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Abstract 
 
We investigated the structural brain networks of 562 young adults in relation to polygenic risk 
for Alzheimer’s disease, using magnetic resonance imaging (MRI) and genotype data from the 
Avon Longitudinal Study of Parents and Children. Diffusion MRI data were used to perform 
whole-brain tractography and to generate structural brain networks for the whole-brain 
connectome, and for the default mode, limbic and visual subnetworks. The mean clustering 
coefficient, mean betweenness centrality, characteristic path length, global efficiency and mean 
nodal strength were calculated for these networks, for each participant. The connectivity of the 
rich-club, feeder and local connections was also calculated. Polygenic risk scores (PRS), 
estimating each participant’s genetic risk, were calculated at genome-wide level and for nine 
specific disease pathways. Correlations were calculated between the PRS and a) the graph 
theoretical metrics of the structural networks and b) the rich-club, feeder and local connectivity 
of the whole-brain networks.  
 
In the visual subnetwork, the mean nodal strength was negatively correlated with the genome-
wide PRS (r=-0.19, p=1.3x10-5), the mean betweenness centrality was positively correlated with 
the plasma lipoprotein particle assembly PRS (r=0.16, p=9.2x10-4), and the mean clustering 
coefficient was negatively correlated with the tau protein binding PRS (r=-0.16, p=9.2x10-4). In 
the default mode network, the mean nodal strength was negatively correlated with the genome-
wide PRS (r=-0.14, p=1.5x10-3). The rich-club and feeder connectivities were negatively 
correlated with the genome-wide PRS (r=-0.16, p=3.7x10-4; r=-0.15, p=8.8x10-4). Our results 
indicate small reductions in brain connectivity in young adults at risk of developing Alzheimer’s 
disease in later life. 
 
Keywords: ALSPAC, Alzheimer’s disease, polygenic risk score, brain structure, brain networks, 
diffusion MRI, tractography 
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1. Introduction 
 
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that affects over 35 
million people world-wide (Prince et al., 2013). It leads to severe cognitive impairment and the 
inability of patients to function independently. There is a pressing need to identify non-invasive 
biomarkers that could facilitate pre-symptomatic diagnosis when disease-modifying therapies 
become available. Although a minority of early-onset AD cases are caused by mutations in 
specific genes with autosomal dominant inheritance (Tanzi, 2012), the majority of AD has a 
complex genetic architecture and is highly heritable (Gatz et al., 2006), with different genes 
conveying different amounts of risk. Genome-wide Association Studies (GWAS) have 
implicated many Single Nucleotide Polymorphisms (SNPs) (Kunkle et al., 2019), of which the 
apolipoprotein e4 allele (APOE4) confers the greatest risk (Strittmatter et al., 1993; Saunders 
et al., 1993; Lambert et al., 2013; Yu et al., 2014; Farrer et al., 1997), but is neither necessary 
nor sufficient to cause AD (Sims et al, 2020). AD GWAS have also found evidence that specific 
biological processes, or disease pathways, such as cell trafficking, beta amyloid production, tau 
protein regulation and cholesterol transport are involved (Kunkle et al., 2019; Jones et al., 2010). 
Polygenic risk scores (PRS), which aggregate risk loci genome-wide (Wray et al., 2014), are 
highly predictive of AD (Sleegers et al., 2015; Xiao et al., 2015; Yokohama et al., 2015; Escott-
Price et al., 2015; Escott-Price et al., 2017; Tosto et al., 2017; Chaudhury et al., 2018; Cruchaga 
et al., 2018; Harrison et al., 2020; Altmann et al., 2020) and have been widely used in the search 
for biomarkers for the disease (Harrison et al., 2020). 
 
Obtaining reliable biomarkers in a non-invasive manner is very valuable because it can be better 
tolerated by participants compared to more invasive methods (Prestia et al., 2013; Zhang et al., 
2012). Magnetic resonance imaging (MRI) can non-invasively measure characteristics of the 
brain’s structure. Diffusion-weighted MRI (dMRI, Le Bihan et al., 2006) has allowed mapping of 
the brain’s white-matter (WM) tracts, enabling the study of the human brain as a network of 
cortical and subcortical areas connected via those tracts. Via these techniques, alterations in 
the brain of AD patients and of people at risk of developing AD have been identified. AD patients 
exhibit axonal loss in tracts associated with certain default mode network (DMN) nodes (Mito et 
al., 2018). They also exhibit increased characteristic path length and decreased intramodular 
connections in functional and structural brain networks compared to healthy controls (Dai et al., 
2018). The DMN is altered in the presence of AD pathology (Dai et al., 2018) where a decrease 
in its connectivity has been observed (Mohan et al., 2016; Badhwar et al., 2017). The diffusion 
tensor fractional anisotropy in the cingulum and of the splenium of the corpus callosum is 
reduced in AD patients compared to controls (Zhang et al., 2007). Structural covariance brain 
networks, in which the edges are calculated as the correlations between the node volumes, 
show decreased small-worldness in AD (John et al, 2017). Increased shortest path length and 
clustering coefficient, as well as decreased global and local efficiency have been observed in 
the structural brain networks of AD patients (He et al., 2008; Lo et al., 2010). These results, as 
well as recent work by Palesi et al. (2016), suggest that, in addition to the AD pathology 
preferentially affecting specific brain areas, AD is a disconnection syndrome. 
 
Cognitively healthy middle-aged and older carriers of AD risk (genetic or otherwise) also exhibit 
alterations in brain structure. Decreased hippocampal volume and cortical thickness have been 
associated with high AD PRS (Mormino et al., 2016; Corlier et al., 2017; Li et al., 2017). Ageing 
APOE4 carriers have reduced local structural connectivity at the precuneus, medial orbitofrontal 
cortex and lateral parietal cortex (Brown et al., 2011). APOE4 status also affects the clustering 
coefficient and the local efficiency of structural brain networks. Specifically, Ma et al. (2017) 
observed that the values for the APOE4 carriers were higher than those of the non-carriers in a 
normal-cognition group, while the opposite pattern was observed in a group of participants 
suffering from Mild Cognitive Impairment (MCI). Middle-aged adults with genetic, family and 
lifestyle risks of developing AD have a hub in their structural connectome that is not present in 
the structural connectome of people with no such risks of developing AD (Clarke et al., 2020). 
Significant functional connectivity differences in the brain networks implicated in cognition were 
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seen in middle-aged individuals with a genetic risk for AD (Goveas et al., 2013). The DMN also 
exhibits changes in mature (Fleisher et al., 2009) and young APOE4 carriers (Filippini et al., 
2009). A PRS composed of immune risk SNPs is associated with a thinner regional cortex in 
healthy older adults at risk of developing AD (Corlier et al., 2017). Other studies have also 
investigated the effect of AD PRS on brain structure (Lupton et al., 2016; Hayes et al., 2017; 
Harrison et al., 2016; Sabuncu et al., 2012), finding alterations associated with increased 
genetic burden. Some of the studies have also used disease pathways to inform the PRS 
(Caspers et al., 2020; Ahmad et al., 2018). A few studies have also identified alterations in the 
brain of young AD-risk carriers. The hippocampal volume and the fractional anisotropy of the 
right cingulum are altered in young adults with increased risk of developing AD (Foley et al. 
2017), and their precuneal volume is reduced (Li et al., 2018). Increased functional connectivity 
and hippocampal activation in a memory task was observed in the DMN of young, cognitively 
normal APOE4 carriers (Filippini et al., 2009). Young APOE4 carriers also showed increased 
activation (measured via fMRI) in the medial temporal lobe compared to non-carriers, while 
performing a memory task (Dennis et al., 2010).  
 
