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Abstract

The cortex has a characteristic layout with specialized functional areas forming distributed large-
scale networks. However, substantial work shows striking variation in this organization across
people, which relates to differences in behavior. While most prior work treats all individual
differences as equivalent and primarily linked to boundary shifts between the borders of regions,
here we show that cortical ‘variants’ actually occur in two different forms. In addition to border
shifts, variants also occur at a distance from their typical position, forming ectopic intrusions.
Both forms of variants are common across individuals, but the forms differ in their location,
network associations, and activations during tasks, patterns that replicate across datasets and
methods of definition. Border shift variants also track significantly more with shared genetics
than ectopic variants, suggesting a closer link between ectopic variants and environmental
influences. Further, variant properties are categorically different between subgroups of
individuals. Exploratory evidence suggests that variants can predict individual differences in
behavior, but the two forms differ in which behavioral phenotypes they predict. This work argues
that individual differences in brain organization commonly occur in two dissociable forms —
border shifts and ectopic intrusions — suggesting that these types of variation are indexing
distinct forms of cortical variation that must be separately accounted for in the analysis of
cortical systems across people. This work expands our knowledge of cortical variation in humans
and helps reconceptualize the discussion of how cortical systems variability arises and links to
individual differences in cognition and behavior.
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1. INTRODUCTION

The cortex shows a characteristic organization, with distinct functional areas linking together to
form distributed large-scale systems (i.e., networks'). This organization follows a stereotyped
general pattern, but is not completely uniform, varying both across and within species.
Comparative neuroanatomy studies demonstrate that variations in cortical organization appear in
a constrained set of possible forms, including changes in the relative size, connectivity, or
functional characteristics of cortical fields® 3. Notably, similar variation in cortical organization
also exists within a species and can be influenced by genetic and developmental factors* 3.
Variation in cortical organization relates to differences in phenotypic characteristics and
behavior?, suggesting that studying variation in cortical functional architecture in humans may
provide insights into the sources of varying behavioral traits relevant to cognition and disease.

The regional and systems-level organization of the human brain can be mapped non-invasively
using functional connectivity MRI (fcMRI; correlations in the spontaneous activity patterns
between different regions). FeMRI can be used to identify functionally homogenous regions®?
and distinct systems® !° that correspond well to patterns detected with task activation methods.
For large groups of individuals, a “typical” or “canonical” average pattern of distributed
functional systems emerges that is reproducible across studies and maps onto differences in
motor, sensory, and higher-level processing? 10,

However, recent work has also highlighted that any given person differs from this group pattern,
at least in some locations''-?°. We characterized locations, that we call network variants, where
an individual’s functional connectivity pattern differs markedly from the typical group average
(with similarity below r<0.3)!> Nl Across multiple datasets, we demonstrate that network
variants are stable over time and across task states?! and relate to individual differences in task-
related brain activations and behavioral measures collected outside of the scanner!>. Moreover,
different subgroups of individuals show similarities in their network variants: one subgroup of
individuals shows network variants more associated with top-down control and sensorimotor
systems, and another subgroup shows network variants more associated with the default mode
system. We hypothesize that network variants reflect trait-like variations in the organization of
functional brain areas across individuals'.

While a number of studies have identified locations of individual differences in brain network
organization'!?°, there has not yet been substantial research into the different forms that these
variants take and how they might link to sources and mechanisms observed in past comparative
studies of cortical neuroanatomy in other species?. Many studies, including our past work, treat
all forms of cortical variation uniformly, and often assume that variants are driven primarily by
boundary shifts in the borders between systems: a functional region may expand, contract, or be
slightly offset relative to the typical pattern (e.g., as has been documented for V1, which can

FNI Network variant locations are present even after surface-based normalization® ¢*'°! that align data

across people by large-scale sulcal features. Individual differences in fcMRI are not well related to
variations in anatomical metrics (refs. " '°; although it is possible that they relate to finer-scale anatomical
features, e.g., see ref. '°). This dissociation from gross anatomical features, together with correspondence
to task responses, suggests that variants may relate more closely to differences in the positions of
functional brain areas or systems, which can vary relative to anatomical landmarks® %,
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differ more than 2-fold in size across individuals®* 2%). These border shifts are likely important
for understanding individual differences in behavior and brain function!®- 24?7, and could
potentially be addressed through functional alignment methods that allow for individual-specific
regions to be locally displaced (e.g., refs.>* 28),

However, it is possible that brain organization can also differ more markedly from the
stereotypical pattern, with islands of idiosyncratic fcMRI occurring in locations remote from
their typical system organization®. We call these shifts in brain organization ectopic intrusions
to reflect the presence of these variations at abnormal locations (see Fig. 1). Evidence of
dramatic shifts in the function or connectivity of primary sensory/motor areas can be seen with
systematic deprivations in development® 3% 3! but it is less well understood how common these
shifts are in higher-level association areas in neurotypical humans — despite some prior
observations that they occur!! 1>, Ectopic intrusions are not easily explained by cortical
expansion mechanisms and will be poorly addressed by functional alignment techniques that
assume only local displacements in brain architecture, confounding group studies.

The goal of this study was to examine the relative prevalence of ectopic intrusions and border
shift variants in humans, and to contrast the properties of these two forms of idiosyncratic
variation. To this end, we used a combination of data from a highly sampled “precision” fMRI
dataset and a larger-N dataset to assess how commonly each of these forms of individual
differences are present across people and the extent to which they vary in their characteristics.
Separating these forms will likely be essential to deepening our understanding of the sources and
consequences of individual differences in human brain organization and their relevance to
clinical disorders.

2. RESULTS

Using a combination of the large HCP dataset (N = 374 unrelated individuals used with at least
40 min. of data used for primary analyses, and N = 793 individuals used for analyses of behavior
and similarity among twin samples) and the precision MSC dataset (N = 9, scanned 10 times
each), we investigated two different forms of variation in functional system organization:
variations associated with nearby shifts in the boundaries between a person’s network
organization and the typical layout (“border” shift variants) and more remote islands of
functional networks not adjacent to their typical layout (“ectopic” intrusion variants; see Fig. 1
and Methods for information on how both forms of variants are defined). The two datasets were
used in combination to leverage their relative strengths in terms of sample size and data quantity
per individual, respectively, and to demonstrate replicability of this work.

In our analyses, we first examined how common ectopic intrusions were relative to border shifts
variants across participants. We next asked how the two variant forms compare in their spatial
occurrence, the networks they are affiliated with, and how they respond during tasks. We
contrasted variants in familial samples to estimate how they are affected by genetic similarity,
and we examined whether subgroups of individuals showed similar forms of border and ectopic
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variants. Finally, we examine how border and ectopic variants predict behavioral phenotypes
collected outside of the scanner.

(A) Identify pre-variants

Individual’s FC
SACHVICKIGH V& Individual’s binarized Identify homogeneous
group-ayerage (R) pre-variants variant units
W\ilse;t ?(;r threshold
R at lowest
Group-average FC (R e

(B) Classify variants as border or ectopic

Fig. I1: Variant definition, splitting, and classification as border or ectopic. (A) Following Seitzman et al.'>, we used
spatial correlation to compare the seedmap at a given location between an individual and an independent group
average (left) to generate an individual-to-group “similarity map” (middle). This similarity map was thresholded and
binarized to identify locations with low similarity to the group (right) that we call “pre-variants” in this work (Note:
these were also thresholded to remove small areas and areas of low signal - see Methods). We then further refined
these pre-variants to create homogeneous units for border vs. ectopic variant classification (see Methods and Supp.
Fig. 1 for a description of this process). (B) Each variant was classified as either a border shift or an ectopic
intrusion based on its edge-to-edge distance from the nearest same-network boundary in the group-average network
map. Here, we display an example of a border shift variant (left, green region with black outline) and an ectopic
variant (right, purple region with dark outline), overlayed on the group average network map. Distances > 3.5 mm
were classified as ectopic; distances < 3.5 mm were classified as border (see Fig. 2B and Supp. Fig. 8 for
exploration of additional distance criteria). We also employed a secondary method for defining border and ectopic
variants that did not rely on a group-level network parcellation (see description in Methods and Supp. Fig. 2).

2.1. Nearly all individuals exhibit both border and ectopic cortical variants

Our first goal was to establish how frequently each of these forms of network variants occur. We
used two different methods for defining border shifts and ectopic intrusions. Our primary method
(Fig. 1, Methods) defines border shifts and ectopic intrusions based on their distance to pre-
defined canonical (i.e., previously published group-average) network boundaries!!. Our
secondary method (reported in the supplement; see Supp. Fig. 2 for schematic) used a
parcellation-free approach to define these two forms of variants, based on a continuous measure
of similarity to nearby locations in the group-average (i.e., finding a location with 90%
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maximum similarity within 10mm.). This approach has the advantage that it does not depend on
a specific group parcellation for networks (e.g., group networks from ref. ! vs. ref. 1°) or
network resolution (e.g., 7 vs. 17 networks from Yeo et al.!?).

Using either method, both ectopic and border variants were consistently identified in almost all
individuals in both the MSC and the HCP datasets: at least one ectopic variant and at least one
border variant were observed in all 9 of 9 MSC subjects and in 371 of 374 HCP subjects (>
99%). In the MSC, an average of 49.9% [£10.4%] of an individual’s network variants were
ectopic; in the HCP, an average of 42.6% [£14.9%] of an individual’s network variants were
ectopic (Fig. 2A; see Supp. Fig. 3 for similar results with secondary method). As can be seen in
Fig. 2A (see also Supp. Fig. 4), the specific proportion of border and ectopic variants differed
somewhat across individuals, but the proportion of ectopic variants did not correlate with the
total number of variants within an individual (r = 0.15 in the MSC dataset and r = 0.05 in the
HCP). Interestingly, increasing the distance criteria (from 3.5 to 5, 7.5, or 10 mm) still left a
large proportion of ectopic variants, with roughly 30% of variants classified as ectopic at 10 mm
(Fig. 2B). Indeed, the median distance between ectopic variants and their own network was > 15
mm (Supp. Fig. 5). These results are consistent with findings from our secondary method for
defining border and ectopic variants (see Supp Fig. 6). Note that similar results are also obtained
when ectopic variants are defined relative to a participant’s own network boundaries (see Section
5.5 for description of methods, Supp. Fig. 7 and Supp. Table. 1). Thus, distant ectopic variants
are not rare phenomena and, along with border variants, appear to be relatively ubiquitous at the
individual level.
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Fig. 2: Prevalence of border and ectopic variants across individuals. (A) The panel displays the proportion of
border and ectopic variants across all subjects in the HCP dataset (far left), and within subjects in the MSC dataset
(two rows on right). Both ectopic variants and border variants were consistently identified in almost all individuals
in both the HCP and the MSC datasets. (B) Proportions of ectopic variants at other distances (error bars represent
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SEM across participants; each dot represents a single subject). As the required minimum distance for a variant to be
classified as ectopic increases to 5, 7.5, and 10 mm, ectopic variants continue to comprise a sizable percentage of all
variants in the HCP dataset, nearly 30%, even at a distance of 10 mm. Indeed, the median distance for ectopic
variants from a network border was > 15 mm (Supp. Fig. 5). Similar results are seen with our secondary
parcellation-free method of defining network variants (Supp. Fig. 3, 6).

