

Does the brain care about averages? A simple test

A. Tlaie,^{1, 2} K. A. Shapcott,¹ T. van der Plas,³ J. Rowland,³ R. Lees,³ J. Keeling,³ A. Packer,³ P. Tiesinga,⁴ M. L. Schölvicck,^{1, *} and M. N. Havenith^{1, 4, *}

¹Ernst Strüngmann Institute for Neuroscience, 60528 Frankfurt am Main, Germany

²*Laboratory for Clinical Neuroscience, Centre for Biomedical Technology, Universidad Politécnica de Madrid, Spain*

³*Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3PT, UK*

⁴Department of Neuroinformatics, Donders Institute, Radboud University,

Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands

Trial-averaged metrics, e.g. tuning curves or population response vectors, are a ubiquitous way of characterizing neuronal activity. But how relevant are such trial-averaged responses to neuronal computation itself? Here we present a simple test to estimate whether average responses reflect aspects of neuronal activity that contribute to neuronal processing. The test probes two assumptions implicitly made whenever average metrics are treated as meaningful representations of neuronal activity:

1. Reliability: Neuronal responses repeat consistently enough across trials that they convey a recognizable reflection of the average response to downstream regions.
2. Behavioural relevance: If a single-trial response is more similar to the average template, it is more likely to evoke correct behavioural responses.

We apply this test to two data sets: (1) Two-photon recordings in primary somatosensory cortices (S1 and S2) of mice trained to detect optogenetic stimulation in S1; and (2) Electrophysiological recordings from 71 brain areas in mice performing a contrast discrimination task (Steinmetz et al. 2019, *Nature*). Under the highly controlled settings of data set 1, both assumptions were largely fulfilled: Single-trial responses were approximately as related to the average as would be expected if they represented discrete, down-sampled versions of the average response. Moreover, better-matched single-trial responses predicted correct behaviour. In contrast, the less restrictive paradigm of data set 2 met neither assumption, with the match between single-trial and average responses being neither reliable nor predictive of behaviour. We conclude that in data set 2, average responses do not seem particularly relevant to neuronal computation, potentially because information is encoded more dynamically when behaviour is less tightly restricted. Most importantly, we encourage researchers to apply this simple test of computational relevance whenever using trial-averaged neuronal metrics, in order to gauge how representative cross-trial averages are in a given context.

* These authors contributed equally.

32 **Introduction**

33 Brain dynamics are commonly studied by recording neuronal activity over many trials and averaging them. Trial-
34 averaging has been applied to single neurons by describing their average response preferences [1–6] and, more recently,
35 to neural populations [7–9]. The latter has revealed several unique phenomena: for instance, the adaptation of
36 neuronal responses to the statistics of the perceptual environment [10] and orthogonalized neuronal coding of stimulus
37 information, behavioural choices and memory [8, 11, 12].

38 These studies share the view that trial-averaged population activity is meaningful. For instance, upon finding that
39 with repeated stimulus exposure, average population responses become more discriminative of behaviourally relevant
40 stimuli [3, 4], it is implicitly assumed that this will improve an animal’s ability to perceive these stimuli correctly.
41 Related to this assumption is the notion that deviations from the average population response represent ‘noise’ of
42 one form or another. The exact interpretation of such neuronal noise has been debated [13], ranging from truly
43 random and meaningless activity [14–17], to neuronal processes that are meaningful but irrelevant for the neuronal
44 computation at hand [18–20], to an intrinsic ingredient of efficient neuronal coding [21–23]. Nevertheless, in all of these
45 cases a clear distinction is being made between neuronal activity that is directly related to the cognitive process under
46 study (e.g. perceiving a specific stimulus) – which is typically approximated by a trial-averaged neuronal response –
47 and ‘the rest’. While this framework has undoubtedly been useful for characterizing the general response dynamics
48 of neuronal networks, it remains an outstanding issue whether trial-averaged population activity is used to transmit
49 information between neurons. In other words, neuroscientists care about average population responses, but does the
50 brain?

51 There is evidence in both directions: Studies highlighting the large inter-trial variability of neuronal responses
52 [19, 20, 24–26] suggest that average responses fail to capture ongoing neuronal dynamics. Then there is the simple
53 fact that outside the lab, stimuli generally do not repeat, which renders pooled responses across stimulus repetitions
54 a poor basis for neuronal coding. On the other hand, the fact that perceptual decisions can be altered by shifting
55 neuronal activity away from the average [27–30] indicates that at least in typical lab experiments [31], average
56 population responses matter [32].

57 In this paper, we formally test to what extent the assumptions inherent in the computation of average neuronal
58 responses actually hold in different experimental contexts. Specifically, if neuronal coding and the resulting behaviour
59 rely on average ‘response templates’ of population activity, two assumptions should be satisfied (Fig. 1A):

- 60 1. Reliability: The responses of task-relevant neuronal populations repeat consistently enough to provide a recog-
61 nizable reflection of the average response to downstream regions.
- 62 2. Behavioural Relevance: If a single-trial response better matches the average response template, it should be
63 more successful in evoking correct behavioural responses.

64 **Results**

65 To test these two assumptions across a range of experimental conditions, we examined two complementary data
66 sets featuring neuronal recordings in behaving mice. Dataset 1 consists of two-photon recordings in primary and
67 secondary somatosensory cortex (S1 and S2) as mice detected a small optogenetic stimulus in S1 [33] (Fig 1B). Mice
68 were trained to lick for reward in response to the optogenetic activation of 5 to 50 randomly selected S1 neurons.
69 On 33% of trials, there was a sham stimulus during which no optogenetic stimulation was given (stimulus absent

71 condition). Simultaneously, using gCAMP6s, 250 – 631 neurons were imaged in S1 and 45 – 288 in S2. Data set 1
72 thus represents a benchmark case of strong experimental control focused on a small set of cortical areas. Particularly,
73 in this case the stimulus is identical to the neuronal response, skipping upstream processing.

74 Data set 2 contains high-density electrophysiological (Neuropixel) recordings across 71 brain regions (Fig. 1C) in
75 mice performing a two-choice contrast discrimination task [30]. Mice were presented with two gratings of varying
76 contrast (0, 25, 50 or 100%) appearing in their left and right hemifield. To receive reward, animals turned a small
77 steering wheel to bring the higher-contrast grating into the center, or refrained from moving the wheel if no grating
78 appeared on either side. When both stimulus contrasts were equal, animals were randomly rewarded for turning right
79 or left. Those trials were discarded in our analysis since there is no ‘correct’ behavioural response. Data set 2 thus
80 allowed us to test the computational relevance of averages across a wide range of brain areas within a less tightly
81 controlled behavioural paradigm.

82 To probe the computational role of averages within the tightly controlled setting of Data set 1, we first computed
83 average population responses for the two experimental conditions: Optogenetic S1 stimulation present versus absent.
84 Since optogenetic stimulation could target different numbers of neurons ranging from 5 to 50, for the purpose of this
85 analysis we pooled all stimulation intensities into the ‘stimulus present’. We did this because the low trial numbers per
86 stimulation intensity would have made cross-trial averaging largely meaningless, and because the population averages
87 of different stimulus intensities were highly correlated (see Fig. S2A).

88 Average response *templates* were computed as the mean fluorescence ($\Delta F/F$) of each neuron in a time window of
89 0.5 s following the stimulation offset (Fig. 1B, right panel). Since optogenetic stimulation caused artifacts in the two-
90 photon recordings, the stimulation period itself was excluded from analysis. We next quantified how well single-trial
91 responses correlated with their corresponding average template (stimulation present or absent) (Fig. 2; see also [34]).
92 Correlations in S1 ranged from $r = -0.13$ to 0.64 ($n = 1795$ trials; $p < 0.001$), suggesting that single-trial responses
93 represented the template quite faithfully. In S2, correlations were more spread, ranging from -0.29 to 0.71 ($n = 1795$
94 trials).

95 To further assess if single-trial responses can be regarded as a down-sampled or ‘noisy’ version of the average
96 template, we repeatedly computed a bootstrapped response vector for each trial based on the neurons’ average
97 response preferences (Fig. S3, Methods). These surrogate data correlated only slightly better to the template than
98 the original data in both S1 and S2 (Supp. Fig. 4)), suggesting that in Data set 1, single-trial responses can be
99 interpreted as mostly reliable samples of the respective average template.

100 Strong correlations between single-trial responses and the population template may partially stem from neurons’
101 basic firing properties, which would not be task-related. To estimate the stimulus specificity of the correlations
102 we observed, we also computed single-trial correlations to the incorrect template (e.g. ‘stimulus absent’ for a trial
103 featuring optogenetic stimulation). Correlations to the incorrect template were significantly lower than to the correct
104 one (Fig. 2A, Mann-Whitney U-test, $p = 5.98 * 10^{-169}$, $p = 4.86 * 10^{-51}$ for S1 and S2, respectively) (Fig 2B). To
105 quantify this directly, we defined the *specificity index*, which measures, on a single-trial basis, the excess correlation
106 to the correct template with respect to the incorrect template. Since the specificity index subtracts two correlation
107 coefficients, it is bounded between -2 and 2. The specificity indices of single-trial responses indicate clear stimulus-
108 specificity (in S1 it ranged from -0.17 to 0.6 and a median of 0.16 ; in S2 it ranged from -0.3 to 0.51 and a median of
109 0.11) (Fig 2B). Together, these results indicate that single-trial responses in Data set 1 were strongly and selectively
110 correlated to the corresponding average template, largely fulfilling Assumption 1.

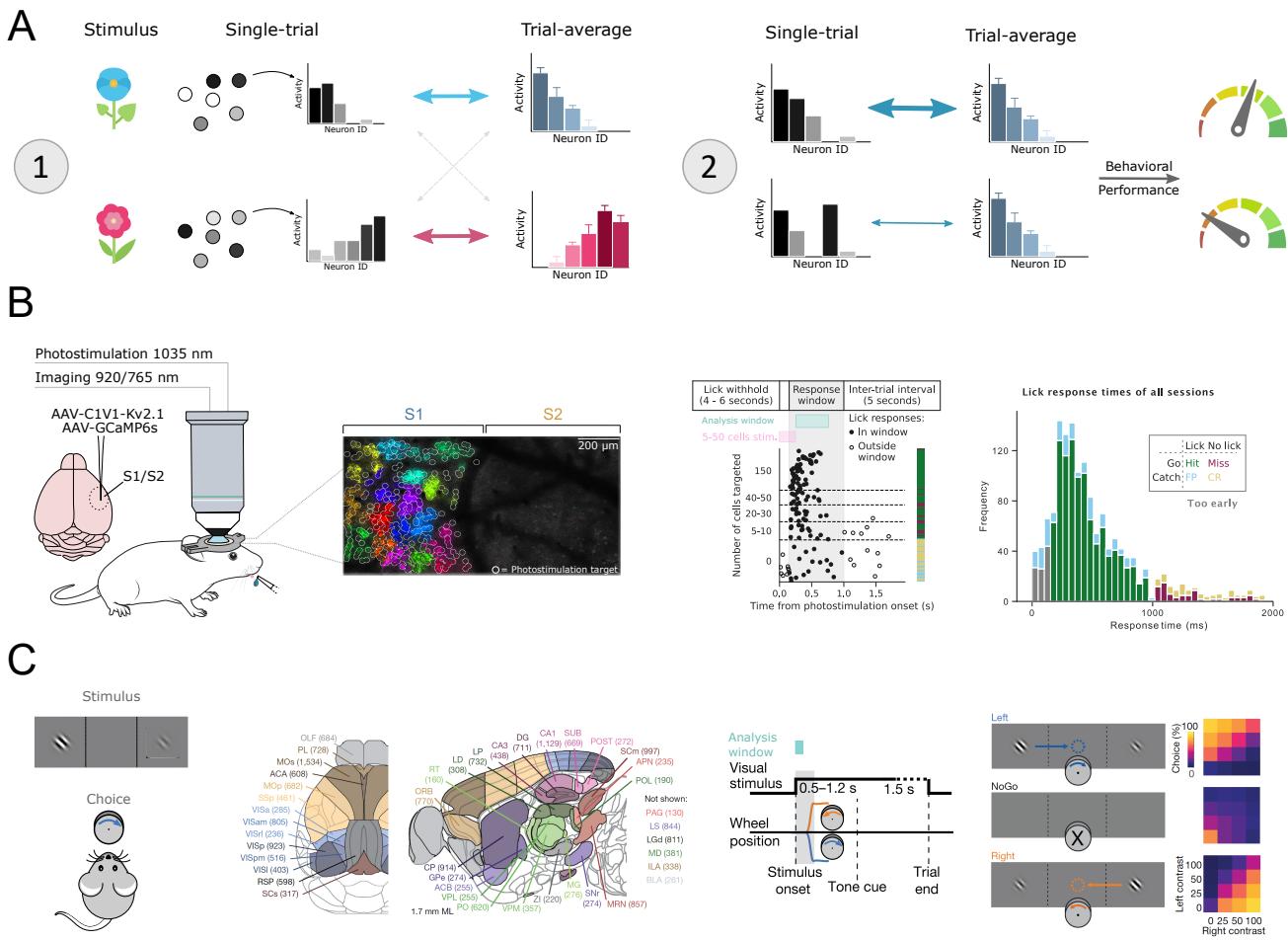


FIG. 1. Test hypotheses and data. A) Graphic summary of the two assumptions underlying the computation of average population responses: Single-trial responses correspond at least somewhat to the trial-averaged response (left), and better matched single-trial responses lead to more efficient behaviour (right). B) In Data set 1, animals have to report whether they perceived the optogenetic stimulation of somatosensory neurons (S1) through licking to receive reward. C) In Data set 2, animals needed to move a steering wheel to bring the higher-contrast grating stimulus into the centre, or refrain from moving the wheel when no gratings are presented. Average behavioural performance on this task is shown on the right. C) Recording sites and, in parenthesis, total number of recorded neurons. B and C are reproduced with permission from [30].

