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Trial-averaged metrics, e.g. tuning curves or population response vectors, are a ubiquitous way9

of characterizing neuronal activity. But how relevant are such trial-averaged responses to neuronal10

computation itself? Here we present a simple test to estimate whether average responses reflect11

aspects of neuronal activity that contribute to neuronal processing. The test probes two assumptions12

implicitly made whenever average metrics are treated as meaningful representations of neuronal13

activity:14

1. Reliability: Neuronal responses repeat consistently enough across trials that they convey a15

recognizable reflection of the average response to downstream regions.16

2. Behavioural relevance: If a single-trial response is more similar to the average template, it is17

more likely to evoke correct behavioural responses.18

We apply this test to two data sets: (1) Two-photon recordings in primary somatosensory cortices19

(S1 and S2) of mice trained to detect optogenetic stimulation in S1; and (2) Electrophysiological20

recordings from 71 brain areas in mice performing a contrast discrimination task (Steinmetz et al.21

2019, Nature). Under the highly controlled settings of data set 1, both assumptions were largely22

fulfilled: Single-trial responses were approximately as related to the average as would be expected if23

they represented discrete, down-sampled versions of the average response. Moreover, better-matched24

single-trial responses predicted correct behaviour. In contrast, the less restrictive paradigm of data25

set 2 met neither assumption, with the match between single-trial and average responses being26

neither reliable nor predictive of behaviour. We conclude that in data set 2, average responses do not27

seem particularly relevant to neuronal computation, potentially because information is encoded more28

dynamically when behaviour is less tightly restricted. Most importantly, we encourage researchers29

to apply this simple test of computational relevance whenever using trial-averaged neuronal metrics,30

in order to gauge how representative cross-trial averages are in a given context.31

∗ These authors contributed equally.
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Introduction32

Brain dynamics are commonly studied by recording neuronal activity over many trials and averaging them. Trial-33

averaging has been applied to single neurons by describing their average response preferences [1–6] and, more recently,34

to neural populations [7–9]. The latter has revealed several unique phenomena: for instance, the adaptation of35

neuronal responses to the statistics of the perceptual environment [10] and orthogonalized neuronal coding of stimulus36

information, behavioural choices and memory [8, 11, 12].37

These studies share the view that trial-averaged population activity is meaningful. For instance, upon finding that38

with repeated stimulus exposure, average population responses become more discriminative of behaviourally relevant39

stimuli [3, 4], it is implicitly assumed that this will improve an animal’s ability to perceive these stimuli correctly.40

Related to this assumption is the notion that deviations from the average population response represent ‘noise’ of41

one form or another. The exact interpretation of such neuronal noise has been debated [13], ranging from truly42

random and meaningless activity [14–17], to neuronal processes that are meaningful but irrelevant for the neuronal43

computation at hand [18–20], to an intrinsic ingredient of efficient neuronal coding [21–23]. Nevertheless, in all of these44

cases a clear distinction is being made between neuronal activity that is directly related to the cognitive process under45

study (e.g. perceiving a specific stimulus) – which is typically approximated by a trial-averaged neuronal response –46

and ‘the rest’. While this framework has undoubtedly been useful for characterizing the general response dynamics47

of neuronal networks, it remains an outstanding issue whether trial-averaged population activity is used to transmit48

information between neurons. In other words, neuroscientists care about average population responses, but does the49

brain?50

There is evidence in both directions: Studies highlighting the large inter-trial variability of neuronal responses51

[19, 20, 24–26] suggest that average responses fail to capture ongoing neuronal dynamics. Then there is the simple52

fact that outside the lab, stimuli generally do not repeat, which renders pooled responses across stimulus repetitions53

a poor basis for neuronal coding. On the other hand, the fact that perceptual decisions can be altered by shifting54

neuronal activity away from the average [27–30] indicates that at least in typical lab experiments [31], average55

population responses matter [32].56

In this paper, we formally test to what extent the assumptions inherent in the computation of average neuronal57

responses actually hold in different experimental contexts. Specifically, if neuronal coding and the resulting behaviour58

rely on average ‘response templates’ of population activity, two assumptions should be satisfied (Fig. 1A):59

1. Reliability: The responses of task-relevant neuronal populations repeat consistently enough to provide a recog-60

nizable reflection of the average response to downstream regions.61

2. Behavioural Relevance: If a single-trial response better matches the average response template, it should be62

more successful in evoking correct behavioural responses.63

64

Results65

To test these two assumptions across a range of experimental conditions, we examined two complementary data66

sets featuring neuronal recordings in behaving mice. Dataset 1 consists of two-photon recordings in primary and67

secondary somatosensory cortex (S1 and S2) as mice detected a small optogenetic stimulus in S1 [33] (Fig 1B). Mice68

were trained to lick for reward in response to the optogenetic activation of 5 to 50 randomly selected S1 neurons.69

On 33% of trials, there was a sham stimulus during which no optogenetic stimulation was given (stimulus absent70
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condition). Simultaneously, using gCAMP6s, 250 − 631 neurons were imaged in S1 and 45 − 288 in S2. Data set 171

thus represents a benchmark case of strong experimental control focused on a small set of cortical areas. Particularly,72

in this case the stimulus is identical to the neuronal response, skipping upstream processing.73

Data set 2 contains high-density electrophysiological (Neuropixel) recordings across 71 brain regions (Fig. 1C) in74

mice performing a two-choice contrast discrimination task [30]. Mice were presented with two gratings of varying75

contrast (0, 25, 50 or 100%) appearing in their left and right hemifield. To receive reward, animals turned a small76

steering wheel to bring the higher-contrast grating into the center, or refrained from moving the wheel if no grating77

appeared on either side. When both stimulus contrasts were equal, animals were randomly rewarded for turning right78

or left. Those trials were discarded in our analysis since there is no ‘correct’ behavioural response. Data set 2 thus79

allowed us to test the computational relevance of averages across a wide range of brain areas within a less tightly80

controlled behavioural paradigm.81

To probe the computational role of averages within the tightly controlled setting of Data set 1, we first computed82

average population responses for the two experimental conditions: Optogenetic S1 stimulation present versus absent.83

Since optogenetic stimulation could target different numbers of neurons ranging from 5 to 50, for the purpose of this84

analysis we pooled all stimulation intensities into the ’stimulus present’. We did this because the low trial numbers per85

stimulation intensity would have made cross-trial averaging largely meaningless, and because the population averages86

of different stimulus intensities were highly correlated (see Fig. S2A).87

Average response templates were computed as the mean fluorescence (∆F/F ) of each neuron in a time window of88

0.5 s following the stimulation offset (Fig. 1B, right panel). Since optogenetic stimulation caused artifacts in the two-89

photon recordings, the stimulation period itself was excluded from analysis. We next quantified how well single-trial90

responses correlated with their corresponding average template (stimulation present or absent) (Fig. 2; see also [34]).91

Correlations in S1 ranged from r = −0.13 to 0.64 (n = 1795 trials; p < 0.001), suggesting that single-trial responses92

represented the template quite faithfully. In S2, correlations were more spread, ranging from −0.29 to 0.71 (n = 179593

trials).94

To further assess if single-trial responses can be regarded as a down-sampled or ’noisy’ version of the average95

template, we repeatedly computed a bootstrapped response vector for each trial based on the neurons’ average96

response preferences (Fig. S3, Methods). These surrogate data correlated only slightly better to the template than97

the original data in both S1 and S2 (Supp. Fig. 4)), suggesting that in Data set 1, single-trial responses can be98

interpreted as mostly reliable samples of the respective average template.99

Strong correlations between single-trial responses and the population template may partially stem from neurons’100

basic firing properties, which would not be task-related. To estimate the stimulus specificity of the correlations101

we observed, we also computed single-trial correlations to the incorrect template (e.g. ‘stimulus absent’ for a trial102

featuring optogenetic stimulation). Correlations to the incorrect template were significantly lower than to the correct103

one (Fig. 2A, Mann-Whitney U-test, p = 5.98 ∗ 10−169, p = 4.86 ∗ 10−51 for S1 and S2, respectively) (Fig 2B). To104

quantify this directly, we defined the specificity index, which measures, on a single-trial basis, the excess correlation105

to the correct template with respect to the incorrect template. Since the specificity index subtracts two correlation106

coefficients, it is bounded between -2 and 2. The specificity indices of single-trial responses indicate clear stimulus-107

specificity (in S1 it ranged from −0.17 to 0.6 and a median of 0.16; in S2 it ranged from −0.3 to 0.51 and a median of108

