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Abstract

As tissues elongate, cell rearrangement alters positional information in manner that must be
accounted for to generate gene expression pattern. How this is achieved during paraxial
mesoderm elongation is unknown. By reverse-engineering gene regulatory networks that predict
single cell expression trajectories across the tissue, we find a network capable of recapitulating
the full range of dynamic differentiation profiles observed both in vivo and in vitro. Simulating
gene expression profiles on in toto cell tracking data sets reveal that temporal exposure to Wnt
and FGF is generated by cell movement. The absence of reversal in gene expression towards a
more premature gene expression state predicts the generation of aberrant tbx6 expression in
the posterior progenitor zone that we then confirm by quantitative single cell imaging. Taken
together, these results demonstrate cell rearrangement tunes the dynamics of mesoderm
progenitor differentiation to generate pattern emergence as a function of temporal Wnt and FGF
exposure.

Introduction

During the elongation of the vertebrate body axis, rates of self-renewal and cell differentiation
must be precisely coordinated such that a continual supply of progenitor cells are maintained
through embryo elongation Henrique et al. (2015); Wilson et al. (2009). This temporal coordina-
tion is especially important within the presomitic mesoderm (PSM) where cells are segmented into
somites at the anterior end of the tissue in a clock-like process Gomez et al. (2008). While much has
been studied regarding the temporal dynamics of somitogenesis, less is known about the mecha-
nisms that coordinate cell fate specification in the tailbud as cells become progressively specified
to a PSM cell state Martin (2016). In zebrafish embryos, this transition is marked by a switch be-
tween tbx16 and tbx6 expression Warga et al. (2013); Nikaido et al. (2002). This pattern of gene
expression appears strikingly robust at the tissue level and aligns with a graded decrease in both
Wnt and FGF pathway activity Bajard et al. (2014); Spiess et al. (2022). Both morphogens generate a
wavefront of positional information that ultimately times the differentiation of PSM cells and helps
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determine the dynamics of somitogenesis together with a Notch dependent clock Palmeirim et al.
(71997); Dubrulle et al. (2001); Aulehla and Pourquié (2008); Aulehla et al. (2003).

While cells are undergoing coordinated differentiation, they are also undergoing a rapid series
of cell rearrangement that are required as a driver of PSM elongation. In chick embryos, it has
been shown thatrandom cell rearrangements downstream of FGF signalling result in a coordinated
posterior expansion of the tissue along the anterior-posterior axis Bénazéraf et al. (2010); Xiong
et al. (2020). A similar transition from a liquid-like state of high cell motility in the posterior to a
more solid-like state in the anterior has been observed in zebrafish embryos Mongera et al. (2018);
Serwane et al. (2017) and is linked to an increased amount of cell rearrangement in the posterior
progenitor zone Lawton et al. (2013); Das et al. (2019). Analysis of cell rearrangements in 3D further
show how cells rapidly exchange their neighbours as the tissue compacts in the dorsal-ventral and
medial-lateral axes and elongates along the anterior-posterior axis Thomson et al. (2027). How
these movements impact the dynamics of PSM differentiation at the single cell level, yet still enable
the generation of stable patterns of T-box expression at the tissue level is currently unknown.

Recent work has highlighted the extent to which the dynamics of the zebrafish somitogenesis
clock is intrinsic to each cell. Previous studies had shown that cells cultured in vitro are capable of
eliciting transient oscillations of Notch pathway activity, as assayed with reporters for her1 expres-
sion Webb et al. (2016). However, it was unclear whether such oscillations might be an emergent
property of small groups of cells enabling the production of signalling dependent coordination be-
tween cells. More recently, it has been demonstrated that her1 oscillations can still be observed
within isolated cultures of cells and in the absence of any signals added to the medium Rohde
et al. (2021). Importantly, these cells slow down their oscillations and upregulate mesp expression,
a marker of somite polarity Rohde et al. (2021); Yasuhiko et al. (2006). These results demonstrate
that PSM differentiation is to a large degree cell autonomous in zebrafish embryos. Furthermore,
they open the question of how the dynamics of an intrinsic timer can be modulated to match the
cell specific dynamics of differentiation that occurs in vivo given individual rates of movement from
the tailbud.

To investigate the cell-intrinsic mechanisms that time cell differentiation in response to external
signalling, a common approach is to reverse engineer a minimal gene regulatory network (GRN)
that is sufficient in its description of the system to recapitulate spatial distributions of gene expres-
sion observed in situ Jaeger and Monk (2014). Such an approach has been successful in understand-
ing the dynamics of morphogen interpretation in a range of systems including the Drosophila blas-
toderm and vertebrate spinal cord Crombach et al. (2016); Verd et al. (2014); Sagner and Briscoe
(2017); Kicheva et al. (2074). However, inferring GRNs that can recapitulate the emergence of gene
expression patterns in 3D, and in the context of rapid cell rearrangements is challenging. We have
recently developed a fitting and modelling framework that achieves this in the context of the ze-
brafish PSM through the mapping of gene expression patterns onto in toto cell tracking datasets.
This enabled the inference of Approximated Gene Expression Trajectories (AGETs) Spiess et al.
(2022) which were used to reverse engineer candidate GRNs. Here, we aim to ascertain whether a
single network can predict the full dynamics of PSM differentiation in both an in vivo and in vitro
context.

