately larger in early life and became smaller 25 
with increasing age, reaching similar volume as control cells by 150 days (Extended Data Figure 4A). 26 
Cell death was not significantly elevated (p=0.69, g=0.15, Extended Data Figure 4D-E). After 27 
accounting for cell volume, energy expenditure remained significantly elevated in SURF1 fibroblasts 28 
(p<0.0001, g=1.2, Figure 2F), demonstrating an increase in volume-specific REE. This increase is 29 
consistent in magnitude with that observed in humans (Figure 1) and animals 10,24-26 with OxPhos 30 
defects.  31 

In control cells, the balance of estimated ATP derived from OxPhos and glycolysis was 64:36%, 32 
such that under our specific tissue culture conditions (physiological 5.5mM glucose, with glutamine, 33 
pyruvate and fatty acids), healthy fibroblasts derived the majority of ATP from OxPhos. In contrast, 34 
SURF1 deficiency robustly shifted the relative OxPhos:Glycolysis contribution to 23:77% (p=4.1e-6, g=-35 
5.1), reflecting a significant shift in OxPhos-deficient cells towards an alternative, and therefore less 36 
energy efficient, metabolic strategy (Figure 2G-H). As expected, removing glucose from the media did 37 
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not substantially affect growth in control cells, but the absence of glucose was lethal to SURF1 cells 1 
within 5 days, confirming their dependency on glycolysis for survival (Extended Data Figure 3).  2 

In response to this metabolic shift towards glycolysis, we expected SURF1 cells to naturally 3 
decrease maintenance-related energetic costs by decreasing mitochondrial mass and mtDNA copy 4 
number (mtDNAcn). However, in early life, SURF1 cells had the same mtDNAcn as control cells (5-40 5 
days: p=0.99, g=0.04). And across the lifespan, SURF1 cells contained 32% more mtDNA copies, which 6 
manifested as an earlier age-related rise in mtDNAcn that reached maximal levels on average 30% 7 
higher than control cells (p=0.52, g=1.9, Figure 2I). Thus, although total mitochondrial mass was not 8 
directly assessed, elevated mtDNAcn similar to that observed in patient tissues (see Figure 1B) could 9 
contribute to increased maintenance cost and overall hypermetabolism in OxPhos-deficient cells, as 10 
suggested by mathematical modeling studies 23. 11 

One potential mechanism for the lowered metabolic efficiency is a decrease in OxPhos coupling 12 
(i.e., uncoupling) at the inner mitochondrial membrane. However, both estimated proton leak (Figure 13 
2J) and coupling efficiency (Figure 2K) measured by the proportion of OxPhos-dependent respiration 14 
not linked to ATP synthesis, were not different between control and SURF1 groups. These parameters 15 
also did not show measurable drift across the lifespan, thus ruling out mitochondrial uncoupling as a 16 
mechanism for hypermetabolism.  17 

Finally, oxygen tension can have a marked effect on the metabolism and replicative lifespan of 18 
cultured fibroblasts 59, and chronic hypoxia improves survival in fibroblasts with complex I defects and 19 
the Ndufs4 mouse model of Leigh syndrome 60. We therefore repeated longitudinal experiments in 20 
SURF1 cells at low (3%) O2 in parallel with atmospheric (∼21%) O2 (Extended Figure 5A). Compared 21 

to 21% O2, the low oxygen condition did not improve population doubling rates (Extended Data Figure 22 
5B-C), nor did it correct or alter hypermetabolism (Extended Data Figure 5D-E). Results of the low O2 23 
“hypoxia” experiments, as well as the full lifespan aging trajectory of control cells beyond 150 days, are 24 
available in the resource dataset (see Data Availability Statement). 25 

 26 

Inhibition of the mitochondrial ATP synthase triggers hypermetabolism 27 

Next, to test if hypermetabolism is a specific manifestation in SURF1 cells or a more general 28 
feature of mitochondrial OxPhos dysfunction, we took an orthogonal pharmacological approach to 29 
chronically perturb OxPhos, and repeated the lifespan assessments of energy metabolism. Starting at 30 
day 20, fibroblasts from the same three healthy donors as above were treated chronically with a 31 
sublethal concentration of the mitochondrial ATP synthesis inhibitor oligomycin (Oligo, 1nM), which 32 
induces the ISR 3,61 (Figure 3A). Oligo reduced cellular oxygen consumption rate by ~90% while largely 33 
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maintaining viability, reflected in only a moderate elevation in cell death over time (2.7% in Oligo-treated 1 
cells vs 1.4% in control cells, 20-50 days: p=0.078, g=0.70) (Extended Data Figure 4D, 6B).  2 

 In relation to energy expenditure, Oligo doubled JATP-Total across the lifespan for each of the three 3 
healthy donors (+108%, p=5.9e-9, g=2.2), thereby recapitulating the hypermetabolic state observed in 4 
SURF1 cells (Figure 3B). This robust elevation in cellular energy expenditure was already evident by 5 
5 days of treatment and remained relatively stable across the lifespan, indicating the rapidity and 6 
stability of the adaptive hypermetabolic state. As in SURF1 cells, the hypermetabolic state in Oligo-7 
treated cells was attributable to a markedly increased JATP-Glyc in excess of the decline in JATP-OxPhos, 8 
resulting in a shift outside of the optimal (i.e., normal) window of the OxPhos:Glycolysis ratio for these 9 
cells (Figure 3C-D).  10 

Reductions in cell size and division rates are strategies to minimize energetic costs. Oligo 11 
caused a small but stable 4.8% decrease in cell size (p<0.001, g=-0.35), and decreased cell division 12 
rates by 39.1% (days 20-50: p=1.3e-5, g=-1.31; 49.6% slower across 150 days) (Extended Data Figure 13 
4). Taking cell size into consideration showed that Oligo increased energy expenditure per unit of cell 14 
volume by 131% (p<0.001, g=0.97) (Figure 3E-F). Here also, hypermetabolism was not driven by 15 
significant increase in estimated proton leak (p=0.19, g=0.27) (Figure 3G) although we observed a 16 
34.4% reduction in estimated coupling efficiency (p<0.05, g=-0.59) (Figure 3H), likely arising from the 17 
expected elevation in membrane potential from ATP synthase inhibition. Unlike SURF1 mutations, Oligo 18 
decreased mtDNAcn by 39.0% early in life (20-50 days: p=3.1e-5, g=-2.42), which subsequently 19 
normalized; peak levels were similar to control levels (Figure 3I-J).  20 

 21 
Figure 3. Pharmacological inhibition of mitochondrial ATP synthesis triggers hypermetabolism. (A) 22 
Schematic of the study design for fibroblast profiling across the lifespan from 3 Control donors treated with 1nM 23 
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oligomycin. (B) Lifespan trajectories of JATP (Glycolytic + OxPhos) derived from oxygen consumption rate (OCR) 1 
and extracellular acidification rate (ECAR) obtained from Seahorse measurements across the cells’ lifespan (up 2 
to 150 days). Percentages show the total average difference between Oligo and Control. (C) Balance of JATP 3 
derived from OxPhos and glycolysis across the lifespan and (D) Oligo-induced metabolic shift. Dotted lines denote 4 
the range in control cells. (E) Relative average lifespan energy expenditure by cell line normalized to control, (F) 5 
corrected for cell volume. (G) Average of proton leak and (H) coupling efficiency measures on the Seahorse 6 
normalized to control. (I) Lifespan trajectories and (J) average mtDNA copy number at the first 3 time points (early 7 
life) and peak value across the lifespan. n = 3 individuals per group, 7-9 timepoints per individual. Data are means 8 
± SEM. * P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 0.0001, mixed effects model for Oligo vs control. 9 

 Monitoring weekly the influence of Oligo on cell morphology also revealed an unexpected 10 
morphological phenotype. Oligo-treated cells developed into a reticular network, which involved 11 
contraction of the cell body and extension of multiple cellular appendages reminiscent of neuronal 12 
dendrites (Extended Data Figure 6). This reversible phenotype exhibited regular oscillatory behavior 13 
(one-week normal morphology, one-week reticular formation). We note that oscillatory behaviors are 14 
naturally energy-dependent 62, and that such dramatic and repeated changes in cell morphology must 15 
necessarily involve the remodeling of cell membranes and cytoskeleton through energy-dependent 16 
motor and cytoskeletal components. This morphological phenotype unique to the Oligo treatment could 17 
contribute to the higher energy expenditure in Oligo-treated cells (+131% ATP consumption per unit of 18 
cell volume) vs SURF1 cells (+91%), which did not exhibit transitory morphological changes.  19 

 20 

OxPhos defects trigger the ISR and mtDNA instability 21 

 To understand the specific organelle-wide mitochondrial recalibrations in hypermetabolic 22 
SURF1 and Oligo-treated cells, we performed bulk RNA sequencing across the lifespan in each donor 23 
cell line (total 60 time points, average of ~7 timepoints per cell line). We then systematically queried 24 
mitochondrial pathways from MitoCarta 3.0 63, in addition to all mtDNA-encoded transcripts (37 genes), 25 
and core ISR-related genes (ATF4, ATF5, CHOP/DDIT3, GDF15). Both SURF1 defects and Oligo 26 
treatment downregulated the majority of intrinsic mitochondrial pathways, including mtDNA stability and 27 
decay, which was downregulated in both SURF1 (-15%, p=1.7e-8, g=-1.65) and Oligo-treated cells (-28 
19%, p<0.001, g=-0.57) relative to control (Figure 4A). Although SURF1 and Oligo-treated cells 29 
exhibited similar overall mitochondrial transcriptional changes, some pathways showed opposite 30 
responses (e.g., expression of mtDNA-encoded genes, Pathway 3 in Figure 4B), suggesting the 31 
existence of partially specific mitochondrial recalibrations among SURF1 and Oligo models. In 32 
hierarchical clustering analysis across all pathways, the ISR pathway diverged most strongly from other 33 
pathways, and was upregulated +110% in SURF1 (p=6.5e-7, g=1.76) and +217% in Oligo-treated cells 34 
(p=1.2e-8, g=0.99), reaching up to a 16-fold elevation relative to the average of the young healthy donor 35 
cells (Figure 4B). Thus, both models of OxPhos dysfunction and hypermetabolism were associated 36 
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with upregulation of the ISR, and downregulation of most mitochondrial pathways, notably mtDNA 1 
maintenance, suggesting a potential effect on mtDNA stability. 2 

To our knowledge, neither SURF1 mutations nor Oligo treatment are established to cause 3 
mtDNA instability, but given the transcriptional changes described above and that heteroplasmy among 4 
mtDNA species is predicted to increase energetic maintenance costs 23, we directly examined mtDNA 5 
stability using two approaches. We first used long-range PCR at multiple time points across the lifespan 6 
of control, SURF1, and Oligo-treated cells, then validated the presence of mtDNA deletions across the 7 
lifespan by mtDNA sequencing, and quantified mtDNA deletion burden using eKLIPse 64 (Figure 4C-8 
D). Circos plots in Figure 4D show the break points and heteroplasmy level for each mtDNA deletion, 9 
at early and late time points along the cellular lifespan. Circos plots for all timepoints investigated (4-14 10 
timepoints per condition) are presented in Extended Data Figure 7.  11 

Consistent with previous work, healthy fibroblasts do not accumulate appreciable heteroplasmy 12 
levels of mtDNA deletions in culture. However, SURF1 cells contained on average 17-fold more unique 13 
mtDNA deletions than control cells (p<0.01, g=1.38), reaching up to 126 unique deletions at a given 14 
time point (Figure 4E-F). The effect of Oligo treatment was more modest but reached levels 3-fold 15 
higher than untreated cells (p<0.01, g=0.79), and up to 20 unique deletions per time point. The majority 16 
of deletions eliminated segments of the minor arc and were on average 6.8-7.3kb in length; deletion 17 
size was similar among the three groups (Extended Data Figure 8A-C). Point mutations were not 18 
significantly elevated in SURF1 and Oligo-treated cells, suggesting specificity of mtDNA instability to 19 
deletions (Extended Data Figure 8D). Compared to controls where the maximal heteroplasmy levels 20 
was 0.13%, SURF1 and Oligo accumulated individual deletions reaching up to 0.40% and 0.19% 21 
heteroplasmy among the cell population (Extended Data Figure 8E-F), which remains low but similar 22 
to that observed with aging in human blood and brain tissues 65,66, and possibly noteworthy for 23 
replicating fibroblasts.  24 
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 1 
Figure 4. Longitudinal mtDNA deletion profiles in OxPhos deficient SURF1 and Oligo cells. (A) RNAseq 2 
gene expression results for all MitoCarta 3.0 pathways, plus all mtDNA genes, and the integrated stress response 3 
(ISR, average of ATF4, ATF5, CHOP, GDF15). Values for each pathway are computed from the average 4 
expression levels of all genes in each pathway, expressed as the median-centered value relative to the youngest 5 
control timepoints for each pathway (rows). Each column represents a single timepoints (n=3-8) along the lifespan 6 
of each donor or treatment condition (n=9). (B) Gene expression time course of selected mitochondrial pathways 7 
from E, expressed on a Log2 scale relative to the first control timepoint (baseline). (C) 10Kb long range PCR 8 
product resolved by agarose gel electrophoresis for a control fibroblasts cultured up to 166 days (P3 to 31), and 9 
passage-matched SURF1 and Oligo-treated cells. (D) Results from mtDNA sequencing and Eklipse analysis. 10 
Each line in the circos plots depict a deletion burden in control (Donor2) and SURF1 (Patient2) and Oligo-treated 11 
(Donor2) cells from two (early and mid-lifespan) representative passages. The detection limit for mtDNA deletion 12 
was set at a call cutoff of 5% heteroplasmy. (E) Timecourse of the number of unique mtDNA deletions in control, 13 
SURF1, and Oligo-treated cells. (F) Total deletion burden in cells across 150 days of lifespan. Data are mean ± 14 
SEM. ** P < 0.01, *** P < 0.001, mixed effects model (fixed effect of Control/SURF1/Oligo group and days grown, 15 
random effects of donor or cell line). 16 

