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 2 

Abstract 37 

 38 

Infection with the food-borne liver fluke Opisthorchis viverrini is the principal risk factor for 39 

cholangiocarcinoma (CCA) in the Mekong Basin countries of Thailand, Lao PDR, Vietnam, 40 

Myanmar and Cambodia.  Using a novel model of CCA, involving infection with gene-edited 41 

liver flukes in the hamster during concurrent exposure to dietary nitrosamine, we explored the 42 

role of the fluke granulin-like growth factor Ov-GRN-1 in malignancy.  We derived RNA-guided 43 

gene knockout flukes (ΔOv-grn-1) using CRISPR/Cas9/gRNA materials delivered by 44 

electroporation. Genome sequencing confirmed programmed Cas9-catalyzed mutations of the 45 

targeted genes, which was accompanied by rapid depletion of transcripts and the proteins they 46 

encode. Gene-edited parasites colonized the biliary tract of hamsters and developed into adult 47 

flukes, however less hepatobiliary tract disease manifested during chronic infection with ΔOv-48 

grn-1 worms in comparison to hamsters infected with control gene-edited and non-edited 49 

parasites. Specifically, immuno- and colorimetric-histochemical analysis of livers revealed 50 

markedly less periductal fibrosis surrounding the flukes and less fibrosis globally within the 51 

hepatobiliary tract during infection with ΔOv-grn-1 genotype worms, minimal biliary epithelial 52 

cell proliferation, and significantly fewer mutations of TP53 in biliary epithelial cells. Moreover, 53 

fewer hamsters developed high-grade CCA compared to controls. The clinically relevant, 54 

pathophysiological phenotype of the hepatobiliary tract confirmed a role for this secreted growth 55 

factor in malignancy and morbidity during opisthorchiasis. 56 

 57 

 58 
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Author summary 65 

Infection with the human liver flukes, Opisthorchis viverrini, O. felineus and Clonorchis sinensis 66 

remains a public health concern in regions where these parasites are endemic. O. viverrini is 67 

endemic in the Mekong River drainage countries of including Thailand and the Lao People’s 68 

Democratic Republic. Infection follows the consumption of undercooked freshwater fish 69 

harboring the parasite. Liver fluke infection, opisthorchiasis, is associated with diseases of the 70 

liver and bile ducts including cancer of the biliary tract, cholangiocarcinoma, a cancer with a 71 

poor prognosis. This report characterizes for the first time experimental infection with gene-72 

edited O. viverrini liver flukes during concurrent exposure to nitrosamine in a rodent model of 73 

liver fluke infection-associated cancer. Cancer development was slowed in hamsters infected 74 

with the parasite following CRISPR-based knock-out mutation and loss of a parasite gene known 75 

to stimulate growth of cells lining the bile ducts. These findings describe a new model for 76 

investigation of risk factors for infection-associated cholangiocarcinoma and to assess efficacy of 77 

anti-infection/anti-cancer vaccines.  78 

 79 

 80 

 81 

 82 
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Introduction 83 

Liver fluke infection caused by species of Opisthorchis and Clonorchis remains a major public 84 

health problem in East Asia and Eastern Europe. Infection with Opisthorchis viverrini is endemic 85 

in Thailand and Laos, where ~10 million people are infected with the parasite. Opisthorchiasis is 86 

associated with hepatobiliary diseases including cholangiocarcinoma (CCA), bile duct cancer (1, 87 

2). Northeast Thailand reports the world’s highest incidence of CCA, > 80 per 100,000 in some 88 

provinces. Indeed, the International Agency for Research on Cancer of the World Health 89 

Organization classifies infection with O. viverrini as a Group 1 carcinogen, i.e. definitely 90 

carcinogenic in humans (1, 3, 4).  91 

 92 

Which features or consequences of parasitism by the liver fluke definitely initiate malignant 93 

transformation to CCA have yet to be ascertained notwithstanding that opisthorchiasis is the 94 

principal risk factor for CCA in regions where this neglected tropical disease remains endemic 95 

(1, 4-6).  Some factors can be expected to more important than others and the impact of these 96 

factors should be quantifiable. Different worm burdens play a role, based on rodent models of 97 

liver fluke infection associated CCA (7), as does concurrent exposure to nitrosamines in 98 

fermented foods (8, 9) that are culturally important dietary staples in countries of the Lower 99 

Mekong River basin (5). Moreover, dose-dependent, synergistic effects of the liver fluke and 100 

nitroso-compounds have been documented (7, 10). To survive within the host, parasitic 101 

helminths actively release excretory/secretory (ES) proteins and other mediators with diverse 102 

effects and roles at the host-parasite interface (11, 12). This interaction is considered to 103 

manipulate host cellular homeostasis and, moreover, to underpin malignant transformation 104 

during chronic opisthorchiasis, but the molecular mechanisms by which these processes remain 105 
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inadequately understood (13).  Focusing on the contribution of liver fluke ES to carcinogenesis, 106 

we targeted the O. viverrini granulin-like growth factor, Ov-GRN-1, a prominent component of 107 

the ES complement that we had determined previously induces phenotypic hallmarks of cancer 108 

(14, 15). Ov-GRN-1 and other ES components including extracellular vesicles enter 109 

cholangiocytes, the epithelial cells that line the biliary tract, and drive cellular signaling that 110 

promotes carcinogenesis, including cellular proliferation and migration, angiogenesis and wound 111 

healing (16). We have confirmed the role of Ov-GRN-1 in driving proliferation of bile duct 112 

epithelial cells (cholangiocytes) by genetic manipulation of its expression in the liver fluke both 113 

by RNA interference and RNA-guided gene knockout (15, 17, 18).  Moreover, we have shown 114 

that infection of hamsters with the gene edited, infectious stage of the live fluke was feasible and 115 

that proliferation of biliary epithelia is markedly suppressed during infection with the ΔOv-grn-1 116 

(Ov-grn-1-/-) flukes (18).  117 

 118 

There is an established and instructive model of the pathogenesis of CCA in experimentally 119 

infected hamsters, Mesocricetus auratus that is thought to replicate the epidemiology and 120 

pathogenesis of chronic human opisthorchiasis (1). In this model, malignancy manifests within a 121 

few months following infection with metacercariae of the parasite and concurrent exposure to 122 

otherwise sub-carcinogenic levels of dietary nitrosamine (7, 19, 20).  In the hamster, chronic 123 

opisthorchiasis provokes periductal fibrosis, which, coincident with exposure to the nitric oxide 124 

carcinogen facilitates cholangiocyte proliferation, epithelial hyperplasia, DNA damage, and 125 

allied biliary tract lesions (21), which can culminate in CCA (22). Using this model, here we 126 

investigated the outcome of infection of hamsters with gene-edited O. viverrini liver flukes in 127 

relation to fluke-induced periductal fibrosis and malignant transformation. For this investigation, 128 
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hamsters were infected with juvenile flukes that had been genetically modified using CRISPR 129 

before infection. Specifically, following up on our earlier study (18) which focused on knockout 130 

of the Ov-grn-1 gene, here we included as comparators juvenile flukes gene-edited for a second 131 

virulence factor, tetraspanin (Ov-tsp-2) (23), which also networks at the host-parasite interface 132 

(24, 25) and, as controls, flukes subjected to CRISPR transfection by an irrelevant (non-133 

targeting) guide RNA (26).   134 

 135 

Immuno- and colorimetric-histochemical analysis of thin sections of liver revealed markedly less 136 

fibrosis during infection with ΔOv-grn-1 worms, reduced proliferation of cholangiocytes, 137 

substantially less expression of mutant forms of the p53 tumor suppressor protein and, overall, 138 

diminished malignancy of the liver. The clinically relevant, pathophysiological phenotype 139 

confirmed a role for Ov-GRN-1 in morbidity and malignancy during opisthorchiasis. Moreover, 140 

these findings underscored the utility and tractability of CRISPR-based genome editing for 141 

addressing gene function, essentiality, and pathogenesis in parasitic helminths generally. 142 

 143 

Results 144 

 145 

Hamster model of malignant transformation during infection with gene-edited 146 

Opisthorchis viverrini  147 

To investigate the effect of programmed gene knockout (KO) in O. viverrini, two experiments 148 

were undertaken in which hamsters were infected with newly excysted juveniles (NEJs) of O. 149 

viverrini that had been subjected to programmed KO . The CRISPR/Cas systems were delivered 150 

by electroporation of plasmids encoding guide RNAs specific for Ov-grn-1, Ov-tsp-2 and an 151 
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irrelevant (control) guide RNA. All groups received plasmids encoding the Cas9 nuclease from 152 

Streptococcus pyogenes. Figure 1A illustrates the experimental approach and timelines, the 153 

findings from which we present below.  Initially, juvenile flukes were subjected to transfection 154 

after which reduction in transcription of the targeted genes, Ov-grn-1 and Ov-tsp-2, was verified.  155 

Subsequently, following successful KO of transcription in vitro, additional juvenile O. viverrini 156 

were transfected  before infection of hamsters.  The goal of Experiment 1 was to assess impact of 157 

KO on the worm burden.  At necropsy14 weeks after infection, the entire liver was examined, 158 

the worms were recovered and counted, and transcriptional changes were investigated in the 159 

worms. With Experiment 2, the primary goal was establishment and assessment of disease 160 

burden including malignant transformation during infection. Given that livers from the hamsters 161 

in Experiment 2 were fixed at necropsy, worm burdens could not be established directly because 162 

recovery of the flukes is a process that damaged the liver and biliary tract and, accordingly, was 163 

incompatible with histological examination of infection-associated disease. Consequently, only a 164 

small number flukes were available from Experiment 2 and these that were available were 165 

collected incidentally during preparation of the liver lobes for fixation. Nonetheless, this sample 166 

of the flukes from each of the three groups was sufficient to assess the performance and level of 167 

programmed KO although total worm burden was unavailable. Nonetheless,  the findings from 168 