To determine the range of timings for the movement of cells out of the tailbud, we first probed
the limits of their differentiation dynamics by culturing tailbud progenitors in vitro and assaying the
proportion of tbx16/6 expressing cells at subsequent timepoints. This analysis revealed that cells
in vitro are remarkably coherent in their dynamics of differentiation. This is unlike the situation in
vivo where cells undergo a range of differentiation dynamics as a function of their time spentin the
posterior progenitor domain, and so are distributed across a broad range of temporal trajectories.
This analysis revealed that unlike in vivo, where cells are distributed across a broad range of tem-
poral trajectories, cells in vitro are remarkably coherent in their dynamics of differentiation. This is
unlike the situation in vivo where cells undergo a range of differentiation dynamics as a function
of their time spend in the posterior progenitor domain. As each temporal profile of differentiation
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is linked to a distinct profile of Wnt and FGF exposure, we reasoned that this non-autonomous
regulation of a cell-intrinsic timer might be sufficient to describe the fully dynamic profiles of PSM
differentiation both in vitro and in vivo. To test this, we asked whether a single set of GRN parame-
ters as previously reverse engineered from AGETs can recapitulate all observed dynamics. Indeed,
we find a GRN that can predict in vitro and in vivo differentiation dynamics. Strikingly, this simple
three gene network can generate accurate emergent gene expression patterns when simulated on
real tracking data, given measured inputs of FGF and Wnt signal gradients. Furthermore, it predicts
the presence of aberrant tbx6 expression within the progenitor zone. Taken together, our model
proposes that cell movements themselves act to regulate the dynamics of intrinsic cell differentia-
tion dynamics, to generate the emergence of gene expression pattern as a function of morphogen
exposure.

Results.

A cell intrinsic timer drives differentiation of only a subset of tailbud progenitors.
It has been previously reported that when cells are explanted from the PSM of the zebrafish em-
bryo it can trigger an intrinsic timer to differentiate into Mesp positive somitic mesoderm Rohde
et al. (2021). To assay the autonomy of T-box expression changes in isolation, we aimed to mea-
sure tbx16 and tbx6 expression changes in single cells explanted from the posterior-most region
of the tailbud. Explants were first taken from embryos previously injected with mRNA encoding a
nuclear-targeted kikume construct where the posterior 25% of the tailbud had been labelled. This
confirmed that the posterior-most region alone was being taken for dissociation and subsequent
cell culture (Figure 1A). Explants stained for tbx16 and tbx6 showed that most cells express high
levels of tbx16 with only a few cells expressing tbx6 (Figure 1B).

Explants taken from the posterior tailbud were dissociated by gentle agitation in calcium and
magnesium free PBS to produce single cells in suspension, and cultured in adherent culture under
a media of defined L15 with no serum or signal factor supplementation, as previously described
in Rohde et al. (2021). Under these culture conditions, cells downregulated expression of tbx16
and upregulated their expression of tbx6 over a period of 6 hours, as measured by HCR on fixed
timepoint samples imaged at high magnification (Figure 1C). Further examination using a tbx6::GFP
reporter Ban et al. (2019) revealed that GFP fluorescence increased in only a proportion of cells
and that the GFP signal appeared synchronously after approximately 200 minutes (3.5 hours) in
culture (Figure 1D,E).

Cells stained using multiplex HCRs for tbxta, tbx16, tbx6 and keratin18 at each time point were
manually classified into five categories: progenitors, which expressed tbxta and/or tbx16, tbx6
positive cells expressing tbx6, epidermal cells expressing keratin18, dead cells which showed ab-
normal nuclei shape or fragmented nuclei, and other. Very few cells are observed dividing over
this time course. Over time, the proportion of tbx6 positive cells increases at the expense of cells
in the progenitor category (Figure 1F-G). These results together demonstrate that once isolated in
vitro, cells from the posterior 25% of the tailbud have the potential to differentiate into tbx6 posi-
tive cells and that this differentiation occurs between 3 and 6 hours of culture. Furthermore, only
a subset of posterior progenitors differentiate into tbx6 positive presomitic mesoderm, with the
remaining cells staying in a tbxta positive progenitor state (Figure 1G).
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Figure 1. Presomitic Mesoderm progenitor cells differentiate in vitro forming a bimodal population of
cells. (Continues on the next page.)
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Figure 1. Continued from previous page. (A) Labelling and dissection of the posterior 25% of the tailbud
demonstrates explants are produced mostly of labelled cells. Explant shown in image insert. (B) From HCR
data on whole explants, it is demonstrated that they are made of cells expressing tbx16 and only a small
number of tbx6 expressing cells. By dissociation of these cells into single cells and culturing them in L15
media without supplementation. (C) cells are observed downregulating expression of tbx16 and increasing
expression of tbx6 in fixed time points using HCR. (D) Using live imaging of a tbx6::GFP reporter, it was
observed that GFP is observed only in a proportion of cells and that the (E) GFP signal appears synchronously
in multiple cells after approximately 200 minutes in vitro culture. Cells not expressing GFP at this time do not
express GFP even after 300 minutes of culture. Minimal to no cell divisions are observed occurring over the
time course. (F) Through manual classification of single cell multiple HCR using tbxta, tbx16, tbx6, keratin18
probes, cells were defined as: “progenitor” (expressing tbxta and tbx16), “Tbx6" (expressing tbx6), “Epidermis”
(expressing keratin18), “Dead” (with fragmented or unusual nuclei) or “Other” (none of the above gene
expression patterns). It was observed the majority of cells begin the culture period as progenitors and that
this proportion decreases as the proportion of tbx6 cells increases. The proportion of epidermis, other and
dead cells stays relatively stable with some increase in dead cells by six hours. G Examples of Progenitor Cells,
Tbx6 cells and cells classified as Other which express both tbxta and tbx6 together at the six hour time point.

Cells in vivo differentiate over a range of time-scales as a function of their cell move-
ment.

