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ABSTRACT

Therapy resistance in cancer is often driven by a subpopulation of cells that are temporarily arrested
in a non-proliferative, quiescent state, which is difficult to capture and whose mutational drivers
remain largely unknown. We developed methodology to uniquely identify this state from
transcriptomic signals and characterised its prevalence and genomic constraints in solid primary
tumours. We show quiescence preferentially emerges in the context of more stable, less mutated
genomes which maintain 7P53 integrity and lack the hallmarks of DNA damage repair deficiency,
while presenting increased APOBEC mutagenesis. We employ machine learning to uncover novel
genomic dependencies of this process, and validate the role of the centrosomal gene CEPS9 as a
modulator of proliferation/quiescence capacity. Lastly, we demonstrate that quiescence underlies
unfavourable responses to various therapies exploiting cell cycle, kinase signalling and epigenetic
mechanisms in single cell data, and propose a signature of quiescence-linked therapeutic resistance

to further study and clinically track this state.

STATEMENT OF SIGNIFICANCE

We developed a robust transcriptomic signature of cellular quiescence, and employed it to
systematically characterise proliferation/quiescence decisions in solid primary cancers and the
genomic events influencing them. We propose CEP89 as a novel target whose suppression increases
quiescence. Our expression signature of quiescence could be employed to track resistance to multiple

anti-cancer compounds in a drug-tolerant persister cell setting.
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INTRODUCTION

Tumour proliferation is one of the main hallmarks of cancer development!, and has been extensively
studied. While most of the cells within the tumour have a high proliferative capacity, occasionally
under stress conditions some cells will become arrested temporarily in the GO phase of the cell cycle,
in a reversible state called ‘quiescence’ where they maintain minimal basal activity?. It has been
proposed that this state enables cells to become resistant to anti-cancer compounds that target actively
dividing cells, such as chemotherapy3->. Moreover, a drug-tolerant ‘persister’ cell state represented
by slow cycling or entirely quiescent cells®® has been observed in a variety of pre-existing or
acquired resistance scenarios, also in the context of targeted therapies!'®!!. As neoplastic cells evolve,

quiescence can also be employed as a mechanism to facilitate immune evasion!%!3

or adaptation to
new environmental niches during metastatic seeding!*!3. In the context of disseminated tumour cells,

quiescence can facilitate minimal residual disease, a major cause of relapse in the clinic!®.

Although quiescence is a widely conserved cellular state, essential for the normal development and
homeostasis of eukaryotes®!’, and has been extensively studied in a variety of organisms including

bacteria and yeast!®!?

, its role in cancer is still poorly defined. Hampering our understanding is the
fact that it represents a number of heterogeneous states!”-?°. Canonically, cells can be forced into
quiescence through serum starvation, mitogen withdrawal or contact inhibition'”. Cells can also
undergo cell cycle arrests spontaneously in response to cell-intrinsic factors like replication stress?!-
23, This process is controlled by p5324, which triggers the inhibition of cyclin-CDK complexes by
activating p21%2. This in turn allows the assembly of the DREAM complex - a key effector
responsible for repression of cell-cycle dependent gene expression®®. Min and Spencer?® recently
demonstrated a much broader systemic coordination of 198 genes underlying distinct types of
quiescence by profiling the transcriptomes of cells that entered this state either spontaneously or

upon different stimuli. Additionally, proliferation-quiescence decisions can be impacted by

oncogenic changes such as MYC amplification?’ or altered p38/ERK signalling?®.

Despite these advances, the identification of quiescent cells within tumours presents an ongoing
challenge due to their scarcity and lack of universal, easily measurable markers for the activation and

maintenance of this state. As they are often defined by a lack of proliferative markers®®-*

, quiescent
tumour cells can be mistaken for other therapy resistant cell types such as senescent or cancer stem
cells®3!. Unlike quiescent cells, which can readily resume their proliferative state, senescent cells are
irreversibly arrested?® while cancer stem cells have a high capacity for self-renewal and sit at the top
of the differentiation hierarchy?2. Biomarkers of quiescence that are sufficiently specific and robust

to be clinically useful are clearly needed.
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Furthermore, our understanding of how cancer evolution is shaped by proliferation-quiescence
decisions is limited. The proliferative heterogeneity of cancer cell populations has been previously
described and linked with FAK/AKT]1 signalling®, but the constraints and consequences of these
cell state switches have not been systematically profiled across cancer tissues. The extent to which
tumour cell quiescence is enacted through transcriptional or genetic control is unknown>3*, and
neither are the mutational processes and genomic events modulating this state. Understanding the
evolutionary triggers and molecular mechanisms that enable cancer cells to enter and maintain
quiescence would enable us to develop pharmacological strategies to selectively eradicate quiescent

cancer cells or prevent them from re-entering proliferative cycles.

To address these challenges, we have developed a new method to uniquely and reliably quantify
quiescence in cancer using transcriptomic data, and employed it to characterise this phenomenon in
bulk and single cell datasets from a variety of solid tumours. We describe the spectrum of
proliferation/quiescence decisions in primary tumours, which reflects a range of stress adaptation
mechanisms during the course of cancer development from early to advanced disease. We identify
and validate mutational constraints for the emergence of quiescence, hinting at potential new
therapeutic targets that could exploit this mechanism. We also demonstrate the relevance of
quiescence to responses to a range of compounds targeting cell cycle, kinase signalling and
epigenetic mechanisms in single cell datasets, and propose an expression signature that could be

employed to detect treatment resistance induced by quiescent tumour cells.

RESULTS
Evaluating tumour cell quiescence from transcriptomic data

We hypothesised that primary tumours contain varying numbers of quiescent cells, which reflect
evolutionary adaptations to cellular stress and may determine their ability to overcome
antiproliferative therapies. To capture this elusive phenotype, we developed a computational
framework that would allow us to quantify quiescence signals in bulk and single cell sequenced
cancer samples (Figure 1a). To define a signature of quiescence, we focused on genes that have been
shown by Min and Spencer?® to be specifically activated or inactivated during quiescence that arises
spontaneously or as a response to serum starvation, contact inhibition, MEK inhibition or CDK4/6
inhibition. The activity of 139 of these genes changed in a coordinated manner across all these five
distinct forms of quiescence, likely representing generic transcriptional consequences of this cellular
state. The expression levels of these markers were used to derive a score reflecting the relative

abundance of quiescent cells within individual tumours (see Methods, Supplementary Table 1).
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To validate this signature and select the optimal method to score quiescence in individual samples

amongst different enrichment/rank-based scoring methodologies*-38

, we used seven single-cell and
bulk datasets!®3%* where actively proliferating and quiescent cells had been independently isolated
and sequenced (Supplementary Figure la, Supplementary Table 2, Methods). A combined Z-score
approach had the highest accuracy in detecting signals of quiescence, with a 91% mean performance
in classifying cells as quiescent or cycling (Figure 1b, Supplementary Figure 1b). Our signature
reflected an expected increase in p27 protein levels, which are elevated in quiescence®
(Supplementary Figure 1c¢). It also outperformed classical cell cycle and arrest markers, such as the
expression of targets of the DREAM complex, CDK2, Ki67 and of mini-chromosome replication
maintenance (MCM) protein complex genes - which are involved in the initiation of eukaryotic
genome replication (Figure 1c). Importantly, our approach provided a good separation between
quiescent and proliferating samples across a variety of cancer types and models including cancer cell
lines, 3D organoid cultures, circulating tumour cells and patient-derived xenografts (Supplementary
Table 2), thereby demonstrating its broad applicability. Furthermore, the strength of the score

appeared to reflect the duration of arrest in quiescence*® (Figure 1d).