0.11) (Fig 2B). Together, these results indicate that single-trial responses in Data set 1 were strongly and selectively109

correlated to the corresponding average template, largely fulfilling Assumption 1.110
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FIG. 1. Test hypotheses and data. A) Graphic summary of the two assumptions underlying the computation of average

population responses: Single-trial responses correspond at least somewhat to the trial-averaged response (left), and better

matched single-trial responses lead to more efficient behaviour (right). B) In Data set 1, animals have to report whether they

perceived the optogenetic stimulation of somatosensory neurons (S1) through licking to receive reward. C) In Data set 2,

animals needed to move a steering wheel to bring the higher-contrast grating stimulus into the centre, or refrain from moving

the wheel when no gratings are presented. Average behavioural performance on this task is shown on the right. C) Recording

sites and, in parenthesis, total number of recorded neurons. B and C are reproduced with permission from [30].

Next, we set out to test if the correlation between single-trial responses and average templates predicted the animal’s111

behaviour. To this end, we separately examined the single-trial correlations in trials that resulted in hits, misses,112

correct rejections (CRs) or false positives (FPs). For the trials where optogenetic stimulation was present, single-trial113

correlations in S1 were significantly lower in miss trials than in hit trials across both brain areas, suggesting that114

a better match to the average template did indeed produce hit trials more often (Fig. 3A, Mann-Whiney U-test,115

p = 4.96e− 68). Similarly, while single-trial correlations were overall lower in the absence of optogenetic stimulation,116

correct rejections nevertheless featured significantly higher correlations than false positives (Fig. 3A, Mann-Whiney117

U-test, p = 2.82e − 17 for the hit/miss comparison, for each area). The same pattern held true for S2, though118

overall correlations were marginally smaller and the difference between correct and incorrect trials was somewhat119

less pronounced (p = [2.02e− 50, 1.37e− 11] for the hits/misses and CR/FP comparisons, respectively). To quantify120
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FIG. 2. Single-trial responses are stimulus-specific for Data set 1. A) Single-trial responses for S1 (blues) and S2

(oranges). Each bar represents a neuron, its height represents the activation (see Fig. S1 for an example). Stim: the sorted

neural response in an example trial where the stimulus was present; No stim: same sorting as before, for another trial where the

stimulus was absent. B) Distribution of the correlations between single-trial response vectors and the trial-averaged response

template for the correct (left) and wrong (center) stimulus constellations. Box: 25th and 75th percentile. Center line: median.

Whiskers: 10th and 90th percentile. Shaded areas: 5th and 95th percentiles of bootstrapped data. At the right, we show the

Specificity index of single-trial responses for both brain areas, defined as the difference between the correlations to the correct

and wrong templates. Solid gray line highlights the Specificity Index of 0.0, which translates to exactly equal correlation to

correct and incorrect template.

directly to what extent single-trial correlations predicted behaviour, we computed the Behavioural Relevance Index121

(Ω) as Ω = max(A, 1 − A), where A is the Vargha-Delaney’s effect size [35]. The Behavioural Relevance Index is122

bounded between 0.5 and 1, with 0.5 indicating complete overlap (stochastic equality) between the distributions and123

1 meaning no overlap at all (absolute stochastic dominance). For Data set 1, Behavioural Relevance in S1 and S2124

were 0.86 and 0.81, respectively. This suggests that in both areas, single-trial responses that were better matched to125
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FIG. 3. Better template-matching predicts better behavior. A) Match between single-trial responses and correct

template in hit, miss, correct rejection and false positive trials. B) Same as for A), but for the Specificity Index. C) Behavioral

Relevance indices (Ω) are shown; they can take values between 0.5 and 1, with 0.5 indicating a complete overlap between

distributions and 1 meaning no overlap at all (Methods).

the cross-trial average resulted in more successful behaviour, fulfilling Assumption 2. Together, these results indicate126

that in Data set 1, cross-trial averages are both reliable and behaviourally relevant enough to serve a computationally127

meaningful function.128

Building on these results, we set out to determine how computationally meaningful cross-trial averages might be129

within the less restrictive and more behaviourally active experimental paradigm of Data set 2. Since Data set 2130

contains neuronal recordings from 71 brain areas, not all of which may be directly involved in the perceptual task at131

hand, we used a data-driven approach to identify to what extent neuronal population activity predicted the presented132

stimulus and/or the animal’s target choice. We trained a decoder (Multinomial GLM, Methods) based on single-133

trial population vectors, to identify either target choice (left/right/no turn) or stimulus condition (higher contrast134

on left/right, zero contrast on both). For the neuronal response vectors, we considered neuronal activity 0 − 200ms135

post-stimulus onset (Fig. S4). We then computed the mutual information between the decoder predictions and the136

real outcomes (Fig. 4A; Methods).137

Many brain areas contained little task-relevant information (shown in grey in Fig. 4A). We therefore used an elbow138

criterion (Methods) to determine a threshold for selecting brain areas that provided the highest information on either139

stimulus (Ithrstim = 0.242 bits; blue quadrant), choice (Ithrchoice = 0.248 bits; red quadrant), or both (i.e. both thresholds140

exceeded; purple quadrant). These areas seem largely congruent with the literature. For instance, primary visual141

cortex (VISp) is expected to reflect the visual stimulus, while choice information is conveyed e.g. by the ventral142

anterior-lateral complex of the thalamus (VAL) – known to be a central integrative center for motor control [36]. As143

an example of a both choice- and stimulus-informative area, we see caudoputamen (CP) - involved in goal-directed144
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FIG. 4. Not all brain areas are equally task-informative. A) Stimulus and target choice information decoded by a

multinomial GLM decoder (Methods) from the neuronal activity in various brain areas. Each point represents the median (dot

location) and standard deviation across sessions (dot size) of one brain area (see in-figure labels). Colors (blue red, purple)

represent those areas where (stimulus, choice, both) information was high. B) We tested the stability of our results by repeating

the decoding with other models (see labels) and then performing a hierarchical clustering of the ranked areas. The 14 areas we

found with the GLM (shown in A) are consistently found with different models.

behaviors [37], spatial learning [38], and orienting saccadic eye movements based on reward expectancy [39]. To145

further validate our selection of relevant brain areas, we repeated the analysis with other five decoders (Fig. 4B). We146

ranked the total amount of Mutual Information per area (stimulus + choice information), using each of these models.147

Finally, we performed a hierarchical clustering and show that the areas we identified in Fig. 4A consistently appeared148

in the top performing cluster (Fig. 4B). Together, these results converged on a group of 14 brain areas that conveyed149

significant task information regardless of the decoder approach.150

Having identified task-relevant brain areas, we used neuronal recordings from those informative areas to test the two151

assumptions set out above (Fig. 5; for results for all areas, see Fig. S5). First, we computed the average population152

response templates for different experimental conditions. To avoid working with trial numbers as low as n=2 for153

specific contrast combinations, we pooled several contrast levels (e.g. 50% right – 0% left and 100% right – 50% left)154

into two conditions: Target stimulus on the left or on the right. This pooling strategy seemed particularly appropriate155

since average responses to the individual contrast levels were very comparable (Fig. S2), and were meant to result in156

the same behavioural response.157

To test the first assumption, as we did for Data set 1, we quantified how well single-trial responses correlated with158

the template for a given stimulus (Fig. 5A, top; see also [34]). Median correlations ranged from r = 0.56 to 0.89159

across all brain areas (n = 89 to 3560 trials per brain area; all p < 0.001), suggesting that single-trial responses were160

similar to the template. To address how different these correlations were from those that we would get if single-trials161

were random samples of the template, we computed 100 bootstrapped response vectors for each trial (Fig. S3 B;162
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Methods). Each bootstrapped response contained the same number of spikes as the original trial, but the neurons163

that produced these spikes were chosen randomly according to their probability of occurrence in the average template.164