Experiment 2 provided the first description of gene-edited flukes in chronically-infected 169 

hamsters, i.e., with duration of infection beyond eight weeks  and, additionally, the first time 170 
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programmed mutation of the liver fluke genome has been combined with exposure to dietary 171 

nitrosamine in the hamster-liver fluke model of human CCA. 172 

 173 
 174 
Figure 1. Schematic overview of the experimental design. Hamsters were infected with juvenile 175 
Opisthorchis viverrini worms that had been subjected to gene knockout. Two experiments were 176 
conducted. (A). The goal of experiment 1 was to assess the impact  of CRISPR/Cas9 editing on 177 
fluke survival. The goal of experiment 2 was to assess the influence of gene knockout on 178 
pathogenesis and malignant transformation. Groups of hamsters were infected with flukes 179 
transfected with CRISPR/Cas9 plasmids targeting either Ov-grn-1 (red, ΔOv-grn-1), Ov-tsp-2 180 
(green, ΔOv-tsp-2), or irrelevant guide RNA (blue, control) and exposed to dimethyl nitrosamine 181 
(DMN) in the drinking water. At timepoints indicated for each experiment, fecal egg numbers 182 
were measured as eggs per gram of feces (EPG). Experiment 1: From the livers of euthanized 183 
hamsters, all the flukes were recovered and transcript levels assessed.  Experiment 2: Liver lobes 184 
were sectioned and stained for histochemical analysis.  Flukes incidentally released from bile 185 
ducts were collected and assessed for gene knockout. Before infection, transcript levels of Ov-186 
grn-1 (B) and Ov-tsp-2 (C) were assessed in juvenile flukes. Transcript levels established by 187 
qPCR were plotted relative to average control transcript levels from 2-4 biological replicates; 188 
average shown with colored bar and with 95% confidence interval error bars. Population 189 
statistics were generated from resampling 1000 times with replacement bootstrap analysis of 190 
untransformed delta-delta Ct values (derived from Figure S1). (Elements of the figure were 191 
created with BioRender.com with copyright and licensing permission.) 192 
 193 
  194 
Changes in transcription of the targeted genes induced by programmed mutations were 195 

monitored by RT-qPCR in newly excysted juveniles (NEJs) (Figure S1). Control (irrelevant 196 
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gRNA) group flukes was used to normalize expression level from 100% (no change) to 0% 197 

(complete ablation of expression) (Figure 1B, C).  For the ΔOv-grn-1 group, Ov-tsp-2 was used 198 

as an off-target gene control, and Ov-grn-1 was used as an off-target control for the ΔOv-tsp-2 199 

group.  Relative to the control group, Ov-grn-1 transcript levels were substantially reduced in the 200 

ΔOv-grn-1 flukes (bootstrapped average, 95% confidence interval [CI]: 62.4%, 61.8-63.1%) 201 

whereas the transcription of Ov-tsp-2 increased marginally (< 20% change) in the ΔOv-grn-1 202 

flukes (117.8%, 95% CI: 110.2-127.0%) (Figure 1B). Transcription of Ov-tsp-2 was substantially 203 

reduced in the ΔOv-tsp-2 flukes (37.9%, 95% CI: 36.7-39.1%). Levels of Ov-grn-1 transcripts 204 

(102.1%, 95% CI: 101.8-102.5%) were unchanged (Figure 1C). This outcome revealed gene-205 

specific, on-target knockout at the Ov-grn-1 and Ov-tsp-2 loci. Gene expression analyses were 206 

restricted to the two targeted genes and hence we cannot conclude that off-target mutations did 207 

not occur.   208 

 209 

Differential outcomes for adult flukes following knockout of Ov-grn-1 and Ov-tsp-2  210 

In Experiment 1, feces were sampled at both weeks 10 and 12 after infection (Figure 1A). 211 

Significant differences in fecal egg counts (EPG) were not apparent among the three groups 212 

(Figure 2A). Hamsters were euthanized and necropsied at week 14 to investigate the numbers of 213 

adult O. viverrini. There were 60.0±3.46 (mean ± SEM), 36.7±3.48, and 21.3±2.96 worms in the 214 

control, ΔOv-grn-1, and ΔOv-tsp-2 groups, respectively, reflecting reductions of 38.9% for Ov-215 

grn-1 and 64.5% for Ov-tsp-2 (Figure 2B). A trend was apparent toward increased egg burdens 216 

in hamsters with higher worm burdens but the correlation not statistically significant (Figure S2).   217 

 218 
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Of the worms recovered in Experiment 1, gene transcript levels relative to the control flukes 219 

were assessed for 10-13 flukes from each of the three hamsters in each group. Transcript levels 220 

(Figure S3) of both genes expressed by the control parasites clustered around 100% of wild-type 221 

fluke expression levels with bootstrap averages of 114.1% (95% CI: 104.2-126.5%) and 103.2% 222 

(95% CI: 98.4-107.5%) (Figure 2C, D).  Transcript levels for Ov-grn-1 ranged broadly in the 223 

ΔOv-grn-1 flukes from no change (~100%) to complete ablation (~0%) and, overall, were 224 

substantially reduced at 11.8% (95% CI: 4.5-28.8%) of levels seen in wild-type flukes (Figure 225 

2C). This phenotypic range, no change to ablation of transcripts in Ov-grn-1, was similar to our 226 

previous findings .  In contrast to the juvenile flukes, where there was substantial knockdown of 227 

Ov-tsp-2 (Figure 1C), transcript levels were not markedly reduced in adult ΔOv-tsp-2 flukes 228 

(82.5%, 95% CI: 73.6-91.5%) compared to the controls (103.2%, 95% CI: 98.4-103.2%) (Figure 229 

2D).  Indeed, most flukes in the ΔOv-tsp-2 group were unchanged with only two individual 230 

flukes exhibiting > 50% reduction in Ov-tsp-2 expression. We posit that this marked difference, 231 

in comparison to transcript levels for Ov-tsp-2 in juvenile flukes, i.e. reduced by 62.1%, in 232 

addition to the 65% reduction of worms recovered at necropsy, Ov-tsp-2 KO led to a lethal 233 

phenotype and that flukes of this genotype failed to survive in vivo. This contrasted with Ov-grn-234 

1 KO where the majority of flukes of the ΔOv-grn-1 genotype survived even though transcription 235 

of Ov-grn-1 was not detected in four of 36 flukes, and 10 of 36 exhibited Ov-grn-1 transcript 236 

levels < 5% of levels expressed by the control worms. 237 
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 238 
 239 
Figure 2. Liver fluke burden and levels of gene transcription. Fecundity, worm numbers, and 240 
gene expression levels were determined at 10-14 weeks (Experiment 1) after infection of the 241 
hamsters with 100 gene edited juveniles, and from three hamsters per group.  Number of eggs 242 
per gram of feces (EPG) from each hamster at weeks 10 and 12 (A) and worm numbers at week 243 
14 (B) showing mean (horizonal black line) and SEM bars.  Each treatment group was 244 
compared to control group with 2-way ANOVA with Holm-Sidak multiple comparison: ns = not 245 
significant; **, P ≤ 0.01; ***, P ≤ 0.001, and ΔOv-grn-1 against ΔOv-tsp-2: #, P ≤ 0.05.  Gene 246 
transcript levels of Ov-grn-1 (C) and Ov-tsp-2 (D) were determined by qPCR for 10 to 13 flukes 247 
from each animal (30-39 total per group) and plotted with each data point representing the 248 
transcript level of an individual fluke relative to wild-type flukes.  Resample with replacement 249 
bootstrap analysis (B=1000) of ddCT scores (Figure S3) used to generate population average, 250 
as denoted by the thick colored line and 95% confidence interval error bars. 251 
 252 
 253 
 254 
 255 
 256 
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Parasitological impact of gene knockout 257 
 258 
Quantitative assessment by histopathological and histochemical analysis of hepatobiliary disease 259 

at 24 weeks of infection was a primary goal for Experiment 2. Accordingly, determining the 260 

number of surviving liver flukes was not feasible because the liver and its intrahepatic biliary 261 

tract, occupied by the parasites, was necessarily fixed in formalin at necropsy for downstream 262 

histological processing and analysis. Nonetheless, we collected a sample of the resident O. 263 

viverrini flukes before formalin fixation of the liver for molecular screening to assess the 264 

efficacy of programmed gene knockout. As an accepted correlate of the number of worms 265 

parasitizing each hamster (27), fecal egg counts (as eggs per gram of feces, EPG) were 266 

determined at the time of necropsy.  EPG values ranged broadly among the groups (Figure 3A), 267 

with feces of the control fluke infected hamsters displaying the highest EPG values, median of 268 

11,062 EPG (95% CI: 4,814-26,536), the ΔOv-grn-1 group, 5,267 EPG (95% CI: 2,695-8535), 269 

and the ΔOv-tsp-2 group, 4,530 EPG (95% CI: 518-10,227) in the same rank order in numbers of 270 

worms recovered from these groups in Experiment 1 (Figure 2B). All the groups showed 271 

substantial variation; the average EPG of ΔOv-grn-1 hamsters was not significantly different to 272 

controls whereas the ΔOv-tsp-2 group had a significantly lower median EPG than the control 273 

group (P ≤ 0.05). 274 

 275 

Adult worms recovered from Experiment 2 hamster livers examined at 24 weeks after infection 276 

were evaluated for targeted gene transcripts by qPCR. Ov-grn-1 transcript levels (Figure S4) of 277 

adult O. viverrini from ΔOv-grn-1 infected hamsters were substantially decreased down to a 278 

bootstrapped average of 10.6% relative to wild-type flukes (95% CI: 3.1-30.9%) compared to the 279 

control group with 91.0% (95% CI: 84.1-97.5%) (Figure 3B).  In contrast, numbers of flukes in 280 
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the ΔOv-tsp-2 treatment group were similar, at 101.1% (95% CI: 91.1-111.3%) of wild-type 281 

flukes 98.5% (95% CI: 82.3-114.6%) of the controls (Figure 3C).  With Experiments 1 and 2 282 

showing the surviving ΔOv-tsp-2 group worms expressing Ov-tsp-2 at levels comparable to the 283 

control flukes, we posit that substantial Ov-tsp-2 gene edits were lethal, and worms that survived 284 

to maturity likely had not undergone gene editing and/or few of the cells in the worms had been 285 

edited.  Although we retained the ΔOv-tsp-2 group for comparison of pathogenesis, the genotype 286 

of the flukes from this group was not investigated further.  287 

 288 

 289 
 290 

Figure 3. Cholangiocarcinoma model, fecundity, gene transcript and mutation rates.  Eggs per 291 
gram of feces (EPG) were assessed at week 23 prior to euthanasia at week 24 (Experiment 2).  292 
Panel A, EPG values of the three groups of hamsters.  Violin plot denotes each hamster’s EPG 293 
with “x” symbols.  Solid colored lines indicate the median values and dashed black lines 294 
indicate the quartiles.  Kruskal Wallis with Dunn’s multiple comparison correction was used to 295 
compare EPG levels against control group: *, P ≤ 0.05; ns, not significant.  At necropsy, 12-20 296 
flukes were sampled from each group, transcript levels determined for Ov-grn-1 (B) and Ov-tsp-297 
2 (C), and plotted with each data point representing the transcript level of individual flukes 298 
relative to wild-type flukes. Resampling with replacement bootstrap analysis (B=1000) of ddCT 299 
scores (derived from Figure S4) used to generate population average denoted by thick colored 300 
line and 95% confidence interval error bars. 301 

