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Abstract 1 

Crowding is the failure to recognize an object due to surrounding clutter. Our visual 2 

crowding survey measured 13 crowding distances (or “critical spacings”) twice in each of 50 3 

observers. The survey included three eccentricities (0, 5, and 10 deg), four cardinal 4 

meridians, two orientations (radial and tangential), and two fonts (Sloan and Pelli). The 5 

survey also tested foveal acuity, twice. Remarkably, fitting a two-parameter model, the well-6 

known Bouma law — crowding distance grows linearly with eccentricity — explains 82% of 7 

the variance for all 13 × 50 measured log crowding distances, cross-validated. An enhanced 8 

Bouma law, with factors for meridian, crowding orientation, target kind, and observer, 9 

explains 94% of the variance, again cross-validated. These additional factors reveal several 10 

asymmetries, consistent with previous reports, which can be expressed as crowding-11 

distance ratios: 0.62 horizontal:vertical, 0.79 lower:upper, 0.78 right:left, 0.55 12 

tangential:radial, and 0.78 Sloan font:Pelli font. Across our observers, peripheral crowding is 13 

independent of foveal crowding and acuity. Evaluation of the Bouma factor b (the slope of 14 

the Bouma law) as a biomarker of visual health would be easier if there were a way to 15 

compare results across crowding studies that use different methods. We define a 16 

standardized Bouma factor b’ that corrects for differences from Bouma’s 25 choice 17 

alternatives, 75% threshold criterion, and linearly symmetric flanker placement. For radial 18 

crowding on the right meridian, the standardized Bouma factor b’ is 0.24 for this study, 0.35 19 

for Bouma (1970), and 0.30 for the geometric mean across five representative modern 20 

studies, including this one, showing good agreement across labs, including Bouma’s. We 21 

found that guaranteeing fixation by gaze-contingent display halved the standard deviation 22 

across observers of the estimated log b. The reduction in standard deviation is explained by 23 

a “peeking” model in which the observer looked near an anticipated target location in 50% 24 

of unmonitored-fixation trials. Individual differences are robust, as evidenced by the much 25 

larger 0.08 SD of log b across observers than the 0.03 SD of test-retest within observers. 26 

Crowding’s ease of measurement enhances its promise as a biomarker for dyslexia and 27 

visual health.  28 

 29 
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Introduction 1 

Crowding is the failure to recognize an object due to surrounding clutter (Bouma, 1970, 2 

1973; Pelli et al., 2004; Pelli & Tillman, 2008; Strasburger et al., 1991; Stuart & Burian, 1962). 3 

Crowding has been studied with several different tasks including letter identification 4 

(Bouma, 1970; Flom, Heath, et al., 1963; Strasburger et al., 1991), Landolt rings (Flom, 5 

Heath, et al., 1963; Flom, Weymouth, et al., 1963), Vernier acuity (Levi et al., 1985; Malania 6 

et al., 2007; Westheimer & Hauske, 1975), face recognition (Farzin et al., 2009; Louie et al., 7 

2007; Martelli et al., 2005), and orientation discrimination (Andriessen & Bouma, 1976; 8 

Parkes et al., 2001; Toet & Levi, 1992; Westheimer et al., 1976). It is invariant with the size 9 

of target and flankers (Levi & Carney, 2009; Pelli et al., 2004; Pelli et al., 2007; Strasburger et 10 

al., 1991; Tripathy & Cavanagh, 2002). Crowding is usually measured by sandwiching the 11 

target between two similar flanking objects, or flankers, and is characterized by the 12 

crowding distance (or “critical spacing”), which is the center-to-center distance from target 13 

to flanker at which recognition attains a criterion level of performance. Crowding distance 14 

increases linearly with eccentricity (Bouma, 1970; Kooi et al., 1994; Levi & Carney, 2009; 15 

Pelli et al., 2004; Toet & Levi, 1992), and increases with target-flanker similarity (Andriessen 16 

& Bouma, 1976; Chastain, 1982; Kooi et al., 1994; Leat et al., 1999; Nazir, 1992; Pelli et al., 17 

2004) as well as the number of distractors (Grainger et al., 2010; Strasburger et al., 1991). 18 

Crowding also occurs for moving stimuli (Bex & Dakin, 2005; Bex et al., 2003). For review of 19 

the crowding literature see (Herzog et al., 2015; Levi, 2008; Pelli & Tillman, 2008; 20 

Strasburger, 2020; Strasburger et al., 2011; Whitney & Levi, 2011). Among the normally 21 

sighted, crowding was first reported in the periphery, and, after some debate, has now been 22 

convincingly demonstrated in the fovea (Atkinson et al., 1986; Coates et al., 2018; Flom, 23 

Heath, et al., 1963 1963; Liu & Arditi, 2000; Malania et al., 2007; Pelli et al., 2016; Siderov et 24 

al., 2013; Toet & Levi, 1992).  25 

 26 

We are interested in relating psychophysical measures of crowding to brain physiology, 27 

especially cortical magnification measured by fMRI (functional Magnetic Resonance 28 

Imaging) in areas V1, V2, V3, and hV4. For this purpose, we tested crowding in 50 observers 29 

to characterize the statistics of crowding within and across individuals. The comparison with 30 

fMRI will be reported separately (Kurzawski et al., 2021). Here we report only the 31 

psychophysics. We tested with letters, which, after little or no training, provide the many 32 

possible targets that are needed for quick testing (Pelli & Robson, 1991). Long term, we are 33 

interested in testing crowding in children (Waugh et al., 2018) as an early biomarker for 34 

susceptibility to visual problems like dyslexia. Crowding distance is highly conserved across 35 

object kind (Kooi et al., 1994; Pelli & Tillman, 2008), which suggests that letters, vernier, and 36 

Gabors might have similar crowding distances, but Grainger et al. (2010) reported different 37 

crowding distances for letters and symbols. 38 

 39 

Crowding exhibits several striking asymmetries. Crowding distance measured radially — 40 

along a line passing through the foveal center — is roughly twice that measured tangentially 41 

— the orthogonal orientation (Greenwood et al., 2017; Kwon et al., 2014; Pelli, 2008; Petrov 42 

& Meleshkevich, 2011; Toet & Levi, 1992). Crowding distance has often been reported to be 43 

smaller in the lower than upper visual field (Fortenbaugh et al., 2015; Greenwood et al., 44 

2017; He et al., 1996; Petrov & Meleshkevich, 2011) and on the horizontal than vertical 45 
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midline (Chung, 2013; Coates et al., 2021; Liu et al., 2009; Petrov & Meleshkevich, 2011; 1 

Toet & Levi, 1992; Wallis & Bex, 2012). 2 

 3 

Crowding distance is a potentially valuable biomarker for several reasons. Crowding 4 

severely limits what we see, how fast we read, and is associated with dyslexia. There are 5 

large individual differences in crowding distance and correspondingly large physiological 6 

differences in the sizes of relevant areas of visual cortex, which invite analysis by correlation 7 

(Kurzawski et al., 2021). Here we measured crowding in 50 observers. Previous in-person 8 

crowding surveys (Grainger et al., 2010; Greenwood et al., 2017; Petrov & Meleshkevich, 9 

2011; Toet & Levi, 1992) included at most 27 observers. The only remote crowding survey 10 

tested 793 observers but did not report any asymmetries (Li et al., 2020). The above cited 11 

works used various kinds of stimuli, including letters of various fonts. The original reports of 12 

the crowding phenomenon were mostly letter-based (Anstis, 1974; Bouma, 1970, 1973; 13 

Ehlers, 1936; Ehlers, 1953; Korte, 1923; Stuart & Burian, 1962). Historical review of crowding 14 

is described elsewhere (Levi, 2008; Pelli et al., 2004; Strasburger, 2020; Strasburger et al., 15 

2011). Here, we too use letters, because they do not require training, and provide a large 16 

number of stimulus alternatives, which speeds threshold estimation in laboratory and 17 

clinical testing (Pelli et al., 1988). 18 

 19 

Whether crowding can be explained by the neural computations in any particular cortical 20 

location remains unknown, but several candidate areas have been suggested: V1 (Millin et 21 

al., 2014), V2 (Freeman & Simoncelli, 2011; He et al., 1996), V3 (Bi et al., 2009; Tyler & 22 

Likova, 2007), hV4 (Burchell et al., 2019; Liu et al., 2009; Motter, 2006; Zhou et al., 2017) 23 

and higher-order areas (Aghdaee, 2005; Louie et al., 2007). The magnitude of the BOLD 24 

signal in V1 is lower in the presence of crowding (Millin et al., 2014). Crowding distance is 25 

different for stimuli tuned to stimulate either the parvo- or magno-cellular pathway (Atilgan 26 

et al., 2020). Although both crowding and acuity increase linearly with eccentricity, which 27 

might suggest a common physiological origin, the two lines have very different intercepts 28 

with the eccentricity axis, i.e. the ��value for acuity is more than 5 times larger than the �� 29 

value for crowding ��� � 2.72 for acuity and �� � 0.45 for crowding] (Latham & Whitaker, 30 

1996; Petrov & Meleshkevich, 2011; Rosenholtz, 2016; Song et al., 2014; Strasburger, 2020). 31 

This seems inconsistent with a common cause. Here, we use our data from 50 observers to 32 

study the relationship between acuity and crowding in the fovea.  33 

 34 

In our 50 participants, we measured 13 crowding distances at three eccentricities (0, 5, and 35 

10 deg), on all four cardinal meridians, in two crowding orientations (radial and tangential), 36 

using two fonts (Sloan and Pelli). We also measured acuity in the fovea. We used the Sloan 37 

and the Pelli fonts. As far as we know, the Pelli font is still the only letter font skinny enough 38 

to measure crowding distance in the fovea. Apart from letters, foveal crowding can be 39 

measured with vernier targets (Malania et al., 2007). We also assessed crowding’s variation 40 

along the four cardinal meridians, in two crowding orientations, and across individuals. 41 

Crowding varies two-fold across meridians, producing several asymmetries. 42 
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METHODS 1 

Measuring crowding 2 

We measured thresholds of many participants, collecting two datasets with similar methods 3 

except for one important difference. Details about Quest and stimulus presentation were 4 

similar for both and are described in the sections below. Here we focus on the differences.  5 

 6 

Method 1: Unmonitored fixation. Threshold was measured without gaze tracking. Viewing 7 

distance was measured before each session, and no chin rest or forehead support was 8 

provided. The participant identified the target by pressing that letter in the keyboard. 9 

Participants were naive to the task and received no advance training. In each block, 10 

crowding distance was measured at two randomly interleaved target locations, which were 11 

horizontally or vertically symmetric about the fixation cross. This unmonitored-fixation 12 

dataset includes one radial crowding distance on each of the four cardinal meridians with 13 

the Sloan font for 100 participants.  14 

 15 

Method 2: Awaited fixation. Each trial began only once the participant had continuously 16 

fixated within ±1.5 deg of the crosshair for 250 ms, and we only saved trials in which gaze 17 

remained within ±1.5 deg of the crosshair center until stimulus offset. The experimenter 18 

was present during data acquisition. Viewing distance was measured at the beginning of 19 

each session and maintained by use of a chinrest with forehead support. Participants 20 

identified the target by using a mouse to click on one of the letters displayed on the 21 

response screen. For each participant, data collection began after a total of 10 correct trials. 22 

Crowding distance was measured at four randomly interleaved target locations symmetric 23 

about the fixation cross, one on each cardinal meridian. We acquired two thresholds at each 24 

location to estimate test-retest reliability. This awaited-fixation dataset includes two radial 25 

crowding distances on each of the four cardinal meridians with the Sloan font for 50 26 

participants. 27 

 28 

Comparing results obtained with the two methods at ±5 deg on the horizontal midline, 29 

reveals large differences in the mean and distribution of the Bouma factor (Fig. 1). [In this 30 

paper, “log” is the logarithm base 10.] Using unmonitored fixation, the geometric mean b 31 

was 0.12, with a 0.31 SD of log b. Using awaited fixation, the geometric mean b was higher, 32 

0.20, with a lower SD of log b, 0.18. The awaited fixation histogram (red) is compact. The 33 

unmonitored fixation histogram (green) is much broader, extending to much lower values of 34 

b. Our interpretation of the broader histogram and lower geometric-mean b in unmonitored 35 

fixation is that observers occasionally “peek”, that is fixate near an anticipated location of 36 

the target instead of the fixation cross as instructed. Indeed, at the end of Results, we 37 

present a quantitative peeking model showing that peeking reduces the geometric mean b 38 

and broadens its distribution, consistent with the observed results. 39 

 40 

 41 
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 1 
Figure 1. Histograms of the Bouma factor estimated by two methods. Each histogram shows the Bouma 2 
factor b at ±5 deg eccentricity along the horizontal midline. For awaited fixation we only used data from first 3 
session of the experiment. The geometric mean b is indicated by a dark vertical line capped by a number. 4 
Unmonitored fixation gave a 0.12 geometric mean b with 0.31 SD of log b. Awaited fixation gave a higher 0.20 5 
geometric mean b with a lower 0.18 SD of log b (see Table 3). Each histogram includes b estimates made at 6 
both +5 and -5 deg eccentricity on the horizontal midline. The Results section below reports a 0.78:1 right:left 7 
advantage. Note: Mixing data from the two locations (-5 deg left and +5 deg right) makes the combined 8 
histogram slightly broader than that for either location. The 0.78:1 b ratio corresponds to a -0.107 log b 9 
difference. If we suppose that mixing log b estimates from the two locations is equivalent to taking all the data 10 
from the right location and adding +0.107 to a random half of the log b estimates, then mixing the two 11 
locations increases the variance by +0.0025, which is only 8% of the measured variance of log b for awaited 12 
fixation, and only 3% for unmonitored fixation. 13 