2.2. Border and ectopic variants show significant differences in their spatial distribution

Next, we asked whether ectopic and border variants tend to occur in different locations. We
examined the spatial overlap of ectopic variants and compared it to the overlap of border
variants. The spatial distributions of the two variant forms are shown in Fig. 3A, where warmer
colors represent brain regions with a high occurrence of variants across subjects. As a general
pattern, both forms of variants follow the distribution previously described of higher prevalence
in association regions of cortex!% 1719 especially in lateral frontal cortex, superior frontal cortex
and near the temporoparietal junction'>. However, direct contrasts between the two forms of
variants suggest that ectopic variants appear more frequently in some locations than border
shifts, and vice versa. Notably, border and ectopic variant spatial distributions were similar
between the HCP and MSC datasets; see Supp. Fig. 8.

To assess the significance of these differences, we conducted a permutation test where ectopic
and border labels were randomly flipped within subjects and used to create 1000 permuted
overlap maps. The true maps were then compared to these permuted maps. The true ectopic and
border variant maps were significantly more dissimilar than the permuted maps (p < 0.001; none
of the permuted maps were as dissimilar as the true overlap maps, Fig. 3B). A similar
permutation approach was used to create a multiple comparisons cluster-corrected difference
map (p < 0.05, see Methods), revealing several key locations that differed in the frequency with
which the two variant forms appeared. As shown in Fig. 3C, ectopic variants appear more
frequently in dorsolateral frontal regions of the right hemisphere, whereas border variants are
more frequent around rostral portions of temporoparietal junction and superior rostral frontal
regions in both hemispheres (see Supp. Fig. 9 for similar results with ectopic variants defined at
longer distances, Supp Fig. 10 for similar results with our secondary parcellation-free definition
method).
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Fig. 3: Spatial distributions of ectopic and border variants. The maps in (A) show the spatial distribution of border
variants and ectopic variants, overlapped across participants in the HCP. (B) These two spatial distributions differ
significantly more than expected by chance from random permutations. Permuted correlation values are jittered
across the x-axis for visualization. (C) A cluster-corrected difference map is shown highlighting regions with a
significantly higher occurrence of border variants (green/purple) and ectopic variants (yellow/red; p < 0.05 cluster-
corrected for multiple comparisons based on permutation testing). Ectopic variants were more prevalent in the right
posterior inferior frontal sulcus and left posterior TPJ regions, while border variants were more prevalent in dorsal
and ventral portions of the anterior TPJ and superior rostral frontal regions. See Supp. Fig. 9 for evidence of similar
results for ectopic variants at greater distances, Supp. Fig. 10 for similar results using our secondary parcellation-
free variant definition method, and Supp. Fig. 11 for border and ectopic overlap maps for each network individually.

2.3. Border and ectopic variants exhibit different patterns of network assignment

We next examined the network associations of each form of variant. As described in the
Methods, variants were “assigned” to a network by identifying the template (see Supp. Fig. 12)
that best fit that variant’s seedmap'™2. As a general pattern, variants tend to frequently be
assigned to the default mode, fronto-parietal, and cingulo-opercular networks for both forms and
across both datasets, consistent with previously reported results (Fig. 4A, Supp. Fig. 13).

FN2Z A note on terminology: variants of a given network assignment are henceforth referred to as, e.g., “DMN
variants,” referring to the variant’s network association (that is, locations that are not in typical DMN regions but
have a seedmap that matches canonical DMN distributions). Regions that are, instead, found in canonical regions of
the DMN are referred to in that way without any shortening.


https://doi.org/10.1101/2021.09.17.460799
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.17.460799; this version posted November 10, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

However, when contrasted with one another, we find that the relative prevalence of border and
ectopic variants differs by network. Indeed, a mixed-effects generalized linear model analysis
revealed a significant interaction between variant form and network (p<0.001), suggesting that
the influence of variant form on subject-level variant frequencies varies significantly across
networks.

Using our primary variant definition method in the HCP dataset, border variants appeared more
commonly assigned to the default mode network (DMN), fronto-parietal (FP), and parieto-
occipital network (PON). Ectopic variants were relatively more linked to the dorsal attention
(DAN), parietal memory (PMN), and sensorimotor networks (visual, somatomotor, auditory; see
also similar results using our secondary method, Supp. Fig. 14). Permutation testing of variant
labels in the HCP dataset confirmed these observations (Fig. 4B). As may be expected, ectopic
variants were relatively more abundant in smaller or more spatially local networks, as it is easier
to be distant from these network boundaries. However, ectopic variants were still often
associated with large networks such as the DMN, FP, cingulo-opercular (CO), DAN, and Visual
systems, emphasizing their common nature. Distributions of variant network assignments in the
MSC are shown in Supp. Fig. 13. Although there were fewer variants in the MSC overall
(leading to greater variability in per-network proportions of variant forms), the findings are
consistent with the HCP dataset such that ectopic variants were associated with many large (and
small) networks. The parcellation-free classification method also resulted in comparable network
distributions for most networks, although with some differences in ectopic:border ratios (Supp.
Fig. 14).

Interestingly, combining information from the location and network-assignment analysis, one
can find that border and ectopic variants exhibited different patterns of “swaps” in their territory
relative to the canonical structure (see Supp. Fig. 15). For example, border variants found in
canonical (i.e., group average) regions of the FP network most often are re-assigned to DMN,
CO, or DAN. Thus, while idiosyncratic, both forms of variants show constraints in how they

vary.

While it is beyond the scope of this manuscript to fully explore the interactions between variant
form (border, ectopic) and network assignment, it will be useful in future work to examine this
question in more detail. To aid in this endeavor, in Supp. Fig. 11 we provide border and ectopic
variant maps for each network individually.
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Fig. 4: Network linkages of border and ectopic variants (A) Network distributions of border and ectopic variants in
the HCP dataset. Variants of both forms are commonly associated with the DMN, FP, and CO networks, as reported
in past work!>. Similar results were seen in the MSC dataset (Supp. Fig. 13) and using the parcellation-free approach
to defining border and ectopic variants (Supp. Fig. 14) (B) Plot depicting permutation testing of the ectopic:border
ratio in the HCP dataset. For all networks with the exception of salience and cingulo-opercular, the true proportion
of ectopic variants (black dots) was significantly different from permuted proportions (colored dots, 1000 random
permutations of shuffled labels) at p<<0.001 (*; FDR corrected for multiple comparisons). DMN, FP, and PON
variants were more likely to be border shifts, while sensorimotor, DAN, and PMN variants were more likely to be
ectopic. Notably, ectopic variants were commonly found in all systems. See Supp. Fig. 12 for cortical depiction of
each listed network.

2.4. Border and ectopic variants exhibit shifted task responses

Next, using both datasets, we asked if both forms of variants show altered task responses,
consistent with their idiosyncratic network affiliation. Following Seitzman et al.'>, we first
focused on the mixed design task from the MSC. This design consisted of a cued-block
paradigm, with blocks of noun/verb judgments on presented words and blocks of dot coherence
concentricity judgments. Average activations (for all cue/trial/block conditions) were contrasted
with baseline (see Methods for details), a contrast that elicits negative activations in DMN
regions typically, and positive activations in the FP, DAN, and visual systems!> 32,

In the MSC, ectopic variants and border variants exhibit shifted task activation responses, in the
direction expected for canonical regions associated of the same network (Fig. 5B). Border
variants are shifted further toward the expected activation based on their new assignment than
ectopic variants. While we observe a strong task deactivation for border DMN variants (t(7) = -
5.38, p =0.001 for 8 MSC participants with border DMN variants), aligning closely with
canonical DMN deactivation, ectopic DMN variants exhibit a relatively weak (but still
significant) deactivation (t(6) =-2.76, p = 0.033 for 7 MSC participants with ectopic DMN
variants). Similar patterns are seen with “task positive” networks like the visual, FP, and DAN
networks; the CO, language, and salience networks were not strongly modulated by this contrast.

10
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This finding is further examined in Fig. SA for each MSC participant by comparing the task
activation of DMN variants in a given subject to that same location in other subjects. This
analysis showed that — in every individual participant — similar patterns of prominent decreases
in activations were observed relative to what is expected for that location in both border variants
(t(7) =5.97, p<0.001) and ectopic variants (t(6) = 5.99, p<0.001). However, the ectopic DMN
variants appear in locations that have a more positive typical response pattern in comparison to
border variants, and thus do not reach as strong a level of deactivation. We again found similar
results with the secondary parcellation-free classification method (see Supp. Fig. 16).

Next, we turned to the HCP to extend these results to a dataset with a larger sample size.
Analysis-level task fMRI maps from the HCP dataset (MSM-Sulc registered, 4mm-smoothing
versions of publicly available data) were used to query all contrasts across the 7 tasks (emotional
processing, gambling, language, motor, relational processing, social cognition, and working
memory). As in the MSC, we compared task activations at variant locations with activations of
canonical regions of a variant’s assigned network, and activations of canonical regions of all
other networks. Using 358 of 374 subjects with both forms of variants and task data available for
all HCP tasks, Fig. 5D shows these results for each contrast by network (including any contrast
for which the given network’s canonical response was at least 0.5% higher/lower than other
networks’ response). See Supp. Table 2 for information on the contrast names by task. Again,
border variants are shifted further toward the expected direction for canonical regions of the
same network than are ectopic variants (Fig. 5D). The consistency of this result was confirmed
by calculating the activation shift of the border or ectopic variant toward the response of regions
of its canonical network, normalized by the response of regions of all other networks (Fig. SE).
The same analysis was also applied to the MSC task results for consistency (Fig. 5C). In all cases
in both datasets, border and ectopic variants both exhibited shifts in their task activations toward
canonical network responses. For all but one network in the HCP, border variants consistently
shift more strongly toward their network’s canonical response than ectopic variants do.