We further experimentally validated our methodology in nine lung adenocarcinoma cell lines. We
estimated the fraction of quiescent cells in each of these cell lines using quantitative, single-cell
imaging of phospho-Ser807/811-Rb (PRb, which labels proliferative cells*’) and 24 hour EdU
proliferation assays (Figure le-h). Cells that were negative for either PRb or EQU were defined as
quiescent (see Methods, Figure le-f). There was a remarkably good correlation between our
predicted quiescence levels and the fraction of quiescent cells, as assessed by lack of EdU
incorporation (which happens during S phase) but particularly by lack of Rb phosphorylation.
Phosphorylation and inactivation of the retinoblastoma protein is often used to define the boundary
between GO and G1, and was specifically shown to distinguish the GO state recently by Stallaert et
al*’. Furthermore, a G1 signature (Methods) was not associated with these experimental
measurements, suggesting our method recovers a state more similar to GO arrest rather than a
prolonged G1 state (Figure 1g-h). The quiescence correlations appeared robust to random removal
of individual genes from the signature, with no single gene having an inordinate impact on the score
(Supplementary Figure 1d-f). This provided further reassurance that our Z-score based methodology

is successful in capturing quiescence signals from bulk tumour data.
The spectrum of proliferation/quiescence capacity in solid primary tumours
Having established a robust framework for quantifying tumour cell quiescence, we next profiled

8,005 primary tumour samples across 31 solid cancer tissues from The Cancer Genome Atlas
5
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(TCGA). After accounting for potential confounding signals of quiescent non-tumour cells from the
microenvironment by correcting for tumour purity (see Methods, Supplementary Figure 1g-h), we
observed an entire spectrum of fast proliferating to slowly cycling tumours, with the latter presenting
stronger quiescence-linked signals (Figure 2a). While we acknowledge that no tumour would be
entirely quiescent and we cannot identify individual quiescent cells within the tumour, this analysis
does capture a broad range of phenotypes reflecting varying proliferation and cell cycle arrest rates,
which suggests that quiescence is employed to different extents by tumours as an adaptive
mechanism to various extrinsic and intrinsic stress factors. Cancers known to be frequently dormant,
such as glioblastoma®*’, were amongst the highest ranked in terms of quiescence, along with kidney
and adrenocortical carcinomas (Figure 2b). This is likely explained by the innate proliferative
capacity of the respective tissues. Indeed, tissues with lower stem cell division rates presented a

greater propensity for quiescence (Figure 2¢)*.

Importantly, we confirmed that our quiescence scores capture a cellular state that is distinct from that
of cancer stem cells, marked by signatures associated with high telomerase activity and an

undifferentiated state*-,

and that of senescent cells, marked by the Senescence-Associated
Secretory Phenotype (SASP) and B-galactosidase activity®!->3 (Figure 2d, Supplementary Figures 2a-
d). Our scores also showed strong negative correlations with the expression of proliferation markers

(Figure 2d).

Lastly, we confirmed expected dependencies on the p53/p21/DREAM activation axis: tumours that
were proficient in 7P53 or the components of the DREAM complex, as well as those with higher
p21 expression, had elevated quiescence levels across numerous tissues (Figure 2e, Supplementary
Figures 2e-f), although only 8 out of 139 quiescence genes are directly transcriptionally regulated by
p53°*. Nevertheless, p53 proficiency appears to be a non-obligatory dependency of quiescence,
which is also observed to arise in p53 mutant scenarios in 21% of cases. p53 has also been shown to

play a role in preventing the occurrence of larger structural events and polyploidy>>->’

, potentially
explaining the lower quiescence levels we observed in tumours that had undergone whole genome

duplication (Figure 2f).
The genomic background of cancer cell quiescence

Cancer evolution is often driven by a variety of genomic events, ranging from single base
substitutions to larger scale copy number variation and rearrangements of genomic segments. It is
reasonable to expect that certain mutations accumulated by the cancer cells might enable a more
proliferative phenotype, impairing the ability of cells to enter quiescence, or — on the contrary —

6
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might favour quiescence as a temporary adaptive mechanism to extreme levels of stress. Having
obtained quiescence estimates for primary tumour samples, we set out to identify potential genomic
triggers or constraints that may shape proliferation-quiescence decisions in cancer. We identified 285
cancer driver genes that were preferentially altered (via mutations or copy number alterations) either
in slow cycling or fast proliferating tumours (Figure 3a). Reassuringly, this list included genes
previously implicated in driving cellular quiescence-proliferation decisions such as 7P53 and
MYC*27, An additional 10 cancer genes showed signals of positive selection in the context of high
quiescence/proliferation (Supplementary Table 3). We also investigated associations with mutagenic
footprints of carcinogens (termed “mutational signatures’), which can be identified as trinucleotide
substitution patterns in the genome®®>. 15 mutational signatures were linked with quiescence either

within individual cancer studies or pan-cancer (Supplementary Figure 2g).

Following the initial prioritisation of putative genomic constraints of quiescence, we employed
machine learning to identify those events that could best distinguish slow cycling tumours with
higher abundance of quiescent cells from fast proliferating ones, while accounting for tissue effects.
An ensemble elastic net selection approach similar to the one described by Pich et al*® was applied
for this purpose (Figure 3b, Methods). Our pan-cancer model identified tissue type to be a major
determinant of quiescence levels (Supplementary Figure 3a). It also uncovered a reduced set of 60
genomic events linked with proliferation/quiescence switches, including SNVs and copy number
losses in 17 cancer genes, as well as amplifications of 13 cancer genes (Figure 3c). These events
could then be successfully employed to predict quiescence in a separate test dataset, thus internally
validating our model (Supplementary Figure 3b). Thus, while these events are not necessarily
causative, the link is strong enough to be identifying quiescent states from genomic data alone. Such

events may also pinpoint cellular vulnerabilities that could be exploited therapeutically.

Overall, the genomic dependencies of quiescence mainly comprised genes involved in cell cycle
pathways, p53 regulation and ubiquitination (most likely of cell cycle targets), TGF-b signalling
mediators and RUNX2/3 regulation which have previously been shown to play a role in controlling
proliferation and cell cycle entry®! (Supplementary Figure 3c). Invariably, this analysis has captured
several events that are well known to promote cellular proliferation in cancer: this is expected and
confirms the validity of our model. It was reassuring that a functional 7P53, lack of MYC
amplification and lower mutation rates (Figure 3c¢) were amongst the top ranked characteristics of
highly quiescent tumours, which also displayed less aneuploidy. However, our analysis has also
uncovered novel dependencies of quiescence-proliferation decisions that have not been reported

previously, such as CEP89 and LMNA amplifications observed in fast cycling tumours, or ZMYM?2

7
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deletions prevalent in samples with high levels of quiescence. ZMYM2 has recently been described
as a novel binding partner of B-MYB and has been shown to be important in facilitating the G1/S
cell cycle transition®?. p16 (CDKN2A) deletions, one of the frequent early events during cancer

6364 were enriched in quiescent tumours. RB/ deletions and amplifications were both

evolution
associated with a reduction in tumour cell quiescence, which might reflect the dual role of RB1 in

regulating proliferation and apoptosis®.

Our model also calls to attention to the broader mutational processes associated with this cellular
state. Such processes showed fairly weak and heterogeneous correlations with quiescence within
individual cancer tissues (Supplementary Figure 2g), but their contribution becomes substantially
clearer pan-cancer once other genomic sources are accounted for. In particular, we identified an
association between quiescence and mutagenesis induced by the AID/APOBEC family of cytosine
deaminases as denoted by signature SBS2%® (Figure 3c¢). As highlighted by Mas-Ponte and Supek®,
APOBEC/AID driven mutations tend to be directed towards early-replicating, gene-rich regions of
the genome, inducing deleterious events on several genes including ZMYM?2, which our pan-cancer

model has linked with higher quiescence.

In turn, defective DNA mismatch repair, as evidenced by signatures SBS44, SBS20, SBS15, SBS14
and SBS6°%, was prevalent in fast cycling tumours (Figure 3¢). Mismatch repair deficiencies lead to
hypermutation in a phenomenon termed “microsatellite instability” (MSI), which has been linked
with increased immune evasion®’. Cancers particularly prone to MSI include colon, stomach and
endometrial carcinomas®, where this state was indeed linked with lower quiescence (Figure 3d).
Furthermore, quiescent tumours were depleted of alterations across all DNA damage repair pathways

(Figure 3e).