 14 

This paper focusses on the awaited-fixation data, which can be downloaded from OSF 15 

(https://osf.io/83p6u/). 16 

Crowding dataset 17 

Data were acquired with the CriticalSpacing software (Pelli et al., 2016) using Quest 18 

(Watson & Pelli, 1983), allowing for reliable and relatively fast measurement of crowding 19 

distances. Our crowding database consists of measurements of crowding distance with the 20 

Sloan font (with radial and tangential flankers) and with the Pelli font (radial flankers) in 50 21 

observers. With the Sloan font, we measured crowding at 8 different peripheral locations in 22 

the visual field: 2 eccentricities (5 and 10 deg) along the four cardinal meridians (upper, 23 

lower, left, and right). Sloan tangential crowding was measured only at ±5 deg eccentricity 24 

on the horizontal midline. With the Pelli font, we measured crowding at the fovea and at ±5 25 

deg on the horizontal midline. The Sloan font acuity size is too big to allow measuring foveal 26 

crowding distance in adults. The Pelli font was specially designed for measuring foveal 27 

crowding distance (Pelli et al., 2016). We also measured acuity in the fovea. A spatial map of 28 

the testing is shown below, in Figure 4 in Results. We also tested 10 observers at 20 and 30 29 

deg eccentricity with radial flankers (only 1 session) and plotted the results in Figure 9. To 30 

estimate test-retest reliability of our measurements we used two sessions to measure each 31 

threshold twice. Sessions were scheduled at least a day apart over a maximum of 5 days 32 

apart. We report our results as the Bouma factor b (slope of crowding distance vs. 33 

eccentricity) estimated from Eq. 10, to minimize error in fitting log �̂. Here, crowding 34 
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distance �̂ is the required center-to-center spacing (in deg) for 70% correct report of the 1 

middle letter in a triplet.  2 

Participants 3 

Table 1 describes our main dataset, and Figure 4 (in Results) plots its spatial coverage of the 4 

visual field. The study tested 50 observers (mean age = 23), mostly New York University 5 

undergraduate students. Each observer had normal or corrected-to-normal vision. All 6 

experiments were conducted in accordance with the Declaration of Helsinki and were 7 

approved by New York University’s ethics committee on activities involving human 8 

observers. In all analyses, except the test-retest section, we average the first- and second-9 

session thresholds.  10 

 11 

The peeking-model section in Results refers to these “awaited-fixation” peripheral 12 

measurements on 50 participants and compares them to separate “unmonitored fixation” 13 

peripheral measurements on 100 participants. 14 

 15 

N Measure Font Crowding 
orientation 

Radial 
eccentricity 
(deg) 

Cardinal 
meridians 

Thresholds  
per  
observer 
(each 
measured 
twice) 

Gaze tracking 

50 Crowding Sloan radial 5, 10 all 8 Yes 

Crowding Sloan tangential 5 right, left  2 Yes 

Crowding Pelli radial 5  right, left  2 Yes 

Crowding Pelli horizontal  0 – 2 No 

Acuity Sloan – 0 – 2  No  

 16 

Table 1. Data summary. In the periphery, we measured crowding distance radially and tangentially with the 17 
Sloan font. With the Pelli font, we measured crowding both in the fovea and periphery. We also measured 18 
foveal acuity with the Sloan font. Each threshold was measured once in two sessions separated by at least 24 19 
hours. For peripheral thresholds, we used gaze tracking to guarantee fixation within ±1.5 deg of the crosshair 20 
center. Foveal crowding required long viewing distance which made gaze tracking impractical, so participants 21 
were merely instructed to fixate the center of the crosshair. We suppose good fixation of the central crosshair 22 
because the participants expected a foveal target. 23 

Apparatus  24 

Each testing session was completed on an Apple iMac 27” with an external monitor. The 25 

observer viewed the LG 27” 5K monitor 27MD5KL-B, with a screen resolution of 5120 x 2880 26 

and a white background with luminance 275 cd/m2. The white background never changed 27 

throughout the experiment; the black crosshair and letters were drawn on it. The observer 28 

viewed the screen binocularly at one of several different viewing distances. The software 29 

required a special keypress by the experimenter at the beginning of every block with a new 30 

observer or a new viewing distance, to affirm that the new viewing distance (eye to screen) 31 

was correct as measured with a tape measure, and that the screen center was orthogonal to 32 

the observer’s line of sight. To measure crowding and acuity in the fovea, the viewing 33 
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distance was 200 cm. For ±5 and ±10 deg eccentricity the distance was 40 cm, and for ±20 1 

and ±30 deg it was 20 cm. The long viewing distance gives good rendering of small stimuli; 2 

the short viewing distance results in a wide angular subtense of the display, to allow 3 

presentation of peripheral targets on either side of a central fixation. Stimuli were rendered 4 

using CriticalSpacing.m software (Pelli et al., 2016) implemented in MATLAB 2021 using the 5 

Psychtoolbox (Brainard, 1997; Pelli, 1997). Every Sloan letter was at least 8 pixels wide and 6 

every Pelli digit was at least 4 pixels wide.  7 

Stimuli and procedure 8 

To measure acuity, we show one letter. To measure crowding we show a trigram of three 9 

letters or digits. For each trial, the three letters or digits are drawn randomly, without 10 

replacement, from the 9 letters (DHKNORSVZ) or digits (123456789) available. Letters and 11 

digits are rendered as black in the Sloan or Pelli font, presented on a uniform white 12 

background 
 
(Pelli et al., 2016; Sloan et al., 1952). We omit the C in the Sloan font because 13 

it’s too easily confused with the O (Elliott et al., 1990). For crowding, each trigram was 14 

arranged either radially or tangentially. Each testing session included several blocks and was 15 

about an hour long. Most blocks measured 4 thresholds, interleaved, usually four crowding 16 

thresholds on the 4 cardinal meridians at the same radial eccentricity. For the Pelli font and 17 

tangential crowding we measured two thresholds at symmetric locations about fixation 18 

along the horizontal midline. To minimize the temptation to look away from fixation toward 19 

an expected target location, we randomly interleaved conditions measuring threshold at the 20 

same radial eccentricity at 2 or 4 symmetric locations around fixation. A sample stimulus 21 

sequence appears in Figure 2A. A central crosshair (the fixation mark) is displayed until the 22 

observer presses a key to initiate the trial. Then, after 250 ms of correct fixation, the letter 23 

trigram appears on the screen for 150 ms and the computer waits for the observer to 24 

identify the middle stimulus letter by using a mouse to click on a letter in a row of all the 25 

possible letters on the response screen. Observers are instructed to return their eyes to 26 

fixation before clicking their response. A correct response is acknowledged with a brief 27 

beep. Then the computer waits indefinitely for the observer to fixate within 1.5 deg of the 28 

crosshair for 250 ms, and then immediately presents the stimulus for the next trial. If the 29 

observer fails to fixate for 250 ms within a 10 second window, the software asks for 30 

recalibration of the gaze tracker. 31 

Measuring crowding distance  32 

Crowding distance was estimated using the Pelli et al. (2016) procedure. Letter spacing is 33 

controlled by QUEST. Spacing scales with letter size, maintaining a fixed ratio of 1.4:1. We 34 

set the Weibull function guessing rate parameter � to the reciprocal of the number of 35 

characters in the test alphabet for that font, usually 9. We set the “finger error” probability 36 

� to 1%, to help QUEST cope with an occasional reporting mistake. We set the Weibull 37 

function steepness parameter 	 to 2.3, based on fits to two observers’ psychometric data 38 

for radial crowding. At the end of each block, QUEST estimates threshold (crowding distance 39 

in deg, Fig. 2B). To measure acuity, we followed a similar procedure, except that the target 40 

was presented without flankers. Threshold was defined as the letter spacing (crowding 41 

distance) in deg or letter size (acuity) in deg that achieved 70% correct identification, using 42 

Quest to control the stimulus parameters trial by trial, and make the final estimate.   43 

 44 
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Each threshold measurement was based on 35 trials (one condition). A block consists of all 1 

the trials in however many conditions are randomly interleaved, e.g., 4 × 35 = 140 trials to 2 

measure threshold at 4 meridians. Each condition measures threshold for one meridian. The 3 

interleaving keeps the observer uncertain as to which location is tested on each trial. We do 4 

this to minimize the urge to “peek” away from fixation. On a crowding trial, until the target 5 

and flankers appear there is nothing about the display that distinguishes which of the 6 

interleaved conditions this trial belongs to. 7 

 8 

 9 
 10 
Figure 2. Stimulus and procedure. A) The display sequence for a peripheral trial and part of the next. While 11 
gazing at the crosshair, which is always present, the observer presses a space bar key, which begins the first 12 
trial. The target is presented only if the observer was continuously fixating for 250 ms. Stimulus presentation is 13 
accompanied by a low-pitched purr. Then the observer identifies the target by using a mouse to click on one 14 
letter out of all possible letters that appear above the fixation on the response screen. If the response was 15 
correct, the observer hears a brief beep acknowledging correctness and silence otherwise. Then the computer 16 
again waits for 250 ms of fixation within 1.5 deg of the crosshair center. The four conditions (one for each 17 
meridian) are randomly interleaved, so the observer does not know which location comes next. B) The 18 
staircase sequence of spacings tested on 35 successive trials of one condition (+5 deg eccentricity), under 19 
control of QUEST. On each trial, the letter size was a fraction 1/1.4 of the spacing. QUEST picks the most 20 
informative spacing to test on each trial to minimize variance of its final threshold estimate. Finally, after 35 21 
trials, QUEST estimates the crowding distance, i.e., spacing to achieve 70% correct. Notice that testing quickly 22 
homes in on threshold. 23 

Gaze tracking 24 

We used gaze-contingent display to guarantee fixation while measuring all peripheral 25 

thresholds. We used an EyeLink 1000 eye tracker (SR Research, Ottawa, Ontario, Canada) 26 

with a 1000 Hz sampling rate. To allow short viewing distance (40 cm) we used the EyeLink 27 

Tower mount with a 25 mm lens mounted on the EyeLink camera. Each trial presented the 28 

stimulus once gaze had been within 1.5 deg of the crosshair center (the fixation mark) for 29 

250 ms. If, during the stimulus presentation, gaze deviated more than 1.5 deg from the 30 

crosshair center, then the trial was not saved, the fixation cross turned red (to alert the 31 
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participant), and the trial was repeated with a fresh letter trigram. Thus, each threshold 1 

estimate was based on 35 trials with fixation within 1.5 deg of the crosshair center. The 2 

foveal thresholds demanded a long 200 cm viewing distance that was incompatible with our 3 

gaze tracking set up, so they were measured without gaze tracking, but fixation is generally 4 

good when the participant knows that the target is foveal. 5 

Model fitting 6 

It is generally found that SD of repeated measurement of threshold spacing s is roughly 7 

proportional to mean spacing, but the SD of log spacing S is independent of mean spacing. 8 

Therefore, our fitting minimizes the RMS error in log spacing S = log10 s.  The fitting is 9 

nonlinear (using the MATLAB fmincon function) because we minimize error in S, whereas 10 

each model is linear in s, not S. We estimate the participant, meridional, crowding 11 

orientation, and font factors by solving several models (see model equations in Table 4).  12 

 13 

Our fitting minimizes the RMS error in predicting the log crowding distances, which is 14 

equivalent to minimizing the summed square error, SSE: 15 

 16 

��� �  � �
�

��� � �	�
�  (1) 

where ��  is the i-th log crowding distance, and ���  is the i-th predicted log crowding distance. 17 

The variance explained by each model is: 18 

 19 

�� � 1 � � �
�

��� � �	�
�  � �
�


�� � �����  

 (2) 

where �� = meani Si is the mean log crowding distance.  20 

Model comparison 21 

An F test was used for pairwise model comparison. The model with fewer parameters is 22 

called “simple”, and the model with more parameters is called “full”. After calculating the 23 

sum of square errors SSEsimple and SSEfull for each model (Eq. 1), we calculate the F-statistic: 24 

 25 

� �  
��������� � ���	
��� 
�	
�� � ��������⁄
���	
�� 
� �⁄ �	
���  

 (3) 