Jointly, these findings demonstrate that both ectopic and border variants are associated with
shifted task activations, shifting toward the expected activations for the variant’s assigned
network. Border variants associated with the default mode network retain a task activation
similar to canonical locations of their assigned network, while ectopic variants show an altered
but intermediate task activation response.
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Fig. 5: Task-evoked activation of variant locations in the MSC and HCP. (A) Average activation in the MSC of
DMN-assigned variants in an individual vs. average activation in that location in all other individuals for border
(left) and ectopic (right) variants; 8 of 9 subjects with a border DMN variant and 7 of 9 subjects with an ectopic
DMN variant were included. Different colors represent different MSC participants. Both border and ectopic variants
exhibited functional activation shifted from the typical responses of their location toward the response expected
based on their network associations. Similar results were seen with our secondary method of border/ectopic variant
classification (Supp. Fig. 16). (B) Average activation (z) across all task conditions in a set of mixed-design tasks
from the MSC for variants (red = ectopic, blue = border shift), canonical locations of the listed network (black), or
canonical locations of other networks (gray). Error bars represent the standard error of the mean across subjects.
Data were only included from individuals that had a variant of the given form and network (e.g., a border variant
assigned to the DMN). (C) Normalized shift of border (blue) and ectopic (red) variants toward the listed canonical
networks. Values represent the average normalized value across the listed networks (calculated as (variant—other
networks)+(canonical network—other networks)); error bars represent standard error of the mean across networks.
(D) Average task activation across HCP subjects. For each network, contrasts were included if the activation in
canonical regions of the network was greater than that of other networks by a margin of at least 0.5% signal change.
Vertical dashed lines mark the delineation between contrasts where a given canonical network’s activation is greater
than other networks’ activation and contrasts where other networks’ activation is greater. Error bars represent
standard error of the mean across subjects for a given contrast; see Supp. Table 2 for information on tasks associated

12


https://doi.org/10.1101/2021.09.17.460799
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.17.460799; this version posted November 10, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

with each contrast name. (E) Normalized shift of border (blue) and ectopic (red) variants toward each listed network.
Similarly to the MSC dataset, both border and ectopic variants exhibit shifted responses during tasks. Border
variants consistently shift more strongly toward activation of canonical regions of their assigned network than
ectopic variants do (with the exception of PON variants). Error bars for the normalized values represent standard
error of the mean across contrast activation values within a network.

2.5. Border and ectopic variants both show a genetic influence, but border variants are
significantly more similar among identical twins

To better understand what factors contribute to the formation of network variants, we examined
their similarity in twin samples using an expanded subset of HCP subjects, now including those
with familial relationships. We measured the similarity in location of network variants (see Fig.
6A for schematic) among monozygotic (N = 88 pairs) and dizygotic twins (N = 45 pairs),
siblings (N = 137 pairs), and randomly matched unrelated individuals (N = 122 pairs). As can be
seen, network variants were generally most similar in location among monozygotic twins, with
intermediate similarity among dizygotic twins and siblings, and with the highest dissimilarity
among unrelated individuals (Fig. 6C). Similar twin sample similarity results were also found
when using the parcellation-free method to classify variants (see Supp. Fig. 17A). This pattern is
indicative of a genetic influence in network variant locations. Indeed, estimates of similarity
among twin samples based on Falconer’s formula®*3* were significantly higher for both border
and ectopic variants relative to permuted null distributions (p<0.001 and p<0.002 respectively;
Fig. 6B). These permutation test results also replicated using the parcellation-free classification
methods (p<0.001 for both border and ectopic variants; see Supp. Fig. 17B). These findings are
consistent with past reports that functional network organization is heritable* 3>, but here are
extended to demonstrate genetic influence specifically for the locations of idiosyncratic areas
(variants) of the brain.

Intriguingly, when border and ectopic variants are compared with one another, border variants
appear to be more similar across identical twin pairs than ectopic variants (Fig. 6C). A two-way
mixed-effects ANOVA confirmed this impression, revealing a significant interaction between
variant form and group (Greenhouse-Geisser-corrected p<0.001). Unpaired t-tests (assuming
unequal variance) were performed to decompose this interaction, demonstrating that
monozygotic twins show a greater difference between border and ectopic variant similarity
compared to dizygotic and non-twin sibling pairs (p=0.015; significant after Bonferroni
correction), and to unrelated individuals (p<0.001; significant after Bonferroni correction).
Additionally, paired t-tests comparing border and ectopic variant similarity within each group
revealed a significant difference for all but unrelated individuals (p<0.001 each for MZ pairs and
DZ/sibling pairs, Bonferroni-corrected). Thus, border variants track more closely with shared
genetics than ectopic variants. These findings add to the distinctions seen between border and
ectopic variants and suggest that they may have different underlying sources.
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Fig. 6: Estimating the genetic influence of border and ectopic variants across individuals in the HCP dataset. (A)
The similarity of border (blue) and ectopic (red) variant locations was measured for monozygotic (MZ) and
dizygotic (DZ) twin pairs, siblings, and unrelated individuals. This schematic shows an example pair of MZ twins
(left) and unrelated individuals (right). The MZ twins exhibit a greater Dice coefficient of overlap between their
border variants (in blue) and ectopic variants (in red) than a pair of unrelated subjects. (B) This observation was
confirmed by estimating genetic influence with Falconer’s formula, which compares similarity in MZ and DZ twins.
Both border and ectopic variants (red dots) exhibited significant similarity (p<0.001 and p<0.002 respectively)
relative to a permuted null (gray dots) where MZ and DZ labels were randomly shuffled (*note, our use of Dice
instead of R-values in Falconer’s formula does not produce heritability estimates, but does provide a valid way to
assess non-zero genetic influence via permutation testing, randomly shuffling MZ and DZ labels). (C) Average
similarity among border and ectopic variants is shown for pairs of HCP participants. For both forms of variants, MZ
twins showed the highest similarity, DZ twins and siblings showed intermediate similarity, and unrelated individuals
showed the lowest similarity, a pattern consistent with an influence on genetics on variant locations. Bars represent
standard error across subject pairs.

2.6 Subgroups diverge between border and ectopic variants

One question that might arise given this evidence for network variants is whether different
people share any common properties in their variants. This information may help to constrain
theories on how individual differences in brain organization arise across the population. In ref. !5,
we found that network variants differed across people in a categorical manner, and could be used
to identify subgroups of individuals with similar forms of idiosyncratic brain organization. In
that work, we found two large reproducible clusters of individuals: those with variants more
associated with the DMN and those with variants more associated with control and sensorimotor
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processing systems. Here, we examined the extent to which similar subgroups would be evident
for ectopic and border variants when examined separately. This analysis provides insight into the
relative independence between the two variant forms.

To this end, the subset of 374 unrelated individuals in the HCP dataset were grouped based on
variants’ similarity to each of 11 network templates and then clustered into subgroups (as in ref.
15), This analysis was conducted on two split-halves of the HCP dataset to confirm the
reproducibility of data-driven clustering findings. We clustered individuals whose variants had
similar network similarity vectors (see Methods), identifying three consistent subgroups of
individuals in both border and ectopic variants (Fig. 7A and 7B, respectively). The consistency
of subgroup assignments for border and ectopic variants (across sessions within an individual)
was high (>80% sub-group consistency for both border and ectopic variants; see Supp. Fig. 18),
suggesting that the assignments are robust.

In clustering individuals via their border variants, we found one large subgroup of individuals
whose variants were more highly correlated with the DMN and less highly with control and
processing networks (we refer to this subgroup as B1; 57% of subjects, green in Fig. 7A). The
second large subgroup had border variants with an intermediate profile, associated with control
systems (CO-, DAN-, and FP-like), with a low correlation to sensorimotor networks and the
DMN (B2; 28% of subjects, black in Fig. 7A; note this subgroup is distinct from ones observed
in our previous analyses). A third smaller subgroup included participants with more CO-like
variants, with stronger associations to sensorimotor networks and low correlation to the DMN
(B3; 14% of subjects, purple in Fig. 7A; this subgroup was similar to our second subgroup in
previous work!?).

Clustering individuals via ectopic variants resulted in three subgroups as well, but these differed
in their specific characteristics. The first subgroup included people with ectopic variants that
associated more strongly with FP and DMN and lower correlation to other control networks (E1;
28% of all subjects, light green in Fig. 7B; while similar to B1, note the less prominent DMN
profile). A small intermediary subgroup had ectopic variants strongly associated with DMN,
auditory and somatomotor networks, and less strongly with control networks (E2; 12% of
subjects, gray in Fig. 7B; distinct from any of the border subgroups). The final and largest
subgroup had strong associations to the CO, DAN, and PON networks (E3; 60% of subjects,
pink in Fig. 7B; most similar to subgroup B3). Thus, our previously published two-subgroup
result may have been driven by distinctions between border and ectopic variants.

We next evaluated the consistency of the Infomap subgrouping result relative to two null model
tests and relative to the community detection method. When randomizing each subject’s network
similarity vector prior to generating the subject-to-subject adjacency matrix, Infomap identified
only a single outcome cluster across participants, resulting in significantly higher modularity for
the true data relative to 1000 random permutations (p<0.001). When the subject-so-subject
adjacency matrix was randomized but preserved strength, degree, and weight distributions (using
the null model und sign function from the Brain Connectivity Toolbox; www.brain-
connectivity-toolbox.net), still the modularity of the true Infomap solution was significantly
higher than across Infomap results across 1000 random matrix permutations (p<0.001).
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Notably, it appeared that individuals who were members of a particular subgroup in one variant
form were not consistently sorted into the same subgroup according to the other variant form;
i.e., a subject whose border variants assign them to the DMN-like B1 subgroup was not
necessarily assigned to the DMN-like E1 subgroup based on ectopic variants. To confirm this
discrepancy, an additional analysis was performed in which each subject was forced into either
DMN or control/processing clusters (as these were the most consistently identified across
analyses) using a template approach (see Methods for more details). All HCP subjects with at
least one border and one ectopic variant were included in this analysis (N=371/374). Cluster
grouping was then compared for consistency. Figure 7C shows the results of this template-based
subgrouping. While an individual’s subgroup based on border variants was somewhat related to
its overall (all variants) subgroup (adjusted Rand index = 0.30), subgroups based on ectopic
variants were independent of the subgroups based on border (adjusted Rand index = -0.008) or
all variants (adjusted Rand index = 0.099). Note that these differences in clustering consistency
are substantially larger than seen for a single variant form when compared across sessions (Supp.
Fig. 18). This suggests that border and ectopic variant forms are relatively independent,
appearing in distinct patterns across individuals.
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Fig. 7: Similarity of border and ectopic variants across subgroups of individuals. For border variants (A) and
ectopic variants (B), we separated individuals into subgroups based on the average network similarity vector of their
variants (left). Matrices on the right show across-subject similarity (correlation) of variant profiles for each split-half
in the HCP. Color blocks at the edges of the matrices denote the subgroup identities. The two variant forms
produced three subgroups each with high similarity across matched split-halves of the HCP data. However, the
subgroups differed between the two forms. (C) Contingency tables show the composition of subgroups in which
each individual’s variant profile (all variants, border variants only, and ectopic variants only) was forced to sort into
either a DMN-like subgroup or a control/processing subgroup. Note that ectopic and border variant subgroup labels
had poor association with one another.