Despite the evidence that a) there are alterations in the brain networks of AD patients, and b) 
there are functional and structural changes in the brains of young adults at risk of developing 
AD, the structural brain networks of young adults at risk of AD have not been studied. Our work 
fills that gap, by investigating structural brain networks of young adults at different risks of 
developing AD, where the risk is evaluated both via GWAS and via specific risk pathways. We 
hypothesise that the localized alterations in the structure of the brain of young adults at risk of 
AD would present themselves as changes in their structural brain networks. We investigate the 
network corresponding to the whole-brain connectome, as well as the DMN, the limbic and 
visual subnetworks, because those subnetworks are known to be affected in AD (Power et al., 
2011; Deng et al. 2016; Hansson et al., 2017; Badhwar et al., 2017; Wang et al. 2019). We also 
investigate the hubs of the whole-brain connectome and their interconnectivity.  
 
1.1 Hypotheses 
 
We hypothesise that increased risk of AD would lead to increased characteristic path length for 
those networks, and an increased mean clustering coefficient, in agreement with the alterations 
these measures present in AD. We also hypothesize that the interconnectivity of the hubs would 
be reduced for increased risk of AD. Given the young age of the participants, we expect any 
observed alterations to be small. Any identified changes could be followed up in a longitudinal 
study of the same cohort, and possibly lead to important biomarkers that indicate disease onset 
or progression, or inform early preventative interventions in adults at risk of AD. 
 
 
2. Materials and Methods 
 
2.1 Participants 
 
The Avon Longitudinal Study of Parents and Children (ALSPAC) is a pregnancy and birth cohort 
established to identify the factors influencing child health and developmental outcomes. 
Pregnant women resident in Avon, UK with expected dates of delivery 1st April 1991 to 31st 
December 1992 were invited to take part in the study. The initial number of pregnancies enrolled 
is 14,541 (for these at least one questionnaire has been returned or a “Children in Focus” clinic 
had been attended by 19/07/99). Of these initial pregnancies, there was a total of 14,676 
foetuses, resulting in 14,062 live births and 13,988 children who were alive at 1 year of age. 
 
Between the ages of 18 to 24 years, a subset of ALSPAC offspring were invited to participate 
in three different neuroimaging studies; the ALSPAC Testosterone study (Liao et al., 2021; Patel 
et al., 2020; n= 513, mean age at attendance 19.62 years, range 18.00 to 21.50 years), the 
ALSPAC Psychotic Experiences (PE) study (Fonville et al., 2015; Drakesmith et al., 2015; 
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Drakesmith et al., 2016; Drakesmith et al., 2019; n=252, mean age at attendance 20.03 years, 
range 19.08 to 21.52 years), and the ALSPAC Schizophrenia Recall-by-Genotype (SCZ-RbG) 
study (Lancaster et al., 2019; n=196, mean age at attendance 22.75 years, range 21.12 to 24.55 
years). Scanning protocols were harmonised across sub-studies where possible, and all data 
were acquired at Cardiff University Brain Research Imaging Centre (CUBRIC). 
 
We analysed data from 562 individuals (mean age 19.81 years, SD 0.02 years; 62% male) from 
those ALSPAC neuroimaging studies (Boyd et al., 2013; Fraser et al., 2013; Sharp et al., 2020). 
Please note that the study website contains details of all the data that is available through a fully 
searchable data dictionary and variable search tool 
(http://www.bristol.ac.uk/alspac/researchers/our-data). Written informed consent was collected 
for all participants in line with the Declaration of Helsinki. Ethical approval for the neuroimaging 
studies was received from the ALSPAC Ethics and Law Committee and the local NHS Research 
Ethics Committees. Informed consent for the use of data collected via questionnaires and clinics 
was obtained from participants following the recommendations of the ALSPAC Ethics and Law 
Committee at the time. 
 
2.2 MRI acquisition 
 
MRI data were acquired using a GE HDx 3T system (GE Healthcare, Milwaukee W1) at 
CUBRIC. Axial T1-weighted images were acquired using a 3D fast spoiled gradient recalled 
sequence (TR = 8ms, TE = 3ms, TI = 450ms, flip angle = 20°, matrix size = 256 x 192 x 159) to 
aid co-registration. Diffusion-weighted images were acquired with a twice refocused spin-echo 
echo-planar imaging sequence parallel to the anterior-posterior commissure and the acquisition 
was peripherally gated to the cardiac cycle. Data were collected from 60 slices of 2.4 mm 
thickness (FOV=230 mm, matrix size 96 x 96, TE = 87 ms, b-values 0 and 1200 s/mm2) using 
parallel imaging (ASSET factor = 2) encoding along 30 isotopically distributed directions 
according to vectors taken from the International Consortium for Brain Mapping protocol (Jones 
et al., 1999). For 219 of those participants, the diffusion-weighted images were acquired using 
60 directions. For those participants, a subsample of the optimal 30 directions were used, 
alongside the first three images with b-value equal to 0 (see Foley et al., 2018, for further details; 
Afzali et al., 2021; Jones et al., 1999). 
 
2.3 Data processing and tractography 
 
Data pre-processing was performed as described by Foley et al. (2018). To summarise, T1 
structural data were down-sampled to 1.5 x 1.5 x 1.5 mm3 resolution. Eddy-current and 
participant motion correction were performed with an affine registration to the non-diffusion-
weighted images (Leemans and Jones, 2009) with appropriate reorienting of the encoding 
vectors. Echo-planar imaging of the diffusion-weighted data was performed, warping the data 
to the down-sampled T1-weighted images (Irfanoglu et al., 2012). RESTORE (Chang et al., 
2005), RESDORE (Parker et al., 2013a) and free water correction (Pasternak et al., 2009) 
algorithms were run. Whole-brain tractography was performed for each data set using the 
damped Richardson-Lucy pipeline (Dell’Acqua et al., 2010) which has been shown to produce 
a reliable tractogram in cases of crossing fibers, and in-house MATLAB code (Parker et al., 
2013b). The criteria used for termination of the tracts were: angle threshold of >45°, fibre 
orientation density function peak < 0.05 and fractional anisotropy <0.2. 
 