 302 

Synopsis of outcomes of CRISPR/Cas9 gene editing of the liver flukes 303 

 304 
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To characterize mutations from the programmed knockouts, a region of 173 bp flanking the 305 

programmed cleavage site in Ov-grn-1 was scrutinized by analyzing aligned read-pairs from 306 

targeted amplicon NGS and analysis of the aligned read-pairs with CRISPResso2 (28).  307 

Substitution patterns as determined by the CRISPR-sub tool (29) in the KO groups were not 308 

significantly different from the cognate alleles in the controls (Figure S5).  Also, we scanned 309 

insertions and deletions (indels) and, in turn, the potential impact of indels on the open reading 310 

frame.  Figure 4A and Table S1 present the indel percentages of juvenile and adult flukes.  The 311 

ΔOv-grn-1 pooled NEJs showed 3.26% indel levels (2,723 of 80,571 aligned read-pairs), 312 

significantly more than the control group (18 of 51,402 aligned read-pairs, 0.035%) (P ≤ 0.05).  313 

The juvenile and adult flukes in the control group showed similar indel % levels, with 0.045% in 314 

the adults (41 of 91,783 aligned read-pairs). Individual ΔOv-grn-1 adult O. viverrini flukes 315 

displayed a broad range of editing efficiency in terms of indel profiles.  These ranged from an 316 

apparent absence of programmed mutation (no indels) to near complete KO (91% indels), with a 317 

median of 3.1% indels (MΔOv-grn-1), which was significantly higher than in the control group 318 

flukes (P ≤ 0.01).  As noted for levels of transcription, however, there were apparently distinct 319 

groupings consisting of six low mutation status flukes (termed LΔOv-grn-1) and six highly 320 

mutation flukes (HΔOv-grn-1) observed.  From a total of 711 megabase pairs sequenced with 1.7 321 

million aligned read pairs, programmed deletions (0.5 million) were overwhelmingly more 322 

common than insertions, with only seven insertions identified (Table S1).  There was an inverse 323 

correlation between efficiency of KO of Ov-grn-1 (indel percentage) and with a two-tailed non-324 

parametric Spearman correlation co-efficient rs = -0.74 (Figure 4B; P ≤ 0.01). Only minimal 325 

expression of Ov-grn-1 was detected in the highly mutated, HΔOv-grn-1 flukes, < 11% level of 326 

transcription of control liver flukes. However, the highly edited genotype/highly reduced 327 
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transcription phenotype contrasted with the wide range of transcription in the flukes with low or 328 

moderate levels of editing, LΔOv-grn-1 and MΔOv-grn-1, with a wide range of transcription from 329 

6% to 94% of the levels of the control group worms.   330 

 331 

Evaluation of indel positions 332 

 333 

With respect to indel length and position, mutations that were detected in the amplicon NGS 334 

reads were observed at positions ranging from 29 bp upstream to 54 bp downstream of the 335 

double stranded break (DSB+ (ORF nucleotide [nt] position -10 to +74)).  Most indels were 336 

deletions of a single nucleotide, others were several nucleotides in length, and one of 62 nt was 337 

observed. Deletions were noted along the length of the amplicon, with several higher frequency 338 

sites indicated with bubbles of greater diameter in Figure 4C. The location of indels in the 339 

genomic DNAs pooled from juvenile flukes generally conformed with the location of 340 

programmed mutations detected in the genome of the adult stage liver flukes (Figure 4C, large 341 

bubbles). Insertions were seen only infrequently but these associated around these high 342 

frequency indel locations in juvenile and adult flukes.  A cluster of mutations at nucleotide 343 

position -1 to -10 bp, within the 5’ untranslated region (UTR) of the ORF, was notable given that 344 

48 of the 216 indels (22%) observed in adult flukes occurred in this region, and five specific sites 345 

included indels detected in the genome of at least seven individual adult worms.   346 

 347 
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Figure 4. Gene mutation rates among liver flukes. A, Programmed gene knock-out was 
highly efficient although not in all the flukes. The percentage of total indels 
(insertions/deletions) determined by next-generation sequencing  was plotted on the vertical 
axis of juvenile and 24 wk adult flukes from Experiment 2.  Control group juvenile (NEJ) and 
adult flukes were each from a single pooled sample while juvenile ΔOv-grn-1 were  from pools 
of two biological replicates s, and ΔOv-grn-1 adults from 13 individual flukes.  The highly 
edited flukes were denoted HΔOv-grn-1, flukes with low editing denoted LΔOv-grn-1, and the 
single fluke with median level editing denoted MΔOv-grn-1.  One sample t-test for either 
juvenile or adult worms comparing ΔOv-grn-1 and control: *, P ≤ 0.05; **, P ≤ 0.01.  The 
thick solid line is the median and black dashed lines represent the inter-quartiles. A broken Y-
axis with a magnified lower portion highlights the near zero values. B. Adult fluke indel 
mutation rate was inversely correlated with transcript level.  The indel and transcript levels 
were plotted for each individual ΔOv-grn-1 fluke (red circles, combining data from Figures 
3C and 4A). Two-tailed non-parametric correlation determined by Spearman co-efficient: **, 
P ≤ 0.01.  For context, the control indel  percentages were plotted against the transcript 
median (blue triangle) with interquartile range error bars. C. ΔOv-grn-1 indel location and 
size.  The NGS reads revealed distinct indel patterns in 12/13 adult flukes.  Shown as a 
multivariate bubble plot, the amplicon base pair open reading frame (ORF position) was 
plotted against the average indel length. The diameter of the bubbles (1-11) reflected how 
many of 13 adult flukes recorded a matching indel.  The programmed double stranded break 
between residues 19 and 20 was indicated on the X-axis by the term “cut”.  For clarity, 
deletions in adult worm genomes (blue) and insertions (red) have been nudged up/down on the 
y-axis ±0.1. The deletions in juvenile worms (yellow) are shown from one pooled sample. 
Insertions were not seen.  Position -9 was highlighted with a vertical dotted line and the black 
horizontal square bracket (└─┘) highlighted a cluster of mutations.  The sequence around 
this cluster was shown below the x-axis and the initiator ATG codon indicated in red.  D. 
Mutation rate (indels) at each location: the graph plotted the nucleotide position against the 
percentage frequency of indels in individual flukes. A vertical dotted line highlighted a 
mutational hotspot at nucleotide -9 and the black horizontal bracket (└─┘) marked a 
mutational cluster. Other indels of note were labeled with the nucleotide and position. 

 348 

Figure 4D shows the frequency within each sample at each base pair position. There were 349 

common locations in the ORF at which both control and ΔOv-grn-1 juvenile and adults all 350 

exhibited a mutation, albeit at low frequency (<0.02%).  The location of these indels was denoted 351 

with a number/letter to signify the nucleotide position and mutated residue.  The cluster of 352 

mutations was situated within nucleotide positions -1 to -10 of the 5’UTR of Ov-grn-1 in adult 353 

and juvenile flukes.  Similar alleles were not present in the control worms.  Although the 354 

mutation rate in the 5’-UTR was low overall (<0.09%), numerous mutant alleles were seen at -355 
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9T and this single position comprised ~99% of the mutations for the M/HΔOv-grn-1 adult and 356 

ΔOv-grn-1 juvenile flukes.   357 

 358 

Programmed knockout of Ov-grn-1 impeded malignant transformation  359 

 360 

Malignant transformation was induced in hamsters by the end point of Experiment 2, at 24 weeks 361 

after infection. In the version of the model (7) that we adapted, Syrian hamsters were infected 362 

with gene-edited juvenile O. viverrini flukes during concurrent exposure to exogenous 363 

nitrosamine (Figure 1A). At necropsy, prominent malignant and premalignant lesions of several 364 

type were diagnosed frequently in all three treatment groups of hamsters. Figure 5 panels A and 365 

B present gross anatomical appearance of livers from representative hamsters, where the CCA 366 

was visible to the unaided eye, highlighting the severity of disease that manifested using this 367 

model. Specifically, multiple CCA nodules were obvious on both diaphragmatic (Figure 5A) and 368 

visceral surfaces (Figure 5B).  When micrographs of thin sections of liver were examined, 369 

precancerous lesions were evident including biliary  dysplasia (a precancerous precursor of CCA 370 

(30) in many of the bile ducts and was frequently accompanied by periductal fibrosis (Figure 371 

5C).  Figure 5 D-F presents representative photomicrographs from each of the treatment groups 372 

that highlighted the high-grade, malignant transformation. Figure 5G and Table S2 summarize 373 

the findings from the treatment groups.  Ten of 12 (83.3%) hamsters in the control group were 374 

diagnosed with CCA; high-grade CCA in eight of them and low-grade CCA in other two. 375 

Dysplasia also was apparent in the remaining two of the 12 (one mild, one moderate) hamsters in 376 

the control group. CCA emerged in seven of 13 hamsters (six with high-grade CCA) in the ΔOv-377 

tsp-2 group.  Of the remaining hamsters in this group, two showed mild biliary tract dysplasia, 378 
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one showed biliary tract proliferation, two exhibited hepatobiliary inflammation, and a single 379 

hamster was free of apparent lesions. CAA was diagnosed in nine of 13 in the ΔOv-grn-1 group, 380 

four of which showed high-grade CCA.  Of the remaining hamsters, one showed dysplasia, two 381 

showed proliferation, and one was free of apparent lesions. Several hamsters infected with ΔOv-382 

tsp-2 (4/13 hamsters) and ΔOv-grn-1 flukes (3/13 hamsters) exhibited lesions less severe than 383 

dysplasia, i.e. inflammation or proliferation, or were free of lesions. 384 

 

Figure 5. Burden of disease in liver fluke infection associated cholangiocarcinoma.  After 
resection of the livers at necropsy, a piece of each lobe either fixed in formalin for downstream 
thin sectioning or was manually disrupted to release flukes, which in turn were examined for 
gene editing events (Figure 1, Experiment 2).  Gross anatomical appearance and 
histopathological results during induction of cholangiocarcinoma (31) Multiple CCA nodules 
in the hamster liver presented on both diaphragmatic (A) and visceral surfaces (B).  
Micrographs of H&E-stained thin sections of liver highlighting foci of moderate dysplasia (C). 
This image shows bile ducts (blue #) encircled by dysplastic biliary epithelium (yellow arrow) 
surrounded by fibrosis (fb) with hepatocytes (h) to the left.  H&E stained images of CCA from 
each of the groups of hamsters group: control (D), ΔOv-grn-1 (E), and ΔOv-tsp-2 (F).  
Inflammation marked with green asterisk (*), cholangiocarcinoma labeled as CCA; other 
labels as in panel C. G. Assessment and scoring of lesions was undertaken independently by 
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two co-authors (both veterinary pathologists) using anonymously labeled (blinded) 
micrographs. The severity of lesions increased from normal tissue (grey) to high grade CCA 
spanning multiple liver lobes (red).  H. EPG from individual hamsters plotted against disease 
burden on a scale of zero (0, no lesion) to 6 (high CCA) scale.  Data plots were slightly 
reformatted (nudged ± 0.1 on Y-axis) to enable display of overlapping points.  Linear 
regression lines (which were not statistically significant) are shown in shaded color with 95% 
confidence intervals.  