The results of the subgrouping analysis provide a means of identifying common patterns of
variation (or similarity) across individuals. Identifying consistencies of network variants within
subgroups of people is relevant for characterizing the basic features of individual differences
their differences can inform constraints on individual variation and the forms that they may take
in the population. In the same vein, we set out to use the same network-affiliation inputs that
were used in this clustering analysis to predict behavioral outputs, asking how the two forms of
variation may be able to differentially predict performance.
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2.7 Border and ectopic variants predict different behavioral phenotypes

In a final exploratory analysis, we examined to what extent border and ectopic variants can
predict broad behavioral phenotypes measured outside of the scanner. While these relationships
are likely to be small'®-2436-37 they may begin to identify subtle differences in the links between
these measures of brain organization and measures of cognition and psychopathology.

We used 10-fold cross-validation with support vector regression to predict out-of-scanner HCP
behavioral measures (selected to match ref. ') from variant features (see Section 5.11 for
extended description). Consistent with past results'® 2* we find that it is possible to predict
behavioral phenotype from resting-state functional connectivity measures — in this case even in
relatively sparse measures restricted to only the most idiosyncratic network locations in each
individual (Supp. Fig. 19, Supp. Table 3). The network associations (i.e., the same measures used
to sub-group individuals in Section 2.6) of both border and ectopic variants predicted behavioral
variables to a small degree (average border prediction r = 0.012, p < 0.04; ectopic prediction r =
0.030, p <0.001). The strongest predictions were associated with a range of affective, cognitive,
and quality of life measures (Supp. Fig. 19A), with ectopic variants showing stronger predictions
than border shifts (Supp. Fig. 19B).

Importantly, border and ectopic variants predicted distinct behavioral variables, and no
behavioral variables were predicted by both variant forms; predictions between border and
ectopic variants correlated at r = -0.126 (Supp. Fig. 19C). Similar differences between border and
ectopic variants were seen when the locations of variants were used as features for prediction
instead of their network associations (Supp. Fig. 20). Again, no behavioral phenotypes were
predicted by both border and ectopic variants (predictions between border and ectopic variants
correlated at r = -0.09). Note that, in this case, only border variants were significantly predictive
of behavioral phenotypes on average (average r = 0.015, p < 0.007) with the strongest
predictions seen for cognitive variables. Notably, similar results were obtained when border vs.
ectopic features were defined using the secondary parcellation-free approach (Supp. Fig. 21, 22).

Jointly, these findings suggest that using brain network features to predict behavioral measures is
possible, but these relationships are complex and relatively weak on average. The evidence that
border and ectopic variants predict different outcomes strongly suggests that simple summary
measures (e.g., grouping across all forms of individual differences in brain networks) will mix
together distinct brain endophenotypes and muddy interpretations.

As a final test of this last observation, we examined whether joining border and ectopic features
together would improve behavioral prediction. Interestingly, despite doubling the number of
features in analysis, we found that prediction results were relatively comparable between the
joint model and the best-performing individual models (e.g., for network affiliation, ectopic
prediction r = 0.030 and joint prediction was r = 0.030). Prediction values were correlated
between ectopic and the joint model at r = 0.73. Thus, at least in this case, joining border and
ectopic features together does not lead to gains in prediction, but adds ambiguity to the sources
of prediction performance.

18


https://doi.org/10.1101/2021.09.17.460799
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.17.460799; this version posted November 10, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

3. DISCUSSION

Individual differences in brain organization have received substantial recent attention. However,
most prior studies treat all forms of individual differences as uniform. Here, we document that
locations of individual differences (“variants”) come in two forms: shifts in the borders between
adjacent systems and ectopic intrusions, islands of an atypical system at a distance from its usual
location. Notably, instances of both border and ectopic variants were found in almost all
individuals in these datasets — that is, both border and ectopic variants are common properties of
brain organization. While they shared some common features, border and ectopic variants
differed significantly on a number of properties when contrasted directly, including their spatial
location, network assignments, and task-related functional responses. These differences
replicated across datasets and approaches to defining border and ectopic variants.

Building on this evidence of their import, both forms of variants showed genetic influences, but
border shifts were significantly more similar in identical twins than ectopic variants. Similarly,
subgroups appeared independent across the two variant forms. Finally, while both forms of
variants could be used to predict behavioral measures collected outside of the scanner, the forms
differed in which phenotypes they were linked to. Jointly, these findings suggest that variation in
functional brain systems come in (at least) two dissociable forms that appear to link to distinct
underlying sources and have differentiable consequences on function. Separation of these two
forms is likely to provide new insights into the sources of individual differences and their
implications for normative and clinical behavior.

3.1. Ectopic islands of variation are common properties of brain organization

A wealth of recent studies has provided evidence of individual differences in brain organization
and linked these differences to cognitive variation (e.g., refs. 1> 25:3%) The locations of these
individual differences are typically treated equivalently, often with the assumption that they
reflect differences in the topographic boundaries, or borders, between systems. However, our
work suggests that variant brain locations come in two distinct forms — one is associated with
border shifts, but another is defined by ectopic intrusions. Ectopic variants are in fact relatively
common, comprising ~40-50% of variants across both datasets. Even at greater distances (e.g.,
defined at 10mm or further from a similar network boundary), ~30% of variants were ectopic
(see Fig. 2B). Parcellation-free methods also identify robust evidence for ectopic variants that are
more than 10mm distant from expected similar locations (Supp. Figs. 3, 6). Thus, not only are
ectopic variants common, but many are also observed fairly remote from their expected network
boundaries. Many descriptions of individual differences in human brain systems discuss these
differences with respect to boundary-related mechanisms (e.g., a region expanding or taking over
territory in nearby locations) and distance-based functional alignments have been suggested as a
means to address these differences. However, different theories and approaches will be needed to
address ectopic variation (see next sections).

Prior to this paper, the existence of ectopic variants had been hinted at in previous work. For
instance, ref. !> and ref. !! observed regions where an individual’s functional network
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organization differs from a group-average description, including regions where a network
appeared more distant from its typically observed boundaries (e.g., see DMN variants in Fig. 4B
of ref. 15 and island of CO appearing in the individual-level map in Fig. 7 of ref. '!). Similarly,
work by Glasser et al.?° parcellating the human cortex noted several instances of sizable spatial
displacements in individual-level topography relative to a group-average representation. In this
work, we build on these initial observations to systematically characterize the prevalence of
ectopic variants and determine how they differ from border shifts along a number of dimensions
(e.g., location, similarity in twin samples, and function).

Although common, the proportion of ectopic to border variants varied on a subject-to-subject
basis; in the MSC dataset, for instance, some subjects had relatively fewer ectopic variants (i.e.,
ectopic variants in MSC02 and MSCO06 comprised 33% and 40% of total network variants,
respectively), whereas in some other subjects (e.g., MSC01, MSC04, and MSCO05) the proportion
of ectopic variants exceeded 60% (see Supp. Fig. 4 for a breakdown of these proportions in both
datasets). Thus, ectopic variants, and more specifically the ratio of ectopic to border variants,
may differ systematically across individuals.

3.2. Border shifts and ectopic intrusions are distinct forms of individual variation in brain
organization

Comparative neuroanatomy studies have shown that cortical functional architecture can differ in
a variety of ways across mammals, including differences in the cortical area size/position,
number, organization, and connectivity”. Although not as often discussed, many of these
differences are also seen across individuals within a species?. Linking to this work, we
hypothesized!> 4° that network variants represent a combination of border shifts (expansions,
contractions, or displacements relative to the canonical cortical area layout, which will result in
differences adjacent to their typical locations) and ectopic intrusions (islands of altered
connectivity and function of a region'™? at a distance from the canonical organizational
structure). Past work has suggested that even in the typical population, there is substantial
variation in the size and position of specific human cortical areas (e.g., in V1 size*? with
potential links to functional differences in vision*!"*? and in the position of Broca’s area* %°).
Here we demonstrate that variations both close to and distant from the canonical system structure
occur commonly across people and many brain regions, but that these two forms of variation
differ along a number of dimensions (in spatial location, network assignment, task activations,
genetic influence, prediction of behavioral variables, and subgrouping). These findings were
generally consistent across two divergent methods for defining border and ectopic variants,
suggesting robustness to the results (see Supplemental Discussion). These observations suggest
that border and ectopic variants may link to differing underlying sources.

N3 Note that while we have made efforts to identify homogeneous network variants, each network variant
is not necessarily equivalent to a full cortical area. Consider the example of border shift variants: these
variants could arise because an area within an individual has been expanded or displaced across a border
to subsume territory of another region. Using our methods, only the non-overlapping segment will be
labeled a variant. Therefore, even if functional connectivity were a perfect proxy for brain area divisions,
these variants might represent only a subunit within the area.
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A number of developmental factors influence how cortical functional systems are organized.
Gradients in the expression of transcription factors in patterning centers of the cortex control the
size and position of many cortical areas*®. It has been proposed that intrinsic genetic factors
create “proto-areas” whose boundaries are refined and sharpened through experience-dependent
mechanisms*’. Similar principles have been theorized to underlie the development of distributed
cortical systems, starting from a proto-organization that is refined, fractionated, and sharpened
with experience®®, and groups have reported evidence for heritability in functional brain
networks* 3> 4934 Here we present evidence that the locations of idiosyncratic brain locations are
influenced by genetics both for border and ectopic variants, exhibiting higher similarity among
identical than fraternal twins. However, variant similarity among identical twins was still far
from a perfect identity match, indicating a large contribution of environmental as well as genetic
factors to their formation. Interestingly, border shift variants were significantly more similar than
ectopic variants in identical twins, suggesting that border shifts may be relatively more linked to
genetic factors relative to ectopic variants.