111 Next, we set out to test if the correlation between single-trial responses and average templates predicted the animal's
 112 behaviour. To this end, we separately examined the single-trial correlations in trials that resulted in hits, misses,
 113 correct rejections (CRs) or false positives (FPs). For the trials where optogenetic stimulation was present, single-trial
 114 correlations in S1 were significantly lower in miss trials than in hit trials across both brain areas, suggesting that
 115 a better match to the average template did indeed produce hit trials more often (Fig. 3A, Mann-Whiney U-test,
 116 $p = 4.96e - 68$). Similarly, while single-trial correlations were overall lower in the absence of optogenetic stimulation,
 117 correct rejections nevertheless featured significantly higher correlations than false positives (Fig. 3A, Mann-Whiney
 118 U-test, $p = 2.82e - 17$ for the hit/miss comparison, for each area). The same pattern held true for S2, though
 119 overall correlations were marginally smaller and the difference between correct and incorrect trials was somewhat
 120 less pronounced ($p = [2.02e - 50, 1.37e - 11]$ for the hits/misses and CR/FP comparisons, respectively). To quantify

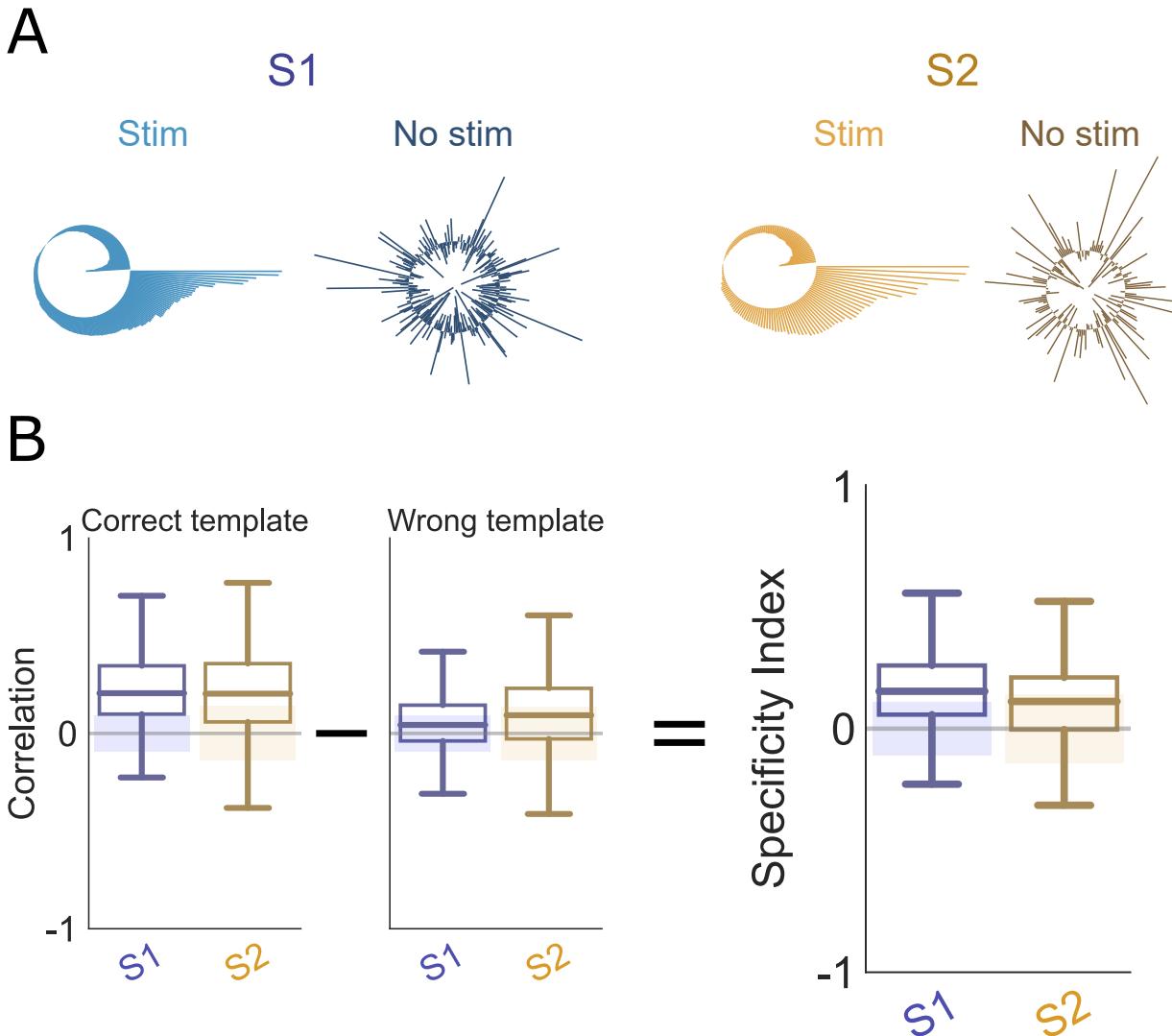


FIG. 2. Single-trial responses are stimulus-specific for Data set 1. A) Single-trial responses for S1 (blues) and S2 (oranges). Each bar represents a neuron, its height represents the activation (see Fig. S1 for an example). Stim: the sorted neural response in an example trial where the stimulus was present; No stim: same sorting as before, for another trial where the stimulus was absent. B) Distribution of the correlations between single-trial response vectors and the trial-averaged response template for the correct (left) and wrong (center) stimulus constellations. Box: 25th and 75th percentile. Center line: median. Whiskers: 10th and 90th percentile. Shaded areas: 5th and 95th percentiles of bootstrapped data. At the right, we show the Specificity index of single-trial responses for both brain areas, defined as the difference between the correlations to the correct and wrong templates. Solid gray line highlights the Specificity Index of 0.0, which translates to exactly equal correlation to correct and incorrect template.

121 directly to what extent single-trial correlations predicted behaviour, we computed the Behavioural Relevance Index
 122 (Ω) as $\Omega = \max(A, 1 - A)$, where A is the Vargha-Delaney's effect size [35]. The Behavioural Relevance Index is
 123 bounded between 0.5 and 1, with 0.5 indicating complete overlap (stochastic equality) between the distributions and
 124 1 meaning no overlap at all (absolute stochastic dominance). For Data set 1, Behavioural Relevance in S1 and S2
 125 were 0.86 and 0.81, respectively. This suggests that in both areas, single-trial responses that were better matched to

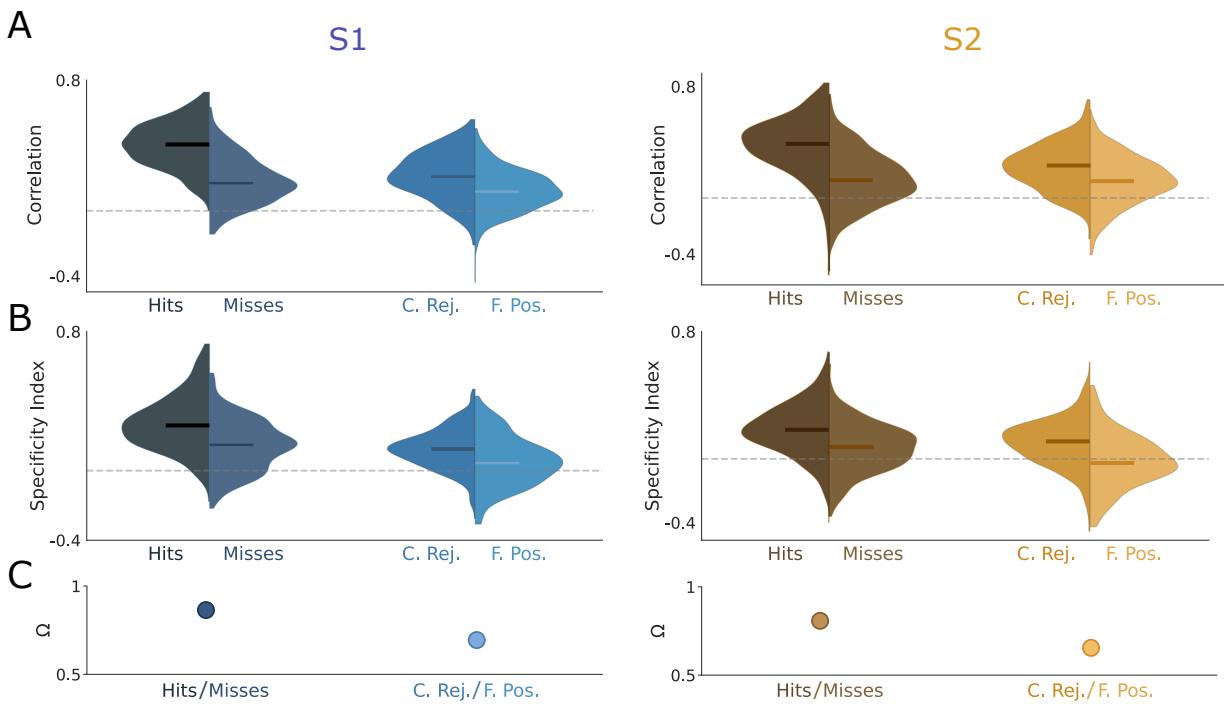


FIG. 3. Better template-matching predicts better behavior. A) Match between single-trial responses and correct template in hit, miss, correct rejection and false positive trials. B) Same as for A), but for the Specificity Index. C) Behavioral Relevance indices (Ω) are shown; they can take values between 0.5 and 1, with 0.5 indicating a complete overlap between distributions and 1 meaning no overlap at all (Methods).

126 the cross-trial average resulted in more successful behaviour, fulfilling Assumption 2. Together, these results indicate
 127 that in Data set 1, cross-trial averages are both reliable and behaviourally relevant enough to serve a computationally
 128 meaningful function.

129 Building on these results, we set out to determine how computationally meaningful cross-trial averages might be
 130 within the less restrictive and more behaviourally active experimental paradigm of Data set 2. Since Data set 2
 131 contains neuronal recordings from 71 brain areas, not all of which may be directly involved in the perceptual task at
 132 hand, we used a data-driven approach to identify to what extent neuronal population activity predicted the presented
 133 stimulus and/or the animal's target choice. We trained a decoder (Multinomial GLM, Methods) based on single-
 134 trial population vectors, to identify either target choice (left/right/no turn) or stimulus condition (higher contrast
 135 on left/right, zero contrast on both). For the neuronal response vectors, we considered neuronal activity 0 – 200ms
 136 post-stimulus onset (Fig. S4). We then computed the mutual information between the decoder predictions and the
 137 real outcomes (Fig. 4A; Methods).

138 Many brain areas contained little task-relevant information (shown in grey in Fig. 4A). We therefore used an elbow
 139 criterion (Methods) to determine a threshold for selecting brain areas that provided the highest information on either
 140 stimulus ($I_{stim}^{thr} = 0.242$ bits; blue quadrant), choice ($I_{choice}^{thr} = 0.248$ bits; red quadrant), or both (i.e. both thresholds
 141 exceeded; purple quadrant). These areas seem largely congruent with the literature. For instance, primary visual
 142 cortex (V1Sp) is expected to reflect the visual stimulus, while choice information is conveyed e.g. by the ventral
 143 anterior-lateral complex of the thalamus (VAL) – known to be a central integrative center for motor control [36]. As
 144 an example of a both choice- and stimulus-informative area, we see caudoputamen (CP) - involved in goal-directed

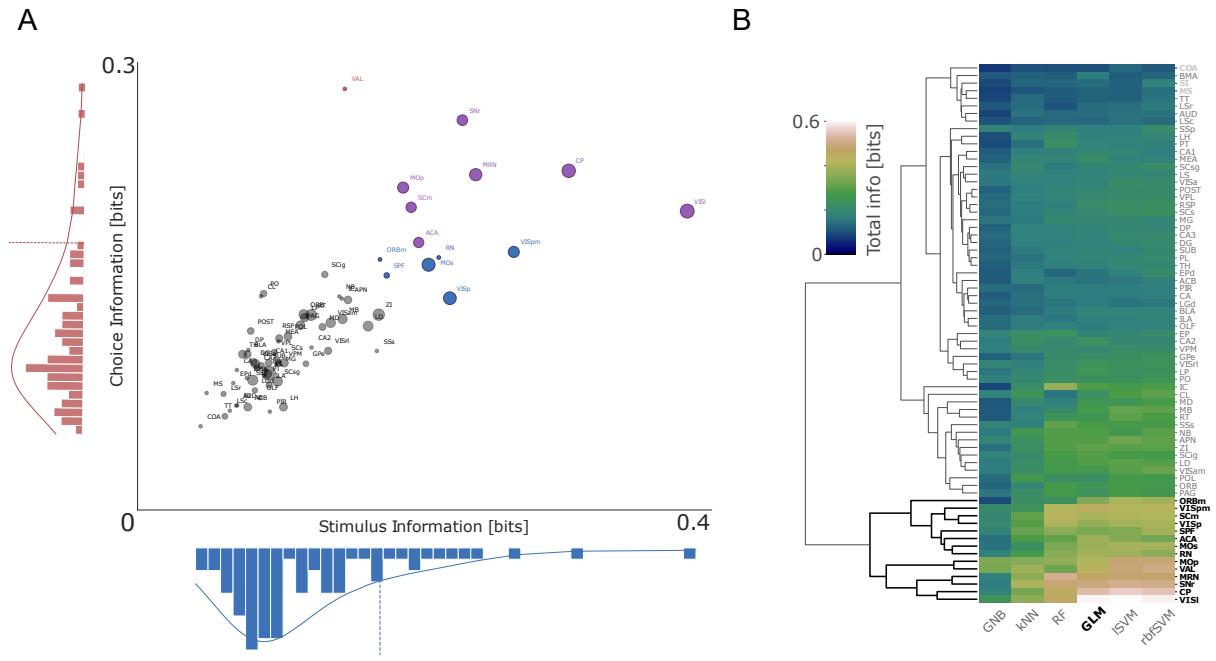


FIG. 4. Not all brain areas are equally task-informative. A) Stimulus and target choice information decoded by a multinomial GLM decoder (Methods) from the neuronal activity in various brain areas. Each point represents the median (dot location) and standard deviation across sessions (dot size) of one brain area (see in-figure labels). Colors (blue, red, purple) represent those areas where (stimulus, choice, both) information was high. B) We tested the stability of our results by repeating the decoding with other models (see labels) and then performing a hierarchical clustering of the ranked areas. The 14 areas we found with the GLM (shown in A) are consistently found with different models.

145 behaviors [37], spatial learning [38], and orienting saccadic eye movements based on reward expectancy [39]. To
146 further validate our selection of relevant brain areas, we repeated the analysis with other five decoders (Fig. 4B). We
147 ranked the total amount of Mutual Information per area (stimulus + choice information), using each of these models.
148 Finally, we performed a hierarchical clustering and show that the areas we identified in Fig. 4A consistently appeared
149 in the top performing cluster (Fig. 4B). Together, these results converged on a group of 14 brain areas that conveyed
150 significant task information regardless of the decoder approach.

Having identified task-relevant brain areas, we used neuronal recordings from those informative areas to test the two assumptions set out above (Fig. 5; for results for all areas, see Fig. S5). First, we computed the average population response templates for different experimental conditions. To avoid working with trial numbers as low as $n=2$ for specific contrast combinations, we pooled several contrast levels (e.g. 50% right – 0% left and 100% right – 50% left) into two conditions: Target stimulus on the left or on the right. This pooling strategy seemed particularly appropriate since average responses to the individual contrast levels were very comparable (Fig. S2), and were meant to result in the same behavioural response.

To test the first assumption, as we did for Data set 1, we quantified how well single-trial responses correlated with the template for a given stimulus (Fig. 5A, top; see also [34]). Median correlations ranged from $r = 0.56$ to 0.89 across all brain areas ($n = 89$ to 3560 trials per brain area; all $p < 0.001$), suggesting that single-trial responses were similar to the template. To address how different these correlations were from those that we would get if single-trials were random samples of the template, we computed 100 bootstrapped response vectors for each trial (Fig. S3 B);

163 Methods). Each bootstrapped response contained the same number of spikes as the original trial, but the neurons
164 that produced these spikes were chosen randomly according to their probability of occurrence in the average template.
165 These surrogate data uniformly correlated better to the template than the original data (Fig. 3A). This indicates
166 that single-trial responses in Data set 2 exhibited more variation than explained by (Poissonian) down-sampling.

167 Next, we estimated the stimulus specificity of the observed correlations by computing single-trial correlations to
168 the incorrect template (e.g. ‘target right’ for the left target). These were marginally lower than to the correct
169 template (Fig. 3A, bottom). However, the correlation difference was so small compared to the spread of single-trial
170 correlations that correlations to the correct and incorrect templates were largely indistinguishable. Consistent with
171 this, the Specificity Indices across brain areas in Data set 2 were mostly positive but rarely exceeded 0.1 (Fig. 5B).
172 In other words, correlations between single-trial responses and template were largely stimulus-independent.

173 These results tally with recent work demonstrating how strongly non-task-related factors drive neuronal responses
174 even in primary sensory areas like visual cortex [19, 20, 40–44]. However, the animal still needs to arrive at a
175 perceptual choice. If trial-averaged templates are relevant to this perceptual decision, single-trial responses that are
176 more dissimilar to the template should be more difficult to process, and hence lead to less efficient behaviour [30].

177 To test if the match between single-trial responses and the average template predicted target choices (Assumption
178 2), we compared single-trial correlations for hit trials (correct target choice) and miss trials (incorrect target or no
179 response). Single-trial correlations were marginally lower in miss trials than in hit trials across most brain areas,
180 suggesting that a better match to the average template did indeed lead to hit trials slightly more often (Fig. 5C,
181 top; Supp. Results). However, the difference between the correlations was small, leading to Behavioural Relevance
182 indices between X and Y. According to the Vargha & Delaney’s A effect size, such values would be considered largely
183 negligible, indicating that single-trial correlations are not a reliable way to predict subsequent behaviour in Data set
184 2 [35] (Ω ; Fig. 5E).