 385 
Substantial differences were not evident among the treatment groups in the location or subtype of 386 

CCA tumors (Table S2). Cholangiocarcinoma mass ranged from microscopic neoplasms with 387 

multifocal distributions (12/26) to tumor masses apparent to the unaided eye (14/26) with 388 

representative images in Figure 5A, B. With respect to histological classification, 21/26 CCAs 389 

were the tubular type, and were seen in the three treatment groups.  The papillary/cystic type was 390 

seen in a single instance, in an ΔOv-grn-1 group hamster.  Additionally, four mucinous type 391 

tumors were observed, one in the control and three in the ΔOv-tsp-2 group hamsters.  The right 392 

lobe was the common tumor location (20/26 livers), with nine in the left lobe, and three in the 393 

middle lobe. In some cases, tumors had developed in more than one lobe (5/26). Last, we 394 

assessed pathology in relation to EPG levels (Figure 5H) and noted there was less disease in 395 

ΔOv-tsp-2 hamsters where EPG was lower, especially in hamsters with EPG < 1,000.  However, 396 

significant correlation between pathogenesis and EPG was not apparent among the groups.  397 

 398 

Reduced fibrosis during infection with knockout parasites 399 

 400 

Hepatic fibrosis was detected in Picro-Sirius Red (PSR)-stained thin tissue sections and enabled 401 

investigation and quantification of development of peribiliary fibrosis (Figure 6A). Fibrosis was 402 

evaluated, firstly by Ishak staging, a semi-quantitative classification of the degree of fibrosis 403 

spread across the liver parenchyma (32) and, secondly, on the fibrotic deposition as 404 
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demonstrated by staining with PSR localized around the liver flukes, i.e. the amount of collagen 405 

deposition surrounding bile ducts occupied where individual liver flukes were situated at the 406 

time of necropsy.  407 

 408 

The Ishak scores corresponded to degrees of injurious fibrosis and the levels reflect expansion of 409 

fibrosis into periportal regions and the degree of bridging between portal regions, culminating 410 

full cirrhosis which is scored as Ishak level 6. The control group was severely affected, with the 411 

majority (13/16) of the liver lobes assessed with an Ishak score of 4 (median 4, range 3-4) 412 

(Figure 6B). Level 4 indicated that fibrosis had progressed extensively with marked portal-portal 413 

and portal-central bridging. Hamsters in the ΔOv-grn-1 group showed only a single lobe graded 414 

at 4 and a majority of lobes (11/17) Ishak grade of 2 (median 2, range 2-4).  Level 2 indicated 415 

less pathology, with fibrosis in most portal areas with/without short fibrous septa that had not 416 

bridged to other portal regions. Hamsters infected with the ΔOv-tsp-2 liver flukes exhibited 417 

similar levels of pathology among the group with Ishak scores ranging from 2 to 4 (median 3). 418 

Level 3 was defined as fibrous expansion of most portal areas with occasional bridging among 419 

them (32). Periductal fibrosis of the hepatobiliary tract in the ΔOv-tsp-2 group hamsters was not 420 

significantly different in Ishak score from the control group whereas the ΔOv-grn-1 group 421 

displayed significantly less fibrosis than the control (P ≤ 0.001) or ΔOv-tsp-2 (P ≤ 0.05) groups 422 

(Figure 6B).  423 
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Figure 6. Attenuated liver fibrosis during infection with ΔOv-grn-1 knockout parasites. A. 
Representative images of hepatic fibrosis stained by Picro-Sirius Red with CRISPR-Cas9 
edited O. viverrini.  Fibrosis was denoted as pink/red thick bands around the bile ducts 
(periductal fibrosis, fb) and expanded from each portal triad with fibrous septa.  OV = 
Opisthorchis viverrini, H = hepatocyte, BD = bile duct, BE = biliary epithelium.   B. Global 
liver fibrosis plotted as a violin plot (n = 14-17 liver lobes per group). Livers were scored for 
fibrosis with an Ishak Stage Grading scale and plotted on a scale spanning from zero (no 
fibrosis) to six (cirrhosis). C. Fibrosis proximal to flukes plotted as a violin plot (n = 46-54 
per group).  Automated ImageJ fibrosis evaluation of the percentage of collagen deposition in 
images surrounding fluke-containing bile ducts. Panels B+C: median shown as thick colored 
line and dashed black lines mark the inter-quartile ranges.  Comparing groups with Kruskal-
Wallis test with Dunn’s multiple comparisons against control: ns  = not significant; *, P ≤ 
0.05; ***, P ≤ 0.001, and against ΔOv-tsp-2 group: #, P ≤ 0.05; ##, P ≤ 0.01. 
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While the Ishak scores showed a significant difference between ΔOv-grn-1 hamster livers and 424 

both other groups, Experiment 1 data showed a higher worm burden in control animals than the 425 

gene edited groups, and these extra worms may have contributed to greater fibrosis.  426 

Surprisingly, there was no significant correlation between liver fibrosis and EPG for the control 427 

or ΔOv-grn-1 fluke-infected groups, but a significant inverse correlation (P ≤ 0.05) was detected 428 

for the ΔOv-tsp-2 fluke-infected hamsters (Figure S6).  To minimize the impact on fibrosis of 429 

different worm burdens, we used automated image analysis to assess periductal fibrosis 430 

immediately proximal to liver flukes (which live in the lumen of the bile ducts).  An ImageJ 431 

driven fibrosis quantification tool for scoring PSR-stained collagen was deployed for automated 432 

analysis of the collagen deposition in periductal regions. Of the periductal regions proximal to 433 

flukes in the control and the ΔOv-tsp-2 fluke-infected hamsters, median values of 14.55% (95% 434 

CI: 13.6-16.0) and 14.56% (95% CI: 13.5-16.0%) of fibrotic tissue were detected, whereas 435 

significantly less (12.66%; 95% CI: 12.1-13.5%) bile duct tissue surrounding ΔOv-grn-1 flukes 436 

was fibrotic (Figure 6C, P ≤ 0.05).  While concerns over worm burden influencing pathology 437 

remain, both the control and ΔOv-tsp-2 group showed very similar localized collagen deposition 438 

factors despite very different worm burdens, and suggests that focusing on pathology 439 

immediately adjacent to detectable flukes is an accurate and meaningful way to compare 440 

pathogenesis on a per worm basis. 441 

 442 

Ov-grn-1 KO flukes provoked less cell proliferation  443 

 444 
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Here we explored the in vivo effects of programmed knockout of Ov-grn-1 expression, as 445 

opposed to our earlier reports which centered on proliferation of the biliary epithelium and/or 446 

cultured cholangiocytes in response to in vitro exposure to recombinant Ov-GRN-1 (14-17, 33). 447 

Proliferation of hamster biliary cells in situ was investigated using incorporation of the thymine 448 

analogue into cellular DNA. Visualization was performed using immunohistochemistry and 449 

evaluated quantitatively (Figure 7A). Concerning worm survival, and its corollary, the fitness 450 

cost of the programmed mutation, we examined proliferation but only in the bile ducts where 451 

flukes were situated. Median proliferation in bile duct tissue surrounding liver flukes in the 452 

control (15.0%, 95% CI: 12.4-22.8%) and ΔOv-tsp-2 (11.1%, 95% CI: 4.1-20.0%) groups 453 

showed wide ranging values but not significantly different from each other (Figure 7B).   454 

Whereas the biliary epithelia surrounding ΔOv-grn-1 flukes showed substantial variation from 0-455 

30%, the majority of the readings were below the other groups with a median of only 3.1% (95% 456 

CI: 1.6-7.6%) of cholangiocytes incorporating BrdU (P ≤ 0.001 vs control; P ≤ 0.05 vs ΔOv-tsp-457 

2, Figure 7B). By contrast, the ΔOv-grn-1 group (3.1%) showed significantly less proliferation 458 

than both the control group (4.8-fold reduction, P ≤ 0.001) and the ΔOv-tsp-2 group (3.6-fold 459 

reduction, P ≤ 0.05).  460 

 461 

Mutant TP53 less frequent during infection with Ov-grn-1 KO flukes  462 

 463 

Tumor protein p53 plays a well-recognized role in cholangiocarcinogenesis and is highly 464 

expressed in fluke infection associated malignancy (1, 34)  .  A brown nuclear staining pattern 465 

presents only in neoplastic biliary cells (Figure 7C). Wide angle images of flukes in the biliary 466 

tract showed mutant p53-positive and -negative cells in the epithelium.  The profile of p53 467 
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positive cells differed markedly among the groups: control and ΔOv-tsp-2 fluke-infected 468 

hamsters showed similar levels, 61.1% (95% CI: 43.6-68.3%) and 67.7% (95% CI: 41.5-73.5) of 469 

cholangiocytes stained for mutant p53, respectively (Figure 7D). By contrast, of the ΔOv-grn-1 470 

fluke-infected hamster bile ducts, only 7.5% (95% CI: 2.3-27.5%) exhibited mutant p53-positive 471 

cells, ~13% of the levels that manifested in the other groups (P ≤ 0.01) (Figure 7D).   472 

 
 
Figure 7.  Reduced proliferation and minimal mutant p53 expression in cholangiocytes in 
hamsters infected with ΔOv-grn-1 genotype liver flukes.  Representative images of biliary 
cells that incorporated BrdU from regions proximal to flukes in control, ΔOv-grn-1 and ΔOv-
tsp-2 groups (A). The boxed region in the upper image is magnified in the lower panel.  The 
brown arrow highlights the positive BrdU-stained nuclei and the blue arrow highlights a bile 
duct cell that did not incorporate BrdU. Violin plots (n = 27-42 per group) of BrdU index 
measured from cholangiocytes adjacent to where a fluke was located (B).  Representative 
micrograph of p53 immunohistochemical staining  of biliary epithelium during infection with 
gene edited flukes (C). Anti-mutant p53 antibody stained the nuclei brown (brown arrows); 
blue arrows indicate negative cells.  Black dashed box in upper wide-angle image magnified in 
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 473 

