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Abstract— We consider the reconstruction of brain activ-
ity from electroencephalography (EEG). This inverse prob-
lem can be formulated as a linear regression with indepen-
dent Gaussian scale mixture priors for both the source and
noise components. Crucial factors influencing the accuracy
of the source estimation are not only the noise level but also
its correlation structure, but existing approaches have not
addressed the estimation of noise covariance matrices with
full structure. To address this shortcoming, we develop
hierarchical Bayesian (type-II maximum likelihood) models
for observations with latent variables for source and noise,
which are estimated jointly from data. As an extension to
classical sparse Bayesian learning (SBL), where across-
sensor observations are assumed to be independent and
identically distributed, we consider Gaussian noise with full
covariance structure. Using the majorization-maximization
framework and Riemannian geometry, we derive an effi-
cient algorithm for updating the noise covariance along
the manifold of positive definite matrices. We demonstrate
that our algorithm has guaranteed and fast convergence
and validate it in simulations and with real MEG data. Our
results demonstrate that the novel framework significantly
improves upon state-of-the-art techniques in the real-world
scenario where the noise is indeed non-diagonal and full-
structured. Our method has applications in many domains
beyond biomagnetic inverse problems.

Index Terms— EEG/MEG Brain Source Imaging, Hier-
archical Bayesian Learning, Majorization Minimization,
Sparse Bayesian Learning, Type-II Maximum-Likelihood.
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I. INTRODUCTION

PRECISE knowledge of the noise distribution is a fun-
damental requirement for obtaining accurate solutions in

many regression problems [1], including biomedical imaging
applications such as neural encoding models for task-based
fMRI analyses [2], [3], electrical impedance tomography (EIT)
[4]–[6] or magneto- or electroetoencephalography (M/EEG)
inverse problems [7]–[9]. In some of these biomedical imaging
applications, however, it is impossible to separately estimate
this noise distribution, as distinct “noise-only” (baseline) mea-
surements are not feasible. An alternative is to jointly estimate
the regression coefficients and parameters of the noise distri-
bution. This has been pursued both in a (penalized) maximum-
likelihood setting (here referred to as Type-I approaches) [7] as
well as in hierarchical Bayesian settings (referred to as Type-
II) [8]–[11]. Most contributions in the literature, however,
consider only a scalar noise level (homoscedastic noise) or
a diagonal noise covariance (i.e., independent between dif-
ferent measurements, heteroscedastic noise) [12]–[14]. These
are limiting assumptions in practice as noise may be highly
correlated across measurements in many realistic scenarios
and, thus, have non-trivial off-diagonal elements.

In this paper, we focus on M/EEG based brain source
imaging (BSI), although the proposed algorithm can be used
in general regression settings including sparse signal recovery.
[15]–[17]. The goal of BSI is to reconstruct brain activity from
M/EEG data which can be formulated as a sparse Bayesian
learning (SBL) problem. Specifically, we cast it as a linear
Bayesian regression model with independent Gaussian scale
mixture priors on the parameters and noise. Extending classical
SBL approaches, we here consider Gaussian noise with full
covariance structure. Prominent sources of correlated noise in
M/EEG data are, for example, artifacts caused by eye blinks
and the heart beat, muscular artifacts and line noise. Other
domains that would benefit from modeling full-structure noise
include array processing [18], direction of arrival (DOA) es-
timation [19], geophysical inverse models [20], and electrical
impedance tomography (EIT) [4]–[6].

Algorithms that can accurately estimate noise with full
covariance structure in these domains can be expected to
achieve more accurate regression models and predictions. This
motivates us to present a model and to develop an efficient
optimization algorithm for jointly estimating the posterior of
regression parameters as well as the noise distribution. More
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specifically, our contribution in this paper is three-fold:
1) We consider linear regression with Gaussian scale mix-

ture priors on the parameters and full-structure mul-
tivariate Gaussian noise as opposed to classical SBL
approaches that only consider noise distributions with
scalar or diagonal structures.

2) We formulate the problem as a hierarchical Bayesian
(Type-II maximum-likelihood) regression problem, in
which the source variance hyperparameters and a full-
structure noise covariance matrix are jointly estimated
by maximizing the Bayesian evidence of the model.

3) We derive an efficient algorithm based on the
majorization-minimization (MM) framework for jointly
estimating the source variances and noise covariance
along the Riemannian manifold of positive definite (PD)
matrices.

The paper is organized as follows: In Section II, we review the
necessary background on Type-II Bayesian learning. We then
introduce our proposed algorithm in Section III. Simulation
studies and real data analysis demonstrating significant im-
provement in source localization for EEG/MEG brain source
imaging are presented in Sections IV and V, respectively.
Finally, Section VI concludes the paper.

II. TYPE-II BAYESIAN REGRESSION

We consider the linear model Y = LX + E, where a set
of coefficients or source components, X , is mapped to the
measurements, Y, by forward or design matrix, L ∈ RM×N .
Depending on the setting, the problem of estimating X given
L and Y is called an inverse problem in physics, a multi-task
regression problem in machine learning, or a multiple mea-
surement vector (MMV) recovery problem in signal processing
[21]. Adopting a signal processing terminology, the measure-
ment matrix Y ∈ RM×T captures the activity of M sensors at
T time instants, y(t) ∈ RM×1, t = 1, . . . , T , while the source
matrix, X ∈ RN×T , consists of the unknown activity of N
sources at the same time instants, x(t) ∈ RN×1, t = 1, . . . , T .
The matrix E = [e(1), . . . , e(T )] ∈ RM×T represents T time
instances of zero-mean Gaussian noise with full covariance Λ,
e(t) ∈ RM×1 ∼ N (0,Λ), t = 1, . . . , T , which is assumed to
be independent of the source activations.

The goal of BSI is to infer the underlying brain activity
X from the EEG/MEG measurement Y given a known
forward operator, called lead field matrix L. In practice, L
can be computed using discretization methods such as the
finite element method (FEM) for a given head geometry and
known electrical conductivities [22]. As the number of sensors
is typically much smaller than the number of locations of
potential brain sources, this inverse problem is highly ill-
posed. This problem is addressed by imposing prior distri-
butions on the model parameters and adopting a Bayesian
treatment through Maximum-a-Posteriori (MAP) estimation
(Type-I Bayesian learning) [23]–[27] or, when the model
has unknown hyperparameters, through Type-II Maximum-
Likelihood estimation (Type-II Bayesian learning) [28]–[30].
In this paper, we focus on Type-II Bayesian learning, which
assumes a family of prior distributions p(X|Θ) parameterized

by a set of hyperparameters Θ. These hyper-parameters can be
learned from the data along with the model parameters using
a hierarchical Bayesian approach [31] through the maximum-
likelihood principle:

ΘII := arg max
Θ

p(Y|Θ) = arg max
Θ

∫
p(Y|X,Θ)p(X|Θ)dX .

Here we assume a zero-mean Gaussian prior with diagonal
covariance Γ = diag(γ) for the underlying source distri-
bution. That is, x(t) ∈ RN×1 ∼ N (0,Γ), t = 1, . . . , T ,
where γ = [γ1, . . . , γN ]> contains N distinct unknown vari-
ances associated to N modeled brain sources. In the Type-II
Bayesian learning framework, modeling independent sources
through a diagonal covariance matrix leads to sparsity of the
resulting source distributions, i.e., at the optimum, many of the
estimated source variances are zero. This mechanism is known
as sparse Bayesian learning (SBL) [31] and is also closely
related to the concept of automatic relevance determination
(ARD) [32] and kernel Fisher discriminant (KFD) [33]. Just as
most other approaches, SBL makes the simplifying assumption
of statistical independence between time samples. This leads
to the following expression for the distribution of the sources
and measurements:

p(X|Γ) =

T∏
t=1

p(x(t)|Γ) =

T∏
t=1

N (0,Γ) (1)

p(Y|X) =
T∏
t=1

p(y(t)|x(t)) =
T∏
t=1

N (Lx(t),Λ) . (2)

The parameters of the Type-II model are the unknown source
variances and the noise covariance, i.e., Θ = {Γ,Λ} which
are optimized based on the current estimates of the source
variances and noise covariance in an alternating iterative
process. Given initial estimates of Γ and Λ, the posterior
distribution of the sources is a Gaussian of the form [34]

p(X|Y,Γ,Λ) =
T∏
t=1

N (x̄(t),Σx) ,where (3)

x̄(t) = ΓL>(Σy)−1y(t) (4)

Σx = Γ− ΓL>(Σy)−1LΓ (5)

Σy = LΓL> + Λ . (6)

The estimated posterior parameters x̄(t) and Σx are then in
turn used to update Γ and Λ as the minimizers of the negative
(marginal) log-likelihood − log p(Y|Γ,Λ) given by [35]:

LII(Γ,Λ) = log|Σy|+
1

T

T∑
t=1

y(t)>Σ−1y y(t)

= log|Λ + LΓL>|+ 1

T

T∑
t=1

y(t)>
(
LΓL> + Λ

)−1
y(t) .