185 Together, these results suggest that in Data set 2, the relation between single-trial responses and trial-averaged
186 templates is neither reliable nor specific, and does not appear to substantially inform subsequent behavioural choices.
187 However, this estimate may present a lower bound for several reasons. First, while the task information conveyed
188 by cross-trial averages seemed to be limited in the recorded population of neurons, it might be sufficient to generate
189 accurate behaviour when scaled up to a larger population. To explore this possibility, we sub-sampled the population
190 of recorded neurons in each brain area from $N/10$ to N (Fig. 6A). We then extrapolated how the specificity and
191 behavioural relevance indices would evolve with a growing number of neurons. This indicated that in Data set 2,
192 average template matching is unlikely to become more consistent, specific or behaviourally relevant with more neurons.
193 This did not seem to be a general feature of our extrapolation approach: When we repeated the same analysis in
194 Data set 1, the Specificity Index appeared to remain largely stable with growing n , but Ω rose steeply, indicating that
195 with a larger number of neurons, the match of individual trials to the average template would more strongly predict
196 behaviour.

197 Alternatively, while cross-trial averages may not perform well in Data set 2 when computed for all recorded neurons,
198 there may be a ‘supergroup’ of highly reliable neurons, which might then drive downstream processing [45, 46].
199 However, a jackknife procedure (i.e. removing one neuron at a time from the data; see Methods) revealed no neurons
200 that particularly boosted single-trial correlations, Specificity, or Behavioural Relevance (Fig. S5). In some areas (e.g.
201 RN or SNr), there seemed to be at least some neurons that contributed substantially to single-trial correlations, but
202 this was not the general tendency: most specificity index and relevance index distributions were symmetrical. This

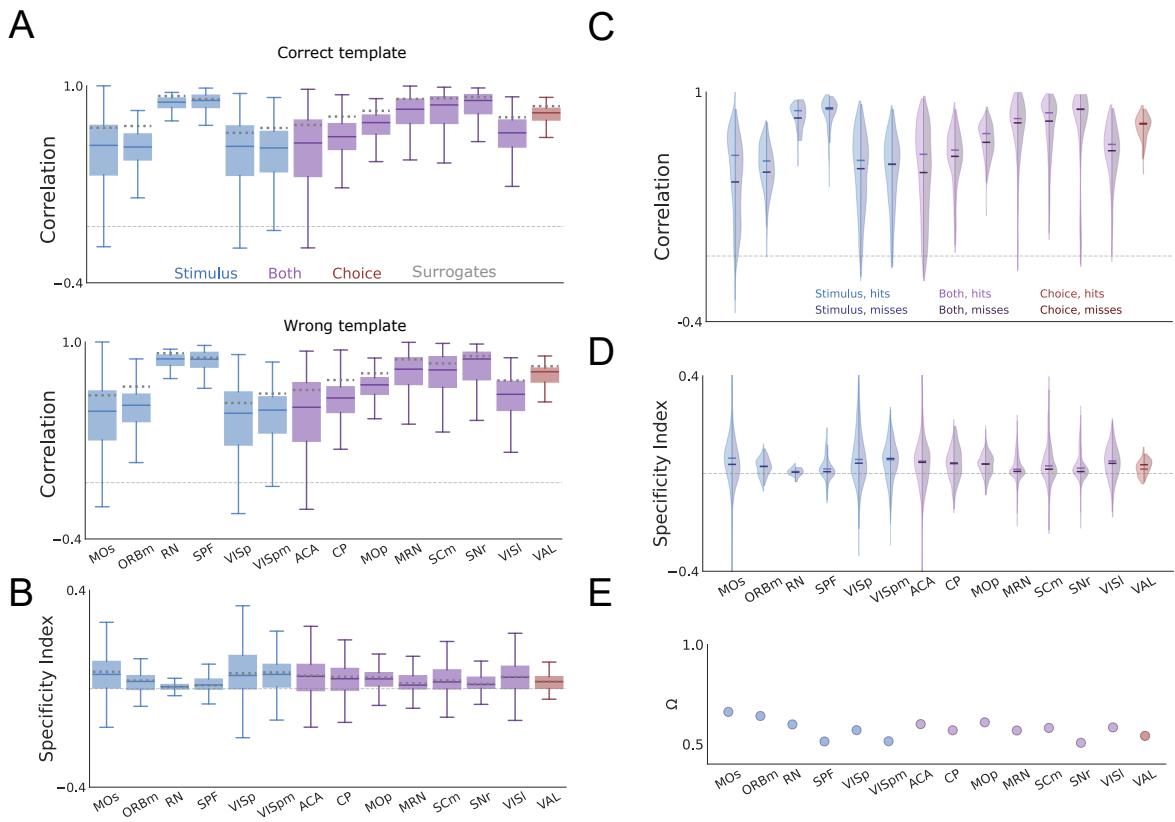


FIG. 5. Single-trial responses are barely stimulus-specific or behaviorally relevant for Data set 2. A) Distribution of the correlations between single-trial response vectors and the trial-averaged response template for the correct (top) and wrong (bottom) stimulus constellation. B) Same as B, but the Specificity index of single-trial responses across brain areas, defined as the difference between the correlations to the correct and wrong template. Solid gray line highlights the Specificity Index of 0.0, which translates to exactly equal correlation to correct and wrong template. Dotted lines represent the specificity index of the medians of the bootstrapped values for each recorded area. C) Same as A (top), split by hits and misses. These distributions almost completely overlap, for all brain areas. D) Same as B, split by hits and misses. As in the previous panel, these distributions are practically coincident. E) Behavioral Relevance Index for all brain areas. They range from 0.51 to 0.66, with $\Omega = 0.5$ meaning perfect overlap.

203 also held for Data set 1, implying that in both data sets, any sub-set of neurons could convey the average template
 204 to approximately the same extent.

205 Another potential limiting factor of our analysis could be that in the more complex behavioural context of Data set
 206 2, template-matching may occur in a way that could not be captured by simple correlations. To explore this scenario,
 207 we repeated all previous analyses, but characterized population responses using Principal Component Analysis (PCA)
 208 via Singular Value Decomposition (SVD), and quantified their resemblance (normalized distance, see Methods) to the
 209 average template in this dimensionally-reduced space. In both data sets, stimulus specificity increased marginally,
 210 but behavioural relevance decreased (Fig. S8, see also Fig. 7). This suggests that cross-trial averages extracted via
 211 PCA were more reliable across trials, but less predictive of behaviour. The decrease in behavioural relevance was
 212 particularly steep in Data set 1, indicating that raw firing rates were more instructive to the animals' choices than
 213 dimensionally-reduced features of neuronal activity (Fig. S8).

214 Finally, neuronal responses may reflect a multi-factorial conjunction of response preferences to a wide range of

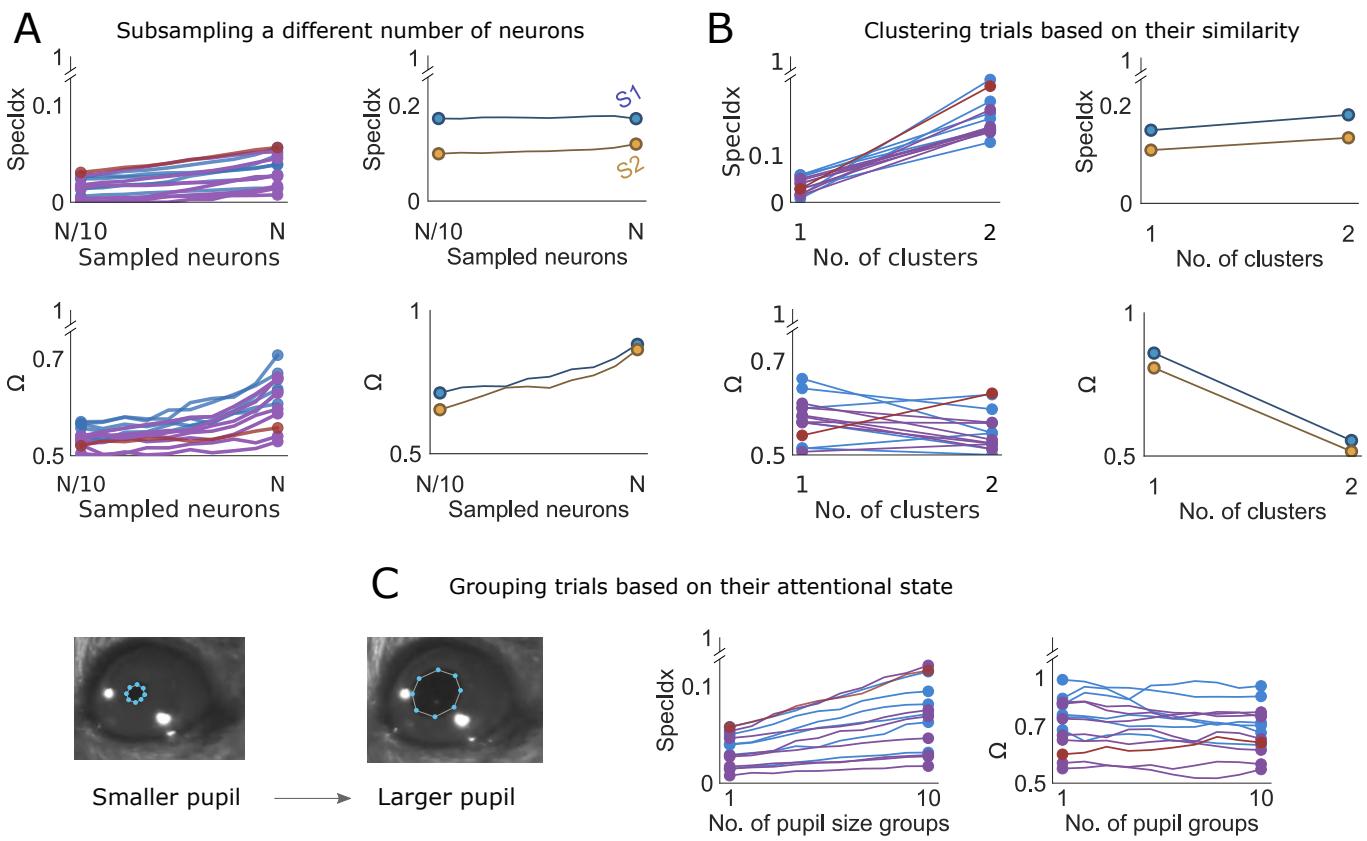


FIG. 6. Control analyses for both datasets. A) We subsampled neurons (up to 1/10 of the entire recorded population) in order to check whether we could extrapolate a marked benefit from adding neurons when performing template-matching. While this procedure yields an increase in Ω for Data set 1, it only marginally is the case in Data set 2. On top of that, the Specificity Indices for both Data sets are largely unchanged. B) We clustered trials (Methods) based on the similarity in their neural response and based on their pupil size, as shown in C. Neither of these groupings are useful to make template-matching more stimulus-specific or behaviorally relevant.

stimulus features and behavioural variables. To test this hypothesis, we quantified whether single-trial correlations to the average would become more consistent or predictive of target choice when additional variables were taken into account. While we can of course neither know nor measure all variables that would be potentially relevant to such a multi-factorial response landscape, we tested two factors as a benchmark. As a first test, we accounted for spontaneous fluctuations of attentional state as reflected by pupil size. Such fluctuations are a ubiquitous and well-documented phenomenon that has previously been shown to strongly impact neuronal population activity [42, 47, 48]. We therefore used attentional state (estimated by pupil size) as a representative example of known behavioural modulators of neuronal responses. To this end, we computed cross-trial averages for sub-groups of trials in which the animal exhibited similar pupil sizes. If population responses are modulated by attentional state [42, 47, 48], examining only trials that occurred during similar attentional states should reduce unexplained variability. However, grouping trials by average pupil size did not improve specificity or behavioural relevance in Data set 2 (Fig 6C; note that Data set 1 did not contain measurements of pupil size).

As a second benchmark, we accounted for potential modulating variables in a more agnostic way by clustering the neuronal population responses from all trials according to similarity. Such clusters might reflect different spontaneously

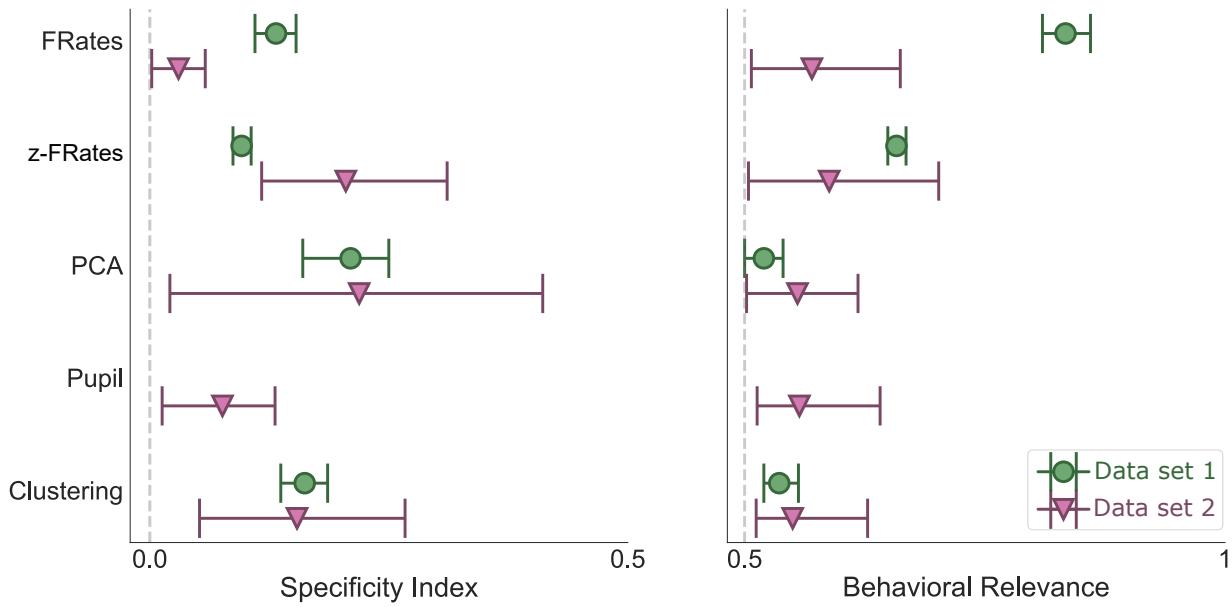


FIG. 7. Summary of the result over methods and areas, for both data sets.

229 occurring processing states that the animal enters into for reasons (e.g. locomotion, satiation, learning etc.) that may
 230 remain unknown to the experimenter. After computing the Silhouette Index, which measures cluster compactness
 231 (Fig. S7), we decided to group trials into two clusters. We again repeated all analyses of response specificity and
 232 behavioural relevance within each of these trial clusters. As expected, given that trials were chosen based on similarity,
 233 response specificity rose from a median value of 0.07 to 0.15 in Data set 2. In contrast, in Data set 1, the Specificity
 234 Index was largely unchanged. This aligns with the fact that clusters in Data set 1 were less compact (Fig. S7 A)
 235 and thus trial-grouping improved trial homogeneity less markedly. In contrast, trial-grouping had an overall negative
 236 effect on Behavioral Relevance in both data sets. Data set 1 featured mixed effects across areas, with a median change
 237 of 0.04, while Data set 2 showed a steep decrease from a median value of 0.83 to 0.54.

238 Together, these analyses suggest that the missing link between single-trial responses and cross-trial averages in
 239 Data set 2 is not explained by unmeasured confounding factors, non-linear interactions or lack of neurons, but rather
 240 a systemic feature of the data set. Fig. 7 summarizes the outcomes of different analysis approaches. In all cases,
 241 Data set 1 shows better stimulus-specificity and behavioural relevance than Data set 2. Furthermore, we show that an
 242 alternative template-matching procedure (i.e., Z-scoring the neural responses over trials, denoted by z-FRates) might
 243 improve stimulus-specificity in Data set 2, but it does nothing for its Behavioural Relevance Index and it heavily
 244 decreases it in Data set 1.