Our measurements of quiescence also reflected expected cycling patterns across 27 MCF7 strains®:
cell lines with longer doubling times exhibited higher quiescence (Figure 3f). This coincided with a

depletion of PTEN mutations, a dependency highlighted by the pan-cancer model.

When checking for dependencies in individual cancer tissues, 27 out of the 28 genes identified by
the model were significantly associated with quiescence/proliferation decisions in at least one tissue,
most prominently in breast, lung and liver cancers which also represent the largest studies within
TCGA (Figure 3g, top panel). Most of these genomic insults were linked with a decrease in
quiescence. In external validation datasets these associations, including deletions in PTEN and
LRPIB or amplifications of MYC, CEP89 or STAG 1, featured most prominently in the largest cohort
of breast cancer samples (Figure 3g, bottom panel). These results highlight the fact that although a

8
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pan-cancer approach is suited to capture genomic events that are universally associated with
quiescence, certain genetic alterations may facilitate a higher or lower propensity of quiescence in a

single tissue only.

Indeed, when building a tissue-specific breast cancer model of quiescence using a combined
ANOVA and random forest classification approach (Supplementary Figure 4a), we not only
recovered the associations with the 7P53, MYC, KLF6, LMNA, ETV6 and RAD21 events already
seen in the pan-cancer model (Supplementary Figure 4b), but identified additional events which
validated in the METABRIC cohort and were also seen in several other cancers, e.g. bladder, lung
and lower grade glioma (Supplementary Figure 4c). Notably, the APOBEC mutational signature
SBS2 was the strongest genomic signal linked with quiescence in breast cancer (Supplementary
Figure 4b,d) and was most prevalent in Her2+ tumours, although the Luminal A subtype showed the
highest levels of quiescence overall, as expected given its well-known lower proliferative capacity”

(Supplementary Figure 4e,f).

Validation of CEP89 as a modulator of proliferation/quiescence capacity

To gain more insight into the underlying biology of tumour cell quiescence, we sought to
experimentally validate associations highlighted by the pan-cancer model. We focused on the impact
of CEP89 activity on quiescence-proliferation decisions due to the high ranking of this putative
oncogene in the model, the relatively unexplored links between CEPS9 and cell cycle control, as
well as its negative(?) association with quiescence across a variety of cancer cell lines
(Supplementary Figure 5a-c). The function of CEPS89 is not well characterised, however, the encoded
protein has been proposed to function as a centrosomal-associated protein’!-’2. Centrosomes function
as major microtubule-organising centres in cells, playing a key role in mitotic spindle assembly”
and the mitotic entry checkpoint’*. Moreover, centrosomes act as sites of ubiquitin-mediated
proteolysis of cell cycle targets’>, and members of several growth signalling pathways, such as Wnt
and NF-kB, localise at these structures’®”’. Several genetic interactions have also been reported

between CEP89 and key cell cycle proteins, including cyclin D278 (Figure 4a).

Our model linked CEP89 amplification with fast cycling tumours (Figure 3c). Centrosome
amplification is a common feature of tumours with high proliferation rates and high genomic
instability”®, and overexpression of centrosomal proteins can alter centriole structure®®8!, Indeed,
CEP89 amplified tumours presented elevated expression of a previously reported centrosome

amplification signature (CA20)” (Figure 4b), which was strongly anticorrelated with quiescence


https://doi.org/10.1101/2021.11.12.468410
http://creativecommons.org/licenses/by-nc-nd/4.0/

247
248
249

250
251
252
253
254

255

256
257
258
259
260
261
262
263
264
265
266
267
268

269
270
271
272
273
274
275
276
277
278

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.12.468410; this version posted February 23, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

levels (Figure 4c). Furthermore, CEP89 expression was prognostic across multiple cancer tissues
(Figure 4d) and linked with toxicity of several cancer compounds in cell line models (Supplementary

Figure 5d).

We validated this target in the lung adenocarcinoma cell line NCI-H1299 showing high levels of
CEPS89 amplification. Cep89 depletion via siRNA knockdown caused a consistent decrease in cell
number, in the absence of any detectable cell death, and an increase in the fraction of quiescent cells
as measured by PRb and EdU assays (Figure 4e-f). Thus, we propose CEPS89 as a novel cell

proliferation regulator that may be exploited in certain scenarios to control tumour growth.

Characterisation of individual quiescence programmes

While we had previously examined a generic quiescence programme, cancer cells can enter this state
due to different stimuli'” and this may inform its aetiology and manifestation. To explore this, we re-
scored tumours based on gene expression programmes specific to serum starvation, contact
inhibition, MEK inhibition, CDK4/6 inhibition or spontaneously occurring quiescence as defined by
Min and Spencer’® (see Methods). We observed a good correlation between the estimates
representing individual quiescence programmes and the expression of genes associated with the
corresponding form of quiescence in the literature (Figure Sa-e, Supplementary Figure 6). CDK4/6
inhibition-induced quiescence levels were further validated using external RNA-seq datasets from
cancer cell lines and xenograft mice sequenced before and after treatment with the CDK4/6 inhibitor
Palbociclib®>%3 (Figure 5f, Supplementary Table 4). Interestingly, we also observed significant
differences in spontaneous quiescence scores before and after treatment. Indeed, p21 activity has

84,85

been linked with the Palbociclib mechanism of action®*®, and this analysis suggests potential

similarities between CDK4/6 inhibition and p21-dependent quiescence phenotypes.

Having validated our framework for quantifying stimulus-specific quiescence programmes, we
proceeded to estimate the dominant form of quiescence in different cancer types (Figure 5g). We
found a range of quiescence aetiologies across most tissues, while a minority of cancers were
dominated by a single form of quiescence, e.g. serum starvation in all quiescent pheochromocytomas
and paragangliomas, contact inhibition in 88% of head and neck carcinomas and CDK4/6 inhibition
in 80% of quiescent adrenocortical carcinomas. While we do not wish to claim that the state of cell
cycle arrest will have necessarily been induced by the actual predicted stimulus (impossible in the
case of CDK4/6 or MEK inhibition, as the analysed samples are all treatment-naive), we suggest that
the downstream signalling cascade may resemble that triggered by such stimuli, e.g. via CDK4/6 or

MEK loss of function mutations. Amongst these states, spontaneous quiescence appeared most
10
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strongly dependent on p53 functionality (Supplementary Table 5). This points to common
transcriptional features of drug-tolerant quiescent cells in different cancer settings that could be

employed in designing ways to eradicate these cells in the future.

Role of quiescence in driving therapeutic resistance in cancer uncovered from single cell data

Overall, tumour cell quiescence appears to be beneficial for the long-term outcome of cancer patients
(Figure 6a, Supplementary Figure 7a). Indeed, such slow cycling, indolent tumours would have
higher chances of being eradicated earlier in the disease, which is consistent with reported worse
prognosis of patients with higher tumour cell proliferation rates and less stable, more mutated
genomes®. As expected, quiescence levels were increased in stage 1 tumours, although later stages
also exhibited this phenotype occasionally (Supplementary Figure 7b). However, outcomes do vary
depending on the quiescence subtype, with worse survival observed upon contact inhibition (Figure
6b). The outcomes also vary by tissue, with lung, colon or esophageal carcinoma patients displaying

significantly worse prognosis in the context of high tumour cell quiescence (Figure 6c¢).

While quiescence may confer an overall survival advantage in most cancers, it can also provide a
pool of cells that are capable of developing resistance to therapy!®*’. Using our methodology, we
indeed observed an increase in quiescence levels in cell lines following treatment with EGFR, BRAF
and CDK4/6 inhibitors, as well as conventionally used chemotherapies such as 5-Fluorouracil (5-

FU) in multiple bulk RNA-seq datasets (Figure 6d).