2.4 Network construction 
 
We used the Automated Anatomical Labelling (AAL) (Tzourio-Mazoyer et al., 2002) to define 
the 90 cortical and subcortical areas of the cerebrum that correspond to the nodes of the 
structural networks. The WM tracts linking those areas are the connections, or edges, of the 
networks. The network generation was performed in ExploreDTI-4.8.6 (Leemans et al., 2009). 
We generated two connectivity matrices for each participant, one in which the edges are 
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weighted by the number of streamlines (NS) and one in which they are weighted by the mean 
fractional anisotropy (FA) of the diffusion tensor along the streamlines of the tracts. Both these 
metrics have been shown to result in measures of connectivity that exhibit heritability 
(Arnatkeviciute et al., 2020), repeatability (Yuan et al., 2018; Roine et al., 2019; Messaritaki et 
al., 2019; Dimitriadis et al., 2021) and functional relevance (Honey et al., 2009; Goni et al., 2014; 
Messaritaki et al., 2021). To reduce the possible number of false connections, structural 
connections reconstructed with 5 or fewer streamlines were discarded from the analysis. 
Furthermore, to avoid our results being dependent on this choice of threshold, the analysis was 
repeated for this threshold being from 1 to 12 streamlines. A graphical representation of this 
part of the analysis is shown in Fig. 1. 
 

 
 

Figure 1: Analysis that leads from the MR images to the structural brain networks. This analysis is repeated for each 
participant individually. 
 
In addition to the whole-brain connectome, we derived the DMN, the limbic subnetwork and the 
visual subnetwork, by selecting the edges that connect only the nodes in those subnetworks. 
The AAL atlas regions for the subnetworks are listed in Table 1 (Power et al., 2011). 
 
 

DMN LIMBIC VISUAL 
Middle Orbitofrontal Gyr Middle Frontal Gyr Hippocampus Inferior Temporal Gyr 
Thalamus Inferior Orbitofrontal Gyr Amygdala Fusiform Gyr 
Precuneus Superior Frontal Gyr Anterior Cingulate Gyr Lingual Gyr 
Superior Orbitofrontal Gyr Inferior Frontal Gyr (Triangular) Middle Cingulate Gyr Calcarine Fissure 
Anterior Cingulate Gyr Inferior Frontal Gyr (Opercula) Posterior Cingulate Gyr Cuneus 
Middle Cingulate Gyr Middle Occipital Gyr Parahippocampal Gyr Middle Occipital Gyr 
Posterior Cingulate Gyr Angular Gyr Olfactory Superior Occipital Gyr 
Hippocampus Parahippocampal Gyr Insula Inferior Occipital Gyr 

 

Table 1: Nodes of the AAL atlas included in the DMN, limbic and visual subnetworks. The nodes from both the left 
and right hemispheres are included. 
 
 
2.5 Graph theory and network analysis 
 
The Brain Connectivity Toolbox (BCT, Rubinov and Sporns, 2010) was used to calculate graph 
theoretical metrics for the structural brain networks of all participants. A detailed description of 
graph theoretical metrics is provided by Rubinov and Sporns, 2010, but we provide here a brief 
explanation of the ones we use, for completeness.  
 
The clustering coefficient of a node is equal to the number of existing edges among the 
neighbours of the node divided by the number of all possible edges and is a measure of how 
interconnected the node’s neighbours are. The degree of a node is the number of edges that 
stem from that node. The betweenness centrality of a node is the number of shortest paths 
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(connecting pairs of nodes) that the node belongs to in the network. The nodal strength is the 
sum of the weights of the edges stemming from a node. These four graph theoretical metrics 
are node-specific. To derive network-wide measures, their mean values over all the nodes in 
the network are used. The characteristic path length of a network is the mean value of the steps 
along the shortest paths that connect all possible pairs of nodes in the network. The global 
efficiency of the network is proportional to the sum of the inverse shortest path lengths over all 
pairs of nodes in the network and is related to how efficiently the nodes of the network can 
exchange information. In contrast to the previous measures mentioned, the characteristic path 
length and the global efficiency are network-wide, rather than node-specific, measures. Finally, 
the local efficiency of a node is calculated the same way as the global efficiency of the 
subnetwork that consists of the node’s neighbours. 
 
 

 
 

Figure 2: Diagram showing the sub/networks used in our analysis and the graph theoretical and connectivity metrics 
that are correlated with the PRS. NS = number of streamlines, FA = fractional anisotropy of the diffusion tensor. 
 
 
For our analysis, we calculated the mean clustering coefficient, mean betweenness centrality, 
characteristic path length, global efficiency and mean nodal strength. The expectation is that, if 
changes to the topological organisation are a result of increased risk of developing AD, then the 
mean clustering coefficient, global efficiency and mean nodal strength will decrease, and the 
characteristic path length will increase, for increased risk. In order to remove metrics that 
represent redundant information from our analysis, we calculated the Pearson correlation 
between all pairs of graph theoretical metrics for each network and excluded from further 
analysis metrics that exhibited correlation coefficients of 0.85 or higher. 
 
In order to investigate the hubs of the networks, we also calculated the local efficiency and the 
degree of each node. This allowed us to calculate the hub-score, or hubness, of each node for 
the whole-brain network. Instead of using a single measure for identifying hubs (for example 
only the node degree or only the betweenness centrality as is sometimes done), we used a 
composite measure as proposed by Betzel et al. (2014). Specifically, we normalized the node 
degree, nodal strength, betweenness centrality and local efficiency for each participant – this 
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was in order for all four metrics to be equally weighted in the hubness calculation and was done 
by dividing the values of each metric across nodes by the largest value. We then averaged the 
normalized values for each node. That average was the hubness of the node. 
 
The hubness of each node was averaged over all participants, to derive the mean node 
hubness. Hub nodes were defined as those with mean node hubness greater or equal to the 
average of the mean node hubnesses plus one standard deviation, according to van den Heuvel 
and Sporns (2011). The hub nodes comprise a rich club of nodes. The rich-club connectivity 
was calculated for each participant by summing the strength of the edges that connect the hub 
nodes only. The feeder connections, i.e., the connections that link one hub node and one non-
hub node, were also identified. The feeder connectivity was also calculated for each participant, 
as the sum of the strength of the feeder connections. Finally, the local connections were 
identified as the connections that link non-hub nodes only. The local connectivity was the sum 
of the strength of the local connections. We stress that the rich-club, feeder and local 
connectivities are defined for the whole-brain network. 
 
2.6 Polygenic risk score calculation 
 
Genome data were provided by the University of Bristol. ALSPAC participants were genotyped 
using the Illumina HumanHap550 quad genome-wide SNP genotyping platform by 23andMe 
subcontracting the Wellcome Trust Sanger Institute (WTSI, Cambridge, UK) and the Laboratory 
Corporation of America (Burlington, North Carolina, USA). Participants were excluded from 
analysis if they had minimal or excessive heterozygosity, genotyping completeness < 97%, or 
if they were of non-European ethnicity. Quality control parameters were as follows: Minor allele 
frequency (MAF) > 0.01; Individual call rate > 95%, Hardy Weinberg Equilibrium (HWE) (P > 
5x10-7). Polygenic risk scores were calculated according to the International Schizophrenia 
Consortium method (Purcell et al., 2009). Training data were taken from the latest genetic meta-
analysis of Alzheimer’s disease (Kunkle et al, 2019) comprising of 94,437 cases and controls. 
In our sample, SNPs with low MAF < 0.1 and imputation quality <0.9 were removed. Data were 
then pruned for SNPs in linkage disequilibrium (LD) using genetic data analysis tool PLINK 
(Chang et al., 2015) using the clumping function (--clump). This aimed to remove SNPs in LD 
within a 500 kilobase window, retaining only the most significantly associated SNPs. Scores 
were generated in PLINK using the –score command. We note that APOE has a p-value of 
around 7×10−44 in most Alzheimer’s GWAS, and it explains almost as much variance in the 
phenotype as all the other loci combined. Therefore, APOE4 carriers are invariably in the 
highest deciles of the polygenic score. 
 