 26 

Where nfull is the number of parameters in the full model, nsimple is the number of 27 

parameters in the simple model, and N is the number of observations. We estimate the p-28 

value using the F-distribution. A p-value less than 0.05 indicates that the model with more 29 

parameters provides a significantly better explanation of the data. 30 

Cross validation 31 

First, we divide the thresholds into 6 random subsets of equal size. In each cross-validation 32 

step, one subset of data is retained as the validation set for testing the model, while the 33 

remaining subsets are used as training data. Each subset is chosen only once for testing. We 34 
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repeat leave-one-out testing 6 times to obtain the full dataset. Variance explained R
2
 is 1 

calculated by Eq. 2. 2 

Standardized Bouma factor can be compared across studies 3 

To facilitate comparison across studies and the cooperative evaluation of the Bouma factor 4 

as a biomarker of visual health, we define the standardized Bouma factor b’ as the slope of 5 

crowding distance vs radial eccentricity multiplied by a correction factor that accounts for 6 

methodological differences from Bouma’s number of choices (25), threshold criterion (75% 7 

correct), and linear spacing (vs. log).  8 

 9 

Table 2 computes the correction factors needed to compare the Bouma factor b across 10 

studies that used various numbers of response choices (e.g., 9 Sloan letters or 2 orientations 11 

of a tumbling T), various threshold criteria (e.g., 70% or 75% correct), and linear or log 12 

flanker spacing. Including the present one, we know of five studies that compare crowding 13 

distance across meridians. We take Bouma (1970) as the standard for this standardized way 14 

of reporting the strength of crowding. 15 

 16 

 17 

Study Target Ecc. 
(deg) 

Choices n Guessing 
rate �  

Threshold 
criterion 
proportion 
correct P 

Threshold 
criterion 
“true” 
proportion 
correct P* 

Log 
threshold 
shift 
∆S=S-
SBouma 

Correction 
factor to 
standardize 
Bouma 
factor for 
number of 
choices 
and the 
threshold 
criterion 

Correction 
factor to 
standardize 
Bouma 
factor for log 
vs. linear 
flanker 
spacing 

[Calculation]   n � = 1/n P Eq. 5 Eq. 9 10^–∆S 1.18 for log 
1 for linear 

Bouma 
1970 

Courier 
10, letter 

1-7 25 1/25 0.75 0.74 0.00 1.00 1 

Our data Sloan or 
Pelli, 
letter  

5,10 9 1/9 0.70 0.66 -0.04 1.10 1.18 

Greenwood 
et al., 2017  

Tumbling 
clock  

4,8 4 1/4 0.80 0.73 0.00 1.01 1 

Toet & Levi, 
1992 

Tumbling 
T 

2.5, 5 
,10 

2 1/2 0.75 0.50 -0.13 1.33 1 

Grainger et 
al., 2010 

Courier 
New,  
letter or 
symbol 

3 9 1/9 0.75 0.72 -0.01 1.03 1 

Coates et 
al., 2021 

Tumbling 
T 

9 4 1/4 0.625 0.50 -0.13 1.33 1 

Table 2. Correction factor to standardize each study's Bouma factor to compare studies. The resulting 18 
standardized Bouma factors are reported in Table 6. Each study's difference from Bouma’s 25 choice 19 
alternatives and 75% correct threshold criterion offset the threshold log spacing by  ∆S relative to Bouma's. 20 
The correction factor is 10^–∆S. We provide a brief Excel spreadsheet to calculate the correction factor and a 21 
MATLAB script that produces plots like Fig. 3. The correction factor to account for linear vs. log flanker spacing 22 
is estimated in the Supplementary material. Note that crowding measured with tangential flankers does not 23 
require correction for log vs. linear spacing symmetry. Tangential spacing was always linear. 24 
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The log-threshold shift ∆S is illustrated in Figure 3B. Using the Coates et al. (2021) reanalysis 1 

of Bouma's (1970) data, we estimated the Bouma factor for a 75% threshold criterion 2 

applied to Bouma's (1970) results (see the Bouma factor paragraph in Discussion). 3 

 4 

Proportion correct. To account for the different number of choices and the threshold 5 

criterion, we assume that, with accurate fixation, the proportion correct P is a Weibull 6 

function of the log spacing S, 7 

 8 

�
�� � � � 
1 � ���1 �exp 
�10�
������  (4) 

with a threshold parameter �, where � is the guessing rate (the reciprocal of the number of 9 

target choices, which is 1/25=0.04 in Bouma’s 1970 results), and � is the steepness 10 

parameter, which we set to 2.3, based on fitting psychometric functions to hundreds of 11 

trials at several spacings by two experienced observers. Figure 3A shows this psychometric 12 

function for six studies, taking the guessing rate � to be the reciprocal of the number of 13 

choices n, and using our own estimate of the steepness parameter �=2.3.  14 

 15 

“True” proportion correct. To accommodate various numbers of choices n, and thus 16 

guessing rates �=1/n, we “correct for guessing,” 17 

 18 
�� � 
� �  ��/ 
1 �  ��  (5) 

This is a popular transformation of psychometric data, usually justified by assuming that the 19 

guessing rate can be modelled as an independent process. Because it discounts false alarms, 20 

the corrected hit rate is called the “true hit rate”. That makes sense for a yes-no task, but 21 

not for an identification task. Here we proceed regardless, and compute the “true” 22 

proportion correct, because, with this Weibull function (Eq. 4), correction for guessing (Eq. 23 

5) removes all dependence on �. Applying correction for guessing to any given threshold 24 

criterion P gives us the corresponding “true” proportion correct criterion P* to apply after 25 

correction for guessing. Similarly applying correction for guessing to the psychometric 26 

function (Eq. 4) gives us the “true” proportion correct, 27 

 28 

�*
�� � 1 � exp 
�10�
�����   (6) 

The inverse of Eq. 6 is 29 

 30 
� � invP�
��� �  # � log ��ln 
1 �  ����/'  (7) 

Figure 3B plots “true” proportion correct (Eq. 6 with �=2.3 and �=0), the same function 31 

for all studies, and, for each study, a vertical line reads off the log threshold spacing S at its 32 

threshold criterion P*.   33 

 34 

Relative to the Bouma standard. Thus, a study’s number of choices and threshold criterion 35 

increase its log threshold by ∆S relative to the Bouma standard: 36 

 37 
∆� � invP�
��� � invP�
��

��
���  (8) 

 38 
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� log 
� ln
1 � ����/' � log 
� ln
1 � ��
��
���� /'  (9) 

where �=2.3, and P* and P*Bouma are the “true” proportion correct threshold criteria 1 

computed by Eq. 5 from the study’s criterion P and Bouma’s PBouma=0.75 (Andriessen & 2 

Bouma, 1976) 3 

 4 

 5 
 6 

Figure 3. Effect of guessing rate and criterion on threshold log crowding distance S. A) Proportion correct 7 
(Eq. 4) of the six studies, with threshold parameter � set to zero, showing the effects of the number of 8 
response choices n (sets lower asymptote �=1/n) and the threshold criterion (height of each colored dot). B) 9 
“True” proportion correct (Eq. 6) for the same studies. Each study’s threshold criterion P* is represented by a 10 
horizontal line. For each study, a vertical line reads off the log threshold spacing S at its threshold criterion P*. 11 
Results from Bouma (1970) are used with the Andriessen and Bouma (1976) 75% threshold criterion. Table 2 12 
computes the difference between each study’s threshold and Bouma’s. To avoid occlusion, the Toet and Levi 13 
and Bouma lines in this panel were offset by +0.02 horizontally and vertically.  14 

Log-symmetric spacing of flankers 15 

Since (Bouma, 1970), most crowding studies measure crowding distance as the center-to-16 

center spacing between the target and each of two flankers on opposite sides of the target 17 

that yields a criterion level of performance. When crowding is measured in the radial 18 

orientation, the Bouma law tells us that crowding distance increases linearly with 19 

eccentricity. Several studies have documented that, when flankers are arranged 20 

symmetrically about the target on a radial line from fixation, the outer flanker has much 21 

more effect (Banks et al., 1977; Bex & Dakin, 2005; Estes et al., 1976; Krumhansl, 1977). This 22 

is to be expected since crowding distance grows with eccentricity and the outer flanker is 23 

more eccentric. In fact, crowding distance on the cortical surface (in mm)—the product of 24 

crowding distance in deg and cortical magnification in mm/deg—is conserved across 25 

eccentricity (for eccentricities above 5 deg) because psychophysical crowding distance 26 

scales with eccentricity (Bouma, 1970; Kooi et al., 1994; Levi & Carney, 2009; Pelli et al., 27 

2004; Toet & Levi, 1992). Given the logarithmic cortical mapping of the visual field (Fischer, 28 

1973), when measuring radial crowding we space the trigram so that the log eccentricity of 29 

the target is midway between the log eccentricities of the flankers and report the inner 30 

spacing. This raises the question of how to compare crowding distances between 31 
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experiments that spaced the flankers linearly vs logarithmically. Given the Bouma law (Eq. 8 1 

below), supposing that crowding distance depends primarily on the flanker-to-flanker 2 

distance and only negligibly on the target position between them, we show in the 3 

Supplement (“Effect of symmetric placement of flankers with regard to either linear or log 4 

eccentricity”) that the crowding distance is expected to be 1.18 times larger when measured 5 

with linearly-spaced flankers than with log-spaced flankers. To ease comparison across 6 

studies, the correction factors in Table 2 include this effect of log vs linear spacing on the 7 

estimated Bouma factor. 8 

Might attention help explain differences in the reported Bouma factor? 9 

Attention reduces many perceptual thresholds (Carrasco, 2011). Many researchers have 10 

assessed the effects of attention on crowding, but they have yet to reach a consensus. 11 

Several found an attentional benefit in crowding tasks (Bacigalupo & Luck, 2015; Kewan-12 

Khalayly et al., 2022) including reduction of crowding distance (Yeshurun & Rashal, 2010), 13 

but others did not find such effects (Scolari et al., 2007; Strasburger, 2005; Strasburger & 14 

Malania, 2013). All our peripheral crowding thresholds are measured with either two-fold or 15 

four-fold uncertainty about target location, and we suppose that attention was distributed 16 

among the possible target locations. It is possible that attentional bias contributes to some 17 

of the Bouma factor asymmetries. 18 

Data from other studies 19 

Data were extracted from Figure 6 of Toet and Levi (1992) using WebPlotDigitizer (Rohatgi, 20 

2020). Data were extracted from Figure 7 of Grainger et al. (2010). Data from of Greenwood 21 

et al. (2017) Supplementary Fig. 1 and Coates et al. (2021) Figure 10  were received as 22 

personal communications from the authors. Data from Bouma (1970) were used by means 23 

of the recent reanalysis by Coates et al. (2021). 24 

Statistical analysis 25 

Statistics of the log Bouma factor B = log b were assessed by an ANOVA with B as the 26 

dependent variable. Two sample comparisons are made with the Wilcoxon rank sum test. 27 

We report Pearson’s r correlation coefficient for test-retest reliability and correlations of 28 

crowding distance. 29 

RESULTS 30 

Crowding and acuity  31 

As shown in the map of testing (Fig. 4), radial crowding thresholds were measured in 50 32 

adults at 9 visual field locations. Using the Sloan font, radial crowding thresholds were 33 

measured at the four cardinal meridians at 5 and 10 deg eccentricity, and tangential 34 

crowding thresholds were measured on the left and right meridians at 5 deg eccentricity. 35 

Using the Pelli font, the horizontal crowding threshold was measured, in the fovea and on 36 

the right and left meridians at 5 deg eccentricity. Foveal acuity was also measured with the 37 

Sloan font. Each threshold was measured twice. 38 

 39 
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 1 

Figure 4. Map of testing. Each panel title indicates the font and threshold task. The number of observers 2 
tested is indicated in the lower left. The +, –, and o symbols indicate testing of crowding with radial (—) or 3 
radial and tangential (+) flankers, and testing of acuity (o). Typical stimuli appear in the lower right of each 4 
panel. Beyond the main dataset described here, Fig. 9 shows additional results from 10 observers at 20 and 30 5 
deg eccentricity. 6 

Test-retest reliability of visual threshold  7 

Measurement reliability was assessed by measuring each threshold twice, at least one and 8 

no more than five days apart. Crowding thresholds are converted to Bouma factors b (see 9 

Eq. 10 below). Foveal crowding and acuity are presented as crowding distance (deg) and 10 

acuity as letter size (deg).  Figure 5 plots a scatter diagram of estimates from first vs second 11 

session for each combination of font and task. For the Pelli font (Fig. 5B), we found a clear 12 

improvement of measured crowding distance in the second session (ratio of geometric 13 

mean retest:retest = 0.88). This training benefit was much smaller for the Sloan font (0.95), 14 

presumably because Sloan is more similar (than Pelli) to familiar fonts. In general, each 15 

threshold is derived from a Quest staircase with 35 trials, which takes about 3.5 minutes, 16 

and has very good reproducibility. The analyses performed in the following sections are 17 

based on the geometric average threshold across both sessions. 18 

 19 
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 1 

Figure 5. Test-retest reliability of threshold estimates. Estimates of Pearson’s r correlation coefficient, 2 
standard deviation, retest:test ratio, and R

2
 are based on the log of the font-task threshold, in degrees of visual 3 

angle, named at the top of each panel. For peripheral crowding (A-C) each measurement is represented by a 4 
triangle pointing towards the tested meridian. The gray line equality.  5 

Analysis of variance 6 

Table 3 presents an ANOVA analysis of the radial Sloan Bouma factors (also plotted in Figure 7 

5A). The 0.18 SD for radial Sloan with 2 meridians (with awaited fixation) in Figure 1 8 

corresponds to the 0.17 total SD with 4 meridians (also with awaited fixation) in Table 3. 9 

