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Abstract

DNA-based data storage platforms traditionally encode information only in the nucleotide
sequence of the molecule. Here we report on a two-dimensional molecular data storage
system that records information in both the sequence and the backbone structure of DNA
and performs nontrivial joint data encoding, decoding and processing. Our 2DDNA method
efficiently stores high-density images in synthetic DNA and embeds pertinent metadata as
nicks in the DNA backbone. To avoid costly worst-case redundancy for correcting
sequencing/rewriting errors and to mitigate issues associated with mismatched decoding
parameters, we develop machine learning techniques for automatic discoloration detection
and image inpainting. The 2DDNA platform is experimentally tested by reconstructing a
library of images with undetectable or small visual degradation after readout processing,
and by erasing and rewriting copyright metadata encoded in nicks. Our results demonstrate
that DNA can serve both as a write-once and rewritable memory for heterogenous data and
that data can be erased in a permanent, privacy-preserving manner. Moreover, the storage
system can be made robust to degrading channel qualities while avoiding global error-
correction redundancy.
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Introduction

DNA-based data storage systems are viable alternatives to classical magnetic, optical, and flash
archival recorders'. Macromolecular data storage platforms are nonvolatile, readout-compatible,
extremely durable and they offer unprecedented data densities unmatched by other modern storage
systems?™!°, Traditional DNA-based data recording architectures store user information in the
sequence content of synthetic DNA oligos within large pools that lack an inherent ordering, and
user information is retrieved via next-generation or nanopore sequencing®. Despite recent progress,
several issues continue to hinder the practical implementation of molecular information storage
models, including the high cost of synthetic DNA, lack of straightforward rewriting mechanisms,

large write-read latencies, and missing oligo errors incurred by solid-phase synthesis.

Image data is typically compressed before being recorded, and even a single mismatch can cause
catastrophic  error-propagation during decompression and lead to unrecognizable
reproductions®!!12, Moreover, the rate of synthesis and sequencing errors may vary an order of
magnitude from one platform to another, while PCR reactions and topological data rewriting may
cause additional gradual increases in sequencing errors. Therefore, to ensure accurate
reconstruction, one needs to account for the worst-case scenario and perform extensive write-read-
rewrite experiments to estimate the error rates before adding redundancy'*~!°. Moreover, the
estimated error rates have to be accurate enough for efficient error correction due to the
mismatched decoding parameter problem!'®!”. The mismatched-decoder problem is an issue
mostly overlooked in prior works and it asserts that powerful error-correction schemes such as
low-density parity-check (LDPC) codes!® require good estimates of the channel error probability
to operate properly. This is clearly hard to achieve for traditional DNA-based data storage systems

due to the highly stochastic nature of the PCR, sequencing and rewriting process.

Here, we develop and experimentally test a hybrid DNA-based data storage system termed
2DDNA, to address the issue of rewriting and avoid the use of worst-case error-correcting
redundancy needed to combat random and missing oligo errors that may accumulate in time and
due to content changes. 2DDNA uses two different information dimensions and combines
desirable features of both synthetic and nick-based recorders!®. This is achieved by superimposing
metadata (such as ownership information, dates, clinical status descriptions) stored via nicks onto

images encoded in the sequence. Sequence content carries large amounts of information, but
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rewriting is difficult; information stored in nicks! is usually of smaller volume but highly
amenable for efficient, permanent and privacy-preserving erasing and rewriting. Importantly,
information in both dimensions can be read simultaneously, as locations of nicks are determined
using the nick-free strand as reference. Our approach is based on a simple compression scheme for
images that operates separately on three different color channels and combines newly developed
and existing machine learning (ML) and computer vision (CV) techniques for image
reconstruction and enhancement to create high-quality replicas of the original data. For some
images with highly granular details, we also propose unequal error protection methods?® based on
LDPC codes'® that only introduce redundancy for sensitive facial features. The 2DDNA paradigm
eliminates the need for worst-case coding redundancy and avoids problems with mismatched
decoding parameters. It offers the possibility for users to retrieve images of quality dictated by
their channel error rates, which may be seen as a form of multiresolution coding. It also offers high
information density and simultaneously enables rewriting of data recorded in the backbone via
ligation followed by enzymatic nicking, lending itself for use in applications with both synthetic

and native DNA substrates for the sequence content!.
Results
Sequence Dimension Encoding