Furthermore, the recent widespread availability of single-cell transcriptomics offers the opportunity
to investigate the impact of quiescence on such therapies with much greater granularity than is
allowed by bulk data. Using our quiescence signature and single-cell data from RKO and SW480
colon cancer cell lines treated with 5-FU®S, we could observe quiescence-proliferation decisions
following conventional chemotherapy treatment. Within the p53 proficient cell line RKO, the
fraction of quiescent cells increased from 41% to 93% after treatment with a low dose (10 uM) of 5-
FU and persisted at higher doses (Figure 6e-f). In contrast, a comparable increase was not observed
in 7P53 mutant SW480 cells, further emphasizing the key role of p53 as a regulator of quiescence
(Figure 6g-h). This implies that although 7P53 mutations confer a more aggressive tumour
phenotype, 7P53 wild-type tumour cells are more likely to be capable of entering a quiescent
“persistent” state associated with drug-resistance. SW480 cells showed higher apoptotic activity
following treatment compared to RKO cells, particularly within actively cycling cells, further
corroborating that cells capable of entering quiescence may be less vulnerable to this therapy

(Supplementary Figure 7c-d).
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Similarly, using single cell data from an EGFR mutant Non-Small Cell Lung Cancer (NSCLC) cell
line treated with the EGFR inhibitor Erlotinib®, we predicted that 40% of cells were likely to exist
in a quiescent state prior to treatment. EGFR inhibition led to a massive decrease in cell numbers
immediately after treatment, mostly due to proliferating cells dying off (Supplementary Figures 7e-
f), while the proportion of quiescent cells increased to 96% at day 1, indicating an immediate
selective advantage for such cells (Figure 6i-j). Interestingly, these cells appear to gradually start
proliferating again in the following days during continuous treatment, with the percentage of
proliferating cells approaching pre-treatment levels by day 11 (Figure 6j). The same trend captured
by our signature could be observed upon KRAS and BRAF inhibition in different cell line models
(Supplementary Figure 7g-j, Supplementary Table 4)!%%. Furthermore, during the first days of
treatment the NSCLC cells that survived EGFR inhibition appeared to reside in a state most
resembling that induced by serum starvation (Figures 6k-1). Both EGFR kinase inhibitors and serum
starvation have been shown to trigger autophagy®’, which may explain the convergence between this
inhibitory trigger and the type of quiescence response. At day 11 most of the remaining quiescent

cells appeared in a state similar to that preceding the treatment (Figure 61).

Thus, quiescence appears to explain resistance to broad acting chemotherapy agents as well as
targeted molecular inhibitors of the Ras/MAPK signalling pathway, being either selected for, or
induced immediately upon treatment, and gradually waning over time as cells start re-entering the
cell cycle. Using massively multiplexed chemical transcriptomic data, we also analysed responses to
188 small molecule inhibitors in cell lines at single-cell resolution®! (Supplementary Figure 8). We
observed a large increase in quiescence following treatment with compounds targeting cell cycle
regulation and tyrosine kinase signalling, consistent with our previous results, but also for
compounds modulating epigenetic regulation, e.g. histone deacetylase inhibitors — thus highlighting

the broad relevance of quiescence.
Tumour cell quiescence signature for use in single-cell transcriptomics data

Our ability to probe the nature of quiescent phenotypes in scRNA-seq data using a defined
quiescence signature could aid the development of methods to selectively target quiescent drug-
resistant persister cells. However, a major challenge of scRNA-seq data analysis is the high
percentage of gene dropout, which could impact our ability to evaluate quiescence using the full 139
gene signature. The scRNA-seq datasets we analysed exhibited an average drop-out of 8.5 genes out
of the full gene signature. While our scoring method remains robust to such levels of dropout
(Supplementary Figure 1c-e), we also employed machine learning to reduce our initial list of 139

markers of quiescence to a robust 35-gene signature, comprised mainly of RNA metabolism and
12
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splicing-regulating factors, but also of genes involved in cell cycle progression, ageing and
senescence, which could be applied to sparser datasets with larger levels of gene dropout (Methods,
Figure 7a-b, Supplementary Table 6). The optimised signature of quiescence performed similarly to
the initial broadly defined programme in distinguishing highly quiescent and fast cycling tumours
(Figure 7¢), showed an average dropout of only 0.5 genes across the scRNA-seq datasets used in this
study (Figure 7d), was similarly prognostic (p=0.004) and showed comparable profiles of resistance
to treatment (Figure 7e, Supplementary Figure 9). This minimal expression signature could be
employed to track and further study emerging quiescence-induced resistance in a variety of

therapeutic scenarios.
DISCUSSION

Despite its crucial role in cancer progression and resistance to therapies, tumour cell quiescence has
remained poorly characterised due to the scarcity of suitable models and biomarkers for large-scale
tracking in the tissue or blood. The lack of proliferative markers such as Ki67 or CDK2%-°? does not
uniquely distinguish quiescence from other cell cycle phases, e.g. G1 or S. Furthermore, these and
other reliable markers of GO arrest such as p27 or p130* are best captured at protein level, which is
much more sparsely measured, and expression does not accurately reflect their activity. This study
overcame this limitation by employing genes active in different forms of quiescence whose patterns
of expression are distinct from markers of a longer G1 phase, senescence or stemness. We have
extensively validated our method and signature in single cell datasets and cancer cell lines, and have
demonstrated that it can reliably and robustly capture signals of quiescence both in bulk tissue as
well as in single cells. The versatility of this signature is evidenced by high classification accuracies
across a variety of solid cancer datasets. More variable performance was observed when applied to
hematopoietic stem cells as it was not designed to capture signals in this context (Supplementary
Figure 1b). While we cannot exclude that the patterns captured may also occasionally reflect cell
cycle arrest in G1 or G2, this broad signature would still capture phenotypes resulting from intrinsic
or extrinsic cellular stress that reflect temporary tumour adaptation during the course of cancer
evolution or upon treatment with drugs. Thus, studying such states is relevant for identifying

vulnerabilities that could be exploited at different time points during the course of cancer treatment.

We show that quiescence is pervasive across different solid cancers and generally associated with
more stable, less mutated genomes with intact DNA damage repair pathways. We also find a link
between APOBEC mutagenesis and higher levels of quiescence. We identify mutational events
affecting a variety of genes such as PTEN, CEP89, CYLD, LMNA that appear unfavourable to cell

cycle arrest, thus potentially implicating them in influencing quiescence-proliferation decisions.
13
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Among these, we propose and validate CEP89 as a novel modulator of quiescence capacity in non-
small cell lung cancer. As such, CEP89 could be targeted to induce and actively maintain quiescence
in a scenario where this is favourable, possibly in combination with other cancer therapies.
Neoplastic events enriched in quiescent tumours, such as pl6 or ZMYM?2 deletions, could mark
elevated genomic stress that renders cells more prone to cell cycle arrest. Such targets should be

further validated and could be exploited to either counteract quiescence or induce it.

These large-scale genomic associations with quiescence are only currently feasible in bulk datasets.
However, bulk sequenced data has a major limitation in capturing an average signal across all cells
within the tumour, which prevents individual cell state identification and counting. Our subsequent
exploration of single cell datasets across 193 therapeutic scenarios complements this analysis and

illustrates the power of applying our signature in single cells.

Our signature of quiescence is prognostic and marks primary tumours with a lower proliferative
capacity before treatment, but we also clearly demonstrate that it can be employed to track resistance
to multiple cell cycle, kinase signalling and epigenetic targeting regimens, where it often appears as
a short-lived phenotype. In this setting, vulnerabilities of quiescent cells could be exploited for
combination therapies. Quiescent cells utilise several mechanisms to achieve drug resistance,
including upregulation of stress-induced pathways such as anti-apoptotic BCL-2 signalling”, anti-
ROS programmes?® or immune evasion'®. Further studies are needed to elucidate which of these
mechanisms are specifically employed on a case-by-case basis. Moreover, a key open question
remains: does quiescence drive resistance in a Darwinian fashion, as a pre-existing population that
is selected for upon drug treatment, or is it instead an acquired phenotype? Our single cell analyses
cannot exclude either scenario, but the optimised signature we propose for single cell data makes it

tractable to a variety of further future studies in this area.