(7)

Given the final solution of hyperparameters ΘII = {ΓII,ΛII},
the posterior source distribution is obtained by plugging these
estimates into (2)–(5).
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III. PROPOSED METHOD:
FULL-STRUCTURE NOISE (FUN) LEARNING

Here we propose a novel and efficient algorithm, full-
structure noise (FUN) learning, which is able to learn the full
covariance structure of the noise jointly within the Bayesian
Type-II regression framework. We adopt the SBL assumption
for the sources, leading to Γ-updates previously described
in the BSI literature under the name Champagne [28]. As
a novelty and main focus of this paper, we here equip the
SBL framework with the capability to jointly learn full noise
covariances by invoking efficient methods from Riemannian
geometry, in particular the geometric mean.

Note that the Type-II cost function in (7) is non-convex and
thus non-trivial to optimize. A number of iterative algorithms
such as majorization-minimization (MM) approaches [36] have
been proposed to address this challenge. Following the MM
scheme, we here first construct convex surrogate functions
that majorizes LII(Γ,Λ) in each iteration of the optimization
algorithm. Then, we show the minimization equivalence be-
tween the constructed majoring functions and (7). This result
is presented in the following theorem:

Theorem 1. Let Λk and Σk
y be fixed values obtained in

the (k)-th iteration of the optimization algorithm minimizing
LII(Γ,Λ). Then, optimizing the non-convex Type-II ML cost
function in (7), LII(Γ,Λ), with respect to Γ is equivalent to
optimizing the following convex function, which majorizes (7):

Lconv
source(Γ,Λ

k) = tr
(
L>
(
Σk

y

)−1
LΓ
)

+ tr(Mk
SΓ−1) , (8)

where Mk
S is defined as:

Mk
S :=

1

T

T∑
t=1

x̄k(t)x̄k(t)> . (9)

Similarly, optimizing LII(Γ,Λ) with respect to Λ is equiv-
alent to optimizing the following convex majorizing function:

Lconv
noise(Γ

k,Λ) = tr
[(

Σk
y

)−1
Λ
]

+ tr(Mk
NΛ−1) , (10)

where Mk
N is defined as:

Mk
N :=

1

T

T∑
t=1

(y(t)− Lx̄k(t))(y(t)− Lx̄k(t))> . (11)

Proof. The proof is presented in Appendix A.

We continue by considering the optimization of the cost
functions Lconv

noise(Γ
k,Λ) and Lconv

source(Γ,Λ
k) with respect to

Λ and Γ, respectively. Note that in case of noise covariances
with full structure, the solution of Lconv

noise(Γ
k,Λ) with respect

to Λ lies within the (M2+M)/2 Riemannian manifold of PD
matrices of size M ×M . This enables us to invoke efficient
methods from Riemannian geometry (see [37]), which ensure
that the solution at each step of the optimization is contained
within the lower-dimensional solution space. Specifically, in
order to optimize for the noise covariance, the algorithm
calculates the geometric mean between the previously obtained
statistical model covariance, Σk

y, and the empirical sensor-
space residuals, Mk

N, in each iteration. Regarding the solution

Fig. 1: Geometric representation of the geodesic path between
the pair of matrices {Σk

y,M
k
N} on the PD manifold and the

geometric mean between them, which is used to update Λk+1.

of Lconv
source(Γ,Λ

k), note that we adopt the SBL assumption for
the sources by imposing a diagonal structure on the source
covariance matrix, Γ = diag(γ), where γ = [γ1, . . . , γN ]>.
The update rules obtained from this algorithm are presented
in the following theorems:

Theorem 2. The cost function Lconv
noise(Γ

k,Λ) is strictly
geodesically convex with respect to the PD manifold, and its
minimum with respect to Λ can be attained according to the
following update rule:

Λk+1 ← (Σk
y)

1
2

(
(Σk

y)
−1/2Mk

N(Σk
y)

−1/2
) 1

2

(Σk
y)

1
2 . (12)

Proof. A detailed proof can be found in Appendix B. More-
over, a geometric representation of the geodesic path between
the pair of matrices {Σk

y,M
k
N} on the PD manifold and the

geometric mean between them, representing the update for
Λk+1, is provided in Fig. 1.

Remark 1. Note that the obtained update rule is a closed-
form solution for the surrogate cost function, (10), which
stands in contrast to conventional majorization minimization
algorithms (see Section D in the appendix), which require
iterative procedures in each step of the optimization.

Theorem 3. Constraining Γ in (8) to the set of diagonal
matrices with nonnegative elements S, i.e., S = {Γ | Γ =
diag(γ) = diag([γ1, . . . , γN ]>), γn ≥ 0, for n = 1, . . . , N},

Γk+1 = arg min
Γ∈S, Λ=Λk

tr
(
L>
(
Σk

y

)−1
LΓ
)

+ tr(Mk
SΓ−1) ,

leads to the following update rule for the source variances:

Γk+1 = diag(γk+1), where,

γk+1
n ←

√√√√√
[
Mk

S

]
n,n[

L>
(
Σk

y

)−1
L
]
n,n

=

√√√√ 1
T

∑T
t=1(x̄kn(t))2

L>.n
(
Σk

y

)−1
L.n

for n = 1, . . . , N , (13)

and where L.n denotes the n-th column of the lead field matrix.

Proof. A detailed proof can be found in Appendix C.

Convergence of the resulting algorithm is shown in the fol-
lowing theorem:
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Theorem 4. Optimizing the non-convex Type-II ML cost
function in (7), LII(Γ,Λ) with alternating update rules for
Λ and Γ in (12) and (13) leads to an MM algorithm with
convergence guarantees.

Proof. A detailed proof can be found in Appendix D.

Remark 2. Note that (13) is identical to the update rule of the
Champagne algorithm [28]. Moreover, various recent Type-
II schemes for learning diagonal noise covariance matrices
that are rooted in the concept of SBL [8], [9] can also
be derived as special cases of FUN learning. Specifically,
imposing diagonal structure on the noise covariance matrix for
the FUN algorithm, i.e., Λ ∈ S, results in the noise variance
update rules derived in [9] for heteroscedastic, and in [8] for
homoscedastic noise. We explicitly demonstrate the connection
between FUN learning and heteroscedastic noise learning in
Appendix E.

Remark 3. Although FUN is limited to estimating a diagonal
source covariance matrix, e.g. Γ = diag(γ), this assumption
can be relaxed in certain settings. One such setting is when
the inverse of

[
L>
(
Σk

y

)−1
L
]

is well-defined. This is the case
whenever the rank of the lead field matrix L is less than
the number of sensors. In the context of BSI, this scenario,
for example, occurs when a region-level lead field – instead
of a voxel-level lead field – is used. Under this condition,
an update rule similar to (12) can be obtained for the full-
structure source covariance matrix:

Γk+1 ← (Ck
S)

1
2

(
(Ck

S)
−1/2Mk

S(Ck
S)

−1/2
) 1

2

(Ck
S)

1
2 , (14)

where Ck
S :=

(
L>
(
Σk

y

)−1
L
)−1

. For additional extensions
to other scenarios, please see the discussion section.

Summarizing, similar to Champagne and other SBL algo-
rithms, the FUN learning approach also assumes independent
Gaussian distributed sources with diagonal source covariances,
which are updated through (13). As an extension to the
classical SBL setting, which assumes the noise distribution to
be known, FUN models noise with full covariance structure,
which is updated using (12). We summarize the algorithm in
Algorithm 1.