 17 
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SURF1 mutations increases aging-related secretory activity 1 

We next investigated outputs of the ISR, including the production of metabokines and cytokines. 2 
To broadly characterize changes in the cytokine stress response in patient-derived SURF1 cells across 3 
the lifespan, we designed a custom Luminex array targeting age-related proteins identified by plasma 4 
proteomics to be upregulated with human aging 67 (Figure 5). Compared to healthy donors, 5 
hypermetabolic SURF1 cells secreted higher levels of cytokines on a per-cell basis, including several 6 
pro-inflammatory cytokines, chemokines, and proteoglycans associated with the senescence-7 
associated secretory phenotype (SASP) 68 (Figure 5A). Of the 27 cytokines detected in extracellular 8 
media, SURF1 cells achieved the highest cytokine concentration across the lifespan for 23 (85%) of the 9 
cytokines, reaching up to 10-fold higher concentration than control for one of the cytokines (insulin-like 10 
growth factor binding protein, IGFbp-rp1) (Figure 5B). Upregulated cytokines also included the 11 
canonical pro-inflammatory cytokines IL-6 and IL-8. The metabokine GDF15, which is elevated in both 12 
mitochondrial disease 69,70 and human aging 67,71, and which also appears sufficient to trigger 13 
hypermetabolism in mice 10, was also upregulated by 110% in SURF1 vs control cells (20-80 days, 14 
p=0.035, g=1.0, Figure 5C). 15 

We attempted to validate IL-6 and GDF15 levels in both SURF1 and Oligo-treated cells by 16 
ELISAs. The ELISAs confirmed that IL-6 increased exponentially in aging fibroblasts, displaying altered 17 
onset and trajectories in both SURF1 (upregulated) and Oligo-treated cells (downregulated) (Figure 18 
5D). Compared to control fibroblasts where GDF15 was undetectable in early passages, SURF1 mutant 19 
fibroblasts began to secrete GDF15 prematurely, and Oligo treatment acutely induced robust GDF15 20 
secretion by 1-2 orders of magnitude over the first few weeks (Figure 5E), consistent with the rapid 21 
induction of the ISR particularly in Oligo-treated cells (see Figure 4B). 22 

As cell-free mitochondrial DNA (cf-mtDNA) is associated with human aging 72 and was recently 23 
found to be elevated in the plasma of patients with mtDNA mutations/deletions 73, we quantified cf-24 
mtDNA in the media along the lifespan. Both mtDNA and nDNA were detectable at appreciable levels 25 
(Extended Data Figure 9A-B). Compared to media of control cells, cf-mtDNA levels were 73% higher 26 
in SURF1 (g=0.5) and 100% higher (g=0.3) in the media of Oligo-treated cells (Figure 5F), although 27 
these differences did not reach statistical significance due to the high temporal variation of this 28 
phenotype. Parallel measurements of cell-free nuclear DNA (cf-nDNA) showed that the released 29 
mitochondrial-to-nuclear genome ratio was on average 117% higher in SURF1 than control cells 30 
(p<0.01, g=0.85, Extended Data Figure 9C-D), indicative of selective mtDNA release. Given the 31 
energetic cost associated with protein secretion 21,74, we suggest that the cytokine/metabokine and 32 
mtDNA hypersecretory phenotype in SURF1 and Oligo cells must contribute to hypermetabolism along 33 
with other cellular processes.  34 
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 1 
Figure 5. OxPhos defects trigger hypersecretion of metabokines and age-related cytokines. (A) Cytokine 2 
dynamics across the lifespan measured on two multiplex (Luminex) arrays. Cytokine levels are normalized to the 3 
number of cells at the time of sampling, shown as Log2 median-centered for each cytokine; samples with 4 
undetectable values are shown as grey cells. Columns represent repeated-measures (n=6-8) along the lifespan 5 
of each controls and SURF1 donor (n=3 per group). (B) Comparison of maximum cytokine concentration reached 6 
in each of the SURF1 and healthy control donors, showing general upregulation of most metabokines and 7 
cytokines. The value for TGF-⍺ is heavily influenced by a single very high value in Donor 3. (C) Cell-free GDF15 8 
time course as measured on the Cytokine array. Inset compares early release between 20-80 days. (D) Media IL-9 
6 levels across the cellular lifespan by enzyme-linked immunosorbent assay (ELISA), normalized to the number 10 
of cells at time of sampling. (E) Media GDF15 levels across the cellular lifespan measured by ELISA, normalized 11 
to the number of cells at time of sampling. Samples with non-detectable values (N.D.) are shown as zero values. 12 
(F) Cell-free mitochondrial DNA dynamics across the cellular lifespan using qPCR, normalized to the number of 13 
cells at time of sampling. n = 3 per group, 6-13 timepoints per condition. Data are means ± SEM. * P < 0.05, ** P 14 
< 0.01, *** P < 0.001, **** P < 0.0001, mixed effects model (fixed effect of Control/SURF1/Oligo group and days 15 
grown, random effects of donor or cell line). 16 
Abbreviations: CCL7, C-C motif chemokine ligand 7; IL-8, interleukin 8; CHI3L1, Chitinase-3-like protein 1; MMP7, 17 
Matrix metallopeptidase 7; IL-6, Interleukin 6; IGFBP-rp1, Insulin-like growth factor binding protein 7; TNF-RII, 18 
tumor necrosis factor receptor superfamily member 1B; TGF-⍺, Tumor growth factor alpha; IFN-𝛾, Interferon 19 
gamma; TNFRSF9, TNF receptor superfamily member 9; GDF-15, growth differentiation factor 15; TNF-β, Tumor 20 
necrosis factor beta; Fas, Fas cell surface death receptor; CCL3, C-C motif chemokine ligand 7; FSTL1, Follistatin 21 
like 1; CCL23, C-C motif chemokine ligand 23; TIMP-1, Tissue inhibitor of metallopeptidase 1; CD163, CD163 22 
antigen; Lumican, keratan sulfate proteoglycan Lumican; IL-18, Interleukin-18; CXCL16, C-X-C motif chemokine 23 
ligand 16; Fetuin A, Alpha 2-HS glycoprotein; ALCAM, activated leukocyte cell adhesion molecule; TNF-RI, TNF 24 
Receptor Superfamily Member 1A; PCSK9, Proprotein convertase subtilisin/kexin type 9; TFPI, Tissue factor 25 
pathway inhibitor. 26 
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OxPhos defects upregulate energy-demanding cellular programs 1 

 From our longitudinal RNAseq dataset, we noted changes in the totality of genes related to the 2 
ribosomal machinery, which is produced in proportion with cellular biosynthetic demands (Extended 3 
Data Figure 10A). Despite their significantly reduced growth rate, both SURF1 (+19%, p=2.4e-10, 4 
g=2.59) and Oligo-treated cells (+50%, p<0.01, g=0.86) showed a marked time-dependent upregulation 5 
in the ribosomal machinery, consistent with the hypersecretory phenotype (secreted proteins must be 6 
transcribed and translated) as well as the elevated metabolic demands of translation that competes with 7 
cell growth 42,74 (Extended Data Figure 10B). To characterize the genome-wide gene regulatory 8 
changes associated with these cellular phenotypes, and to gain insights into the potential cause(s) of 9 
hypermetabolism in response to OxPhos dysfunction, we next deployed time-sensitive models of gene 10 
regulation and DNA methylation. 11 

 We first visualized the transcriptomic profiles of SURF1 and Oligo-treated cells using t-12 
distributed stochastic neighbor embedding (t-SNE). Spatial embedding along the two major tSNE 13 
components captured three main features of the transcriptome: i) substantial interindividual differences 14 
separating each donor/cell line, ii) age-dependent shifts in transcriptional profiles, iii) clustering among 15 
both SURF1 and Oligo cells (Figure 6A). To harness the longitudinal nature of these data, we used a 16 
linear mixed effects model (LMER) to identify time-dependent differentially expressed genes (DEGs, 17 
FDR<0.05 threshold) between SURF1 and Oligo relative to control, across the cellular lifespan 18 
(Supplemental Files 1-2). Consistent with the similar degree of hypermetabolism and metabolic shift 19 
of both cellular models (see Figures 2D-F and 3B-F), there was a relatively high degree of overlap in 20 
DEGs between SURF1 and Oligo-treated cells (Supplemental Files 3-4). Genes with the largest effect 21 
sizes conserved across SURF1 and Oligo showed up to 2-4-fold upregulation (39%, n=1,503) or 22 
downregulation (35%, n=1,344) (Figure 6B-C). Differences were larger and more stable between 23 
SURF1 and control, compared to more progressive effects following the beginning of the Oligo 24 
treatment (Extended Data Figure 11), consistent with the constitutive genetic deficiency in SURF1 25 
cells compared to the novel insult with Oligo treatment. The effects of OxPhos dysfunction on the 26 
expression of the 37 mtDNA genes across the cellular lifespan are shown in Extended Data Figure 12. 27 

To identify gene regulatory pathways associated with hypermetabolism, we analyzed gene 28 
expression changes using iPAGE, an information-theoretic computational framework that enables the 29 
systematic discovery of perturbed cellular pathways from gene expression data 75. Both SURF1 and 30 
Oligo-treated cells displayed a significant perturbation of transcription and translation processes (Figure 31 
6D). Upregulated genes were enriched for pathways related to Golgi vesicle transport, fibroblast growth 32 
factor (FGF) binding, VEGF receptor signaling pathway, and the unfolded protein response, a signature 33 
consistent with increased secretion and inter-cellular signaling activity. Downregulated genes were 34 
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over-represented for processes relating to cell division, consistent with the slower division rates (i.e., 1 
quiescence or senescence) of SURF1 and Oligo-treated cells.  2 

 3 
Figure 6. Mitochondrial defects trigger conserved transcriptional remodeling. (A) t-distributed stochastic 4 
neighbor embedding (t-SNE) of RNAseq data from control, SURF1, and Oligo-treated human fibroblasts across 5 
the lifespan. (B) Overlap of significantly upregulated (red) or downregulated (blue) genes in SURF1 and Oligo 6 
groups relative to control (linear mixed effects model, FDR-corrected p value < 0.05). Note, outer group counts 7 
include shared counts in overlapping ring. Gray indicates diverging direction of regulation between SURF1 and 8 
Oligo DEGs. (C) Expression levels of the top 100 differentially-expressed genes in SURF1 (<75 days grown) and 9 
Oligo-treated cells (days 35 to 110). (D) iPAGE analysis of RNAseq data showing the top 40 enriched gene 10 
ontology pathways in top overlapping up- and down-regulated genes, conserved across both SURF1 and Oligo 11 
groups relative to control. Note, -log(p value) > 8 are mapped as dark orange. (E) Gene expression timecourses 12 
of select genes related to the ISR, senescence, nucleotide metabolism, and telomere maintenance. Log2 13 
expression values (TPM) are normalized to the median of controls youngest timepoints. n = 3 donors per group, 14 
3-8 timepoints per donor. 15 

Lifespan gene expression trajectories in this dataset showed some noteworthy features of 16 
OxPhos dysfunction and hypermetabolism at the single-gene level: i) ISR-related genes are robustly 17 
upregulated in a time-dependent manner by up to ~16-fold for the transcription factor CHOP (DDIT3), 18 
and ~60-fold for its downstream target GDF15; ii) the age-related upregulation of senescence-related 19 
genes (e.g., p21/CDKN1A) occurs prematurely in hypermetabolic SURF1 and Oligo cells; iii) key 20 
nucleotide metabolism enzymes such as thymidine kinase 1 (TK1) are robustly downregulated in 21 
SURF1 cells, possibly contributing to mtDNA instability 76; and iv) telomere and longevity-related genes 22 
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such as the metabolic sensor SIRT1 and the telomere protection complex component CTC1 are 1 
upregulated 2-4-fold (Figure 6E). These broad changes in gene expression, largely consistent with 2 
previous in vitro work 3,77, prompted us to examine another major layer of gene regulation, DNA 3 
methylation. 4 