We next aimed to relate the dynamics of T-box gene expression observed in vitro to the range of
differentiation trajectories cells undertake in vivo. We first measured the time taken for a clone
of 15-20 photo-labelled cells to spread from the from a tbxta positive progenitor region (Figure
2A) into a newly made somite (Figure 2C). We observed that in multiple embryos, the fastest cell
entered a somite within 3 hours of being labelled in the posterior, with other cells exhibiting a
range of longer times depending on how long they took to exit the progenitor domain.

To relate these cell movements to transitions in T-box gene expression, we used quantitative
HCR to stain for tbtxa, tbx16 and tbx6 mRNA (Figure 2D-E). We masked the notochord and no-
tochord progenitor cells and removed this tbxta signal from the image so that only the tbxta ex-
pressed within the PSM remained. The intensity of the HCR signal was then plotted across the PSM,
normalizing the axis (where 0 represents the posterior end of the tailbud and 1, the posterior-most
boundary of the most recently formed somite) (Figure 2F). This made it possible to quantify the ex-
pression patterns of the three T-box genes across the presomitic mesoderm and tailbud (Figure
2H-)). Our analysis revealed that cells undergo a range of temporal trajectories in gene expression,
with the fastest cells transiting through to a newly formed somite in 3 hours; half the time taken
for cells to fully upregulate tbx6 in vitro (Figure 2K-L).
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Figure 2. Stable patterns of T-box gene expression are formed across the presomitic mesoderm and
tailbudd despite cell mixing. (A-C) Labeling of the posterior of the presomitic mesoderm demonstrates that
cells spread throughout the entire tissue with the fastest cell entering the newly formed somite in 3 hours
whereas other cells differentiate over a continuous range of timescales. (D-E) The T-box gene expression
domains within the presomitic mesoderm are observed to be clear and stable using HCR against tbxta, tbx16
and tbxé. (F) These domains are quantified and plotted along a normalized posterior (0) to anterior (1) axis
where 1 represents the posterior boundary of the most recently formed somite. Intensity of signal was also
normalized between 0 and 1 from multiple embryos plotted together. Zoom in images of the (G-H) posterior
thbx16/tbx6 transition domain and (I-}) anterior tbx6 domains as both 3D views and single 2um slices. (K-L)
Together this generates a situation where cells are continually mixing in the posterior presomitic mesoderm
and differentiate over a range of timescales to become tbx6 positive, yet the domains of T-box gene
expression remains stable.

A reverse-engineered GRN recapitulates tissue-level T-box pattern formation and
in vitro T-box gene expression dynamics as an emergent property of varying sig-
nalling dynamics.

We have observed that tailbud progenitors can differentiate in a range of timescales in both in
vitro and in vivo contexts. To investigate the underlying mechanisms that enable this, we set out to
reverse-engineer a GRN that could be interrogated in manner that links intrinsic gene-regulatory
dynamics with both cell movement and morphogen exposure. GRNs formulated as dynamical

6 of 23


https://doi.org/10.1101/2021.02.05.429898
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.05.429898; this version posted April 7, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

systems have been very helpful elucidating patterning mechanisms (see for example Balaskas
et al. (2012); Raspopovic et al. (2014); Verd et al. (2018) among many others), however existing
methodologies to infer GRNs from quantitative gene expression data have bypassed the role of
cell movements in patterning processes (see Materials and Methods, and Spiess et al. (2022) for
an in depth discussion). For this reason we set out to develop a methodology that would allow
us to infer GRNs driving pattern formation in tissues undergoing morphogenesis which explicitly
accommodated cell rearrangements and movements and applied it to the developing zebrafish
PSM Spiess et al. (2022).

In brief, in order to retain cell movements we simulate GRNs directly on the cell tracks, obtained
from in toto live imaging (Figure 3D), by formulating a GRN in each cell and simulating all of these
in parallel using quantitative measurements of signal activity (Figure 3A-C) (we refer to this as live-
modelling due to its parallel to live-imaging). This method allows us to observe the emergence
and maintenance of pattern at the level of the tissue from the dynamics of gene expression being
simulated in the single cells (Figure 3E-F), while still taking into account cell rearrangements explic-
itly. To reverse-engineer GRNs from our HCR data we constructed approximated gene expression
trajectories (AGETSs) by projecting the quantitative gene expression data onto each frame of the
time lapse. We then used a small randomly spaced subset of 10 AGETs to infer candidate GRNs
that would recapitulate T-box gene expression dynamics in single cells along the PSM. Candidate
networks were then simulated on all the tracks allowing us to observe pattern formation on the
developing PSM (Figure 3F) (see Materials and Methods, or refer to the original methodology paper
Spiess et al. (2022)).
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Figure 3. A Reverse Engineered Gene Regulatory Network Can Recapitulate in vivo Patterns of T-box
Gene Expression With Cell Movements. A-B Measurements of the signalling environments within the PSM
were made by either measuring the level of gfp MRNA produced from a TCF::GFP reporter to measure the
level of Wnt signalling, or via an antibody stain against diphosphorylated ERK to measure FGF signalling. C
These images were quantified along a normalised PSM axis as in Figure 2F. D We obtained live imaging data
of the developing zebrafish PSM and tracked individual cells during 02:30hrs. t=0 shows the first frame in the
time lapse where every nucleus in the PSM is highlighted by the tracking algorithm with a spot. t = 30 shows
the 30th time frame which corresponds to 01:15hrs into the time-lapse and t = 60 shows the 60th frame in
the movie, which corresponds to the end of the time lapse at 02:30hrs. Data from Thomson et al. (2021). In
these tracking data, newly formed somites were deleted as soon as the morphological somite is formed.
Non-presomitic mesoderm tracks were deleted from the entire movie at all time points. (E) The tracking data
in (D) were used to implement the live-modelling framework where reverse-engineered zebrafish T-box GRNs
are simulated on every cell track represented in silico. The live-modelling framework allows us to observe how
tissue-level patterning emerges as a function of GRNs acting at the single cell level as the PSM undergoes
morphogenesis. Tbxta in red, Tbx16 in yellow and Tbx6 in blue. F Reverse-engineered T-box GRN. G
Quantified simulated gene expression patterns compared to the gene expression patterns measured in the
embryo, previously quantified using HCR. Each dot represents the simulated concentration of a TBox gene in
a single cell. Curves (dotted lines) were fit and normalised to the simulated gene expression and compared to
the quantified experimental data (solid lines) at different time points (t=30 and t=60 shown here) to assess
the goodness of fit.