These surrogate data uniformly correlated better to the template than the original data (Fig. 3A). This indicates165

that single-trial responses in Data set 2 exhibited more variation than explained by (Poissonian) down-sampling.166

Next, we estimated the stimulus specificity of the observed correlations by computing single-trial correlations to167

the incorrect template (e.g. ‘target right’ for the left target). These were marginally lower than to the correct168

template (Fig. 3A, bottom). However, the correlation difference was so small compared to the spread of single-trial169

correlations that correlations to the correct and incorrect templates were largely indistinguishable. Consistent with170

this, the Specificity Indices across brain areas in Data set 2 were mostly positive but rarely exceeded 0.1 (Fig. 5B).171

In other words, correlations between single-trial responses and template were largely stimulus-independent.172

These results tally with recent work demonstrating how strongly non-task-related factors drive neuronal responses173

even in primary sensory areas like visual cortex [19, 20, 40–44]. However, the animal still needs to arrive at a174

perceptual choice. If trial-averaged templates are relevant to this perceptual decision, single-trial responses that are175

more dissimilar to the template should be more difficult to process, and hence lead to less efficient behaviour [30].176

To test if the match between single-trial responses and the average template predicted target choices (Assumption177

2), we compared single-trial correlations for hit trials (correct target choice) and miss trials (incorrect target or no178

response). Single-trial correlations were marginally lower in miss trials than in hit trials across most brain areas,179

suggesting that a better match to the average template did indeed lead to hit trials slightly more often (Fig. 5C,180

top; Supp. Results). However, the difference between the correlations was small, leading to Behavioural Relevance181

indices between X and Y. According to the Vargha & Delaney’s A effect size, such values would be considered largely182

negligible, indicating that single-trial correlations are not a reliable way to predict subsequent behaviour in Data set183

2 [35] (Ω; Fig. 5E).184

Together, these results suggest that in Data set 2, the relation between single-trial responses and trial-averaged185

templates is neither reliable nor specific, and does not appear to substantially inform subsequent behavioural choices.186

However, this estimate may present a lower bound for several reasons. First, while the task information conveyed187

by cross-trial averages seemed to be limited in the recorded population of neurons, it might be sufficient to generate188

accurate behaviour when scaled up to a larger population. To explore this possibility, we sub-sampled the population189

of recorded neurons in each brain area from N/10 to N (Fig. 6A). We then extrapolated how the specificity and190

behavioural relevance indices would evolve with a growing number of neurons. This indicated that in Data set 2,191

average template matching is unlikely to become more consistent, specific or behaviourally relevant with more neurons.192

This did not seem to be a general feature of our extrapolation approach: When we repeated the same analysis in193

Data set 1, the Specificity Index appeared to remain largely stable with growing n, but Ω rose steeply, indicating that194

with a larger number of neurons, the match of individual trials to the average template would more strongly predict195

behaviour.196

Alternatively, while cross-trial averages may not perform well in Data set 2 when computed for all recorded neurons,197

there may be a ’supergroup’ of highly reliable neurons, which might then drive downstream processing [45, 46].198

However, a jackknife procedure (i.e. removing one neuron at a time from the data; see Methods) revealed no neurons199

that particularly boosted single-trial correlations, Specificity, or Behavioural Relevance (Fig. S5). In some areas (e.g.200

RN or SNr), there seemed to be at least some neurons that contributed substantially to single-trial correlations, but201

this was not the general tendency: most specificity index and relevance index distributions were symmetrical. This202
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FIG. 5. Single-trial responses are barely stimulus-specific or behaviorally relevant for Data set 2. A) Distribution

of the correlations between single-trial response vectors and the trial-averaged response template for the correct (top) and

wrong (bottom) stimulus constellation. B) Same as B, but the Specificity index of single-trial responses across brain areas,

defined as the difference between the correlations to the correct and wrong template. Solid gray line highlights the Specificity

Index of 0.0, which translates to exactly equal correlation to correct and wrong template. Dotted lines represent the specificity

index of the medians of the bootstrapped values for each recorded area. C) Same as A (top), split by hits and misses. These

distributions almost completely overlap, for all brain areas. D) Same as B, split by hits and misses. As in the previous panel,

these distributions are practically coincident. E) Behavioral Relevance Index for all brain areas. They range from 0.51 to 0.66,

with Ω = 0.5 meaning perfect overlap.

also held for Data set 1, implying that in both data sets, any sub-set of neurons could convey the average template203

to approximately the same extent.204

Another potential limiting factor of our analysis could be that in the more complex behavioural context of Data set205

2, template-matching may occur in a way that could not be captured by simple correlations. To explore this scenario,206

we repeated all previous analyses, but characterized population responses using Principal Component Analysis (PCA)207

via Singular Value Decomposition (SVD), and quantified their resemblance (normalized distance, see Methods) to the208

average template in this dimensionally-reduced space. In both data sets, stimulus specificity increased marginally,209

but behavioural relevance decreased (Fig. S8, see also Fig. 7). This suggests that cross-trial averages extracted via210

PCA were more reliable across trials, but less predictive of behaviour. The decrease in behavioural relevance was211

particularly steep in Data set 1, indicating that raw firing rates were more instructive to the animals’ choices than212

dimensionally-reduced features of neuronal activity (Fig. S8).213

Finally, neuronal responses may reflect a multi-factorial conjunction of response preferences to a wide range of214
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2

2

Smaller pupil Larger pupil

Subsampling a different number of neurons Clustering trials based on their similarity

Grouping trials based on their attentional state

A B

C

FIG. 6. Control analyses for both datasets. A) We subsampled neurons (up to 1/10 of the entire recorded population)

in order to check whether we could extrapolate a marked benefit from adding neurons when performing template-matching.

While this procedure yields an increase in Ω for Data set 1, it only marginally is the case in Data set 2. On top of that, the

Specificity Indices for both Data sets are largely unchanged. B) We clustered trials (Methods) based on the similarity in their

neural response and based on their pupil size, as shown in C. Neither of these groupings are useful to make template-matching

more stimulus-specific or behaviorally relevant.

stimulus features and behavioural variables. To test this hypothesis, we quantified whether single-trial correlations215

to the average would become more consistent or predictive of target choice when additional variables were taken216

into account. While we can of course neither know nor measure all variables that would be potentially relevant to217

such a multi-factorial response landscape, we tested two factors as a benchmark. As a first test, we accounted for218

spontaneous fluctuations of attentional state as reflected by pupil size. Such fluctuations are a ubiquitous and well-219

documented phenomenon that has previously been shown to strongly impact neuronal population activity [42, 47, 48].220

We therefore used attentional state (estimated by pupil size) as a representative example of known behavioural221

modulators of neuronal responses. To this end, we computed cross-trial averages for sub-groups of trials in which the222

animal exhibited similar pupil sizes. If population responses are modulated by attentional state [42, 47, 48], examining223

only trials that occurred during similar attentional states should reduce unexplained variability. However, grouping224

trials by average pupil size did not improve specificity or behavioural relevance in Data set 2 (Fig 6C; note that Data225

set 1 did not contain measurements of pupil size).226

As a second benchmark, we accounted for potential modulating variables in a more agnostic way by clustering the227

neuronal population responses from all trials according to similarity. Such clusters might reflect different spontaneously228
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z-FRates

Data set 1

Data set 2

FIG. 7. Summary of the result over methods and areas, for both data sets.