Indeed, while some basic properties are preserved, profound differences in experiences (e.g.,
sensory deprivation during critical periods) have been shown to substantially alter cortical area
size, layout, and connectivity in rodents’. Similarly, experience with faces has been demonstrated
to be critical to the formation of face selective areas in macaques, although basic retinotopic
organization remains*’. In humans, functional connectivity of congenitally blind individuals
shows intact internal topography but large differences in the interareal connectivity of these
regions?!, while those born with only one hand show cortical expansions of regions representing
motor functions of other body parts®>. The lower dependency of ectopic variants on genetic
factors suggests that these variants may be more influenced by experience-dependent
mechanisms.

These studies in humans and non-human animal models help to explain how cortical
organization can both demonstrate substantial commonalities across individuals, but also
punctate locations of differences within a species — some associated with local changes (e.g., due
to changes in area sizes, which would likely result in border variants), and others that could be
linked to more distant alterations (e.g., strong changes in connectivity/function of a (sub)-region
that may underlie ectopic variants). Network variants provide a robust and high-throughput
approach to identify variations in brain organization across the human brain, helping to constrain
theories of the sources and consequences of cortical area variation. Future studies can
systematically test the hypotheses raised by this work, using a combination of network modeling
methods (for example, testing cascading interaction models for the evolution of network
activity’®), studies of network variants in different age populations (to determine how border and
ectopic properties may change over the course of the lifespan), and longitudinal study designs to
determine to what extent border and ectopic variants change over time within an individual.

3.3. Impact for basic research studies
At present, many resting-state and task-based fMRI studies aggregate or compare data across

participants based on spatial normalization, thus assuming that the same spatial layout of brain
systems is conserved across individuals®’. However, widespread individual differences in the
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localization of brain regions and systems may lead to detrimental effects when performing
group-level analyses, including loss of sensitivity and functional resolution®®, and prediction
accuracy of task functional connectivity”?, task-evoked signals®® 6!, and prediction of behavior
from resting networks!? 24 6263 Together, these limitations lead group studies to fall short of
providing comprehensive explanations of brain function and cognition as a whole.

Functional alignment across individuals may be improved by more accurate anatomical
registration, such as via surface-based mapping methods® . However, the resulting functional
overlap may be variable depending on the level of cognitive function and brain area in
question?* %6, with a bias toward enhancing the functional concordance of regions supporting
sensory/motor functions®’. As an alternative, several approaches to increase cross-subject
correspondence have been suggested based on improved alignment of functional signals
themselves. This includes individualized approaches such as collecting functional localizer task
data from each individual subject>” 687° adopting fcMRI methods to define brain systems and
areas from subjects with large quantities of data'? 7!, or hyperalignment-based techniques to
increase functional correspondence®® % 6!, Other methods developed to address functional
alignment include template-matching techniques (e.g., refs. >4 72) multi-modal
functional/anatomical registration®°, and hierarchical functional parcellation approaches (e.g.,
refs. %24 to identify brain systems and regions in individuals even with more modest amounts
of data.

Each of these methods has demonstrated great utility in allowing us to make cross-subject
comparisons to investigate various research questions, including improved definition of default
systems’!> 7374 language systems’® 7> 76 and sensory-biased frontal regions’” 7®. However, our
work here suggests that they must be implemented in such a way that is able to account for not
only local displacements (i.e., proximally altered positions due to border shifts) but also more
distant deviations caused by ectopic intrusions. Many current approaches rely on adjusting
individual functional regions within a relatively restricted spatial extent, and while this is likely
appropriate for many brain locations, imposing a strict distance criterion will not be optimized
for detecting ectopic variants that are more distant from their typical network boundaries (see
Supp. Fig. 5; nearly one-third of all ectopic variants occur at a distance of more than 30 mm from
their same-network boundaries). In particular, our results argue for using procedures that (a)
conduct individual-level region identification (e.g., individual localizers, as is often used in the
vision science community) or (b) that allow for longer-distance displacements of regions (e.g.,
with enlarged spotlight procedures). It is also possible that these individual features will link
with variable anatomical features (e.g., tertiary sulci’® 8) that will provide a new and improved
means of alignment of function across people.

Adjusting for ectopic variants will be more relevant in some brain locations and functional
networks than others. Compared to border shifts, ectopic variants were much more prevalent in
lateral frontal cortex, a region believed to play a role in task control3#!-82 language” 7°, and
sensory-biased attention and working memory’’, among other high-level processes. The
prevalence of ectopic variants in lateral frontal cortex suggest that researchers should be
particularly cautious in interpreting group-level results in these regions, unless a cross-subject
functional alignment method is performed that accounts for non-local deviations. Indeed,
important advances in our understanding of lateral frontal cortex will likely be spurred by studies
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using improved functional alignment methods, which enable separation of multifunctional
regions from specialized regions in the face of cross-subject heterogeneity (e.g., refs. 7> 83;
review by Smith et al.?%). In contrast, border variants were more commonly localized to the
temporoparietal junction and rostral superior frontal regions, which have been linked to shifting
attention® and theory of mind®®-*® among other functions, suggesting that studies focusing on
these domains and areas may benefit from functional alignment approaches which impose
distance-constrained changes.

S€C

In considering the impact of border and ectopic variants on cognitive neuroscience studies, one
intriguing question is the extent to which variant functional connectivity is likely to be changed
across task contexts. In our prior work® as well as those of others®”°!, we have typically seen
that task and rest FC share substantial commonalities, with only relatively subtle changes
associated with task states. Similarly, we have demonstrated that network variants are largely
stable in their properties across various task states?!. However, subtle differences in functional
connectivity do occur in tasks®® 2, and can be used to predict task state> °3- %4, even from
individuals®. Thus, a fruitful avenue of future investigation will be to establish how tasks affect
functional connectivity and border and ectopic variants separately.

3.4. Impact for studies of individual differences

One notable difference between the two variant forms is in how they co-vary across participants.
In both cases, subgroups of individuals showed similar patterns of variants: for example, with
both forms of variants, one subgroup had variants with strong links to the DMN, while another
subgroup had variants with stronger links to top-down control networks. However, the subgroups
differed in their specific variant profiles (e.g., whether the fronto-parietal network was grouped
with the DMN or CO subgroup). Perhaps most notably, the two variant forms appeared
independent: that is, a person in the “DMN” subgroup based on border variants could easily be in
the “CO” subgroup based on ectopic variants. Other forms of individual differences were also
seen in variant properties. For example, there were differences in the relative proportion of each
variant form across participants (e.g., MSC02 and MSCO06 had relatively few ectopic variants,
while MSCO01 and MSCO5 had many; Fig. 2). These findings beg the question of how each form
of individual differences in cortical organization is related to differences in brain function and
behavior.

Here, we demonstrated that border and ectopic variant properties are related to robust differences
in task activations, not only in the MSC, but also across a range of task activations in the HCP.
Border shifts relatively strongly matched the task responses of their associated network, despite
their differing location. Ectopic variants, in contrast, showed a more intermediate profile,
suggesting that they may be sites of intermediate functional processing.

Consistent with the idea that border and ectopic variants are associated with altered brain
function, we also find that these variants can be used to predict behavioral measures collected
outside of the scanner in the HCP dataset. While prediction levels were low, they were
significant in cross-validated samples. In our previous work, we demonstrated that network
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variants have high stability across sessions, even up to a year'”, and across task states?!. This
trait-like characteristic of network variants, as well as its link to differences in functional
responses during tasks'>; Fig. 4) suggest that they are well suited to serve as markers of
individual differences in behavior in both the neurotypical population!® and in cases of
psychiatric and neurological disorders*’. Other studies have also shown that individual
differences in functional brain organization relate to behavior, including links between
individual-level network topography and measures of cognition and emotion'?, associations
between changes in functional network topography and a variety of behavioral factors®®, and
links between cognitive ability and maturation of networks supporting executive function®: %3

Intriguingly, we find that border and ectopic variants predict different behavioral phenotypes
(with low correlations in their prediction performance). Ectopic variants showed the most robust
prediction based on the network associations of variants, and linked to a range of affective and
cognitive variables. Border shifts, in contrast, exhibited better prediction based on their locations
and were most tightly linked to cognitive measures. Importantly, prediction was not materially
improved by joining border and ectopic variant features together. The differences we find
between border and ectopic variants suggest that deeper insights into individual differences may
be provided if these two forms of variation are separated, or integrated in a more sophisticated
manner that acknowledges that they can contribute differing sources of information. This
understanding will allow for improved theories about the mechanistic links between individual
differences in brain system variation and behavior, likely critical to using this information to
guide clinical practice and interventions.

Despite these observations, we note that the brain-behavior predictions reported in this study
were relatively small. These results are not surprising given recent findings on the small size of
brain-behavior correlations®* 3% % | and our prediction levels are in line with past work that uses
similar number/types of features®’. It may be interesting to speculate on why we find a limited
relationship to behavioral measures, and a closer correspondence to differences in task
activations. One possibility is limitations in our measurement methods both for our brain
measures and behavior’%37-96-98 - Another is that many individual differences in brain
organization are relatively degenerate, producing similar behavioral outcomes (an phenomenon
previously termed “behavioral phenocopy™?). An important future avenue of research will be to
establish principles for how and when individual differences in brain function relate to individual
differences in behavioral performance. Regardless of their connection to out-of-scanner
behavior, the current findings are important to understand principles of brain organization and
how they vary across people. These results will be needed to interpret and form new theories
about the neurobiological sources of individual differences.

4. CONCLUSION

While the human cortex is organized around a common core architecture, specific locations
exhibit prominent deviations from this group-average organization. Here, we investigated two
forms of these deviations: nearby shifts in the borders between functional systems and ectopic
intrusions at a distance from their typical position. We demonstrate that these two forms of
individual variation are both common, but differ in their spatial positions, network assignments,
task response patterns, and subgrouping characteristics. Both forms of variants show evidence of
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genetic influence, but border shifts are significantly more similar in identical twins, suggesting
they may be more tightly linked to genetics while ectopic variants may be more influenced by
environmental factors. Finally, the two forms of variants predict distinct behavioral variables.
These different properties of both forms of variation must be accounted for in the study of
cortical system organization and its links to behavior.