Networks were inferred from fitting parameters to the data from 10 random single cell AGETs.
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We selected and clustered the networks that were able to recapitulate tissue-level T-box patterning
when simulated on the tracks. We obtained 22 clusters when networks were clustered according
to their quantitative parameter values; the value of parameters was considered in addition to their
sign Spiess et al. (2022). In order to select a network for further study, we quantified signalling and
T-box expression dynamics in the in vitro experiments, used the signalling dynamics to simulate
all 22 representative networks and selected networks that also recapitulated the T-box expression
dynamics measured in vitro. To characterise the levels and dynamics of Wnt and FGF signals in
vitro we quantified Wnt signalling activity by performing HCR against gfp mRNA produced from a
Tg(7xTCF-Xla.Siam:GFP) zebrafish reporter line which reports on active Wnt signaling Moro et al.
(2012) while FGF was assayed using antibody staining against diphosphorylated ERK (Figure 4A-B).
Quantification of these signals in multiple cells in vitro revealed that the levels of Wnt and FGF
signaling decline in single cells over the 6 hours of culture. The cell population maintains high
PPERK phosphorylation during the first 4 hours before downregulating it at 6 hours (Figure 4C).
Mean TCF reporter levels also decline rapidly within the first two hours of culture and remain low
for the remaining duration of the timecourse (Figure 4D). This was further confirmed by bulk RNA
extraction and qPCR using primers for axin2 and sprouty4, which function as downstream readouts
of Wnt and FGF signaling respectively (Figure 4E,F).

Using bulk qPCR of cells experimentally dissociated and cultured in vitro, we measured a bulk
loss of tbx16 mRNA and a gain of tbx6 expression over time (Figure 4G), finding tbx6 levels reaching
peak expression after four hours before becoming downregulated. Next, we imaged at the single
cell level in vitro using HCR stains against tbx16 and tbx6 experiments and quantified expression
levels by masking around individual cells normalised by cell area. From this we found bimodal
differentiation dynamics in single cells, where a population of cells increased their levels of tbx6
and downregulated tbx16, while at the same time, other cells remain tbx6 negative (Figure 4H,1).

Out of 22 networks, ten recapitulated both the coordinated bulk upregulation of tbx6 (Figure
4]) and its bimodal activation in single cells (Figure 4K-L). Unable to discriminate between these
further based on fit, we selected a network whose predicted interactions were also supported
by the current literature, namely, the network where tbx16 is predicted to activate tbx6 Bouldin
et al. (2015); Fior et al. (2012) and FGF is predicted to activate tbx16 Goto et al. (2017); Griffin et al.
(7998) (Figure 3C). In imposing this selection criteria, the remaining network proposed also infers
that Wnt signalling will repress the expression of tbx6; an interactions which is also supported by
experimental evidence Fior et al. (20712). The experimental evidence that Wnt activates expression
of tbxta has also been incorporated within this model as a non-inferred prior parameter Bouldin
et al. (2015); Goto et al. (2017). Taken together, these results propose a GRN (Figure 3F) that has
a number of inferred and prior known interactions supported by the literature and capable of
predicting differentiation dynamics of tailbud progenitors in vivo, on cell tracks, and when cultured
as single cells in vitro (Figure 3E-F) and (Figure 4J,K,L).
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Figure 4. in vitro cultures of PSM cells differentiate as single cells with dynamics predicted by a
simulated gene regulatory network. Posterior PSM cells cultured in vitro (A-B) maintain some level of Wnt
and FGF signalling measured by gfp mRNA production from a 7XTCF::GFP reporter or diphosphorylated ERK
antibody staining respectively. Examining these stains at the single cell level demonstrate that (C-D) the level
of FGF and Wnt signalling declines over the time course with a gradual decline in mean ppERK activity and a
more rapid decline of TCF::GFP activity over time. This is further demonstrated (E-F) by bulk qPCR of cultured
cells over a timecourse using primers for axin2 and sprouty4 to measure levels of Wnt and FGF signalling. In
the same gPCR experiments, (G) the level of tbx16 declines over time whilst the level of tbx6 increases to a
maximum at 4 hours before then declining again. (H-I) Examining single cell HCRs for tbx16 and tbx6
demonstrate that the level of tbx16 declines and the level of tbx6 increases in only some cells to form a
bimodal population by 6 hours, where some cells are tbx6 positive and others and still low in tbx6 expression.
Using the remaining 22 reverse engineered networks which could generate patterns similar to those observed
in vivo when simulated on cell tracking data, (J) the bulk gPCR experiment was simulated with the predicted
outcome closely resembling the experimental outcome in vivo. (K-L) Simulation of single cells cultured in vitro
and imaged as individuals also predicted the formation of a bimodal population, as was observed in vivo

Cell rearrangements tune the dynamics of mesoderm progenitor differentiation in
vivo to generate pattern emergence as a function of temporal Wnt and FGF expo-
sure.