245

246 Discussion

247 The present study set out to formally test how informative average population responses are to the brain in different
 248 contexts. If cross-trial averages are computationally relevant, single-trial responses should be sufficiently reliable and
 249 specific to resemble the correct average template, and better-matching single-trial responses should evoke more efficient
 250 behaviour. To directly quantify to what extent these two conditions are fulfilled in a given data set, we developed
 251 two simple metrics: (1) The Specificity Index, which captures whether a single-trial response is more related to the
 252 average response of the true experimental condition than to the average responses of other experimental conditions;

253 and (2) The Relevance Index, which reflects whether higher single-trial correlations to the correct average template
254 result in more behaviourally successful trials.

255 Based on these metrics, we find that the two assumptions of cross-trial averaging are largely fulfilled in one of
256 the two data sets examined here: Data set 1 required mice to respond by licking when they detected a highly
257 controlled optogenetic stimulus in S1. In this setting, single-trial responses correlated strongly and specifically with the
258 correct average template. In addition, lower single-trial correlations often resulted in incorrect behavioural responses,
259 suggesting that the match between individual responses and average templates did indeed inform decision making.
260 This success is particularly surprising because optogenetic stimulation targeted a somewhat overlapping but randomly
261 selected population of 5 to 50 neurons in each new trial. Thus, even though optogenetic stimulation varied randomly,
262 it seemingly managed to recruit a reproducible network of neurons within the analysis time window of 500 ms post-
263 stimulation. This suggests that the population responses highlighted by our analyses of Data set 1 rely on 'hub
264 neurons' that are activated by various different stimulation patterns.

265 In contrast, in Data set 2 mice used a steering wheel to select the higher-contrast of two gratings. In this context,
266 single-trial correlations were robust but not stimulus-specific, implying that they mostly reflected factors such as
267 baseline firing rates rather than conveying stimulus information. Correcting for such baseline differences in firing rate,
268 as done by PCA, did not improve the Specificity index of single-trial correlations. Moreover, single-trial responses
269 that better resembled the correct template hardly increased an animal's chance of choosing the correct target. Further
270 analyses indicated that these results would not improve with more neurons, or by taking into account complementary
271 variables such as behavioural state. This suggests that in Data set 2, average population responses were not the
272 central mechanism driving perceptual decision-making.

273 The disparity of outcomes between the two data sets examined here could be due to several factors. In many
274 ways, Data set 1 offers an ideal case for average population responses to play a functional role: Stimulation is
275 highly controlled, and takes place directly within the recorded brain area rather than being relayed across several
276 synapses; behavioural responses (in the form of licking) are short and stereotyped, reducing movement-related neuronal
277 dynamics; and animals are explicitly trained to detect a difference in the average amount of neuronal activity within
278 S1. In other words, even if sensory stimuli were typically not encoded in average S1 population firing rates, animals
279 in Data set 1 may have essentially learned to 'count S1 spikes for reward'. By comparison, Data set 2 features less
280 controlled visual stimulation since animals can look at either of the two stimuli freely; modulation of the stimulus
281 signal by several synaptic relays; additional neuronal dynamics driven by increased and more complex spontaneous
282 movement in the form of wheel turning; and of course the fact that animals are free to process the difference in
283 grating contrast in ways other than average population firing. Thus, while the two data sets examined here are clearly
284 not sufficient to draw general conclusions, our results may point towards a scenario where cross-trial averages are
285 more computationally relevant in settings featuring strong stimulus control and expert or over-trained behaviours.
286 This would mean that especially in order to understand more naturalistic neuronal computations, cross-trial averages
287 might not be helpful.

288 An alternative possibility is that we underestimated the computational role of cross-trial averages in Data set 2 due
289 to idiosyncrasies of the paradigm and of our analyses. First, task-relevant stimulus information in Data set 2 had to
290 be computed by comparing visual inputs across brain hemispheres, but we only had access to neuronal activity from
291 one hemisphere. Thus, recording from both hemispheres might have yielded more informative population templates.
292 Nevertheless, the animal is proficient in this task (Fig. 1B), which means that even if some brain areas (e.g. primary

293 visual cortex) do not integrate information from both hemi-fields, some downstream area(s) should receive the result of
294 the cross-hemisphere computations needed to initiate the correct behavioural response. Since this data set is arguably
295 the most complete set of neuronal recordings to date regarding the number of recorded brain areas, it seems unlikely
296 that not a single area consistently represents integrated stimulus information from both hemi-fields.

297 Another limitation of the average templates computed in Data set 2 may be that each one encompasses several
298 contrast combinations. However, as the neuronal responses to the stimulus pairs subsumed in the same template
299 were highly correlated to each other (Fig. S2), the precision lost by pooling across stimulus pairs appears negligible.
300 This notion is further supported by the fact that we also pooled stimulus categories for Data set 1 by considering all
301 trials with stimulation protocols targeting from 5 to 50 neurons within the category 'stimulus present'. Yet in this
302 case, pooling trials of different stimulus intensities clearly did not significantly hamper the computational relevance
303 of cross-trial averages. Finally, since the two pooled stimulus categories in Data set 2 mapped onto the two distinct
304 behavioural response options (i.e. turn the wheel left or right), basic information on which hemi-field contains the
305 higher-contrast stimulus should be reflected in at least some brain areas in order to drive the corresponding behavioural
306 response – a notion that is also borne out by the decoder analysis (Fig. 4).

307 Finally, the stimulus-related response templates explored here may generally underestimate the computational
308 power of average responses by ignoring the many stimulus and behavioural factors at play at any moment in time
309 [5, 19, 20, 40, 42–44, 49], only some of which will be known or accessible to the experimenter. This can make
310 neuronal responses appear highly unpredictable, while they are actually shaped systematically and reliably by a set
311 of unmeasured, or 'latent', variables. In principle, downstream neurons may be able to disentangle these factors to
312 distill e.g. stimulus-related information.

313 We investigated this idea in two different ways. First, we grouped trials by pupil size, which is known to reflect
314 spontaneous fluctuations in attentional state that strongly shape neuronal population activity [42, 47, 48]. Second, to
315 account for modulating variables in a more agnostic way, we searched for distinct trial clusters that featured similar
316 neuronal population responses. Such clusters might reflect different processing states that the animal enters into for
317 reasons (e.g. locomotion, satiation, learning etc.) that may remain unknown to the experimenter. If either of these
318 variables formed part of the 'multi-factorial average response curve' of the recorded neurons, then only considering
319 trials recorded during a similar attentional state (as measured by pupil size) or within the same trial cluster should
320 increase the specificity and behavioural relevance of the resulting cross-trial averages by removing one source of
321 response modulation that was previously unaccounted for. This was the case in Data set 1 but not in Data set 2,
322 suggesting that even when more latent variables are accounted for, averages may still not the most accurate way to
323 reflect information processed by the brain.

324 In addition, several recent papers have argued that factors such as stimulus properties, behavioural choices, and
325 retrieved memories are encoded along largely orthogonal dimensions in neuronal response space [8, 11, 12]. If this
326 is true, then extracting cross-trial averages via a dimensionality-reduction technique like PCA should enable us
327 to dissociate them from other, orthogonally-coded, types of information, and thereby significantly improve their
328 computational relevance even in the presence of other modulating factors. This scenario held to some extent for
329 Data set 1, where single-trial response vectors as extracted by PCA became more specific to the average template,
330 but not more behaviourally relevant. In Data set 2, applying PCA did not result in any substantial improvements.
331 It is possible that these outcomes depend on the choice of dimensionality-reduction technique. We chose PCA as
332 a benchmark due to its simplicity and ubiquitous use, but other approaches like non-Negative Matrix Factorization

333 [50] might yield different results [51]. If they were to prove more successful, this would argue in favour of analyses
334 characterizing average neuronal response preferences simultaneously for multiple, potentially non-linearly interacting
335 factors [52]. In this case, we would suggest that the neuroscience community abandons single-feature response averages
336 in favour of average multi-feature response 'landscapes'. This would involve finding routine metrics to track ubiquitous
337 latent variables like behavioural state [42, 44, 53–55] throughout a wide range of experiments.

338 Crucially, our results suggest that the utility of trial-averaged responses can vary dramatically across different contexts
339 contexts. The relevance of template matching is likely to shift depending on behavioural context, stimuli, species –
340 as well as the aspect of neuronal activity that is averaged, such as neuronal firing rates, firing phase, coherence etc.
341 [30]. Similarly, dimensionality-reduction techniques may improve the reliability of cross-trial averages in some cases
342 (such as Data set 1), but not in others (as in Data set 2). We therefore encourage researchers to compute simple
343 'rule-of-thumb' metrics such as the Specificity and Relevance index in order to estimate what computational role
344 cross-trial averages may play for the experimental paradigms, neuronal computations and neuronal response metrics
345 that they study. Over time, we hope that this practice will generate a 'map' of contexts in which cross-trial averages
346 are computationally meaningful - and motivate the field to restrict the usage of cross-trial averages to cases when
347 they are in fact relevant to the brain.

348 *Ideas and Speculation*

349 If classical trial-averaged population responses appear largely irrelevant to ongoing neuronal computations at least in
350 some contexts, how then could stimulus and target choice information be encoded in such contexts? First, information
351 may be encoded mostly in joint neuronal dynamics that are not captured by static (single- or multi-feature) response
352 preferences. Analyses that take into account such dynamics, e.g. by tracking and/or tolerating ongoing rotations
353 and translations in neuronal space [55–58] or by explicitly including shared variability in their readout [59, 60],
354 often provide vastly more informative and stable neuronal representations [56, 57]. Consistent with this, the decoder
355 analyses (Fig. 4) extracted information more successfully – most likely because decoders rely on co-variability and
356 co-dependencies between input data and the class labels, which are smoothed over by trial-averaging.

357 Second, while here we have tested cross-trial averages of population firing rates as a benchmark of basic analysis
358 practices in neuroscience, other aspects of neuronal activity might be more informative - and as a result also potentially
359 lead to more informative cross-trial averages. For instance, transiently emerging functional assemblies [61–63], phase
360 relationships between neuronal sub-populations [64–66] or the relative timing of action potentials [67–69] may provide
361 an avenue of information transmission that is entirely complementary to population firing rates.

362 Finally, by tracking more stimulus and behavioural variables at the same time, we can further explore how they
363 dynamically influence overlapping and separate aspects of neuronal activity ([9, 53, 54, 70–73]). Over time, we hope
364 that this will shape our understanding of neuronal activity as an ongoing interaction rather than a static snapshot.
365 No matter which of these approaches turns out to be most successful, it is important to recognize that time-averaged
366 population responses may, at least in some contexts, not be a fitting way to describe how the brain represents
367 information.

368

369 **Acknowledgements**

370 We thank Jonathan Pillow, Viola Priesemann and Mike X Cohen for valuable input on earlier versions of the
371 manuscript.

372 [1] W. T. Newsome, K. H. Britten, and J. A. Movshon, *Nature* **341**, 52 (1989).

373 [2] G. B. Keller, T. Bonhoeffer, and M. Hübener, *Neuron* **74**, 809 (2012).

374 [3] J. Poort, A. G. Khan, M. Pachitariu, A. Nemri, I. Orsolic, J. Krupic, M. Bauza, M. Sahani, G. B. Keller, T. D. Mrsic-Flogel, *et al.*, *Neuron* **86**, 1478 (2015).

375 [4] V. Dragoi, J. Sharma, and M. Sur, *Neuron* **28**, 287 (2000).

377 [5] R. N. Ramesh, C. R. Burgess, A. U. Sugden, M. Gyetvan, and M. L. Andermann, *Neuron* **100**, 900 (2018).

378 [6] P. Bao, L. She, M. McGill, and D. Y. Tsao, *Nature* **583**, 103 (2020).

379 [7] M. J. Goard, G. N. Pho, J. Woodson, and M. Sur, *elife* **5**, e13764 (2016).

380 [8] S. W. Failor, M. Carandini, and K. D. Harris, *bioRxiv* (2021).

381 [9] M. C. Aoi, V. Mante, and J. W. Pillow, *Nature neuroscience* **23**, 1410 (2020).

382 [10] H. J. Ladret, N. Cortes, L. Ikan, F. Chavane, C. Casanova, and L. U. Perrinet, *bioRxiv* (2021).

383 [11] A. Libby and T. J. Buschman, *Nature neuroscience* **24**, 715 (2021).

384 [12] S. B. M. Yoo and B. Y. Hayden, *Neuron* **105**, 712 (2020).

385 [13] L. Q. Uddin, *Trends in Cognitive Sciences* **24**, 734 (2020).

386 [14] M. Kafashan, A. W. Jaffe, S. N. Chettih, R. Nogueira, I. Arandia-Romero, C. D. Harvey, R. Moreno-Bote, and J. Dru-
387 gowitsch, *Nature communications* **12**, 1 (2021).

388 [15] M. M. Churchland, M. Y. Byron, J. P. Cunningham, L. P. Sugrue, M. R. Cohen, G. S. Corrado, W. T. Newsome, A. M.
389 Clark, P. Hosseini, B. B. Scott, *et al.*, *Nature neuroscience* **13**, 369 (2010).

390 [16] M. R. Cohen and J. H. Maunsell, *Nature neuroscience* **12**, 1594 (2009).

391 [17] M. Gur and D. M. Snodderly, *Cerebral cortex* **16**, 888 (2006).

392 [18] N. Roth and N. C. Rust, *Journal of neurophysiology* **121**, 115 (2019).

393 [19] S. Musall, M. T. Kaufman, A. L. Juavinett, S. Gluf, and A. K. Churchland, *Nature neuroscience* **22**, 1677 (2019).

394 [20] C. Stringer, M. Pachitariu, N. Steinmetz, C. B. Reddy, M. Carandini, and K. D. Harris, *Science* **364** (2019).

395 [21] L. Waschke, N. A. Kloosterman, J. Obleser, and D. D. Garrett, *Neuron* (2021).

396 [22] M. Valente, G. Pica, G. Bondanelli, M. Moroni, C. A. Runyan, A. S. Morcos, C. D. Harvey, and S. Panzeri, *Nature
397 Neuroscience* , 1 (2021).

398 [23] D. Festa, A. Aschner, A. Davila, A. Kohn, and R. Coen-Cagli, *Nature Communications* **12**, 1 (2021).

399 [24] C. E. Schoonover, S. N. Ohashi, R. Axel, and A. J. Fink, *Nature* , 1 (2021).

400 [25] D. Shimaoka, N. A. Steinmetz, K. D. Harris, and M. Carandini, *Elife* **8**, e43533 (2019).

401 [26] M. Carandini and C. Stevens, *PLoS biology* **2**, e264 (2004).

402 [27] N. T. Robinson, L. A. Descamps, L. E. Russell, M. O. Buchholz, B. A. Bicknell, G. K. Antonov, J. Y. Lau, R. Nutbrown,
403 C. Schmidt-Hieber, and M. Häusser, *Cell* **183**, 1586 (2020).

404 [28] C. D. Salzman, K. H. Britten, and W. T. Newsome, *Nature* **346**, 174 (1990).

405 [29] P. Zatka-Haas, N. A. Steinmetz, M. Carandini, and K. D. Harris, *bioRxiv* , 501627 (2021).

406 [30] N. A. Steinmetz, P. Zatka-Haas, M. Carandini, and K. D. Harris, *Nature* **576**, 266 (2019).

407 [31] C. R. Fetsch, N. N. Odean, D. Jeurissen, Y. El-Shamayleh, G. D. Horwitz, and M. N. Shadlen, *Elife* **7**, e36523 (2018).

408 [32] C. D. Salzman, C. M. Murasugi, K. H. Britten, and W. T. Newsome, *Journal of Neuroscience* **12**, 2331 (1992).

409 [33] J. M. Rowland, T. L. van der Plas, M. Loidolt, R. M. Lees, J. Keeling, J. Dehning, T. Akam, V. Priesemann, and A. M.
410 Packer, *bioRxiv* (2021).

411 [34] M. Carandini, D. Shimaoka, L. F. Rossi, T. K. Sato, A. Benucci, and T. Knöpfel, *Journal of Neuroscience* **35**, 53 (2015).