DNA methylation recalibrations in OxPhos-induced hypermetabolism 5 

To examine nuclear DNA methylation (DNAm) and create a resource dataset with broad utility 6 
for pathway discovery, we measured DNA methylation levels at 865,817 CpG sites (Illumina EPIC array) 7 
in Control, SURF1, and Oligo-treated cells at multiple time points across their cellular lifespan (n=66). 8 
We then leveraged these high dimensional data by building mixed-effects models that consider the 9 
underlying data structure (donors, longitudinal observations) to identify robust conserved DNA 10 
methylation changes associated with OxPhos dysfunction and hypermetabolism. Visualizing the 11 
general data structure using t-SNE showed, that: i) as expected, the methylome signature of each donor 12 
was relatively distinct; ii) DNAm exhibited consistent age-related shifts, iii) SURF1 cells clustered 13 
separately from control, while iv) Oligo cells caused a modest time-dependent shift away from their 14 
respective controls (Figure 7A). These data therefore add to previous evidence in HEK293 cells78 and 15 
mice79, providing a robust platform for discovering conserved nuclear DNAm signatures associated with 16 
hypermetabolism-causing OxPhos defects in primary human cells. 17 

At the single CpG level, we asked which differentially methylated positions (DMPs) were stably 18 
and consistently either hypo- or hypermethylated in both SURF1 or Oligo-treated cells relative to control. 19 
Because transcriptionally relevant DNAm changes may operate across multiple CpGs, we 20 
complemented this approach by systematically examining differentially methylated regions (DMRs), 21 
which include multiple nearby CpGs exhibiting similar hypo- or hypermethylated changes in our 22 
statistical model 80 (see Methods for details). Figure 7B shows the overlap in significant DMPs and 23 
DMRs (threshold FDR<0.05). Of the overlapping DMPs between SURF1 and Oligo, 14.8% were 24 
hypermethylated, and 45.9% were hypomethylated. Global hypomethylation is a feature of human aging 25 
and replicative senescence 55. For DMRs, the corresponding proportions were 11.1% and 46.6%, 26 
showing high agreement in the methylome recalibrations between DMPs and DMRs approaches. A 27 
notable number of significant and highly differentially methylated changes in either SURF1 or Oligo-28 
treated cells were specific to each condition (Supplemental Files 5-10), but here we focus exclusively 29 
on the changes conserved across two independent models, which therefore have the highest probability 30 
of being specifically caused by OxPhos dysfunction and associated with hypermetabolism (Figure 7C-31 
D). 32 
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 1 
Figure 7. Mitochondrial defects trigger conserved epigenetic remodeling. (A) t-distributed stochastic 2 
neighbor embedding (t-SNE) of methylome from control, SURF1-disease (<75 days grown), and oligomycin 3 
(35to110 days grown) treated fibroblasts across replicative lifespan. (B) Venn diagrams for differentially 4 
methylated CpGs (DMPs, left panel) and differentially methylated regions (DMRs, right-panel) generated from 5 
mixed effects modeling. Note, outer group counts include shared counts in overlapping ring. (C) Heatmap of top 6 
100 DMPs in SURF1-disease and Oligomycin-treated. DMPs ordered by mean methylation difference between 7 
groups. (D) Timecourse of top 3 hyper- and hypo-DMPs for SURF1 disease and oligomycin. (E) Gene regional 8 
map of top hyper- and hypo-DMRs for SURF1-disease and Oligomycin-treated fibroblasts. 5’->3’ direction. (F) 9 
Heatmap of top 20 enriched gene ontology pathways in top 1000 hyper- and hypo-DMPs & DMRs overlapping 10 
between SURF1 and Oligomycin. Note, -log(Pvalues) > 10 are mapped as dark orange. n = 3 donors per group, 11 
5-11 timepoints per donor/treatment. 12 

The most robust changes in DNA methylation were targeted at CpG islands near or on gene 13 
bodies. Relative to control cells, as in the RNAseq results, the effect sizes were larger for SURF1 14 
compared to Oligo, which induced directionally consistent but smaller effect size changes than SURF1 15 
defects (Figure 7E). A stringent analysis of the most differentially methylated genes (based on both 16 
DMSs and DMRs) showed strong enrichment for processes involving: i) development and 17 
morphogenesis, ii) regulation of cell-cell signaling and organismal communication, iii) neural 18 
development, and iv) cell adhesion (Figure 7F). As highlighted above, increased regulation of signaling 19 
and communication, along with development and morphogenesis, must entail energetically dependent 20 
processes. These data, supported by the activation of corresponding downstream transcriptional 21 
programs (Figure 6) and the observed hypersecretory phenotype in OxPhos-deficient cells (Figure 5), 22 
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document genome-wide epigenomic recalibrations consistent not with energy conservation, but with 1 
increased total energy expenditure. These data also can be further queried with specific genomic 2 
targets in mind. 3 

RC dysfunction accelerates telomere shortening and decreases lifespan 4 

Finally, given the deleterious effect of hypermetabolism-causing OxPhos defects on the lifespan 5 
of patients with mitochondrial diseases and in animal models, these genome-wide data prompted us to 6 
examine how OxPhos dysfunction and hypermetabolism relate to dynamic genomic markers of cellular 7 
aging and senescence. The complete population doubling curves of each donor (Figure 8A) provided 8 
initial evidence that cellular lifespan was reduced in SURF1 and Oligo-treated cells. The Hayflick limit 9 
(i.e., total number of cell divisions 54) was on average 53% lower in SURF1 cells (p=0.072, g=2.0), and 10 
Oligo decreased the Hayflick limit by 40% (p<0.066 g=2.0) relative to the untreated cells of the same 11 
donor (Figure 8A-B). Interestingly, the magnitude of these effects (40-53%) on total population doubling 12 
loosely corresponds to the 3-4-decade loss in human lifespan documented among adults with 13 
mitochondrial diseases (see Figure 1G-H), which would represent 38-50% for an average 80-year life 14 
expectancy.  15 

 16 
Figure 8. Mitochondrial OxPhos defects decrease lifespan and accelerate telomere shortening. (A) Growth 17 
curves of control, SURF1, and Oligo-treated cells. Population doublings were determined from both live and dead 18 
cell cells at each passage. (B) Hayflick limit defined as the total number of population doublings achieved before 19 
division rate <0.01 divisions/day for at least two passages. (C) Telomere length per population doubling, (D) rate 20 
of telomere attrition per division, and (E) terminal telomere length. (F) Rate of epigenetic aging for control, SURF1, 21 
and oligo-treated cells, calculated from the linear rate between days 25-75 (3-4 timepoints/cell line). (G) Average 22 
rate of epigenetic aging across all PC-based clocks. Each datapoint represents a different clock. (F-G) 23 
Significance values were calculated using a multiple comparison two-way anova. n=3 donors per group, 5-15 24 
timepoints per condition for telomere length. In D, data are the slope estimate for the linear regressions in C. Data 25 
are means ± SEM. * P < 0.05, ** P < 0.01. 26 

To directly measure the pace of biological aging in response to OxPhos defects, we performed 27 
repeated measures of telomere length across the cellular lifespan. This allowed us to compute the 28 
average rate (i.e. slope) of telomere shortening per population doubling or cell division (Figure 8C). 29 
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Consistent with observations of dramatically shortened telomeres in skeletal muscle of patients with 1 
mtDNA mutations 81 and recent work causally linking mitochondrial dysfunction to telomere dysfunction 2 
82, both SURF1 mutations and Oligo treatment strikingly increased the rate of telomere erosion per 3 
population doubling by 162% for SURF1 (p=0.53, g=3.2) and 769% for Oligo (p=0.09, g=1.2) (Figure 4 
8D). This means that for each cell division, OxPhos-deficient fibroblasts lose 1.6-7.7 times more 5 
telomeric repeats than healthy fibroblasts. We note that these results rely on the estimated slope across 6 
the whole cellular lifespan (single value per donor, n=3 per group) so the p values are less meaningful 7 
than the effect sizes, which are large (g>1). The terminal telomere length coinciding with growth arrest 8 
tended to be moderately higher in SURF1 and Oligo groups (Figure 8E). This could suggest that growth 9 
arrest is driven by factors other than absolute telomere length, such as the prioritization of 10 
transcription/translation over growth-related functions, which are sufficient to induce growth arrest and 11 
senescence in human fibroblasts 42,43.  12 

Next, we leveraged our DNAm dataset to quantify biological age using validated multivariate 13 
algorithms or “clocks” (DNAmAge, or epigenetic clocks) trained, in human tissues, to predict 14 
chronological age and mortality 55,83. Five different validated clocks that rely on different CpG sets and 15 
include a modification that improves their accuracy 84 were applied directly to our fibroblast time series 16 
DNAm data. These results showed that relative to the rate of epigenetic aging in control cells with 17 
normal OxPhos function, the rates of biological aging per population doubling were accelerated by an 18 
average of 131% in SURF1 cells (p<0.05, g=1.5), and to a lesser extent in Oligo-treated cells (+54%, 19 
p<0.05, g=0.6, Figure 8F-G), thus independently supporting the findings of accelerated telomere 20 
shortening. Trajectories and DNAm aging rates for each donor using all five epigenetic clocks, including 21 
those computed relative to “time in culture” rather than to population doublings, produced variable 22 
results and are presented in Extended Data Figure 13. 23 

Together, the decreased Hayflick limit, the accelerated telomere attrition rate, and increased 24 
rate of epigenetic aging converge with the senescence-related secretome and gene expression results 25 
to link OxPhos dysfunction to hypermetabolism and reduced cellular lifespan.  26 

 27 
Discussion 28 

Integrating available clinical and animal data together with our longitudinal fibroblast studies has 29 
revealed hypermetabolism as a conserved feature of mitochondrial OxPhos dysfunction. A major 30 
advantage of our cellular system is that it isolates the stable influence of genetic and pharmacological 31 
OxPhos perturbations on energy expenditure, independent of other factors that may operate in vivo. 32 
Thus, these data establish the cell-autonomous nature of hypermetabolism. Moreover, despite the 33 
diverging mode of action of SURF1 and Oligo models, as well as some divergent molecular features, 34 
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both models converge on the same hypermetabolic phenotype, adding confidence around the 1 
generalizability of this phenomenon. Our data also rule out mitochondrial uncoupling as a main driver 2 
of hypermetabolism in this system, and instead implicate the activation of energy-demanding gene 3 
regulatory programs, including but likely not limited to increased metabokine/cytokine secretion, that 4 
can compete with growth and longevity (Figure 9). Our resource cellular lifespan data provide several 5 
novel observations that agree with previous work 77, and that are relevant to understanding how primary 6 
mitochondrial OxPhos dysfunction triggers some of the physiological and phenotypic hallmarks of aging 7 
and mitochondrial diseases.  8 

 9 
Figure 9. Conceptual model including putative sources of hypermetabolism in cells and patients with 10 
mitochondrial diseases. OxPhos defects trigger mtDNA instability and cell-autonomous stress responses 11 
associated with the hypersecretory phenotype, recapitulating findings in plasma from patients with elevated 12 
metabokine and cell-free mitochondrial DNA (cf-mtDNA) levels. These responses are linked to the upregulation 13 
of energy-dependent transcriptional programs, including the integrated stress response (ISR). We propose that 14 
these processes collectively increase energy consumption, leading to hypermetabolism in patient-derived 15 
fibroblasts, and whole-body hypermetabolism in affected patients, which call for targeted and well-controlled 16 
clinical studies of energy expenditure. In dividing human fibroblasts, hypermetabolism-causing OxPhos defects 17 
curtails lifespan and accelerate canonical cellular senescence and aging markers, namely telomere length and 18 
epigenetic aging, resulting in lifespan shortening effects similar in magnitude with that observed in patients. 19 

First, we observed that the mitochondrial disease marker GDF15 was largely undetectable in 20 
the media of young, healthy fibroblasts, but increased progressively across the cellular lifespan. This 21 
finding recapitulates the age-related increase in GDF15 in humans 67,71, and adds to previous evidence 22 
of conserved age-related changes in DNA methylation in primary human fibroblasts cultured over 23 
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several months 55. Consistent with the higher GDF15 levels in primary OxPhos disorders in humans 70 1 
and mice 10, extracellular GDF15 tended to be elevated in both models of OxPhos dysfunction. Likewise, 2 
OxPhos dysfunction increased extracellular cf-mtDNA levels, in line with recent reports that cf-mtDNA 3 
is elevated in primary OxPhos disorders 73 and with aging in humans 72. The link between OxPhos 4 
dysfunction and cf-mtDNA release requires further investigation. 5 