Our live-modelling framework makes it possible to explore the differentiation dynamics of single
cells within the PSM and to associate these dynamics with the cells’ relative positions and move-
ments, linking them back to the Wnt and FGF signalling environments that they each experience as
morphognesis unfolds. In particular, it allows us to explore how cell movements might be playing
a role controlling the timing of tbx6 onset as a function of Wnt and FGF exposure by determin-

10 of 23


https://doi.org/10.1101/2021.02.05.429898
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.05.429898; this version posted April 7, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

ing when the cells exit from the progenitor domain. This would in turn help explain the range of
differentiation timescales observed in vivo (Figure 2A-F, M).

We investigate this further by choosing two progenitor cells that both begin the simulation at
23% posterior-anterior position within the progenitor region, but that as development proceeds,
will diverge notably in their positions and overall 4D trajectories: one cell will leave the progenitor
region and enter the PSM, making its way towards a somite Figure 5A, while the other will remain
in the progenitor region even moving slightly posteriorly over time (Figure 5D). As a result of these
different 3D movements over time, the cells’ signalling AGETS are different Figure 5B,E. The first
thing to note is that the signalling AGETs are initially not the same for both cells despite them being
located at the same anteroposterior position. This reflects the fact that AGETs are constructed
from 3D gene expression quantification and retain the heterogeneity present in the data, which is
present even across narrow spatial domains Spiess et al. (2022). The next thing to note, is that the
cell that exits the progenitor region will continue to upregulate FGF and downregulate Wnt (Figure
5B), while the cell that remains in the progenitor region will maintain high Wnt signalling levels and
low FGF (Figure 5E).

As a result of their different patterns of movement, and therefore different Wnt and FGF dy-
namics, the simulated T-box gene expression dynamics differ in both cells. The cell which exited
the progenitor region is predicted by the model to reduce its tbxta and tbx16 expression levels
and slowly increase tbx6 expression (Figure 5A,C). By contrast, the cell which remains embedded
in the progenitor region throughout the simulation, is predicted to maintain high levels of tbxta
and tbx16 expression, and low level of tbx6 expression (Figure 5D,F). In either case, the associated
Wnt and FGF profiles are modified due to the different rate of movement through the 3D tissue
level signalling environments, also taking into account their heterogeneity within the tissues.

In addition our model suggests that it is a progenitor cell's overall movement along the anterior-
posterior axis rather than the total distance it travels (track length) that determines its differentia-
tion dynamics. Figure 5G shows that cells starting in the posterior-most 25% region of the progen-
itor region will experience a larger change in tbx6 expression levels if their overall displacement
is positive (towards the anterior) than negative (towards the posterior), as reflected by the larger
lightly-coloured area in the top left quadrant as compared to the bottom left one. In contrast, the
total distance travelled by a cell in the same region does not predict or correlate with the level of
tbx6 change that it will experience, which is shown by the comparable shading in both top and
bottom left quadrants in Figure 5H.

All'in all we show that in our model cell movements themselves are responsible for modulating
the dynamics of progenitor differentiation by generating dynamic exposure to spatial signalling en-
vironments, and expression patterns emerge as a result at the tissue level through a combination
of dynamic signalling exposure, cell intrinsic gene regulatory interactions, and cell movements.
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Figure 5. Temporal signalling dynamics implemented by cell movements and rearrangements control
the timing of differentiation in mesoderm progenitors. (A. top) Relative position of the cell within the
zebrafish PSM at the start of the simulation (23.8321% posterior-anterior at time = 0) and (A. bottom) at the
end of the simulation (time = 61). (B) Signalling AGET and (C) simulated T-box gene expression dynamics for
the cell shown in (A). (D. top) Relative position of the cell within the zebrafish PSM at the start of the
simulation (23.8361% posterior-anterior at time = 0) and (D. bottom) at the end of the simulation (time = 61).
(E) Signalling AGET and (F) simulated T-box gene expression dynamics for the cell shown in (D). (G)
Visualisation of the degree of change in Tbx6 gene expression over the simulation compared to total cell
movement in the direction of the anterior-posterior axis for cells starting in the posterior 25% region of the
PSM. Positive Total Movement in AP represents anterior cell movement whereas negative Total Movement in
AP represents posterior cell movement. Continues on next page.
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Figure 5. Continued from previous page. Cells have the largest change in tbx6 expression when displacing
anteriorly. Aberrant tbx6 expression in posterior moving cells can be observed in the bottom left quadrant
where cells are moving towards the posterior yet upregulating tbx6 expression, shown by the light ochre
colouring. (H) Visualisation of the degree of change in Tbx6 gene expression over the simulation compared to
total track length for cells starting in the posterior 25% region of the PSM.The total distance a cell travels
shows no correlation with the degree of thx6 gene expression change as top and bottom quadrants show
similar degrees of ochre shading.

Posterior cell displacements predict increased tbx6 heterogeneity within the tail-
bud.

Figure 5G and H also reveal a degree of heterogeneity in the level of tbx6 expression change within
cells starting in the posterior-most 25% of the embryonic tailbud. This is reflected by the existence
of patches of all three tones of orange in the top and bottom left quadrants of Figure 5G and H. In
particular, the presence of light ochre patches in the bottom left quadrant of Figure 5G suggests
that a subset of cells upregulate tbx6 without leaving the progenitor domain.