5. METHODS
5.1. Datasets and Overview

Network variants were investigated using data from two separate publicly available datasets: the
Midnight Scan Club (MSC) dataset'?, and a subset of individuals from the Human Connectome
Project (HCP)!%. The MSC dataset is a “precision” fMRI dataset consisting of 10 highly
sampled subjects (5 female; average age 29.3 years; 1 participant excluded due to high motion
and sleep'?) with over 154 minutes of low-motion rest fMRI data and task fMRI data across 3
conditions (mixed, memory, motor — in this manuscript we focus on the results of the mixed
design tasks). From the larger HCP dataset, we primarily analyzed 384 unrelated subjects (210
female; average age 28.4 years as in ref. !°, selected to be unrelated and have a minimum of 45
min. of low motion resting-state fMRI; see SI Table 1 in ref. !° for details on exclusion criteria
for this dataset). Of these 384 subjects, 374 were retained for analysis after removing subjects
with exceptionally low spatial correspondence to the group-average indicating low quality data
(see Section 5.3; note however that results remain the same prior to their removal). For analysis
of behavioral links and genetic influence on variant locations, a larger subset of the full HCP
dataset was used. This group consisted of 823 individual subjects (793 after quality control),
including those with familial relationships, each with a minimum of 40 min. of low-motion
resting-state fMRI data.

In compliance with ethical regulations, informed consent was obtained from all participants.
Study protocol for the MSC dataset was approved by the Washington University School of
Medicine Human Studies Committee and Institutional Review Board, and protocol for the HCP
dataset was approved by the Washington University Institutional Review Board.

In both datasets, previously defined idiosyncratic locations of functional connectivity (“network
variants”)!®> were divided into homogeneous segments (see criteria below) and segregated into
ectopic intrusions (“ectopic variants”) and border shifts (“border variants”) based on the criteria
described below. Several features of each variant form were then examined. First, we quantified
the prevalence of both variant forms across the two datasets. Second, we characterized the spatial
location and idiosyncratic (individual-specific) network assignment of these regions. Third, we
examined the task responses of both variant forms using task data from the MSC dataset. Fourth,
we examined if there were common profiles of border shift and ectopic variants (as we have seen
in past data for variants as a whole!®), by clustering individuals into subgroups based on their
variant characteristics.

5.2. Preprocessing
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Imaging data from the MSC and HCP subjects used in the present analyses were preprocessed
identically to ref. 1. Full details on acquisition parameters, preprocessing, FC processing, and
volume-to-surface mapping can be found in that manuscript, but are outlined briefly below.

Functional data from both datasets were preprocessed to remove noise and artifacts, following
ref. 11, For the HCP dataset, we began with the dataset as processed following the minimal
preprocessing pipelines!®?. Procedures included field map distortion correction of the functional
images, slice-timing correction (for the MSC dataset only), mode-1000 normalization, motion
correction via a rigid body transformation, affine registration of functional data to a T1-weighted
image, and affine alignment into stereotactic atlas space (MNI for HCP (Montreal Neurological
Institute, Montreal, QC, Canada); Talairach for MSC!%).

Following this, resting-state fMRI data was further denoised for functional connectivity analysis,
including regression of white matter, cerebrospinal fluid, and whole brain signals, six rigid-body
parameters and their derivatives, and their expansion terms!®. High-motion frames (calculated as
framewise displacement; FD!%) were censored; frames with FD > 0.2 were censored for the
MSC data!? and frames with filtered FD > 0.1 were censored from the HCP data following ref.
106 to address respiration contamination of motion parameters (filtered FD = low-pass filtering at
<0.1 Hz of the original motion parameters prior to FD calculation; note that two participants in
the MSC dataset — MSCO03 and MSC10 — with strong respiratory contamination of their motion
parameters also used the filtered FD measure!>#). As in ref. 197, 5 frames at the start of each run
along with any segments < 5 frames long were also removed. These censored frames were
interpolated over using a power-spectral matched interpolation. Subsequent to this, a temporal
bandpass filter was applied to the data from 0.009 to 0.08 Hz.

Following this processing, BOLD data were mapped to each subject’s native cortical surface as
generated by FreeSurfer from the atlas-registered T1!%. Data were registered into fs_ LR space®
and were aligned to the surface following Gordon et al.’, producing a CIFTI file with a BOLD
timeseries for each functional run. From this point on, all analyses were conducted on the
cortical surface (at the vertex-level).

Data on the cortical surface was spatially smoothed with the application of a geodesic smoothing
kernel (¢ = 2.55; FWHM = 6 mm). Finally, high motion frames (that were previously
interpolated) were removed from analysis. Note that participants were required to have at least
40 min. of data total to be retained in analysis (see refs. !> 2! for evidence that ~40 minutes of
data is necessary to achieve reliable network variant measures). Some additional improved
reliability is seen beyond 40 min., however. This factor motivated our use and replication of
results in both the HCP and MSC datasets (when possible), in order to balance the advantages of
large numbers of participants with the added reliability of extended amounts of data.

5.3. Defining network variants

Network variants are defined as locations in an individual that show strong differences in their
functional network patterns relative to the group average. In the current manuscript we began
with the same set of variants as originally presented in ref. 1°. Briefly, for each subject, each
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vertex’s seedmap (i.e., its cortex-wide connectivity map) was correlated with the same vertex’s
seedmap™* from a group-average reference dataset, composed of an independent 120 young
adults (the WashU 120'%). After repeating this procedure for all cortical vertices, this produced
one individual:group similarity map per person (with a spatial correlation value for each vertex).
HCP subjects whose average individual:group spatial correlation value was greater than 2
standard deviations below the mean (r = 0.436) were excluded from further analyses (10 out of
the primary subset of 384 subjects; 30 out of the larger pool of 823 subjects used for analyses of
similarity within twin samples and behavior).

Similarity maps were thresholded to include only the lowest decile of correlation values (i.e., to
identify the 10% of locations where the individual was least similar from the group-average) and
were then binarized. The decile criterion was originally selected because it represents the
approximate inflection point on a histogram of individual-to-group similarity, suggesting that it
may serve as a natural criterion for identifying points with strong differences from the group
average. In past work, we have tested other methods for selecting network variants (based on
absolute rather than relative criteria or different relative thresholds'>:2!), with similar overall
results. As in ref. 1°, a vertex-wise map of low-signal regions was used to mask out potential
variant locations. Clusters of at least 50 neighboring vertices in size were flagged as pre-variants
for further analysis (see Fig. 1A).

Following this original variant definition, a series of steps was taken to further refine the set of
pre-variants to generate the final variants that were used in the border/ectopic analyses, given
observations that some pre-variants were large and irregularly shaped, suggesting they might
consist of separate units. To divide pre-variants, previously defined contiguous units were
divided into segments with the goal of minimizing heterogeneity in the connectivity of individual
pre-variants. This procedure consisted of a two-fold check of (1) the variance explained by the
first principal component of the pre-variant, resulting from a principal component analysis on
variants’ vertex-wise seed maps (i.e., ‘homogeneity’ 7) and (2) the proportion of the variant’s
territory that is dominated by a single network in the individual’s subject-specific vertex-wise
network map. In these vertex-wise maps, each cortical vertex is individually assigned to a
network using a template-matching procedure (see refs. ! %72 which matches each vertex’s
thresholded seedmap to each network’s thresholded seedmap (each thresholded at the top 5% of
values) and assigns the vertex to the network with the best fit (measured via the Dice coefficient;
similar to ref. '3).

Using the MSC as a pilot dataset, two independent raters visually assessed all subjects’ variants
by examining connectivity seedmaps of vertices within a pre-variant. Based on the apparent
homogeneity or inhomogeneity of seedmaps at various locations within the pre-variant, the raters
evaluated whether each pre-variant should be flagged to be divided. Based on these results, an
algorithm was developed that best matched the hand ratings from reviewers, based on a
combination of template-match network representation and homogeneity thresholds. The

FN4 Note that for these analyses we focused on cortex-wide seedmaps, not separating edges from within and between
network connections. In our experience, focusing on whole brain maps and top within-network connections
produces similar results’. It will be interesting in future work to more fully explore the differences between defining
variants on each form of edge.
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thresholds were then applied to the broader set of MSC and HCP participants. These final
thresholds were set at 66.7% homogeneity and 75% network dominance in the individual
network map. The thresholds were then applied to the broader set of MSC and HCP participants.
Flagged pre-variants were split along the network boundaries of the vertex-wise network,
resulting in final “split” — but each contiguous — variants into homogeneous regions. Clusters
smaller than 30 contiguous vertices were removed. See Fig. 1 A for a schematic representation of
the splitting procedure and examples of split variants. Following the combination of variant
definition, size and SNR exclusion, and pre-variant homogeneity refinement, approximately 2%
of vertices were defined as variants in each individual.

5.4. Functional network assignment of variants

Variants were then assigned to a best-fitting canonical functional network by a procedure which
matched each variant to its best-fitting functional network template as in ref. !°. To assign
variants to networks in the MSC dataset we used group-average network templates that were
generated in previous work from 14 networks using data from the WashU 120 (refs. 13 1°; see
Supp. Fig. 12A). Networks used for MSC analyses included default mode (DMN), visual, fronto-
parietal (FP), dorsal attention (DAN), language (Lang.; note this has been referred to as the
ventral attention network in our past work but we have now reclassified as language based on its
correspondence with language localizers’®), salience, cingulo-opercular (CO), somatomotor
dorsal (SMd), somatomotor lateral (SM1), auditory, temporal pole (Tpole), medial temporal lobe
(MTL), parietal medial (PMN), and parieto-occipital (PON). For terminology, variants whose
best-fitting functional network is DMN based on comparisons to all network templates, for
example, are termed “DMN variants.”

For the HCP dataset (given differences in dataset resolution and acquisition parameters'%’; see
also ref. %), a dataset-specific network template was generated (Supp. Fig. 12B; see ref. !° for
template generation procedure). The networks included in HCP-specific analyses were similar to
those for the MSC, but did not include the language, MTL, or T-pole networks as these networks
did not emerge consistently across edge density thresholds from the data-driven group-average
network identification procedure (Infomap!'%?). In both cases, the average seedmap for each
variant in an individual was compared with each of the network templates (after binarizing both
to the top 5% of connectivity values (as in ref. !*) and assigned to the template with the highest
Dice coefficient overlap. Network variants were removed from further analysis if they did not
match to any functional network (Dice coefficient of zero) or if over 50% of their vertices
overlapped with the group-average network for that location.