occurring processing states that the animal enters into for reasons (e.g. locomotion, satiation, learning etc.) that may229

remain unknown to the experimenter. After computing the Silhouette Index, which measures cluster compactness230

(Fig. S7), we decided to group trials into two clusters. We again repeated all analyses of response specificity and231

behavioural relevance within each of these trial clusters. As expected, given that trials were chosen based on similarity,232

response specificity rose from a median value of 0.07 to 0.15 in Data set 2. In contrast, in Data set 1, the Specificity233

Index was largely unchanged. This aligns with the fact that clusters in Data set 1 were less compact (Fig. S7 A)234

and thus trial-grouping improved trial homogeneity less markedly. In contrast, trial-grouping had an overall negative235

effect on Behavioral Relevance in both data sets. Data set 1 featured mixed effects across areas, with a median change236

of 0.04, while Data set 2 showed a steep decrease from a median value of 0.83 to 0.54.237

Together, these analyses suggest that the missing link between single-trial responses and cross-trial averages in238

Data set 2 is not explained by unmeasured confounding factors, non-linear interactions or lack of neurons, but rather239

a systemic feature of the data set. Fig. 7 summarizes the outcomes of different analysis approaches. In all cases,240

Data set 1 shows better stimulus-specificity and behavioural relevance than Data set 2. Furthermore, we show that an241

alternative template-matching procedure (i.e., Z-scoring the neural responses over trials, denoted by z-FRates) might242

improve stimulus-specificity in Data set 2, but it does nothing for its Behavioural Relevance Index and it heavily243

decreases it in Data set 1.244

245

Discussion246

The present study set out to formally test how informative average population responses are to the brain in different247

contexts. If cross-trial averages are computationally relevant, single-trial responses should be sufficiently reliable and248

specific to resemble the correct average template, and better-matching single-trial responses should evoke more efficient249

behaviour. To directly quantify to what extent these two conditions are fulfilled in a given data set, we developed250

two simple metrics: (1) The Specificity Index, which captures whether a single-trial response is more related to the251

average response of the true experimental condition than to the average responses of other experimental conditions;252
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and (2) The Relevance Index, which reflects whether higher single-trial correlations to the correct average template253

result in more behaviourally successful trials.254

Based on these metrics, we find that the two assumptions of cross-trial averaging are largely fulfilled in one of255

the two data sets examined here: Data set 1 required mice to respond by licking when they detected a highly256

controlled optogenetic stimulus in S1. In this setting, single-trial responses correlated strongly and specifically with the257

correct average template. In addition, lower single-trial correlations often resulted in incorrect behavioural responses,258

suggesting that the match between individual responses and average templates did indeed inform decision making.259

This success is particularly surprising because optogenetic stimulation targeted a somewhat overlapping but randomly260

selected population of 5 to 50 neurons in each new trial. Thus, even though optogenetic stimulation varied randomly,261

it seemingly managed to recruit a reproducible network of neurons within the analysis time window of 500 ms post-262

stimulation. This suggests that the population responses highlighted by our analyses of Data set 1 rely on ’hub263

neurons’ that are activated by various different stimulation patterns.264

In contrast, in Data set 2 mice used a steering wheel to select the higher-contrast of two gratings. In this context,265

single-trial correlations were robust but not stimulus-specific, implying that they mostly reflected factors such as266

baseline firing rates rather than conveying stimulus information. Correcting for such baseline differences in firing rate,267

as done by PCA, did not improve the Specificity index of single-trial correlations. Moreover, single-trial responses268

that better resembled the correct template hardly increased an animal’s chance of choosing the correct target. Further269

analyses indicated that these results would not improve with more neurons, or by taking into account complementary270

variables such as behavioural state. This suggests that in Data set 2, average population responses were not the271

central mechanism driving perceptual decision-making.272

The disparity of outcomes between the two data sets examined here could be due to several factors. In many273

ways, Data set 1 offers an ideal case for average population responses to play a functional role: Stimulation is274

highly controlled, and takes place directly within the recorded brain area rather than being relayed across several275

synapses; behavioural responses (in the form of licking) are short and stereotyped, reducing movement-related neuronal276

dynamics; and animals are explicitly trained to detect a difference in the average amount of neuronal activity within277

S1. In other words, even if sensory stimuli were typically not encoded in average S1 population firing rates, animals278

in Data set 1 may have essentially learned to ’count S1 spikes for reward’. By comparison, Data set 2 features less279

controlled visual stimulation since animals can look at either of the two stimuli freely; modulation of the stimulus280

signal by several synaptic relays; additional neuronal dynamics driven by increased and more complex spontaneous281

movement in the form of wheel turning; and of course the fact that animals are free to process the difference in282

grating contrast in ways other than average population firing. Thus, while the two data sets examined here are clearly283

not sufficient to draw general conclusions, our results may point towards a scenario where cross-trial averages are284

more computationally relevant in settings featuring strong stimulus control and expert or over-trained behaviours.285

This would mean that especially in order to understand more naturalistic neuronal computations, cross-trial averages286

might not be helpful.287

An alternative possibility is that we underestimated the computational role of cross-trial averages in Data set 2 due288

to idiosyncrasies of the paradigm and of our analyses. First, task-relevant stimulus information in Data set 2 had to289

be computed by comparing visual inputs across brain hemispheres, but we only had access to neuronal activity from290

one hemisphere. Thus, recording from both hemispheres might have yielded more informative population templates.291

Nevertheless, the animal is proficient in this task (Fig. 1B), which means that even if some brain areas (e.g. primary292
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visual cortex) do not integrate information from both hemi-fields, some downstream area(s) should receive the result of293

the cross-hemisphere computations needed to initiate the correct behavioural response. Since this data set is arguably294

the most complete set of neuronal recordings to date regarding the number of recorded brain areas, it seems unlikely295

that not a single area consistently represents integrated stimulus information from both hemi-fields.296

Another limitation of the average templates computed in Data set 2 may be that each one encompasses several297

contrast combinations. However, as the neuronal responses to the stimulus pairs subsumed in the same template298

were highly correlated to each other (Fig. S2), the precision lost by pooling across stimulus pairs appears negligible.299

This notion is further supported by the fact that we also pooled stimulus categories for Data set 1 by considering all300

trials with stimulation protocols targeting from 5 to 50 neurons within the category ’stimulus present’. Yet in this301

case, pooling trials of different stimulus intensities clearly did not significantly hamper the computational relevance302

of cross-trial averages. Finally, since the two pooled stimulus categories in Data set 2 mapped onto the two distinct303

behavioural response options (i.e. turn the wheel left or right), basic information on which hemi-field contains the304

higher-contrast stimulus should be reflected in at least some brain areas in order to drive the corresponding behavioural305

response – a notion that is also borne out by the decoder analysis (Fig. 4).306

Finally, the stimulus-related response templates explored here may generally underestimate the computational307

power of average responses by ignoring the many stimulus and behavioural factors at play at any moment in time308

[5, 19, 20, 40, 42–44, 49], only some of which will be known or accessible to the experimenter. This can make309

neuronal responses appear highly unpredictable, while they are actually shaped systematically and reliably by a set310

of unmeasured, or ‘latent’, variables. In principle, downstream neurons may be able to disentangle these factors to311

distill e.g. stimulus-related information.312

We investigated this idea in two different ways. First, we grouped trials by pupil size, which is known to reflect313

spontaneous fluctuations in attentional state that strongly shape neuronal population activity [42, 47, 48]. Second, to314

account for modulating variables in a more agnostic way, we searched for distinct trial clusters that featured similar315

neuronal population responses. Such clusters might reflect different processing states that the animal enters into for316

reasons (e.g. locomotion, satiation, learning etc.) that may remain unknown to the experimenter. If either of these317

variables formed part of the ’multi-factorial average response curve’ of the recorded neurons, then only considering318

trials recorded during a similar attentional state (as measured by pupil size) or within the same trial cluster should319

increase the specificity and behavioural relevance of the resulting cross-trial averages by removing one source of320

response modulation that was previously unaccounted for. This was the case in Data set 1 but not in Data set 2,321

suggesting that even when more latent variables are accounted for, averages may still not the most accurate way to322

reflect information processed by the brain.323

In addition, several recent papers have argued that factors such as stimulus properties, behavioural choices, and324

retrieved memories are encoded along largely orthogonal dimensions in neuronal response space [8, 11, 12]. If this325

is true, then extracting cross-trial averages via a dimensionality-reduction technique like PCA should enable us326

to dissociate them from other, orthogonally-coded, types of information, and thereby significantly improve their327

computational relevance even in the presence of other modulating factors. This scenario held to some extent for328