As a result, when simulated on live tracking data, our network predicts a degree of tbx6 expres-
sion heterogeneity within the tailbud (Figure 6A-B). To identify whether there is indeed a posterior
bias of ectopic expression of thx24 as predicted by the live modelling, the nuclei within the PSM
were segmented (Figure 6C) and then classified as either anterior or posterior relative to the poste-
rior end of the notochord within each embryo (Figure 6D). Following this, cells with aberrant gene
expression were identified in each domain, defined as expressing tbx6 in the posterior, or tbx16
in the anterior domain (Figure 6E). The frequency of aberrant gene expression was measured and
we confirmed a posterior bias in erroneous gene expression, as predicted by the live modelling
(Figure 6F) indicating that although this system is able to generate deterministic patterns at the
level of the tissue (Figure 2D-F), it does so from noisy gene expression at the single cell level, as
seen in vivo (Figure 6G).
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Figure 6. Live modelling predicts cell level heterogeneity (A-B) Live modelling simulations predict that
some cells upregulate tbx6 in the posterior domain of the PSM, where tbx16 would be expected to be
expressed by the end of the simulation. (A) All three genes are shown: tbxta in red, tbx16 in yellow and tbx6 in
blue. (B) Same as (A) showing only tbx6 expression in blue. (C-E) By examining whole mount HCR images and
segmenting individual nuclei, cells could be classified as either posterior or anterior relative to the end of the
notochord. (F) Cells in each of these domains could then be classified and the number of cells expressing tbx6
in the tbx16 domain and vice versa counted. This demonstrates a posterior bias in aberrant gene expression
as predicted by the live modelling simulations. (G) These aberrant cells can be identified in slices of HCR data.

Conclusions
During development, cells undergo state transitions at a rate that is in part determined by cell
intrinsic timers of differentiation. Mechanistically, this developmental tempo is set by the time it
takes for the underlying GRN to elicit changes in gene expression. It is to a large degree also de-
pendent on protein production and degradation rates within each cell Matsuda et al. (2020); Rayon
et al. (2020), and species can vary these rates in a manner thatis linked to their basal metabolic rate
Diaz-Cuadros et al. (20217). In a multi-cellular context, extrinsic signals can further tune the dynam-
ics of this process by controlling the activation or inhibition of other nodes within a GRN, leading
to the creation of a non-autonomous dynamical system where the state change of a cell is directly
linked to the strengths of signal inputs that it encounters Bushy and Steventon (2020). Dynamical
systems models appropriately account for both intrinsic and extrinsic timers of differentiation and
are therefore a powerful tool to probe how gene expression patterns emerge during development
Crombach et al. (2016); Verd et al. (2014); Sagner and Briscoe (2017); Kicheva et al. (2014). Here, we
present a GRN that can explain the temporal dynamics of PSM progenitor differentiation in vitro,
and crucially is also able to recapitulate the emergence of tissue-level T-box pattern formation in
vivo in the context of cell rearrangement.

Probing the predicted dynamics of gene expression change for single cells within our model
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has revealed two insights. Firstly, an unexpected degree of heterogeneity observed for tbx6 ex-
pression in the posterior progenitor domain. Gene expression heterogeneity is a common feature
of progenitor populations that has in many cases been linked to underlying stochasticity in gene
expression at the transcriptional level Moris et al. (2016). While this is also likely to be the case
for T-box genes in the PSM, our model points to a second source of noise in the system. GRNs
are configured in such a way that produces a temporal delay in response to morphogen exposure,
as such cells will not immediately adjust their expression state in situations where they move into
an altered signalling environment. For the PSM, this means that cells displaced posteriorly from a
tbx6 positive region into the tbx16 progenitor domain retain their previous gene expression state
and thereby contribute to gene expression heterogeneity. Dissecting these multiple sources of
heterogeneity in developing systems will be an important step in fully exploring the role of gene
expression noise in vivo.

A second insight derived from our model relates to the role of cell movements in the emer-
gence of tissue-wide gene expression patterns. To generate patterns of T-box expression in the
PSM, cells must tune their intrinsic dynamics of differentiation to the rate at which they exit the
tailbud and enter the PSM. We observe that cells delayed in their exit from a high tbxta expressing
progenitor state encounter higher Wnt levels and do not transit through to the lower region of
FGF activity in the PSM. As such, cell movements determine the level and dynamics of morphogen
exposure, and in doing so regulate their differentiation rate accordingly. This demonstrates a cru-
cial role for cell movements in the emergence of gene expression pattern that is a composite of
morphogen exposure, intrinsic timers of differentiation, and cell rearrangement. It emphasises
the difficulty in determining gene function from mutant phenotype analysis alone as a given sig-
nal or transcription factor may have dual impact on gene expression patterns, firstly through the
regulation of other network nodes to control their levels of expression but also indirectly via the reg-
ulation of cell movements within the tissue in question. This is especially important in the context
of PSM development where signals such as Wnt and FGF have known functions in also regulating
epithelial-to-mesenchymal transitions Bajard et al. (2014); Goto et al. (2017); Row et al. (2017). In
addition, tbx16 has a clear role in both the specification of mesodermal cell fate and the control of
cell movement from the tailbud Griffin et al. (1998). Here, we present a novel approach to model
this highly dimensional system, that considers both GRN interactions and cell movements. We en-
visage that this will be a powerful predictive tool when testing proposed network interactions in
the context of cell tracking data obtained from both wild-type and mutant embryos.