Remark 4. The theoretical results presented in Section III
have been obtained for the scalar setting of voxels, where
the orientations of the dipolar brain source are assumed to
be perpendicular to the surface of the cortex and, hence, only
the scalar deflection of each source along the fixed orientation
needs to be estimated. In real data, surface normals are hard
to estimate or even undefined in case of volumetric recon-
structions. Consequently, we model each source here as a full
3-dimensional current vector. This is achieved by introducing
three variance parameters for each source within the source
covariance matrix, Γ3D = [γx1 , γ

y
1 , γ

z
1 , . . . , γ

x
N , γ

y
N , γ

z
N ]>. As

all Type-II algorithms considered here model the source co-
variance matrix Γ to be diagonal, the proposed extension
to 3D sources with free orientation is readily applicable.
Correspondingly, a full 3D leadfield matrix, L3D ∈ RM×3N ,

Algorithm 1: Full-structure noise (FUN) learning

Input: Lead field matrix L ∈ RM×N ; the
measurement vectors
y(t) ∈ RM×1, t = 1, . . . , T ; and the parameters
of stopping condition criteria: ε and kmax.

Result: Estimated prior source variances
[γ1, . . . , γN ]>, noise covariance Λ, posterior
mean x̄(t), and sources covariance Σx.

1 Random initialization of Λ that satisfies PD condition.
2 Initialization of Γ = diag([γ1, . . . , γN ]>) with

ordinary least square solution as Γ̂ = Cov[x̂(t)],
where x̂(t) = L†y(t) = (L>L)−1L>y(t).

3 Calculate the statistical covariance: Σy = Λ + LΓL>.
4 Initialize k ← 1

Repeat
5 Calculate the posterior mean as

x̄(t) = ΓL>(Σy)−1y(t).
6 Calculate

Mk
N = 1

T

∑T
t=1(y(t)−Lx̄k(t))(y(t)−Lx̄k(t))>,

and update Λ using (12).
7 Calculate Mk

S = 1
T

∑T
t=1 x̄k(t)x̄k(t)>, and update

Γ and γn for n = 1, . . . , N based on (13).
8 k ← k + 1.

Until stopping condition is satisfied:∥∥x̄k+1 − x̄k
∥∥2
2
≤ ε or k = kmax;

9 Calculate the posterior covariance as
Σx = Γ− ΓL>(Σy)−1LΓ.

is used, where we define L3D = [L1, . . . ,LN ], and where
N is the number of voxels under consideration and Ln =
[L1
n, · · · ,Ldcn ] ∈ RM×dc is the leadfield matrix for n-th voxel

with dc orientations. The k-th column of Ln, i.e. Lkn for
k = 1, · · · , dc, represents the signal vector that would be
observed at the scalp given a unit current source or dipole at
the n-th voxel with a fixed orientation in the k-th direction.
The voxel dimension dc is commonly set to 3 for EEG, and
MEG with realistic volume conductor models, and 2 for MEG
with single spherical shell models. The update rule in (13) can
then be reformulated as follows:

γk+1
n ←

√√√√ 1
T

∑T
t=1(x̄kn(t))>x̄kn(t)

tr
(
L>n
(
Σk

y

)−1
Ln

) for n = 1, . . . , N .

Complexity Analysis: Suppose FUN takes K iterations to
converge. The key steps within each iteration of FUN include
matrix multiplications of different dimensions, additions of
matrices, and a matrix inversion. Of note, Γ is diagonal matrix
in our setting; which significantly reduces the computational
burden. Finally, by retaining only dominating factors and
using that T � N , M � N , and log(N) < M in
typical BSI settings, we obtain the overall complexity as
O(MNT ) + O(M2N). Note that since the model used in
FUN learning better captures the structure of the noise in most
settings, it converges faster than a less accurate diagonal noise
model (please see convergence plots in Fig. 2). Therefore, this
observation can be interpreted as a trade-off in which even
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though per-iteration complexity is more significant for FUN
compared to heteroscedastic or homoscedastic noise learning
variants, fewer iterations are required for FUN to meet the
convergence criteria. This behavior can reduce the overall
computational complexity of FUN learning and result in a
competitive or only slightly increased total computational time
compared to diagonal heteroscedastic or homoscedastic noise
learning.

IV. NUMERICAL SIMULATIONS

In this section, we compare the performance of the pro-
posed algorithm to variants employing simpler (home- and
heteroscedastic) noise models through an extensive set of
simulations. We consider a standard EEG inverse problem,
where brain activity is reconstructed from simulated pseudo-
EEG data [38]. Our MATLAB codes are publicly accessible
at: https://github.com/AliHashemi-ai/FUN-Learning.

A. Pseudo-EEG Signal Generation
Forward Modeling: We used a realistic volume conductor

model (of human head) which exhibits a linear relationship
between primary electrical source currents generated within
the populations of pyramidal neurons in the cortical gray
matter [22] and the resulting scalp surface potentials captured
by EEG electrodes. The lead field matrix L ∈ R58×2004

consists of 2004 dipolar current sources and 58 sensors was
generated using New York Head model [39]. The orientation
of all source currents was fixed to be perpendicular to the
cortical surface, so that only scalar source amplitudes needed
to be estimated.

Source and Noise Model: We simulated a sparse set of
N0 = 5 active sources placed at random locations on the
cortex. Neural activity of these sources X = [x(1), . . . ,x(T )],
T = 200 were simulated by sampled from an identically and
independently distributed (i.i.d) Gaussian distribution. Gaus-
sian additive noise was randomly sampled from a multivariate
zero-mean Gaussian distribution with full covariance matrix
Λ: e(t) ∈ RM×1 ∼ N (0,Λ), t = 1, . . . , T . This setting is
further referred to as full-structure noise. To further investigate
the effect of model violation, we generated noise with diagonal
covariance matrix, referred as heteroscedastic noise. The noise
matrix E = [e(1), . . . , e(T )] ∈ RM×T is normalized and
added to the signal matrix Ysignal = LX as follows:

Y = Ysignal +
(1− α)

∥∥Ysignal
∥∥
F

α ‖E‖F
E, (15)

where α determines signal-to-noise ratio (SNR) in sen-
sor space defined as SNR = 20log10 (α/1−α). The fol-
lowing SNR (dB) values were used in our experiments:
{−12,−7.4,−5.4,−3.5,−1.7, 0, 1.7, 3.5, 5.4, 7.4, 12}.

Parameter Initialization: The variances of all voxels were
initialized randomly by sampling from a standard normal
distribution. The optimization programs were terminated either
after reaching convergence (defined by a relative change of
the Frobenius-norm of the reconstructed sources between
subsequent iterations of less than 10−8), or after reaching a
maximum of kmax = 1000 iterations.

Performance Metrics: We applied the proposed FUN
method on the aforementioned synthetic data to recover the
locations and time courses of active brain sources. In addi-
tion, two further Type-II Bayesian learning schemes, namely
homoscedastic and heteroscedastic Champagne [8], [9], were
also included as benchmarks with respect to source reconstruc-
tion performance and noise covariance estimation accuracy.

Source reconstruction performance was evaluated according
to the following metrics. First, earth mover’s distance (EMD)
[25], [40], normalized to [0, 1], was used to quantify the spatial
localization accuracy. The EMD measures the cost needed to
transform two probability distributions defined on the same
metric domain (in this case, distributions of the true and
estimated sources defined in 3D Euclidean brain space) into
each other. Second, the reconstruction error was measured
using Pearson correlation between all pairs of simulated and
reconstructed (i.e., those with non-zero activations) source
time courses. To evaluate the localization error, we also report
average Euclidean distance (EUCL) between each simulated
source and the best (in terms of absolute correlations) match-
ing reconstructed source.

To assess the recovery of the true support, we computed the
F1 measure [41]: F1 = 2×TP/(P+TP+FP ), where P denotes
the number of true active sources, while TP and FP are the
numbers of true and false positive predictions. Note that F1 =
1 represents the perfect recovery of the true support.

The performance of the noise covariance estimation was
evaluated using tree metrics: Pearson correlation (Λsim), the
normalized mean squared error (NMSE), which is defined as
||Λ̂ − Λ||2F /||Λ||2F , where Λ and Λ̂ denote true and recon-
structed noise covariances, respectively, and finally the log-
det Bregman matrix divergence – also known as Stein’s loss –
between original and reconstructed noise covariance matrices,
denoted by Dlog-det. An introduction to log-det Bregman matrix
divergence in the context of BSI methods can be found in [8,
Appendix A]. Note that NMSE measures the reconstruction
of the true scale of the noise covariance matrix, while Λsim is
scale-invariant and hence only quantifies the overall structural
similarity between simulated and estimated noise covariance
matrices.