Data set 1, where single-trial response vectors as extracted by PCA became more specific to the average template,329

but not more behaviourally relevant. In Data set 2, applying PCA did not result in any substantial improvements.330

It is possible that these outcomes depend on the choice of dimensionality-reduction technique. We chose PCA as331

a benchmark due to its simplicity and ubiquitous use, but other approaches like non-Negative Matrix Factorization332
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[50] might yield different results [51]. If they were to prove more successful, this would argue in favour of analyses333

characterizing average neuronal response preferences simultaneously for multiple, potentially non-linearly interacting334

factors [52]. In this case, we would suggest that the neuroscience community abandons single-feature response averages335

in favour of average multi-feature response ’landscapes’. This would involve finding routine metrics to track ubiquitous336

latent variables like behavioural state [42, 44, 53–55] throughout a wide range of experiments.337

Crucially, our results suggest that the utility of trial-averaged responses can vary dramatically across different338

contexts. The relevance of template matching is likely to shift depending on behavioural context, stimuli, species –339

as well as the aspect of neuronal activity that is averaged, such as neuronal firing rates, firing phase, coherence etc.340

[30]. Similarly, dimensionality-reduction techniques may improve the reliability of cross-trial averages in some cases341

(such as Data set 1), but not in others (as in Data set 2). We therefore encourage researchers to compute simple342

‘rule-of-thumb’ metrics such as the Specificity and Relevance index in order to estimate what computational role343

cross-trial averages may play for the experimental paradigms, neuronal computations and neuronal response metrics344

that they study. Over time, we hope that this practice will generate a ’map’ of contexts in which cross-trial averages345

are computationally meaningful - and motivate the field to restrict the usage of cross-trial averages to cases when346

they are in fact relevant to the brain.347

Ideas and Speculation348

If classical trial-averaged population responses appear largely irrelevant to ongoing neuronal computations at least in349

some contexts, how then could stimulus and target choice information be encoded in such contexts? First, information350

may be encoded mostly in joint neuronal dynamics that are not captured by static (single- or multi-feature) response351

preferences. Analyses that take into account such dynamics, e.g. by tracking and/or tolerating ongoing rotations352

and translations in neuronal space [55–58] or by explicitly including shared variability in their readout [59, 60],353

often provide vastly more informative and stable neuronal representations [56, 57]. Consistent with this, the decoder354

analyses (Fig. 4) extracted information more successfully – most likely because decoders rely on co-variability and355

co-dependencies between input data and the class labels, which are smoothed over by trial-averaging.356

Second, while here we have tested cross-trial averages of population firing rates as a benchmark of basic analysis357

practices in neuroscience, other aspects of neuronal activity might be more informative - and as a result also potentially358

lead to more informative cross-trial averages. For instance, transiently emerging functional assemblies [61–63], phase359

relationships between neuronal sub-populations [64–66] or the relative timing of action potentials [67–69] may provide360

an avenue of information transmission that is entirely complementary to population firing rates.361

Finally, by tracking more stimulus and behavioural variables at the same time, we can further explore how they362

dynamically influence overlapping and separate aspects of neuronal activity ([9, 53, 54, 70–73]). Over time, we hope363

that this will shape our understanding of neuronal activity as an ongoing interaction rather than a static snapshot.364

No matter which of these approaches turns out to be most successful, it is important to recognize that time-averaged365

population responses may, at least in some contexts, not be a fitting way to describe how the brain represents366

information.367
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SUPPLEMENTARY MATERIAL486

METHODS487

We have released all the scripts and data files to reproduce these analyses, they can be found at the following URL:488

https://github.com/atlaie/BrainAveraging. They are written in Python 3 and rely on several libraries.489

490

Specificity index491

With the intent of characterizing whether the neural response is more similar to the appropriate template (i.e., the492

one corresponding to the stimulus that was actually presented in that trial) or the other one, we introduced a simple493

quantity we termed specificity index. It is defined as:494
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ρi = cor(λcorrect, ri)− cor(λwrong, ri) (1)

where cor is the Pearson correlation, λ denotes a given neural template and ri is the population vector of the ith495

trial. Thus, the specificity index captures the differential similarity of a given neural response to each of the templates.496

It is key to note that, given that the Pearson correlation is bounded between −1 and 1, the specificity index can attain497

values between −2 and 2 and, as we were just interested in its sign and global tendencies, we did not introduce any498

normalization factor.499

500

Behavioral relevance501

As a way to quantify the overlap between the hit and miss distributions we basically used Vargha-Delaney’s A effect502

size [35] (also known as measure of stochastic superiority). This is an effect size derived from the Mann-Whitney U-test503

–a non-parametric statistical test that is particularly useful when distributions are not Gaussian [74]. Furthermore,504

A is especially interpretable. As it is related to the U statistic, it can be thought of as the probability of a randomly505

selected point from one distribution being higher than another randomly selected point from the other one [75].506

Mathematically, if we have two distributions C and D, the U-statistic is given by:507

U =

c∑
i=1

d∑
j=1

S (Ci, Dj) (2)

with c and d being the number of elements of C and D, respectively; and508

S (Ci, Di) =


1, if Ci < Di

1/2, if Ci = Di

0, if Ci > Di

(3)

Having computed the U-statistic, our measure of Behavioral Relevance (Ω) is given by509

Ω = max(A, 1−A), with A =

(
U

c
− c+ 1

2

)/
d (4)

Thus, Ω is bounded between 0.5 and 1. If there is no overlap, Ω = 1. In this extreme case, one distribution would510

have complete stochastic dominance over the other. If C and D are totally overlapping, Ω = 0.5 and, thus, the more511

its value deviates from 0.5, the less overlapping the distributions are.512

513

Yule-Kendall index514

In order to assess if the jackknifed distributions shown in Fig. S6 are symmetrical or not, we relied on the Yule-515

Kendall index, which is computed as:516
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γ =
Q(3/4) +Q(1/4)− 2Q(1/2)

Q(3/4)−Q(1/4)
, (5)

where Q is the quantile function. We chose this measure because it works for non-normal distributions and because517

it is non-dimensional (thus allowing direct comparison between data sets).518

519

Decoders520

In order to select the most informative brain areas for the IBL dataset in a data-driven way, we made use of521

different decoders. For each experimental session, there are several recorded regions. Thus, we trained independent522

decoders using the single-trial population vector for each region. The labels to be predicted would be either choice (left523

wheel turn, right wheel turn or no movement) or stimulus (right-higher contrast, left-higher contrast, both equal).524

We split the data following a 80 − 20 ratio (train-test). Given the imbalanced nature of the dataset, we used a525

stratified 10−repeated 5−fold Cross-Validation to fine-tune each model’s hyperparameters using a Bayesian approach526

and checked that the model performance was above majority class (i.e., always predicting the most abundant label)527

and random models.528

In the following, let assume we want to classify N input variables (xi, with i = 1, ..., N) into target variables that529

can belong to K classes (i.e., yi ∈ {1, ...,K}).530

Bayesian optimization531

Hyperparameter optimization is arguably one of the bottlenecks when deploying Machine Learning techniques.532

Fortunately, in the last years, the field is rapidly evolving and we now have access to quick and intuitive libraries that533

alleviate greatly these tasks. One of these libraries is Optuna [76]. We relied on Tree-structured Parzen Estimators534