Discussion 474 

 475 

CCA accounts for ~15% of all primary liver cancers globally and its incidence is increasing (35). 476 

Infection with O. viverrini is the principal risk factor for CCA in the Lower Mekong River Basin 477 

countries including Thailand and Laos PDR, where CCA is the dominant form of liver cancer (1, 478 

22, 36). In an earlier report, we exploited this link to explore the role of Ov-GRN-1 secreted by 479 

the parasite in tumorigenesis using programmed gene knockout, and reported that the infection 480 

was less severe even though gene-edited parasites colonized the biliary tract of hamsters and 481 

developed into adult flukes (18). In this follow-up investigation, we report findings during 482 

concurrent exposure to dietary nitrosamine and infection with the gene edited  parasites, and that 483 

KO of the granulin gene retards malignant transformation to CCA, including the emergence of 484 

mutant p53, in a rodent model of human opisthorchiasis-associated CCA. These novel results 485 

build upon and advance the findings from our original report (18) and, notably, confirmed the 486 

role of liver fluke granulin in malignant transformation during chronic opisthorchiasis (15). 487 

 488 

We utilized an established model of opisthorchiasis-associated CCA in hamsters that were 489 

infected with the parasite during concurrent exposure to exogenous nitrosamine. CCA manifests 490 

the lower image to aid visualization.  Violin plot (n = 29-39 per group) of mutant p53 positive 
cholangiocytes as a percentage (D). When available, 500 to 800 cells were scored from 
sections of each of the left, middle, and right lobes of the liver marked by “X”.  Fewer 
cholangiocytes (300-500) were available for assessment in several samples, denoted byⓧ 
Panels A and C: OV = Opisthorchis viverrini, H = hepatocytes, BD = bile duct, BE = biliary 
epithelium.  Panels B, D: non-parametric Kruskal-Wallis test with Dunn’s multiple 
comparison correction compared against control: ns = not significant; ***, P ≤ 0.001, or 
against ΔOv-tsp-2: #, P ≤ 0.05; ###, P ≤ 0.001. Thick colored lines signify the median and the 
dashed black lines mark the inter-quartile range.     
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under these conditions, and this rodent model reflects the human situation where chronic 491 

opisthorchiasis in the context of a diet that is rich in fermented fish (in turn, rich in nitrosamines) 492 

culminates in a high incidence of CCA (20, 22, 37, 38). In hamsters, opisthorchiasis leads to 493 

periductal fibrosis. Chronic periductal fibrosis combined with a nitric oxide carcinogen, such as 494 

DMN, results in epithelial cholangiocyte proliferation, hyperplasia, dysplasia, and DNA damage, 495 

eventually and reliably manifesting as malignant neoplasia of the biliary tract (20, 21, 39).  By 496 

contrast, conspicuously less proliferation of the biliary epithelium, reduced mutant p53 497 

expression by cholangiocytes, and less periductal fibrosis accompanied infection here with DOv-498 

grn-1 genotype worms compared to controls. As noted, our approaches and findings represent a 499 

functional genomics (forward genetics)-focused extension of the model pioneered by Thai 500 

investigators more than 30 years ago (7).  501 

 502 

Fitness cost of gene knockout can be assessed from programmed gene editing, an approach that 503 

is employed for the unbiased identification of essential genes in other organisms and disease 504 

settings (40, 41). The present findings confirmed the power of RNA-guided targeted mutation to 505 

define essentiality and relevance of two parasite proteins in infection-associated morbidity and 506 

malignancy. The Ov-grn-1 gene does not appear to be essential for in vivo development and 507 

survival, which has enabled investigation here on the role of this protein in driving cell 508 

proliferation, pathology and ultimately contributing to CCA. Nonetheless, the reduced fecundity 509 

of DOv-grn-1 liver flukes likely reflected a fitness deficit as the result of the targeted KO. By 510 

contrast, Ov-tsp-2 appears to be essential to parasitism. The DOv-tsp-2 genotype did not survive 511 

in vivo, and sequencing of the indels across the relevant region of the genome confirmed that 512 

most of the surviving flukes from hamsters had not undergone editing at the Ov-tsp-2 gene locus. 513 
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These findings build upon earlier RNA interference-mediated silencing of Ov-tsp-2 gene 514 

expression and the resultant malformation of the tegument observed in vitro (42). Although 515 

infection of hamsters with Ov-tsp-2 dsRNA-treated parasites was not investigated in this earlier 516 

report, the damage to the tegument following exposure to Ov-tsp-2 dsRNA in worms cultured for 517 

several days appeared to be so extensive and debilitating that worms damaged to that extent by 518 

either CRISPR-based genome knockout or dsRNA likely did not establish or survive for long 519 

periods in vivo.  520 

 521 

In O. viverrini, Ov-GRN-1 and Ov-TSP-2 share key, though dissimilar functions at the parasite 522 

interface with the mammalian host.  Ov-GRN-1 induces proliferation of cholangiocytes whereas 523 

Ov-TSP-2 is a key structural protein of the tegument of liver flukes (and indeed in schistosomes 524 

(43, 44)) and of extracellular vesicles that are taken up by host cholangiocytes, among other roles 525 

(15, 16, 24). Accordingly, Ov-tsp-2 was included here as a comparator gene for Ov-grn-1 KO. A 526 

non-targeting guide RNA encoded here by pCas-Ov-scramble, also was included, to provide a 527 

negative control for off-targeting by the Cas9 nuclease (26).  Ultimate lethality of Ov-tsp-2 KO  528 

was borne out in our observation that DOv-tsp-2 genotype flukes failed to survive to the adult 529 

stage in the hamsters. Whereas this diminished the value of DOv-tsp-2 worms as controls, the 530 

findings highlighted the apparent essentiality of this tetraspanin to the intra-mammalian stages of 531 

the liver fluke. This essentiality of tetraspanin contrasted with Ov-GRN-1, the absence of which 532 

was not lethal to the parasite but which, fortunately, enabled inferences on its contribution to 533 

malignant transformation and which reinforced earlier hypotheses on its role as a carcinogen 534 

(15). These approaches and findings are novel in the field of functional genomics for helminth 535 

parasites and hence, even if targeting Ov-tsp-2, in hindsight, was a misstep, the outcome 536 
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provided a programmed mutation-based demonstration of the essentiality and lethality of 537 

mutations of these liver fluke genes, which represents vanguard progress in forward genetics for 538 

helminth parasites. Indeed, for context concerning the pioneering significance of this advance, 539 

establishing the essentiality of human genes is an active and fertile field in functional genomics 540 

and gene therapy (45, 46). 541 

 542 

Notwithstanding that the primary goal of this investigation was to characterize pathogenesis and 543 

carcinogenesis associated with infection with DOv-grn-1 flukes in this singular infection/nitroso-544 

compound hamster model, we investigated the mutation profile induced by the CRISPR-based 545 

targeted genome editing. Intriguingly, numerous mutations at the targeted Ov-grn-1 locus were 546 

situated within the 5’UTR, rather than in the targeted exon, and most were detected at or 547 

proximal to a single residue, referred to here as -9T. This was situated 28 bp 5’ to the 548 

programmed CRISPR/Cas9 double strand break at nucleotide positions 19 and 20 of the open 549 

reading frame. This outcome was unforeseen given that mutations are usually expected at and 550 

adjacent to the programmed double stranded break, although guide RNAs have individual, cell-551 

line dependent biases toward particular outcomes (47). The sequence of the 5’UTR of Ov-grn-1 552 

does not exhibit identity to regulatory elements (UTR database, http://utrdb.ba.itb.cnr.it/), which 553 

was unsurprising given that few helminth parasite UTR regulatory elements have been 554 

characterized (48). Why this position was preferentially mutated is unclear although the marked 555 

reduction of transcription of Ov-grn-1 that accompanied this mutation profile may signal the 556 

presence of a regulatory control element within the UTR.  557 

 558 
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Chronic inflammation and fibrosis are risk factors for liver cancer (49). The traditional lifestyle 559 

of people living in O. viverrini-endemic areas, notably a diet enriched in nitrosamines as well as 560 

routine alcohol consumption, in tandem with the assault on the biliary epithelium by the 561 

attachment, feeding, movement, and secretions of the liver flukes that result in repeated cycles of 562 

injury and repair, establishes a compelling and conducive setting for malignant transformation 563 

(5, 50, 51). The secretion of liver fluke granulin into the bile duct and the ability of this growth 564 

factor to drive relentless cell proliferation during infection and to (re)heal wounds inflicted by 565 

the helminth plays a central role in this process (15). Whereas knockout mutation of Ov-grn-1 566 

did not prevent development and survival of the liver fluke in vivo, infection with these DOv-grn-567 

1 flukes failed to lead to marked cell proliferation and fibrosis in the immediate vicinity of the 568 

parasites, and consequently fewer hamsters developed high-grade CCA compared with hamsters 569 

infected with control and DOv-tsp-2 parasites. Indeed, more hamsters infected with DOv-grn-1 570 

flukes were diagnosed in the categories termed either low-CCA and/or proliferation than in the 571 

other two groups. Knockout mutation of Ov-grn-1 clearly impeded malignant transformation 572 

during chronic opisthorchiasis.  573 

 574 

Infected hamsters exhibited elevated rates of TP53 mutation, however the level was markedly 575 

less during infection with DOv-grn-1 flukes. The mutational signatures and related molecular 576 

pathways characteristic of human CCAs have been reviewed in depth, and the signature profiles 577 

differ between fluke-associated and non-fluke-associated CCAs (1, 34). Fluke-associated CCAs 578 

exhibit substantially more somatic mutations than non-fluke related CCAs (34), likely the 579 

consequence of opisthorchiasis-associated chronic inflammation. In conformity with the human 580 

situation, reduced inflammation and fibrosis were seen during infection with the ΔOv-grn-1 581 
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flukes, further emphasizing the virulence of this growth factor in chronic opisthorchiasis. 582 

Inactivating mutations of TP53 are more prevalent in CCA with a fluke infection etiology, as are 583 

mutations of ARID1A, ARID2, BRCA1 and BRCA2, than in non-fluke related CCAs (34, 52-55). 584 