Each simulation was carried out 100 times using different
instances of X and E, and the mean and standard error of the
mean (SEM) of each performance measure across repetitions
was calculated.

B. Results

Fig. 2 shows two simulated datasets with five active sources
in presence of full-structure noise (upper panel) and het-
eroscedastic noise (lower panel) at 0 dB SNR. Topographic
maps depict the locations of the ground-truth active brain
sources (first column) along with the source reconstruction re-
sult of three noise learning schemes –noise with homoscedas-
tic, heteroscedastic, and full structure. For each algorithm,
the estimated noise covariance matrix is also plotted above
the topographic map. Source reconstruction performance was
measured in terms of EMD and time course correlation (Corr);
and are summarized in the table next to each panel. Besides,
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Fig. 2: Two examples of the simulated data with five active sources in presence of full-structure noise (upper panel) as well as
heteroscedastic noise (lower panel) at 0 dB SNR. Topographic maps depict the locations of the ground-truth active brain sources
(first column) along with the source reconstruction results of three noise learning schemes assuming noise with homoscedastic
(second column), heteroscedastic (third column), or full structure (fourth column). For each algorithm, the estimated noise
covariance matrix is also plotted above the topographic maps. The source reconstruction performance of these examples in
terms of EMD and time course correlation (Corr) is summarized in the associated table next to each panel. Beside these two
source reconstruction metrics, we also report the accuracy with which the ground-truth noise covariance was estimated in terms
of the Λsim and NMSE metrics. The convergence behaviour of all three noise estimation approaches is also shown. Note that
the full-structure noise learning approach converges to better minima of the negative log-likelihood than competing approaches
regardless of whether the ground-truth noise covariance has full or heteroscedastic structure. However, an advantage in terms
of reconstruction is only observed in the former case.

the accuracy of the noise covariance matrix reconstruction was
measured in terms of Λsim and NMSE.

Fig. 2 (upper panel) allows for a direct comparison of the
estimated noise covariance matrices obtained from the three
different noise learning schemes. It can be seen that FUN
learning can better capture the overall structure of ground truth
full-structure noise as evidenced by lower NMSE and similar-
ity errors compared to the heteroscedastic and homoscedastic
algorithm variants that are only able to recover a diagonal
matrix while enforcing the off-diagonal elements to zero.
This results in higher spatial and temporal accuracy (lower
EMD and time course error) for FUN learning compared
to competing algorithms assuming diagonal noise covariance.
This advantage is also visible in the topographic maps.

The lower-panel of Fig. 2 presents analogous results for the
setting where the noise covariance is generated according to
a heteroscedastic model. Note that the superior spatial and
temporal reconstruction performance of the heteroscedastic
noise learning algorithm compared to the full-structure scheme
is expected here because the simulated ground truth noise
is indeed heteroscedastic. The full-structure noise learning
approach, however, provides fairly reasonable performance

in terms of EMD, time course correlation (corr), and Λsim,
although it is designed to estimate a full-structure noise
covariance matrix. The convergence behaviour of all three
noise learning variants is also illustrated in Fig. 2. Note that
the full-structure noise learning approach eventually reaches
lower negative log-likelihood values in both scenarios, namely
full-structure and heteroscedastic noise.

Fig. 3 shows the EMD, the time course reconstruction
error, the EUCL and the F1 measure score incurred by three
different noise learning approaches assuming homoscedastic
(red), heteroscedastic (green) and full-structure (blue) noise
covariances for a range of SNR values. The upper panel
represents the evaluation metrics for the setting where the
noise covariance is full-structure model, while the lower-panel
depicts the same metric for simulated noise with heteroscedas-
tic diagonal covariance. Concerning the first setting, FUN
learning consistently outperforms its homoscedastic and het-
eroscedastic counterparts according to all evaluation metrics in
particular at low-SNR. Consequently, as the SNR decreases,
the gap between FUN learning and the two other variants
increases. Conversely, heteroscedastic noise learning shows an
improvement over FUN learning according to all evaluation
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Fig. 3: Source reconstruction performance (mean ± SEM) of
the three different noise learning schemes for data generated
by a realistic lead field matrix. Generated sensor signals were
superimposed by either full-structure or heteroscedastic noise
covering a wide range of SNRs. Performance was measured
in terms of the earth mover’s distance (EMD), time-course
correlation error, F1-measure and Euclidean distance (EUCL)
in (mm) between each simulated source and the reconstructed
source with highest maximum absolute correlation.
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Fig. 4: Accuracy of the noise covariance matrix reconstruction
incurred by three different noise learning approaches assuming
homoscedastic (red), heteroscedastic (green) and full-structure
(blue) noise covariances. The ground-truth noise covariance
matrix is either full-structure (upper row) or heteroscedastic
diagonal (lower row). Performance was assessed in terms of
the Pearson correlation between the entries of the original and
reconstructed noise covariance matrices, Λ and Λ̂, denoted by
Λsim (first column). Shown is the similarity error 1 − Λsim.
Further, the normalized mean squared error (NMSE) between
Λ and Λ̂, defined as NMSE = ||Λ̂ − Λ||2F /||Λ||2F and the
log-det Bregman matrix divergence between original and re-
constructed noise covariance matrices, denoted by Dlog-det are
reported (second and third column). The last column depicts
the performance of FUN learning as well as heteroscedastic
and homoscedastic noise learning for different numbers of time
samples as measured by Pearson correlation error between true
and reconstructed noise covariance matrices.

metrics when the simulated noise is indeed heteroscedastic.
However, note that the magnitude of this improvement is not
as large as observed for the setting where the noise covariance

is generated according to a full-structure model and then is
estimated using the FUN approach.

Fig. 4 depicts the accuracy if the estimated noise covari-
ance matrix reconstructed by three different noise learning
approaches assuming noise with homoscedastic (red), het-
eroscedastic (green) and full (blue) structure. The ground
truth noise covariance matrix either had full (upper row)
or heteroscedastic (lower row) structure. Performance was
measured in terms of similarity, NMSE, and Dlog-det. To be
consistent with NMSE, we report “similarity error”, defined
as 1 −Λsim, instead of similarity, Λsim. Similar to the trend
observed in Fig. 3, full-structure noise learning leads to better
noise covariance estimation accuracy (lower NMSE and sim-
ilarity error) for the full-structure noise model, while superior
reconstruction performance is achieved for heteroscedastic
noise learning when true noise covariance is heteroscedastic.

The last column of Fig. 4 depicts the performance of
FUN learning as well as heteroscedastic and homoscedastic
noise learning approaches in terms of the Pearson correla-
tion error, 1 − Λsim, for different numbers of time sam-
ples. For this experiment, the SNR is set to −3.5 dB
and the following number of time samples are used: T =
{10, 20, 50, 70, 100, 150, 250, 500, 1000, 1500}. The rest of
the parameters are set to the values explained in Section. IV-A.

Note that all model inference relies on the robustness of
the estimated sample covariance matrix. According to the ob-
served results, we, therefore, conclude that, when the number
of samples is small, the sample covariance estimate becomes
unreliable and correspondingly will negatively impact the
performance of all algorithms. The inference quality, however,
can be significantly improved for FUN learning by increasing
the number of time samples.

Remark 5. When the true noise is heteroscedastic, the in-
ference algorithm with a generative model that matches the
true scenario, in this case, heteroscedastic noise learning,
outperforms a more complex full-structure noise learning
model that has many more parameters to be estimated to
become zero, i.e. more degrees of freedom (DoF). Thus, the
full-structure noise (FUN) learning model requires more data
to converge to the true model. This behavior is confirmed in
the last column of Fig. 4, where we observe that both models,
namely heteroscedastic noise learning and FUN, converge at
large data lengths when the true noise is heteroscedastic.
Notably, while the FUN and heteroscedastic noise learning
solutions converge when the true noise is heteroscedastic, the
same is not true when the true noise has full-structure. As
only FUN learning is able to deal with full structure, its
performance is dramatically better than that of heteroscedastic
(and homoscedastic) noise learning across all sample sizes in
this setting.