(TPEs) [77] to speed up hyperparameter search.535

For each model, we chose different hyperparameters to be optimized, which we will detail in the following descrip-536

tions. We relied on the SciKit-Learn package in Python [78] to implement all of the classifiers.537

Gaussian Naive Bayes538

Naive Bayes assumes independent features [79]. In terms of the covariance matrices, this model assumes they539

are diagonal. Particularly, the Gaussian Naive Bayes (GNB) model assumes that the class-conditional densities are540

normally distributed as:541

P (x|y = c, µc,Σc) = N (x|µc,Σc) (6)

where µ and Σ are the class-specific mean vector and class-specific covariance matrix, respectively. In order to compute542

the class posterior, we can simply make use of Bayes’ theorem543
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P (y = c|x, µc,Σc) =
P (x|y = c, µc,Σc)P (y = c)∑K

k=1 P (x|y = k, µk,Σc)P (y = k)
. (7)

So, in order to classify x into a class c:544

ĥ(x) = argmax
c

P (y = c|x, µc,Σc) (8)

For this classifier, we did not perform any hyperparameter tuning.545

k-Nearest Neighbors546

This model relies on the assumption that the closer two points are, the more similar they are and the more likely it547

is that they belong to the same class. It is implemented as follows: for any given point xi, compute its distance to the548

rest of the points; then, select the k points that are closest; out of those, apply a majority vote rule. As a summary:549

the most prevalent class of the k closest points to xi will determine the class that we predict for it.550

For this classifier, we optimized the number of nearest neighbors and the leaf size of the k-d Tree algorithm.551

Random Forest552

This model makes use of several Decision Trees (DTs) to solve supervised learning problems. DTs are non-parametric553

models that split the data using a given number (depth) of conditional steps - populated with at least with some554

number of data points (minimum sample split). When we aggregate several DTs (using a technique known as bootstrap555

aggregating or bagging), we end up with a Random Forest (RF). Specifically, we sample with replacement from the556

data and feed these subsamples to different trees. Finally, we use a majority vote for each tree’s output as the RF557

prediction. This procedure reduces the variance in the model (i.e., mitigates overfitting) but has a minimal effect on558

its bias (i.e., underfitting is still a risk). Therefore, ideally we would like to use DTs that are unstable (high variance)559

but very little bias. In order to check the model performance, we compute its out-of-bag (oob) error - cases in the560

training data that are not in a significant part of the bootstrapped samples.561

For this model, we optimized the number of DTs, their maximum depth and the minimum sample562

split.563

Generalized Linear Model564

We trained a multinomial Generalized Linear Model (GLM) with a L2-regularization. This model states that the565

probability of a particular data point yi belonging to class c is given by:566

p (yi = c | xi) =
ewc·xi+bc∑K

j=1 e
wj ·xi+Di

(9)

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 26, 2022. ; https://doi.org/10.1101/2021.11.28.469673doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.28.469673
http://creativecommons.org/licenses/by/4.0/


21

After having the probabilities of yi belonging to each class c, the highest one will be taken to be 1 and the rest will567

be set to 0. Therefore, the objective is to find the weight vector wc that minimizes the distance between the predicted568

(ŷi) and the actual (yi) class labels by optimizing (in this case, minimizing) the following loss function:569

L (ŷi, yi) = − log

(
ewc·xi+bc∑K

j=1 e
wj ·xi+Di

)
+ λ ∥wc∥22 (10)

where ∥wc∥22 is the L2-norm of the weight vector for class c, accounting for the L2-regularization term, with λ570

modulating its strength. The inverse of λ (C = 1/λ) is the hyperparameter we optimized for this model.571

Support Vector Machines572

This class of models rely on finding the hypersurface that maximizes the separation between classes in the data. To573

this end, it is important to first find the support vectors (SVs), which are the closest ones to the surface. There are574

two main types of Support Vector Machines (SVMs): linear SVMs and kernel-based SVMs. The difference is that, in575

the former, the separating hypersurface is a hyperplane (i.e., a non-curved hypersurface), while, in the latter, it is is576

allowed to be curved. Mathematically, the linear version of this model is the solution to the following optimization577

problem:578

min
ωi∈RN

C(ωi) (11)

where579

C(ωi) = C
N∑
i=1

Hinge loss︷ ︸︸ ︷
max

(
0, 1− yixi

)
+

L2-reg.︷ ︸︸ ︷
||ω||2 (12)

In order to arrive to the equivalent one for the non-linear SVM, we can take advantage of the fact that this problem580

satisfies some conditions [80] that allow us to construct its dual form. It takes the form of:581

CD(αi) =
N∑
i=1

αi −
1

2

N∑
i=1

αiαjyiyjK(xi,xj), with 0 ≤ αi ≤ C,

N∑
i=1

αiyi = 0 (13)

where K(xi,xj) is the kernel (it can be linear or not) and C is the regularization strength. In this work, we chose582

Radial Basis Functions (RBF) as our kernel. These are given by:583

K(xi,xj) = exp
(
− γ||xi − xj ||2

)
(14)

where γ is the reach parameter (i.e., how far we want two separate points influence each other).584

For these decoders, we optimized the regularization strength (C) and, only for the RBF , the reach coeffi-585

cient (γ).586

587
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Mutual Information588

After having trained each decoder, we separately computed the Mutual Information between the predicted and the589

test class labels, as a proxy of the amount of stimulus – or choice – information there was in the population vector.590

This quantity is defined in the context of classical Information Theory [81, 82] and we can compute it for two discrete591

stochastic variables X and Y . Assuming these have a joint probability mass function given by pX,Y (x, y) = P (Y = y |592

X = x) ·P (X = x) and that each of them follows a marginal probability distribution given by pX =
∑

y∈Y pX,Y (x, y),593

one can mathematically define the Mutual Information between X and Y as:594

I(X;Y ) =
∑
x∈X

∑
y∈Y

p(X,Y ) log

(
pX,Y (x, y)

pXpY

)
(15)

Intuitively, one can understand I(X;Y ) as the uncertainty reduction in X that follows if Y is measured (or vice595

versa, as I(X;Y ) is invariant when swapping X and Y ). If (and only if) they are independent of each other, then596

I(X;Y ) = 0. Therefore, this is a strictly non-negative quantity. It is noteworthy that I(X;Y ) captures all linear and597

nonlinear dependencies between X and Y , thus generalizing the notion of correlation measures. For further discussion598

of this measure, see [83, 84].599

600

Hierarchical clustering601

After having computed the resulting Mutual Information for all areas, sessions and decoders, we aimed to check602

the stability of the selection of the most informative brain areas, so that results were not highly dependent on which603

model we used to choose them. To do that, we used an unsupervised method, known as hierarchical clustering. Once604

we have the pairwise distance between points (proximity matrix), this method can be understood in an iterative605

manner: merge the closest points in a cluster, then merge the closest clusters and repeat until only a single cluster606

(encompassing all points) remains. For Fig. 4, we used the Euclidean metric to compute the proximity matrix.607

Elbow method608

In order to select a threshold when selecting the task-related areas based on their stimulus and choice information609

(Figure 4 in the main text), we used the data to compute the Kernel Density Estimate, via Gaussian kernels [85].610

After having extracted these, we used the method discussed in [86] to find the point of maximum curvature. We made611

use of the kneed Python package, implemented by the same authors [86].612

613
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Surrogate models614

Calcium imaging data615

For this data set, we pooled together those trials within the same stimulus set: on the one hand, when stimulation616

was given; on the other hand, those trials without any stimulus. For each of those trial groups, and for each neuron, we617

built a Gaussian distribution with mean and variance given by the trial-average and trial-variance. We then sampled618

200 random values for each stimulus set and correlated each of them with the template.619