The 0.08 SD for Sloan radial crowding in Figure 8 corresponds to the 0.08 SD across 10 

observers in Table 3. Meridian contributes the most variance. 11 

 12 

Factor d.f. Variance SD p-value 

meridian  3 0.0143 0.1195 <0.01 

observer 1 0.0059 0.0770 <0.01 

test-retest 59 0.0001 0.0109 0.016 

error 346 0.0071 0.0843  

total 399 0.0274 0.1656  

Table 3 – Analysis of variance. We computed the contribution of each parameter to overall variance. Meridian 13 
contributes the most (SD = 0.12) and test-retest contributes the least (SD = 0.01). Degrees of freedom d.f. is 14 
number of parameters minus 1. Error is the remaining variance not accounted for by a linear combination of 15 
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meridian, observer, and test-retest. There were no significant pairwise interactions among meridian, test-1 
retest, and observer (all p>0.5). 2 

82% of variance explained by Bouma law 3 

Bouma (1970) discovered the linear relationship between crowding distance and 4 

eccentricity. He initially reported a slope of 0.5, which he later revised to 0.4 (Andriessen & 5 

Bouma, 1976). The Bouma law is: 6 

 7 
)̂ �  
+�  �  +� , 

  

 (10) 

where s� is crowding distance in deg, � is radial eccentricity in deg, and �0 (in deg) and b 8 

(dimensionless) are positive fitted constants (Bouma, 1970; Rosen et al., 2014). The 9 

dimensionless slope b is the Bouma factor. The horizontal intercept is -��, and the vertical 10 

intercept is ��b (Liu & Arditi, 2000; Strasburger et al., 2011; Toet & Levi, 1992).  11 

 12 

Crowding is one of several tasks whose threshold increases linearly with radial eccentricity, 13 

and such a task can be summarized by an E2 value that is the eccentricity at which threshold 14 

reaches twice its foveal value (Levi et al., 1985). In the Bouma law (Eq. 10), �� 	 ��. 15 

 16 

Our large database of visual crowding thresholds (Table 1) is very well fit (R
2
 = 82.45%) by 17 

the two-parameter linear Bouma law (Eq. 10), showing that most of crowding’s variation in 18 

our data is explained by eccentricity. Just two degrees of freedom, � and ��, suffice to fit all 19 

650 data points (13 thresholds measured in each of 50 observers). The estimated slope b 20 

was 0.23, just over half of Bouma’s 0.4. Our database consists of measurements at five 21 

locations with radial and tangential flankers, and two fonts. To capture the effect of these 22 

parameters on the Bouma factor we propose an extended version of the Bouma law.  23 

94% of variance is explained by extended Bouma law  24 

Crowding depends on more than just eccentricity. Crowding varies substantially across 25 

meridians (right, left, up, or down), crowding orientation (radial or tangential), target kind 26 

(e.g., letters or symbols) and across individuals. Here, we enhance the Bouma law by 27 

including these other variables. One by one, the extensions add model parameters for 28 

meridian, crowding orientation, target kind, and observer. The models and the variance that 29 

they account for are summarized in Table 4.  30 

 31 

Meridian. Factor b�, which allows b to depend on the meridian � (right, left, up, or down) 32 

 33 
)̂ � +�, � +,�    (11) 

where b from Eq. 10 now represents the geometric mean of b�, b = 10^(mean(log10(b�))). 34 

Note that the meridian is undefined at the fovea.  35 

 36 

Crowding orientation. Factor fdir depends on crowding orientation (radial or tangential). 37 

 38 
)̂ � 
+�, � +,��-���    (12) 

Target kind. Factor tkind depends on target kind (e.g. Pelli or Sloan font).  39 
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 1 
)̂ � 
+�, � +,��-���.����  (13) 

Observer. Finally, factor 
� depends on the observer. 2 

 3 
)̂ � 
+�, � +,��-���.����/�   (14) 

where ∏ �� 
� 	 1. Adding factors to the original Bouma law accounts for more variance. 4 

Going from the simplest to the most enhanced model (Eqs. 10 and 14) increases explained 5 

variance from 82% to 94% (Table 4). Model performance is improved by adding the 6 

meridian factor (R
2
 = 89%) and crowding orientation (R

2
 = 93%). Adding the target-kind 7 

factor explains hardly any more variance, increased from 92.54% to 92.63%. Finally, the 8 

most enhanced model, with an observer factor, explains 94% of variance. The models are all 9 

cross validated, so the additional variance explained is not a necessary consequence of the 10 

increase in parameters. If the additional parameters were overfitting the training data, then 11 

we would find less variance accounted for in the left-out test data. 12 

 13 

Model Equation R2 R RMSE No. of 
parameters 

Bouma law  s� = (�0 + �) b                      

(10) 

82.45% 0.90 4.80 2 

 ⨉ meridional 

factor 

s� = �0 b + � b� 

                    

(11) 

88.96% 0.94 3.80 
 

5 

⨉ crowding 

orientation 

s� = (�0 b + � b�) fdir.                   

(12) 

92.54% 0.96 3.13 
 

7 
 

⨉ target-kind 

factor 

s� = (�0 b + � b�) fdir tkind           

(13) 

92.63% 0.96 3.11 
 

9 

⨉ observer 

factor 

s� = (�0 b + � b�) fdir tkind oi       

(14) 

93.86% 0.97 2.84 59 

 14 

Table 4. How well the Bouma law and its extensions predict crowding distance. We begin with the Bouma 15 
law (Eq. 10). Successive models try to account for more variance by adding factors that depend on the 16 
meridian, crowding orientation, font, and observer. Each row gives a significantly better fit than the row above 17 
(assessed with F-test using Eq. 3). The R

2

 (Eq. 2) column shows cross-validated variance accounted for in 18 
predicting log crowding distance over the whole visual field (13 thresholds per observer). Pearson’s R shows 19 
the correlation between acquired and predicted data, and RMSE is root mean square error. 20 

Since model parameters can be added in any order to form the final model (Eq. 14), we 21 

asked how much each parameter contributes to the total explained variance. For each 22 

parameter, we begin with the full model, remove that parameter, calculate the explained 23 

variance for the reduced model, and assess the drop in explained variance. We find that, 24 

after eccentricity, meridian contributes the most (4.5%) and target kind contributes the 25 

least (0.2%). (Note that most of our data were collected with one font; we expect target 26 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 13, 2023. ; https://doi.org/10.1101/2021.04.12.439570doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.12.439570
http://creativecommons.org/licenses/by-nc-nd/4.0/


19 

kind to explain more variance in studies that emphasize comparison of fonts, or other target 1 

kinds.) Results are shown in Table 5. 2 

 3 

Removed factor Equation Decrease 
in R2 

meridian   = ( 0 + ) b fdir tkind oi                   4.5% 

crowding orientation   = ( 0 b +  b ) tkind oi                   3.1% 

observer  = ( 0 b +  b ) fdir tkind                        1.4% 

target kind  = ( 0 b +  b ) fdir oi                      0.2% 

Table 5 – Parameter contribution to the most extended Bouma law. We measured the contribution of each 4 
parameter to the full model.  5 

Since the enhanced model accounts for more variance than the original Bouma law, we 6 

looked in the data for systematic effects of these parameters. Figure 6 plots each set of 7 

model parameters after normalizing by the geometric mean of that set, where a set is the 8 

four meridians, two crowding orientations, two fonts, or fifty observers. Asymmetry within 9 

each factor is discussed in the next section. Except for target kind, each of the factors 10 

(meridian, crowding orientation, and observer) accounts for a roughly two-fold variation in 11 

the Bouma factor (dashed horizontal lines in Fig. 6).  12 

 13 

 14 

Figure 6. How several parameters scale the Bouma factor. To reveal the effect of each parameter (horizontal 15 
axis) each set of model parameters was normalized by the geometric mean of that set. The vertical axis plots 16 
the model’s estimates of that parameter. Because the model is multiplicative, the final Bouma factor is 17 
proportional to the product of all the parameters. We find a similar variation of Bouma factor with meridian, 18 
crowding orientation, and observer. Target kind has the least effect, but that is partly because nearly all of our 19 
data are with one font. 20 

Radial Bouma factor varies twofold across meridians 21 

Most of the thresholds in our dataset are for the Sloan font with radial flankers. Using these 22 

data, we explore the variation of Bouma factor across meridians. We estimate the Bouma 23 

factor by fitting Eq. 10 for each participant and meridian independently (Fig. 7A). The 24 

Bouma factor is smallest along the right meridian and highest along the upper meridian (Fig. 25 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 13, 2023. ; https://doi.org/10.1101/2021.04.12.439570doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.12.439570
http://creativecommons.org/licenses/by-nc-nd/4.0/


20 

 

7B). Bouma factor is 0.184 right, 0.237 left, 0.300 lower, and 0.381 upper meridian; overall 1 

geometric mean = 0.27).  2 

 3 

 4 

Figure 7. Bouma factor vs. meridian. A) Bouma law estimates for radial crowding with the Sloan font 5 
estimated using Eq. 10. Each point represents the mean across participants and error bars represent 95% 6 
confidence intervals. B) Bouma factor vs. meridian. C) Individual-participant data plotted for the vertical (dark 7 
red) and horizontal midline (orange).  8 

Meridional asymmetries. We find three asymmetries. (As a reporting convention, we refer 9 

to the “advantage” of a smaller Bouma factor.) 1) Along the vertical midline, there is a 0.79 10 

lower:upper advantage. 2) Along the horizontal midline, there is a 0.78 right:left advantage. 11 

3) Finally, there is a 0.62 horizontal:vertical advantage (based on geometric mean of the 12 

Bouma factors from right and left meridian vs upper and lower meridian). All reported 13 

asymmetries are highly consistent across participants (Fig. 7C). ANOVA reveals that there is 14 

a significant effect of meridian F(3,196) = 92.76, p < 0.001 and post-hoc analysis shows that 15 

Bouma estimates at each meridian are significantly different from each other (all p < 0.001; 16 

corrected for multiple comparisons). For each meridian we also estimate the eccentricity �0 17 

at which the crowding distance reaches twice its foveal value. �0 was 0.37 deg ± 0.02 for 18 

right, 0.29 deg ± 0.02 for left, 0.22 deg ± 0.01 for lower and 0.17 deg ± 0.01 for upper 19 

meridian.  20 

Tangential Bouma factor is roughly half of radial 21 

Unlike radial crowding, tangential crowding is the same in left and right meridians according 22 

to the Wilcoxon rank sum test (z = -0.73, p = 0.49). The standardized (see section on 23 

corrected Bouma factor below) tangential Bouma factor is much smaller than radial: 0.13 on 24 

the right and 0.14 on the left meridian. The tangential:radial ratio is 0.60 in the right 25 

meridian and 0.50 in the left. 26 

Bouma factor varies with target kind 27 

Pelli and Tillman (2008) highlighted the remarkable degree to which crowding distance is 28 

conserved across stimulus kind, but later work shows that crowding distance does differ 29 

substantially between some target kinds (e.g. letters vs. symbols; Grainger et al., 2010). 30 

Along the horizontal midline, standardized Bouma factor for Sloan font was 0.239 on the 31 

right and 0.308 on the left, and slightly higher for the Pelli font: 0.325 on the right and 0.377 32 

on the left. Overall, there is a 0.78 Sloan:Pelli ratio of standardized Bouma factors 33 
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(geometric mean of the ratio taken at each meridian) and the difference between fonts was 1 

statistically significant (z = 3.58, p < 0.001). The model performance is slightly improved by 2 

adding the target-kind factor (Eq. 13). This factor contributed little to the overall variance 3 

explained by the model because most of the data came from trials with the same target 4 

kind (Sloan letters). So even though excluding target kind as a factor from the model caused 5 

inaccurate predictions for the Pelli font, the reduction in variance explained is negligible 6 

because nearly all of the dataset is based on one font. We anticipate that the target-kind 7 

factor will account for more variance in datasets that focus on comparing target kinds.  8 

Bouma factor varies twofold across observers  9 

Bouma factor varies with meridian, crowding orientation, and target kind. Here, in this 10 

section, we quantify differences between observers. First, we estimated how well the 11 

Bouma law fits individual-participant data. Fitting Eq. 10 to the right meridian data for each 12 

participant results, on average, in 97% explained variance, confirming that individual 13 

crowding data are well described by the linear model. Next, for each observer we fit the 14 

whole model to estimate the observer’s overall Bouma factor (Fig. 8). We also report 15 

individual differences in acuity. Individual differences are characterized by the standard 16 

deviation of the log of the threshold. Radial Bouma factor for the Sloan font varies 17 

approximately two-fold across observers (SD of log b = 0.08). This variation is unchanged for 18 

tangential flankers (SD of log b = 0.08) and nearly doubles for the Pelli font (SD of log b = 19 

0.11). Foveal acuity a and foveal crowding distance s also vary two-fold. For crowding, the 20 

�0 values also vary two-fold and range between 0.17 and 0.37 (Song et al., 2014). We also 21 

report the SD of the retest minus test difference for the Bouma factor estimated with radial 22 

flankers and Sloan font (Fig. 8B). For each observer we fit one Bouma factor for the test 23 

session and one Bouma factor for the retest. Differences across observers are much larger 24 

than those of test-retest. The 0.08 SD of the log Bouma factor across observers is 3 times 25 

larger than the 0.03 SD of test and retest, showing that one measurement is enough to 26 

distinguish individual differences. 27 

 28 

 29 
Figure 8. Histograms of crowding and acuity. Histograms of A) radial Sloan, radial Pelli, and tangential Sloan 30 
Bouma factor (dimensionless), and negative intercept �0 (in deg), horizontal crowding distance s (in deg), and 31 
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acuity a (in deg). To estimate individual differences, we used all acquired data (e.g., 16 thresholds for radial 1 
crowding with Sloan font or 4 thresholds for radial crowding with Pelli font). B) Retest vs test of Bouma factor 2 
b for radial Sloan. 3 