V. ANALYSIS OF REAL MEG DATA

A. Auditory and Visual Evoked Fields (AEF and VEF)

All MEG data used here were acquired in the Biomag-
netic Imaging Laboratory at the University of California San
Francisco (UCSF) with an Omega 2000 whole-head MEG
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system from CTF Inc. (Coquitlam, BC, Canada) at a sampling
rate of 1200 Hz. All human participants provided informed
written consent prior to study participation and received
monetary compensation for their participation. The studies
were approved by the University of California, San Francisco
Committee on Human Research.

Lead-fields for each subject were calculated using NUT-
MEG [42] assuming a single spherical shell volume conductor
model resulting in only two spherical orientations. Lead-fields
were constructed at a voxel resolution of 8 mm. Furthermore,
each lead-field column was normalized. Neural responses to
auditory evoked fields (AEF) and visual evoked fields (VEF)
stimulus were localized using the FUN algorithm and other
benchmarks. The AEF response was elicited during passive
listening to binaural tones (600 ms duration, carrier frequency
of 1 kHz, 40 dB SL). The VEF response was elicited while
subjects were viewing pictures of objects projected onto a
screen and subjects were instructed to overtly name the objects
[43], [44]. Up to 120 AEF and 100 VEF trials were collected.
For both AEF and VEF data, trials with clear artifacts or visi-
ble noise in the MEG sensors that exceeded 10 pT fluctuations
were excluded prior to source localization analysis.

Both AEF and VEF data were digitally filtered to a pass-
band of 1 to 70 Hz to remove artifacts and DC offset, and time-
aligned to the stimulus onset. Averaging was then performed
across sets of trials of increasing size: {10, 20, 40, 60, 100}
trials for AEF, and {10, 20, 40} trials for VEF analyses. The
pre-stimulus window was selected to be 100 ms prior to
stimulus onset. The post-stimulus time window for AEF was
selected to be +50 ms to +150 ms. For VEF data, we
focused on source reconstruction in two time-windows – an
early window ranging from +100 ms to +150 ms around the
traditional M100 response, and a later time window ranging
from +150 ms to +225 ms around the traditional M170
responses [35], [45]–[47].

Fig. 5 shows the reconstruction of the AEF for different
number of trial averages for a representative subject using
FUN learning along with Type-I and Type-II BSI benchmark
methods. In addition to heteroscedastic Champagne, two clas-
sical non-SBL source reconstruction schemes were included
for comparison. The minimum-current estimate (MCE) algo-
rithm [48] shown here is an example of a sparse Type-I method
based on `1-norm minimization. Additionally, eLORETA [49],
represents a smooth inverse solution based on `22-norm mini-
mization.

Reconstruction performance of all algorithms for different
trial averaging with 10, 20, 40, 60, and 100 trials are shown.
All trials were selected randomly prior to averaging. As the
subplots for different numbers of trial averages demonstrate,
FUN learning can accurately localize bilateral auditory activity
to Heschel’s gyrus, the characteristic location of the primary
auditory cortex, even with as few as 10 trials. In this challeng-
ing setting, FUN outperforms all competing methods.

Regarding the comparison between FUN and the het-
eroscedastic noise learning approach on real data as demon-
strated in Fig. 5, it is not straightforward to evaluate the per-
formance of BSI approaches quantitatively due to the absence
of the ground truth. Therefore, the quality of the reconstruc-

Fig. 5: Auditory evoked field (AEF) localization results from
one representative subject for different numbers of trial aver-
ages using FUN learning, heteroscedastic Champagne, MCE
and eLORETA. All reconstructions of FUN learning algorithm
show focal sources at the expected locations of the auditory
cortex. Even when limiting the number of trials to as few
as 10 reconstruction result of FUN learning is accurate, it
severely affects the reconstruction performance of competing
benchmark methods.

tions is commonly assessed based on prior neurophysiological
knowledge. In Fig. 5, we observed an involvement of both
bilateral Heschl’s gyri, which is expected for localization of
auditory cortex. Indeed, qualitatively, FUN is able to localize
both bilateral auditory activities even when the number of trials
is limited to 10. For this setting, the heteroscedastic noise
learning approach was only able to locate the left Heschl’s
gyrus auditory activity. These results highlight the importance
of accurate noise covariance estimation on the fidelity of
source reconstructions.

Fig. 6 shows the localization and time series reconstruction
of VEF activity for a single subject using FUN and het-
eroscedastic noise learning Champagne, eLORETA and MCE.
Reconstruction performance is again shown for the number of
trials used for averaging ranging from 10 to 40. Trials were
randomly chosen from the full dataset without replacement
prior to averaging. Within each panel, the top shows the source
localization of the M100 (1st peak) and M170 (2nd peak)
responses, respectively. The time course of the most prominent
source (indicated by the intersecting green lines) across a
+25 ms to +275 ms window is presented below the source
localization results. Blue lines represent the voxel power with
arbitrary units averaged across ten independent experiments
(that is, ten random selections of trials for trial averaging).
Blue shades represent the standard error of the mean (SEM)
across different trial averaging experiments. We also included
three additional benchmark algorithms, sLORETA [50], S-
FLEX [25] and the LCMV beamformer [51] in Fig. 7. In
comparison to MCE and eLORETA, FUN shows accurate
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Fig. 6: Localization and time series results of visual evoked
field (VEF) activity for a single subject using FUN and
benchmarks. Comparing with MCE and eLORETA, FUN
shows accurate localization capability. Furthermore, FUN de-
tects sharper 2nd peaks when compared to the heteroscedastic
noise-learning Champagne, which is consistent with the sharp
response of the VEF. The results obtained by FUN are robust
across different SNRs/numbers of trial averages. For additional
benchmark results, please see Fig. 7.

localization capability, while the former benchmarks did not
yield reliable results for averages of only ten trials. Even when
the number of trials used for averaging was increased to 20,
these benchmarks yielded neither good spatial localization of
the two visual cortical peaks, nor were the expected time
courses of activation reconstructed. Furthermore, FUN detects
two salient and clear peaks in each time window in contrast
to other benchmarks, where the salience of the early and late
peaks are less prominent. Results obtained from FUN are also
robust across different SNRs/numbers of trial averages. For
more benchmark results, please see Fig. 7.

B. Resting-state data
Resting-state data are particularly suited for the FUN algo-

rithm because of the lack of baseline data on which the noise
distribution could be estimated. Here, we show that FUN is
able to learn the underlying noise distribution and consistently
recover brain activity. For this analysis, three subjects were
instructed simply to keep their eyes closed and remain awake.
We collected four trials per subject, where each trial was one
minute long. We randomly chose 30 seconds or equivalently
36000 time samples for brain source reconstruction from one

Fig. 7: Localization and reconstructed time series of visual
evoked field (VEF) activity for a single subject using an-
other four benchmark algorithms. FUN outperforms LCMV
beamformer and sLORETA in terms of localization. Moreover,
the activation time courses derived from homoscedastic noise
learning Champagne and S-FLEX do not exhibit as sharp
responses as observed for FUN. The noise level used for S-
FLEX reconstructions was set to values learnt from classical
Champagne algorithm with noise learning.

trial of each subject. These resting-state MEG data were
digitally filtered using a pass-band ranging from 8 to 12 Hz
(alpha band) to remove artifacts and DC offset.

Localization of resting state alpha band activity from the
three subjects are shown in Fig. 8. The first three columns
show the estimated source covariance patterns (with the ap-
plication of a threshold of 10% the peak value) for the three
noise learning variants of Champagne. Each row represents
one subject. The corresponding loss function values across
1000 iterations are shown in the last column. FUN consistently
localizes all subjects’ brain activity predominantly near the
midline occipital lobe or posterior cingulate gyrus consistent
with expected locations of alpha generators known to dominate
resting-state activity.