Our findings contribute to the understanding of the aetiology and genetic context of quiescence in
cancer. This is particularly relevant to identifying new anti-proliferative targets, but also for the
detection and eradication of drug tolerant persister cells, which have been frequently, although not
always, observed to be driven by slow cycling or entirely quiescent”®. Importantly, the state of cancer
quiescence that we have studied here is distinct from that of disseminated tumour cells causing
clinical dormancy and cancer relapse, often after many years from the treatment of the primary
tumour®**. Here, we have focused on understanding how tumours make proliferation and quiescence
decisions during the earlier stages of cancer development, within the treatment-naive primary tumour
and as an immediate response to anti-cancer therapies. However, since the dormancy of disseminated

tumour cells is fundamentally enabled through a long but temporary cell cycle arrest, we believe our
14
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findings of the fundamental processes linked with quiescence could in the future help inform a better
characterisation of dormant tumour cells when combined with specific microenvironmental

signatures that are critical for enabling that process.

Overall, our study provides, for the first time, a pan-cancer view of cellular quiescence and its
evolutionary constraints, underlying novel mutational dependencies which could be exploited in the
clinic. We propose a quiescence signature which can be robustly measured in bulk tissue or single
cells, and could inform therapeutic strategies or risk of relapse. This signature could be assessed in
the clinic to track rapidly emerging resistance, e.g. through liquid biopsies or targeted gene panels.
We hope these insights can be used as building blocks for future studies into the different regulators
of quiescence, including epigenetics and microenvironmental interactions, as well as the mechanisms

by which it enables therapeutic resistance both in solid and haematological malignancies.

MATERIALS AND METHODS
Selection of quiescence marker genes
Generic quiescence markers:

Differential expression analysis results comparing cycling immortalised, non-transformed human
epithelial cells and cells in five different forms of quiescence (spontaneous quiescence, contact
inhibition, serum starvation, CDK4/6 inhibition and MEK inhibition) were obtained from Min and
Spencer?S. A total of 195 genes were differentially expressed in all five forms of quiescence under
an adjusted p-value cut-off of 0.05. This gene list, reflective of a generic quiescence phenotype, was
subjected to the following refinement and filtering steps: (1) selection of genes with a unidirectional
change of expression across all five forms of quiescence; (2) removal of genes involved in other cell
cycle stages included in the “KEGG_CELL CYCLE” gene list deposited at MSigDB; (3) removal
of genes showing low standard deviation and low levels of expression within the TCGA dataset, or
which showed low correlation with the pan-cancer expression of the transcriptional targets of the
DREAM complex, the main effector of quiescence, in TCGA. The resulting 139-gene signature is
presented in Supplementary Table 1.

Quiescence subtype-specific markers:

Gene lists representing spontaneous quiescence, contact inhibition, serum starvation, CDK4/6

inhibition and MEK inhibition programmes were obtained using genes differentially expressed in
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each individual quiescence form using an adjusted p-value cutoff of 0.05. The gene lists were
subjected to filtering steps 2 and 3 described above. Following the refinement steps, 10 upregulated

and 10 downregulated genes with highest log2 fold changes were selected for each quiescence type.

Quantification of tumour cell quiescence

The GSVA R package was used to implement the combined z-score®®, ssGSEA3® and GSVA?7 gene
set enrichment methods. For the above three methods a separate score was obtained for genes
upregulated in quiescence and genes downregulated in quiescence, following which a final
quiescence score was obtained by subtracting the two scores. The singscore single-sample gene
signature scoring method?®® was implemented using the singscore R package. In addition to these, we
also calculated a mean scaled quiescence score based on the refined list of genes upregulated and
downregulated in quiescence, as well as a curated housekeeping genes from the

“HSIAO_HOUSEKEEPING GENES” list deposited at MSigDB, as follows:

1 1
o GGy — 7 XGp
QS = 1
EZGH

QS = mean scale quiescence score

Gu = expression of genes upregulated in quiescence
Gp = expression of genes downregulated in quiescence
Gnu = expression of housekeeping genes

n = number of genes in each gene set

Quiescence scores for the TCGA cohort were derived from expression data scaled by tumour purity
estimates. The pan-cancer TCGA samples were also classified into “high” or “low” quiescence
groups based on k-means clustering (k=2) on the expression data of 139 quiescence biomarker genes,
following the removal of tissue-specific expression differences using the ComBat function from the

sva R package®.

Measuring the duration of quiescence

We employed the GSE124109 dataset from Fujimaki et al*® where rat embryonic fibroblasts were

transcriptomically profiled as they moved from short to long-term quiescence in the absence of
16
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growth signals. The derived quiescence scores using our combined z-score methodology increased

from short to longer-term quiescence.
Validation of quiescence scoring methodologies
Single-cell RNA-sequencing validation datasets:

Datasets were obtained from the ArrayExpress and Gene Expression Omnibus (GEO) databases
though the following GEO Series accession numbers: GSE83142, GSE75367, GSE137912,
GSE139013, GSE90742 and E-MTAB-4547. Quality control analysis was standardised using the
SingleCellExperiment®® and scater’” R packages. Normalisation was performed using the scran®® R

package.
Bulk RNA-sequencing validation datasets:

Datasets were obtained from the GEO database through the following GEO Series accession
numbers: GSE93391, GSE114012, GSE131594, GSE152699, GSE124854, GSE135215, GSE99116
and GSE124109. GSE114012 count data were normalised to TPM values using the GeoTcgaData R

package. All normalised datasets were log-transformed before further analysis.

The accuracy with which the quiescence scoring methods could separate proliferating and quiescent
samples within the validation datasets was determined by calculating the area under the curve of the

receiver operating characteristic (ROC) curves, using the p/otROC R package.

Experimental validation in lung adenocarcinoma cell lines

The average fraction of cancer cells spontaneously entering quiescence was estimated for nine lung
adenocarcinoma cell lines (NCIH460, A549, NCIH1666, NCIH1944, NCIH1563, NCIH1299,
NCIH1650, H358, L.23) using EAU and phospho-Rb staining proliferation assays.

Cell lines were obtained from ATCC or Sigma and regularly checked for mycoplasma. A549 and
NCIH460 were cultured in DMEM (Gibco). NCIH358, NCIH1299 and NCIH1563 were maintained
in RPMI-1640 (Gibco) supplemented with SmM sodium pyruvate and 0.5% glucose. NCIH1944,
NCIH1666, NCIH1650 and L.23 were grown in RPMI-1640 ATCC formulation (Gibco). A427 were
cultured in EMEM (ATCC). A549, NCIH460, H358, NCIH1299, NCIH1563, A427 were
supplemented with 10% heat inactivated FBS. NCIH1666 with 5% heat-inactivated FBS and all
other cell lines with 10% non-heat inactivated FBS. All cell lines had penicillin-streptomycin (Gibco)

added to 1%. Cells were maintained at 37°C and 5% CO.. To calculate the quiescent fraction, A549
17
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and NCIH460 cells were plated at a density of 500 cells/well, and all other cell lines at a density of
1000/well, in 384well CellCarrier Ultra plates (PerkinElmer) in the relevant media. 24h later, 5 uM
EdU was added and cells were incubated for a further 24h before fixing in a final concentration of
4% formaldehyde (15 min, RT), permeabilization with PBS/0.5% Triton X-100 (15 min, RT) and
blocking with 2% BSA in PBS (60 min, RT). The EdU signal was detected using Click-iT chemistry,
according to the manufacturer’s protocol (ThermoFisher). Cells were also labelled for phospho-
Ser807/811 Rb (PRb) using Rabbit mAb 8516 (CST) at 1:2000 in blocking solution, overnight at
4°C. Unbound primary antibody was washed three times in PBS and secondary Alexa-conjugated
antibodies were used to detect the signal (ThermoFisher, 1:1000, 1h at RT). Finally nuclei were
labelled with Hoechst 33258 (1 pg/ml, 15 min RT) before imaging on a high-content widefield
Operetta microscope, 20x N.A. 0.8. Automated image analysis (Harmony, PerkinElmer) was used
to segment and quantify nuclear signals in imaged cells. Quiescent cells were defined by the absence

of EdU or PRb staining, determined by quantification of their nuclear expression (Figure le-f).