The encoding framework of 2DDNA is shown in Fig. 1. In the sequence dimension, we perform
aggressive quantization and specialized lossless compression that leads to two-fold file size
reductions. Compression is known to cause significant losses in image quality when errors are
present, so it is common practice to include up to 30% error-correction redundancy*’ which
ultimately increases the cost of the storage system. We avoid error-correction redundancy and
instead tailor our compression algorithm to accommodate image processing techniques from ML
and CV to restore the image to its original quality. The specialized encoding procedure involves
two steps, depicted in Fig. 1a. First, RGB channel separation is followed by 3-bit quantization and
separate lossless compression of the three color channels. The latter process is performed using
the Hilbert space-filling curve?? (Supplementary Fig. 1) which preserves local 2D image similarity
and smoothness, thereby resulting in linear strings with small differences between adjacent string
entries. Moreover, we further employ differential encoding? that involves taking differences of

adjacent string values to create new strings with a high probability of small symbols. Differential
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encoding is followed by Huffman encoding?* which exploits the bias towards small symbol values.
Together, these operations are performed separately on strings partitioned into eight subsets
according to their quantized intensity (brightness) levels. Note that in our ML-based image
reconstruction approach, we do not try to optimize the compression scheme: One may also use a
basic 3-bit quantization scheme without lossless compression, at the cost of slightly increased file
sizes. Results pertaining to this approach are described in the Supplementary Information (SI),

Supplementary Discussion.

Our encoding involves a second step that translates the binary strings into DNA oligo sequences.
Here, DNA oligos of length 196nts are parsed into the following three subsequences (Fig. 1a): (1)
a pair of primer sequences, each of length 20nts, used as prefix and suffix, (2) an address sequence
of length 10nts, and (3) 11 information-bearing sequences of length 13nts. Primer and address
sequences are used for PCR amplification and random access®. In addition, a block of three
nucleotides is prepended to the address sequence to represent the RGB color information. When
converting binary data into DNA sequence content, we use two additional constrained mappings
to ensure that the maximum run length of G symbols is limited to three (to avoid G quadruplexes),
and that the GC content is in the range of 40 — 60%. Overall, the mapping scheme converts blocks
of 16 bits into blocks of 10nts for the address sequences, and blocks of 22 information bits into
blocks of 13nts. A detailed description of each step, including the addition of synchronizing
markers, is provided in the SI, Supplementary Methods.

Topological Dimension Encoding

In the topological dimension, we record the metadata in nicks created on the backbone of the
synthetic DNA molecules by transforming and generalizing our Punch-Cards system!® that was
also used for specialized in-memory molecular computing?®. The main modifications consist in
disposing of nicking enzymes that require the additional synthesis of specific guide sequences;
native nicking endonucleases are used instead by employing ON-OFF encoding across different
intensity pools. Short binary strings are converted into combinations of native nicking
endonucleases that determine the composition of nicked/unnicked sites. More precisely, a set of
complementary nicking endonucleases is used as the writing tool and selected based on two main
criteria: (1) endonucleases must be highly site-specific to prevent non-specific cleavage of the

DNA template and hence preserve DNA integrity; and (2) recognition sequences should be
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selected with sufficiently large Hamming distances between them to prevent undesired cross-
nicking (i.e., an enzyme nicking an undesired target site). The mixture composition determines
which letter is stored based on the corresponding ASCII code, with the caveat that a ‘1’ is encoded
through the presence of the enzyme in the mixture (ON), whereas a ‘0’ is encoded through the
absence of the enzyme (OFF). This method enables superimposing information on top of data
stored in the DNA sequence content, with no need to change the synthetic platform, as shown in
Fig. 1c. Nevertheless, it introduces readout challenges as the nicks break the structure of the strands
and may hence lead to assembly ambiguities. We address this problem via an algorithmic solution

that involves searching for potential prefix-suffix substrings in the nicked pool.
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Figure 1. Schematic of the encoding and decoding procedure of our 2DDNA system. a) The encoding
procedure in the first dimension (sequence content) entails splitting the color image into the Red (R), Green
(G) and Blue (B) channel; aggressively quantizing the RGB channels from 256 to 8 intensity levels;
performing lossless compression of individual channels through a combination of 2D to 1D conversion of
the image data via space-filling curves followed by differential and Huffman encoding. Note that the
encoding procedure is separately applied to each intensity level, and the generated binary vector is further