In addition, hypermethylation has been noted for the promoter CpG islands of several other 585 

aberrantly expressed genes (34).  586 

 587 

Mosaicism of gene knock-out is a limitation of our somatic gene-editing approach. Obviating 588 

mosaicism by access to transgenic worms following germline transgenesis would clearly be 589 

preferable. However, access to transgenic lines of O. viverrini, while desirable seems unlikely in 590 

the near future, especially considering the genetic complexity of this hermaphroditic 591 

platyhelminth obligate parasite with a diploid genome and a multiple host developmental cycle 592 

which cannot reliably be established in the laboratory (56). Nonetheless, somatic genome editing 593 

is increasingly expedient in the clinic including for the treatment of hemoglobinopathies (57) and 594 

the identification of targets for disease intervention in translational medicine (58). Given the role 595 

of liver fluke granulin as a virulence factor, the cogent link between CCA and liver fluke 596 

infection, and the dismal prospects following a diagnosis of CCA in resource poor settings (1, 597 

59, 60), interventions that target this growth factor should be beneficial. Indeed, antibodies raised 598 

against liver fluke granulin block its ability to drive proliferation of CCA cell lines (14) and, 599 

hence, bootstrap support for a vaccination strategy  targeting Ov-GRN-1 in the gastro-intestinal 600 

tract, for example through induction of mucosal IgA and IgG responses (23, 61). Such an 601 

intervention might contribute a productive component to a multivalent, orally administered, anti-602 

infection and anti-cancer vaccine (1, 23), which in turn would augment current tools for the 603 
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public health intervention and control of this neglected tropical disease and its cancer burden (62, 604 

63).     605 

 606 

Materials and methods 607 

 608 

Ethics 609 

The protocol for this research was approved by the Animal Ethics Committee of Khon Kaen 610 

University, approval number ACUC-KKU-61/60, which adhered to the guidelines prescribed by 611 

the National Research Council of Thailand for the Ethics of Animal Experimentation. All the 612 

hamsters were maintained at the animal husbandry facility of the Faculty of Medicine, Khon 613 

Kaen University, Khon Kaen.   614 

 615 

Metacercariae, newly excysted juvenile and adult developmental stages of O. viverrini 616 

 617 

Metacercariae (MC) of O. viverrini were obtained from naturally infected cyprinid fish 618 

purchased from local food markets in the northeastern provinces of Thailand (64). MC were 619 

isolated from fishes by using pepsin digestion as described previously (65). Briefly, whole fishes 620 

were minced by electric blender and digested with 0.25% pepsin with 1.5% HCl in 0.85% NaCl 621 

at 37 ºC for 120 min. The digested fishes were filtered sequentially through sieves of 1100, 350, 622 

250, and 140 µm mesh apertures. The filtered, digested tissues were subjected to gravity 623 

sedimentation through several changes of 0.85% NaCl until the supernatant was clear. 624 

Sedimented MC were identified under a dissecting microscope as O. viverrini, and active (i.e., 625 

exhibiting larval movement within the cyst) MC were stored in 0.85% NaCl at 4ºC until used. 626 
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 627 

Newly excysted juveniles (NEJ) of O. viverrini were induced to escape from the metacercarial 628 

cyst by incubation in 0.25% trypsin in PBS supplemented with 2× 200 U/ml penicillin, 200 629 

µg/ml streptomycin (2× Pen/Strep) for 5 min at 37°C in 5% CO2 in air.  The juvenile flukes were 630 

isolated free of discarded cyst walls by mechanical passage through a 22 G needle (18). We also 631 

use the term NEJ for the juvenile flukes because NEJ is also widely used for juveniles of related 632 

liver flukes (66, 67). 633 

 634 

Plasmid constructs and transfection of O. viverrini  635 

 636 

The CRISPR plasmid encoding a guide RNA (gRNA) complimentary to Ov-grn-1 exon 1 termed 637 

pCas-Ov-grn-1 was constructed using the GeneArt CRISPR Nuclease Vector kit (Thermo Fisher 638 

Scientific), as described . The programmed cleavage site at nucleotide position 1589–1608, 5'-639 

GATTCATCTACAAGTGTTGA with a CGG proto-spacer adjacent motif (PAM) which 640 

determined the cleavage site located at three nucleotides upstream on Ov-grn-1 was designed 641 

using the online tools, http://crispr.mit.edu/ (68) and CHOPCHOP, 642 

 http://chopchop.cbu.uib.no/ (69, 70) using the  Ov-grn-1 gene (6,287 bp, GenBank FJ436341.1) 643 

as the reference.  A second plasmid, termed pCas-Ov-tsp-2 was constructed using the same 644 

approach; pCas-Ov-tsp-2 encodes a gRNA targeting exon 5 of the Ov-tsp-2 gene (10,424 bp, 645 

GenBank JQ678707.1) (71, 72). The guide RNAs encoded by Ov-grn-1 and Ov-tsp-2 exhibited 646 

theoretically high, on-target efficiency and little or no off-target matches to the O. viverrini 647 

genome. A third construct, termed pCas-Ov-scramble was also prepared and included as a 648 

control to normalize analysis of gene expression and programmed gene knockout. The pCas-Ov-649 
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scramble construct included as the gRNA, a transcript of 20 nt, 5’- 650 

GCACTACCAGAGCTAACTCA which exhibits only minimal identity to the O. viverrini 651 

genome and which lacks a PAM (73). A non-targeting guide RNA (26), encoded here by pCas-652 

Ov-scramble, provided a negative control for off-targeting by the Cas9 nuclease. A mammalian 653 

U6 promoter drives transcription of the gRNAs in all three plasmids and the CMV promoter 654 

drives expression of the Streptococcus pyogenes Cas9 nuclease, modified to include the 655 

eukaryotic nuclear localization signals 1 and 2. To confirm the orientation and sequences of 656 

gRNA in the plasmid vector, Escherichia coli competent cells (TOP10) were transformed with 657 

the plasmids, plasmid DNAs were recovered from ampicillin resistant colonies using a kit 658 

(NucleoBond Xtra Midi, Macherey-Nagel GmbH, Düren, Germany), and the nucleotide 659 

sequences of each construct confirmed as correct by Sanger direct cycle sequencing using a U6-660 

specific sequencing primer. 661 

 662 

Two hundred juvenile O. viverrini were dispensed into an electroporation cuvette, 4 mm gap 663 

(Bio-Rad, Hercules, CA) containing 20 µg pCas-Ov-grn-1, pCas-Ov-tsp-2 or pCas-Ov-scramble 664 

in a total volume of 500 µl RPMI, and subjected to a single square wave pulse at 125 V for 20 665 

ms (Gene Pulser Xcell, Bio-Rad). These juvenile flukes were maintained in culture  in RPMI 666 

supplemented with 1% glucose for 60 min after which they were used for infection of hamsters 667 

by stomach gavage (below). 668 

 669 

Infection of hamsters with gene edited O. viverrini juveniles  670 

 671 
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Wild-type (WT) flukes were collected and prepared for qPCR from infected hamsters 8 weeks 672 

after infection as previously described .  Figure 1 provides a timeline of the CCA model, 673 

employed in Experiments 1 and 2.  In Experiment 1, nine male hamsters (Syrian golden hamster, 674 

Mesocricetus auratus) aged between 6-8 weeks were randomly divided into three experimental 675 

groups (Figure 1). Each hamster was infected with 100 O. viverrini NEJs by gastric gavage. 676 

These juvenile flukes had been transfected with pCas-Ov-grn-1 plasmid, pCas-Ov-tsp-2, or the 677 

control pCas-Ov-scramble, and assigned the following identifiers: delta(Δ)-gene name, ΔOv-grn-678 

1, ΔOv-tsp-2, or control, respectively.  The infected hamsters were maintained under a standard 679 

light cycle (12 hours dark/light) with access to water and food ad libitum. Two weeks following 680 

infection, the drinking water provided to hamsters was supplemented with dimethylnitrosamine 681 

(DMN) (synonym, N-nitrosodimethylamine)  (Sigma-Aldrich, Inc., St. Louis, MO) at 12.5 ppm 682 

until 10 weeks following infection (7, 19, 20). Feces from each hamster were collected for fecal 683 

egg counts at weeks 10 and 12 after infection. The hamsters were euthanized at week 14 by 684 

inhalation overdose of isoflurane, followed by removal of the liver. Liver flukes were recovered 685 

from the liver, counted, and prepared for qPCR analysis of targeted genes. 686 

 687 

In Experiment 2, 45 male hamsters, 6–8 weeks of age, were randomly divided into three groups 688 

each with 15 hamsters and infected with gene edited NEJs and DMN added to drinking water (as 689 

in Experiment 1).  Hamster feces were collected at week 23 after infection for fecal egg counts.  690 

At week 24, 40 mg/kg thymine analogue 5-bromo-2'-deoxyuridine (BrdU, Abcam, College 691 

Science Park, UK) was introduced into the peritoneum at 30 min before euthanasia, for 692 

incorporation into the nuclei for investigation of proliferation of the biliary epithelia (74).  693 

Hamsters were euthanized, the liver resected from each hamster, the liver lobes separated, and 694 
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the left, middle and right lobes fixed in 10% formalin.  We used a shorthand to label the lobes: 695 

left (left dorsocaudal), middle (combined ventral and dorsal median lobes), and right (right 696 

dorsocaudal). Liver flukes that were incidentally released from bile ducts during liver 697 

preparation and o fixation for thin sectioning were retained and stored in RNAlater (Thermo 698 

Fisher). Levels of gene expression, mutation efficiency, and mutation profile were assessed in 699 

this sample of the liver flukes.  700 

 701 

Histopathological investigation  702 

 703 

From each hamster, the entire liver was dissected and immersed in 10% buffered formalin. After 704 

overnight fixation, the liver lobes were processed for embedding in paraffin by dehydration 705 

through series of a 70%, 90%, and 100% ethanol, cleared in xylene, subjected to infiltration by 706 

paraffin at 56°C, and last, embedding in paraffin. Four µm sections were sliced by microtome 707 

from the paraffin-embedded liver, the sections stained with hematoxylin and eosin (H&E). 708 

Histopathological grading was undertaken by examination of the stained sections of liver and 709 

bile duct for inflammation, bile duct changes, dysplasia (including dysplasia in 710 

cholangiofibrosis), and stage of CCA as described (21, 75-77), with modifications (Table 1). 711 

 712 

 713 

 714 

 715 

 716 

 717 
 718 
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Table 1. Criteria for histopathological and histochemical assessment and grading. 719 
 720 
 721 

Histopathological lesion Grade description Reference 
Inflammation 0 = None (no/minimal liver tissue 

or portal inflammation)  
1 = Mild (1-2 foci per 4´ objective 
at hepatocyte & periportal area)  
2 = Moderate (3-5 foci per 4´ 
objective at hepatocyte & 
periportal area)  
3 = Severe (> 5 foci per 4´ 
objective at hepatocyte & 
periportal area) 