Second, we observed that OxPhos dysfunction from SURF1 mutations, and to a lesser extent 6 
Oligo treatment, both caused secondary mtDNA instability. mtDNA instability was associated with the 7 
variable accumulation of mtDNA deletions, but not point mutations, across the cellular lifespan. Our 8 
confidence in this result is reinforced by the longitudinal nature of the mtDNA sequencing data, from 9 
the same primary cell lines examined at multiple time points. Notably, the time course data also showed 10 
that cell populations can eliminate a large fraction of mtDNA deletions within 12-14 days (mtDNA 11 
deletions are removed from one passage to the next). This is consistent with the fact that replicating 12 
fibroblasts eliminate some deleterious mtDNA deletions 85, and also that several de novo deletions 13 
removed the origin of replication of the light strand (OL), thereby preventing their replication. Whether 14 
the clonal amplification of some mtDNA deletions in SURF1 fibroblasts occurs through population 15 
selection at the cellular level, or through intracellular quality control mechanisms, or a combination of 16 
both, remains to be determined.  17 

Third, mitochondrial OxPhos dysfunction dramatically increased the telomere erosion rate per 18 
cell division, despite the adaptive transcriptional upregulation of telomere protection complex 19 
components. This effect of mitochondria on telomeres agrees with the variable telomere maintenance 20 
in mtDNA conplastic mice 86, with the life-shortening effect of pathogenic mtDNA variants 32 and OxPhos 21 
dysfunction in mice 34, and with the reduced lifespan in patients with mtDNA disease shown in Figure 22 
1G-H. A study in skeletal muscle of children with high heteroplasmic mtDNA mutations also reported 23 
excessively short telomeres, similar in length to the telomeres of healthy 80 year old controls 81. 24 
Because skeletal muscle is a post-mitotic tissue, this previous result also implies that OxPhos 25 
dysfunction could accelerate telomere attrition at a disproportionate rate, or perhaps independent from 26 
cell division, as suggested by the disconnect between the loss of telomeric repeats and genome 27 
replication/cell division observed in our hypermetabolic fibroblasts. Beyond severe OxPhos defects, 28 
mild alterations of OxPhos function driven by mild, common variants in complex I subunits genes, may 29 
also shape disease risk 87 and influence lifespan 88.  30 

Why OxPhos-induced hypermetabolism is associated with both mtDNA instability and 31 
accelerated telomere erosion remains unclear. DNA maintenance (mtDNA, and telomeres) relies on the 32 
accuracy of the molecular processes ensuring accurate replication. The energetic tradeoff between 33 
translation and growth 42 could explain why OxPhos-deficient cells, which expend a large fraction of 34 
their energy budget to upregulate transcription/translation and secretory, also grow more slowly. 35 
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Notably, DNA replication is also energetically constrained and sits at the bottom of a hierarchy of 1 
energy-consuming processes where vital processes, meaning that in a situation when energy is limited, 2 
ionic balance and translation are prioritized over division and DNA replication 20. Furthermore, cells 3 
under stress experience an energetic tradeoff between the accuracy of molecular operations and the 4 
speed of these processes, known as the energy-speed-accuracy tradeoff 89. Hypermetabolism is a 5 
global state of the cell, and no currently available approach can selectively manipulate or correct 6 
hypermetabolism without introducing unresolvable confounds. For this reason, it is currently not 7 
possible to mechanistically test this assertion. We speculate that the diversion of energetic resources, 8 
as well as substrates including nucleotides 76, may contribute to reduced DNA replication fidelity, which 9 
in turn could contribute to both mtDNA instability and telomere attrition, independent of cell division. 10 

Fourth, our longitudinal RNASeq and DNAm datasets reveal conserved recalibrations 11 
implicating developmental and translation-related pathways, as well as cell-cell communication, with 12 
OxPhos dysfunction and hypermetabolism. These identified pathways overlap with previously identified 13 
multi-omic overrepresentation analysis performed on iPSC-derived neurons from SURF1 patients 90. In 14 
both this and our study, neural development, cell signaling, morphogenesis, cell cycle, and metabolism 15 
were the predominant processes altered in SURF1-related disease. The induction of these 16 
energetically-demanding pathways that constrain growth at the cellular and possibly at the organismal 17 
level 41, could help explain why a major feature of pediatric mitochondrial disorders (including our 18 
SURF1 donors) is neurodevelopmental delay, and also why adult patients commonly display short 19 
stature (restricted growth) 30. In relation to cell-cell communication, we note that the biomarker picture 20 
of adult patients with mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) 21 
is dominated, as in our fibroblast models, by elevated (not reduced) signaling and metabolic markers in 22 
blood 70. Thus, the organism under metabolic stress does not initiate an energy-saving hypometabolic 23 
state with reduced signaling activity, but instead activates energivorous integrated stress responses 24 
that must divert and consume energetic resources, in a tradeoff with other processes such as growth 25 
and longevity pathways.  26 

Finally, the OxPhos defects in our fibroblasts triggered a shift towards glycolytic ATP production. 27 
The glycolytic shift is consistent with the physiological shift in substrate oxidation from lipids/amino acids 28 
to carbohydrates, quantified by the respiratory quotient among patients 91 and mice 92 with OxPhos 29 
defects. The active shift towards glycolysis occurs even when OxPhos is not completely obliterated. For 30 
example, although basal respiration was markedly lower in SURF1 cells, the maximal FCCP-uncoupled 31 
respiration in SURF1 cells was relatively preserved (see Figure 2B & Extended Data Figure 2C). This 32 
result implies a cellular decision to route metabolic flux towards an energetically less efficient pathway 33 
(i.e., glycolysis). This could be explained on the basis of energetic constraints and proteome efficiency, 34 
since the proteome cost of OxPhos is at least double that of glycolytic fermentation 19. Thus, cells can 35 
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“choose” to divert metabolic flux towards glycolysis even when OxPhos is at least partially functional, 1 
as in cancer, because of rising intracellular energetic constraints driven by hypermetabolism. We note 2 
again that hypermetabolism is apparent across multiple animal models of primary OxPhos dysfunction, 3 
manifesting as an elevated cost of living, even during rest and sleep in mice 10,24-26. In particular, deep 4 
phenotyping of Ant1-/- mice across three studies 25,93,94 reveals a systemic physiological picture highly 5 
consistent with mitochondrial diseases, including excessive mitochondrial biogenesis, elevated 6 
circulating catecholamine levels, severe hypermetabolism (+82-85% REE) when adjusted for lower 7 
physical activity levels, reduced adiposity, elevated mtDNAcn and mtDNA instability, and decreased 8 
median lifespan. These in vivo data thus provide additional converging evidence, beyond the clinical 9 
data in Figure 1, that mitochondrial OxPhos dysfunction impairs whole-body energetic efficiency and 10 
cause physiological hypermetabolism in mammals.  11 

 Identifying hypermetabolism as a feature of mitochondrial disease has potential clinical utility as 12 
it provides an explanatory framework for some of the major symptoms in affected patients. First, fatigue 13 
and exercise intolerance are evolutionary conserved, subjective experiences that arise when the 14 
organism consumes more energy than it would under optimal conditions (e.g., subjective fatigue during 15 
the oxygen debt after strenuous exercise, or during an infection). Thus, symptoms of fatigue could be 16 
direct consequences of impaired metabolic efficiency and hypermetabolism. Second, as noted above, 17 
severely affected patients with mitochondrial disease are usually thin, which may be attributable to not 18 
only reduced energy intake or to intestinal malabsorption, but to chronic hypermetabolism, effectively 19 
burning excess ingested calories, preventing the accumulation of excess adiposity and muscle mass. 20 
Third, alcohol appears to be poorly tolerated and associated with symptom onset in some patients with 21 
mtDNA defects 95-97, but the basis for alcohol intolerance remains unknown. Alcohol itself causes 22 
hypermetabolism in healthy individuals – increasing whole-body REE by as much as 16%, and inhibiting 23 
lipid oxidation by 31-36% 98,99. Alcohol may therefore aggravate pre-existing hypermetabolism, thus 24 
imposing further energetic constraints on vital cellular or physiological functions. Finally, chronic 25 
hypermetabolism could in part explain why infections can trigger clinical exacerbations, representing 26 
the major cause of decompensation and death in this population 29. The metabolic cost of immune 27 
activation to viral and bacterial infection is high, and cytokine production in human leukocytes is under 28 
mitochondrial regulation 100. Thus, immunity must therefore compete with other host maintenance 29 
systems 101. We speculate that in mitochondrial diseases, because the limited energetic resources are 30 
consumed at a higher rate than normal due to systemic hypermetabolism, patients may lack the 31 
necessary energetic reserve required to sustain vital organs while mounting adequate immune 32 
responses. 33 

Together, the meta-analysis of clinical data from 17 cohorts and two cellular models of OxPhos 34 
dysfunction identify hypermetabolism as a feature of mitochondrial disease. Our longitudinal patient-35 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 28, 2022. ; https://doi.org/10.1101/2021.11.29.470428doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.29.470428
http://creativecommons.org/licenses/by-nc-nd/4.0/


 28 

derived fibroblasts data delineate some of the cellular and molecular features of OxPhos-induced 1 
hypermetabolism, including sustained induction of the ISR, genome instability, hypersecretion of 2 
cyto/metabokines, and genome-wide DNA methylation and transcriptional recalibrations that 3 
emphasize the upregulation of processes related to signaling and communication (see Figure 9). A 4 
resource webtool with all data from this study, including the RNAseq and DNAm data, is available and 5 
can be explored for genes or processes of interest (see Data Availability Statement). Although further 6 
work is needed, these translational data provide a basis to rationalize some unexplained clinical 7 
features of mitochondrial diseases. The novel explanatory framework of cellular and physiological 8 
hypermetabolism provides a foundation to design well-controlled studies to further understand the 9 
extent to which hypermetabolism is a harbinger of morbidity and early mortality in patients with 10 
mitochondrial diseases. 11 

Limitations. A major open question relates to the origin and modifiability of signaling pathway(s) 12 
and cellular process(es) that underlie hypermetabolism in OxPhos deficient cells and humans. Rather 13 
than pursuing a single potential explanation, here we attempted to deeply phenotype both cellular 14 
models of hypermetabolism and to produce a foundational dataset covering several key processes and 15 
pathways previously implicated in the pathogenesis of OxPhos defects. Our dataset therefore provides 16 
a foundation that can be used as a resource to develop targeted, mechanistic experiments to i) 17 
determine the origin and modifiability of hypermetabolism in the context of OxPhos defects in vitro and 18 
in vivo, and ii) resolve the mechanism(s) linking hypermetabolism to human aging biology. The small 19 
sample size and the in vitro nature of the cellular data could be regarded as limitations of this work, 20 
potentially limiting generalizability. However, the stability of metabolic and molecular phenotypes in two 21 
distinct experimental models, across three unrelated donors (female and male) repeatedly monitored 22 
across the replicative lifespan – when cells undergo dynamic age-related changes – is a strong test of 23 
robustness for these findings. We also note that the extracellular flux analysis used to derive ATP 24 
consumption rates are indirect 58, and other approaches such as metabolic tracing experiments would 25 
be required to fully understand energy partitioning in hypermetabolic cells. Finally, the clinical 26 
phenotyping presented in Figure 1 is not exhaustive, focusing exclusively on available clinical outcomes 27 
related to energy expenditure, including indirect calorimetry without careful body composition 28 
normalization. Thus, studies are needed to fully define the clinical heterogeneity in energy expenditure 29 
among patients, as well as the neuroendocrine and metabolic manifestations of hypermetabolism. Our 30 
translational findings highlight more than ever the need for collaborative, multi-center partnerships that 31 
bridge the cellular, clinical, and patient-reported aspects of mitochondrial diseases and aging.  32 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 28, 2022. ; https://doi.org/10.1101/2021.11.29.470428doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.29.470428
http://creativecommons.org/licenses/by-nc-nd/4.0/


 29 

Methods 1 

Human cohorts 2 

Data were meta-analyzed from 17 mitochondrial disease cohorts listed in Table 1. Inclusion 3 
criteria included 1) cohorts with a genetic diagnosis for all participants and 2) including measures for at 4 
least one of the primary outcomes (resting heart rate, catecholamine levels, resting VO2 or VO2 relative 5 
to work rate, BMI, mortality). Eligible cohorts included participants from 5 countries including China, 6 
Denmark, England, Italy, and the USA. Studies were published between 2003 and 2019, covering a 16-7 
year period. Each cohort with its sample size, female/male distribution, genetic diagnoses (nDNA vs 8 
mtDNA), and symptomatology is listed in Table 1, with additional information about data extraction 9 
provided here. Each cohort included their own control group, so group level averages (not patient-level 10 
data) were use to compute effect sizes as % difference between mitochondrial diseases and control, 11 
and standardized Hedges g for each outcome measure (e.g., resting heart rate, resting VO2). Cohorts 12 
with available source data to calculate intragroup variance include error bars denoting standard error of 13 
the mean in Figure 1. 14 