augmented by channel information and addresses used to access the oligos. The scheme does not include
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error-correction redundancy. b) For images with granular and highly relevant image features, one can
optionally use unequal error-correction coding based on low-density parity-check (LDPC) codes with only
3.3% redundancy compared to the scheme without redundancy. ¢) The encoding procedure in the second
dimension (topological content) entails representing letters of the English alphabet in ASCII format and
designating one nicking endonuclease to each of the seven bits in the format. Information is encoded using
mixtures of endonucleases for which the ASCII bit is equal to 1. Rewriting is performed by sealing the
nicks using the T4 DNA ligase and repeating the previously outlined procedure with different data. d) 2D
data readout through the use of two subpools, one for each storage dimension. e) Image decoding is
performed by reversing the steps of the encoding process in the first dimension. The image®® used in this

figure is courtesy of Paramount Pictures. The original data are provided in the Source Data file.
DNA Synthesis and Sequencing

To demonstrate a proof-of-concept, we experimentally tested the storage platform on eight Marlon
Brando movie stills, shown in Fig. 2a. The original files were of total size 8,654,400bits, but after
the two-step encoding procedure (Fig. 2b), they reduced to 2,317,896nts. The corresponding
11,826 DNA oligos were synthesized by Integrated DNA Technologies (IDT). One pool was
reserved for each of the eight levels. The oPools were sequenced on an Illumina MiSeq device
following standard protocols described in the Methods. Individual sequence reads may contain
errors, so we first construct a consensus sequence by aligning reads with error-free addresses,
following the approach described in our prior work®. This process led to 11,726 perfectly recovered
sequences and 22 sequences that contain errors but do not significantly compromise the image

quality; 78 oligos were either highly corrupted or completely missing from the pool.
Sequence Dimension Decoding and Post-Processing

The images generated from this procedure are depicted in Fig. 2c. Upon close inspection, it is
apparent that the encoded images suffer from visible degradation, and in particular, large blocks
of discolorations. These artifacts can be removed by applying a carefully designed combination of
ML and CV image processing techniques (Fig. 4), tailor-made to operate on images compressed

according to our method.

To correct for image discolorations, we implement a three-step post-processing procedure that has
no matching counterpart in the digital domain and heavily relies of using the color channels as a

natural source of redundancy. The first step includes detecting the locations with discolorations
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and masking them out, as shown in Fig. 4a and Supplementary Fig. 3. To pinpoint the discolored
regions without direct visual inspection (i.e., in an automated fashion), as already pointed out, we
leverage the separate information content in the three distinct RGB color channels. Due to the
random nature of errors, it is highly unlikely to have correlated errors in multiple channels for the
same pixel. Hence, the three-color decomposition acts as a 3-repetition code, because at least two
of the three color channels are likely to be unperturbed. A detailed explanation of the technique
can be found in the SI, Supplementary Methods, which is adapted from our preliminary approach?’.
The second step involves using an existing deep learning technique known as image inpainting?®-
30 to replace the masked pixels with values close to the original. Neural networks are well-suited
for inpainting because they can be trained on massive datasets. For our system, we use the state-

t3° methods. The basic architecture of

of-the-art GatedConvolution’® and EdgeConnec
EdgeConnect is shown in Fig. 4b and Supplementary Fig. 4, and the results after applying
discoloration detection and image inpainting are shown in Fig. 2d. Finally, the third step involves
smoothing the image to reduce blocking effects caused by quantization and blending mismatched
inpainted pixels, as shown in Fig. 4c and Supplementary Fig. 5. Here, we use bilateral’! and
adaptive median smoothing®? on the coarsely inpainted images, and we include additional image
enhancement features® to further improve image quality. The image post-processing procedure
relies on storing R, G and B color channels in different oligos and using the channels as “proxies”
for repetition codes. This ensures that it is highly unlikely to have correlated errors in multiple
channels for the same pixel and that discolorations can be detected through majority rules. As a

result, our scheme can be used with any other type of recorder that splits images into R, G, B

subimages and stores them separately.