Supralinearity: Bouma factor increases with eccentricity 4 

Bouma discovered the linear increase of crowding distance with eccentricity. We have seen 5 

that this linear equation fits our data well. However, seeing that we have 50 participants 6 

and data at 0 to 10 deg, a reviewer suggested that we examine how well the Bouma factor 7 

is conserved across eccentricity. To estimate the Bouma factor we fit Eq. 10 for Sloan font 8 

with radial flankers to our data at 0 deg plus either 5 or 10 deg (Fig. 9A). On average Bouma 9 

factor is 1.4 higher at 10 than 5 deg eccentricity. This effect was statistically significant 10 

(F(1,398) = 42.3  p < 0.001), and there was no interaction between eccentricity and meridian 11 

(F(3,392) = 0.513  p = 0.674). This shows that the growth of crowding distance with 12 

eccentricity is actually more than linear. Indeed, the Coates et al. reanalysis of Bouma 1970 13 

shows a similar supralinearity. Motivated by this finding, we invited 10 observers already in 14 

the main dataset (0, 5, 10 deg) to also measure crowding distance at 20 and 30 deg 15 

eccentricity.  16 

 17 

When fitting data, there is a long tradition of using the shortest polynomial that fits 18 

adequately. Bouma (1970) initially suggested proportionality, with one degree of freedom. 19 

Measurements of nonzero crowding distance at 0 deg eccentricity led to a linear equation, 20 

with two degrees of freedom. Seeing curvature in our data from 10 observers from 0 to 30 21 

deg, we enhanced the Bouma law from linear to quadratic (three degrees of freedom) to fit 22 

the data. Eq. 15 adds a quadratic term to Eq. 7 to allow the slope to grow with eccentricity. 23 

Replacing Eq. 10 by 15 increases the degrees of freedom from 2 to 3, and increases the 24 

explained variance from 90% to 95% (Fig. 9B-C), 25 

 26 

�̂ �  ���  �  � �  ���	 
 

 

 (15) 

where �̂ is predicted crowding distance (in deg), � is radial eccentricity (in deg), and ��(in 27 

deg), b, and c are degrees of freedom. 28 

 29 

Figure 9. Supralinearity: Crowding distance slope grows with eccentricity. A) Radial Bouma factor at 5 vs. 10 30 
deg eccentricity for Sloan font. Each color shows data on a different meridian. Data are plotted for all 50 31 
participants included in the main study. B)  Log crowding distance for 10 participants is plotted against 32 
eccentricity out to 30 deg. The linear Bouma law is green, and the quadratic Bouma law is orange. We use log 33 
coordinates because the fit minimizes the error in log coordinates. Enhancing the Bouma law from linear to 34 
quadratic increases the explained variance from 90% to 95%. C) Same fits replotted in linear coordinates. The 35 
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nonlinear growth of crowding distance with eccentricity is not an artifact of perspective transformation: The 1 
computation of target angular size and eccentricity was done correctly using the arc tangent function. Eq. 10 2 
fit with RMSE 0.20 and b = 0.30, and �0 = 0.20. Eq. 15 fit with RMSE 0.16 and b = 0.15, �0 = 0.43, and c = 0.06.  3 

Correlation of log crowding distance across visual field, crowding orientation, and target 4 

kind 5 

We explored the pattern of correlations of log crowding distance for visual field locations, 6 

crowding orientations, and target kinds. These correlations are shown in Figure 10A where 7 

each cell shows Pearson’s r between two measurements. Rows are sorted so that the 8 

average correlation decreases from top to bottom. We find that log crowding distance 9 

measured on the right meridian at 10 deg eccentricity with Sloan font and radial flankers 10 

yields the highest average correlation with other log crowding distances (r = 0.39 with all, 11 

and r = 0.41 when fovea is excluded). Foveal log crowding distance measured with Pelli font 12 

yields the smallest average correlation with the rest of the log crowding distances. 13 

 14 

To summarize how correlation depends on stimulus properties we estimated the average 15 

correlation across measurements when 1, 2 or 3 stimulus properties (eccentricity, meridian, 16 

target kind, crowding orientation) are modified (Fig. 10B). The test-retest correlation of 0.54 17 

is plotted at zero changes. The average correlation drops to 0.30 with 1 change, to 0.25 with 18 

2 changes, and to 0.18 with 3 changes. We also estimated what is the average correlation at 19 

the same stimulus location, and we only vary font and crowding orientation (right or left 20 

meridian at 5 deg). We find an average correlation (across 2 changes) of r = 0.54. On the 21 

other hand, when we change the location only and keep stimulus properties (e.g., radial 22 

flankers, Sloan font, 5 deg) we get a much lower correlation of r = 0.32. This indicates that 23 

when correlating crowding distances, location matters more than any other stimulus 24 

property.  25 

 26 
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 1 
Figure 10. Correlations of log crowding distance. A) Pair-wise correlations between crowding distances for 2 
various conditions (Table 1). Rows are sorted so that the average correlation decreases from top to bottom. B) 3 
Average correlation as a function of the number of stimulus property differences in: radial eccentricity, 4 
meridian, crowding orientation, and target kind. For example, comparing two eccentricities is a 1-parameter 5 
difference. 6 

 7 

Correlation of Bouma factor b and intercept �0 8 

 9 

The Bouma law has two degrees of freedom, �0 and b, which are anticorrelated, r = -0.51 10 

(geometric mean across meridians).  11 

Standarized Bouma factor and its asymmetries across different studies 12 

Visual field asymmetries can help identify the neural origin of perceptual phenomena (Afraz 13 

et al., 2010; Himmelberg et al., 2023). We compare our estimates of the Bouma factor to all 14 

the previous studies that measured crowding asymmetry.  15 

 16 

Estimating slope from just one point. The Bouma law has two degrees of freedom, the slope 17 

b and the negative intercept �0. Estimating two parameters requires two measurements but 18 

many crowding studies report crowding distance at only one eccentricity. In the complete 19 

case, we have thresholds S0 and S at eccentricities 0 and �, and we use the definition of the 20 

Bouma factor b as the slope � � �� � ��� �� � 0�⁄ . In the incomplete case, we have only 21 

threshold S at eccentricity �. One might try to estimate the missing foveal threshold s0 or 22 

negative intercept ��, but the simplest thing to do is to neglect �� (pretend it’s zero), and 23 

estimate �� � � �⁄ . The estimate has fractional error � � ��� � �� �⁄  = �� �⁄ . Thus 24 

neglecting ��, possibly because the foveal threshold
 

is unknown, leads to a fractional error 
 

25 

�� �⁄ . The studies in Table 2 used eccentricities � 
 2 deg. Our measurements estimate 26 
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��= 0.24 deg. Thus at 2 deg or beyond, the fractional error in estimated Bouma factor will 1 

be at most 0.24/2 = 12%. The fractional error drops to 5% at 5 deg and 2% at 10 deg. 2 

 3 

Each Bouma factor was multiplied by a correction factor to account for criterion differences 4 

and log vs. linear flanker spacing (Table 2). Correction provides a standardized Bouma factor 5 

b’ for each study (Table 6). Figure 11 compares crowding across studies by plotting the 6 

standardized Bouma factor vs. meridian.  7 

 8 

 9 

Row Study N Gaze 
tracking 

Target Crowding 
orientation 

mean standardized Bouma factor (b’) 
[95% CI] 

Right Left Lower Upper 

1 Our data  50 Yes Sloan  
font  

radial 0.239  
[0.22 0.25] 

0.308  
[0.30 0.32] 

0.390  
[0.38 0.40] 

0.495  
[0.48 0.49] 

2 Our data 50 Yes Sloan  
font 

tangential 0.143 
[0.14 0.15] 

0.154 
[0.14 0.15] 

– 
– 

– 
– 

3 Our data 50 Yes Pelli 
font 

radial 0.325 
[0.31 0.34] 

0.377 
[0.36 0.39] 

– 
– 

– 
– 

4 Greenwood et 
al., 2017 

12 Yes tumbling  
clock  

radial 0.313 
[0.28 0.33] 

0.343 
[0.30 0.38] 

0.464 
[0.42 0.51] 

0.636 
[0.59 0.70] 

5 Greenwood et 
al., 2017 

12 Yes tumbling  
clock 

tangential 0.172 
[0.16 0.19] 

0.152 
[0.13 0.17] 

0.232 
[0.20 0.25] 

0.293 
[0.26 0.33] 

6 Toet & Levi, 
1992 

6 No tumbling T radial – 
– 

0.426 
[0.36 0.51] 

0.638 
[0.57 0.72] 

– 
– 

7 Toet & Levi, 
1992 

6 No tumbling T tangential – 
– 

0.213 
[0.20 0.23] 

0.293 
[0.27 0.32] 

– 
– 

8 Grainger et al., 
2010 

27 No Courier 
New letter 

radial 0.227 
[0.19 0.28] 

0.340  
[0.27 0.37] 

– 
– 

– 
– 

9 Grainger et al., 
2010 

27 No Courier 
New symbol 

radial 0.340 
[0.29 0.39] 

0.433  
[0.38 0.48] 

– 
– 

– 
– 

10 Coates et al., 
2021 

4 No tumbling T radial 0.386 
[0.37 0.40] 

– 
– 

0.559 
[0.55 0.57] 

– 
– 

B Bouma 1970 25 No Courier 10 radial 0.35 – – – 

Table 6 – Standardized Bouma factor vs. meridian across studies. We compare our results with those of 4 10 
studies that estimated crowding distance on at least two of the four cardinal meridians and report the Bouma 11 
factor by dividing crowding distance by the target’s eccentricity. We standardized each Bouma factor by 12 
correcting for differences in number of target choices and threshold criterion (see last column of Table 2). 13 
Data from Greenwood et al. (2017) and Coates et al. (2021) were obtained through personal communication. 14 
Data from Toet and Levi (1992) and Grainger et al. (2010) were digitized from figures in their papers. Data 15 
from Bouma 1970 were replotted from Coates et al. (2021). We estimated the standard error of Bouma factors 16 
in the Grainger et al. (2010) study based on the p-value they reported for meridian differences. 17 
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 1 

Figure 11. Standardized Bouma factor vs. meridian for various studies and target kinds. Each numbered point 2 
corresponds to a numbered row of data in Table 6. A) Comparison of radial-crowding studies and B) 3 
tangential-crowding studies. Both panels plot standardized Bouma factor vs. meridian. The legend shows the 4 
crowding stimuli. The white-on-black B symbol is the standardized Bouma factor estimated from Bouma (1970) 5 
data at 4 deg eccentricity with a 75% threshold criterion, with help from the reanalysis in Coates et al. (2021).  6 

Effects of meridian and target kind. Two rows in Table 6 — 1 (Sloan letter) and 4 (Tumbling 7 

clock) — report the radial standardized Bouma factor for all four cardinal meridians. Figure 8 

11A shows that although the standardized Bouma factor is higher for the clock than for 9 

Sloan, by a factor of 1.3 (ratio of means for the right meridian 0.313/0.239 = 1.3), the two 10 

curves are otherwise similar, showing the same dependence on meridian. The 1.3:1 11 

difference is not an artifact of number of choices or threshold criterion (Table 2). Both 12 

studies used gaze tracking to exclude fixation errors, so the difference is not a consequence 13 

of bad fixation. Thus, this seems to be a real 1.3:1 difference in standardized Bouma factor 14 

between target kinds, precisely what the target-kind factor tkind is meant to account for in 15 

Eq. 13. The tumbling clocks may be more like each other than the 9 Sloan letters are and 16 

therefore produce larger crowding distance. Almost all other studies (Rows 3, 6, 9, 10) 17 

cluster above the Sloan font and show the same dependence on meridian. In general, we 18 

find that Courier New letters (Row 8) produce the smallest radial standardized Bouma factor 19 

(0.23 on the right meridian) and Tumbling Ts (Row 10) produce the largest radial 20 

standardized Bouma factor (0.39 on the right meridian).  21 

 22 

Tangential crowding. We also compared standardized Bouma factors estimated with 23 

tangential flankers across studies (Fig. 11B). The tangential Bouma factor did not vary as 24 

much as radial, especially in the left meridian (Fig. 11B, Rows 2,5,7). Radial crowding 25 

estimates, even with the same stimuli, showed more variation in the standardized Bouma 26 

factor (Fig. 11A, Rows 1, 4, 6). Although our data did not show any difference between right 27 

and left meridians (Row 2), data extracted from Greenwood et al. (2017) do show a slight 28 

right:left advantage (Row 5).  29 

 30 

Meridional asymmetries. Table 7 and Figure 12 report three Bouma-factor asymmetries 31 