Cohort 1 52 included data on resting HR and resting VO2 in patients with mixed genetic defects. 15 
Cohort 2 included four sub-studies: a) 102, b) 103, c) 104, and d) an unpublished cohort of patients with 16 
single large-scale mtDNA deletions with measures of resting HR, resting VO2, and BMI. Cohort 3 105 17 
included data on resting HR, resting urinary catecholamines, and BMI. Cohort 4 106 included data on 18 
resting HR and BMI. Cohort 5 is an unpublished cohort (the Mitochondrial Stress, Brain Imaging, and 19 
Epigenetics Study – MiSBIE) of patients with m.3243A>G mutations, which included data on resting HR 20 
and BMI. Cohort 6 107 included data on circulating catecholamines at rest and during exercise. Cohort 21 
7 91 included data on VO2 during fixed workload (65W) and BMI. Cohort 8 108 included data on resting 22 
VO2 and BMI. Cohort 9 109 included VO2 during constant work rate (40% of max), and VO2 values in 23 
ml/kg/min were adjusted to average workload achieved by each group to obtain comparable estimates 24 
of energetic demand relative to work performed. Cohort 10 14 included metabolic efficiency during 25 
constant-rate cycle ergometry (30 watts), including before and after a home-based exercise training 26 
protocol, and these values were compared to reference values in healthy individuals from 109. Cohort 27 
11 110 overlaps with Cohorts 9 and 10 and included BMI data. Cohort 12 17 included BMI data averaged 28 
between both mutation groups. Cohort 13 30 is a natural history study of adult patients with mortality 29 
data. Cohort 14 29 is a retrospective study of the causes of death in adult patients with mortality data. 30 
Cohort 15 111 is a pediatric natural history study with mortality data. Cohort 16 28 is a multi-center 31 
pediatric natural history study with mortality data. Cohort 17 is an ongoing natural history study 32 
(McFarland et al., Newcastle Mitochondrial Disease Cohort) with mortality data. 33 
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For a subset (3/6) of studies reporting both VO2 and VCO2 in the original publication, or reporting 1 
both VO2 and the respiratory quotient (RQ) from which VCO2 could be derived, we used the Weir 2 
equation 51 to estimate group-level REE differences between patients and controls. Compared to VO2 3 
(mlO2/min/kg body mass) differences between groups, the Weir equation-derived REE differences 4 
(kCal/day/kg) were on average 1.2% higher (range: -0.3% to +2.3%) than the group difference in VO2 5 
(30.0%). Future studies using proper methodology to quantify resting metabolic rate (RMR) or free-6 
living energy expenditure, normalized with sensitive body composition assessments, are needed to fully 7 
define the spectrum of hypermetabolism in affected patients. 8 

Reference BMI for the USA (29.9 kg/m2) was obtained from the National Health and Nutrition 9 
Examination Survey (NHANES) for wave 2015-2016 (n=9,544) (e-link), for the UK (28.6 kg/m2) from the 10 
Health Survey for England 2018 (n=6,600) (link), and for Italy (25.8 kg/m2) from the NCD Risk factor 11 
collaboration (link), with the combined average presented in Figure 1F. Reference values for life 12 
expectancy were obtained from the World Bank (https://data.worldbank.org/) and the average value for 13 
the USA (78.6 yr), UK (81.2 yr), and Italy (82.9 yr) (representing most cohorts included) is reported in 14 
Figure 1G. Data presented in Figure 1H represent mortality rates in the UK (reference population) for 15 
2018, and the mortality data for individuals for mitochondrial disease was collected between 2010-2020. 16 

The clinical data demonstrating hypermetabolism are derived from more than a dozen 17 
laboratories over a >15-year period, illustrating the stability of this finding. The apparent cross-study 18 
stability of clinical hypermetabolism is also unlikely to be influenced by publication or reporting bias for 19 
three main reasons: i) most studies were exploratory (as opposed to confirmatory) in nature, such that 20 
the motivation for their publication depended neither on the significance nor direction of these results, 21 
ii) baseline group differences for most parameters (e.g., resting VO2) were not primary outcomes in any 22 
studies, and in several cases these data were not analyzed nor reported in the original reports, and iii) 23 
variables such as BMI were ubiquitously reported. Moreover, to further reduce the potential of bias, the 24 
overall sample includes new, previously unpublished cohorts of clinically and genetically well-defined 25 
patient populations (see Table 1). Together, these factors increase likelihood that the findings revealing 26 
the existence of a hypermetabolic state are robust and generalizable to mitochondrial diseases 27 
represented here, which includes a relatively broad diversity of mtDNA mutations. Further work is 28 
needed to sensitively quantify hypermetabolism across the diurnal cycle, normalized to body 29 
composition (fat-free mass), and normed against population references 112. Studies linking 30 
hypermetabolism to disease severity and progression are also warranted. 31 

Skeletal muscle histology, mtDNA heteroplasmy, and mtDNA density 32 

 Human skeletal muscle from the diaphragm was subjected to sequential cytochrome c oxidase 33 
(COX, diaminobenzidine, brown) and succinate dehydrogenase (SDH, nitrobluetetrazolium, blue) 34 
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staining as described previously 113. This technique reveals segments of myofibers deficient for mtDNA-1 
encoded COX but positive for exclusively nDNA-encoded SDH 22. Sub-cellular segments of the same 2 
myofiber highlighted in Figure 1B were dissected from a 20um-thick cryosection by laser-capture 3 
microdissection (LCM) on a Leica AS LMD 6000 microscope, transferred and digested (Tween20, 4 
Proteinase K) overnight, and used as template DNA in a multiplex real-time PCR reaction that amplifies 5 
MT-ND4 and MT-ND1 amplicons within the minor and major arcs of the mtDNA, respectively, to 6 
calculate heteroplasmy levels for major arc mtDNA deletions 114. Total mtDNA density was quantified 7 
by deriving MT-ND1 copies from a standard curve, normalized per surface area (um2) of tissue used as 8 
input 113. 9 

Tissue culture 10 

Primary human dermal fibroblasts were obtained from distributor or in local clinic from 3 healthy 11 
and 3 SURF1-patient donors (IRB #AAAB0483, see below table for descriptive information and 12 
distributor). Fibroblasts were isolated from skin tissue biopsies using standard procedures. After 13 
isolation, fibroblasts were stored in 10% DMSO (Sigma-Aldrich #D4540), 90% fetal bovine serum (FBS, 14 
Life Technologies #10437036) in cryogenic tube under liquid nitrogen. To avoid freeze-shock necrosis 15 
cells were frozen gradually in an isopropanol container (Thermofisher #5100-0001) at -80°C overnight 16 
before storage in liquid nitrogen.  17 

Genotypes were confirmed by whole genome sequencing. Paired-end (PE) reads were obtained 18 
from Illumina HiSeq and processed using SAMtools (v1.2) and BaseSpace workflow (v7.0). PE reads 19 
were aligned to hg19 genome reference (UCSC) using Isaac aligner (v04.17.06.15) and BAM files were 20 
generated. Small variants including single nucleotide variants (SNVs) and insertion/deletion (Indels) 21 
were called from the entire genome using Strelka germline variant caller (v2.8). Variants specific to 22 
SURF1 gene were obtained from the genome-wide annotated vcf files using SnpSift and annotated 23 
using web ANNOVAR. 24 

To initiate cultures, cryopreserved fibroblasts were thawed at 37°C (<4min) and immediately 25 
transferred to 20ml of preheated DMEM (Invitrogen #10567022). Cells were cultured in T175 flasks 26 
(Eppendorf #0030712129) at standard 5% CO2 and atmospheric (∼21%) O2 at 37°C in DMEM (5.5 mM 27 

glucose) supplemented with 10% FBS, 50 μg/ml uridine (Sigma-Aldrich #U6381), 1% MEM non-28 
essential amino acids (Life Technologies #11140050), 10 μM palmitate (Sigma-Aldrich #P9767) 29 
conjugated to 1.7 μM BSA (Sigma-Aldrich #A8806), and 0.001% DMSO (treatment-matched, Sigma-30 
Aldrich #D4540). Cells were passaged approximately every 5 days (+/- 1 day). Oligo-treated healthy 31 
control cells were cultured in the same media as control cells supplemented with 1nM oligomycin (in 32 
0.001% DMSO, Sigma-Aldrich #75351) starting on Day 15.   33 
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Brightfield microscopy images (10x, 20x magnification) were taken before each passaged using 1 
inverted phase-contrast microscope (Fisher Scientific #11350119). Cell counts, volume and death were 2 
determined at each passage using the Countess II Automated Cell Counter (ThermoFisher Scientific 3 
#A27977). Growth rates were used to determine replating density, by pre-calculating number of cells 4 
needed to reach ~90% confluency (~2.5 million cells) at time of next passage. Cells were never plated 5 
below 200,000 cells or above 2.5 million cells to avoid plating artifacts of isolation or contact inhibition, 6 
respectively. The timing and frequency of time points collected vary by assay, with an average sampling 7 
frequency of 15 days115. Cell media was collected at each passage. Individual cell lines were terminated 8 
after exhibiting less than one population doubling over a 30-day period.	 The Hayflick limit was 9 
determined as the total number of population doublings of a cell line at the point of termination.  10 

Extended Data Table 1. Control and SURF1 donor characteristics 11 
Cell Line  Tissue Genotype Sex Age Passage* Source Cat # 

Donor 1 Dermal breast Normal male 18 1 Lifeline Cell 
Technology 

FC-0024 Lot 
# 03099 

Donor 2 Dermal breast Normal female 18 1 Lifeline Cell 
Technology 

FC-0024 Lot 
# 00967 

Donor 3 Foreskin Normal male 0 4 Coriell 
Institute AG01439 

Patient 1 Dermal upper-arm skin SURF1 
mutation male 0.25 7 Hirano lab NA 

Patient 2 Dermal upper-arm skin SURF1 
mutation male 11 5 Hirano lab NA 

Patient 3 Dermal upper-arm skin SURF1 
mutation female 9 9 Hirano lab NA 

*Passage indicates the passage at which cells were obtained before experiment began. 12 
 13 
Extended Data Table 2. Genotyping results of SURF1 patient-derived fibroblasts 14 

Cell line Surf1 mutation Exonic function dbSNP id Clinical 
significance* 

Patient 1 c.518_519del (p.S173Cfs*7)                           
c.845_846del (p.S282Cfs*7) frameshift deletion rs782316919 Pathogenic | 

Pathogenic 

Patient 2 

c.247_248insCTGC (p.R83Pfs*7) 
c.574_575insCTGC (p.R192Pfs*7) frameshift insertion rs782289759 NA 

c.C246G (p.T82T)  
C573G (p.T191T) synonymous SNV rs28715079 Benign | Likely 

Benign 

c.313_321del (p.L105_A107del) nonframeshift deletion rs759270179 NA 

c.311_312insA (p.L105Sfs*11) frameshift insertion rs764928653 NA 

c.T280C (p.L94L) synonymous SNV rs28615629 Benign | Likely 
Benign 

Patient 3 

c.C246G (p.T82T)                         
c.C573G (p.T191T) synonymous SNV rs28715079 Benign | Likely 

Benign 

Homozygous 
c.313_321del (p.L105_A107del) 

nonframeshift deletion rs759270179 NA 
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c.T280C (p.L94L) synonymous SNV rs28615629 Benign | Likely 
Benign 

 1 
Results from whole genome sequencing (WGS). * Clinical interpretation of genetic variants is based on ANNOVAR gene 2 
annotation pipeline that uses ClinVar database as a primary reference. SNV, single nucleotide variant. 3 
 4 

Mycoplasma testing 5 

Mycoplasma testing was performed according to the manufacturer's instructions (R&D Systems 6 
#CUL001B) at the end of lifespan for each treatment and cell line used. All tests were negative.  7 
 8 
Calculations of energy expenditure and normalization to division rate and cell size 9 

Bioenergetic parameters were measured using the XFe96 Seahorse extracellular flux analyzer 10 
(Agilent), oxygen consumption rate (OCR) and extracellular acidification rate (pH change) was 11 
measured over confluent cell monolayers. Cells were plated for Seahorse measurement every 3 12 
passages (~15 days) with 10-12 wells plated per treatment group. Each well of a seahorse 96-well plate 13 
was plated with 20,000 cells and incubated overnight under standard growth conditions, following the 14 
manufacturer’s instructions, including a plate wash with complete Seahorse XF Assay media. The 15 
complete XF media contains no pH buffers and was supplemented with 5.5 mM glucose, 1 mM 16 
pyruvate, 1 mM glutamine, 50 μg/ml uridine, 10 μM palmitate conjugated to 1.7 μM BSA. After washing, 17 
the plate was incubated in a non-CO2 incubator for one hour to equilibrate temperature and atmospheric 18 
gases. The instrument was programmed to assess various respiratory states using the manufacturer’s 19 
MitoStress Test (Brand & Nicholls, 2011). Basal respiration, ATP turnover, proton leak, coupling 20 
efficiency, maximum respiration rate, respiratory control ratio, spare respiratory capacity and non-21 
mitochondrial respiration were all determined by the sequential additions of the ATP synthase inhibitor 22 
oligomycin (final concentration: 1 μM), the protonophore uncoupler FCCP (4 μM), and the electron 23 
transport chain Complex I and III inhibitors, rotenone and antimycin A (1 μM). The optimal number of 24 
cells and concentration for the uncoupler FCCP yielding maximal uncoupled respiration was determined 25 
based on a titration performed on healthy fibroblasts (data not shown).  26 