The results of image smoothing are depicted in Fig. 2e, and the enhanced images are shown in Fig.
2f. As shown in Figs. 2e, f and Supplementary Fig. 2, some facial details in highly granular images
remain blurred even after applying the learning methods. To address these issues, we further
propose the use of unequal error-protection for such images, which implies adding highly limited
redundancy only to oligos bearing facial features (e.g., eyes, lips), as shown in Fig. 1b and
explained in the SI, Supplementary Methods. Redundancy is added through a regular systematic
LDPC codes of rate 0.75, resulting in 391 additional oligos and an overall overhead of 3.3%.
Images generated from this redundant pool are shown in Fig. 2g, whereas Figs. 2h, i, j parallel the
results of Figs. 2d, e, f for the case of no unequal error-correction redundancy. Note that there exist

no other approaches to performing the same task in the signal processing and computer vision
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community. Applying state-of-the-art image enhancement method*? directly on images generated
from error-bearing DNA oligos without error-correction results in poor quality reconstructions
because classical image enhancement methods cannot automatically correct discolorations (Fig.
2k and Fig. 3k). Both quantitative metrics (Peak Signal-to-Noise Ratio (PSNR) and Structural
Similarity (SSIM)) as well as visual inspection of the recovered images show that our method
offers significantly better performance than direct image recovery and enhancement of the
corrupted DNA-encoded images. Processed images with corresponding quality values are plotted
in Figs. 2a, f, j, k and Fig. 3.
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Figure 2. Write-Read results for encoding information content in the sequence dimension. a) Original
images with 256 RGB intensity levels, encoded by 8 bits each. b) Quantized images with 8 RGB intensity

levels, encoded by 3 bits each. ¢) Images generated directly from the information encoded in DNA oligos
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without error-correction redundancy. d) Images reconstructed after applying a combination of discoloration
detection and image inpainting on the results in c. e) Images refined via smoothing of the results depicted
in d. f) Image enhancement results for images shown in e. g) Images reconstructed using unequal error-
correcting coding for facial features. h) Images reconstructed after applying a combination of discoloration
detection and image inpainting on the results in g. i) Images refined via smoothing of the results depicted
in h. j) Image enhancement results for images shown in i. k) Image enhancement results for images shown
in ¢. In summary, the best quality results — obtained using our image processing techniques — are given in
iand j (boxed). The images in this figure are courtesy of: Paramount Pictures, Sony Pictures, MGM Studios,
StudioCanal, American Zoetrope (© 1979 Zoetrope Corp. All Rights Reserved.), the Marlon Brando and
Rod Steiger estates. The black and white public domain still of “A Streetcar Named Desire” was colorized

using the software Hotpot.ai.
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Figure 3. Comparison of our automatic discoloration detection and inpainting approach with the state-of-
the-art image enhancement technique®. The results shown include quantitative performance metrics
computed with respect to a. The column labels refer to the corresponding rows in Fig. 2. Column a): The
original, uncompressed images. Column f): The images reconstructed using our method, without unequal
protection redundancy for facial features. Column j): The images reconstructed using our method, with
roughly 3.3% redundancy for facial features. Column k): Results obtained after image enhancement,
applied directly to the decoded DNA oligo images with errors. The pictures in this figure are courtesy of:
Paramount Pictures, Sony Pictures, MGM Studios, StudioCanal, American Zoetrope (© 1979 Zoetrope
Corp. All Rights Reserved.), the Marlon Brando and Rod Steiger estates. The black and white public
domain still of “A Streetcar Named Desire” was colorized using the software Hotpot.ai. The original data

are provided in the Source Data file.
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Figure 4. Diagram of the ML postprocessing techniques used to reconstruct images encoded in oPools. a)
Automatic discoloration detection based on the natural redundancy in the three RGB color channels. The

histograms reflect the frequency counts of the pairwise differences in channel intensity levels which are
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used to assess which color channel may contain errors (SI, Supplementary Methods). b) Pixel masking and
inpainting via deep-learning architectures. ¢) The smoothing and image enhancement procedures. The
pictures in this figure are courtesy of: Paramount Pictures, Sony Pictures, MGM Studios, StudioCanal,
American Zoetrope (© 1979 Zoetrope Corp. All Rights Reserved.), the Marlon Brando and Rod Steiger

estates. The original data are provided in the Source Data file.

Note that our compression scheme mitigates the effects of catastrophic error-propagation which
may be otherwise present when using a JPEG compressor (Supplementary Fig. 6). As JPEG
formats are highly sensitive to errors, they result in poor-quality reconstructions if one does not
use a coding overhead that guarantees exact reconstruction. Furthermore, alternative methods

based on joint source-channel coding*!-+?