5.5. Classification of variants as ectopic intrusions or border shifts

Two methods were used to classify variants as either ectopic intrusions or border shifts. The
primary method was implemented to identify variants which lay adjacent or at a distance from
the canonical group-average regions of the same network. First, using the MSC as a pilot dataset,
all variants were manually classified as ectopic variants by examining whether they visually
appeared to be spatial extensions of existing network features or whether they appeared to arise
unconnected from other same-network locations. Next, we tested different geodesic distance
criteria to optimize agreement of computed border/ectopic classifications with manual
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classifications of variants as border/ectopic based on our visual inspection of the MSC
participant variants. The final procedure specified that all variants further than 3.5 mm (edge-to-
edge distance) away from a same-network cluster were classified as ectopic variants; variants
closer than 3.5 mm were classified as border variants. This procedure was then applied to the
independent HCP dataset (see Fig. 1 for schematic representation). As a check to determine
whether the 3.5 mm distance threshold we specified would significantly impact the proportion of
ectopic variants in our sample, we also classified variants as ectopic or border based on a
distance criterion of 5, 7.5, and 10 mm and computed the proportion of ectopic variants at each.
Finally, we also quantified the distance between each final ectopic variant and canonical regions
of their assigned network.

A secondary, parcellation-free method to classify variants was also implemented for use in a
subset of analyses (reported in the supplement). Rather than relying on a group parcellation to
make a border-ectopic distinction, this technique classified a variant based on whether its
average connectivity seedmap reached high similarity to the group average seedmap (i.e., high
variant-to-group R) at brain locations near the variant (a border shift), or whether the variant’s
similarity to the group did not approach a peak in correlation at any brain location near the
variant (an ectopic intrusion). This procedure specified that if the seedmap of a variant reached at
least 90% of its peak correlation to the group average at a distance within 10 mm (edge-to-edge
distance), then the variant was classified as a border shift. Conversely, a variant whose seedmap
similarity to the group did not approach at least 90% of its peak correlation within a distance of
10 mm was classified as ectopic. In both cases, the “peak” variant-to-group R was defined as the
most similar seedmap comparison within 150 mm of the variant. For a schematic illustration of
this method, see Supp. Fig. 2.

Of note, each of these variant classification methods relies on a comparison between an
individual and a group-average description (a group-average network map in the primary
method, or a group-average connectivity map in the secondary method). The motivation for this
approach was twofold: first, we sought to understand how group-level representations may err,
both in terms of proximal adjustments (border shifts, which can be more straightforwardly
addressed by available techniques) and for more distant, individually idiosyncratic locations
(ectopic intrusions, which arise further away than expected based on group priors). Second, if we
are to approach the question from a theoretical standpoint, we may assume that an individual
may deviate from a “standard” template of brain organization in various ways. Some
mechanisms may result in relatively proximal border shifts (e.g., differences in the transcription
factor gradients which mediate a standard set of developmental pathways), whereas others may
operate over longer distances (e.g., experience-dependent competitive mechanisms). Thus, it is
important to characterize each of these possible routes for individual variation. However, to
contextualize an individual’s variants within their own individually defined network map, we
provide an exploration of variants in the MSC dataset with ectopic variants classified into 3 sub-
types based on how isolated or connected the variants were to their individual-specific networks;
see Supp. Fig. 7 and legend for an illustration, and Supp. Table 1 for classification results.

5.6. Examining differences in spatial distribution between ectopic and border variants
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To visualize the spatial distribution of border and ectopic network variants, a spatial overlap map
was generated by summing network variant maps (separated by form) across individuals. This
produced an overlap map highlighting regions of high and low occurrence of variants in both the
primary and parcellation-free classification method.

These spatial overlap maps were quantitatively contrasted at two levels. First, an omnibus map-
wise permutation analysis was run. Our null hypothesis was that the distribution of border and
ectopic variants was no more different than would be expected by chance. We used a
permutation approach to address this hypothesis. This was achieved by (1) shuffling variant
classification labels (ectopic vs. border) randomly at the subject level (i.e., flipping variant labels
within a subject’s variants map 50% of the time) to create pseudo-ectopic and pseudo-border
variants, (2) summing variant locations across subjects to generate a cross-subject overlap map
for pseudo-ectopic variants and a cross-subject overlap map for pseudo-border variants, (3)
calculating the similarity (spatial correlation) between the pseudo-ectopic and pseudo-border
overlap maps, and (4) repeating steps 1-3 1000 times for different permuted labels. We then
compared the distribution of permuted similarity values with the true similarity between ectopic
and border spatial distribution maps. We calculated significance as a p-value based on the
proportion of permutations in which the permuted correlation value exceeded the true correlation
value. This procedure was used to determine whether spatial distributions, as a whole, differed
between ectopic intrusions and border shifts. Permuting border and ectopic labels at the subject
level allowed us to preserve spatial relationships and local spatial auto-correlation!!® within each
subject’s variant map, in turn allowing us to directly test the null hypothesis that the distributions
of border versus ectopic variants across subjects are no more different than would be expected by
chance.

Second, to locate specific regions where the distribution of ectopic variants was significantly
distinct from border variants, a cluster-size-based permutation analysis was run. The first two
steps were the same as before: (1) shuffling ectopic and border labels within each subject’s
variant map to create pseudo-ectopic and pseudo-border variants in the same proportion and (2)
summing variant locations across subjects to create an overlap map for pseudo-ectopic and
pseudo-border variants for each of 1000 permutations. Using these permuted overlap maps, we
(3) generated 1000 difference maps of the pseudo-ectopic variants distribution minus the pseudo-
border variants distribution, (4) thresholded these pseudo-difference maps to only keep locations
with differences of at least 5% of participants (19 subjects), and (5) calculated the size (number
of vertices) of retained clusters. This procedure produced 1000 permuted pseudo cluster size
calculations. This distribution of cluster sizes was used to define a cluster threshold that
corresponded to the top 5% of permuted (random-chance) clusters (p < 0.05 cluster-corrected).
Finally, the true ectopic—border difference map was also thresholded to only keep locations with
a difference of at least 5% of participants, and all clusters composed of fewer vertices than the
cluster-correction threshold (229 vertices) were removed, and the resulting cluster-corrected
difference map is displayed.

5.7. Comparing network assignments between variant forms

In addition to its spatial location, each variant has an idiosyncratic functional network
assignment (see “Functional network assignment of variants” section above; e.g., a network
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variant located in a typical DMN region may have functional connectivity more closely
associated with FP, causing it to be assigned to that system). In the next analysis, we used a
permutation approach to quantify differences in border and ectopic variants’ functional network
assignments.

For this analysis: (1) we permuted the label of each variant as border or ectopic within
participants in the HCP dataset (permutations were done per participant), (2) we then calculated
the proportion of pseudo-ectopic to pseudo-border variants for each network, (3) repeated steps
1-2 1000 times. We then compared the true ectopic to border proportion for each network to the
permuted distribution of proportions. Significance was assessed via p-values calculated as the
proportion of permutations in which a network’s true percentage of ectopic variants was less or
greater than (two-tailed) all permuted percentages after FDR correcting for multiple comparisons
across networks. This analysis was also performed using the parcellation-free variant labels. To
further test whether frequencies of each variant form varied by network, a mixed-effects
generalized linear model analysis was performed. Factor effects were defined for variant form
(border or ectopic) and variant network, with one level per subject recording counts of each
observed combination. The interaction model was performed to measure the extent to which the
influence of variant form on variant frequencies varied across networks, while accounting for
within-subject dependence.

Finally, we determined the “swaps” of network territory occupied by border and ectopic variants
(e.g., a variant located in canonical cingulo-opercular territory that “swaps” its network
assignment to the fronto-parietal network). To do so, we defined each variant’s consensus
network assignment as the modal network across variant vertices in the pre-defined group-
average system map, compared this with the variant’s assigned network, and tabulated the
frequency of all cross-network swaps.

5.8. Examining task activation of variants

In addition to defining FC features of network variants, we also examined how these regions
responded during tasks. Following Seitzman et al.!>, we first focused on fMRI task activations
during the mixed-design tasks in the MSC dataset (semantic and coherence), given strong a-
priori hypotheses about the responses of different networks during these tasks. The semantic task
involved participants indicating whether presented words were nouns or verbs, and the coherence
task required participants to indicate whether an array of white dots on a black background !!!
were displayed in a concentric (as opposed to random) arrangement. Within each task block, a
short cue signaled the onset of the block, with a series of individual trials presented with jittered
timing. Another short cue signaled the end of the block, and task blocks were separated by
fixation periods of 44 seconds (see ref. 2 for more details on task design).

Task fMRI data from the MSC dataset underwent the same basic preprocessing as listed in the
Preprocessing section (i.e., field map correction, slice timing correction, motion correction,
alignment, and normalization, registration to the cortical surface and smoothing). These tasks
were then analyzed using a general linear model (GLM). For each event (cues, correct and error
trials of each type), eight separate timepoints were modeled in a finite impulse response
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modeling approach!®!); for each task block, a block regressor was modeled to estimate sustained
activations. The tasks and analysis streams are described in further detail by refs. ' and #.

In this study, we examined the activation image across all conditions (start/end cues, trials, and
sustained activations across semantic and coherence tasks) versus baseline to interrogate network
variant locations to examine whether forms of variants exhibited differences in task activations.
A series of comparisons were conducted following ref. !°: (1) comparisons (two-tailed t-tests) of
the task activation of DMN variant locations in a given subject relative to the same location in
other subjects, (2) a comparison of task activations of variant locations in each network relative
to canonical regions of their assigned network, and (3) a comparison of task activations of
variant locations in each network relative to canonical regions of other networks. Task
activations were examined separately for ectopic variants and border variants; this analysis was
repeated using the parcellation-free variant labels.

Task fMRI data from the HCP dataset were also used to query the activation properties of border
and ectopic variant regions. We used the MSM-Sulc registered, 4mm-smoothing versions of task
contrast images from the publicly available analysis-level data from all 7 tasks (emotional
processing, gambling, language, motor, relational processing, social cognition, and working
memory), originally processed following the HCP preprocessing pipeline (ref. 1°%; see section
5.2). All tasks used a blocked design to model each contrast; see ref. '!? for details. Of the
primary set of 374 subjects, 358 who had both forms of variants and data available for all tasks
were retained for the task activation analyses. Again, we compared task activations of variant
locations in each network relative to both canonical regions of their assigned network and
canonical regions of other networks (this time separately per contrast and per network, given the
expanded number of contrasts). Networks with fewer than 200 variants overall were excluded to
increase the stability of the results.