To compute pathway-specific PRS, nine pathway groups were taken from Kunkle et al. (2019), 
who matched lists of SNPs to genes and tested them for enrichment within gene functional 
categories.  The pathway groups were as follows: protein-lipid complex assembly, regulation of 
beta-amyloid formation, protein-lipid complex, regulation of amyloid precursor protein catabolic 
process, tau protein binding, reverse cholesterol transport, protein-lipid complex subunit 
organisation, plasma lipoprotein particle assembly and activation of the immune response. The 
lists of SNPs were matched to SNPs in our target dataset. Then the data was clumped and 
scored as described above. 
 
A previous study found that an AD PRS computed with p-value threshold (PT) of 0.001 explained 
the most variance in structural (non-network) neuroimaging phenotypes of healthy young adults 
(Foley et al. 2017). Therefore, our primary analysis used PT=0.001 to select relevant SNPs from 
the discovery sample. For our secondary analysis, 7 different progressive training PTs were 
computed (0.00001; 0.0001; 0.01; 0.05; 0.1; 0.3; and 0.5). Lower PT indicates that SNPs are 
more significantly associated with AD case status in the training dataset. Two versions of each 
score were calculated, including and excluding the APOE locus. This was done to assess the 
effect of PRS without APOE and the effect of APOE within the PRS. 
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Through this method, we ended up with 20 different PRS: genome-wide with and without APOE, 
and each of the nine pathway-specific PRS with and without APOE. Each of these PRS further 
corresponds to 8 values for the PTs, as described above. 
 
 
 
2.7 Statistical analyses 
 
Correlations between graph theoretical metrics and the genome-wide PRS (APOE included) 
and the nine pathway-specific PRS (APOE included) were calculated in MATLAB (MATLAB and 
Statistics Toolbox Release, 2015b and 2021a; The MathWorks, Inc, Massachusetts, United 
States). Correlations were also calculated between the rich-club, feeder and local connectivity 
versus the 10 PRS scores. The participant gender and the diffusion scan type (30 vs 60 diffusion 
gradient directions) were controlled for by using partial correlations. Data points that had Cook’s 
distance higher than 3 times the mean Cook’s distance (Cook, 1977) were removed from the 
calculation. Our primary analysis used PT = 0.001. Resulting p-values were corrected for 
multiple comparisons using false-discovery-rate (FDR) correction (Benjamini and Yekutieli, 
2005). The correction was applied over the graph theoretical metrics of all four networks, the 
rich-club, feeder and local connectivities, and the 10 PRS (i.e., the genome-wide plus the 9 
pathway-specific ones) for each PT. If a significant association was found between a PRS and 
the graph theoretical metrics or connectivities, correlations were also calculated with the PRS 
excluding the APOE locus, to assess whether the correlations were purely due to that locus. To 
exclude the possibility that our results are confounded by population stratification, we repeated 
our analyses using the first ten principal components derived from common alleles as 
covariates.  
 
We also looked at the rest of the PT thresholds, as is standard practice (de Leeuw et al., 2015; 
Purcell et al., 2009). In particular, the investigations for the higher values of PT are justified, 
because it is likely that many loci that show only nominal association with disease status are 
actually involved in the pathological process. This was demonstrated by Escott-Price et al., 
(2015) who found that the highest prediction accuracy was given by a PRS which included SNPs 
from 0.5 and below (AUC = 78.2%, 95% confidence interval: 77 – 80 %). To control for multiple 
comparisons in this case, we calculated the permutation-corrected p-values via the minP 
procedure (Rempala and Yang, 2013; Westfall and Young, 1993). 
 
 
3. Results 
 
3.1 Networks 
 
The whole-brain, default mode, limbic and visual subnetworks for one participant are shown in 
Fig. 3 (NS-weighted networks) and Fig. 4 (FA-weighted networks). The relative strength of the 
connections depends on the edge-weighting and has an impact on the graph theoretical metrics 
of the networks. Given the differences observed between NS- and FA-weighted networks, 
performing the analysis for both these edge-weightings is warranted. 
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Figure 3: Whole-brain, DMN, limbic and visual subnetworks, for NS-weighted networks, from the data of one 
participant. The lines represent the edges (connections) between brain areas. 
 
 
 

 
 

Figure 4: Whole-brain, DMN, limbic and visual subnetworks, for FA-weighted networks, from the data of one 
participant. The lines represent the edges (connections) between brain areas. 
 
 

Network cc/cpath cc/Eg cc/bc cc/nstr cpath/Eg cpath/bc cpath/nstr Eg/bc Eg/nstr bc/nstr 

WB 0.09 
0.025 

-0.14 
0.001 

-0.14 
8x10-4 

-0.13 
0.002 

-0.97 
< 10-10 

0.19 
10-5 

-0.93 
< 10-10 

-0.10 
0.021 

0.97 
< 10-10 

-0.13 
0.001 

DMN 0.05 
0.273 

-0.15 
2x10-4 

-0.07 
0.092 

-0.25 
< 10-8 

-0.78 
< 10-10 

0.09 
0.032 

-0.71 
< 10-10 

-0.01 
0.784 

0.95 
< 10-10 

-0.06 
0.140 

LIMBIC -0.07 
0.090 

-0.03 
0.414 

0.02 
0.575 

-0.09 
0.030 

-0.53 
< 10-10 

0.34 
< 10-10 

-0.46 
< 10-10 

-0.23 
3x10-8 

0.95 
< 10-10 

-0.24 
< 10-8 

VISUAL -0.21 
6x10-7 

0.13 
2x10-3 

-0.27 
< 10-8 

0.15 
3x10-4 

-0.91 
< 10-10 

0.38 
< 10-10 

-0.87 
< 10-10 

-0.28 
< 10-10 

0.98 
< 10-10 

-0.33 
< 10-10 

 

Table 2a: Correlation coefficients and p-values (the latter in italics) for the graph theoretical metrics of the NS-
weighted networks. cc = mean clustering coefficient, cpath = characteristic path length, Eg = global efficiency, nstr = 
mean nodal strength, bc = mean betweenness centrality. 
 