still require introducing error-control redundancy which
we are aiming to dispose of in our learning-based approach. To demonstrate this point, we
performed extensive simulations with six combinations of JPEG image compression qualities and
matching error-control coding schemes. For JPEG-compressed files with different quality
parameters (as defined in the Python Pillow Package for all image formats, JPEG included, on a
scale from 1 (worst) to 95 (best)), we added LDPC redundancy to the compressed data for error-
correction to ensure that the resulting number of oligos (file size) is as close as possible to that
used in our experiment. The base substitution error is set to 0.8%, while the missing oligo error is
set to 0.7%, matching the numbers obtained experimentally, leading to an overall bit error of 1.9%.
We decoded the binary information from the erroneous DNA oligos using LDPC codes, followed
by JPEG reconstruction. Part of the results are shown in Fig. 5 and full set of results are shown in
Supplementary Fig. 7. Note that since JPEG has very specific formatting rules, missing or
erroneous critical identifiers in JPEG files leads to system errors, such as OSError in Python. Other

compression methods, such as those based on Generative Adversarial Nets (GANs) are discussed

in the SI, Supplementary Discussion and Supplementary Fig. 10.
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PSNR: 31.82, SSIM: 0.91

PSNR: 31.82, SSIM: 0.91 PSNR: 8.31, SSIM: 0.67

OSError: broken data stream
when reading image file
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Figure 5. a) The original, uncompressed images. b) An example illustrating why single-value metrics for
assessing image quality are inadequate. Left: An image compressed by JPEG with quality parameter 20.
Right: The same image, after simple 3-bit quantization and image enhancement®. The image on the right
is visually superior yet has consistently worse numerical quality metrics compared to the image on the left.
¢) Images are compressed with JPEG quality parameter 40 and encoded with an LDPC code of rate
R=0.125. The two images in the first column: No errors are added, so the decoding procedure is successful.
Images in the remaining three columns represent pairs of decoded images with LDPC channel error rate
parameters (probabilities) 0.5%, 1%, and 5%, respectively; in these cases, the base substitution error equals
0.8%, the missing oligo error rate equals 0.7%, resulting in an overall bit error rate of 1.9%. The channel
parameter for LDPC decoding is assumed not to be known beforehand. d) Images compressed with JPEG
quality parameter set to 30 and encoded with an LDPC code of rate R=0.108. The two images in the first
column: No errors are added, so the decoding procedure is successful. Images in the remaining three

columns presenting pairs of decoded images with LDPC channel error rate parameters (probabilities) 0.5%,
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1%, and 5%, respectively; in these cases, the base substitution error equals 0.8%, the missing oligo error
rate equals 0.7%, resulting in an overall bit error rate of 1.9%. The pictures in this figure are courtesy of:
Paramount Pictures, Sony Pictures, MGM Studios, StudioCanal, the Marlon Brando and Rod Steiger

estates. The original data are provided in the Source Data file.

For LDPC codes, it is crucial to have good estimates of the channel error probability: LDPC belief
propagation decoding performs well in practice but is highly sensitive to incorrect initial log-

likelihood ratios, which are functions of the channel error rate!s:!’

. Therefore, when using
mismatched channel parameters, LDPC decoders can fail to correct all errors, which in turn can
lead to corrupted JPEG decoding, as seen in Fig. 5. It is worth pointing out that correlations
amongst errors may cause some oligos to be disproportionally affected and others to have barely
any errors. To further mitigate this issue, oligo-level redundancy was used* before, but here it is
replaced by a concatenation of an interleaver and LDPC codes, as interleaving renders errors
uncorrelated and helps with missing oligo content reconstruction. We present additional results
related to LDPC coding with interleaving in the SI, Supplementary Discussion and Supplementary

Fig. 8).
Topological Dimension Recording and Post-Processing

As a proof of concept for storage in the topological dimension, we superimposed information on
the same Marlon Brando images (Fig. 7). In the writing experiment, we recorded the word
“ILLINOIS,” comprising 56 bits in ASCII code, across eight different intensity-level DNA pools.
We selected seven nicking endonucleases, each representing one bit of the 7-bit ASCII code. These
enzymes have recognition sites that exist in at least one oligo of each of the eight pools, and the
sites are used as recording positions. In the ASCII code, ‘1’ translates into inclusion, whereas ‘0’
translates into exclusion of the corresponding enzyme. Upon nicking, the pools are sequenced
using the procedure described in Fig. 1d. In this way, the nicked oligos were denatured, resulting
in ssDNA fragments of various lengths dictated by the position of the nicks. The fragments were
subsequently converted into a dsDNA library and sequenced via Illumina MiSeq. To verify the
existence of short-length fragments capped at both ends by enzyme recognition sites, we developed
a detection algorithm with a flowchart depicted in Fig. 6. The gist of the algorithm is to detect if a
nick was created or not based on a search for two fragments corresponding to the prefix and suffix
of the sequences recognized by the enzyme. Note that our algorithm counts the number of

appearances of all possible (potential) nicking events for the sets of enzymes used. The decision