412 [35] A. Vargha and H. D. Delaney, *Journal of Educational and Behavioral Statistics* **25**, 101 (2000).

413 [36] A. P. Tlamsa and J. C. Brumberg, *Somatosensory & motor research* **27**, 34 (2010).

414 [37] H. H. Yin and B. J. Knowlton, *Nature Reviews Neuroscience* **7**, 464 (2006).

415 [38] W. E. DeCoteau, C. Thorn, D. J. Gibson, R. Courtemanche, P. Mitra, Y. Kubota, and A. M. Graybiel, *Proceedings of*
416 *the National Academy of Sciences* **104**, 5644 (2007).

417 [39] R. Kawagoe, Y. Takikawa, and O. Hikosaka, *Journal of neurophysiology* **91**, 1013 (2004).

418 [40] M. L. Schölvinck, A. B. Saleem, A. Benucci, K. D. Harris, and M. Carandini, *Journal of Neuroscience* **35**, 170 (2015).

419 [41] C. M. Niell and M. P. Stryker, *Neuron* **65**, 472 (2010).

420 [42] M. Vinck, R. Batista-Brito, U. Knoblich, and J. A. Cardin, *Neuron* **86**, 740 (2015).

421 [43] J. Fournier, A. B. Saleem, E. M. Diamanti, M. J. Wells, K. D. Harris, and M. Carandini, *Current Biology* **30**, 3811 (2020).

422 [44] W. E. Allen, M. Z. Chen, N. Pichamoorthy, R. H. Tien, M. Pachitariu, L. Luo, and K. Deisseroth, *Science* **364** (2019).

423 [45] C. Stringer, M. Michaelos, D. Tsybouski, S. E. Lindo, and M. Pachitariu, *Cell* **184**, 2767 (2021).

424 [46] J. Pérez-Ortega, T. Alejandre-García, and R. Yuste, *Elife* **10**, e64449 (2021).

425 [47] R. S. Larsen and J. Waters, *Frontiers in neural circuits* **12**, 21 (2018).

426 [48] D. Crombie, M. A. Spacek, C. Leibold, and L. Busse, Available at SSRN 3832144 (2021).

427 [49] A. Lak, M. Okun, M. M. Moss, H. Gurnani, K. Farrell, M. J. Wells, C. B. Reddy, A. Kepcs, K. D. Harris, and
428 M. Carandini, *Neuron* **105**, 700 (2020).

429 [50] J. K. Liu, H. M. Schreyer, A. Onken, F. Rozenblit, M. H. Khani, V. Krishnamoorthy, S. Panzeri, and T. Gollisch, *Nature*
430 *communications* **8**, 1 (2017).

431 [51] E. A. Pnevmatikakis, D. Soudry, Y. Gao, T. A. Machado, J. Merel, D. Pfau, T. Reardon, Y. Mu, C. Lacefield, W. Yang,
432 *et al.*, *Neuron* **89**, 285 (2016).

433 [52] S. Sadeh and C. Clopath, *bioRxiv* (2022).

434 [53] M. N. Havenith, P. M. Zijderveld, S. van Heukelum, S. Abghari, J. C. Glennon, and P. Tiesinga, *Scientific reports* **8**, 1
435 (2018).

436 [54] M. N. Havenith, P. M. Zijderveld, S. van Heukelum, S. Abghari, P. Tiesinga, and J. C. Glennon, *Scientific reports* **9**, 1
437 (2019).

438 [55] O. G. Sani, H. Abbaspourazad, Y. T. Wong, B. Pesaran, and M. M. Shafechi, *Nature Neuroscience* **24**, 140 (2021).

439 [56] G. Okazawa, C. E. Hatch, A. Mancoo, C. K. Machens, and R. Kiani, *Cell* **184**, 3748 (2021).

440 [57] J. A. Gallego, M. G. Perich, S. N. Naufel, C. Ethier, S. A. Solla, and L. E. Miller, *Nature communications* **9**, 1 (2018).

441 [58] R. J. Low, S. Lewallen, D. Aronov, R. Nevers, and D. W. Tank, *BioRxiv*, 418939 (2018).

442 [59] C. Pandarinath, D. J. O'Shea, J. Collins, R. Jozefowicz, S. D. Stavisky, J. C. Kao, E. M. Trautmann, M. T. Kaufman,
443 S. I. Ryu, L. R. Hochberg, *et al.*, *Nature methods* **15**, 805 (2018).

444 [60] J. S. Montijn, G. T. Meijer, C. S. Lansink, and C. M. Pennartz, *Cell reports* **16**, 2486 (2016).

445 [61] C. D. Harvey, P. Coen, and D. W. Tank, *Nature* **484**, 62 (2012).

446 [62] D. J. Foster, *Annu. Rev. Neurosci* **40**, 9 (2017).

447 [63] A. D. Grosmark and G. Buzsáki, *Science* **351**, 1440 (2016).

448 [64] T. Womelsdorf, J.-M. Schoffelen, R. Oostenveld, W. Singer, R. Desimone, A. K. Engel, and P. Fries, *science* **316**, 1609
449 (2007).

450 [65] U. Rutishauser, I. B. Ross, A. N. Mamelak, and E. M. Schuman, *Nature* **464**, 903 (2010).

451 [66] J. Duprez, R. Gulbinaite, and M. X. Cohen, *NeuroImage* **207**, 116340 (2020).

452 [67] M. N. Insanally, I. Carcea, R. E. Field, C. C. Rodgers, B. DePasquale, K. Rajan, M. R. DeWeese, B. F. Albanna, and
453 R. C. Froemke, *Elife* **8**, e42409 (2019).

454 [68] M. N. Havenith, S. Yu, J. Biederlack, N.-H. Chen, W. Singer, and D. Nikolić, *Journal of neuroscience* **31**, 8570 (2011).

455 [69] B. Sotomayor-Gómez, F. P. Battaglia, and M. Vinck, (2021).

456 [70] B. Bagi, M. Brecht, and J. I. Sanguinetti-Scheck, *Current Biology* (2022).

457 [71] E. J. Dennis, A. El Hady, A. Michaiel, A. Clemens, D. R. G. Tervo, J. Voigts, and S. R. Datta, *Journal of Neuroscience*

458 41, 911 (2021).

459 [72] S. Ebrahimi, J. Lecoq, O. Rumyantsev, T. Tasçi, Y. Zhang, C. Irimia, J. Li, S. Ganguli, and M. J. Schnitzer, *Nature* **605**,
460 713 (2022).

461 [73] B. R. Cowley, A. J. Calhoun, N. Rangarajan, J. W. Pillow, and M. Murthy, *bioRxiv* (2022).

462 [74] H. B. Mann and D. R. Whitney, *The annals of mathematical statistics* , 50 (1947).

463 [75] D. S. Kerby, *Comprehensive Psychology* **3**, 11 (2014).

464 [76] T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama, in *Proceedings of the 25th ACM SIGKDD international conference*
465 *on knowledge discovery & data mining* (2019) pp. 2623–2631.

466 [77] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, *Advances in neural information processing systems* **24** (2011).

467 [78] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
468 V. Dubourg, *et al.*, *the Journal of machine Learning research* **12**, 2825 (2011).

469 [79] P. Domingos and M. Pazzani, *Machine learning* **29**, 103 (1997).

470 [80] R. T. Rockafellar, *Princeton, NJ* (1970).

471 [81] R. Q. Quiroga and S. Panzeri, *Nature Reviews Neuroscience* **10**, 173 (2009).

472 [82] C. E. Shannon, *The Bell system technical journal* **27**, 379 (1948).

473 [83] N. M. Timme and C. Lapish, *eneuro* **5** (2018).

474 [84] T. M. Cover and J. A. Thomas, *Elements of Information Theory* **1**, 279 (1991).

475 [85] B. W. Silverman, **26** (1986).

476 [86] V. Satopaa, J. Albrecht, D. Irwin, and B. Raghavan, in *2011 31st international conference on distributed computing*
477 *systems workshops* (IEEE, 2011) pp. 166–171.

478 [87] K. Pearson, *The London, Edinburgh, and Dublin philosophical magazine and journal of science* **2**, 559 (1901).

479 [88] D. D. Lee and H. S. Seung, *Nature* **401**, 788 (1999).

480 [89] P. C. Hansen, *BIT Numerical Mathematics* **27**, 534 (1987).

481 [90] A. Mathis, P. Mamidanna, K. M. Cury, T. Abe, V. N. Murthy, M. W. Mathis, and M. Bethge, *Nature neuroscience* **21**,
482 1281 (2018).

483 [91] S. Butterworth *et al.*, *Wireless Engineer* **7**, 536 (1930).

484 [92] B. Hoeks and W. J. Levelt, *Behavior Research methods, instruments, & computers* **25**, 16 (1993).

485 [93] O. E. Kang, K. E. Huffer, and T. P. Wheatley, *PloS one* **9**, e102463 (2014).

486 **SUPPLEMENTARY MATERIAL**

487 **METHODS**

488 We have released all the scripts and data files to reproduce these analyses, they can be found at the following URL:
489 <https://github.com/atlaie/BrainAveraging>. They are written in Python 3 and rely on several libraries.

490

491 **Specificity index**

492 With the intent of characterizing whether the neural response is more similar to the appropriate template (i.e., the
493 one corresponding to the stimulus that was actually presented in that trial) or the other one, we introduced a simple
494 quantity we termed specificity index. It is defined as:

$$\rho_i = \text{cor}(\lambda_{\text{correct}}, r_i) - \text{cor}(\lambda_{\text{wrong}}, r_i) \quad (1)$$

495 where cor is the Pearson correlation, λ denotes a given neural template and r_i is the population vector of the i^{th}
496 trial. Thus, the specificity index captures the differential similarity of a given neural response to each of the templates.
497 It is key to note that, given that the Pearson correlation is bounded between -1 and 1 , the specificity index can attain
498 values between -2 and 2 and, as we were just interested in its sign and global tendencies, we did not introduce any
499 normalization factor.

500

501

Behavioral relevance

502 As a way to quantify the overlap between the hit and miss distributions we basically used Vargha-Delaney's A effect
503 size [35] (also known as *measure of stochastic superiority*). This is an effect size derived from the Mann-Whitney U-test
504 – a non-parametric statistical test that is particularly useful when distributions are not Gaussian [74]. Furthermore,
505 A is especially interpretable. As it is related to the U statistic, it can be thought of as the probability of a randomly
506 selected point from one distribution being higher than another randomly selected point from the other one [75].
507 Mathematically, if we have two distributions C and D , the U-statistic is given by:

$$U = \sum_{i=1}^c \sum_{j=1}^d S(C_i, D_j) \quad (2)$$

508 with c and d being the number of elements of C and D , respectively; and

$$S(C_i, D_i) = \begin{cases} 1, & \text{if } C_i < D_i \\ 1/2, & \text{if } C_i = D_i \\ 0, & \text{if } C_i > D_i \end{cases} \quad (3)$$

509 Having computed the U-statistic, our measure of Behavioral Relevance (Ω) is given by

$$\Omega = \max(A, 1 - A), \quad \text{with } A = \left(\frac{U}{c} - \frac{c+1}{2} \right) / d \quad (4)$$

510 Thus, Ω is bounded between 0.5 and 1 . If there is no overlap, $\Omega = 1$. In this extreme case, one distribution would
511 have complete stochastic dominance over the other. If C and D are totally overlapping, $\Omega = 0.5$ and, thus, the more
512 its value deviates from 0.5 , the less overlapping the distributions are.

513

514

Yule-Kendall index

515 In order to assess if the jackknifed distributions shown in Fig. S6 are symmetrical or not, we relied on the Yule-
516 Kendall index, which is computed as:

$$\gamma = \frac{Q(3/4) + Q(1/4) - 2Q(1/2)}{Q(3/4) - Q(1/4)}, \quad (5)$$

517 where Q is the quantile function. We chose this measure because it works for non-normal distributions and because
 518 it is non-dimensional (thus allowing direct comparison between data sets).

519

520

Decoders

521 In order to select the most informative brain areas for the IBL dataset in a data-driven way, we made use of
 522 different decoders. For each experimental session, there are several recorded regions. Thus, we trained independent
 523 decoders using the single-trial population vector for each region. The labels to be predicted would be either choice (left
 524 wheel turn, right wheel turn or no movement) or stimulus (right-higher contrast, left-higher contrast, both equal).
 525 We split the data following a 80 – 20 ratio (train-test). Given the imbalanced nature of the dataset, we used a
 526 stratified 10–repeated 5–fold Cross-Validation to fine-tune each model’s hyperparameters using a Bayesian approach
 527 and checked that the model performance was above majority class (i.e., always predicting the most abundant label)
 528 and random models.

529 In the following, let assume we want to classify N input variables (x_i , with $i = 1, \dots, N$) into target variables that
 530 can belong to K classes (i.e., $y_i \in \{1, \dots, K\}$).

531

Bayesian optimization

532 Hyperparameter optimization is arguably one of the bottlenecks when deploying Machine Learning techniques.
 533 Fortunately, in the last years, the field is rapidly evolving and we now have access to quick and intuitive libraries that
 534 alleviate greatly these tasks. One of these libraries is *Optuna* [76]. We relied on Tree-structured Parzen Estimators
 535 (TPEs) [77] to speed up hyperparameter search.

536 For each model, we chose different hyperparameters to be optimized, which we will detail in the following descrip-
 537 tions. We relied on the SciKit-Learn package in Python [78] to implement all of the classifiers.

538

Gaussian Naive Bayes

539 Naive Bayes assumes independent features [79]. In terms of the covariance matrices, this model assumes they
 540 are diagonal. Particularly, the Gaussian Naive Bayes (GNB) model assumes that the class-conditional densities are
 541 normally distributed as:

$$P(\mathbf{x}|y = c, \mu_c, \Sigma_c) = \mathcal{N}(\mathbf{x}|\mu_c, \Sigma_c) \quad (6)$$

542 where μ and Σ are the class-specific mean vector and class-specific covariance matrix, respectively. In order to compute
 543 the class posterior, we can simply make use of Bayes’ theorem

$$P(y = c | \mathbf{x}, \mu_c, \Sigma_c) = \frac{P(\mathbf{x}|y = c, \mu_c, \Sigma_c)P(y = c)}{\sum_{k=1}^K P(\mathbf{x}|y = k, \mu_k, \Sigma_c)P(y = k)}. \quad (7)$$

544 So, in order to classify \mathbf{x} into a class c :

$$\hat{h}(\mathbf{x}) = \operatorname{argmax}_c P(y = c | \mathbf{x}, \mu_c, \Sigma_c) \quad (8)$$

545 For this classifier, **we did not perform any hyperparameter tuning**.

546 *k-Nearest Neighbors*

547 This model relies on the assumption that the closer two points are, the more similar they are and the more likely it
 548 is that they belong to the same class. It is implemented as follows: for any given point x_i , compute its distance to the
 549 rest of the points; then, select the k points that are closest; out of those, apply a majority vote rule. As a summary:
 550 the most prevalent class of the k closest points to x_i will determine the class that we predict for it.

551 For this classifier, **we optimized the number of nearest neighbors and the leaf size** of the k-d Tree algorithm.

552 *Random Forest*

553 This model makes use of several Decision Trees (DTs) to solve supervised learning problems. DTs are non-parametric
 554 models that split the data using a given number (depth) of conditional steps - populated with at least with some
 555 number of data points (minimum sample split). When we aggregate several DTs (using a technique known as bootstrap
 556 aggregating or *bagging*), we end up with a *Random Forest* (RF). Specifically, we sample with replacement from the
 557 data and feed these subsamples to different trees. Finally, we use a majority vote for each tree's output as the RF
 558 prediction. This procedure reduces the variance in the model (i.e., mitigates overfitting) but has a minimal effect on
 559 its bias (i.e., underfitting is still a risk). Therefore, ideally we would like to use DTs that are unstable (high variance)
 560 but very little bias. In order to check the model performance, we compute its out-of-bag (oob) error - cases in the
 561 training data that are not in a significant part of the bootstrapped samples.