 

Network cc/cpath cc/Eg cc/bc cc/nstr cpath/Eg cpath/bc cpath/nstr Eg/bc Eg/nstr bc/nstr 

WB -0.35 
< 10-10 

0.37 
< 10-10 

-0.31 
< 10-10 

0.44 
< 10-10 

-0.99 
< 10-10 

0.69 
< 10-10 

-0.91 
< 10-10 

-0.65 
< 10-10 

0.91 
< 10-10 

-0.85 
< 10-10 

DMN -0.44 
< 10-10 

0.45 
< 10-10 

-0.45 
< 10-10 

0.53 
< 10-10 

-0.98 
< 10-10 

0.78 
< 10-10 

-0.92 
< 10-10 

-0.73 
< 10-10 

0.93 
< 10-10 

-0.90 
< 10-10 

LIMBIC -0.56 
< 10-10 

0.55 
< 10-10 

-0.57 
< 10-10 

0.63 
< 10-10 

-0.98 
< 10-10 

0.81 
< 10-10 

-0.95 
< 10-10 

-0.76 
< 10-10 

0.94 
< 10-10 

-0.92 
< 10-10 

VISUAL -0.43 
< 10-10 

0.40 
< 10-10 

-0.33 
< 10-10 

0.41 
< 10-10 

-0.98 
< 10-10 

0.78 
< 10-10 

-0.96 
< 10-10 

-0.70 
< 10-10 

0.96 
< 10-10 

-0.83 
< 10-10 

 

Table 2b: Correlation coefficients and p-values (the latter in italics) for the graph theoretical metrics of the NS-
weighted networks. cc = mean clustering coefficient, cpath = characteristic path length, Eg = global efficiency, nstr = 
mean nodal strength, bc = mean betweenness centrality. 
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The correlation coefficients between graph theoretical metrics of the networks and the related 
p-values are given in Table 2a (for the NS-weighted networks) and 2b (for the FA-weighted 
networks). Based on these, we selected the metrics to be used in subsequent analysis, which 
are summarised in Table 3. 
 
 

 NS-weighted FA-weighted 

Whole-brain 

mean clustering coefficient 
mean betweenness centrality 
mean nodal strength  
rich-club connectivity  
feeder connectivity  
local connectivity 

mean clustering coefficient 
mean betweenness centrality 
mean nodal strength  
rich-club connectivity  
feeder connectivity  
local connectivity 

Default-mode 
mean clustering coefficient  
mean betweenness centrality 
mean nodal strength  
characteristic path length 

mean clustering coefficient  
mean betweenness centrality 
mean nodal strength 

Limbic 
mean clustering coefficient  
mean betweenness centrality  
mean nodal strength  
characteristic path length 

mean clustering coefficient  
mean betweenness centrality 

Visual 
mean clustering coefficient  
mean betweenness centrality 
mean nodal strength 

mean clustering coefficient  
mean betweenness centrality 
mean nodal strength 

Table 3: Metrics used in the analysis for each network. 
 
 
3.2 Whole-brain connectome 
 
No statistically significant correlations between graph theoretical metrics of the whole-brain 
network and the PRSs were found to survive multiple comparison correction. 
 
3.3 Default-mode network 
 
For our primary analysis (PT = 0.001), no statistically significant correlations between the PRS 
and the graph theoretical metrics of the DMN survived multiple-comparison correction. The 
following correlations, however, did survive multiple comparison correction: 
 
For PT = 0.3, the mean nodal strength of the NS-weighted DMN was correlated with the genome-
wide PRS, including APOE, (r = -0.14, p = 1.5x10-3). When the APOE locus was excluded from 
the analysis, the correlation persisted (r = -0.14, p = 1.6x10-3). The correlations also persisted 
when the analysis was repeated for NS thresholds between 1 and 12. 
 
For PT = 0.01, the mean betweenness centrality of the FA-weighted DMN was correlated with 
the activation of the immune response PRS, including APOE, (r = -0.16, p=1.2x10-4). When the 
APOE locus was excluded from the analysis, the correlation persisted (r = -0.15, p=4.5x10-4). 
The correlations also persisted when the analysis was repeated for NS thresholds between 1 
and 12.  
 
Repeating the analyses for the DMN using the first ten principal components derived from 
common alleles as covariates did not change these results. 
 
All these results are shown in Fig. 5. 
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Figure 5: Correlation coefficients between the graph theoretical metrics of the default-mode network and the genome-
wide PRS including APOE for the 8 different values of PT. The asterisk indicates the instances in which the p-value 
survived multiple comparison correction. 
 
 
3.4 Limbic subnetwork 
 
No statistically significant correlations between graph theoretical metrics of the limbic 
subnetwork and the PRSs were found to survive multiple comparison correction. 
 
3.5 Visual subnetwork 
 
For our primary analysis (PT = 0.001), no statistically significant correlations between the PRS 
and the graph theoretical metrics of the visual subnetwork survived multiple-comparison 
correction. The following correlations, however, did survive multiple comparison correction: 
 
The mean nodal strength of the NS-weighted visual subnetwork was correlated with the 
genome-wide PRS, including APOE, for PT=0.1, 0.3 and 0.5. The correlation coefficients were 
r = -0.17, -0.18 and -0.19, for the 3 values of PT respectively, while the p-values were 8.4x10-5, 
4.1x10-5 and 1.3x10-5 respectively. When the analysis was repeated with the APOE locus 
excluded, the correlations persisted. Specifically, the correlation coefficients were: -0.15, -0.17 
and -0.18, while the p-values were 7.6x10-4, 1.4x10-4, 2.9x10-5, for the 3 values of PT 
respectively. The correlations also persisted when the analysis was repeated for NS thresholds 
between 1 and 12. 
 
The mean clustering coefficient of the NS-weighted visual subnetwork was correlated with the 
tau protein binding PRS, including APOE, for PT=0.3 and 0.5. The correlation coefficients were 
r = -0.14, while the p-values were 1.4x10-3 for both PTs. When the analysis was repeated with 
the APOE locus excluded, the significance of the correlations disappeared, with the correlation 
coefficients being -0.02 and the p-values being 0.71. The correlations persisted, however, when 
the analysis was repeated for NS thresholds between 1 and 12. 
 
The mean betweenness centrality of the NS-weighted visual subnetwork was correlated with 
the plasma lipoprotein particle assembly PRS, including APOE, for PT=0.3 and 0.5. The 
correlation coefficients were r = 0.15 and 0.16, for the 2 values of PT respectively, while the p-
values were 9.2x10-4 and 3.6x10-4 respectively. When the analysis was repeated with the APOE 
locus excluded, the correlations persisted, with the correlation coefficients being r = 0.12 and 
0.13 for the two values of PT respectively, and the p-values being 7.5x10-3 and 2.2x10-3 
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respectively. The correlations also persisted when the analysis was repeated for NS thresholds 
between 1 and 12. 
 
Repeating the analyses for the DMN using the first ten principal components derived from 
common alleles as covariates did not change these results. 
 
All these results are shown in Fig. 6. 
 

 
 

Figure 6: Correlation coefficients between the graph theoretical metrics of the visual subnetwork and the three PRSs 
for which those survived multiple comparison correction, for the 8 different values of PT. The asterisk indicates the 
instances in which the p-value survived multiple comparison correction. 
 