17


https://doi.org/10.1101/2021.02.22.432304
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.22.432304; this version posted May 16, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

regarding which enzymes are included in a certain pool is based on the counts of each prefix-suffix
pair. To rewrite the data, we performed the process outlined in Fig. ¢, which involves treatment
of the nicked DNA with the T4 DNA ligase. This erasure method completely removed the recorded
metadata. Note that the ligase was perfectly effective in so far that each original oligo was
accounted for in the sequenced pool. We then rewrote the word “GRAINGER” using the same

topological nicking process with error-free reconstruction.

As outlined above, decoding the information stored in the two dimensions requires nontrivial
approaches, involving new pattern search algorithms. To hence read the content stored in both
dimensions, two separate subpools are retrieved for each level. The sequence content is
reconstructed by first sealing the nicks in one of the two subpools via ligation, as done during
rewriting, followed by sequencing. Alternatively, to avoid ligation for the sequence content
readouts, one may choose to only record the topological information on a subpool of oligos. This
resolves the problem of sorting the nicked oligo fragments. The content in the nicks is retrieved
using the second subpool. After sequencing, the reads are aligned to the now known full-length
reads obtained from the first subpool in which the nicks were sealed. The results of the alignment
are used in the algorithmic procedure to determine which enzymes were used for nicking and

consequently, for reconstruction of the ownership metadata (Fig. 7).

Decide if nick is present based on
total identification count and
thresholding

. f

Input: Reads R, processed sequentially,
from one nicked pool after lllumina
MiSeq sequencing

v f

If R starts or ends with a certain
enzyme recognition site, then

Decoding of the second informaion
dimension

Increase the count corresponding to
this enzyme by 1

If L is also present in the nicked pool

|

Find the sequence S (unnicked)
in the initial DNA pool that gave rise
to R

f

Find the second fragment L of the
recognition sequence of the enzyme
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Figure 6. A prefix-suffix pattern search method for decoding the information in the topological dimension.
Each fragment obtained from the nicked pool is searched for the presence of a prefix-suftix substring pair
that can indicate that a specific enzyme was included in the combinatorial mixture used for the given
intensity pool. Since undesired nicking reactions may occur, some counts corresponding to recognition sites
of enzymes that were not actually present in the pool may be nonzero; in this case, we make the decision
based on how large the counts are relative to others (i.e., we use thresholding with a threshold determined

based on the largest count values for the pool).

ILLINOIS GRAINGER

Number of Enzymes Pool Numberof  Enzymes Letter Pool ~ Number of Enzymes
Nicks Used Nicks Used Nicks Used
473,0,1,233,1,4,81 1 0,0,0,0,0,0,0 N/A R_1 0,18,0,0,0,94,0 2,6
21,0,0,5,77,0,0 2 0,0,0,0,0,0,0 N/A R_2 0,20,0,0,0,20,0 2,6
133,0,0,16,83,0,0 4, . 3 0,0,0,0,0,0,0 N/A aes G_3 0,0,0,26,23,0,0 4,5
Writing 6.0.0.4.0,0,.4 Erasing 4 0,000,000 N/A Rewriting N_4 0,0,3,55,0,44,0 346
— > | N5 12620,1,4070¢ > 5 0000000  NA > G5 0001364500 45
1262,0,1,40,708,232,5 T4DNA Y 0000000 N Bt 0.0,136.450 S
41,0,0,19,239,162,399 Ligase 0000000 N/A 6 009000,
47.0,0.23.0.0.4 poaoaapa| ¢ 9900000 NA E7 0,0,0,32,0,0,0 4
15,0,8,0,0,25,1 8 000000 L, A8 0,0,0,0,0,0,0 N/A
| 1001001 G 0001100 1 |Nb.BbvClI
L | 1001100 R 0100010 2 |Nb.Bsml
N 1001110 A 0000000 3 |Nt.BbvCl
[e] 1001111 | 0010000 4 |Nb.BssSI
S 1010011 N 0011010 5 |Nt.BspQl
E 0001000 6 Nb.Btsl
7 | NtAIwl