Spike data620

We were interested in comparing the experimental neuronal population response with a downsampled version of621

the trial-averaged template. To do that, we built our surrogate models by constructing N(= 100) random vector with622

the following constraints:623

1. Its size is equal to the number of neurons comprising the neural population for that area and that session.624

2. The probability that at n spikes are allocated at a particular location m (i.e., that neuron m has spiked n times)625

is given by Pm,n =
(

λm∑
m λm

)n
, where λm is the mth element of the template vector.626

3. The total number of spikes is constant and equal to the total recorded number of spikes for that area and that627

session.628

By imposing these constraints, we are testing the alternative hypothesis that neurons are independent from each629

other (uncorrelated) and it is therefore equivalent to keeping the single-trial population statistical response, while630

scrambling across trials. This is also the same as drawing single-neuron responses from the underlying template631

distribution following a Poisson process. Thus, the bootstrapped responses contain the same number of spikes as632

the original trial, but the neurons that produced these spikes are randomly chosen according to their probability of633

occurrence in the average template.634

635

Templates and distances in PCA space636

As an alternative to Pearson’s correlation, we applied Principal Component Analysis (PCA) [87]. We chose PCA637

over non-Negative Matrix Factorization [88] or other more advanced dimensionality reduction techniques such as638

LFADS [59] or PSID [55] because we wanted to keep all analyses as general as we possibly could. Thus, we computed639

the truncated Singular Value Decomposition (tSVD) [89] for the matrix consisting of Z-scored single-trial population640

vectors, for a given area and session. Then, we extracted the knee (elbow) using the aforementioned method, to select641

the number of components based on the variance explained. After the number of components has been selected, we642

projected each single-trial into this (dimensionally-reduced) space and computed the Euclidean distance between this643

new vector and the template (also projected into this space). We normalized by the distance between the projection644

of the two templates in this new space.645

646
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Specificity Index for PCA distances647

Since in PCA analyses we dealt with distances rather than correlations (i.e., differences rather than similarities), we648

inverted the computation of the Specificity Index in this context so that positive values continued to signify a stronger649

relation between single trial response and correct template than incorrect template. The corresponding formula is:650

ρPCA
i = d(λPCA

wrong, r
PCA
i )− d(λPCA

correct, r
PCA
i ) (16)

where d stands for Euclidean distance and rPCA
i is the PCA-projected version of the population vector measured651

in the ith trial; λPCA
wrong and λPCA

correct are the PCA-projected version of the trial-average templates (wrong and correct,652

respectively).653

Pupil size654

As a way to account for the animal’s behavioral state, we grouped together trials that had a similar pupil size.655

Firstly, we low-pass filtered the recorded pupil size (that came as an output of DeepLabCut [90]) using a Butterworth656

filter [91] of order 4. We chose to filter out any frequency above 1Hz, as we were interested in slow variations in pupil657

size, which have been linked to attentional state [92, 93]. We then computed the mean pupil size in the same time658

window we used for the neural analyses (200 ms after stimulus presentation). Finally, we ranked all sizes over trials659

and grouped them in brackets of 10 percentiles (e.g., trials with a pupil size between the 32th percentile and the 42th660

one would be grouped). Within the selected group, we repeated the template-matching algorithm that we used in the661

main text, tailoring the average to those trials that shared a similar pupil size.662

k-Means clustering663

In order to group trials according to similarity in the recorded neural response, we used k-Means clustering. This664

algorithm, after randomly initializing k centroids (one per cluster), is as follows: (1) Compute the distance between665

each data point and these k centroids. (2) Each point will belong to the cluster with the closest centroid. (3) New666

centroids will be given by the actual points belonging to a cluster.(3) Repeat until convergence (when centroids move667

no more). As this is an unsupervised method, we used the elbow method to select the number of k centroids in which668

to cluster the data S7. Finally, as we did for the pupil size grouping, we repeated the template-matching algorithm669

that we used in the main text, tailoring the average to those trials that belonged to the same cluster.670

SUPPLEMENTARY RESULTS671

Figure 5672

To estimate stimulus-specificity, we computed single-trial correlations to the incorrect template. These resulting673

correlations are marginally lower than those for the correct template (Fig. 5A; difference between median correlations:674

0.03 ± 0.02 across areas; t-test for dependent samples; n = 89 to 3560 trials per area; t = 3.0 to 27.2; all p < 0.01,675
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corrected for multiple comparisons using FDR with a family-wise error rate of α = 0.05). However, the correlation676

difference (0.03±0.02 across areas) is so small compared to the spread of single-trial correlations (standard deviation:677

0.04 to 0.39) that correlations to the correct and incorrect templates were largely indistinguishable. Furthermore,678

task-relevant brain areas did not show more specific correlations than control areas (mean correlation difference679

for task-relevant areas: 0.031;n = 9; for comparison areas: 0.022;n = 62; Welch’s t-test: t = 1.17, p = 0.27).Thus,680

correlations between single-trial responses and template are largely stimulus-independent. To quantify this, we defined681

the specificity index, which measures the single-trial correlation to the correct template minus the incorrect template682

(Fig. 5B). Most values are positive, indicating that single-trial responses were generally more similar to the correct683

than incorrect template (t-test for difference from zero; n = 89 to 3560 trials per cortical area; t = 3.0to27.2; all684

p < 0.01, corrected for multiple comparisons). However, the distributions rarely exceeded 0.1 (Fig. 5B). Therefore,685

across the examined brain areas, single-trial responses were barely more similar to the correct template than to the686

incorrect one.687

To test if the match between single-trial responses and the correct template predicted target choices, we split by688

hit (trials where the animal chose the correct target) and miss trials (no response or wrong target). Single-trial689

correlations were lower in miss trials than in hit trials across most brain areas, suggesting that a better match to the690

average template did indeed tend to produce hit trials more often (Fig. 5C). However, overall the difference between691

the correlations was small, as quantified by the Behavioral Relevance Ω (Fig. 5E). There were some exceptions692

(MOs, Ω = 0.66, p = 0.0142, nhit = 2057, nmiss = 667), potentially because hit and miss trials are associated with693

fundamentally different motor responses (miss trials include trials with no choice). Yet the overall pattern suggests694

that template matching has low - and inconsistent - predictive power regarding perceptual decision-making. It is695

however possible that the important factor for perceptual decision making is not the overall correlation between the696

single-trial response and the correct response template, but whether it resembles the correct more than the incorrect697

template. However, splitting specificity indices by hit and miss trials again shows no consistent difference (Fig. 5D),698

indicating that single-trial responses that were more specific to the correct template did not lead to improved target699

choices.700

Figure 6701

From the main results, it seems that single-trial responses are less correlated to the average than a bootstrapped702

version of it, and that they are only slightly predictive of subsequent behaviour, in only a few brain areas. However,703

the available information might be more than enough to generate accurate perceptions and behaviour when scaled up704

to the number of neurons actually involved in the task. To explore this possibility, we first sub-sampled the population705

of recorded neurons in each brain area at 10 different levels from N/10 to N . We then extrapolated how metrics706

like the Specificity Index would evolve as the number of available neurons grew. Stimulus-specificity tended to grow707

with sample size (Fig. 6A) for Data set 2 but not for Data set 1, raising doubts for the argument that maybe in a708

realistic population sampled by a downstream neuron (e.g. 30.000 inputs), template matching would be quite strong.709

Indeed even if the Specificity Index increases in Data set 2, the rate of change is not remarkable. However, as we can710

see in the bottom part of that plot, Ω did increase for both data sets, and the rate of change is substantial for some711

areas in Data set 2 (and for both areas in Data set 1). In other words, the single-trial match to the average template712

may become more indicative of subsequent behavioural choices with larger neuron numbers, even if they are not more713
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stimulus-specific.714

Supplementary Figure 8715

Together, the template-matching results for Data set 2 suggest that the relation between single-trial population716

responses and their trial-averaged response templates is both less strong and less stimulus-specific than what one717

would expect from a down-sampled representation of the average. Most importantly, single-trial responses that better718

resembled the correct time-averaged template did not evoke better target choices. One possibility is that ‘average719

template matching’ happens in a multi-dimensional way. To take a first step at exploring this possibility, we repeated720

the analyses shown in Fig. 5 by characterizing population responses using Principal Component Analysis (PCA) via721