 
 
3.6 Rich-club, feeder and local connectivity of the whole-brain network 
 
Fig. 7 shows the nodes that are hubs for the NS-weighted and the FA-weighted networks. For 
the NS-weighted networks, the hubs were the left and right putamen, left and right precuneus, 
left and right hippocampus, left and right superior frontal gyrus, left middle occipital gyrus, left 
and right superior occipital gyrus, right calcarine sulcus and right caudate. For the FA-weighted 
networks, the hubs were the left and right putamen, left and right precuneus, left and right 
hippocampus, left and right superior frontal gyrus, left middle occipital gyrus, left calcarine 
sulcus, right superior parietal gyrus, left superior orbitofrontal gyrus and left superior occipital 
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gyrus. We note that ten out of the 13 hubs were the same in the NS- and FA-weighted networks, 
while three differed. 
 
 

 
 
Figure 7: Hubness scores for the network nodes for the NS-weighted (top) and FA-weighted (bottom) networks. The 
purple circles indicate nodes that are hubs for the respective networks. 
 
 
For our primary analysis (PT = 0.001), no statistically significant correlations between the PRS 
and the rich-club, feeder or local connectivities of the whole-brain network survived multiple-
comparison correction. The following correlations, however, did survive multiple comparison 
correction: 
 
The rich-club connectivity of the NS-weighted whole-brain connectome was correlated with the 
genome-wide PRS, including APOE, for PT=0.3 and 0.5. The correlation coefficients were              
r = -0.16 and -0.15 for the two PTs respectively, while the p-values were 3.7x10-4 and 1.1x10-3 
respectively. When the analysis was repeated with the APOE locus excluded, the correlations 
persisted, with the correlation coefficients being r = -0.15 and -0.14 for the two PTs respectively, 
and the p-values being 6x10-4 and 1.7x10-3 respectively. The correlations also persisted when 
the analysis was repeated for NS thresholds of 1 to 12. 
 
The feeder connectivity of the NS-weighted whole-brain connectome was correlated with the 
genome-wide PRS, including APOE, for PT=0.3 and 0.5. The correlation coefficients were             
r = -0.14 and -0.15 for the two PTs respectively, while the p-values were 1.3x10-3 and 8.8x10-4 
respectively. When the analysis was repeated with the APOE locus excluded, the correlations 
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persisted, with the correlation coefficients being r = -0.14 and -0.13 for the two PTs respectively, 
and the p-values being 1.4x10-3 and 2.3x10-3 respectively. The correlations also persisted when 
the analysis was repeated for NS thresholds of 1 to 12. 
 
All these results are shown in Fig. 8. 
 

 
 

Figure 8: Correlation coefficients between the rich-club, feeder and local connectivities and the genome-wide PRS 
including APOE, for the 8 different values of PT. Asterisks indicate p-values that survived multiple comparison 
correction. 
 
As mentioned earlier, the minP procedure was used to calculate the permutation-corrected p-
values for the PT thresholds. The exact p-values are given in Section A of the Supplementary 
Material. They remained statistically significant for all the cases above, with the exception of the 
correlation between the mean betweenness centrality of the visual network and the PRS for 
plasma lipoprotein particle assembly excluding APOE for PT = 0.3, and the correlation between 
the feeder connectivity and the genome-wide PRS excluding APOE for PT = 0.3. Additionally, 
the values of the correlation coefficients for the thresholds between 1 and 12 are given in 
Section B of the Supplementary Material. 
 
 
4. Discussion 
 
To the best of our knowledge, this is the first study to examine the relationship between AD PRS 
and network-based measures for the whole-brain structural connectome and subnetworks. We 
used a cohort of young participants to assess any potential early changes in the structural 
connectome. From a clinical perspective, using pathway-specific polygenic risk scores in 
addition to genome-wide ones is important, because it can pave the way for more targeted 
interventions based on the predicted pathway involvement and potentially allow clinical trials to 
stratify patients using their specific risk profiles. 
 
Compared to the FA-weighted networks, using NS-weighted networks resulted in more 
statistically significant relationships between the PRS and structural network metrics, such as 
the graph theoretical metrics we employed and the connectivity strength between the rich-club, 
and feeder connections. Even though both the NS and the FA are routinely used to assign 
significance to the edges of structural networks, it has been argued (Huang and Ding, 2016) 
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and proven experimentally (Messaritaki et al., 2021) that the NS is more relevant from a 
functional perspective to the network organization of the human brain compared to the FA. This 
may be contributing to the increased sensitivity of the NS in the differences observed in our 
study. Other metrics have also been used as edge-weights, such as the inverse radial diffusivity 
(Caeyenberghs et al., 2016; Messaritaki et al., 2022), which captures myelination and axonal 
packing and is, therefore, also meaningful is assessing connectivity. From a methodological 
point of view, this demonstrates that the selection of the metric for the edge weights can impact 
the results and, if not optimal, it can fail to reveal certain statistically significant relationships. As 
the capabilities of MRI to measure microstructural metrics evolves (Wolff et al., 1989; Mackay 
et al., 1994; Assaf and Basser, 2005; Zhang et al., 2012; Barazany et al., 2009), using these 
and other measures (e.g., myelin, axonal density and axon diameter) as edge weights should 
also be explored. 
 
Our analysis identified statistically significant (after correction for multiple comparisons) 
correlations between graph theoretical metrics and PRS, present in the DMN. The negative 
correlation between the mean nodal strength and the genome-wide PRS for the NS-weighted 
DMN indicates that high genome-wide risk of AD results in lower nodal strength in that network. 
Furthermore, the fact that the correlation persisted when the APOE locus was removed from 
the analysis indicates that this relationship is a result of multiple genetic factors and not 
exclusively due to the APOE gene. 
 
Our analysis also revealed statistically significant (after multiple-comparison correction) 
correlations between the graph theoretical metrics of the NS-weighted visual subnetwork and 
the PRSs. The negative correlation between the mean nodal strength and the genome-wide 
PRS (including APOE) implies weaker connectivity in the visual subnetwork of participants at 
higher risk of developing AD. The negative correlation between the mean clustering coefficient 
and the tau protein binding PRS (including APOE) indicates that participants at higher risk of 
developing AD through this pathway have less clustered communities in the visual subnetwork. 
The positive correlation between the mean betweenness centrality and the PRS for plasma 
lipoprotein particle assembly (including APOE) implies that, in participants at higher risk of 
developing AD, each node participates in more shortest paths and therefore the organisation of 
the visual subnetwork is less central compared to participants at low risk. The fact that the first 
and third of these correlations persisted when the APOE locus was excluded from the genetic 
risk calculation indicates that they are a result of multiple genetic factors, and not exclusively 
due to the APOE gene. The second correlation, however, appears to be driven predominantly 
by the APOE gene. 
 
Studies of young adults with genetic predisposition to AD are still limited, and predominantly 
involve brain function rather than structure. As mentioned earlier, increased functional 
connectivity and hippocampal activation in a memory task was observed in the DMN of young, 
cognitively normal APOE4 carriers (Filippini et al., 2009). This finding was not, however, 
replicated in a study by Mentink et al. (2021), which instead found that compared to non-carriers, 
APOE4 young carriers had increased functional activation in facial-recognition areas during the 
encoding of subsequently recollected items. Young APOE4 carriers also showed increased 
activation (measured via fMRI) in the medial temporal lobe compared to non-carriers, while 
performing a memory task (Dennis et al., 2010). In contrast to these studies which focused on 
the DMN, the majority of our findings pertained to the visual network. Additionally, observing 
small changes in the NS-weighted and FA-weighted structural networks does not necessarily 
imply the presence of measurable functional deficiencies (which also depends on the sensitivity 
of those functional studies). Functional connectivity is believed to be also reliant on a number 
of other microstructural metrics (such as myelination and axonal density) which could be 
compensating for changes present in the number of streamlines. 
 