VI. DISCUSSION

In this paper, we focused on sparse regression within the
hierarchical Bayesian regression framework and its application
in EEG/MEG brain source imaging. We proposed an effi-
cient optimization algorithm for jointly estimating Gaussian
regression parameter distributions as well as Gaussian noise
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Fig. 8: Localization of resting-state brain activity for three sub-
jects using FUN and the heteroscedastic and homoscedastice
noise learning variants of Champagne. The source variance
patterns estimated by each algorithm are projected onto the
cortical surface. The convergence behaviour of all three noise
estimation approaches is also shown in terms of the negative
log-likelihood cost function. FUN converges to better minima
when compared to these benchmarks.

distributions with full covariance structure within a hierarchi-
cal Bayesian framework. Using the Riemannian geometry of
positive definite matrices, we derived an efficient algorithm for
jointly estimating brain source variances and noise covariance.
The benefits of our proposed framework were evaluated within
an extensive set of experiments in the context of the electro-
magnetic brain source imaging inverse problem and showed
significant improvement upon state-of-the-art techniques in the
realistic scenario where the noise has full covariance structure.
The practical performance of our method is further assessed
through analyses of real auditory evoked fields (AEF), visual
evoked fields (VEF) and resting-state MEG data.

In the context of BSI, [52] proposed a method for selecting
a single regularization parameter based on cross-validation and
maximum-likelihood estimation, while [53]–[57] assume more
complex spatio-temporal noise covariance structures. A com-
mon limitation of these works is, however, that the noise level
is not estimated as part of the source reconstruction problem
on task-related data but from separate noise recordings. Our
proposed algorithm substantially differs in this respect, as it
learns the noise covariance jointly with the brain source distri-
bution from the same data. This joint estimation perspective is
opposed to a step-wise independent estimation process that can
cause to error accumulation. The idea of joint estimation of
brain source activity and noise covariance has been previously
proposed for Type-I learning methods in [7], [58]. Bertrand et
al. [7] proposed a method to extend the group Lasso class of
algorithms to multi-task learning, where the noise covariance
is estimated using an eigenvalue fit to the empirical sensor
space residuals defined as Mk

N in Theorem 1. In contrast,

FUN learning uses Riemannian geometry principles, e.g., the
geometric mean between the sensor space residuals Mk

N and
the previously obtained statistical model covariance, Σk

y. This
enables us to robustly estimate the noise covariance as part of
the model, in contrast to the method proposed in [7], which
estimates the noise covariance solely based on the eigenvalues
of the observed sensor space residuals. Furthermore, in con-
trast to these Type-I likelihood estimation methods, FUN is a
Type-II method, which learns the prior source distribution as
part of the model fitting. Type-II methods have been reported
to yield results that are consistently superior to those of Type-I
methods [8], [9], [46], [47], [59]. Our numerical results show
that the same holds also for FUN learning, which performs
on par or better than existing variants from the Type-II family
(including conventional Champagne) in this study.

The question of which noise model to use on real data can
be addressed through well-known model selection techniques
from the machine learning literature. One such strategy is
to evaluate the Type-II negative log-likelihood loss of both
models and pick the model that achieves the lowest loss, i.e.
choose models that maximize the Bayesian evidence. This was
the objective of our analysis in Fig. 8, where we demonstrated
that the localization of resting-state brain activity using FUN
learning converges to a lower negative log-likelihood loss, i.e.,
better Bayesian model evidence, than heteroscedastic noise
learning, which indicates the superiority of FUN learning and
the necessity to model full-structure noise. Furthermore, it
is also possible to evaluate the Type-II likelihood, or, the
Bayesian model evidence, out-of-sample in order to perform
model selection in real data analyses. This approach may be
suitable when parameters of the Type-II likelihood are being
optimized as is the case here for all approaches. Using this
technique, which was successfully employed in [8], the data
samples are first split into two parts, namely the training set
and the testing set, i.e., hold-out data. For real data analysis,
the data can be split among different trials or sensor subsets.
The model parameters are fitted to the training set and the
Type-II (Bregman) or Type-I likelihoods of the fitted model
are then evaluated on the hold-out data (see [8, Eqs. 31 and
32] for related formulations). Note that since the hold-out data
are not used during model fitting, the likelihood evaluation on
this data is called out-of-sample likelihood. The BSI method
that achieves better out-of-sample likelihood with respect to
the evaluation metric can be considered superior in terms of
performance for real data analysis. Formal comparisons of the
performance of these model selection techniques on different
real data sets are interesting explorations and are considered
one of the directions of our future work.

Noise learning has also attracted attention in functional
magnetic resonance imaging (fMRI) [2], [3], [60], where
various models like matrix-normal (MN), factor analysis (FA),
and Gaussian-process (GP) regression have been proposed.
The majority of the noise learning algorithms in the fMRI
literature rely on the EM framework, which is quite slow
in practice [8] and has convergence guarantees only under
certain restrictive conditions [36], [61]–[63]. In contrast to
these existing approaches, our proposed framework not only
applies to the models considered in these papers, but also
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benefits from theoretically proven convergence guarantees. To
be more specific, we showed in this paper that FUN learning
is an instance of the wider class of majorization-minimization
(MM) framework, for which provable fast convergence is
guaranteed. It is worth emphasizing our contribution within
the MM optimization context as well. Unlike many other MM
implementations, where surrogate functions are minimized
using an iterative approach, our proposed algorithm is more
efficient because it obtains a closed-form solution for the
minimum of the surrogate function in each step.

As pointed out in the introduction, electrical impedance
tomography (EIT) is another practical example in which the
noise interference is highly correlated across measurements;
and thus, indeed has full covariance structure. The authors
in [4], [5] addressed this problem using SBL techniques for
multiple measurement vector (MMV) models. Since the noise
in these works is restricted to scalar or diagonal covariance
structure, FUN learning could be used to model more realistic
full-structural noise also in EIT problems.

While being broadly applicable (see [64, Appendix A] for
a comprehensive list of potential applications), our approach
is nevertheless limited by a number of factors. Although
Gaussian noise distributions are commonly justified, it would
be interesting to include more robust non-Gaussian noise
distributions in our framework. Besides, signals in real-world
scenarios often lie in a lower-dimensional space compared to
the original high-dimensional ambient space due to the corre-
lations that exist in the data. Therefore, imposing physiologi-
cally plausible constraints on the noise model, e.g., low-rank,
Toeplitz, or Kronecker structure [65], [66], not only provides
side information that can be leveraged for the reconstruction
but also reduces the computational cost in two ways: a) by
reducing the number of parameters and b) by taking advantage
of efficient implementations using circular embeddings and the
fast Fourier transform [67], [68]. In our recent work [68], we
employed separable Gaussian distributions using Kronecker
products of temporal and spatial covariance matrices. The
proposed efficient algorithms exploit the intrinsic Riemannian
geometry of temporal autocovariance matrices. For stationary
dynamics described by Toeplitz matrices, the theory of circu-
lant embeddings was employed.

APPENDIX

A. Proof of Theorem 1
Proof. We start the proof by recalling (7):

LII(Γ,Λ) = log|Σy|+
1

T

T∑
t=1

y(t)>Σ−1y y(t) . (16)

The upper bound on the log |Σy| term can be directly inferred
from the concavity of the log-determinant function and its first-
order Taylor expansion around the value from the previous
iteration, Σk

y, which provides the following inequality [36,
Example 2]:

log |Σy| ≤ log
∣∣Σk

y

∣∣+ tr
[(

Σk
y

)−1 (
Σy −Σk

y

)]
= log

∣∣Σk
y

∣∣+ tr
[(

Σk
y

)−1
Σy

]
− tr

[(
Σk

y

)−1
Σk

y

]
. (17)

Note that the first and last terms in (17) do not depend on
Γ; hence, they can be ignored in the optimization procedure.
Now, we decompose Σy into two terms, each of which only
contains either the noise or source covariances:

tr
[(

Σk
y

)−1
Σy

]
= tr

[(
Σk

y

)−1 (
LΓL> + Λ

)]
= tr

[(
Σk

y

)−1
LΓL>

]
+ tr

[(
Σk

y

)−1
Λ
]
. (18)

In next step, we decompose the second term in (7),
1
T

∑T
t=1 y(t)>Σ−1y y(t), into two terms, each of which is

a function of either only the noise or only the source co-
variances. To this end, we exploit the following relationship
between sensor and source space covariances:

1

T

T∑
t=1

y(t)>Σ−1y y(t) =
1

T

T∑
t=1

x̄k(t)>Γ−1x̄k(t)

+
1

T

T∑
t=1

(y(t)− Lx̄k(t))>Λ−1(y(t)− Lx̄k(t)) . (19)

By combining (18) and (19), rearranging the terms, and
ignoring all terms that do not depend on Γ, we have:

LII(Γ) ≤ tr
[(

Σk
y

)−1
LΓL>

]
+

1

T

T∑
t=1

x̄k(t)>Γ−1x̄k(t)

= tr
(
L>
(
Σk

y

)−1
LΓ
)

+ tr(Mk
SΓ−1)

= Lconv
source(Γ,Λ

k) , (20)

where Mk
S := 1

T

∑T
t=1 x̄k(t)x̄k(t)>.