Figure 7. Schematic of metadata encoding and identification using DNA nicking. The numbers in the
middle column of the leftmost and rightmost tables represent the number of oligos in the sequenced pool
capped by the recognition sequences of the nicking enzymes. The numbers listed in red correspond to the
labels of nicking enzymes not used in the encoding of the letter to the left. As may be seen from both tables,
the largest red numerical value is significantly smaller than the smallest black value for all encodings (e.g.,
4<<81, 5<<40 in the leftmost table) and the second round of writing resulted in no spurious nicks
whatsoever. The quality of the results in the rewriting experiment may be attributed to a more suitable
choice of nicking enzymes determined upon inspection of the results of the first round. Hence it is
recommendable to use the second collection of enzymes for recording purposes. Also note that we shuffled
the symbol encodings for the rewriting experiment in order to test more combinations of nicking enzymes.
In the erasure step, the T4 DNA ligase was used in a single step reaction to seal all the nicks. No nicks were
found after the ligation reaction, showing that the ligase perfectly erased the data (middle table). Note that
when recording “ILLINOIS” and “GRAINGER” only six and five enzymes were effectively used for the
ASCII code, respectively, due to the choice of the letters in the words.
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Discussion

Existing technologies for DNA synthesis, editing, and sequencing allow for writing and reading
diverse information in multiple dimensions or molecular features. Our 2DDNA platform exploits
these tools to enable recording data in two DNA dimensions, including sequence context and
backbone structure, thereby opening the door for multidimensional macromolecular storage
systems that can use multiple molecular properties (including molecular concentration). Our
results show that the 2DDNA system takes advantage of our automatic discoloration detection
approach and powerful state-of-the-art deep learning methods for image inpainting and
enhancement to substantially improve the quality of the stored images without error-control
redundancy. This represents a fundamental advancement in molecular storage which departs from
prior techniques in the field and reduces the cost of data storage by greatly minimizing or
eliminating the need for synthesizing redundant oligos. The tailor-made learning methods also
overcome reliability issues that cannot be addressed by off-the-shelf JPEG compression and joint

source-channel coding methods.

Our storage system also offers a simple means for permanently erasing metadata information. The
ligation-based approach differs substantially from the existing rewriting methods>*. In the first
setting, overlap-extension PCR is used to rewrite blocks of texts corresponding to words. This is
a tedious, multi-step approach and much more complex to perform than ligation. In the second
approach, one requires additional DNA synthesis and multiple hybridization and strand
displacement steps to rewrite the content. Note that in our system metadata is automatically
sequenced during the sequencing of the actual image — no separate sequencing for the nick-based
information is needed. This is the case since we can always use the strand that is free of nicks as

reference for sequence alignment to determine the locations (positions) of the nicks.

For selective amplification and PCR-based random access, the oligos we used to store image
content contain carefully designed primers. The primers satisfy Hamming distance, sequence
correlation, sequence balance and so-called primer-dimer constraints**. Note that once nicks are
added to the sugar-phosphate backbone, one cannot run PCR reactions on the oligos directly. To
randomly access an image, a certain amount of DNA from the oPools has to be isolated, sealed
using the T4 ligase and then amplified via PCR. Consequently, metadata is removed from the

selected subpool to enable random access to the image itself, but it remains intact in the global
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pool of oligos. In order to avoid first sealing the nicks and then running the PCR, one can also use
other methods for random access, involving magnetic beads with attached primers corresponding

to the address sequences of the image of interest*.

Our 2DDNA platform was tested on eight images of total size 1.082MB. The only oligo content
that does not correspond to actual raw image information includes primers, pixel/color/image
identifiers, constrained redundancy for balancing the GC content and removing long runs of Gs as
needed for synthesis. The average sequencing coverage used is 112x, which is small compared to
the 3000x coverage reported in? and the 370x coverage from*. It is higher than the coverage of 5x
reported in'> but in that case, error-control coding redundancy is used. We did not try to optimize
the sequencing coverage - our coverage values are dictated by the sequencing protocol used and
are not needed for high-quality reconstruction. Supplementary Fig. 9 in the SI shows that low-
coverage and hence high error-rates can be accommodated within our system, even when the error

rate is as high as 7%.