As mentioned earlier, alterations in the visual subnetwork of AD patients have been recently 
reported in the literature. For example, Deng et al. (2016) observed increased characteristic 
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path length and clustering coefficient in the visual subnetwork (measured with BOLD fMRI) of 
AD patients. Badhwar et al. (2017) also observed decreased connectivity in the primary visual 
cortex of AD patients. Wang et al. (2019) observed impairments in the visual subnetwork of AD 
patients, as well as in patients with subjective cognitive decline, which is considered a prodromal 
stage of AD. This last result further supports the idea that alterations in the visual subnetwork 
can appear many years before AD diagnosis. 
 
We also observed statistically significant correlations (after multiple-comparison correction) 
between the rich-club and feeder connectivities of the NS-weighted whole-brain network and 
the genome-wide PRS, including APOE. These negative correlations indicate that structural 
connections that involve at least one hub node are weaker in the brains of young participants 
at risk of developing AD. The relationships held when the APOE locus was excluded from the 
analysis, which indicates that the effect comes from genetic influences above and beyond 
APOE. 
 
A few studies have reported altered connectivity of the rich-club and feeder edges in the 
structural brain networks of participants with Alzheimer’s disease and with MCI. Xue et al. (2020) 
recently observed reduced rich-club connectivity in patients with amnestic MCI compared to 
healthy age-matched controls, and reduced feeder and local connectivity in patients with 
amnestic MCI compared to participants with subjective cognitive decline. Cai et al. (2019) 
reported decreased feeder (and local) connection strength in the structural networks of AD 
patients compared to healthy controls. Our results are in line with these alterations in 
connectivity strength observed in AD and MCI patients. 
 
It is interesting that we observed decreased clustering coefficient with increased AD risk, while 
AD studies (Deng et al., 2016; He et al., 2008; Lo et al., 2010) observed increased clustering 
coefficient in AD patients. However, it is not uncommon that a pattern of structural or functional 
metrics is observed in at-risk populations, for that pattern to be reversed when the pathology is 
realised. Specifically for AD for example, Koelewijn et al. (2019) observed that young APOE 
carriers exhibited hyperconnectivity in brain areas that were found, in the same work, to show 
hypoconnectivity in AD patients. We also note that the structural networks in He et al. (2008) 
were structural covariance networks rather than tractography-derived networks, and that Lo et 
al. (2010) had a small sample of 25 patients and 30 controls in their tractography study. Also, 
Deng et al. (2016) used functional MRI rather than diffusion MRI and had a much smaller sample 
than ours. 
 
The rest of the graph theoretical metrics we investigated showed no statistically significant 
correlations after multiple comparison correction was applied. Recently, Foley et al. (2017) 
showed that there is a reduction in the fractional anisotropy of the right cingulum and a decrease 
in the left hippocampal volume of young adults at genetic risk of developing AD. In this context, 
our results imply that those alterations do not translate into changes in the structural brain 
networks and subnetworks of those young adults. We note, however, that the participants in 
that study included participants that were a few years older compared to those in our study. 
 
The correlations observed in our analysis are small, in the range of 0.14 to 0.19 (in absolute 
value). This is to be expected, given that the cohort of our study consisted of young adults with 
normal brain function. 
 
We note that the summary statistics used in PRS analysis were taken from a large discovery 
sample reported in the latest GWAS meta-analysis (Kunkle et al., 2019). Therefore, our risk 
estimates for AD loci are the best available.  We computed PRS in our sample manually in 
PLINK, rather than using automated PRS tools. This gives us the ability to specify several exact 
parameters which can be difficult with automated PRS tools. Furthermore, these automatic tools 
have precalculated SNPs linkage disequilibrium scores. They often use only 1 million SNPs, 
whereas the current GWASes have 4-8 million SNPs available. Our study employed a relatively 
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large sample size comprising participants of the same age (19.81 ± 0.02 years old), therefore 
avoiding the confound of brain changes that are age related, and which are known to exist in 
young adults up to the age of at least 25 years. Furthermore, our study is the first to use disease 
pathway PRS to explore associations between biological pathways and underlying differences 
in structural brain connectivity. We used two different edge weights, NS and FA, in our analysis. 
These metrics are the most widely used in the literature to weigh the edges of structural 
networks. It is worth pointing out that some graph theoretical metrics are dependent on the 
choice of edge weighting (such as the clustering coefficient and the nodal strength), while others 
are not (such as the node degree). Furthermore, we could have calculated correlations for other 
graph theoretical metrics, however we chose to limit our choice as described in the Methods 
section, in order to avoid multiple comparison corrections forcing us to reject results that are 
truly statistically significant. We also note that changes in the topological properties of brain 
networks can be complex and due to a number of factors, such as, for example, volumetric 
changes, which could exhibit themselves as altered connectivity. Regarding the pathway-
specific PRS, the accuracy of our results is limited by the current knowledge of pathway variants. 
Additionally, our study involved a geographically limited sample in which men are slightly over-
represented. Therefore, our results may not be representative of the general population. We 
note that the AAL atlas that we used is one of a few atlases that could have been used to 
conduct the analysis. Recent studies have shown how results from tractography studies could 
be dependent on the choice of atlas (Parker et al., 2014). Finally, participants of non-European 
ethnicity were excluded from the analysis because polygenic score analyses in populations with 
high genetic admixture are  not valid. Even small differences in population genetics may lead to 
distinctive linkage disequilibrium (LD) structure and allele frequencies (Moskvina et al., 2010). 
Pruning, an essential part of PRS calculation, relies on LD structure to retain SNPs that are 
most associated with a trait while removing others that are closely linked. Where LD structure 
diverges, alternative SNPs will be selected. This means that ethnicity admixture must be 
avoided and comparisons between population groups using PRS are not valid. This further 
implies that the findings of our study may not generalize to other ethnicities. Around 2% of 
ALSPAC participants were non-white (Fraser et al, 2013).  
 
 
5. Conclusion 
 
Our results demonstrate that genetic burden is linked to changes in structural brain networks, 
both for the whole-brain connectome and the visual subnetwork, in young adults. The genome-
wide PRS including APOE was linked to a reduction in the mean nodal strength of the visual 
subnetwork and of the rich-club and feeder connections of the whole-brain network. The 
plasma-lipoprotein particle assembly PRS including APOE was linked to an increase in the 
betweenness centrality of the visual subnetwork. Importantly, these relationships were still 
present, albeit slightly weaker, when the APOE locus was excluded from the analysis. This 
indicates that the search for AD biomarkers can benefit from the consideration of genetic risk 
above and beyond APOE. Different biomarkers could point to different pathway involvement, 
which could allow clinical trials to stratify patients accordingly. Specifically for the pathway-
specific PRS, it is not currently known exactly how these biological processes relate to brain 
networks, and this is incredibly complicated to decipher. As such, this work points to possible 
directions that researchers can look into in future studies. 
 