The final Seahorse injection included Hoechst nuclear fluorescent stain (ThermoFisher Scientific 27 
#62249) to allow for automatic cell counting. After each run, cell nuclei were counted automatically using 28 
the Cytation1 Cell Imager (BioTek) and raw bioenergetic measurements were normalized to relative 29 
cell counts on a per-well basis. ATP metrics were determined using the P/O ratios of OxPhos and 30 
glycolysis as previously described by Mookerjee et al. 57. These conversions assumed energy sourced 31 
was derived entirely by glucose. All JATP measurements take into account non-mitochondrial and proton 32 
leak derived oxygen consumption thereby reflecting the mitochondrial ATP-synthesis related flux 33 
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(Extended Data Figure 2A). The code and raw data are available as detailed in the Data Availability 1 
statement.  2 

To assess if increased ECAR in experimental conditions were due to non-glycolytic activity, a 3 
glucose-dependency test was performed using the Seahorse XF Glycolysis Stress Test Kit (Agilent, 4 
103020-100). Prior to extracellular flux measurements, young healthy control (Donor2) and young 5 
SURF1 (Patient3) cells were grown overnight in differing nutrient conditions: physiological 5.5mM 6 
glucose, 0mM glucose, 25mM glucose. The glycolysis stress test kit was performed according to the 7 
manufacturer’s protocol. To monitor growth and cell death, cells were cultured for 7 days in each 8 
glucose condition and monitored daily (see Extended Data Figure 3).  9 

mtDNA deletions  10 

mtDNA deletions were initially detected by long-range PCR (LR-PCR) from DNA extracted from 11 
cultured fibroblasts using DNeasy blood and tissue kit (Qiagen #69504) following manufacturer’s 12 
instructions. Isolated DNA was amplified using 12 F (np 5855-5875) and D2 R (np 129-110) 13 
oligonucleotide primers to yield a 10-Kb product. PCR reactions were carried out using Hot Start 14 
TaKaRa LA Taq kit (Takara Biotechnology, #RR042A) with the following cycling conditions: 1 cycle of 15 
94°C for 1min; 45 cycles of 94°C for 30sec, 58°C for 30sec, and 68°C for 11min with a final extension 16 
of 72°C for 12 min. Amplified PCR products were separated on 1% agarose gels in 1X TBE buffer, 17 
stained with GelGreen (Biotium #41005), imaged using a GelDoc Go Imager (Biorad). Primers (5’-3’) 18 
were: Forward (12F): AGATTTACAGTCCAATGCTTC (nucleotide position 5,855-5,875); Reverse 19 
(D2R): AGATACTGCGACATAGGGTG (129-110). 20 

mtDNA next-generation sequencing and eKLIPse analysis 21 

The entire mtDNA was amplified in two overlapping fragments using a combination of mtDNA 22 
primers. The primer pairs used for PCR amplicons were tested first on Rho zero cells devoid of mtDNA 23 
to remove nuclear-encoded mitochondrial pseudogene (NUMTS) amplification (PCR1: 5’-24 
AACCAAACCCCAAAGACACC-3’ and 5’-GCCAATAATGACGTGAAGTCC-3’; PCR2: 5’-25 
TCCCACTCCTAAACACATCC-3’ and 5’-TTTATGGGGTGATGTGAGCC-3’). Long-range PCR was 26 
performed with the Kapa Long Range DNA polymerase according to the manufacturer’s 27 
recommendations (Kapa Biosystems, Boston, MA, mtDNA next-generation sequencing and USA), with 28 
0.5µM of each primer and 20ng of DNA. The PCR products were analyzed on a 1% agarose gel 29 
electrophoresis. 30 

NGS Libraries were generated using an enzymatic DNA fragmentation approach using Ion 31 
Xpress Plus Fragment Library Kit. Libraries were diluted at 100 pM before sequencing and pooled by a 32 
maximum of 25 samples. Sequencing was performed using an Ion Torrent S5XL platform using Ion 540 33 
chipTM. Signal processing and base calling were done by the pre-processing embedded pipeline. 34 
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Demultiplexed reads were mapped according to the mtDNA reference sequence (NC_012920.1) before 1 
being analysed with a dedicated homemade pipeline including eKLIPse (Goudenège et al, GIM, 2019; 2 
https://github.com/dooguypapua/eKLIPse) using the following settings. Deletion counts were estimated 3 
with a variant call cutoff of >5% heteroplasmy, and separately with cutoffs of 1% and 5% heteroplasmy 4 
(see Extended Data Figure 8D). 5 

• Read threshold: min Quality=20 | min length =100bp 6 
• Soft-Clipping threshold: Read threshold: Min soft-clipped length =25pb | Min mapped Part=20 7 

bp 8 
• BLAST thresholds: min=1 | id=80 | cov=70 | gapopen=0 | gapext=2 9 
• Downsampling: No  10 

mtDNA copy number 11 

Cellular mtDNA content was quantified by qPCR on the same genomic material used for other 12 
DNA-based measurements. Duplex qPCR reactions with Taqman chemistry were used to 13 
simultaneously quantify mitochondrial (mtDNA, ND1) and nuclear (nDNA, B2M) amplicons, as 14 

described previously 4. The reaction mixture included TaqMan Universal Master mix fast (life 15 
technologies #4444964), 300nM of custom design primers and 100nM probes: ND1-Fwd: 16 
GAGCGATGGTGAGAGCTAAGGT, ND1-Rev:CCCTAAAACCCGCCACATCT, ND1-Probe: HEX-17 
CCATCACCCTCTACATCACCGCCC-3IABkFQ. B2M-Fwd: CCAGCAGAGAATGGAAAGTCAA, B2M-18 
Rev: TCTCTCTCCATTCTTCAGTAAGTCAACT, B2M-Probe: FAM-19 
ATGTGTCTGGGTTTCATCCATCCGACA-3IABkFQ). The samples were cycled in a QuantStudio 7 flex 20 
qPCR instrument (Applied Biosystems) at 50°C for 2 min, 95°C for 20 sec, 95°C for 1min, 60°C for 20 21 
sec, for 40 cycles. qPCR reactions were setup in triplicates in 384 well qPCR plates using a liquid 22 
handling station (epMotion5073, Eppendorf), in volumes of 20ul (12ul mastermix, 8ul template). 23 
Triplicate values for each sample were averaged for mtDNA and nDNA. Ct values >33 were discarded. 24 
For triplicates with a C.V. > 0.02, the triplicates were individually examined and outlier values removed 25 
where appropriate (e.g., >2 standard deviations above the mean), with the remaining duplicates were 26 
used. The final cutoff for acceptable values was set at a C.V. = 0.1 (10%); samples with a C.V. > 0.1 27 
were discarded. A standard curve along with positive and negative controls were included on each of 28 
the seven plates to assess plate-to-plate variability and ensure that values fell within instrument range. 29 
The final mtDNAcn was derived using the ΔCt method, calculated by subtracting the average mtDNA 30 
Ct from the average nDNA Ct. mtDNAcn was calculated as 2ΔCt x 2 (to account for the diploid nature of 31 
the reference nuclear genome), yielding the estimated number of mtDNA copies per cell. 32 

Cytokines 33 

Two multiplex fluorescence-based arrays were custom-designed with selected cytokines and 34 
chemokines most highly correlated with age in human plasma from 67, listed as available analytes on 35 
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the R&D custom Luminex arrays (R&D, Luminex Human Discovery Assay (33-Plex) LXSAHM-33 and 1 
LXSAHM-15, http://biotechne.com/l/rl/YyZYM7n3). Media samples were collected at selected passages 2 
across cellular lifespan and frozen at -80°C. After thawing, samples were centrifuged at 500xg for 5min 3 
and supernatant moved to a new tube. Wells were loaded with media samples diluted 1:5 with assay 4 
diluent, incubated, washed, and read on a Luminex 200 (Luminex, USA) as per the manufacturer’s 5 
instructions. Positive (aged healthy fibroblast) and negative controls (fresh untreated media) samples 6 
were used in duplicates on each plate to quantify batch variations. Data were fitted and final values 7 
interpolated from a standard curve in xPONENT (v4.2), normalized to the cell number at the time of 8 
collection to produce estimates of cytokine production on a per-cell basis. IL-6 and GDF15 measures 9 
were repeated using enzyme-linked immunosorbent assays (ELISA), according to the manufacturer’s 10 
instructions (Abcam #ab229434 and R&D #DGD150).  11 

Media cell-free DNA 12 

Total cell-free DNA (cf-DNA) was isolated from cell culture media using a previously published 13 
automated, high throughput methodology (Ware et al. 2020). Quantitative polymerase chain reaction 14 
(qPCR): cf-mtDNA and cf-nDNA levels were measured simultaneously by qPCR. Taqman-based duplex 15 
qPCR reactions targeted mitochondrial-encoded ND1 and nuclear-encoded B2M sequences as 16 
described previously 116,117. Each gene assay contained two primers and a fluorescent probe and were 17 
assembled as a 20X working solution according to the manufacturer’s recommendations (Integrated 18 
DNA Technologies). The assay sequences are: ND1 forward 5’-GAGCGATGGTGAGAGCTAAGGT-3’, 19 
ND1 reverse 5’-CCCTAAAACCCGCCACATCT-3’, ND1 probe 5’-20 
/5HEX/CCATCACCC/ZEN/TCTACATCACCGCCC/2IABkGQ/-3’, B2M forward 5’-21 
TCTCTCTCCATTCTTCAGTAAGTCAACT-3’, B2M reverse 5’-CCAGCAGAGAATGGAAAGTCAA-3’, 22 
and B2M probe 5’-/56-FAM/ATGTGTCTG/ZEN/GGTTTCATCCATCCGACCA/3IABkFQ/-3’. Each 23 
reaction contained 4 µL of 2X Luna Universal qPCR Master Mix (New England Biolabs, cat#M3003E), 24 
0.4 µL of each 20X primer assay, and 3.2 µL of template cf-DNA for a final volume of 8 µL. The qPCR 25 
reactions were performed in triplicates using a QuantStudio 5 Real-time PCR System (Thermo Fisher, 26 
cat#A34322) using the following thermocycling conditions: 95°C for 20 s followed by 40 cycles of 95°C 27 
for 1 s, 63°C for 20 s, and 60°C for 20 s. Serial dilutions of pooled human placenta DNA were used as 28 
a standard curve. 29 

Digital PCR (dPCR): mtDNA and nDNA copy number (copies/µL) of the standard curve used in 30 
cf-mtDNA/cf-nDNA assessment were measured separately using singleplex ND1 and B2M assays 31 
using a QuantStudio 3D Digital PCR System and associated reagents (Thermo Fisher, cat#A29154) 32 
according to the manufacturer’s protocol. The values obtained for the standard curve were used to 33 
calculate the copy number for the experimental samples. All reactions were performed in duplicate (two 34 
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chips). Because the same standard curve was used on all plates, its copy number was applied uniformly 1 
to all qPCR plates.  2 

RNA sequencing and transcriptomic analyses 3 

 Total genomic RNA was isolated every ~11days across cellular lifespan and stored in 1ml TRIzol 4 
(Invitrogen #15596026). RNA was extracted on-column using the RNeasy kit (Qiagen #74104), DNase 5 
treated according to the manufacturer’s instructions, and quantified using the QUBIT high sensitivity kit 6 
(Thermo Fisher Scientific #Q32852). RNA samples underwent QC on bioanalyzer and Nanodrop 2000, 7 
all samples had a RIN score >8.0 and no detectable levels of DNA. RNA (1500ng/sample, 50ng/μl) was 8 
then submitted for sequencing at Genewiz Inc. (Illumina HiSeq, single index, 10 samples/lane), and 9 
underwent RiboZero Gold purification. Sequenced reads yielding approximately 40 million paired-end 10 
150bp single-end reads per sample. Sequenced reads were then aligned using the pseudoalignment 11 
tool, kallisto (v0.44.0) 118. These data were imported using txi import (‘tximport’, v1.18.0, length-scaled 12 
TPM), and vst normalized (‘DEseq2’, v1.30.1).  13 