The information density of our platform equals the number of bits stored divided by the number
of nucleotides used for encoding. Since quantization is used during the encoding procedure, there
are two ways to compute this density: If calculated with respect to the number of bits in the raw
image files, the information density equals 3.73bits/nt. Clearly, this exceeds the maximum 2bits
per nucleotide density dictated by the 4-alphabet size, but may be seen as a consequence of the
fact that we get a distorted image back, which allows for an increase from 2 to 3.73bits/nt. If the
information density is calculated with respect to the number of bits of the quantized image files,
the information density equals 1.40bits/nt. The reason why this value is smaller than 1.57bits/bp
reported in® and 1.72bits/bp reported in®, is that in the latter two works gBlocks of length 1000bps
were used, while in this work we used oPools of length 196nts. To allow for random access, one
has to include primers and address sequences which amount to 53nts per oligo, i.e., per 196
nucleotides — an overhead of 27%. This is to be compared to roughly 50bps per 1000bps™S,
resulting in a significantly smaller overhead of 5%. When converted into bytes/gram, the two

reported densities theoretically equal 0.91 zettabytes/gram and 0.34 zettabytes/gram.

In conclusion, 2DDNA provides the foundations for storage of heterogeneous datasets with
rewriting capabilities and at the same time empowers the use of DNA media for nontraditional

applications such as parallel in-memory computing.
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Methods

oPool PCR Amplification and Sequencing

The list of primers used in our experiments is shown in Supplementary Table 1. The oPools and
corresponding primers were ordered from Integrated DNA Technologies (IDT):
https://www.idtdna.com/pages/products/custom-dna-rna/dna-oligos/custom-dna-oligos/opools-

oligo-pools .
All oPools were diluted to Sng/ul. The primers were diluted to 10uM. Each oPool was amplified

in separate reactions using forward and reverse primers for each of the 8 levels. Reactions were
set up with 5ng of oPool, 1ul of each forward and reverse primer diluted to 10uM, 22ul of water
and 25ul of Kapa HiFi DNA Polymerase (Roche, CA) with the following PCR cycling conditions:
denaturation at 98°C for 45s, 8§ cycles of 98°C for 15s, annealing at 51°C for 30s and extension at
72°C for 30s, followed by a final extension at 72°C for 1min and hold to 4°C.

After PCR, the individual reactions were cleaned up with 50ul of AMPure beads (Agilent, CA)
and eluted in 20ul of 10mM Tris. The PCR products were quantitated with the Qubit 3.0
fluorometer and run on a Fragment Analyzer (Agilent, CA) to determine the presence of a band of
the correct size and the absence of free primers or primer-dimers. The PCR products from each
level were pooled in equimolar concentration and the pool was converted into a sequence-ready
library with the Kapa Hyper Library Construction kit (Roche, CA) with no PCR amplification.
The final library was quantitated with Qubit and evaluated in a Fragment analyzer and further
quantitated by qPCR. The library was loaded on a MiSeq (Illumina, CA) and sequenced for 250
cycles from each end of the library fragments with a Nano V2 500 cycles kit (Illumina). The raw
fastq files were generated and demultiplexed with the bcl2fastq v2.20 Conversion Software

(Illumina).

ssDNA Nicking Products Preparation for MiSeq Sequencing

All nicked products were purified using the Qiaquick PCR purification kit (QIAGEN) and eluted
in ddH,O. They were then denatured at 98°C for Smin and immediately cooled down to 4°C. The
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ssDNA samples were first quantified via the Qubit 3.0 fluorometer. Next, the Accel-NGS® 1S
plus DNA library kit (Swift Biosciences) was used for library preparation following the
manufacturer’s recommended protocol. Prepared libraries were quantitated using Qubit and then
run on a DNA Fragment Analyzer (Agilent, CA) to determine fragment sizes, pooled in equimolar
concentration. The pool was further quantitated by qPCR. All steps were performed for each
sample separately and no nicked DNA samples were mixed. The pooled libraries were loaded on
an MiSeq device and sequenced for 250 cycles from each end of the library fragments with a Nano
V2 500 cycles kit (Illumina). The raw fastq files were generated and demultiplexed with the

bel2fastq v2.20 Conversion Software (Illumina).

Nicking Experiments

The list of enzymes used in our experiments is shown in Supplementary Table 2. 1ug of each
amplified library pool was mixed with the appropriate nicking enzymes, determined based the

content being encoded and was incubated in proper buffer conditions and temperature for lh

based on the manufacturer’s protocols available at: https://www.neb.com/products/restriction-

endonucleases/hf-nicking-master-mix-time-saver-other/nicking-endonucleases/nicking-

endonucleases. SnapGene Viewer 5.1.7 was used to visualize DNA sequences and detect nicking

sites.
Machine Learning and Computer Vision Methods

A detailed description of our compression algorithms and the supporting automatic discoloration
detection, inpainting, smoothing and enhancement methods is relegated to the SI, Supplementary

Methods, due to the technical nature of the methodology used.
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