Singular Value Decomposition (SVD), and quantifying their resemblance to an average template in this dimensionally-722

reduced space (Fig. S8).723

Generally, the resulting single-trial response vectors did overall not represent their corresponding average vectors724

more effectively than the Pearson correlation averages we had explored previously. In PCA space, single-trial vectors725

matched average vectors more closely than would be predicted from bootstrapping (Fig. S7A), but the match was726

nevertheless weak: the distance between a single-trial vector and its corresponding average template was typically727

5 − 10 times larger than the distance between correct and incorrect template. Consistently with this, the specificity728

of single-trial responses for the correct average template was low, even more so than for linear correlations (Fig. S7C;729

t-test for difference from Zero: n = 90 to 3123; t = 0.6 to 17.0; p < 0.01 except for p(EPd) = 0.04 and p(SI) = 0.56,730

corrected for multiple comparisons using a FDR procedure with a family-wise error rate of α = 0.05). Specificity731

indices were clustered tightly around zero. Given that PCA vector distances are not upper-bounded to 1 and often732

took on values between 5 and 10 (Fig. S8A), specificity indices < 1 imply negligible differences between the single-trial733

distances to correct and incorrect templates S8B. Single-trial responses that were more similar and/or specific to the734

correct average vector also resulted in only slightly more correct behavioural choices (Fig. S8C-E; Mann-Whitney’s735

U-test for differences in single-trial distances in hit and miss trials: n = 90 to 3123, Ω between 0.38 and 0.55; all736

p < 0.01; Mann-Whitney’s U-test for differences in single-trial specificity in hit and miss trials: n = 90 to 3123,737

Ω between 0.5 and 0.61; all p < 0.01; corrected for multiple comparisons). Overall, these results demonstrate that738

just like for Pearson correlations, resemblance of single-trial to average vectors in PCA space did not seem to drive739

neuronal processing in a decisive way across most brain areas. However, since PCA is a linear method too, this still740

leaves open the possibility that non-linear methods may reveal accurate template matching of single trials.741
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SUPPLEMENTARY FIGURES742

A B

Single cell

FIG. S1. Example of neuronal responses for both Data sets. A) For Data set 1, we show a session, for all neurons over time,

aligning the responses to stimulus onset (pink). Traces of individual cells are depicted in light gray, their trial-average in black.

In cyan, we show the analysis window (500ms), within which we take the time-average (colored dots; blue for S1, orange

for S2) that we use to construct the population vectors we used for the analyses. B) Spike traces for different representative

areas in Data set 2 (a stimulus informative one [blue, primary visual cortex, VISpm], a choice-informative one [red, ventral

anterior-lateral complex of the thalamus, VAL] and a both-informative one [purple, anterior cingulate area, ACA]). Each one

comes from a different session and has a different number of neurons. As before, in pink we show the stimulus presentation

and in cyan the analysis window (200ms) that we used to construct the population vectors in the analyses.
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Left stimulus Right stimulus

(Low, Mid) contrast templates

(Low, High) contrast templates

(Mid, High) contrast templates

A

B

FIG. S2. Correlations between response templates for different stimulus constellations. A) For Data set 1, we pool together

those trials with a low number of stimulated neurons (n ∈ [5, 20]) and compare the trial-averaged response with those trials

with a higher number of stimulated neurons (n ∈ [30, 50]). Their correlation generally exceed 0.6, suggesting that one template

should be sufficient to represent different contrast constellations. B) For Data set 2, we compute the similarity between

templates (for each contrast level: 0.25, 0.5, 1, referred to as low, mid and high, respectively) for each screen (left, right). Their

correlation is generally above 0.8, so grouping them together should provide a coherent representation.
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FIG. S3. Representation of the bootstrapping procedures. A) In the first data set, we created the templates based on

the time-average for each neuron, for each trial. We then constructed a Gaussian distribution centered around the trial-average

and with a spread equal to the trial-variance. We repeated this for each neuron and then sample 200 times for each stimulus

set. B) For data set 2, we fixed the number of spikes on each trial, but randomly assigned to a neuron with a probability

according to how often it spiked in the average template. We repeated this procedure 100 times.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 26, 2022. ; https://doi.org/10.1101/2021.11.28.469673doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.28.469673
http://creativecommons.org/licenses/by/4.0/


30

FIG. S4. Reaction time distribution. The vertical line indicates the width of the time window in which we have performed all

of our analyses (200ms). We have selected our analysis window of because of its likely relevance to stimulus processing and

behavioural decision making. A) General distribution for all sessions. B) Same as in A, split by hits and misses. Consistent

with the literature, misses significantly (Mann-Whitney’s U-test, p = 1.88 ∗ 10−172) imply longer reaction times.

A

B

FIG. S5. Specificity Index and Behavioral Relevance for all areas. Same as Fig. 5B,E, but without pre-selecting

informative areas. Results are preserved in general: across areas, single-trial responses are barely stimulus-specific (Specificity

Indices are tightly clustered around 0, with a median value of 0.019) and not very behaviourally relevant (median value of

Ω = 0.57).
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FIG. S6. Jackknife analyses. We remove one neuron at a time and compute the impact in the Specificity Index, calculated

as SpecIdxJK
i = n · SpecIdx − (n − 1) · SpecIdx¬i, for neuron i. We show the symmetry (γ) of each distribution around 0

using Yule’s coefficient (Methods). This measure is bounded between −1 and 1, with each of them meaning completely skewed

towards negative or positive values, respectively. A) Change in single-trial correlations to the correct average template when

one individual neuron was removed. Data points: Trials. Colors: see inset legend. B) Same for single-trial specificity.
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A B

FIG. S7. Unsupervised trial-clustering for both data sets. Silhouette Index (SI) for both Data sets. This quantity

measures cluster compactness (see Methods), with 0 indicating complete overlap between spread clusters and 1 meaning

perfectly separated ones. Different colors represent a different number of clusters, from k = 2 to k = 5. A) SI for Data set 1.

In this case, clusters are not compact and they are better distinguishable (for both brain areas) when k = 2. B) SI for Data

set 2. Clusters are more compact than in the previous case, with k = 2 also being the best option. Thus, for analyses in the

main text, we decided to group trials into two clusters.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 26, 2022. ; https://doi.org/10.1101/2021.11.28.469673doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.28.469673
http://creativecommons.org/licenses/by/4.0/


33

A

B
E

C

D
Wrong template

Correct template

FIG. S8. PCA is not helpful in making single-trial responses more stimulus-specific or behaviorally relevant

for Data set 2. A) Distribution of single-trial normalized distances in PCA space (Methods) between response vectors and

the trial-averaged response template for the correct (top) and wrong (bottom) stimulus constellation. B) Same as B, but the

Specificity index of single-trial responses across brain areas, defined as the difference between the normalized distance to the

wrong and correct template. Solid gray line highlights the Specificity Index of 0.0, which translates to exactly equal correlation

to correct and wrong template. Dotted lines represent the specificity index of the medians of the bootstrapped values for each

recorded area. C) Same as A (top), split by hits and misses. These distributions almost completely overlap, for all brain areas.

D) Same as B, split by hits and misses. As in the previous panel, these distributions are practically coincident. E) Behavioral

Relevance Index for all brain areas. They range from 0.50 to 0.62, with Ω = 0.5 meaning perfect overlap.
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FIG. S9. PCA is helpful in making single-trial responses more stimulus-specific but heavily reduces behaviorally

relevant for Data set 1. A) Same as Fig. S8B, for Data set 1. B) Same as Fig. S8E, for Data set 1. In this case, the

Specificity Index increased modestly (from 0.13 to 0.21) at the expense of severely hindering behavioral relevance (from 0.83

to 0.52).
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