The quiescence scores for cancer cell lines were calculated using corresponding log-transformed

RPKM normalised bulk RNA-seq data from the Cancer Cell Line Encyclopedia (CCLE) database®.

CEP89 was depleted by ON-Target siRNA Pool from Horizon. NCI-H1299 cells were reverse
transfected in 384 well plates with 20nM of Non-targeting control (NTC) or CEP89-targeting siRNA
using Lipofectamine RNAiMax (ThermoFisher), according to the manufacturer’s instructions. Cells
were left for 24h, before 5 uM EdU was added for the final 24h and then cells were processed as
above to determine the quiescent fraction. To determine the level of Cep89 depletion by western
blot, cells were reverse transfected with siRNA in 24 well plates. 48h after transfection, cells were
lysed directly in 1x SDS sample buffer with ImM DTT (ThermoFisher). Samples were separated on
pre-cast 4-20% Tris-Glycine gels, transferred to PVDF using the iBlot2 system and membranes
blocked in blocking buffer (5% milk in TBS) for 1h at RT. The membrane was then cut and the upper
half was incubated in 1:1000 Cep89 antibody (Sigma, HPA040056), the bottom half in B-actin
antibody 1:2000 (CST; 3700S) diluted in blocking buffer overnight at 4’C. Membranes were washed
three times in TBS-0.05% TritonX-100 before being incubated in secondary anti-rabbit (Cep89) or
anti-mouse (B-actin) HRP conjugated antibodies (CST 7074P2 and CST 7076P2, respectively)
diluted 1:2000 in blocking buffer for 1h at RT. Membranes were washed three times again and signal
detected using Clarity ECL solution (BioRad) and scanned on an Amersham ImageQuant 800

analyser.
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Multi-omics discovery cohort

FPKM normalised RNA-sequencing expression data, copy number variation gene-level data, RPPA
levels for p27 as well as mutation annotation files aligned against the GRCh38 human reference
genome from the Mutect2 pipeline were downloaded using the TCGABiolinks R package % for
9,712 TCGA primary tumour samples across 31 solid cancer types. Haematological malignancies
were excluded as the quiescence markers were derived in epithelial cells and might not be equally
suited to capture this phenotype in blood. For patients with multiple samples available, one RNA-
seq barcode entry was selected for each individual patient resulting in 9,631 total entries. All
expression data were log-transformed for downstream analysis. During quiescence score calculation,
expression data for the primary tumour samples was scaled according to tumour purity estimates
reported by Hoadley et al'®! to account for potential confounding quiescence signals coming from
non-tumour cells in the microenvironment. Samples with purity estimates lower than 30% were

removed, leaving 8,005 samples for downstream analysis.

The mutation rates of all TCGA primary tumour samples were determined by log-transforming the

total number of mutations in each sample divided by the length of the exome capture (38Mb).

TP53 functional status was assessed based on somatic mutation and copy number alterations as
described in Zhang et al'?2. TP53 mutation and copy number for the TCGA tumours were
downloaded from cBioPortal (http://www.cbioportal.org). Tumours with 7P53 oncogenic mutations
(annotated by OncoKB) and copy-number alterations (GISTIC score < -1) were assigned as 7P53
mutant and CNV loss. Tumours without these 7P53 alterations were assigned as TP53 wild type.
The effects of the 7P53 mutation status on quiescence score were then determined with a linear
model approach with the quiescence score as a dependent variable and mutational status as an

independent variable. The P values were FDR-adjusted.

APOBEC mutagenesis enriched samples were determined through pan-cancer clustering of
mutational signature contributions as described in Wiecek et al'®, The APOBEC mutagenesis cluster
was defined as the cluster with highest mean SBS2 and SBS13 contribution. This was repeated 100
times and only samples which appeared in the APOBEC cluster at least 50 times were counted as

being APOBEC enriched.

Aneuploidy scores and whole genome duplication events across TCGA samples were obtained from
Taylor et al'®. Microsatellite instability status for uterine corpus endometrial carcinoma, as well as

stomach and colon adenocarcinoma samples were obtained from Cortes-Ciriano et al®®. Telomerase
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enzymatic activity “EXTEND” scores were obtained from Noureen et al*. Expression-based cancer

150

cell stemness indices were obtained from Malta et al>’. Centrosome amplification transcriptomic

signature (CA20) scores were obtained from Almeida et al”.

PHATE dimensionality reduction

The phateR R package!® was used to perform the dimensionality reduction with a constant seed for
reproducibility. The ComBat function from the sva R package!® was used to remove tissue-specific

expression patterns from the TCGA RNA-seq data.

Cancer stem cell division estimates

The mean stem cell division estimates for different cancer types used in this study were obtained

from Tomasetti and Vogelstein®®.

Positive selection analysis

Genes positively selected specifically in samples clustered into low or high quiescence groups were
identified based on dN/dS analysis using the dNdScv R package!®’, run with default parameters.
Genes showing signals of positive selection in either the highly quiescent or fast proliferating

samples which encoded olfactory receptors were discarded from downstream analysis.

Mutational signature estimation

Mutational signature contributions were inferred as described in Wiecek et al'®.

Machine learning of quiescence-linked features via ensemble elastic net regression models

The COSMIC database was used to source a list of 723 known drivers of tumorigenesis (Tiers 1+2).
285 oncogenes and tumour suppressors from a curated list showed a significant enrichment or
depletion of mutations or copy number variants in quiescent samples either pan-cancer or within

individual TCGA studies.

To classify highly quiescent from fast proliferating tumours, the 286 genes were used as input
features for an ensemble elastic net regression model along the tumour mutational rate, whole-
genome doubling estimates, ploidy, aneuploidy scores, 10 positively selected genes and 15

mutational signatures, which showed a significant correlation with quiescence scores either pan-
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cancer or within individual TCGA studies. The caret R package was used to build an elastic net
regression model 1000 times on the training dataset of 3,753 TCGA primary tumour samples (80%
of the total dataset). Only samples with at least 50 mutations were used in the model, for which
mutational signatures could be reliably estimated. For each of the 1000 iterations, we randomly
selected 90% of the samples from the training dataset to build the model. Only features which were
included in all 1000 model iterations were selected for further analysis. To test the performance of
our approach, a linear regression model was built using the reduced list of genomic features and their
corresponding coefficients averaged across the 1000 elastic net regression model iterations. When
applying the resulting linear regression model on the internal validation dataset of 936 samples, we
found a strong correlation between the observed and predicted quiescence scores (R =0.73, p <2.2e-

16).

SHAP values for the linear regression model used to predict quiescence scores were obtained using

the fastshap R package.

Gene enrichment and network analysis

Gene set enrichment analysis was carried out using the ReactomePA R package, as well as
GeneMania!® and ConsensusPathDB!'?. Interactions between CEP89 and other cell cycle
components were inferred using the list of cell cycle genes provided by cBioPortal and GeneMania
to reconstruct the expanded network with direct interactors (STAGI, CCND2, STAT3). Networks

were visualised using Cytoscape!!’.

Gene lists

Genes associated with the Gl phase of the cell cycle were obtained from the curated

“REACTOME_G1_PHASE “ list deposited at MSigDB.

Genes associated with apoptosis were obtained from the curated “HALLMARK APOPTOSIS” list
deposited at MSigDB.