This proves the equivalence of (7) and (8) when the opti-
mization is performed with respect to Γ.

The equivalence of (7) and (10) can be shown analogously,
with the difference that we only focus on noise-related terms
in (18) and (19):

LII(Λ) ≤ tr
[(

Σk
y

)−1
Λ
]

+
1

T

T∑
t=1

(y(t)− Lx̄k(t))>Λ−1(y(t)− Lx̄k(t))

= tr
[(

Σk
y

)−1
Λ
]

+ tr(Mk
NΛ−1)

= Lconv
noise(Γ

k,Λ) , (21)

where Mk
N := 1

T

∑T
t=1(y(t)− Lx̄k(t))(y(t)− Lx̄k(t))>.

Summarizing, we have shown that optimizing (7) is equiv-
alent to optimizing Lconv

noise(Γ
k,Λ) and Lconv

source(Γ,Λ
k), which

concludes the proof.

B. Proof of Theorem 2

Before presenting the proof, the subsequent definitions and
propositions are required:

Definition 1 (Geodesic on the positive definite (PD) mani-
fold). Let M be a Riemannian manifold, i.e., a differentiable
manifold whose tangent space is endowed with an inner prod-
uct that defines local Euclidean structure. Then, a geodesic
between two points onM, denoted by p0,p1 ∈M, is defined
as the shortest connecting path between those two points along
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the manifold, ζl(p0,p1) ∈M for l ∈ [0, 1]. Here, we consider
a Riemannian manifold of PD matrices, S++. Assume two PD
matrices P0,P1 ∈ S++. Then, for l ∈ [0, 1], the geodesic
curve joining P0 to P1 is defined as [69, Chapter. 6]:

ξl(P0,P1) = (P0)
1
2

(
(P0)

−1/2P1(P0)
−1/2
)l

(P0)
1
2 . (22)

Note that P0 and P1 are obtained as the starting and end points
of the geodesic path by choosing l = 0 and l = 1, respectively.
The midpoint of the geodesic, obtained by setting l = 1

2 , is
called the geometric mean.

Definition 2 (Geodesic convexity). Let p0 and p1 be two
arbitrary points on a subset A of a Riemannian manifold M.
Then a real-valued function f with domain A ⊂M with f :
A → R is called geodesic convex (g-convex) if the following
relation holds:

f (ζl(p0,p1)) ≤ lf(p0) + (1− l)f(p1) , (23)

where l ∈ [0, 1] and ζ(p0,p1) denotes the geodesic path
connecting two points p0 and p1 as defined in Definition 1.

The proof parallels the one provided in [70, Theorem. 3]:

Proof. First, we consider PD manifolds and express (23) in
terms of geodesic paths and functions that lie on this particular
space. We then show that Lconv

noise(Γ
k,Λ) is strictly g-convex

on this specific domain. Second, we then derive the update
rule proposed in (12).

1) G-convexity of the Majorizing Cost Function: Let
ξl(Λ0,Λ1) denote geodesics along the PD manifold as pre-
sented in Definition 1, and let define f(.) to be f(Λ) =

tr
[(

Σk
y

)−1
Λ
]

+ tr(Mk
NΛ−1), representing the cost function

Lconv
noise(Γ

k,Λ).
We now show that f(Λ) is strictly g-convex on this specific

domain. For continuous functions as considered in this paper,
fulfilling (23) for f(Λ) and ξl(Λ0,Λ1) with l = 1/2 is suf-
ficient for strict g-convexity according to mid-point convexity
[71]:

tr
((

Σk
y

)−1
ξ1/2(Λ0,Λ1)

)
+ tr

(
Mk

Nξ1/2(Λ0,Λ1)
−1
)

<
1

2
tr
((

Σk
y

)−1
Λ0

)
+

1

2
tr
(
Mk

NΛ0
−1)

+
1

2
tr
((

Σk
y

)−1
Λ1

)
+

1

2
tr
(
Mk

NΛ1
−1) . (24)

Given
(
Σk

y

)−1 ∈ S++, i.e.,
(
Σk

y

)−1
> 0 and the operator

inequality [69, Chapter. 4]

ξ1/2(Λ0,Λ1) ≺ 1

2
Λ0 +

1

2
Λ1 , (25)

we have:

tr
((

Σk
y

)−1
ξ1/2(Λ0,Λ1)

)
<

1

2
tr
((

Σk
y

)−1
Λ0

)
+

1

2
tr
((

Σk
y

)−1
Λ1

)
, (26)

which is derived by multiplying both sides of (25) with(
Σk

y

)−1
followed by taking the trace on both sides.

Similarly, we can write the operator inequality for
{Λ−10 ,Λ−11 } using (22) as:

ξ1/2(Λ0,Λ1)−1 = ξ1/2(Λ
−1
0 ,Λ−11 ) ≺ 1

2
Λ−10 +

1

2
Λ−11 . (27)

Multiplying both sides of (27) by Mk
N ∈ S++ and applying

the trace operator on both sides leads to:

tr
(
Mk

Nξ1/2(Λ0,Λ1)
−1
)

<
1

2
tr
(
Mk

NΛ0
−1)+

1

2
tr
(
Mk

NΛ1
−1) . (28)

Summing up (26) and (28) proves inequality (24) and con-
cludes the first part of the proof.

2) Derivation of the Update Rule in (12): We now present
the second part of the proof by deriving the update rule
in (12). Since the cost function Lconv

noise(Γ
k,Λ) is strictly g-

convex, its optimal solution in the k-th iteration is unique.
More concretely, the optimum can be analytically derived by
taking the derivative of (10) and setting the result to zero as
follows:

∇Lconv
noise(Γ

k,Λ) =
(
Σk

y

)−1 −Λ−1Mk
NΛ−1 = 0 , (29)

which results in

Λ
(
Σk

y

)−1
Λ = Mk

N . (30)

This solution is known as the Riccati equation, and is the
geometric mean between Σk

y and Mk
N [72], [73]:

Λk+1 ← (Σk
y)

1
2

(
(Σk

y)
−1/2Mk

N(Σk
y)

−1/2
) 1

2

(Σk
y)

1
2 .

Deriving the update rule in (12) concludes the second part of
the proof of Theorem 2.

C. Proof of Theorem 3
We start the derivation of update rule (13) by constraining

Γ to the set of diagonal matrices with non-negative entries S,
i.e.,

S = {Γ | Γ = diag([γ1, . . . , γN ]>), γn ≥ 0, n = 1, . . . , N} .

We continue by reformulating the constrained optimization
with respect to the source covariance matrix,

Γk+1 = arg min
Γ∈S, Λ=Λk

tr
(
L>
(
Σk

y

)−1
LΓ
)

+ tr(Mk
SΓ−1) ,

(31)

as follows:

γk+1 = arg min
γ≥0, Λ=Λk

diag
[
L>
(
Σk

y

)−1
L
]
γ + diag

[
Mk

S

]
γ−1︸ ︷︷ ︸

Ldiag
source(γ|γk)

,

(32)

where γ−1 = [γ−11 , . . . , γ−1N ]> is defined as the element-
wise inversion of γ. Note that the set of diagonal matrices
with all non-negative entries are positive semidefinite (PSD)
by construction [74, Appendix A]. Thus, by constraining the
space of solutions of optimization problem (31) to the set S,
the PSD requirement for Γ reduces to the requirement that
the diagonal elements of Γ, i.e., γn, for n = 1, · · · , N , must
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be non-negative. The optimization with respect to the scalar
source variances is then carried out by taking the derivative
of (32) with respect to γn, for n = 1, . . . , N , and setting it to
zero, yields the following update rule:

Γk+1 = diag(γk+1), where,

γk+1
n ←

√√√√√
[
Mk

S

]
n,n[

L>
(
Σk

y

)−1
L
]
n,n

=

√√√√ 1
T

∑T
t=1(x̄kn(t))2

L>n
(
Σk

y

)−1
Ln

for n = 1, . . . , N , (33)

where Ln denotes the n-th column of the lead field matrix.
Note that (33) is identical to the update rule of Champagne
[28].