Embryonic development is characterised by a series of multi-scalar interactions where dynamic
state changes of individual cells, when coupled with cell movements and morphogen exposure, can
lead to the emergence of gene expression patterns at the tissue level. Cell movements themselves
are likely to also be impacted by tissue level properties such as the liquid-to-solid transition ob-
served in the PSM Mongera et al. (2018); Serwane et al. (2017), and furthermore via forces acting
between adjacent tissues during the process of posterior body elongation McLaren and Steventon
(2021); Thomson et al. (2021); Steventon et al. (2016a); Tlili et al. (2019). As such, it is essential
that we approach the role of GRNs in development in a context of multi-tissue morphogenesis to
gain a complete picture development. The live-modelling framework utilised here provides an in-
road into achieving this as it enables predictions to be generated of how specific GRN topologies
can lead to pattern emergence in multiple morphogenetic contexts. This might be in the context
of interpreting complex mutant phenotypes or to probe how developmental systems respond to
perturbations at the level of physical tissue properties, tissue geometry or multi-tissue mechanical
interactions. Furthermore, while in many cases it is assumed that evolution acts to drive changes
in gene expression through altering GRN interactions, our work points to an equivalent potential
in altering cell movements within a tissue in question while conserving the GRNs. Exploring the
multi-dimensional regulation of evolutionary change is therefore an important direction for the
field.
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Materials and Methods

Animal Husbandry

This research was regulated under the Animals (Scientific Procedures) Act 1986 Amendment Reg-
ulations 2012 following ethical review by the University of Cambridge Animal Welfare and Ethical
Review Body (AWERB). Embryos were obtained and raised in standard E3 media at 28°C. Wild Type
lines are either Tupfel Long Fin (TL), AB or AB/TL. The Tg(7xTCF-Xla.Sia:GFP) reporter line Moro
et al. (2072) was provided by the Steven Wilson laboratory. Embryos were staged as in Kimmel
et al. (1995)

Primary Culture of Tailbud Progenitor Cells

Cells were explanted from the tailbud as in Webb et al. (2016); Rohde et al. (2021). Effort was made
to remove the ectoderm prior to dissection. Cells were dissected in calcium and magnesium free
PBS in order to promote cell dissociation. Cells were cultures in 8 well Ibidi Micro-Slides under the
fully defined L15 media supplemented with PenStrep solution to limit bacterial growth.

RNA extractions were made in triplicate, from independent experiments, using Trizol Reagent
(Ambion LifeTechnologies) following a standard protocol and reverse transcription using Super-
script Ill (Invitrogen). Resultant cDNA was quantified using SYBRGreen with liquid handling robot
(Qiagility, Qiagen) and analysed on a RotorGeneQ thermocycler (Qiagen).

Primer sequences:

axin2 5-TACCCTCGGACACTTCAAGG-3" and 5-TGCCCTCATACATTGGCAGA-3';

sprouty4 5'-CACGCGCCCTAGTATCAAAC-3" and 5-GGGATCTTGGTGAAGTGTGC-3;

EF1a 5-GGAGACTGGTGTCCTCAA-3" and 5-GGTGCATCTCAACAGACTT-3'.

Concentration of cDNA was estimated using an in-house MAK2 analysis method, as described pre-
viously Turner et al. (2074).

In Situ Hybridisation Chain Reaction (HCR)

Embryos were raised to the required stage then fixed in 4% PFA in DEPC treated PBS without cal-
cium and magnesium at 4°C overnight. Embryos were then stained using HCR following the stan-
dard zebrafish protocol found in Choi et al. (2018). Probes, fluorescent hairpins and buffers were
all purchased from Molecular Instruments. After staining, samples were counter stained with DAPI
and mounted under 80% glycerol.

Immunohistochemistry

Embryos were raised to the required stage then fixed in 4% PFA in DEPC treated PBS without cal-
cium and magnesium at 4°C overnight. Embryos were then blocked in 3% goat serum in 0.25%
Triton, 1% DMSO, in PBS for one hour at room temperature. Diphosphorylated ERK was detected
using the primary antibody (M9692-200UL, Sigma) diluted 1 in 500 in 3% goat serum in 0.25% Tri-
ton, 1% DMSO, in PBS. The samples were incubated at 4°C overnight then washed in 0.25% Triton,
1% DMSOQ, in PBS. Secondary Alexa 647nm conjugated antibodies were diluted 1 in 500 in 3% goat
serum in 0.25% Triton, 1% DMSO, 1X DAPI in PBS and applied overnight at 4°C.

Imaging and Image Analysis

Samples were imaged using a Zeiss LSM700 inverted confocal microscope at 12 bit, 20X or 40X
magnification, with an image resolution of 512x512 pixels. Single cell HCR was imaged using a
Nikon Ti inverted widefield microscope at 63X magnification.

Image analysis of confocal images was done using the line drawing tool on Fiji Schindelin et al.
(2012); Schneider et al. (2012) set to a width of 50 pixels. Lines were drawn following the curve of
the embryo, through the centre of the PSM from posterior PSM to the posterior most clear somite
boundary. Profiles were normalised to the length of the PSM and signal intensity as individual
embryos by dividing the measured value by the maximum value of that embryo.
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Nuclear segmentation of whole embryos stained using HCR was conducted using a tight mask
applied around the DAPI stain using Imaris (Bitplane) with a surface detail of 0.5um. Touching
surfaces were split using a seed size of 4um. Values were exported as X, Y, Z coordinates relative to
the posteriormost tip of the PSM where X, Y, Zwere equal to (0, 0, 0). The PSM was then segmented
by hand by deleting nuclear surfaces outside of the PSM, including notochord, spinal cord, anterior
somites and ectoderm. Only the PSM closest to the imaging objective, therefore of highest imaging
quality was measured with the distal PSM also removed.

Intensity mean values of each transcription factor HCR signal were exported and normalised
between 0 and 1 by dividing each cell's mean signal intensity by the maximum measured within
that sample, per gene. PSM length was normalised individually between 0 and 1 by division of the
position in X by the maximum X value measured in each embryo.