Genes associated with the senescence-associated secretory phenotype were obtained from Basisty et

al>. Lists of genes making up the various DNA damage repair pathways were derived from Pearl et

allll'

Genes associated with contact inhibition were obtained from the curated “contact inhibition” gene

ontology term. Genes associated with serum starvation were obtained from the curated
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“REACTOME _CELLULAR RESPONSE TO STARVATION” list deposited at MSigDB. MEK
inhibition was assessed based on the activity of the MAPK pathway as determined using an

expression signature (MPAS) consisting of 10 downstream MAPK transcripts'!2,

Validation of the genomic features of quiescence

For elastic net model feature validation, RNA-seq data was downloaded for six cancer studies from
cBioPortal!!?, along with patient-matched whole-genome, whole-exome and targeted sequencing
data. The 6 datasets used comprise breast cancer (SMC!'* and METABRIC!"?), paediatric Wilms’
tumor (TARGET!'®), bladder cancer, prostate adenocarcinoma and sarcoma (MSKCC!'7-119) studies.
The data were processed and analysed in the same manner as the TCGA data. RNA-seq data for 27
MCF7 cell line strains, alongside cell line growth rates and targeted mutational sequencing data were

obtained from Ben-David et al®°.

Genomic dependency modelling in breast cancer

An ANOVA-based feature importance classification was used and identified 30 genomic features
most discriminative of samples with lower and higher than average quiescence scores. A random
forest model was then built using the identified features and correctly classified samples according
to their quiescence state with a mean accuracy of 74% across five randomly sampled test datasets

from the cohort.

Survival analysis

Multivariate Cox Proportional Hazards analysis was carried out using the coxph function from the
survival R package. The optimal quiescence score cut-off value of 2.95 was determined using the

surv_cutpoint function.

Treatment response scRNA-seq and bulk RNA-seq data

Datasets have been obtained from the GEO database through the following GEO Series accession
numbers: GSE134836, GSE134838, GSE134839, GSE137912, GSE149224, GSE124854,
GSE135215, GSE99116, GSE152699, GSE178839 and GSE139944. The umap R package was used

for dimensionality reduction with constant seed for reproducibility.
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Quiescence subtype determination
TCGA cohort studies:

Samples with evidence of quiescence characterised by a generic quiescence score > (0 were further
subclassified based on the most likely form of quiescence exhibited, among CDK4/6 inhibition,
contact inhibition, MEK inhibition, spontaneous quiescence or serum starvation, using subtype-
specific expression signatures. We opted for a conservative approach and classed each quiescent
sample into a specific quiescence subtype if the quiescence score for the corresponding programme
was higher than one standard deviation of the distribution across the TCGA cohort, and if the score
was significantly higher than for the remaining programmes when assessed using a Student’s t test.
Samples which could not be classified into any of the five quiescence states characterised in this

study were classified as “uncertain”.
Single-cell RNA seq treatment response datasets:

The quiescence subtype of individual single cells was inferred by mapping such individual cells onto
the reference dataset of MCF10A cells reflecting different forms of quiescence obtained from Min
and Spencer?®. The ComBat R package was used to remove the study batch effect between the
expression data to be classified and the reference bulk RNA-seq data. PCA dimensionality reduction
analysis was then used on the combined datasets using the prcomp R function. For each patient
sample or single-cell expression data entry, a k-nearest neighbour algorithm classification was
performed using the knn function from the class R package. During the classification the three nearest
reference bulk RNA-seq data points were considered, with two nearest neighbours with identical

class needed for classification.

Optimisation of the quiescence signature

We investigated if a subset of the 139 quiescence-related genes could act as a more reliable marker

of quiescence that would bypass dropout issues in single cell data. This was performed in three steps:

(1) Assessment of individual importance as quiescence marker for a given gene
We collected three high confidence single cell expression datasets separating quiescent from
proliferating cells. A random forest model was trained on each dataset separately to predict the
quiescence state of a given cell based on the expression levels of the 139 genes. The Gini indices
corresponding to each gene in the model were normalised to a range of values between 0 and 1,
which would reflect how important an individual gene was for determining quiescence state
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670 relative to the other 138 genes. The procedure was repeated 1000 times for each of the three
671 datasets, and the average Gini coefficients across iterations were stored.

672  (2) Prioritisation of gene subsets based on cumulative importance in the model

673 Genes were placed in the candidate subset if their importance metric was above a given threshold
674 in at least one of the datasets. By gradually increasing the threshold from 0 to 1, different gene
675 combinations were produced.

676  (3) External validation of candidate subsets

677 The gene combinations in (2) were tested for their ability to predict quiescence. For this, a
678 separate validation dataset was utilized, which contained gene expression levels for the 139 genes
679 in the 10 lung cancer cell lines previously employed for experimental validation, along with the
680 quiescence state of the lines as inferred by PRb and EdU staining. For each gene subset, a
681 combined z-score of quiescence was calculated from the expression levels as described
682 previously. The correlations between this z-score and the two experimental measurements of
683 quiescence were used to establish the ability of a gene combination to predict quiescence. Among
684 the top performing subsets, a 35 gene signature with a mean correlation of 78% between predicted
685 and measured quiescence levels in the test data (p=0.016) showed the highest correlation with
686 PRb measurements capturing short-lived quiescence, the more common state observed in single
687 cell treatment datasets. Therefore, this signature was deemed to achieve the best trade-off
688 between gene numbers and signal capture.

689  The optimised gene signature is provided in Supplementary Table 6.

690  Statistical analysis

691  Groups were compared using a two-sided Student’s t test, Wilcoxon rank-sum test or ANOVA, as
692  appropriate. P-values were adjusted for multiple testing where appropriate using the Benjamini-

693  Hochberg method. Graphs were generated using the ggplot2 and ggpubr R packages.

694  Data availability

695  The results published here are in part based upon data generated by the TCGA Research Network:
696  https://www.cancer.gov/tcga, METABRIC (https://ega-archive.org/studies/EGAS00000000083),
697 MSK-IMPACT  (https://www.mskcc.org/msk-impact),  or  deposited at  cBioPortal

698  (https://www.cbioportal.org/) and GEO (https://www.ncbi.nlm.nih.gov/geo/). All data comply with

24


https://doi.org/10.1101/2021.11.12.468410
http://creativecommons.org/licenses/by-nc-nd/4.0/

699
700

701

702
703

704

705
706

707

708
709
710
711
712
713
714
715
716
717
718
719

720
721

722
723
724
725
726
727

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.12.468410; this version posted February 23, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

ethical regulations, with approval and informed consent for collection and sharing already obtained

by the relevant consortia.

Code availability

All code developed for the purpose of this study can be found at the following repository:

https://github.com/secrierlab/CancerCellQuiescence
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FIGURE LEGENDS

Figure 1: Methodology for quantifying cancer cell quiescence. (a) Workflow for evaluating
quiescence from RNA-seq data. 139 genes differentially expressed in multiple forms of quiescence
were employed to score quiescence across cancer tissues. (b) Receiver operating characteristic
(ROC) curves illustrating the performance of the z-score methodology on separating actively
proliferating and quiescent cells in seven single-cell (continuous curves) and bulk RNA-seq (dotted
curves) datasets. AUC = area under the curve. (¢) Compared classification accuracies of the z-score
approach and classic cell proliferation markers across the seven single-cell/bulk RNA-seq validation
datasets. (d) Quiescence levels of embryonic fibroblast cells under serum starvation for various
amounts of time. Replicates are depicted in the same colour. (e) Representative images of lung cancer
cell lines immunostained and analysed to detect the quiescent fraction. Hoechst (labels all nuclei) is
in blue, PRb in green and EdU in red in merged image. White dashed circles highlight quiescent cells
that are negative for both PRb and EdU signals. Scale bar: 100 pm. (f) Graphs show single cell
quantification of PRb and EdU intensities taken from images and used to define the cut-off to
calculate the quiescent fraction (QF; green boxes). Images in (e) and graphs in (f) are taken from the
A549 cell line. (g-h) Correlation between theoretical estimates of a quiescence or G1 state and the
fraction of cells entering quiescence in nine lung adenocarcinoma cell lines, as assessed through (g)
phospho-Rb assays and (h) EdU assays. Mean of n=3 is shown for the average percentage of

quiescent cells.