(21, 77, 78) 

Bile duct changes 0 = None (absence of proliferation 
and cholangiofibrosis)  
1 = Mild (bile duct proliferation 
without cholangiofibrosis or 
periductal fibrosis)  
2 = Moderate (bile duct 
proliferation with 
cholangiofibrosis)  
3 = Severe (bile duct proliferation 
with cholangiofibrosis and 
periductal fibrosis) 

(21, 77, 78)  

Dysplasia 0 = None (No cellular atypia, no 
nuclear polarity, no nuclear 
protrusions, no nuclear 
pseudostratification)  
1 = Mild (Cellular atypia+, no 
nuclear polarity, no nuclear 
protrusions, nuclear 
pseudostratification+, nuclei within 
the lower two-thirds)  
2 = Moderate (Cellular atypia+, 
nuclear polarity+, protruding of 
nuclei+, nuclear 
pseudostratification+)  
3 = High (Cellular atypia++, 
nuclear polarity++, protruding of 
nuclei+, nuclear 
pseudostratification+) 

(76) 

Cholangiocarcinoma  0 = None (no evidence of CCA)  
Low CCA: 1 = Mild (CCA area 1-
2 foci per 4´ objective)  
High CCA: combined 2+3: 2 = 
Moderate (CCA area 3-5 foci per 
4´ objective) and 3 = Severe (CCA 
area> 5 foci per 4´ objective) 

(21, 77, 78)   

Fibrosis (PSR stain):  0 = No fibrosis  (32, 79)  
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Ishak score 1 = Fibrous expansion of some 
portal areas, with or without short 
fibrous septa 
2 = Fibrous expansion of most 
portal areas, with or without short 
fibrous septa 
3 = Fibrous expansion of most 
portal areas with occasional portal 
to portal bridging 
4 = Fibrous expansion of portal 
areas with marked bridging; portal 
to portal as well as portal to central 
5 = Marked bridging (portal–portal 
and/or portal–central) with 
occasional nodules (incomplete 
cirrhosis)   
6 = Cirrhosis, probable or definite 

Assessment of collagen proximal 
to liver flukes 

Quantitative automated evaluation 
of collagen deposition percentage 
surrounding bile ducts 

ImageJ MRI Fibrosis Tool  
BioCampus, Montpellier, France 
(Volker Bäcker 2015), 
www.mri.cnrs.fr   
https://dev.mri.cnrs.fr/projects/ima
gej-macros/wiki/Fibrosis_Tool 
 
 

  722 
 723 

Fecal egg counts and worm counts  724 

 725 

Feces from each hamster were individually collected, weighed and O. viverrini eggs per gram of 726 

feces (EPG) calculated using a modified formalin-ethyl acetate technique (80). In brief, hamster 727 

feces were collected and fixed in 10 ml of 10% formalin. Thereafter, the slurry of formalin-fixed 728 

feces was filtered through two layers of gauze, and clarified by centrifugation at 500 g for 2 min.  729 

The pellet was resuspended with 7 ml of 10% formalin, mixed with 3 ml ethyl-acetate and 730 

pelleted at 500 g for 5 min. The pellet was resuspended in 10% formalin solution and examined 731 

at 400´ by light microscopy. EPG was calculated as follows: (average number eggs ´ total drops 732 

of fecal solution)/ gram of feces. To recover the adult liver flukes, food was withdrawn from the 733 
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hamsters 16 hours before euthanasia. Intact mature O. viverrini from the hepatobiliary tract were 734 

recovered during observation of the livers using a stereo dissecting microscope and stored for 735 

downstream gene-editing investigation.   736 

 737 

Extraction of nucleic acids 738 

 739 

Pooled NEJ or single mature worms from either experimental or control groups were 740 

homogenized in RNAzol RT (Molecular Research Center, Inc., Cincinnati, OH) before dual 741 

RNA and DNA extraction as described .  Briefly, the parasite(s) were homogenized in RNAzol 742 

RT using a motorized pestle, after which the DNA and protein were precipitated in nuclease free 743 

water.  The aqueous upper phase was transferred into a new tube for total RNA precipitation by 744 

isopropanol (50% v/v). The DNA/protein pellet was resuspended in DNAzol and genomic DNA 745 

extracted according to the manufacturer’s instructions (Molecular Research Center).  746 

Concentration and integrity of genomic DNA and total RNA were independently quantified by 747 

spectrophotometry (NanoDrop 1000, Thermo Fisher, Waltham, MA).  Transcription and 748 

expression were investigated in pools of NEJs and in individual adult flukes after normalization 749 

against the controls.  750 

Quantitative real-time PCR 751 

cDNA was synthesized from DNase I-treated-total RNA (10 ng) using Maxima First Strand 752 

cDNA synthesis with a DNase kit (Thermo Scientific) prior to performing quantitative real-time 753 

PCR (qPCR).  Each cDNA sample was prepared for qPCR in triplicate using SSoAdvanced 754 

Universal SYBR Green Supermix (Bio-Rad).  Each qPCR reaction consisted of 5 μl of SYBR 755 

Green Supermix, 0.2 μl (10 μM) each of specific forward and reverse primers for Ov-grn-1 756 
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(forward primer, Ov-GRN-1-RT-F: 5'-GACTTGTTGTCGCGGCTTAC-3’ and reverse 757 

primer, Ov-GRN1-RT-R: 5'-CGCGAAAGTAGCTTGTGGTC-3’), amplifying 147 base pairs 758 

(bp) of 444 nt of Ov-grn-1 mRNA, complete cds GenBank FJ436341.1) or primers for Ov-tsp-2 759 

(forward primer, Ov-TSP-2-F 5’- ACAAGTCGTATGTGGAATCA- 3’ and reverse primer Ov-760 

TSP-2-R 5’- CCGTCTCGCCTTCTCCTTT- 3’, product size 377 bp of 672 nt of Ov-tsp-2A 761 

mRNA, complete cds (GenBank JQ678707.1), 2 µl of cDNA and distilled water to a final 762 

volume of 10 μl were used in the reaction. The thermal cycle was a single initiation cycle at 763 

95°C for 10 min followed by 40 cycles of denaturation at 95°C for 15s, annealing at 55°C for 30s 764 

using CFX Connect Real-Time PCR system (Bio-Rad).  The endogenous actin gene (1301 nt of 765 

Ov-actin mRNA, GenBank EL620339.1) was used as a reference (17, 81, 82) (forward 766 

primer, Ov-actin-F: 5'-AGCCAACCGAGAGAAGATGA and reverse primer, Ov-actin-R: 5'-767 

ACCTGACCATCAGGCAGTTC. The fold change in Ov-grn-1 and Ov-tsp-2 transcripts was 768 

calculated using the 2(-ΔΔCt) method using the Ov-actin gene as a reference for normalization (17, 769 

81, 82). Transcript ddCT qPCR data were resampled with replacement bootstrap analysis in 770 

Microsoft Excel with 1000 bootstrap resamples (B = 1000, n = original sample number) to 771 

generate mean values and 95% confidence intervals (83). 772 

 773 

Illumina based targeted next generation sequencing of targeted amplicons  774 

 775 

The Amplicon-EZ next generation sequencing service (GENEWIZ, South Plainfield, NJ) was 776 

used to obtain deeper coverage of Ov-grn-1 exon 1 from individual mature worms or pooled 777 

NEJ, providing > 50,000 complete amplicon aligned read-pairs per sample. A 173-nucleotide 778 

region flanking the programmed DSB was amplified with forward primer 5’-779 
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TTCGAGATTCGGTCAGCCG-3’ and reverse primer 5’-GCACCAACTCGCAACTTACA-3’, 780 

and was sequenced directly using Illumina chemistry.  The CRISPR RGEN Tool web platform 781 

(http://www.rgenome.net/about/) analysis, comparison range 60 nt, was used to screen for Cas9-782 

catalyzed substitutions in the aligned read-pairs with comparisons among the treatment groups  783 

(84, 85).  In addition, CRISPResso2 with a quantification window set at 30 nt (28) was employed 784 

for indel estimation, as described (18).  The NGS reads are available at GenBank Bioproject 785 

PRJNA385864, BioSample SAMN07287348, SRA study PRJNA385864, accessions SRR 786 

15906234-15906251. 787 

 788 

BrdU-staining for proliferation of the biliary epithelium  789 

 790 

Proliferation of biliary epithelial cells was investigated by using incorporation of BrdU. In brief, 791 

the liver sections of a paraffin-embedded sample were soaked in xylene, rehydrated in graded 792 

alcohol solution (100%, 90%, and 70% ethanol for 5 min each), and antigen was retrieved in 793 

citrate buffer (pH 6) for 5 min in a high-pressure cooker. The tissue sections were blocked with 794 

3% H2O2 in methanol for 30 min and subsequently incubated with 5% fetal bovine serum in 795 

phosphate buffered saline for 30 min at room temperature (RT). The sections were incubated 796 

with monoclonal mouse anti-BrdU (Abcam, catalogue no.  ab8955) diluted 1:200 in PBS at 4°C 797 

overnight, and then probed with goat anti-mouse IgG-HRP (Invitrogen, Thermo Fisher) diluted 798 

1:1,000 in PBS for 60 min at RT. The peroxidase reaction was developed with 3, 3’- 799 

diaminobenzidine (DAB). Sections were counterstained with Mayer’s hematoxylin for 5 min 800 

before dehydrating and mounting. A positive signal was indicated by a brown color under light 801 

microscopy. The image was captured by a Zeiss Axiocam microscope camera ICc5 and NIS-802 
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Element software (Nikon, Minato, Tokyo, Japan). To quantify BrdU-positive nuclei, 803 

cholangiocytes were counted in 10 non-overlapping fields of 400x magnification, with a total of 804 

1,000 biliary cholangiocytes counted using the counter plug-in tool at ImageJ 1.52P. The cell 805 

proliferation index was calculated as a percentage using the formula: positive biliary nuclei/total 806 

biliary cells x100%. 807 

 808 

Staining for mutant forms of p53 809 

 810 

To investigate levels of p53 mutation (86) in cholangiocytes, paraffin-embedded tissue sections 811 

were deparaffinized and rehydrated by standard methods. Thereafter, sections were incubated 812 

with monoclonal mouse anti-p53 (mutant, clone Ab-3 PAb240 catalogue no. OP29-200UG) 813 

(Merck, Darmstadt, Germany) diluted 1:100 in PBS at 4°C overnight, and after thorough 814 

washing, probed with goat anti-mouse IgG-HRP (Invitrogen, Carlsbad, CA) diluted 1:1,000 in 815 