562 For this model, **we optimized the number of DTs, their maximum depth and the minimum sample**
 563 **split**.

564 *Generalized Linear Model*

565 We trained a multinomial Generalized Linear Model (GLM) with a L2-regularization. This model states that the
 566 probability of a particular data point y_i belonging to class c is given by:

$$p(y_i = c | x_i) = \frac{e^{w_c \cdot x_i + b_c}}{\sum_{j=1}^K e^{w_j \cdot x_i + b_j}} \quad (9)$$

567 After having the probabilities of y_i belonging to each class c , the highest one will be taken to be 1 and the rest will
 568 be set to 0. Therefore, the objective is to find the weight vector w_c that minimizes the distance between the predicted
 569 (\hat{y}_i) and the actual (y_i) class labels by optimizing (in this case, minimizing) the following loss function:

$$L(\hat{y}_i, y_i) = -\log \left(\frac{e^{w_c \cdot x_i + b_c}}{\sum_{j=1}^K e^{w_j \cdot x_i + b_j}} \right) + \lambda \|w_c\|_2^2 \quad (10)$$

570 where $\|w_c\|_2^2$ is the L2-norm of the weight vector for class c , accounting for the L2-regularization term, with λ
 571 modulating its strength. **The inverse of λ ($C = 1/\lambda$) is the hyperparameter we optimized for this model.**

572 *Support Vector Machines*

573 This class of models rely on finding the hypersurface that maximizes the separation between classes in the data. To
 574 this end, it is important to first find the *support vectors* (SVs), which are the closest ones to the surface. There are
 575 two main types of Support Vector Machines (SVMs): linear SVMs and kernel-based SVMs. The difference is that, in
 576 the former, the separating hypersurface is a hyperplane (i.e., a non-curved hypersurface), while, in the latter, it is is
 577 allowed to be curved. Mathematically, the *linear* version of this model is the solution to the following optimization
 578 problem:

$$\min_{\omega_i \in \mathbb{R}^N} \mathcal{C}(\omega_i) \quad (11)$$

579 where

$$\mathcal{C}(\omega_i) = C \sum_{i=1}^N \underbrace{\max(0, 1 - y_i x_i)}_{\text{Hinge loss}} + \underbrace{\|\omega\|^2}_{\text{L2-reg.}} \quad (12)$$

580 In order to arrive to the equivalent one for the non-linear SVM, we can take advantage of the fact that this problem
 581 satisfies some conditions [80] that allow us to construct its dual form. It takes the form of:

$$\mathcal{C}_D(\alpha_i) = \sum_{i=1}^N \alpha_i - \frac{1}{2} \sum_{i=1}^N \sum_{j=1}^N \alpha_i \alpha_j y_i y_j K(\mathbf{x}_i, \mathbf{x}_j), \quad \text{with } 0 \leq \alpha_i \leq C, \sum_{i=1}^N \alpha_i y_i = 0 \quad (13)$$

582 where $K(\mathbf{x}_i, \mathbf{x}_j)$ is the kernel (it can be linear or not) and C is the regularization strength. In this work, we chose
 583 Radial Basis Functions (RBF) as our kernel. These are given by:

$$K(\mathbf{x}_i, \mathbf{x}_j) = \exp(-\gamma \|\mathbf{x}_i - \mathbf{x}_j\|^2) \quad (14)$$

584 where γ is the reach parameter (i.e., how far we want two separate points influence each other).

585 For these decoders, **we optimized the regularization strength (C) and, only for the RBF, the reach coefficient (γ).**
 586

588

Mutual Information

589 After having trained each decoder, we separately computed the Mutual Information between the predicted and the
590 test class labels, as a proxy of the amount of stimulus – or choice – information there was in the population vector.

591 This quantity is defined in the context of classical Information Theory [81, 82] and we can compute it for two discrete
592 stochastic variables X and Y . Assuming these have a joint probability mass function given by $p_{X,Y}(x,y) = P(Y = y |$
593 $X = x) \cdot P(X = x)$ and that each of them follows a marginal probability distribution given by $p_X = \sum_{y \in Y} p_{X,Y}(x,y)$,
594 one can mathematically define the Mutual Information between X and Y as:

$$I(X;Y) = \sum_{x \in X} \sum_{y \in Y} p(X,Y) \log \left(\frac{p_{X,Y}(x,y)}{p_X p_Y} \right) \quad (15)$$

595 Intuitively, one can understand $I(X;Y)$ as the uncertainty reduction in X that follows if Y is measured (or vice
596 versa, as $I(X;Y)$ is invariant when swapping X and Y). If (and only if) they are independent of each other, then
597 $I(X;Y) = 0$. Therefore, this is a strictly non-negative quantity. It is noteworthy that $I(X;Y)$ captures all linear and
598 nonlinear dependencies between X and Y , thus generalizing the notion of correlation measures. For further discussion
599 of this measure, see [83, 84].

600

601

Hierarchical clustering

602 After having computed the resulting Mutual Information for all areas, sessions and decoders, we aimed to check
603 the stability of the selection of the most informative brain areas, so that results were not highly dependent on which
604 model we used to choose them. To do that, we used an unsupervised method, known as hierarchical clustering. Once
605 we have the pairwise distance between points (proximity matrix), this method can be understood in an iterative
606 manner: merge the closest points in a cluster, then merge the closest clusters and repeat until only a single cluster
607 (encompassing all points) remains. For Fig. 4, we used the Euclidean metric to compute the proximity matrix.

608

Elbow method

609 In order to select a threshold when selecting the task-related areas based on their stimulus and choice information
610 (Figure 4 in the main text), we used the data to compute the Kernel Density Estimate, via Gaussian kernels [85].
611 After having extracted these, we used the method discussed in [86] to find the point of maximum curvature. We made
612 use of the kneed Python package, implemented by the same authors [86].

613

614

Surrogate models

615

Calcium imaging data

616 For this data set, we pooled together those trials within the same stimulus set: on the one hand, when stimulation
617 was given; on the other hand, those trials without any stimulus. For each of those trial groups, and for each neuron, we
618 built a Gaussian distribution with mean and variance given by the trial-average and trial-variance. We then sampled
619 200 random values for each stimulus set and correlated each of them with the template.

620

Spike data

621 We were interested in comparing the experimental neuronal population response with a downsampled version of
622 the trial-averaged template. To do that, we built our surrogate models by constructing $N (= 100)$ random vector with
623 the following constraints:

- 624 1. Its size is equal to the number of neurons comprising the neural population for that area and that session.
- 625 2. The probability that n spikes are allocated at a particular location m (i.e., that neuron m has spiked n times)
626 is given by $P_{m,n} = \left(\frac{\lambda_m}{\sum_m \lambda_m} \right)^n$, where λ_m is the m^{th} element of the template vector.
- 627 3. The total number of spikes is constant and equal to the total recorded number of spikes for that area and that
628 session.

629 By imposing these constraints, we are testing the alternative hypothesis that neurons are independent from each
630 other (uncorrelated) and it is therefore equivalent to keeping the single-trial population statistical response, while
631 scrambling across trials. This is also the same as drawing single-neuron responses from the underlying template
632 distribution following a Poisson process. Thus, the bootstrapped responses contain the same number of spikes as
633 the original trial, but the neurons that produced these spikes are randomly chosen according to their probability of
634 occurrence in the average template.

635

636

Templates and distances in PCA space

637 As an alternative to Pearson's correlation, we applied Principal Component Analysis (PCA) [87]. We chose PCA
638 over non-Negative Matrix Factorization [88] or other more advanced dimensionality reduction techniques such as
639 LFADS [59] or PSID [55] because we wanted to keep all analyses as general as we possibly could. Thus, we computed
640 the truncated Singular Value Decomposition (tSVD) [89] for the matrix consisting of Z-scored single-trial population
641 vectors, for a given area and session. Then, we extracted the knee (elbow) using the aforementioned method, to select
642 the number of components based on the variance explained. After the number of components has been selected, we
643 projected each single-trial into this (dimensionally-reduced) space and computed the Euclidean distance between this
644 new vector and the template (also projected into this space). We normalized by the distance between the projection
645 of the two templates in this new space.

646

647

Specificity Index for PCA distances

648 Since in PCA analyses we dealt with distances rather than correlations (i.e., differences rather than similarities), we
649 inverted the computation of the Specificity Index in this context so that positive values continued to signify a stronger
650 relation between single trial response and correct template than incorrect template. The corresponding formula is:

$$\rho_i^{PCA} = d(\lambda_{wrong}^{PCA}, r_i^{PCA}) - d(\lambda_{correct}^{PCA}, r_i^{PCA}) \quad (16)$$

651 where d stands for Euclidean distance and r_i^{PCA} is the PCA-projected version of the population vector measured
652 in the i^{th} trial; λ_{wrong}^{PCA} and $\lambda_{correct}^{PCA}$ are the PCA-projected version of the trial-average templates (wrong and correct,
653 respectively).

654

Pupil size

655 As a way to account for the animal's behavioral state, we grouped together trials that had a similar pupil size.
656 Firstly, we low-pass filtered the recorded pupil size (that came as an output of DeepLabCut [90]) using a Butterworth
657 filter [91] of order 4. We chose to filter out any frequency above 1Hz, as we were interested in slow variations in pupil
658 size, which have been linked to attentional state [92, 93]. We then computed the mean pupil size in the same time
659 window we used for the neural analyses (200 ms after stimulus presentation). Finally, we ranked all sizes over trials
660 and grouped them in brackets of 10 percentiles (e.g., trials with a pupil size between the 32th percentile and the 42th
661 one would be grouped). Within the selected group, we repeated the template-matching algorithm that we used in the
662 main text, tailoring the average to those trials that shared a similar pupil size.

663

k-Means clustering

664 In order to group trials according to similarity in the recorded neural response, we used k -Means clustering. This
665 algorithm, after randomly initializing k centroids (one per cluster), is as follows: (1) Compute the distance between
666 each data point and these k centroids. (2) Each point will belong to the cluster with the closest centroid. (3) New
667 centroids will be given by the actual points belonging to a cluster. (3) Repeat until convergence (when centroids move
668 no more). As this is an unsupervised method, we used the elbow method to select the number of k centroids in which
669 to cluster the data S7. Finally, as we did for the pupil size grouping, we repeated the template-matching algorithm
670 that we used in the main text, tailoring the average to those trials that belonged to the same cluster.

671

SUPPLEMENTARY RESULTS

672

Figure 5

673 To estimate stimulus-specificity, we computed single-trial correlations to the incorrect template. These resulting
674 correlations are marginally lower than those for the correct template (Fig. 5A; difference between median correlations:
675 0.03 ± 0.02 across areas; t-test for dependent samples; $n = 89$ to 3560 trials per area; $t = 3.0$ to 27.2; all $p < 0.01$,

676 corrected for multiple comparisons using FDR with a family-wise error rate of $\alpha = 0.05$). However, the correlation
677 difference (0.03 ± 0.02 across areas) is so small compared to the spread of single-trial correlations (standard deviation:
678 0.04 to 0.39) that correlations to the correct and incorrect templates were largely indistinguishable. Furthermore,
679 task-relevant brain areas did not show more specific correlations than control areas (mean correlation difference
680 for task-relevant areas: 0.031; $n = 9$; for comparison areas: 0.022; $n = 62$; Welch's t-test: $t = 1.17, p = 0.27$). Thus,
681 correlations between single-trial responses and template are largely stimulus-independent. To quantify this, we defined
682 the specificity index, which measures the single-trial correlation to the correct template minus the incorrect template
683 (Fig. 5B). Most values are positive, indicating that single-trial responses were generally more similar to the correct
684 than incorrect template (t-test for difference from zero; $n = 89$ to 3560 trials per cortical area; $t = 3.0$ to 27.2; all
685 $p < 0.01$, corrected for multiple comparisons). However, the distributions rarely exceeded 0.1 (Fig. 5B). Therefore,
686 across the examined brain areas, single-trial responses were barely more similar to the correct template than to the
687 incorrect one.

688 To test if the match between single-trial responses and the correct template predicted target choices, we split by
689 hit (trials where the animal chose the correct target) and miss trials (no response or wrong target). Single-trial
690 correlations were lower in miss trials than in hit trials across most brain areas, suggesting that a better match to the
691 average template did indeed tend to produce hit trials more often (Fig. 5C). However, overall the difference between
692 the correlations was small, as quantified by the Behavioral Relevance Ω (Fig. 5E). There were some exceptions
693 (MOs, $\Omega = 0.66, p = 0.0142, n_{hit} = 2057, n_{miss} = 667$), potentially because hit and miss trials are associated with
694 fundamentally different motor responses (miss trials include trials with no choice). Yet the overall pattern suggests
695 that template matching has low - and inconsistent - predictive power regarding perceptual decision-making. It is
696 however possible that the important factor for perceptual decision making is not the overall correlation between the
697 single-trial response and the correct response template, but whether it resembles the correct more than the incorrect
698 template. However, splitting specificity indices by hit and miss trials again shows no consistent difference (Fig. 5D),
699 indicating that single-trial responses that were more specific to the correct template did not lead to improved target
700 choices.

701 Figure 6

702 From the main results, it seems that single-trial responses are less correlated to the average than a bootstrapped
703 version of it, and that they are only slightly predictive of subsequent behaviour, in only a few brain areas. However,
704 the available information might be more than enough to generate accurate perceptions and behaviour when scaled up
705 to the number of neurons actually involved in the task. To explore this possibility, we first sub-sampled the population
706 of recorded neurons in each brain area at 10 different levels from $N/10$ to N . We then extrapolated how metrics
707 like the Specificity Index would evolve as the number of available neurons grew. Stimulus-specificity tended to grow
708 with sample size (Fig. 6A) for Data set 2 but not for Data set 1, raising doubts for the argument that maybe in a
709 realistic population sampled by a downstream neuron (e.g. 30.000 inputs), template matching would be quite strong.
710 Indeed even if the Specificity Index increases in Data set 2, the rate of change is not remarkable. However, as we can
711 see in the bottom part of that plot, Ω did increase for both data sets, and the rate of change is substantial for some
712 areas in Data set 2 (and for both areas in Data set 1). In other words, the single-trial match to the average template
713 may become more indicative of subsequent behavioural choices with larger neuron numbers, even if they are not more

714 stimulus-specific.

715

Supplementary Figure 8

716 Together, the template-matching results for Data set 2 suggest that the relation between single-trial population
717 responses and their trial-averaged response templates is both less strong and less stimulus-specific than what one
718 would expect from a down-sampled representation of the average. Most importantly, single-trial responses that better
719 resembled the correct time-averaged template did not evoke better target choices. One possibility is that ‘average
720 template matching’ happens in a multi-dimensional way. To take a first step at exploring this possibility, we repeated
721 the analyses shown in Fig. 5 by characterizing population responses using Principal Component Analysis (PCA) via
722 Singular Value Decomposition (SVD), and quantifying their resemblance to an average template in this dimensionally-
723 reduced space (Fig. S8).

724 Generally, the resulting single-trial response vectors did overall not represent their corresponding average vectors
725 more effectively than the Pearson correlation averages we had explored previously. In PCA space, single-trial vectors
726 matched average vectors more closely than would be predicted from bootstrapping (Fig. S7A), but the match was
727 nevertheless weak: the distance between a single-trial vector and its corresponding average template was typically
728 5 – 10 times larger than the distance between correct and incorrect template. Consistently with this, the specificity
729 of single-trial responses for the correct average template was low, even more so than for linear correlations (Fig. S7C;
730 t-test for difference from Zero: $n = 90$ to 3123; $t = 0.6$ to 17.0; $p < 0.01$ except for $p(EPd) = 0.04$ and $p(SI) = 0.56$,
731 corrected for multiple comparisons using a FDR procedure with a family-wise error rate of $\alpha = 0.05$). Specificity
732 indices were clustered tightly around zero. Given that PCA vector distances are not upper-bounded to 1 and often
733 took on values between 5 and 10 (Fig. S8A), specificity indices < 1 imply negligible differences between the single-trial
734 distances to correct and incorrect templates S8B. Single-trial responses that were more similar and/or specific to the
735 correct average vector also resulted in only slightly more correct behavioural choices (Fig. S8C-E; Mann-Whitney’s
736 U-test for differences in single-trial distances in hit and miss trials: $n = 90$ to 3123, Ω between 0.38 and 0.55; all
737 $p < 0.01$; Mann-Whitney’s U-test for differences in single-trial specificity in hit and miss trials: $n = 90$ to 3123,
738 Ω between 0.5 and 0.61; all $p < 0.01$; corrected for multiple comparisons). Overall, these results demonstrate that
739 just like for Pearson correlations, resemblance of single-trial to average vectors in PCA space did not seem to drive
740 neuronal processing in a decisive way across most brain areas. However, since PCA is a linear method too, this still
741 leaves open the possibility that non-linear methods may reveal accurate template matching of single trials.