Figure 2: Pan-cancer evaluation of proliferative heterogeneity and linked tumour hallmarks.
(a) PHATE plot illustrating the wide spectrum of proliferative to slow cycling/quiescent states across
8,005 primary tumour samples from TCGA. Each sample is coloured according to the relative
quiescence level. (b) Variation in tumour quiescence levels across different cancer tissues. (c)
Correlation between mean quiescence scores and stem cell division estimates for various tissue types.
(d) Correlating tumour quiescence scores with cancer cell stemness (Stemness Index), telomerase
activity (EXTEND score), p21 activity (CDKN1A) and the expression of several commonly used
proliferation markers. The Pearson correlation coefficient is displayed. RC — replication complex.
(e) Consistently higher levels of quiescence are detected in samples with functional p53. (f) Lower
quiescence scores are observed in tumours with one or two whole genome duplication events.
Wilcoxon rank-sum test p-values are displayed in boxplots, *p<0.05; **p<0.01; ***p<0.001;
*HE%p<0.0001.
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Figure 3: Genomic landscape of proliferation/quiescence decisions in cancer. (a) Cancer drivers
with mutations or copy number alterations depleted pan-cancer in a quiescence context. Features
further selected by the pan-cancer model are highlighted. (b) Schematic of the ensemble elastic net
modelling employed to prioritise genomic changes associated with tumour quiescence. (¢) Genomic
events significantly associated with quiescence, ranked according to their importance in the model
(highest to lowest). Each point depicts an individual tumour sample, coloured by the value of the
respective feature. For discrete variables purple indicates the presence of the feature and green its
absence. The Shapley values indicate the impact of individual feature values on the quiescence score
prediction. (d) Quiescence levels are significantly reduced in microsatellite unstable (MSI) samples
in stomach adenocarcinoma (STAD) and uterine corpus endometrial carcinoma (UCEC), with the
same trend (albeit not significant) shown in colon adenocarcinoma (COAD). Wilcoxon rank-sum
test *p<0.05; **p<0.01. (e) Genomic alterations are depleted across DNA repair pathways during
quiescence. Odds ratios of mutational load on pathway in quiescence are depicted, along with
confidence intervals. CS=chromosome segregation; pS3=p53 pathway; UR=ubiquitylation response;
CPF=checkpoint factors; TM=telomere maintenance; CR=chromatin remodelling; TLS=translesion
synthesis; NHEJ=non-homologous end joining; NER=nucleotide excision repair; MMR=mismatch
repair; FA=Fanconi Anaemia; BER=base excision repair. (f) Quiescence is increased in cell lines
with slow doubling time across MCF7 strains, which also show lower prevalence of PTEN
mutations. (g) Tissue-specific changes in quiescence between samples with/without quiescence-
associated deletions (blue), amplifications (red) and SNVs (brown) within the TCGA cohort (top)

and external validation datasets (bottom).

Figure 4: CEP89 amplification is associated with lower tumour quiescence. (a) Network
illustrating CEP89 interactions with cell cycle genes (from GeneMania). The edge colour indicates
the interaction type, with green representing genetic interactions, orange representing predicted
interactions and purple indicating pathway interactions. The edge width illustrates the interaction
weight. (b) CA20 scores are significantly increased in TCGA primary tumours containing a CEP89
amplification. (¢) Pan-cancer relationship between CA20 scores and tumour quiescence across the
TCGA cohort. (d) Cox proportional hazards analysis estimates of the log hazards ratio for the impact
of CEP89 expression on patient prognosis within individual cancer studies, after adjusting for tumour
stage. Patients with high expression of CEP89 show significantly worse prognosis within ACC,
LUSC, LIHC, KIRC and STAD, but significantly better prognosis within HNSC, PAAD and KIRP
studies. (e) Western blot showing depletion of Cep89 protein 48h after siRNA transfection of NCI-
H1299 cells. Mock is lipofectamine only, NTC is Non-targeting control siRNA. B-actin is used as a
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loading control. (f) Graphs show that Cep89 depletion in NCI-H1299 cells leads to a reduction in
nuclear number and an increase in the fraction of quiescent cells, measured by an increase in the
percentage of EAU negative (24h EdU pulse) and Phospho-Ser 807/811 Rb negative cells. One-Way
ANOVA, *p<0.05, **p<0.01. Mean of n=3.

Figure 5: Pan-cancer characterisation of individual quiescence programmes. (a-e¢) Comparison
of correlation coefficients between quiescence programme scores and (a) mean expression of CDK4
and CDKS6, (b) mean expression of curated contact inhibition genes, (¢) a transcriptional MAPK
Pathway Activity Score (MPAS), (d) mean expression of curated serum starvation genes, and (e)
CDKNI1A expression, across TCGA cancers. The correlations expected to be strongest (either
negative or positive) are denoted by an asterisk. The generic quiescence score refers to scores
calculated using the original list of 139 genes differentially expressed across all 5 forms of
quiescence. (f) Comparison of quiescence programme scores measured in cancer cell lines before
(grey) and after (red) Palbociclib treatment across three validation studies. Datasets used for
validation are denoted by their corresponding GEO series accession number. (g) Predicted
quiescence type composition of samples estimated to be highly quiescent across individual cancer
types. The same colour legend as in (a) is applied. Gray bars represent the proportion of samples for

which the quiescence type could not be estimated.

Figure 6: Impact of tumour cell quiescence on patient prognosis and treatment response. (a)
Disease-specific survival based on tumour quiescence for patients from TCGA within 15 years of
follow up. Patients with high levels of quiescence in primary tumours showed significantly better
prognosis than patients with low quiescence. (b-c) Hazard ratio ranges illustrating the impact of
different forms of quiescence (b) and different tissues (¢) on patient prognosis, after taking into
account potential confounding factors. Values above 0 indicate significantly better prognosis in the
context of high tumour quiescence. (d) Change in quiescence scores inferred from bulk RNA-seq
across breast, pancreatic, colorectal and skin cancer cells in response to treatment with the CDK4/6
inhibitor Palbociclib, 5-FU or the BRAF inhibitor Vemurafenib. (e-f) UMAP plot illustrating the
response of the TP53-proficient RKO colorectal cancer cell line to various 5-FU doses and the
corresponding proportions of cells predicted to be quiescent/proliferating. Each dot is an individual
cell, coloured according to its quiescence level. (g-h) The same as previous, but for the TP53-
deficient SW480 cell line. (i-j) UMAP plot illustrating the response of individual PC9 NSCLC cells
to the EGFR inhibitor Erlotinib across several time points and the corresponding proportion of cells

predicted to be quiescent/proliferating. (k) Principal component analysis illustrating the
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superimposition of scRNA-seq profiles (circles) of quiescent NSCLC cells before/after EGFR
inhibition onto the bulk RNA-seq reference data (triangles) for MCF10A cells occupying various
quiescence states. (I) The proportion of NSCLC cells in (k) predicted to occupy different quiescence

states across several time points.

Figure 7: Optimisation of quiescence signature for use in scRNA-seq data. (a) Methodology for
refining the gene signature of quiescence: random forest classifiers are trained to distinguish
quiescent from cycling tumours on three high confidence datasets; Gini index thresholding is
optimised to prioritise a final list of 35 genes. (b) Gini index variation, correlation with
experimentally measured quiescence via EdU and PRb staining assays, and corresponding p-values
are plotted as the number of genes considered in the model is increased. The red dotted line indicates
the threshold chosen for the final solution of 35 genes. The black dotted line indicates the threshold
for p-value significance. (¢) Additional external validation of the 35 gene signature acting as a
classifier of quiescent and proliferation cells in single cell and bulk datasets. (d) Dropout in single
cell data by gene signature. The percentage of genes out of the 35 (red) and 139 (grey) gene lists with
reported expression across the single-cell RNA-seq datasets analysed in this study. (e) Proportion of
cycling and quiescent cells estimated in single cell datasets of p53 wild type and mutant lines treated

with 5FU, as well as cells treated with EGFR inhibitors. Data as in Figure 7.
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Figure 7: Optimisation of quiescence signature for use in scRNA-seq data
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