D. Proof of Theorem 4

We prove Theorem 4 by showing that the alternating update
rules for Λ and Γ, (12) and (13), are guaranteed to converge to
a local minimum of the Bayesian Type-II likelihood (7). More
generally, we prove that FUN learning is an instance of the
general class of majorization-minimization (MM) algorithms,
for which this property follows by construction. To this
end, we first briefly review theoretical concepts behind the
majorization-minimization (MM) algorithmic framework [62],
[63] [61], [75].

1) Required Conditions for Majorization-Minimization Algo-
rithms: MM encompasses a family of iterative algorithms
for optimizing general non-linear cost functions. The main
idea behind MM is to replace the original cost function in
each iteration by an upper bound, also known as majorizing
function, whose minimum is easy to find. Interested readers
are referred to [36] for an extensive list of applications on
MM.

The problem of minimizing a continuous function f(u)
within a closed convex set U ⊂ Rn:

min
u

f(u) subject to u ∈ U , (34)

within the MM framework can be summarized as follows.
First, construct a continuous surrogate function g(u|uk) that
majorizes, or upper-bounds, the original function f(u) and
coincides with f(u) at a given point uk:

[A1] g(uk|uk) = f(uk) ∀ uk ∈ U
[A2] g(u|uk) ≥ f(u) ∀ u,uk ∈ U .

Second, starting from an initial value u0, generate a sequence
of feasible points u1,u2, . . . ,uk,uk+1 as solutions of a series
of successive simple optimization problems, where

[A3] uk+1 := arg min
u∈U

g(u|uk) .

If a surrogate function fulfills conditions [A1]–[A3], then
the value of the cost function f decreases in each iteration:
f(uk+1) ≤ f(uk). For the smooth functions considered in this
paper, we further require that the derivatives of the original and
surrogate functions coincide at uk:

[A4] ∇g(uk|uk) = ∇f(uk) ∀ uk ∈ U .

We can then formulate the following theorem:

Theorem 5. Assume that an MM algorithm fulfills conditions
[A1]–[A4]. Then, every limit point of the sequence of mini-
mizers generated in [A3], is a stationary point of the original
optimization problem in (34).

Proof. A detailed proof is provided in [63, Theorem 1].

2) Details of the Proof of Theorem 4: We now show that
FUN learning is an instance of majorization-minimization as
defined above, which fulfills Theorem 5.

Proof. We need to prove that conditions [A1]–[A4] are ful-
filled for FUN learning. To this end, we recall the upper
bound on log |Σy| in (17), which fulfills condition [A2]
since it majorizes log |Σy| by virtue of the concavity of the
log-determinant function and its first-order Taylor expansion
around Σk

y. Besides, it automatically satisfies conditions [A1]
and [A4] by construction, because the majorizing function
in (17) is obtained through a Taylor expansion around Σk

y.
Concretely, [A1] is satisfied because the equality in (17) holds
for Σy = Σk

y. Similarly, [A4] is satisfied because the gradient
of log |Σy| at point Σk

y,
(
Σk

y

)−1
defines the linear Taylor ap-

proximation log
∣∣Σk

y

∣∣+ tr
[(

Σk
y

)−1 (
Σy −Σk

y

)]
. Thus, both

gradients coincide in Σk
y by construction. We can further

prove that [A3] can be satisfied by showing that Lconv
noise(Γ

k,Λ)
reaches its global minimum in each MM iteration. This is
guaranteed if Lconv

noise(Γ
k,Λ) can be shown to be convex or

g-convex with respect to Λ. To this end, we first require the
subsequent proposition:

Proposition 1. Any local minimum of a g-convex function over
a g-convex set is a global minimum.

Proof. A detailed proof is presented in [76, Theorem 2.1].

Given Theorem 2, which already states that the cost-
function Lconv

noise(Γ
k,Λ) is g-convex, and Proposition 1, we can

conclude that any local minimum of Lconv
noise(Γ

k,Λ) is a global
minimum.

For brevity, we omit the proof of conditions [A1], [A2]
and [A4] for the optimization with respect to Γ based on the
convex surrogate function in (8), Lconv

source(Γ,Λ
k), as it can be

presented analogously. We here only show that [A3] is satisfied
if Ldiag

source(γ|γk) in (32) is a convex function with respect to γ.
Note that the g-convexity of Lconv

source(Γ,Λ
k) can also be proven

using arguments analogous to those presented in appendix B.1.
However, we instead prove a stronger condition, i.e., convexity,
for simplifying the proof. To this end, we rewrite (32) as
follows:

Ldiag
source(γ|γk) = diag

[
Vk
]
γ + diag

[
Mk

S

]
γ−1 ,

where Vk := L>
(
Σk

y

)−1
L is defined as a parameter that

does not depend on γ. The convexity of Ldiag
source(γ|γk) can

be directly inferred from the convexity of diag
[
Vk
]
γ and

diag
[
Mk

S

]
γ−1 with respect to γ [77, Chapter. 3]. The con-

vexity of Ldiag
source(γ|γk), which ensures that condition [A3]

can be satisfied using standard optimization, along with the
fulfillment of conditions [A1], [A2] and [A4], ensure that
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Theorem 5 holds for Lconv
source(Γ,Λ

k). This completes the proof
that the optimization of (7) with respect to Γ using the convex
surrogate cost function (8) leads to an MM algorithm with
convergence guarantees.

E. Special Case of FUN Learning leads to Champagne
with Heteroscedastic Noise Learning

We start by constraining Λ to the set of diagonal matrices
with non-negative entries S, i.e.,

S = {Λ | Λ = diag([λ1, . . . , λM ]>), λm ≥ 0, m = 1, . . . ,M} .

We then reformulate the constrained optimization with respect
to the noise covariance matrix,

Λk+1 = arg min
Λ∈S, Γ=Γk

tr
((

Σk
y

)−1
Λ
)

+ tr(Mk
NΛ−1) , (35)

as follows:

λk+1 = arg min
λ≥0, Γ=Γk

diag
[(

Σk
y

)−1]
λ+ diag

[
Mk

N

]
λ−1︸ ︷︷ ︸

Ldiag
noise(λ|λk)

,

(36)

where λ−1 = [λ−11 , . . . , λ−1M ]> is defined as the element-wise
inversion of λ. Taking the derivative of (36) with respect to
λm, for m = 1, . . . ,M , and setting it to zero, yields the
following update rule:

λk+1
m ←

√√√√√√
[
1
T

∑T
t=1(y(t)− Lx̄k(t))(y(t)− Lx̄k(t))>

]
m,m[(

Σk
y

)−1]
m,m

for m = 1, . . . ,M , (37)

which is identical to the update rule of the Champagne with
heteroscedastic noise learning as presented in [9].
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[22] M. Hämäläinen, R. Hari, R. J. Ilmoniemi, J. Knuutila, and O. V.
Lounasmaa, “Magnetoencephalography—theory, instrumentation, and
applications to noninvasive studies of the working human brain,” Re-
views of modern Physics, vol. 65, no. 2, p. 413, 1993.

[23] R. D. Pascual-Marqui, C. M. Michel, and D. Lehmann, “Low resolution
electromagnetic tomography: a new method for localizing electrical
activity in the brain,” International Journal of psychophysiology, vol. 18,
no. 1, pp. 49–65, 1994.

[24] I. F. Gorodnitsky, J. S. George, and B. D. Rao, “Neuromagnetic source
imaging with FOCUSS: a recursive weighted minimum norm algorithm,”
Electroencephalography and Clinical Neurophysiology, vol. 95, no. 4,
pp. 231–251, 1995.

[25] S. Haufe, V. V. Nikulin, A. Ziehe, K.-R. Müller, and G. Nolte,
“Combining sparsity and rotational invariance in EEG/MEG source
reconstruction,” NeuroImage, vol. 42, no. 2, pp. 726–738, 2008.

[26] A. Gramfort, M. Kowalski, and M. Hämäläinen, “Mixed-norm estimates
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