Dimensionality reduction was performed using ‘Rtsne’ (v0.15) with perplexity value of 10 and 14 
initial dimensions of 30 on the log2 transformed normalized expression values after removing genes 15 
without any variation in expression across all samples. Linear mixed modeling was performed using the 16 
‘lme4’ (v1.1) R package with the fixed effects of time grown and clinical group for SURF1-differential 17 
expression and fixed effects of time grown and treatment with a mixed effects of the cell line for Oligo-18 
differential expression. P values were obtained by running an Anova comparing the model for each 19 
gene to a null model that had a fixed effect of days grown (mixed effects of cell line for Oligo models) 20 
and then the value was corrected for multiple comparisons using FDR-adjustment (p<0.05). We used 21 
iPAGE to discover perturbed pathways in SURF1 and Oligo-treated cells 22 
(https://tavazoielab.c2b2.columbia.edu/iPAGE/) 75. iPAGE enables the systematic and comprehensive 23 
discovery of pathways that are significantly informative of gene expression measurements without any 24 
explicit thresholding requirements. Additionally, iPAGE is also able to detect pathways whose 25 
constituent genes are both up- and down-regulated in the treatments. Input to iPAGE included gene 26 
symbols and for each gene, a cluster identifier indicating if it was upregulated, downregulated or not 27 
differentially expressed in both (i.e. intersection) SURF1-mutant and Oligo-treated cells compared to 28 
controls. For discovering significantly over- and under-represented pathways using iPAGE, we used a 29 
stringent p value cutoff of 0.001 along with minr=1, ind=0 (to produce the most expansive set of pathway 30 
terms) and, catMin=30 (to exclude pathways with fewer than 30 genes). Timecourse and heatmaps 31 
show transcript levels relative to the median of the youngest control timepoints. Categorized genes 32 
were selected based on known mitochondrial and aging literature. Categorized pathways were 33 
categorized into meta-categories based on shared gene ontology parent processes.  34 
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DNA methylation and methylome analysis 1 

 Global DNA methylation was measured using the Illumina EPIC microarray ran at the UCLA 2 
Neuroscience Genomic Core (UNGC). DNA was extracted using the DNeasy kit (Qiagen cat#69506) 3 
according to the manufacturer’s protocol and quantified using QUBIT broad range kit (Thermo Fisher 4 
Scientific cat#Q32852). At least 375 ng of DNA was submitted in 30 µl of ddH2O to UNGC for bisulfite 5 
conversion and hybridization using the Infinium Methylation EPIC BeadChip kit. Sample positions 6 
across plates were randomized to avoid batch variation effects on group or time-based comparisons. 7 
All DNA methylation data were processed in R (v4.0.2), using the ‘minfi’ package (v1.36.0). Quality 8 
control preprocessing was applied by checking for correct sex prediction, probe quality, sample 9 
intensities, and excluding SNPs and non-CpG probes. Data were then normalized using Functional 10 
Normalization. Using the R package ‘sva’ (v3.12.0), both RCP and ComBat adjustments were applied 11 
to correct for probe-type and plate bias, respectively. After quality control, DNAm levels were quantified 12 
for 865,817 CpG Sites.   13 

Dimensionality reduction was performed using the ‘Rtsne’ package (v0.15) with a perplexity 14 
value of 10 and initial dimensions of 30 on the normalized beta values. We ran linear mixed effects 15 
models (LMER) using ‘lme4’ (v1.1). For our differential methylation analysis of SURF1, the fixed effects 16 
were assigned to ‘days_grown’ and ‘clinical_group’. For the Oligomycin treatment, the fixed effects 17 
‘time_grown’ and ‘treatment’ and the mixed effect was assigned of the ‘cell_lines’ (i.e., donors). P values 18 
were obtained from an analysis of variance (ANOVA) comparing the model for each CpG to a null model 19 
with a fixed effect of days grown (mixed effects of cell line for Oligomycin models) and then corrected 20 
for multiple comparisons using FDR-adjustment (p < 0.05) to identify differentially methylated CpGs 21 
(DMPs). Differentially methylated regions (DMRs) were derived using the modified comb-p method in 22 
the ‘Enmix’ package (v1.26.8), with a maximum distance for DMR combination of 1000bp, a bin size for 23 
autocorrelation of 310, and FDR-adjustment cutoff of 0.01, and minimum of 3 CpGs per a DMR. Each 24 
DMP and DMR were assigned to the nearest annotated gene 25 
(IlluminaHumanMethylationEPICanno.ilm10b4.hg19 package, v0.6.0). Gene set enrichment analysis 26 
was then performed using ShinyGO 119 (v0.66, http://bioinformatics.sdstate.edu/go/) on the top 1,000 27 
DMPs- or DMRs-associated genes based on the combined negative log p value across hyper- and 28 
hypo-methylated DMPs and DMRs.  29 

Relative telomere length 30 

  Relative telomere length was measured by quantitative polymerase chain reaction (qPCR), 31 
expressed as the ratio of telomere to single-copy gene abundance (T/S ratio). The telomere length 32 
measurement assay was adapted from the published original method by Cawthon 120,121. The telomere 33 
thermal cycling profile consisted of: Cycling for T(celomic) PCR: Denature at 96°C for 1 minute, one 34 
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cycle; denature at 96°C for 1 second, anneal/extend at 54°C for 60 seconds, with fluorescence data 1 
collection, 30 cycles. Cycling for S (single copy gene) PCR: Denature at 96°C for 1 minute, one cycle; 2 
denature at 95°C for 15 seconds, anneal at 58°C for 1 second, extend at 72°C for 20 seconds, 8 cycles; 3 
followed by denature at 96°C for 1 second, anneal at 58°C for 1 second, extend at 72°C for 20 seconds, 4 
hold at 83°C for 5 seconds with data collection, 35 cycles. The primers for the telomere PCR are tel1b 5 
[5'-CGGTTT(GTTTGG)5GTT-3'], used at a final concentration of 100 nM, and tel2b [5'-6 
GGCTTG(CCTTAC)5CCT-3'], used at a final concentration of 900 nM. The primers for the single-copy 7 
gene (human beta-globin) PCR are hbg1 [5' GCTTCTGACACAACTGTGTTCACTAGC-3'], used at a 8 
final concentration of 300 nM, and hbg2 [5'-CACCAACTTCATCCACGTTCACC-3'], used at a final 9 
concentration of 700 nM. The final reaction mix contained 20 mM Tris-HCl, pH 8.4; 50 mM KCl; 200 µM 10 
each dNTP; 1% DMSO; 0.4x SYBR Green I; 22 ng E. coli DNA; 0.4 Units of Platinum Taq DNA 11 
polymerase (Invitrogen Inc.); approximately 6.6 ng of genomic DNA per 11 microliter reaction. Tubes 12 
containing 26, 8.75, 2.9, 0.97, 0.324 and 0.108ng of a reference DNA (Human genomic DNA from buffy 13 
coat, Sigma cat# 11691112001) are included in each PCR run so that the quantity of targeted templates 14 
in each research sample can be determined relative to the reference DNA sample by the standard curve 15 
method. The same reference DNA was used for all PCR runs. Assays were run in triplicate wells on 16 
384-well assay plates in a Roche LightCycler 480. The average concentrations of T and S from the 17 
triplicate wells were used to calculate the T/S ratios after a Dixon’s Q test to remove outlier wells from 18 
the triplicates. T/S ratio for each sample was measured twice. When the duplicate T/S value and the 19 
initial value varied by more than 7%, the sample was run the third time and the two closest values were 20 
reported. 26 out of the 512 samples (5%) has a CV greater than 10% after the third measurement. The 21 
inter-assay coefficient of variation (CV) for this study is 3.0%±4.3% (including the 26 samples) and 22 
2.2%±2.0% (excluding the 26 samples). Telomere length assay for the entire study were performed 23 
using the same lots of reagents. Lab personnel lab who performed the assays were provided with de-24 
identified samples and were blind to other data. 25 
DNAmAge 26 

DNAmAge was calculated using the online calculator (https://dnamage.genetics.ucla.edu/new) 27 
with normalization using the age of cell line donor as the input age. This outputted the Horvath1 (i.e. 28 
PanTissue clock), Horvath2 (Skin&Blood clock), PhenoAge, Hannum, and GrimAge estimated 29 
DNAmAges. PC-based DNAmAges were then obtained using the principal component method 30 
(https://github.com/MorganLevineLab/PC-Clocks) 84. The rates of epigenetic aging for each cell line 31 
were determined from the linear slope of timepoints between 25 to 75 days. This period ensures that 32 
Oligo treatment has taken effect, and avoids late-life changes in the behavior of DNAm clocks, providing 33 
the time window where the signal is most stable.  34 

Data analysis and statistics  35 
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All statistical analyses were performed using GraphPad Prism (v9.0) and RStudio (v1.3.1056) 1 
using R (v4.0.2). Comparisons of groups between control, SURF1 and treatment groups were 2 
performed using mixed effects model, except for peak and rate measurements (unpaired T-test, 3 
assuming unequal variance or two-way ANOVA for concurrent measures). Interpolated curves for each 4 
experimental group is the best fit non-linear third order or fifth order polynomial functions depending on 5 
the kinetic complexity a given measurement. Data visualization and statistical analyses were generated 6 
in R (‘ggplot2’, v3.3.5) and Prism 8. 7 

 The time windows for specific statistical analyses were selected based on a combination of 8 
cellular growth behavior including: i) population doubling curves (e.g., stable division rates for all groups 9 
early in the cellular lifespan between days 20-50), ii) the availability of matching timepoints between 10 
treatment groups (at least 3 timepoints for all groups), and iii) potential delay to reach stable cellular 11 
phenotypes in Oligo-treated cells. To allow for adjustment to the in vitro environment, treatments began 12 
after 15 days of culture. Therefore, overall “lifespan effects” were determined between 20-150 days, 13 
which represents the maximal replicative lifespan of SURF1 cells. “Early life” effects that isolate most 14 
clearly the effects of OxPhos dysfunction, and avoid the potential accelerated aging phenotypes in 15 
SURF1 and Oligo cells, were examined using timepoints between 20-50 days. For analyses of 16 
differentially expressed genes (RNASeq, Figure 6) and differential methylation (DNAm, Figure 7) where 17 
a greater datapoint density was necessary to achieve robust mixed effects models, SURF1 cells were 18 
analyzed between 0 and 75 days (genetic defects in SURF1 are constitutive so do not require time in 19 
culture to manifest) whereas models for Oligo-treated cells used timepoints between days 35 to 110 20 
(allowing 15 days for the effects of ATP synthase inhibition to manifest in the transcriptome, while 21 
avoiding late-life changes). All timepoints are shown in time series graphs. 22 

 23 
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available in the online supplement to this article. 26 
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Cohort # Author (year) N= (W/M) Age Genetics Mutations Clinical 

Cohort 1 Taivassalo 
(2003) 

40 Mito (22/18) 
32 Ctrl (9/22) 

 
37 
39 

 

mtDNA 
(n=35) 

nDNA (n=5) 

m.3242A>G, m.8344A>G, 
m.14710G>A, m.5543T>C, 
m.4409T>C, m.14846G>A, 

m.5920G>A, ND2 and 
COXIII microdeletions, sDel, 
mDel, other (3), unknown (4) 

CPEO, MELAS, 
MERRF, EI, 

mixed 

Cohort 2 

5a:Bates (2013) 
5b:Newman 

(2015) 
5c:Galna (2014) 
5d:Unpublished 

a:10 Mito (4/6) 
10 Ctrl (4/6) 

b:8 Mito (5/3) 
c:6 Mito (1/5) 
d:8 Mito (2/6) 

42.4 
39.0 
42 

40.5 
42 

 
mtDNA 

 

5a:m.3243A>G 
5b:m.3243A>G 

5c:m.8344A>G + 3243A>G 
5d:sDel 

SNHL, DM, Ei, 
AT, FT, DP, 

mixed 

Cohort 3 Strauss (2013) 9 Mito (7/2) 
28 Ctrl 

14.6 
14.0 nDNA SLC25A4 (ANT1) mutations 

(c.523delC, p.Q175RfsX38) 

CM, EI, 
insomnia, DP, 

anxiety 

Cohort 4 Delaney (2017) 21 Mito (15/6) 
12 Ctrl (8/4) 

44 
34 mtDNA 

sDel, mDel, m.3243A>G, 
m.10010T>C, m.12261T>C, 
ISCU, m.4281A>G, CYTB, 
m.8344A>G, m.5543T>C 

Mild to severe 
mixed 

Cohort 5 MiSBIE 
(unpublished) 

23 Ctrl (15/8) 
12 Mito (8/4) 

34.0 
32.9 mtDNA m.3243A>G MELAS, mixed 

Cohort 6 Jeppesen (2013) 10 Mito (6/4) 
10 Ctrl (6/4) 

39 
39 mtDNA 

m.3243A>G, 8344A>T, 
4409T>C, 8340G>A, 2-bp 
deletion, 12,113–14422, 

7177–13767 

CPEO, EI, HI, 
GI, Enc, SS, DM, 

ME, AT 

Cohort 7 Jeppesen (2009) 10 Mito (5/5) 
10 Ctrl (5/5) 

39 
40 mtDNA m.3243A>G, m.8344A>T, 

m.5543t>C, sDel 
CPEO, EI, HI, 

GI, Enc, SS, DM, 
ME, AT 

Cohort 8 Heinicke (2011) 5 Mito (2/3) 
4 Ctrl (2/2) 

42  
34 

mtDNA 
nDNA 

m.3243A>G, m.5543T>C, 
m.14846G>A, ISCU Myopathy 

Cohort 9 Grassi (2009) 
15 Mito (7/8) 