SUPPLEMENTARY FIGURES

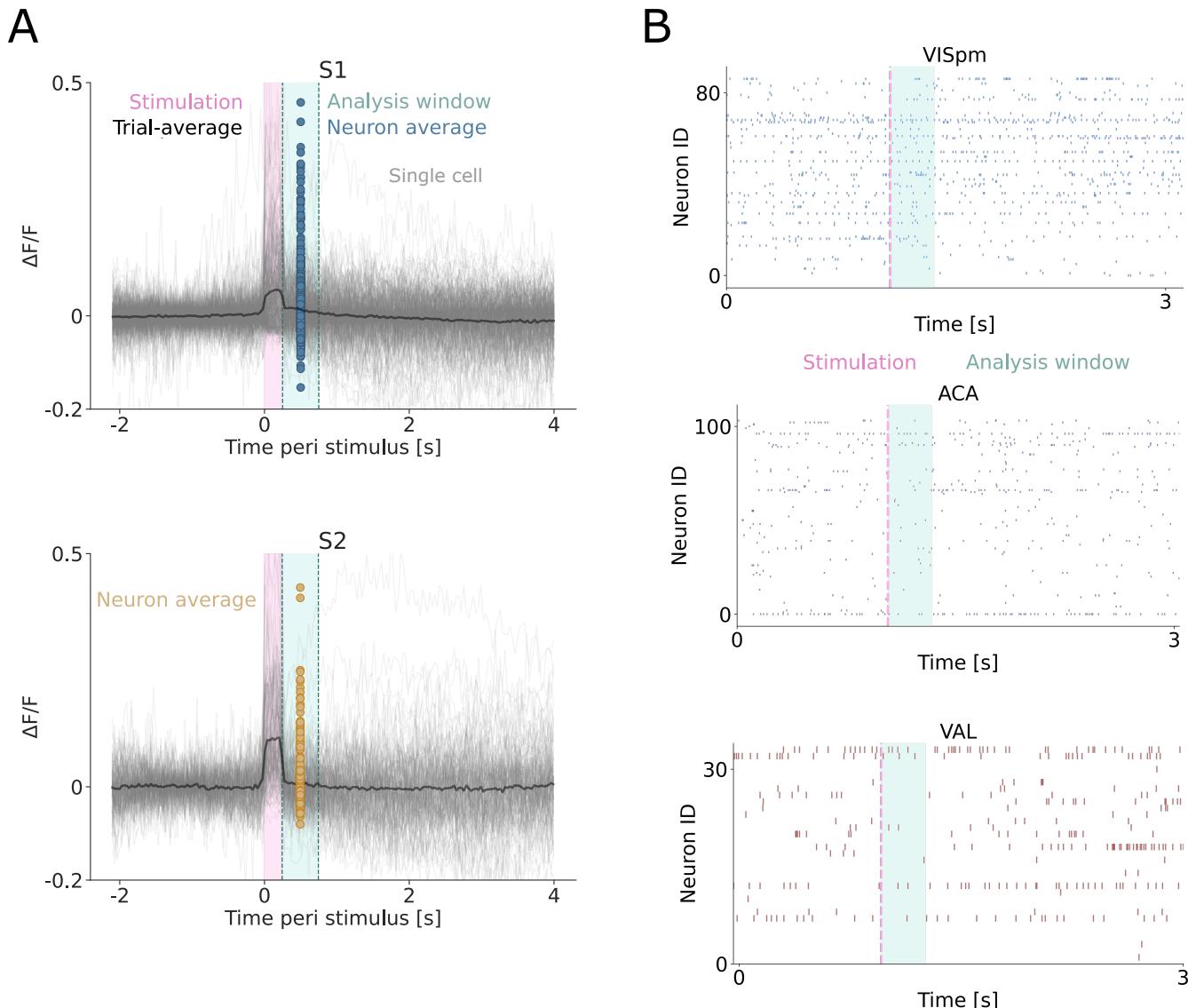


FIG. S1. Example of neuronal responses for both Data sets. A) For Data set 1, we show a session, for all neurons over time, aligning the responses to stimulus onset (pink). Traces of individual cells are depicted in light gray, their trial-average in black. In cyan, we show the analysis window (500ms), within which we take the time-average (colored dots; blue for S1, orange for S2) that we use to construct the population vectors we used for the analyses. B) Spike traces for different representative areas in Data set 2 (a stimulus informative one [blue, primary visual cortex, VISpm], a choice-informative one [red, ventral anterior-lateral complex of the thalamus, VAL] and a both-informative one [purple, anterior cingulate area, ACA]). Each one comes from a different session and has a different number of neurons. As before, in pink we show the stimulus presentation and in cyan the analysis window (200ms) that we used to construct the population vectors in the analyses.

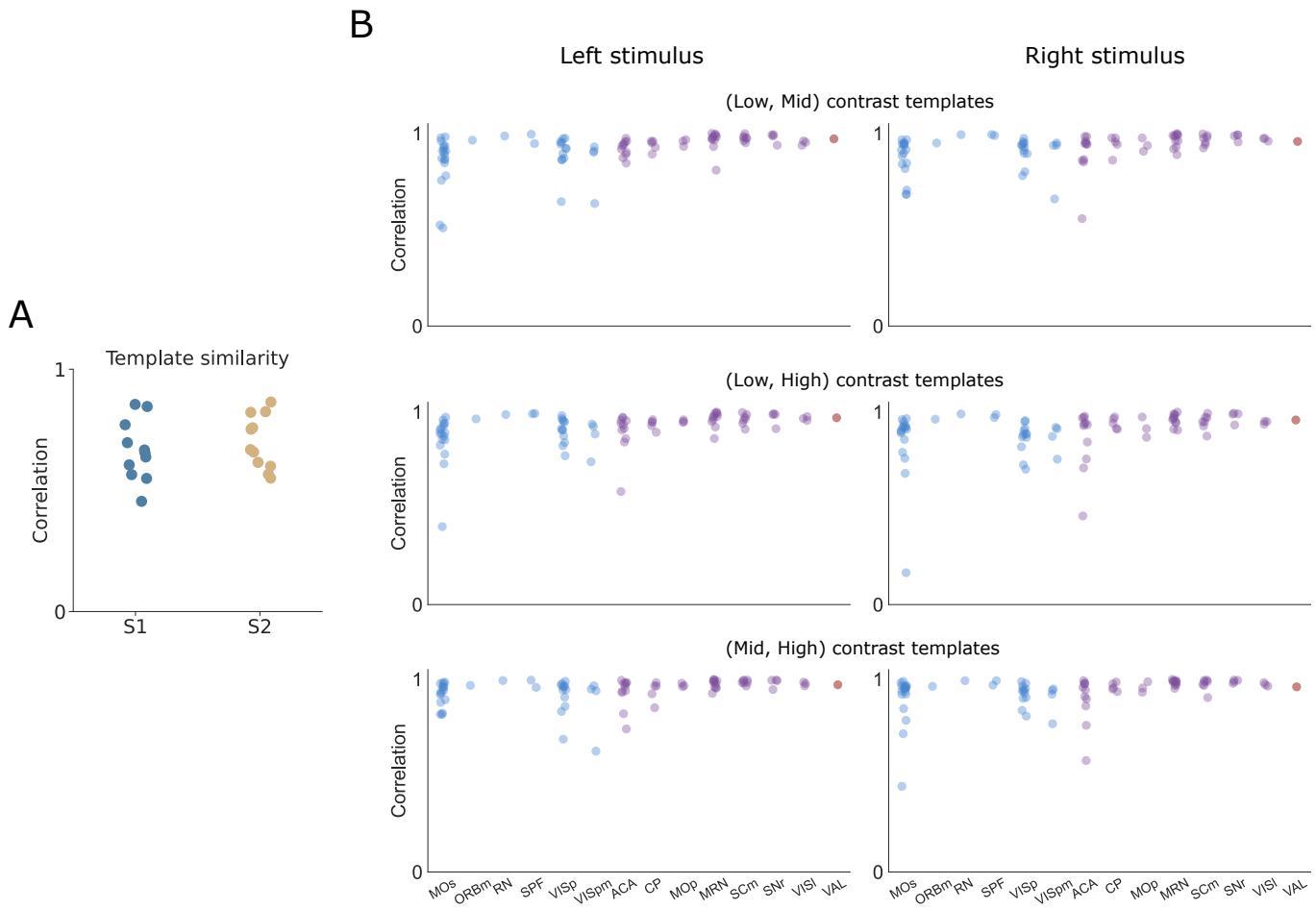
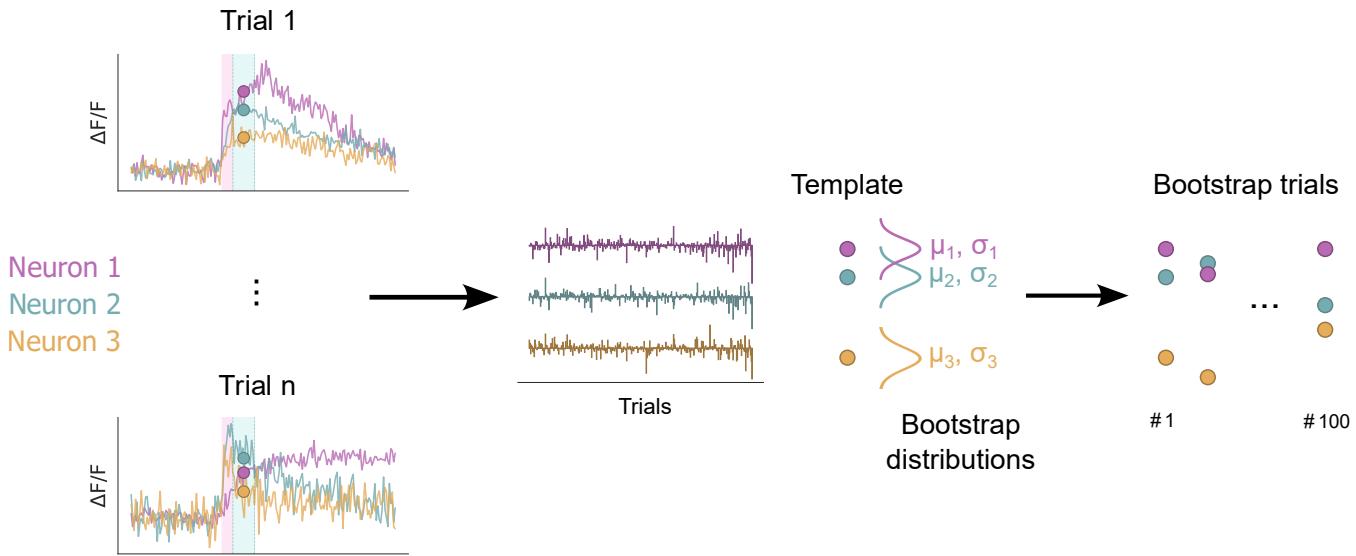


FIG. S2. Correlations between response templates for different stimulus constellations. A) For Data set 1, we pool together those trials with a low number of stimulated neurons ($n \in [5, 20]$) and compare the trial-averaged response with those trials with a higher number of stimulated neurons ($n \in [30, 50]$). Their correlation generally exceed 0.6, suggesting that one template should be sufficient to represent different contrast constellations. B) For Data set 2, we compute the similarity between templates (for each contrast level: 0.25, 0.5, 1, referred to as low, mid and high, respectively) for each screen (left, right). Their correlation is generally above 0.8, so grouping them together should provide a coherent representation.

A



B

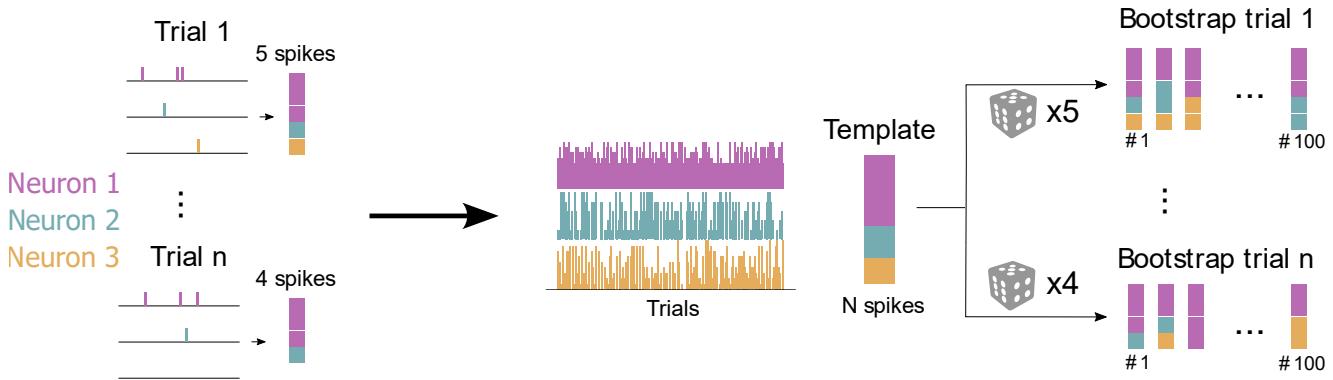


FIG. S3. Representation of the bootstrapping procedures. A) In the first data set, we created the templates based on the time-average for each neuron, for each trial. We then constructed a Gaussian distribution centered around the trial-average and with a spread equal to the trial-variance. We repeated this for each neuron and then sample 200 times for each stimulus set. B) For data set 2, we fixed the number of spikes on each trial, but randomly assigned to a neuron with a probability according to how often it spiked in the average template. We repeated this procedure 100 times.

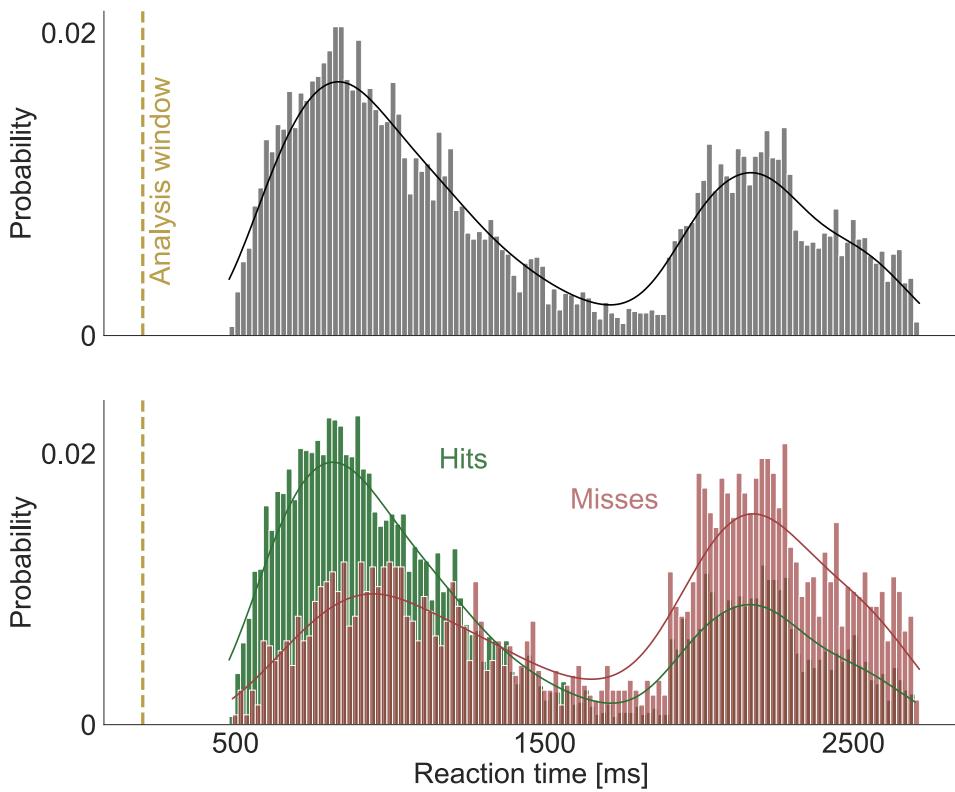


FIG. S4. Reaction time distribution. The vertical line indicates the width of the time window in which we have performed all of our analyses (200ms). We have selected our analysis window of because of its likely relevance to stimulus processing and behavioural decision making. A) General distribution for all sessions. B) Same as in A, split by hits and misses. Consistent with the literature, misses significantly (Mann-Whitney's U-test, $p = 1.88 * 10^{-172}$) imply longer reaction times.