Single cell image analysis was conducted using Imaris (Bitplane) by generating loose surface
masks around the DAPI stain to capture the full nuclear region and cytoplasm. Surface masks
were then filtered to remove any masks where two cells joined together or small surfaces caused
by background noise, or fragmented apoptotic nuclei. The intensity sum of each channel was
measured and normalised by the area of the surface, as surface area and transcript intensity had
been demonstrated to correlate. Expression level was then normalised between 0 and 1 using the
maximum value measured for each gene, in each experiment.

Live imaging datasets of the developing PSM was created using a TriM Scope |l Upright 2-photon
scanning fluorescence microscope equipped Insight DeepSee dual-line laser (tunable 710-1300 nm
fixed 1040 nm line). Embryo was imaged with a 25X 1.05 NA water dipping objective. Time step
and frame number as per figure legend. Embryos laterally in low melting agarose with the entire
tail cut free to permit normal development Hirsinger and Steventon (2017).

Model formulation

We formulated the T-box gene regulatory network using a dynamical systems formulation. The
models aim is to recapitulate the dynamics of T-box gene expression for any cell, or rather a general
cell, in the developing zebrafish PSM. We use a connectionist model formulation previosly used to
model other developmental patterning processes Mjolsness et al. (1991).

The mRNA concentrations encoded by the T-box genes tbxta, tbx16 and tbx24 are represented
by the state variables of the dynamical system. For each gene, the concentration of its associated
MRNA a at time ¢ is given by g“(r). mMRNA concentration over time is governed by the following
system of three coupled ordinary differential equations:

dg, (1)
dt

=R, p(u,) — 4,8, (M

where R* and A“ respectively represent the rates of mRNA production and decay. ¢ is a sigmoid
regulation-expression function used to represent the cooperative, saturating, coarse-grained ki-
netics of transcriptional regulation and introduces non-linearities into the model that enable it to
exhibit complex behaviours:

1 u
ot a)=—(—”+1), (2)
T2 V2 +1
where
u,= ) Whg, )+ ) E“g(t) +h, 3)

beG SES
G = {tbxta,tbx16,1bx24} is the set of T-box genes while S = {Wnt, FGF} is the set of external reg-
ulatory inputs provided by the Wnt and FGF signalling environments. The concentrations of the ex-
ternal regulators g, are interpolated from quantified spatial MRNA expression data (Figure 1)) and
translated into time as explained in the main text to used as dynamic inputs to the model. Chang-

ing Wnt and FGF concentrations over time renders the parameter term Y, Es“g (¢) time-dependent
SES
and therefore the model non-autonomous Collier et al. (1996); Verd et al. (2014).
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The interconnectivity matrices W and E house the parameters representing the regulatory in-
teractions among the T-box genes, and from Wnt and FGF to the T-box genes, respectively. Matrix
elements w’® and e** are the parameters representing the effect of regulator b or s on target gene
a. These can be positive (representing an activation from b or s onto a), negative (repression), or
close to zero (no interaction). A, is a threshold parameter representing the basal activity of gene
a, which acknowledges the presence of regulators absent from our model. Model parameters are
detailed in Table S1.

Model fitting and selection

We have developed a methodology that makes it possible to reverse-engineer gene regulatory net-
works that might be driving 4D tissue-level pattern formation during morphogenesis Spiess et al.
(2022). Prior to the development of this methodology, it was only possible to confidently reverse-
engineer GRNs underlying pattern formation in developmental processes where the timescales of
pattern formation and morphogenesis could be separated. This was because it is only possibly to
accurately quantify the gene expression dynamics of multiple genes of interest in a single cell (or
at a given position in the tissue) from static confocal stains of the tissue at different developmental
stages if the cells are not significantly changing their position over time. Otherwise, the quantifi-
cation at a given position in the tissue reflects the gene expression dynamics of many cells, and
not that of a single cell, which is what the GRN is modelling, leading to inaccurate GRN predictions.
This limitation has hence historically greatly restricted the types of patterning processes that could
be reverse-engineered.

In order to extend the application of reverse-engineering approaches to a wider variety of pat-
terning processes -particularly those where the timescales of pattern formation and morphogen-
esis are coupled - we have developed a novel methodology that is based on approximating gene
expression trajectories of single cell tracks and using these for gene regulatory network inference
Spiess et al. (2022). In brief, this methodology can be split into two main parts: generating approx-
imated gene expression trajectories (AGETs) for every cell track, and using a Markov Chain Monte
Carlo parameter sampling algorithm to infer candidate GRNs that can recapitulate the gene ex-
pression dynamics of a subset of the AGETs. Candidate GRNs are then selected for further study
based on their ability to recapitulate the tissue-level patterning dynamics, and other case-specific
factors Spiess et al. (2022).

In order to construct the AGETs we align and project gene and signalling quantifications ob-
tained from confocal imaging HCR and immuno stained tailbuds onto each time frame in the time-
lapse of the developing PSM. Each cell in the time frame is assigned gene expression and signalling
levels averaged from the five closest cells to it from the quantification. This is repeated for each
frame, and results in an approximated gene and signalling trajectory for each cell in the movie. Ten
AGETs were then selected pseudo-randomly along the PSM and used for network inference. The
MCMC algorithm was run 100 times, and solutions were resolved into 22 clusters that were able to
recapitulate tissue-level T-box patterning when simulated on the tracks. Representative networks
of these 22 clusters were then used to simulate the dissociation experiments and one network was
selected for further study. For further details of this methodology please refer to the methodology
paper Spiess et al. (2022).
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