To determine the extent to which each form of variant exhibited shifted task activations relative
to the typical response expected for canonical regions of their assigned network, we calculated
the proportion of this shift (normalized by the average activation seen across all other networks)
as follows:

Variant — Other networks

ActivityShift =
YShifteype Canonical network — Other networks

In order to assess the variants’ relative shift, contrasts were only included in this analysis if they
showed a difference in the given network’s activation compared to all other networks’ activation;
only contrasts with a difference of at least 0.5% signal change were considered. This analysis
was performed in both datasets: in the MSC summarized across networks, and in the HCP
summarized across contrasts within a network.

5.9. Similarity of network variants in twin samples
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We next asked about potential sources for these different forms of idiosyncratic variation in
functional networks. We used the familial design of the HCP data to interrogate this question.
Thus, unlike in previous analyses, we included all N = 793 participants who passed our quality
control criteria (see sections 5.2 and 5.3), not excluding those with familial relationships.

Of these, 784 subjects with at least one border variant and at least one ectopic variant were
carried forward in the twin analyses (note: only MZ and DZ twin pairs whose twin status was
confirmed via genotyping were included as twins).

Next, we estimated the variant similarity among twin samples by contrasting the Dice overlap in
monozygotic (MZ) and dizygotic (DZ) twins using Falconer’s formula for broad sense
heritability4: h? = 2(Dmz — Dp;). The formula is derived from the model that MZ twins share
100% of their genes and DZ twins share 50%, while both share common environmental
variables. Note that our input values to Falconer’s formula were Dice overlap coefficients and
not r values, and as such they cannot be directly contrasted with Falconer’s estimates based on
correlation, but still provide a valid means to test non-zero genetic influence. To assess the
significance of our estimate of genetic influence, we used a non-parametric permutation
approach, in which MZ and DZ labels were randomly shuffled before Falconer’s formula was re-
computed. This was done 1000 times to create a null distribution. P-values were then calculated
relative to this null distribution. These analyses were repeated using variant labels from the
parcellation-free variant classification method.

Finally, we then compared the locations of border and ectopic variants across individuals with
different familial relationships (monozygotic twins, dizygotic twins, siblings, and unrelated
individuals) using the Dice overlap coefficient. A two-way mixed effects ANOVA was
performed to test for an interaction between variant form and group, with groups associated with
100% genetic overlap (MZ twins), 50% genetic overlap (DZ and non-twin siblings; note that for
this analysis, Dice values from DZ and non-twin sibling pairs were combined due to
approximately equivalent genetic relatedness and the smaller N of DZ pairs alone), and 0%
genetic overlap (unrelated individuals). Following the ANOVA, two-sample #-tests were
performed, assuming unequal variance, to assess between-group differences of border minus
ectopic Dice coefficients (e.g., MZporder—cctopic VS. combined DZ/sibling porder—ectopic VS. unrelated
vorder—ectopic). Bonferroni correction was applied to these three tests. Finally, a paired t-test was
performed to test whether, in each group, there was a difference between border and ectopic
variant similarity among pairs. Again, Bonferroni correction was applied to these three tests.

5.10. Identifying subgroups of ectopic and border variants across individuals

We next sought to investigate whether there were commonalities across subgroups of individuals
in their network variant characteristics. To this end, we conducted a similar analysis as in ref. !°
to examine the subgrouping potential of ectopic and border variants. In this case, data was
restricted to the sample of N = 374 unrelated individuals to avoid confounding subgrouping
analyses with potential familial relationships examined in section 5.9.

As in ref. !°, we split the HCP dataset into 2 matched samples consisting of 192 subjects each
(further pared down to 183 and 191 subjects, as described in Section 5.3), allowing us to search
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for data-driven findings that replicate across split-halves. In every individual in the HCP dataset,
the mean similarity between all variant vertices and each network was produced by calculating
the correlation between the variants’ seedmap and each of 11 network template seedmaps. This
created an 11 x 1 vector for each subject containing information on the network similarity of
variant locations. These vectors were correlated between all subjects in each split half, producing
a subject adjacency matrix. A data-driven approach, the Infomap clustering algorithm!®’, was
then conducted on the cross-subject correlation matrix in one split-half; the algorithm was
applied after thresholding the correlation matrix across a wide range of density thresholds (5% to
50%, in increments of 1%, requiring a minimum subgroup size of 20 subjects). Subgroups were
defined based on consistent results across a range of Infomap thresholds. Sub-group assignments
were validated in the second split-half of subjects by correlating each subject’s network vector
with one of the resulting subgroup average network vectors; a minimum correlation of 0.3 was
required for assignment. In this analysis, we opted to use Infomap as our method of community
detection as it has been shown to out-perform other methods — including modularity-
maximization approaches — on benchmark testing for community detection!!?. Infomap better
addresses issues that arise from resolution limits, with an improved ability to identify modules of
different sizes.

After running Infomap, three primary subgroups were consistently produced across a broad
range of thresholds; also note that additional subgroups can be identified at sparser thresholds).
Subgroups of individuals with similar network similarity profiles were identified in the first
(discovery) split-half, and the subgroups were replicated in the second (validation) split-half as
described above. Variant network connectivity patterns of resulting subgroups of individuals
were subsequently examined. The subgrouping analysis was performed twofold: first operating
solely on ectopic variants, then operating solely on border variants.

Next, we examined to what extent an individual’s subgroup assignment was consistent when
grouped by all of their variants, their border variants only, and their ectopic variants only. All
HCP subjects with at least one of each form of network variant were included in this analysis.
The network similarity vectors of two previously identified stable subgroups (a DMN subgroup
and a control/processing subgroup) were identified by clustering individuals’ network vectors
across all variant forms within each split-half, and averaging across split-halves. The DMN and
control/processing network similarity vectors were then used as templates with which each
individual’s network variant profiles were correlated (separately across all variants, border
variants only, and ectopic variants only). Similar network similarity results were found in
original analyses based on all variants'; see Supp. Fig. 22 for DMN and control/processing
profiles. Following these “forced” subgroupings, the adjusted Rand index was calculated three-
fold to investigate any similarity between an individual’s subgroup assignment between (1) all
variants and border variants only, (2) all variants and ectopic variants only, and (3) border
variants and ectopic variants.

We next investigated the robustness of an individual’s subgroup assignment, asking whether this
assignment was consistent within a subject when their resting-state data was divided in two. For
this analysis, a participant’s data was split into two parts, one for each session, and an 11 x 1
network-similarity vector containing information on border and ectopic variant locations (as
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described above) was produced for each session’s data. The data-driven subgroup profiles
(network-similarity vectors, each sub-group profile averaged across split-halves as in Fig. 7A/B)
were correlated with each subject’s network-similarity vector (separately for border and ectopic
variants). For each subject, the subgroup profile with the highest correlation was designated the
match for a given session’s data, and a contingency table was produced to illustrate the
proportion of subjects whose split-session data yielded an equivalent subgroup assignment (see
Supp. Fig. 18).

Finally, we sought to evaluate the quality of our Infomap clustering in two ways. First, we
randomized the 1x11 vector of network associations for each subject, and used the randomized
subject-to-subject correlation matrix to cluster individuals. This process was repeated 1000 times
to produce a null distribution of 1000 permuted modularity values of the clustering solution,
which were compared to the modularity of the true clustering solution. Second, we used the
null_model und_sign function from the Brain Connectivity Toolbox (www.brain-connectivity-
toolbox.net) to create a subject-to-subject adjacency matrix matched in degree, weight, and
strength distributions to the original input matrix (using the default of 5 swaps of each edge); this
was again repeated 1000 times and compared to the true modularity.

5.11. Predicting behavioral phenotypes from network variants

An additional set of analyses modeled after ref. !° were conducted to determine how border and
ectopic variants predicted behavioral measures collected outside of the scanner. For this set of
analyses we used the full set of HCP participants that passed our low-motion threshold and
quality control criteria (N = 784, the same subset used for analyses described in section 5.9),
including all twin and non-twin siblings, in order to maximize our sample size given recent
evidence that cross-sectional brain-behavior associations require large samples to be robust?®.

Our primary analyses focused on using the network affiliations of variants (as in section 5.10) to
predict 58 behavioral variables in the HCP as in ref. °; see Supp. Table 3 for a full list of
variables. Prediction features from this analysis were based on the average affiliation of variants
to 11 template networks. That is, for each person, we estimated the extent to which their variants
(on average) were correlated with the 11 template networks, producing 11 continuous feature
values that ranged from —1 to 1. This same affiliation measure was used to sub-group individuals
in the analyses described in 5.10, connecting with that work. Separate prediction analyses were
conducted for each form of variants (border and ectopic), and for both forms together.
Supplemental analyses also examined how the location of border and ectopic variants (vectorized
binary map) predicted behavioral performance.

We used 10-fold cross-validation for prediction, accounting for familial status in the creation of
folds (i.e., related individuals — based on either father or mother ID -- were kept in the same fold
to ensure independence across folds). Within each fold, we used support vector regression in
Matlab (fitrsvm) with default parameters to identify a relationship between brain features and
behavioral variables; this relationship was then tested on the left-out test fold. As in ref. ', we
regressed out age, sex, BMI, mean FD, and DVARS from the behavioral measures prior to
prediction as these measures correlate with scanner motion!!'* (regression was carried out

35


https://doi.org/10.1101/2021.09.17.460799
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.17.460799; this version posted November 10, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

independently in the training data and then applied to the test data to prevent leakage across
folds'®). Prediction accuracy is reported as the correlation between the predicted and true
behavioral measures in independent test data. Correlations were measured per fold and averaged
over folds.

We used permutation testing to assess the significance of predictions. For each permutation,
behavioral variables were randomly reordered across subjects, thereby breaking the link between
variant measures and behavioral outcomes in each participant. Then, the same support vector
regression with 10-fold cross validation approach was carried out, resulting in the average
correlation between true and predicted values in permuted data. Permutations were repeated
1000 times (500 times for supplemental data based on variant locations) to generate a null
distribution that was used as a benchmark for the predictions in the true data. These analyses
were repeated using variant labels from the parcellation-free variant classification method.

6. Data availability

Data from the Midnight Scan Club is publicly available at
https://openneuro.org/datasets/ds000224. Imaging data from the Human Connectome Project
(1200 Subjects Release) can be accessed at https://db.humanconnectome.org/; some data
elements utilized in this work (e.g., family structure, behavioral measures) require second-tier
permissions from the HCP for access. Data associated with the WashU-120 is available at
https://openneuro.org/datasets/ds000243/versions/00001.

7. Code availability

Code for original network variant definition and primary analyses is available at
https://github.com/MidnightScanClub. Code used to analyze border and ectopic variants will be
made available upon publication at https://github.com/GrattonLab.
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