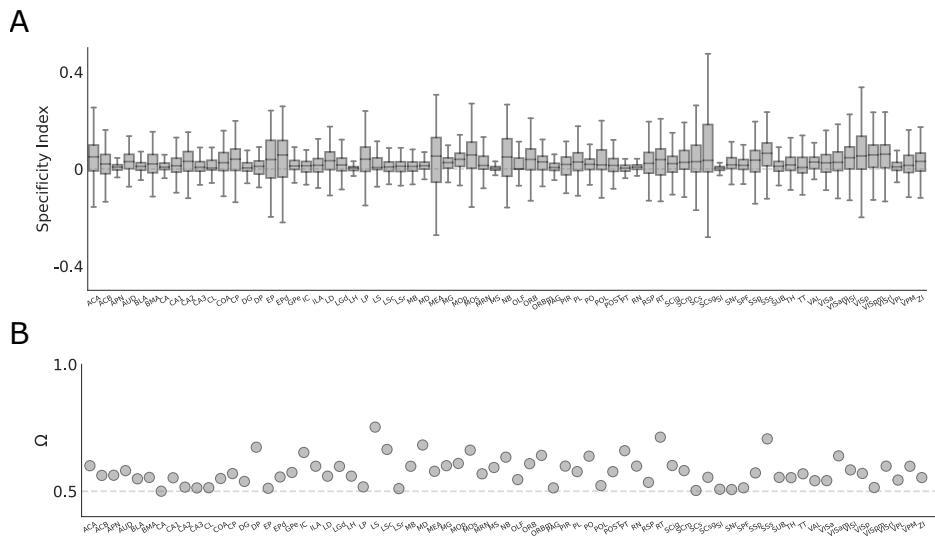


FIG. S5. **Specificity Index and Behavioral Relevance for all areas.** Same as Fig. 5B,E, but without pre-selecting informative areas. Results are preserved in general: across areas, single-trial responses are barely stimulus-specific (Specificity Indices are tightly clustered around 0, with a median value of 0.019) and not very behaviourally relevant (median value of $\Omega = 0.57$).

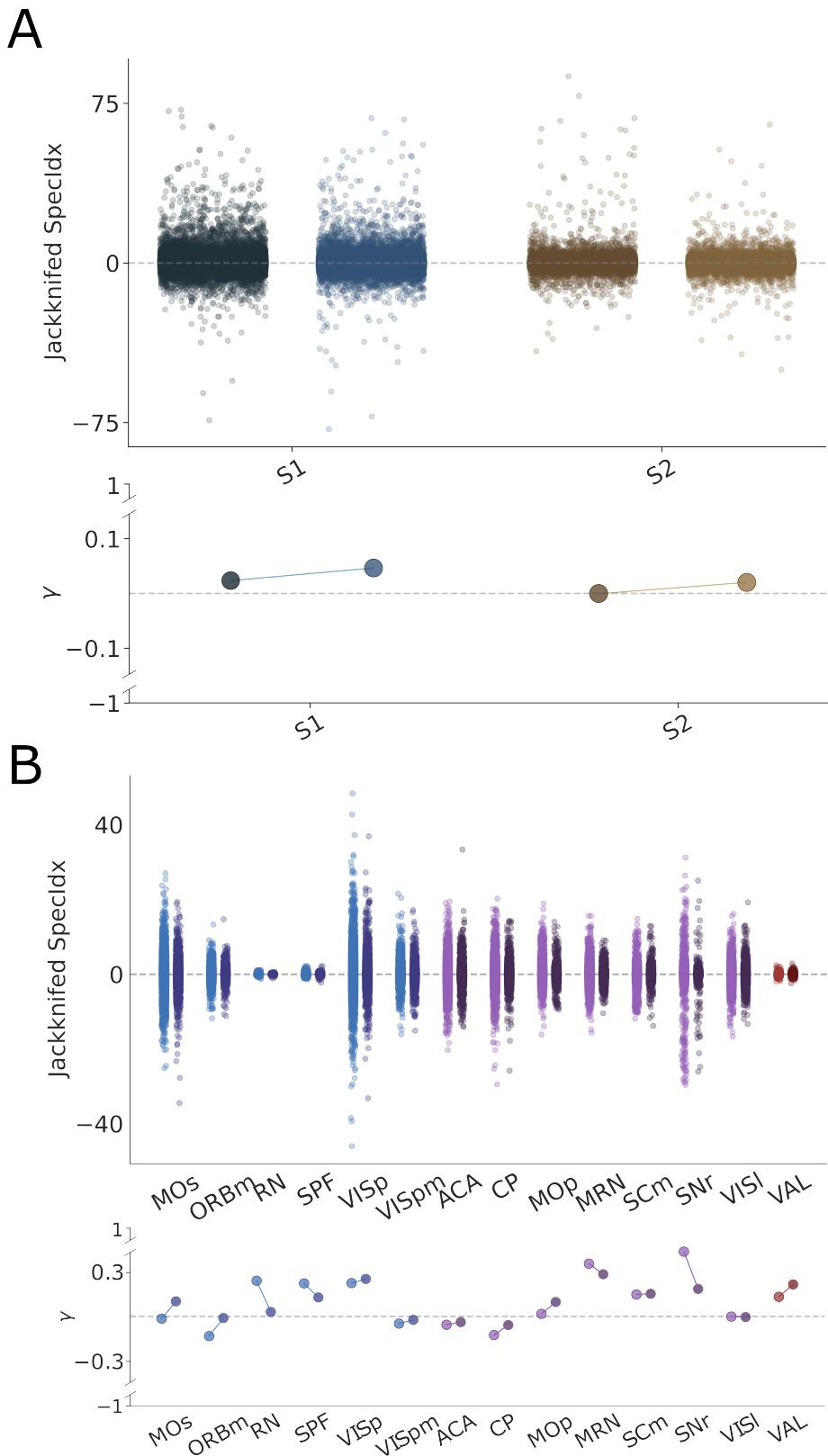


FIG. S6. Jackknife analyses. We remove one neuron at a time and compute the impact in the Specificity Index, calculated as $SpecIdx_i^{JK} = n \cdot SpecIdx - (n - 1) \cdot SpecIdx^{-i}$, for neuron i . We show the symmetry (γ) of each distribution around 0 using Yule's coefficient (Methods). This measure is bounded between -1 and 1 , with each of them meaning completely skewed towards negative or positive values, respectively. A) Change in single-trial correlations to the correct average template when one individual neuron was removed. Data points: Trials. Colors: see inset legend. B) Same for single-trial specificity.

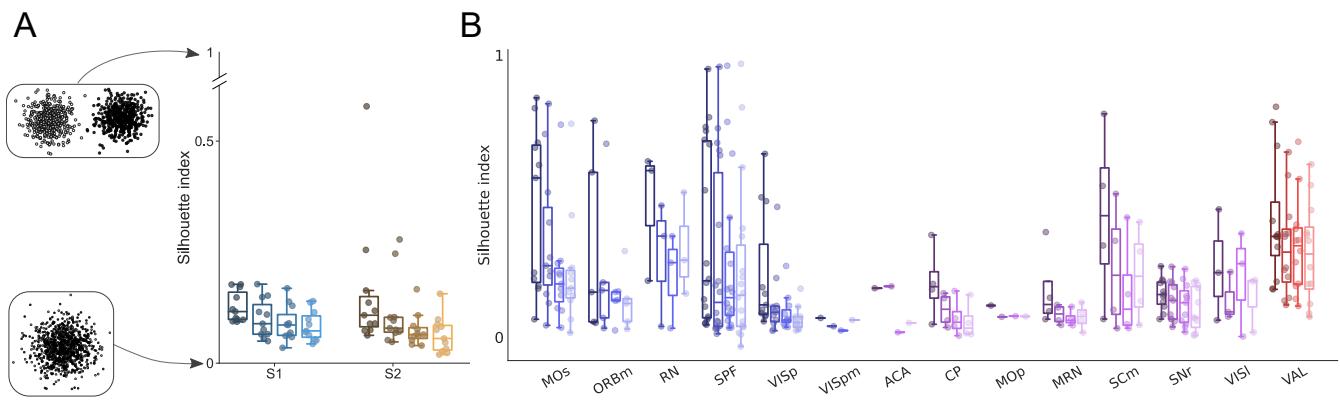


FIG. S7. **Unsupervised trial-clustering for both data sets.** Silhouette Index (SI) for both Data sets. This quantity measures cluster compactness (see Methods), with 0 indicating complete overlap between spread clusters and 1 meaning perfectly separated ones. Different colors represent a different number of clusters, from $k = 2$ to $k = 5$. A) SI for Data set 1. In this case, clusters are not compact and they are better distinguishable (for both brain areas) when $k = 2$. B) SI for Data set 2. Clusters are more compact than in the previous case, with $k = 2$ also being the best option. Thus, for analyses in the main text, we decided to group trials into two clusters.

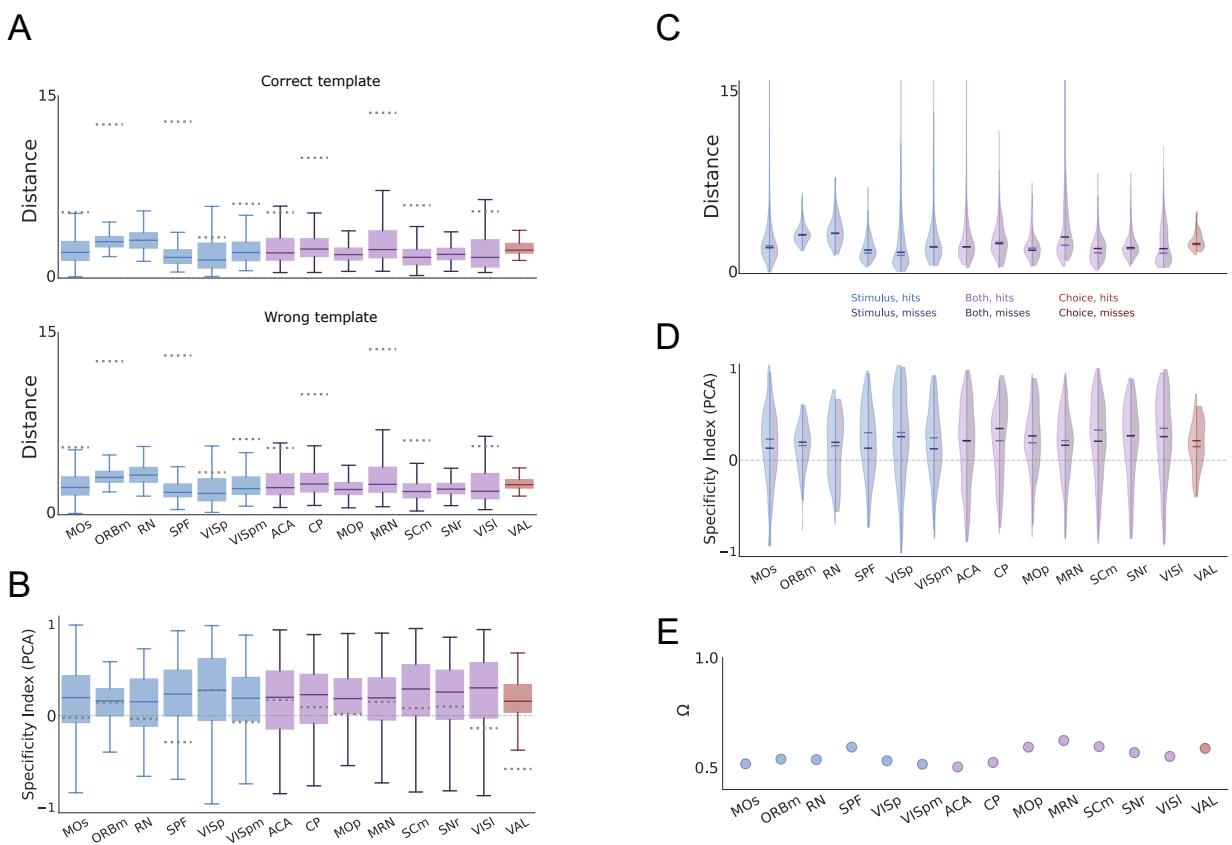


FIG. S8. PCA is not helpful in making single-trial responses more stimulus-specific or behaviorally relevant for Data set 2. A) Distribution of single-trial normalized distances in PCA space (Methods) between response vectors and the trial-averaged response template for the correct (top) and wrong (bottom) stimulus constellation. B) Same as B, but the Specificity index of single-trial responses across brain areas, defined as the difference between the normalized distance to the wrong and correct template. Solid gray line highlights the Specificity Index of 0.0, which translates to exactly equal correlation to correct and wrong template. Dotted lines represent the specificity index of the medians of the bootstrapped values for each recorded area. C) Same as A (top), split by hits and misses. These distributions almost completely overlap, for all brain areas. D) Same as B, split by hits and misses. As in the previous panel, these distributions are practically coincident. E) Behavioral Relevance Index for all brain areas. They range from 0.50 to 0.62, with $\Omega = 0.5$ meaning perfect overlap.

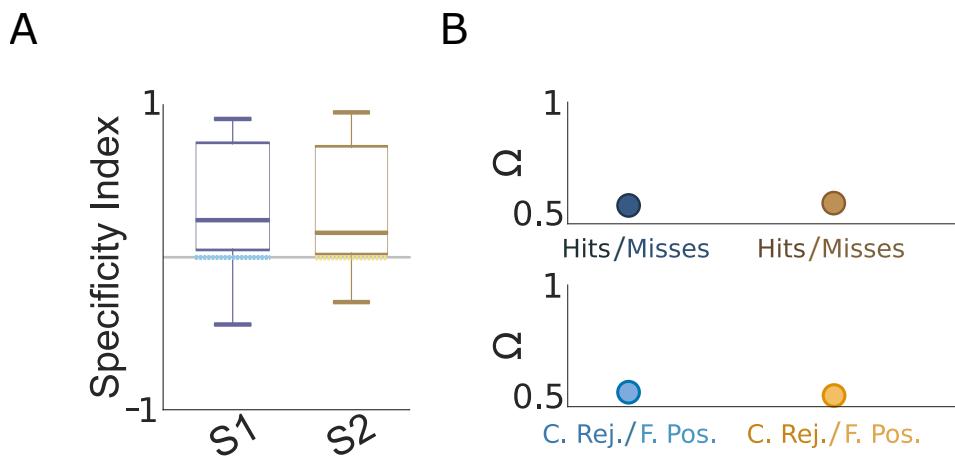


FIG. S9. PCA is helpful in making single-trial responses more stimulus-specific but heavily reduces behaviorally relevant for Data set 1. A) Same as Fig. S8B, for Data set 1. B) Same as Fig. S8E, for Data set 1. In this case, the Specificity Index increased modestly (from 0.13 to 0.21) at the expense of severely hindering behavioral relevance (from 0.83 to 0.52).