(horizontal:vertical, right:left, and, lower:upper Bouma-factor ratios) for our and four 32 

selected studies. On average, the Bouma factor asymmetry is larger radially than 33 

tangentially. Radially, there is an advantage of horizontal over vertical meridian, right over 34 
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left meridian, and lower over upper meridian in every study. The horizontal:vertical 1 

advantage seems to be insensitive to object kind as the estimates are clustered around ratio 2 

of 0.6-0.7. Similarly, lower visual field advantage is close to 0.8 for both studies that tested 3 

at this location (Rows 1 and 4). The right:left asymmetry is the most variable. The right:left 4 

ratio is smallest for Courier New letters (Row 8) and largest for clocks (Row 4). 5 

 6 

 7 

Row Study N Gaze 
tracking 

Target Crowding 
orientation 

Ratio of Bouma factors  
[95% CI] 

Horizontal
:vertical  

Right:left  Lower:upper  

1 Our data  50 Yes Sloan  
font  

radial 0.62 
[0.60 0.64] 

0.78   
[0.78 0.91] 

0.79 
[0.76 0.82] 

2 Our data 50 Yes Sloan  
font 

tangential – 
– 

0.93 
[0.93 0.96] 

– 
– 

3 Our data 50 Yes Pelli 
font 

radial – 
– 

0.86 
[0.82 0.90] 

– 
– 

4 Greenwood et 
al., 2017 

12 Yes tumbling  
clock  

radial 0.59 
[0.57 0.64] 

0.91 
[0.88 1.05] 

0.73 
[0.70 0.84] 

5 Greenwood et 
al., 2017 

12 Yes tumbling  
clock 

tangential 0.68 
[0.6 0.75] 

1.13 
[0.97 1.40] 

0.79 
[0.73 0.91] 

6 Toet & Levi, 
1992 

6 – tumbling  
T 

radial 0.67 
[0.61 0.78] 

– 
– 

– 
– 

7 Toet & Levi, 
1992 

6 – tumbling  
T 

tangential 0.73 
[0.67 0.84] 

– 
– 

– 
– 

8 Grainger et al., 
2010 

27 – Courier 
New letter 

radial – 
– 

0.67 
[0.56 0.76] 

– 
– 

9 Grainger et al., 
2010 

27 – Courier 
New symbol 

radial – 
– 

0.79 
[0.70 0.90] 

– 
– 

10 Coates et al., 
2021 

4 – tumbling  
T 

radial 0.69 
[0.66 0.70] 

– 
– 

– 
– 

Table 7 – Bouma factor and its asymmetries, compared with the literature. As in Table 6, we compare our 8 
results with those of studies that measured crowding distance on more than one of the four cardinal 9 
meridians. Each row lists the target type, crowding orientation, and mean ratio with standard-error intervals 10 
across participants.  11 
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 1 

Figure 12. Plot of the three asymmetries, expressed as the ratio of Bouma factors. Each numbered point 2 
corresponds to a numbered row of data in Table 7. The horizontal dashed line at 1 represents no asymmetry. 3 
Each point is the ratio between Bouma factors. As in Figure 11, the legend shows examples of the objects that 4 
were used to measure crowding distance.  5 

What does peripheral crowding distance add to foveal acuity? 6 

Not predicted by acuity. Any evaluation of the usefulness of crowding distance as a 7 

biomarker must assess what crowding tells us about the observer over and above what can 8 

be gleaned from foveal acuity, which is routinely measured in all optometric and ophthalmic 9 

exams. For our 50 observers, foveal acuity failed to predict peripheral crowding, with an 10 

insignificant average correlation of 0.04 (Fig. 13; grey peripheral circles). More generally 11 

both acuity and crowding measured in the fovea fail to predict peripheral crowding (average 12 

foveal-peripheral crowding correlation is an insignificant correlation of 0.15 – red circles). 13 

Within the fovea, we do find a significant correlation between acuity and crowding (r = 14 

0.64). Thus, foveal acuity predicts foveal crowding but not peripheral crowding. If peripheral 15 

crowding is of interest, e.g., as a possible limit to reading speed, then it should be 16 

measured, since it is not predicted by foveal acuity.  17 

 18 

Foveal acuity and crowding. Our procedure measures threshold by covarying size and 19 

spacing. Since we found that foveal acuity and crowding are correlated, one might ask 20 

whether the correlation is due to the measured crowding threshold being contaminated by 21 

acuity limits. For five observers, using the same CriticalSpacing.m software, Pelli et al. (2016) 22 

measured foveal spacing threshold with the Pelli font with several spacing:size ratios and, 23 

for each observer, confirmed that all the measured thresholds correspond to one spacing at 24 

different sizes. For those five normally-sighted observers, this showed that the procedure 25 

measured a crowding threshold, not acuity. 26 

 27 
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 1 

Figure 13. Foveal acuity and crowding fail to predict peripheral crowding. Correlation of foveal acuity (grey) 2 
and foveal crowding (red) with crowding everywhere. The central circles are test-retest for acuity (black) and 3 
crowding (red). 4 

The peeking-observer model 5 

Without gaze tracker. We wondered how the Bouma factor estimate depends on fixation 6 

accuracy and we wondered if fixation accuracy might explain the difference between the 7 

two Bouma factor histograms in Figure 1. Peripheral identification is hard, so, in ordinary 8 

life, we typically first foveate a peripheral target that we need to identify. Despite 9 

instructing observers to fixate on the central cross, we know that gaze could be elsewhere 10 

during the target presentation. The observer is torn between the desire to follow the 11 

instruction to fixate the cross and the natural impulse to fixate an anticipated peripheral 12 

target location. When the target location is randomly one of several peripheral locations, 13 

the participant’s anticipation of location is often wrong. We model the participant’s gaze 14 

position by two distributions, one without and one with peeking. First, for the no-peeking 15 

awaited-fixation distribution, we used the measured eye position in the awaited-fixation 16 

dataset, in which the participant’s gaze was within 1.5 deg of the crosshair center for 250 17 

ms immediately before target presentation, and we discarded trials in which gaze was more 18 

than 1.5 deg from the crosshair center during target presentation. The awaited-fixation 19 

gaze-position distribution is compact and roughly centered on the fixation crosshair. 20 

Second, we consider peeking toward a possible target location. We suppose that the 21 

participant peeks on a fraction p of the trials, and that the peeking eye movement travels 22 

only a fraction k of the distance from the crosshair to the possible target location, with a 23 

gaussian error (0.5 deg SD in x and in y). The peeking distribution has a mode corresponding 24 

to each possible target location, but at a fraction k of the possible target eccentricity. Gaze 25 

position is randomly sampled from the peeking distribution on a proportion p of trials and 26 

otherwise from the awaited-fixation distribution.  27 

 28 
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In the spirit of the Bouma law, our peeking-observer model assumes that the probability of 1 

identifying the target is given by a psychometric function 2 

  3 

���� � 1 � 0.5 exp���
�

�����
��� 

 (16) 

that depends solely on the ratio r of target-flanker spacing to actual target eccentricity,  4 

where btrue is the true Bouma factor and the steepness � is 2.3. For simplicity, the model 5 

omits threshold criterion and finger-error probability delta. Bouma factor b is estimated by 6 

35 trials of Quest, assuming the true psychometric function, with a prior guess=0.11 of r and 7 

an assumed SD=2 of log r. 8 

 9 

  10 
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 1 

 2 
 3 

Figure 14. The peeking model. A) Scatter diagrams of the distribution of gaze position for each number of 4 
possible target locations. The gray histogram was measured by the EyeLink eye tracker in the awaited-fixation 5 
dataset. The green, blue, and red distributions of gaze position were synthesized assuming a full peek fraction 6 
k=1, and a gaussian (SD = 0.5 deg in x and 0.5 deg in y) centered at each possible target location  B) Four 7 
histograms showing “actual” radial eccentricity of the target based on the distributions in panel A. (“actual” 8 
indicates that target eccentricity is computed relative to gaze position rather than the crosshair that the 9 
observer was asked to fixate.) C) 5000 Bouma factors estimated using Quest (35 trials) where each trial used 10 
the actual eccentricity. D) Geometric mean of the Bouma factor for each simulated case plotted vs. Fraction k. 11 
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Arrow on the vertical axis indicates true value of the Bouma that we assumed (0.3) and arrow on the 1 
horizontal axis shows nominal eccentricity (5 deg). E) SD of Bouma factor vs. fraction k. Color saturation 2 
indicates the percentage of trials in which observers’ peek (see inset colorbar). F-G) Same as Panel D and E, 3 
however, the geometric mean of Bouma factor and its SD are plotted vs combination of peeking probability p 4 
with fraction k. 5 

 6 

Awaited-fixation distribution. The awaited-fixation distribution was 3500 actual gaze 7 

positions at stimulus onset (35 trials x 50 participants x 2 sessions) measured with our 8 

EyeLink eye tracker in our awaited-fixation dataset. Recall that the stimulus was presented 9 

only once the gaze had been within 1.5 deg of the crosshair center for 250 ms.  10 

 11 

Peeking distribution. We considered 1, 2, and 4 possible target locations (Fig. 14A). First, the 12 

target was always presented at one location (right meridian at 5 deg). Second, the target 13 

was randomly presented at ±5 deg on the horizontal midline. Third, the target was at 5 deg 14 

radial eccentricity on a random one of the four cardinal meridians (right, left, upper, lower). 15 

When participants “peek” a possible target location, depending on the number of possible 16 

locations, they have a 100%, 50%, or 25% chance of selecting the target location. Target and 17 

gaze position together define the actual target eccentricity. 18 

 19 

Nominal eccentricity of the target is relative to the crosshair. Actual eccentricity of the 20 

target is relative to gaze position when the target is presented. Peeking near the target 21 

position will reduce the actual eccentricity to practically zero, while peeking another target 22 

location could result in an actual eccentricity greater than nominal. Figure 14B shows the 23 

actual target eccentricities calculated based on the four distributions of gaze position in 24 

Figure 14A.  25 

 26 

The nominal radial eccentricity of the target is always 5 deg, so we simulate an observer 27 

with a threshold spacing of 1.5 deg by using a psychometric function provided by Quest 28 

(beta = 2.30, delta = 0.01, gamma = 0.11). Thus, our model assumes a Bouma factor of 1.5/5 29 

= 0.3. This is the parameter we try to estimate. The point of this exercise is to evaluate how 30 

various methods estimate the true Bouma factor. We simulate a block of 35 trials using 31 

Quest to estimate the 70%-correct spacing threshold from which we calculate the Bouma 32 

factor. We repeat this many times to get a histogram of estimated Bouma factor (Fig. 14C) 33 

for awaited fixation (gray) and peeking (colored) distributions.  34 

 35 

The modelling shows that the geometric mean estimated Bouma factor b is lowest (0.03) for 36 

peeking with one possible location and highest with four (0.37), given a true Bouma factor 37 

b = 0.30. With no peeking (p=0), gaze position is from the awaited-fixation distribution, and 38 

the model estimate of Bouma factor is 0.28, very close to the true value of 0.30. The 39 

standard deviation of log Bouma factor b is highest (0.40) with two possible locations and 40 

lowest (0.22) with four.  41 

 42 

The error (deviation from the assumed Bouma factor b = 0.3, see arrow on the vertical axis 43 

in Fig. 14D) in estimating the Bouma factor grows with the proportion p and fraction k of 44 

peeking (Fig. 14D). Observing that the error of estimated Bouma factor grows proportionally 45 

with k and that its SD grows proportionally with k
2 

(note the parabolic shape in Fig. 14E), we 46 

produced new figures (Fig. 14F-G) showing that geometric mean b is roughly linear with p × 47 

k and SD log b with �� �  �.  48 
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 1 
Figure 15. Comparing the peeking model with data. We used log-likelihood estimation to find the model 2 
parameter values that best fit our data. The higher the likelihood the better the fit. A-B) Log-likelihood is 3 
plotted vs. estimated Bouma factor b. Grey lines indicate best fit for which we plot model parameters. 4 
Brightness indicates the product p × k. C-D) Bootstrapped model estimates. For each model we bootstrapped 5 
the fit (n=100) by randomly removing 25% of data at each iteration and fitting the model on the remaining 6 
data. Each histogram contains 100 best fitted parameters from each iteration. The p × k confidence intervals 7 
were calculated after bootstrapping the p × k parameter (n=1000) and averaging 10 random samples at each 8 
iteration. This creates a normal distribution and allows the calculation of confidence intervals. E-F) Comparison 9 
of the histograms of best-fitting simulated and acquired data. The solid vertical line indicates the geometric 10 
mean. For unmonitored fixation, the geometric mean of Bouma factor b was 0.13 for the simulated data and 11 
0.12 for the human data. The SD of log Bouma factor was 0.32 for simulated data and 0.31 for human data. For 12 
the awaited fixation geometric mean of Bouma factor was 0.27 for the simulated data and 0.27 for the human 13 
data. The SD of log Bouma factor was 0.21 for simulated data and 0.19 for human data. Note that the red 14 
distribution in panel D is different from the red distribution in Fig. 1. Here we plot data from all four meridians. 15 
Data plotted in Fig. 1 are extracted only from the right and left meridians. 16 

 17 

Given p, k, and the true Bouma factor, our peeking-observer model predicts the estimated 18 

Bouma factor b. We estimate p and k by fitting the model using maximum likelihood 19 

optimization. The higher the log-likelihood the better the fit. We wanted to know how often 20 

(p) and how far (k) the observer peeks and what is the estimated Bouma factor b. In Figure 21 