PBS for 60 min at 25°C. The peroxidase reaction was developed with 3,3’- DAB and sections 816 

counterstained with Mayer’s hematoxylin for 5 min. A human CCA cell line served as the 817 

positive control for p53 positivity (87, 88). Images of high-power fields (400x magnification) of 818 

the biliary epithelium were taken in five non-overlapping fields of each of the right, middle, and 819 

left liver lobes using a Zeiss Axiocam fitted with a ICc5 camera and NIS-Element software 820 

(Nikon). The percentage of mutant p53-positive cholangiocytes was determined by calculating 821 

positive cells from 500 to 800 cholangiocytes from the right, middle, and left lobes of the liver 822 

using imageJ. 823 

 824 

PSR staining to evaluate fibrosis  825 
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 826 

Liver tissue sections where O. viverrini reside were selected for fibrosis measurements with PSR 827 

(Abcam, catalogue ab150681). The thin sections were deparaffinized in xylene and rehydrated 828 

through an ethanol gradient. PSR solution was applied to the sections and incubated at 25°C for 829 

60 min. Excess dye was removed by washing twice in dilute acetic acid (0.5%) after which 830 

sections were dehydrated through graded series of ethanol and xylene, the slides cleared with 831 

100% xylene, mounted in Per-mount, and air dried overnight.  Fibrosis surrounding the bile duct 832 

(periductal fibrosis, PF) proximal to the liver flukes was evaluated by two approaches. First, by 833 

scoring according to accepted criteria (32): samples were blinded and fibrosis scores (0-6) were 834 

graded semi-quantitatively by Ishak stage (Table 1) by two experienced pathologists.  Second, 835 

localized fibrosis was evaluated by capturing images for quantification of collagen deposition. 836 

Specifically, the PSR-stained fibrotic lesions was measured using the plug-in fibrosis tool 837 

developed by Volker Bäcker (New FUJI toolsets for bioimage analysis, available at 838 

https://github.com/MontpellierRessourcesImagerie/imagej_macros_and_scripts/wiki/MRI_Fibro839 

sis_Tool. We (18) and others (89, 90) have previously used this tool with PSR-stained tissues.   840 

 841 

Statistical analysis 842 

 843 

One-way ANOVA with Tukey multiple comparisons was used for comparisons with two to four 844 

replicates (worm burden and EPG at week 14).  The Krustal-Wallis non parametric test with 845 

Dunn's multiple comparisons was used for datasets that were not normally distributed including 846 

the 24-week EPGs, Ishak and periductal fibrosis, BrdU scores, and mutant p53 signals.  847 

Replicates and errors bars are as listed in each figure legend.  Statistical analysis and graphic 848 
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presentation of the results were undertaken using GraphPad Prism version 9 (GraphPad Software 849 

Inc, San Diego, CA).  To compare mutation rate, a one sample t-test compared the replicate 850 

%indel values for the ΔOv-grn-1 against the single control group % indel for either juvenile or 851 

adult O. viverrini worms.  Assessment for correlation between % indel and transcription was 852 

carried out using a two-tailed non-parametric Spearman correlation co-efficient (rs).  Values of P 853 

≤ 0.05 were considered to be statistically significant: an asterisk (*) corresponds to the control vs 854 

ΔOv-grn-1 group comparison; *, P ≤ 0.05, **, P ≤ 0.01, ***, P ≤0.001, hashtag (#) for ΔOv-grn-855 

1 vs ΔOv-tsp-2 group comparison; #, P ≤ 0.05; ##, P ≤ 0.01; ###, P ≤ 0.001. 856 
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Supporting information: Figures S1-S6 and Tables S1 and S2 (eight items). 1167 
 1168 
 1169 
 1170 

 1171 
 1172 
Figure S1. Transcript levels of gene edited NEJ flukes with bootstrapped population values.  1173 
Each group of flukes was subjected to gene editing targeting Ov-grn-1 (ΔOv-grn-1 flukes), Ov-1174 
tsp-2 (ΔOv-tsp-2 flukes), or an irrelevant guide RNA as a control (Control). Relative transcript 1175 
levels were plotted for both Ov-grn-1 (A) and Ov-tsp-2 genes (B) for all three groups: control 1176 
flukes; ΔOv-grn-1 flukes, and ΔOv-tsp-2 flukes.  Each panel shows ddCt (delta-delta cycle 1177 
threshold) biological replicate values plotted relative to newly excysted juvenile (NEJ) control 1178 
average.  Resampling with replacement bootstrap analysis (B=1000) of ddCT scores used to 1179 
generate population average denoted by thick colored line and 95% confidence interval error 1180 
bars.   1181 
 1182 
 1183 
 1184 
 1185 
 1186 
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 1187 
 1188 
 1189 
 1190 
 1191 
 1192 
Figure S2. Experiment 1: Relationship of fecal egg count to worm burden.  Assessment of eggs 1193 
per gram of feces (EPG) at 10 (A) and 12 (B) weeks after infection compared to worm burden at 1194 
necropsy (week 14). The worm burden for each hamster was plotted against the EPG at weeks 1195 
10 and 12. Comparing these timepoints (C) with linear regression did not reveal variation from 1196 
a line with zero slope (horizontal line) at both intervals. Each hamster was designated by letter, 1197 
C= control, G=∆Ov-grn-1, T=∆Ov-tsp-2, with the number of the hamster, as 1, 2, and 3.  1198 
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 1216 
 1217 
 1218 
Figure S3. Experiment 1: Transcript levels of gene edited adult flukes with bootstrapped 1219 
population values.  Each group of the flukes was subjected to gene editing targeting Ov-grn-1 1220 
(ΔOv-grn-1 flukes), Ov-tsp-2 (ΔOv-tsp-2 flukes), or an irrelevant guide RNA as a control 1221 
(Control). Each panel shows ddCt (delta-delta cycle threshold) of individual flukes plotted 1222 
relative to transcript levels of wild-type flukes for Ov-grn-1 (A) and Ov-tsp-2 (B). The dashed 1223 
line purple box inset is an enlarged section of panel B, included for clarity.  Resampling with 1224 
replacement bootstrap analysis (B=1000) of ddCT scores used to generate population average 1225 
denoted by thick colored line and 95% confidence interval error bars.   1226 
 1227 
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 1235 

Figure S4. Transcript levels of adult flukes from Experiment 2 with bootstrapped population 1236 
values.  Each group of the 24 wk old flukes was subjected to gene editing targeting Ov-grn-1 1237 
(ΔOv-grn-1 flukes), Ov-tsp-2 (ΔOv-tsp-2 flukes), or an irrelevant guide RNA as a control 1238 
(Control). Each panel shows ddCt (delta-delta cycle threshold) for  individual flukes plotted 1239 
relative to wild-type (WT) fluke transcript levels for both Ov-grn-1 (A) and Ov-tsp-2 genes (B). 1240 
The dashed line purple box inset is an enlarged section of panel B for clarity.  Resampling with 1241 
replacement bootstrap analysis (B=1000) of ddCT scores used to generate population average 1242 
denoted by thick colored line and 95% confidence interval error bars.   1243 
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. 1267 
 1268 

 1269 
 1270 
Figure S5. Profiles of nucleotide substitutions.  Nucleotide substitution profiles detected in the 1271 
173 bp amplicon spanning the programmed cleavage site of Ov-grn-1 from both juvenile (NEJ) 1272 
and single adult O. viverrini flukes of the ΔOv-grn-1 treatment group compared with the 1273 
irrelevant guide RNA treated control group.  RGEN’s CRISPR-sub analysis tool, 1274 
http://www.rgenome.net/crispr-sub/#!, aligns read-pairs to plot the substitution patterns among 1275 
Illumina sequence reads from amplicon libraries derived from CRISPR/Cas9 editing-focused 1276 
datasets. Experimental group (red, upper axis) versus control group (blue, lower axis); the X-1277 
axis shows the targeted gene including programmed cleavage site (position 0) between 1278 
nucleotides 19 and 20 of ORF 1 of Ov-grn-1.  Juvenile flukes are shown in the top left and each 1279 
adult fluke is shown separately and designated with the number of its host hamster number (x) 1-1280 
15 and worm number (y) 1-3: (h ”x” worm ”y”).  Substantially differences in patterns of 1281 
substitutions detected between the experimental and control groups were not apparent. 1282 
 1283 
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 1284 
 1285 
 1286 
 1287 
 1288 
 1289 
 1290 

 1291 
 1292 
Figure S6. Correlation between fecal EPG and fibrosis.  For Experiment 2, each liver lobe was 1293 
plotted as eggs per gram against the Ishak fibrosis (data combined from figure 3A and 6B).  1294 
Data points have been nudged ± 0.1 on the vertical axis for clarity among  overlapping points.  1295 
The linear regression line for each group is shown; ns = not statistically significant; *, P ≤ 0.05. 1296 
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 1299 

 1300 
 1301 
Table S1.  NGS sequencing data summary. Frequency of successful CRISPR/Cas9 gene knock 1302 
out editing as determined by frameshift mutations.  The CRISPResso2 analysis used a window 1303 
size (-3 option) that include the whole 173 bp amplicon, except 25 bp at each end in order to the 1304 
exclude the primer regions. Combined insertions and deletions are used to generate the Indel%, 1305 
the proportion of read-pairs aligned (RPA).  To match the color scheme in the figures the control 1306 
groups highlighted in blue and low, medium and highly edited adults are highlighted in red, 1307 
purple and green.  Note that the vast majority of indels are located in the 5’ UTR and are not 1308 
frameshift mutations. 1309 
 1310 
 1311 
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 1313 
  1314 
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 1315 
 1316 
 1317 
Table S2.  Pathology assessment on development of pre-malignant and malignant lesions.  The 1318 
table shows the pathogenesis outcomes from the 3 groups of hamsters and the histopathological 1319 
diagnosis data was summarized as graphs in Figure 5.  Beyond Figure 5, the table describes the 1320 
CCA histopathological type, location, and tumor progression.  Below the table histological 1321 
images show the three major histopathological types: A = tubular; B = papillary; and C = 1322 
mucinous CCA. 1323 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 28, 2022. ; https://doi.org/10.1101/2021.12.10.472085doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.10.472085
http://creativecommons.org/licenses/by/4.0/


 60 

 1324 
 1325 

 1326 

 1327 

 1328 

 1329 

 1330 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 28, 2022. ; https://doi.org/10.1101/2021.12.10.472085doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.10.472085
http://creativecommons.org/licenses/by/4.0/