21 PCtrl2 (7/14) 
22 Ctrl (9/13) 

40.1  
38.3 
37.9 

mtDNA sDel, mDel, m.8344A>G Myopathy 

Cohort 10 Porcelli (2016) 6 Mito (2/4) 51 mtDNA mDel, sDel, m.3255G>A, 
m.3243A>G Myopathy 

Cohort 11 Grassi (2007) 
6 Mito (1/5) 

25 PCtrl2 (5/20)  
20 Ctrl (8/12) 

37.8 
31.6 
32.7 

mtDNA mDel, m.8344A>G Myopathy 

Cohort 12 Hou (2019) 89 Mito (57/32) 30.4 mtDNA 
nDNA 

sDel, POLG, RRM2B, 
Twinkle, TK2, m.3243A>G, 
m.8344A>G, m.5541C>T, 

m.10158C>T 
MELAS, CPEO 

Cohort 13 Kaufman (2011) 31 Mito (16/15) 
54 Ctrl1 (15/39) 

30 
38 mtDNA m.3243A>G MELAS 

Cohort 14 Barends (2015) 30 Mito (15/15) 50.43 mtDNA 
nDNA 

m.3243A>G, sDel, mDel, 
c.1635C>G, m.8344A>G, 

m.13094T>C, m.14709T>C, 
m.5816A>G, m.14484T>C, 

m.12258G>A, POLG 
mutations 

MELAS, CPEO, 
KSS, MERRF, 

mixed 

Cohort 15 Eom (2017) 221 Mito 
Pediatric 6.03 mtDNA 

nDNA m.3243A>G, LS mutations LS, MELAS, 
mixed 

Cohort 16 Wedatilake 
(2013) 

44 Mito (20/24) 
Pediatric <143 nDNA SURF1 mutations 

Poor 
feeding/vomiting, 
PWG, DD, HT, 

MD, AT 

Cohort 17 Newcastle cohort 
(unpublished) 

109 Mito 
(56/53) 48.1 nDNA, 

mtDNA 

In addition to Cohort 14: 
AGK, ETFDH, m.10010T>C, 
m.11778G>A, m.13513G>A, 

m.8993T>C, m.8993T>G, 
m.9176T>C, m.9997T>C, 

MRPL44, NDUFAF6, 
NDUFS1, RRM2B, SDHA, 

SURF1, TYMP 

MELAS, PMM, 
MERRF, MIDD, 
MNGIE, KSS, 

CM, mixed 
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Table 1. Human cohorts included in the quantitative meta-analysis of energy expenditure and related 1 
clinical phenotypes in patients with mitochondrial diseases (Figure 1). Abbreviations: ANT1: adenine 2 
nucleotide translocator 1; AT: ataxia; CM: cardiomyopathy; CPEO: chronic progressive external ophthalmoplegia; 3 
DD: developmental delay; Dm: diabetes mellitus; DP: depression; EI: pure exercise intolerance; Enc: 4 
encephalopathy; FT: fatigue; GI: glucose intolerance; HI: hearing impairment; HT: hypotonia; KSS: Kearns-Sayre 5 
Syndrome; LS: Leigh Syndrome; MD: movement disorder; mDel: multiple mtDNA deletions; ME: myoclonic 6 
epilepsy; MELAS: mitochondrial encephalopathy, lactic acidosis, stroke-like episodes; MERRF: myoclonus 7 
epilepsy with ragged red fibres; MiSBIE: Mitochondrial Stress, Brain Imaging, and Epigenetics study; mtDNA: 8 
mitochondrial DNA; nDNA: nuclear DNA; PWG: poor weight gain; sDel: single, large-scale mtDNA deletion; SNHL: 9 
sensorineural hearing loss; SS: short stature. 1: controls were m.3243A>G carrier relatives without MELAS. 2: 10 
PCtrl: “patient controls” with symptoms of mitochondrial myopathy but with negative biopsy. 3: based on age at 11 
death. Number of women (W) and men (M) are shown in parentheses. 12 

13 
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SUPPLEMENTAL MATERIAL 1 
 2 
Supplemental File 1. Table of differentially expressed genes for SURF1 cells over 0 to 75 days of growth. 3 
 4 
Supplemental File 2. Table of differentially expressed genes for Oligo cells over 35 to 110 days of growth. 5 
 6 
Supplemental File 3. Table of differentially expressed genes shared across SURF1 and Oligo cells. 7 
 8 
Supplemental File 4. Gene expression heatmaps of select pathways in control, SURF1, and Oligo cells. 9 
 10 
Supplemental File 5. Differentially methylated CpGs for SURF1 cells over 0 to 75 days of growth. 11 
 12 
Supplemental File 6. Differentially methylated CpGs for Oligo cells over 35 to 110 days of growth. 13 
 14 
Supplemental File 7. Differentially methylated CpGs shared across SURF1 and Oligo cells. 15 
 16 
Supplemental File 8. Differentially methylated regions for SURF1 cells over 0 to 75 days of growth. 17 
 18 
Supplemental File 9. Differentially methylated regions for Oligo cells over 35 to 110 days of growth. 19 
 20 
Supplemental File 10. Differentially methylated regions shared in both SURF1 and Oligo cells. 21 
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Extended Data Figure 1. Physiological profiles of mitochondrial disease in Cohort 2 by genetic diagnosis. (A) Resting heart rate (HR, 
P<0.05), (B) resting whole body oxygen consumption (VO2, P<0.001), and (C) body mass index (BMI, P=0.061) in 4 different groups with mtDNA 
defects. Controls and m.3243A>G (1) groups are described in Bates et al. (2013), m.3243A>G (2) in Newman et al. (2015), m.8344A>G in Galna 
et al. 2013, and sDel is an unpublished cohort from the same laboratory. Data are means ± SEM. P values from Brown-Forsythe ANOVA.
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Extended Data Figure 2. Bioenergetic profiling of SURF1-mutant cells. (A) Conversion of OCR and ECAR values into ATP production rates 
(JATP, pmol ATP per minute) (B) Lifespan trajectories of JATPtotal at maximal uncoupling (FCCP injection) across the SURF1 lifespan (up to 150 days). 
Percentages show the total average difference between SURF1 and Control. (C) Spare capacity for respiration (left) and glycolysis (right), measured 
as the difference between maximal uncoupled to baseline values. (D) Lifespan trajectories of non-mitochondrial respiration after shutdown of the 
ETC (R+A injection) across the SURF1 lifespan (up to 150 days). n = 3 individuals per group, 7-9 timepoints per individual. Data are means ± SEM., 
* P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 0.0001, unpaired two-tailed t-test.
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Extended Data Figure 3. Glucose dependency of SURF1-mutant cells. (A) Brightfield images of human fibroblasts from Donor 2 (left panel) and 
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mM). After 5 days, fibroblasts from Patient3 display massive cell death when cultured without glucose (i), suggesting increased glucose dependency. 
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SURF1-disease (Patient 2) fibroblasts cell line after overnight treatment in (i) 25 mM Glucose, (ii) 5.5 mM Glucose, or (iii) 0 mM Glucose. (C) ECAR 
measured before (-) and after (+) glucose injection across three independent experiments on the same control and SURF1 cell lines in different 
glucose conditions as shown in and (B). SURF1 cells show a more rapid increase in ECAR following glucose injection compared to control cells, 
highlighting their propensity to oxidize glucose. Statistical test performed using Šídák’s multiple comparisons test on a two-way anova. (D) ECAR 
measured after 2DG injection across three independent experiments on the same control and SURF1 cell lines in different glucose conditions as 
shown in and (B). Data are means ± SEM. * P < 0.05, ** P < 0.01. 
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Extended Data Figure 4. Mitochondrial defects show altered rates of cytological aging. (A) Timecourse of cell volume across cellular lifespan. 
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Extended Data Figure 6. Cellular morphological oscillations of oligomycin-treated fibroblasts (A) Titration of oligomycin on basal OCR and 
ECAR measures (n=20-23 technical replicates, error-bars=SEM) in Donor 5. Arrows show the selected concentration for chronic treatment (1nM) 
which induces a 86% decrease in OCR and elevate ECAR by 257%, reflecting a robust metabolic recalibration in response to ATP synthesis from 
OxPhos. (B) Timecourses of the percent of dead cells at each passage across the cellular lifespan. Measurements were taken at each passage 
using trypan blue. (C) Bright-field imaging of control (left) and 1nM oligo-treated cells (right) using a 20x magnification. (D) Timecourse of 
morphological classification across the cellular lifespan. Cells were crudely characterized as either normal or ‘network-like’ at each passage by eye. 
(E) Networked oligo-treated cells show robust shift in the transcriptional space in principled component analysis. (F) Rescue experiment using a 
combination of 1nM oligo and 100nM dexamethasone (DEX). (G) Bright-field imaging of oligo-treated cells (top-panel) and a combination of oligo 
and dexamethasone (bottom-panel). Oligo+DEX cells show no signs of network morphology. Treatment conditions for healthy controls include 
chronic addition of 1nM oligomycin (Sigma-Aldrich #75351), 100nM dexamethasone (DEX, Sigma-Aldrich #D4902) and a combination of 1nM 
oligomycin and 100nM DEX.
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Extended Data Figure 7. Circos plots depicting the time course of mtDNA deletions in Control and SURF1 fibroblasts.  Each circos plot 
depicts mitochondrial genome annotations (outer circle), percentage of deletions (gray gradient), depth of base coverage (blue area), soft-clipping 
BLASTn links (red arcs) and percent heteroplasmy (intensity of red arcs) [REF: Goudenège et al. 2019] (A) mtDNA deletion time-course of a control 
fibroblast from a healthy donor. (B) mtDNA deletion time-course of a patient fibroblast with SURF1 mutation. (C) mtDNA deletion time-course of a 
healthy fibroblast treated with 1nM Oligomycin-treated cells. N/A indicates data not available for given timepoint.
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Extended Data Figure 8. Length distribution of mtDNA deletion fragments days in culture. (A) Frequency distribution of mtDNA deletions and 
length of deletion in three healthy donors across time. (B) High deletion frequency and length distribution of mtDNA fragments in three patients with 
SURF1 mutation, and (C) in Oligo-treated cells. (D) Mitochondrial mutation count in control, SURF1-mutant, and Oligo-treated fibroblasts at 1-5% 
and greater than 5% heteroplasmy. (E) Mean and (F) max mtDNA heteroplasmy levels across the cellular lifespan. We note that our longitudinal 
analysis demonstrated the spontaneous occurrence of a m.3243A>G mutation in the Oligo-treated cells of Donor2, which appeared at passage 22 
and persisted at all timepoints until passage 34 (time elapsed = 86 days). Data are mean ± SEM.* P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 
0.0001, mixed effects model (fixed affect of clinical condition and days grown, random effects of cell line).
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Extended Data Figure 9. Cell-free molecules. (A-B) Cell-free nuclear DNA dynamics using qrt-PCR, normalized to the number of cells at time of 
sampling, across the cellular lifespan trajectories (A) and averages (B). (C-D) Cell-free mitochondrial DNA per nuclear DNA across the cellular 
lifespan trajectories (C) and averages (D). Data are mean ± SEM. * P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 0.0001, mixed effects model (fixed 
effect of clinical condition and days grown, random effects of cell line).
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Extended Data Figure 10. Ribosomal gene expression. (A) Heatmap of ribosomal gene expression. Ribosomal genes were selected from the 
KEGG database (https://www.genome.jp/kegg/pathway/hsa/hsa03010.html). Values are derived from normalized expression centered to the median 
of the youngest control timepoints. (B) Barplot of ribosomal gene expression between control, SURF1-mutant, and oligo-treated timepoints. Each 
datapoint is the median normalized expression across all ribosomal subunit genes. Data are mean ± SEM. * P < 0.05, ** P < 0.01, *** P < 0.001, **** 
P < 0.0001, mixed effects model (fixed affect of clinical condition and days grown, random effects of cell line).
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Extended Data Figure 11. Transcriptomic Remodeling. (A) Volcano plots of differential expressed genes (DEGs) for LMER model of SURF1-
mutant fibroblasts (top-panel) and Oligo-treated fibroblasts (bottom-panel). (B) Timecourse of top 3 up- and down-regulated DEGs in both SURF1-
disease and Oligo-treated fibroblasts.
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Rate of epigenetic aging per division

Extended Data Figure 13. DNAmAge clocks. (A) Rate of epigenetic aging using original DNAmAge clocks for control, SURF1, and oligo-treated 
cells per population doubling. (B) Average rate of epigenetic aging across all original clocks. Each datapoint represents a different clock. (C-D) 
Epigenetic age across replicative lifespan calculated using original epigenetic clocks (C) and PC-based clocks (D). Values are baselined to youngest 
timepoint of each cell group. (E-F) Rate of epigenetic aging for control, SURF1, and oligo-treated cells per year grown for (E) PC-based and (F) 
original DNAmAge clocks. Rates are defined as the linear rate between 25-75 days (3-4 timepoints/cell line). Significance values were calculated 
using a multiple comparison two-way anova. Data are means ± SEM. * P < 0.05, ** P < 0.01.
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