15A-B, the scatter and breadth of the log-likelihood distribution result in a broad confidence 22 

interval for the product p × k. To estimate the error of the fit, we bootstrapped it by 23 

removing 25% of data at each iteration (n = 100). For unmonitored fixation, Figure 15A, 24 

bootstrapped parameters are consistent with high peeking (0.5 < p × k ≤1) and reject no 25 
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peeking (p × k = 0). For awaited fixation, Figure 15B, bootstrapped parameters are 1 

consistent with low peeking (p × k < 0.5) and reject high peeking (p × k = 1). For each 2 

dataset, Figure 15E-F show that the human data are well matched by the simulated 3 

histogram. The two geometric means of b match, as do the standard deviations of log b. Our 4 

peeking model of eye position and crowding predicts the estimated Bouma factor in both 5 

cases, showing that the unmonitored fixation results are well fit by high peeking and the 6 

awaited fixation results are well fit by low peeking. One simple model of eye position and 7 

crowding fits all our data.  8 

 9 

It is our impression that as observers gain experience with peripheral viewing, they peek 10 

less. Based on Figure 15, Bouma’s (1970) peeking rate must have been practically zero. 11 

DISCUSSION 12 

 13 

Levi (2008), Pelli and Tillman (2008), Herzog et al. (2015), Strasburger (2020), and Coates et 14 

al. (2021) have reviewed the crowding literature. Most recently, Coates et al. (2021) 15 

provided a compact summary of the effects on the Bouma factor of contrast, size, target-16 

flanker similarity and visual field location. This summary includes reanalysis of old data and 17 

shows a weak effect of stimulus duration. They also measured new data with two durations 18 

and two meridians confirming the effect of duration on the Bouma factor. Most of the data 19 

in their paper were acquired on fewer than 5 observers. We measured the effect of 20 

meridian, eccentricity, crowding orientation, and font with 50 observers. We did not 21 

measure effects of contrast, duration, or target-flanker similarity, but otherwise we confirm 22 

all the effects that they reported. We provide an equation predicting how crowding distance 23 

depends on meridian, target kind, and crowding orientation for each observer. We also 24 

show that crowding is reliable across days. 25 

 26 

The Bouma law and factor 27 

 28 

Bouma law. The Bouma law describes the linear increase of crowding distance with 29 

eccentricity (Bouma, 1970, 1973; Levi, 2008; Pelli & Tillman, 2008; Rosen et al., 2014). The 30 

Bouma factor is the slope of that line (Rosen et al., 2014). The Bouma law is robust when fit 31 

to individual observer’s data (Pelli et al., 2004; Rosen et al., 2014; Strasburger, 2020; 32 

Strasburger et al., 1991). In this study, for the first time, we fit the Bouma law to data that 33 

include measurements from 50 observers tested with two crowding orientations at 9 34 

locations of the visual field. The Bouma law is an excellent fit to our data and explains 82.5% 35 

of the variance despite being just a straight line with two degrees of freedom. We tried 36 

adding terms to the Bouma law to account for known factors: crowding orientation 37 

(Greenwood et al., 2017; Kwon et al., 2014; Petrov & Meleshkevich, 2011; Toet & Levi, 38 

1992), meridional location of the stimulus (Fortenbaugh et al., 2015; Greenwood et al., 39 

2017; He et al., 1996), target-kind (Coates et al., 2021; Grainger et al., 2010) and individual 40 

differences (Petrov & Meleshkevich, 2011; Veríssimo et al., 2021). We find that the 41 

enhanced model explains a bit more variance (increased from 82.5% to 94%). Eccentricity 42 

remains the dominant factor, accounting for 82.5% of the variance. 43 

 44 
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Standardized Bouma factor. We define the standardized Bouma factor b’ as the reported 1 

Bouma factor b (ratio of crowding distance to radial eccentricity) multiplied by a correction 2 

factor that account for differences in task from Bouma’s 25 choice alternatives, 75% 3 

threshold criterion, and linear flanker symmetry.  Bouma reported a “roughly” 0.5 slope for 4 

radial letter crowding vs. eccentricity (Bouma, 1970). Andriessen and Bouma (1976) later 5 

reported a slope of 0.4 for crowding of lines. Coates et al. reanalyzed Bouma’s original data 6 

with various threshold criteria so we interpolated between the 70% and 80% thresholds to 7 

estimate the 75% threshold. Estimating the Bouma factor from Bouma’s original data using 8 

this criterion yields a Bouma factor of 0.35, in line with modern estimates of 0.3 (Table 6 9 

and Supplementary Table 2). Figure 11A shows that the corrected Bouma factor b’ ranges 10 

from 0.23 for Courier New letters to 0.39 for Tumbling T measured with radial flankers on 11 

the right meridian. That residual difference may be due to target kind (Coates et al., 2021; 12 

Grainger et al., 2010). This is further supported by our finding that the Bouma factor was 13 

0.78 lower for the Sloan font than for the Pelli font. 14 

Supralinearity and the Bouma law 15 

The linearity of the Bouma law implies that the Bouma factor is independent of eccentricity. 16 

The Coates et al. (2021) reanalysis of Bouma’s 1970 data found a twofold increase of the 17 

Bouma factor with eccentricity (from 1 to 7 deg), with a log-log slope of 0.35. Coates et al. 18 

speculated that this eccentricity dependence might be due to Bouma's use of constant size 19 

stimuli at all eccentricities. Both acuity and crowding can limit measured thresholds for size 20 

and spacing across the visual field (Pelli et al., 2016; Song et al., 2014). If the threshold is 21 

independent of size, it is a crowding threshold and if the threshold is independent of spacing 22 

it is an acuity threshold. In 10 participants, we measured crowding distance at eccentricities 23 

of 0, 5, 10, 20, and 30 deg, scaling letter size with spacing as is now usual (see Methods). In 24 

our results with proportional letter size and controlled eye position, we find a similar 25 

twofold increase of the Bouma factor with eccentricity (from 5 to 30 deg), with a log-log 26 

slope of 0.38. Enhancing the Bouma law to allow a nonlinear dependence on eccentricity 27 

improves the fit to 10 observers’ data slightly, increasing the variance accounted for from 28 

90% to 95%. This effect is small but detectable in data from 0, 5, and 10 deg (Fig. 9A) and 29 

becomes pronounced at eccentricities of 20 and 30 deg (Fig. 9B). To our knowledge, only a 30 

few past studies measured crowding beyond 10 deg eccentricity (Bouma, 1970; Kalpadakis-31 

Smith et al., 2022; Kwon & Liu, 2019; Pelli et al., 2004) and all these datasets show 32 

supralinear growth with eccentricity. From the perspective of mathematical modeling 33 

Bouma initially suggested a simple proportionality with one term, which later was extended 34 

to linearity with two terms, and the evidence for supralinearity justifies a three-term 35 

quadratic polynomial. Biologically, it seems possible that the increase of the Bouma factor 36 

at high eccentricity reflects a compression of eccentric visual field in higher order areas. 37 

Indeed, hV4 has a reduced peripheral representation when compared to earlier visual areas, 38 

V1, V2, and V3 (Arcaro et al., 2009; Goddard et al., 2011; Kolster et al., 2010; Winawer & 39 

Witthoft, 2015). This parallels the idea that the ventral visual stream, specialized in object 40 

recognition, emphasizes the central visual field (Levy et al., 2001; Ungerleider & Haxby, 41 

1994). 42 

 43 

Crowding asymmetries 44 

 45 
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At any given eccentricity, the Bouma factor varies with polar angle. The Bouma factor is 1 

lower along the horizontal than vertical meridian (Greenwood et al., 2017; Petrov & 2 

Meleshkevich, 2011; Toet & Levi, 1992), is higher in the upper than lower meridian 3 

(Fortenbaugh et al., 2015; Greenwood et al., 2017; He et al., 1996; Toet & Levi, 1992), tends 4 

to be lower in the right than left meridian (Grainger et al., 2010; White et al., 2020) and 5 

approximately halves with tangential flankers (Greenwood et al., 2017; Kwon et al., 2014). 6 

In this work, we replicated all these asymmetries (Fig. 12 and Table 7). The horizontal vs. 7 

vertical advantage and better performance in the lower vs. upper visual field is found for 8 

many visual tasks (Himmelberg et al., 2023), and these asymmetries parallel those found in 9 

population receptive field size, cortical magnification, retinal ganglion cell density, and the 10 

BOLD signal magnitude (Benson et al., 2020; Himmelberg et al., 2021; Kupers et al., 2022; 11 

Kupers et al., 2019; Kurzawski et al., 2022; Kwon & Liu, 2019; Liu et al., 2006; Silva et al., 12 

2018). The right:left asymmetry seems to be least described and does not generalize across 13 

all tasks. Beyond crowding, right visual field advantages have been reported: For native 14 

readers of left-to-right written languages, like English, the right meridian outperforms left in 15 

word recognition (Mishkin & Gorgays, 1952). Worrall and Coles (1976) examined letter 16 

recognition across the visual field and found a significant right hemifield advantage only 17 

along the right horizontal midline. The similarities in asymmetry suggest a common 18 

mechanism, and the differences may be useful hints toward the cortical substrate of 19 

crowding.  20 

 21 

Standard deviation of measured acuity and crowding 22 

 23 

To estimate the reliability of our measurements we acquired each threshold twice. Previous 24 

work showed improved performance in crowding tasks for repeated measurements (Chung, 25 

2007; Malania et al., 2020). From their figures we estimate the second-block benefit to be 26 

13% for Malania et al. and 20% for Chung. [Chung shows thresholds before and after 60 27 

100-trial blocks. She shows percent correct for each block. By eye, we estimate that the 28 

benefit from first to second block is about a third that provided by the 60 blocks of training. 29 

Thus her 62% advantage (see average data from Table 1 – Chung 2007) after 60 blocks 30 

corresponds to the 20% advantage after the first block.] We find a modest second-threshold 31 

improvement for crowding thresholds measured with Sloan font at all tested locations and 32 

with the Pelli font in the fovea (less than 10%). Thresholds measured with Pelli font in the 33 

periphery yielded the highest improvement (23%). In our data the improvement is likely not 34 

due to acquiring familiarity with the task, since all observers participated in a training 35 

session, which consisted of repeated trials until 10 answers are correct. We find no 36 

improvement in acuity. 37 

 38 

Overall, we find very good reproducibility of crowding and acuity thresholds (Fig. 5). The 39 

standard deviation of log Bouma factor b measured with Sloan font and radial flankers for 40 

test-retest is much lower than the standard deviation of log Bouma factor across observers 41 

(0.03 vs 0.08).  42 

 43 

Individual differences 44 

 45 

Estimating individual differences requires data from many observers. In this paper we 46 

measured crowding in 50 observers, which is the biggest dataset of crowding measurements 47 
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to date. Previous in-person crowding surveys included at most 27 observers (Grainger et al., 1 

2010; Greenwood et al., 2017; Petrov & Meleshkevich, 2011; Toet & Levi, 1992). [An online 2 

crowding study tested 793 observers, but did not report individual differences (Liu et al., 3 

2009).] To capture individual differences in the Bouma factor we included an observer factor 4 

oi in the enhanced model. Adding the observer factor improved the explained variance from 5 

92.6% to 94% (Table 4). Although this effect may seem negligible at first, we find that the 6 

Bouma factor varies twofold across observers, ranging from 0.20 to 0.38 (Fig. 8A). A similar, 7 

two-fold variation is observed for all other thresholds that we estimated (Fig. 8A). 8 

 9 

Bouma factor as a biomarker. Large individual differences enhance crowding’s potential as a 10 

biomarker for studying cortical health and development. Specifically, crowding varies across 11 

children too (Kalpadakis-Smith et al., 2022) and predicts RSVP reading speed (Pelli et al., 12 

2007). Foveal crowding distance drops threefold from age 3 to 8 (Waugh et al., 2018).  If 13 

crowding correlates with reading speed of beginning readers, then preliterate measures of 14 

crowding might help identify the children who need extra help before they learn to read. 15 

Measuring crowding distance across individuals in several diverse populations might expose 16 

any limit that crowding imposes on reading, yielding a norm for the development of 17 

crowding. Huge public interventions seek to help dyslexic children read faster and to 18 

identify them sooner. A virtue of crowding distance as a potential biomarker for dyslexia 19 

and cortical health is that it can be measured in 3.5 minutes.  20 

 21 

Crowding correlations  22 

 23 

This paper reports 13 crowding thresholds for each of 50 observers. Such a comprehensive 24 

dataset allows for a correlation analysis to assess how well each crowding threshold predicts 25 

the others. We find a moderate correlation of crowding between peripheral locations (r = 26 

0.39 averaged across all peripheral locations) and hardly any between fovea and periphery 27 

(r = 0.11). We also find that crowding measured with radial flankers correlates highly with 28 

crowding measured with tangential flankers at the same location (r = 0.53 for the right 29 

meridian, r = 0.50 for the left meridian). The threshold measurement that best predicts all 30 

other peripheral thresholds (excluding the fovea), with a correlation r = 0.41, is radial Sloan 31 

crowding at 10 deg in the right meridian.  32 

 33 

Effect of stimulus configuration vs. location. We find higher correlation (r = 0.54) when the 34 

location is the same and the stimulus configuration is changed, than (r = 0.32) when 35 

stimulus configuration is the same and location is changed. Correlation of crowding distance 36 

depends more on location than configuration. Paralleling our result, Poggel and Strasburger 37 