 
Supplementary Material 
A. Permutation Tests 
 
Below we give the p-values that resulted from the permutation testing, as described in Section 
2.7. We report on the cases in which the correlations between graph theoretical metrics and 
PRS were statistically significant. 
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Permutation-corrected p-values for the correlation between mean nodal strength of the NS-
weighted  DMN and genome-wide PRS incl. APOE: 
PT=0.3: 0.0438 
Permutation-corrected p-values for the correlation between mean nodal strength of the NS-
weighted DMN and genome-wide PRS excl. APOE: 
PT=0.3: 0.0471 
 
Permutation-corrected p-values for the correlation between mean betweenness centrality of the 
FA-weighted  DMN and activation of the immune response PRS incl. APOE: 
PT=0.01: 0.0083 
Permutation-corrected p-values for the correlation between mean betweenness centrality of the 
FA-weighted DMN and activation of the immune response PRS excl. APOE: 
PT=0.01: 0.0209 
 
Permutation-corrected p-values for the correlation between mean nodal strength of the NS-
weighted visual network and genome-wide PRS incl. APOE: 
PT=0.1: 0.0062; PT=0.3: 0.0036; PT=0.5: 0.0014 
Permutation-corrected p-values for the correlation between mean nodal strength of the NS-
weighted visual network and genome-wide PRS excl. APOE: 
PT=0.1: 0.0271; PT=0.3: 0.0093; PT=0.5: 0.0031 
 
Permutation-corrected p-values for the correlation between mean clustering coefficient of the 
NS-weighted visual network and tau protein binding PRS incl. APOE: 
PT=0.3: 0.0155; PT=0.5: 0.0157 
 
Permutation-corrected p-values for the correlation between the mean betweenness centrality of 
the NS-weighted visual network and the plasma lipoprotein particle assembly PRS incl. APOE: 
PT=0.3: 0.0102; PT=0.5: 0.0055 
Permutation-corrected p-values for the correlation between the mean betweenness centrality of 
the NS-weighted visual network and the plasma lipoprotein particle assembly PRS excl. APOE: 
PT=0.3: 0.0772; PT=0.5: 0.0333 
 
Permutation-corrected p-values for the correlation between the rich-club connectivity of the NS-
weighted whole-brain network and the genome-wide PRS incl. APOE: 
PT=0.3: 0.0184; PT=0.5: 0.0346 
Permutation-corrected p-values for the correlation between the rich-club connectivity of the NS-
weighted whole-brain network and the genome-wide PRS excl. APOE: 
PT=0.3: 0.0250; PT=0.5: 0.0492 
 
Permutation-corrected p-values for the correlation between the feeder connectivity of the NS-
weighted whole-brain network and the genome-wide PRS incl. APOE: 
PT=0.3: 0.0291; PT=0.5: 0.0365 
Permutation-corrected p-values for the correlation between the feeder connectivity of the NS-
weighted whole-brain network and the genome-wide PRS excl. APOE: 
PT=0.3: 0.0637; PT=0.5: 0.0463 
 
 
B. Correlation values for the different thresholds on the number of streamlines 
 
The tables below give the correlation coefficients and the p-values for the different values of 
NSthr, where NSthr is the maximum value of NS for tracts excluded from the brain network. For 
the case of the correlations not listed, the differences between the correlation coefficients / p-
values for the 12 NSthr were on the third significant digit, and for that reason we do not list them 
here.  
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Correlation between the mean betweenness centrality of the DMN and the activation of the 
immune response PRS (incl. APOE) for the FA-weighted networks, for PT=0.01: 
 

NSthr 1 2 3 4 5 6 7 8 9 10 11 12 
Correlation 
coefficient -0.16 -0.17 -0.17 -0.18 -0.16 -0.16 -0.17 -0.18 -0.17 -0.16 -0.17 -0.16 

p-value 3x10-4 10-4 9x10-5 5x10-5 1x10-4 2x10-4 2x10-4 7x10-5 2x10-4 3x10-4 2x10-4 3x10-4 
 
Correlation between the mean clustering coefficient of the visual network and the tau protein 
binding PRS (incl. APOE) for the NS-weighted networks, for PT=0.3 and 0.5: 
 

NSthr 1 2 3 4 5 6 7 8 9 10 11 12 

PT=0.3 Cor Coef -0.12 -0.12 -0.11 -0.14 -0.14 -0.13 -0.12 -0.13 -0.13 -0.14 -0.12 -0.13 
p-value 7x10-3 6x10-3 10-2 2x10-3 10-3 2x10-3 6x10-3 3x10-3 2x10-3 2x10-3 9x10-3 4x10-3 

PT=0.5 Cor Coef -0.12 -0.11 -0.12 -0.14 -0.14 -0.13 -0.12 -0.13 -0.13 -0.12 -0.12 -0.13 
p-value 7x10-3 10-2 8x10-3 2x10-3 10-3 2x10-3 7x10-3 3x10-3 2x10-3 6x10-3 7x10-3 4x10-3 

 
 
Correlation between the rich club connectivity of the whole-brain network and the genome-wide 
PRS (incl. APOE) for the NS-weighted networks, for PT=0.3 and 0.5: 
 

NSthr 1 2 3 4 5 6 7 8 9 10 11 12 

PT=0.3 Cor Coef -0.16 -0.16 -0.16 -0.16 -0.16 -0.16 -0.16 -0.16 -0.16 -0.16 -0.15 -0.15 
p-value 4x10-4 4x10-4 4x10-4 4x10-4 4x10-4 4x10-4 4x10-4 4x10-4 4x10-4 4x10-4 10-3 10-3 

PT=0.5 Cor Coef -0.14 -0.14 -0.14 -0.14 -0.14 -0.14 -0.14 -0.14 -0.14 -0.14 -0.15 -0.15 
p-value 10-3 10-3 10-3 10-3 10-3 10-3 10-3 10-3 10-3 10-3 10-3 10-3 

 
 
Correlation between the feeder connectivity of the whole-brain network and the genome-wide 
PRS (incl. APOE) for the NS-weighted networks, for PT=0.3 and 0.5: 
 

NSthr 1 2 3 4 5 6 7 8 9 10 11 12 

PT=0.3 Cor Coef -0.14 -0.14 -0.14 -0.14 -0.14 -0.14 -0.14 -0.14 -0.14 -0.14 -0.12 -0.12 
p-value 10-3 10-3 10-3 10-3 10-3 10-3 10-3 10-3 10-3 10-3 5x10-3 5x10-3 

PT=0.5 Cor Coef -0.15 -0.15 -0.15 -0.15 -0.15 -0.15 -0.15 -0.15 -0.15 -0.15 -0.13 -0.13 
p-value 9x10-4 9x10-4 9x10-4 9x10-4 9x10-4 9x10-4 9x10-4 9x10-4 9x10-4 9x10-4 2x10-3 2x10-3 

 
 
 
Note: EM and JRH are both last authors of the article. 
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