(2004) found only a weak correlation across meridians for visual reaction times. Surprisingly 38 

little is known about spatial correlation of basic measures like acuity and contrast sensitivity. 39 

The peeking-observer model 40 

We always asked the observer to fixate on the crosshair during each trial. We acquired data 41 

with two methods: unmonitored fixation, without gaze tracking, and awaited fixation, in 42 

which the stimulus was only presented when gaze was near the fixation cross. Both 43 

methods are described in detail in the Methods section. The two methods yield different 44 

Bouma factor distributions. Upgrading from unmonitored to awaited fixation increased the 45 

Bouma factor mean b from 0.12 to 0.20 and nearly halved the standard deviation of log b 46 
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from 0.31 to 0.18. Histograms are shown in Figure 1. This peeking-observer model assumes 1 

firstly that performance on each trial depends solely on target eccentricity (relative to gaze 2 

position), secondly that the observer peeks on a fraction p of the trials and fixates near the 3 

crosshair on the rest of the trials, and thirdly that the location of the peek is a fraction k of 4 

the distance from the fixation mark to the anticipated target location.  5 

 6 

In unmonitored fixation, the observer peeks with probability p. In awaited fixation, peeking 7 

is prevented by using gaze-contingent display and discarding any trials where gaze left the 8 

fixation cross while the target was present. Suppose there are two possible target locations. 9 

The Bouma factor distribution is unimodal for low values of p and becomes bimodal for high 10 

values for p. Our unmonitored b histogram is bimodal is best fit with a peeking probability of 11 

50%. Our awaited fixation b histogram is unimodal and best fit by peeking restricted to the 12 

1.5 deg from the crosshair allowed by the gaze tracker. Upgrading from the bimodal to the 13 

unimodal b distribution raised the mean b from 0.12 to 0.27 and nearly halved the standard 14 

deviation of log b from 0.31 to 0.19.  15 

 16 

The peeking model does not account for the reduction of a target’s crowding distance that 17 

occurs in anticipation of a saccade to the target (Harrison et al., 2013). It is conceivable that 18 

on some awaited-fixation trials the observer was planning an eye movement to the correct 19 

target location and that this reduced crowding before the eye moved.  20 

 21 

Effects of duration and peeking. Coates et al. (2021) reanalyzed crowding data from 16 22 

studies and presented a scatter diagram of Bouma factor versus stimulus duration. The plot 23 

of Bouma factor vs. log stimulus duration had a semi-log slope of -0.16 describing how the 24 

Bouma factor drops with duration. Their analysis included many studies, with various 25 

threshold criteria, from various meridians, which introduced differences in the Bouma 26 

factor. To avoid these confounds, Coates et al. collected new data using a consistent 27 

threshold criterion and consistent locations. In their new results, increasing the duration 28 

from 67 to 500 ms decreased the Bouma factor by a factor of 1/1.6. However, none of these 29 

studies monitored fixation. Our Figure 1 shows that, relative to controlled fixation, peeking 30 

can reduce the Bouma factor by a factor of 1.6 which is the size of the decrease with 31 

duration reported by Coates et al. If the probability of peeking grows with duration, then 32 

peeking might explain their drop in Bouma factor with duration.  33 

 34 

Why measure crowding? 35 

 36 

Peripheral crowding provides additional information about visual health. Acuity is the 37 

threshold size of a target for recognition, while crowding is a spacing threshold. Clinical 38 

assessment routinely includes foveal acuity and not crowding. Both limit recognition of 39 

everyday objects. Our results show that peripheral crowding is independent of foveal acuity 40 

and might be a useful biomarker of visual health. Specifically, peripheral crowding might 41 

predict dyslexia (Bouma & Legein, 1977; Martelli et al., 2009; O'Brien et al., 2005). There are 42 

hints that crowding tends to be worse in dyslexia (Pelli et al., 2007). If crowding correlates 43 

with reading speed of beginning readers, then preliterate measures of peripheral crowding 44 

might help identify the children who need extra help before they learn to read. 45 

 46 
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What about foveal crowding? In healthy individuals, foveal crowding correlates with foveal 1 

acuity but there are some conditions in which the two are dissociated. Strabismic amblyopia 2 

makes crowding worse in the fovea, but not in the periphery (Song et al., 2014). This 3 

suggests that the fovea might be the most sensitive place to detect the increase in crowding 4 

associated with amblyopia. Traditional tests for crowding are mostly peripheral and use a 5 

fixation mark and a brief peripheral target, which are poorly suited for testing children and 6 

dementia patients whose attention may wander. Such participants will fixate much more 7 

reliably on a foveal target.  8 

 9 

We hope there will be clinical studies to assess the diagnostic benefit of measuring 10 

crowding, which takes 3.5 minutes. 11 

CONCLUSIONS 12 

1. The well-known Bouma law — crowding distance depends linearly on radial eccentricity 13 

— explains 82% of the variance of log crowding distance, cross-validated. Our enhanced 14 

Bouma law, with factors for observer, meridian, and target kind, explains 94% of the 15 

variance, cross-validated. The very good fit states the central accomplishment of the 16 

paper and shows how well the linear Bouma law fits human data. 17 

2. The Bouma factor varies twofold across meridians, and radial vs. tangential crowding 18 

orientations.  19 

3. Consistent with past reports, five asymmetries each confer an advantage expressed as a 20 

ratio of Bouma factors: 0.62 horizontal:vertical, 0.79 lower:upper, 0.78 right:left, 0.55 21 

tangential:radial, and 0.78 Sloan font:Pelli font. 22 

4. The Bouma factor varies twofold across observers. Differences across observers are 23 

much larger than those of test-retest. The 0.08 SD of log Bouma factor across observers 24 

is triple the 0.03 SD of test-retest, so one 3.5-minute threshold is enough to capture 25 

individual differences. 26 

5. The growth of crowding distance with eccentricity is supralinear, but a linear fit is nearly 27 

as good, unless the range of eccentricities is huge. 28 

6. Crowding distance measured at 10 deg eccentricity along the right meridian is the best 29 

predictor of average crowding distance elsewhere (r = 0.39). 30 

7. Peripheral crowding is independent of foveal crowding and foveal acuity. 31 

8. Peeking can be avoided by use of a gaze-contingent display. Peeking nearly halves the 32 

geometric mean Bouma factor b, and nearly doubles the standard deviation of log b, 33 

from 0.18 to 0.31.  34 

  35 
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SUPPLEMENTARY MATERIALS  16 

Effect of equating either the linear or log spacing of two radial flankers 17 

 18 

When measuring radial crowding, the target lies between two flankers on a radial line from 19 

fixation. Bouma spaced the flankers equally, and most investigators have followed suit. 20 

However, we spaced the flankers symmetrically on a logarithmic rather than linear scale. 21 

This raises the question of how to compare crowding distances between experiments that 22 

spaced the flankers linearly vs logarithmically. Given the Bouma law (Eq. 10) and assuming 23 

that crowding distance depends primarily on the flanker-to-flanker distance, and negligibly 24 

on the target position between them, we show here that the crowding distance is expected 25 

to be 1.18 times larger when measured with linearly-spaced flankers than with log-spaced 26 

flankers. 27 

 28 

Specifically, for a target at � we choose the two flanker eccentricities �in and �out so that � 29 

is located between �in and �out. 30 

 31 

log(�0+�) = [log(�0+�in) + log(�0+�out)] / 2,    (S1) 

where �0=0.15 deg, and we report the inner spacing s = �-�in. We can rearrange 32 

 33 

log(�0+�out) = 2 log(�0+�) - log(�0+�in)   (S2) 

Thus, the two flankers are at different (linear) distances from the target, but we suppose 34 

that they are equally effective in crowding the target. We report the center-to-center 35 

spacing from the inner flanker to the target as the “spacing” s.  36 

 37 
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We now estimate the relation of crowding distances measured in these two ways. We 1 

suppose that degree of crowding is determined by the separation between flankers on the 2 

log scale, as expected from the Bouma law:  3 

 4 

∆� = log(�0+�out) - log(�0+�in)   (S3) 

If we are in the periphery, i.e. �in > 1, then �0=0.15 is negligible, and we can simplify, 5 

 6 

∆� ≈ log(�out / �in)    (S4) 

Of course, increasing spacing alleviates crowding, so the degree of crowding will drop as log 7 

spacing ∆� grows. Note that this model is at best an approximation, as it neglects position 8 

of the target. We are using it solely to compare crowding for two different ways of centering 9 

the target between flankers so the two target positions won’t differ by much. 10 

 11 

Linear flanker spacing: With flankers spaced symmetrically about the target on a linear 12 

scale, both at distance s from the target:  13 

 14 

∆� ≈ log (�+s)/(�-s)     (S5) 

Log flanker spacing: With flankers spaced symmetrically on a log scale, the log flanker-to-15 

flanker spacing is twice the log target-to-flanker spacing: 16 

 17 

∆� ≈ 2 log �/(�-s’)     (S6) 

Now we equate the two log flanker spacings, one with linearly symmetric spacing s, the 18 

other with log-symmetric spacing s’. 19 

 20 

log (�+s)/(�-s) = 2 log �/(�-s’)     (S7) 

Solve for s’, 21 

 22 

s’ = � - � [(�-s)/(�+s)]
0.5

     (S8) 

Now substitute b=s/� and b’=s’/�, 23 

 24 

b’ = 1 - [(1-b)/(1+b)]0.5     (S9) 

Figure S1 shows that, to a good approximation, this is a proportionality, with error of at 25 

most 0.014 over the relevant range 0 ≤ b ≤ 0.9, 26 

 27 

b’ ≈ 0.845 b     (S10) 
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 1 

Figure S1. Log-symmetric spacing s’=�b’ for same crowding effect as each linearly symmetric spacing s = �b. 2 

 3 

Thus, our log-symmetric spacing s’=�b’ is approximately 0.845 times the linearly-symmetric 4 

spacing s=�b that is traditionally reported. 5 

Log-log versions of the Bouma models 6 

The negative intercept �0 is small and negligible at large eccentricity. (Zeroing it in the 7 

Bouma law produces less than 5% error in predicted crowding distance at eccentricities 8 

beyond 4.8 deg.) If we consider only peripheral results (>4.8 deg eccentric) we can set 9 

�0=0, and express the Bouma models in log coordinates (Table S2). The multiplicative 10 

combination rule becomes additive in the new coordinates. As with the linear models, the 11 

cross-validated variance explained R
2
 increases with more parameters. At large eccentricity, 12 

these models are equivalent to the linear models presented in the main text, but fitting is 13 

quicker because the fitting error can be minimized by linear regression.  14 

 15 

Model Equation R2 (%) Pearson’s R No. of 
parameters 

Bouma law  S� ≈ � + B  53.53 0.78 1 

 ⨉ meridional factor S� ≈ � + B� 71.38  0.85 4 

⨉ crowding orientation S� ≈ � + B� + Fd  80.47  0.89 6 
 

⨉ target-kind factor S� ≈ � + B� + Fd +Tkind  81.13  0.90 8 

⨉ observer factor S� ≈ � + B� + Fd +Tkind + Oi 84.32  0.92 58 

 16 

Table S1 – Fitting the log-log version of the Bouma law (setting �0=0 and modeling only peripheral data 17 
�>4.8 deg). Uppercase variables are the log10 of corresponding lowercase variables. R

2

 represents variance 18 
explained after model cross-validation.  All our fitting minimizes error in log crowding distance so fitting the 19 
log-log version can be fit using linear regression. 20 
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 1 

 2 

Correcting the Bouma factor 3 

Comparison of crowding measured with different threshold criterion, number of choices, 4 

and log vs. linear spacing of flankers is facilitated by calculating the Standardized Bouma 5 

factor b’, which corrects for these factors. Each row number in Table S2 corresponds to a 6 

row in Table 6. The correction factors come from Table 2. 7 

 8 

Row Correction factor Bouma factor 
Standardized Bouma factor 

Right Left Lowe
r 

Upper 

1 × 1.30 
(1.10×1.18) 

0.184 
0.239 
  

0.237 
0.308  

0.300  
0.390  

0.381  
0.495 

3 × 1.30 
(1.10×1.18) 

0.25 
0.325 
 

0.29 
0.377 

  

4 × 1.01 0.31 
0.313 

0.34 
0.343 

0.46 
0.464 

0.63 
0.636 

6 × 1.33  0.32 
0.426 

0.48 
0.638 

 

8 × 1.03 0.22  
0.227 

0.33  
0.340 

  

9 × 1.03 0.33 
0.340 
 

0.42  
0.433 

  

10 × 1.33 0.29 
0.386 

 0.42 
0.559  

 

Geometric 
mean 

 0.26 
0.30 

0.32 
0.37 

0.40 
0.50 

0.49 
0.56 

 9 

Table S2 – Radial Bouma factor before and after the correction. Row numbers correspond to numbers in Table 10 
6.  Each cell contains two numbers. The upper number is the Bouma factor before accounting for 11 
measurement differences and the lower one is the Standardized Bouma factor (already multiplied by the 12 
correction factor). Correction factors are calculated in Table 2. The Standardized Bouma factor is overall higher 13 
(e.g., 0.26 to 0.32 on the right meridian).  14 
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