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ABSTRACT 1 

Therapy resistance in cancer is often driven by a subpopulation of cells that are temporarily arrested 2 

in a non-proliferative, quiescent state, which is difficult to capture and whose mutational drivers 3 

remain largely unknown. We developed methodology to uniquely identify this state from 4 

transcriptomic signals and characterised its prevalence and genomic constraints in solid primary 5 

tumours. We show quiescence preferentially emerges in the context of more stable, less mutated 6 

genomes which maintain TP53 integrity and lack the hallmarks of DNA damage repair deficiency, 7 

while presenting increased APOBEC mutagenesis. We employ machine learning to uncover novel 8 

genomic dependencies of this process, and validate the role of the centrosomal gene CEP89 as a 9 

modulator of proliferation/quiescence capacity. Lastly, we demonstrate that quiescence underlies 10 

unfavourable responses to various therapies exploiting cell cycle, kinase signalling and epigenetic 11 

mechanisms in single cell data, and propose a signature of quiescence-linked therapeutic resistance 12 

to further study and clinically track this state. 13 

 14 

STATEMENT OF SIGNIFICANCE 

We developed a robust transcriptomic signature of cellular quiescence, and employed it to 15 

systematically characterise proliferation/quiescence decisions in solid primary cancers and the 16 

genomic events influencing them. We propose CEP89 as a novel target whose suppression increases 17 

quiescence. Our expression signature of quiescence could be employed to track resistance to multiple 18 

anti-cancer compounds in a drug-tolerant persister cell setting.  19 
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INTRODUCTION 20 

Tumour proliferation is one of the main hallmarks of cancer development1, and has been extensively 21 

studied. While most of the cells within the tumour have a high proliferative capacity, occasionally 22 

under stress conditions some cells will become arrested temporarily in the G0 phase of the cell cycle, 23 

in a reversible state called ‘quiescence’ where they maintain minimal basal activity2. It has been 24 

proposed that this state enables cells to become resistant to anti-cancer compounds that target actively 25 

dividing cells, such as chemotherapy3-5. Moreover, a drug-tolerant ‘persister’ cell state represented 26 

by slow cycling or entirely quiescent cells6-9 has been observed in a variety of pre-existing or 27 

acquired resistance scenarios, also in the context of targeted therapies10,11. As neoplastic cells evolve, 28 

quiescence can also be employed as a mechanism to facilitate immune evasion12,13 or adaptation to 29 

new environmental niches during metastatic seeding14,15. In the context of disseminated tumour cells, 30 

quiescence can facilitate minimal residual disease, a major cause of relapse in the clinic16. 31 

Although quiescence is a widely conserved cellular state, essential for the normal development and 32 

homeostasis of eukaryotes2,17, and has been extensively studied in a variety of organisms including 33 

bacteria and yeast18,19, its role in cancer is still poorly defined. Hampering our understanding is the 34 

fact that it represents a number of heterogeneous states17,20. Canonically, cells can be forced into 35 

quiescence through serum starvation, mitogen withdrawal or contact inhibition17. Cells can also 36 

undergo cell cycle arrests spontaneously in response to cell-intrinsic factors like replication stress21-37 
23. This process is controlled by p5324, which triggers the inhibition of cyclin-CDK complexes by 38 

activating p2122. This in turn allows the assembly of the DREAM complex - a key effector 39 

responsible for repression of cell-cycle dependent gene expression25. Min and Spencer26 recently 40 

demonstrated a much broader systemic coordination of 198 genes underlying distinct types of 41 

quiescence by profiling the transcriptomes of cells that entered this state either spontaneously or 42 

upon different stimuli. Additionally, proliferation-quiescence decisions can be impacted by 43 

oncogenic changes such as MYC amplification27 or altered p38/ERK signalling28.  44 

Despite these advances, the identification of quiescent cells within tumours presents an ongoing 45 

challenge due to their scarcity and lack of universal, easily measurable markers for the activation and 46 

maintenance of this state. As they are often defined by a lack of proliferative markers29,30, quiescent 47 

tumour cells can be mistaken for other therapy resistant cell types such as senescent or cancer stem 48 

cells6,31. Unlike quiescent cells, which can readily resume their proliferative state, senescent cells are 49 

irreversibly arrested26 while cancer stem cells have a high capacity for self-renewal and sit at the top 50 

of the differentiation hierarchy32. Biomarkers of quiescence that are sufficiently specific and robust 51 

to be clinically useful are clearly needed. 52 
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Furthermore, our understanding of how cancer evolution is shaped by proliferation-quiescence 53 

decisions is limited. The proliferative heterogeneity of cancer cell populations has been previously 54 

described and linked with FAK/AKT1 signalling33, but the constraints and consequences of these 55 

cell state switches have not been systematically profiled across cancer tissues. The extent to which 56 

tumour cell quiescence is enacted through transcriptional or genetic control is unknown5,34, and 57 

neither are the mutational processes and genomic events modulating this state. Understanding the 58 

evolutionary triggers and molecular mechanisms that enable cancer cells to enter and maintain 59 

quiescence would enable us to develop pharmacological strategies to selectively eradicate quiescent 60 

cancer cells or prevent them from re-entering proliferative cycles.  61 

To address these challenges, we have developed a new method to uniquely and reliably quantify 62 

quiescence in cancer using transcriptomic data, and employed it to characterise this phenomenon in 63 

bulk and single cell datasets from a variety of solid tumours. We describe the spectrum of 64 

proliferation/quiescence decisions in primary tumours, which reflects a range of stress adaptation 65 

mechanisms during the course of cancer development from early to advanced disease. We identify 66 

and validate mutational constraints for the emergence of quiescence, hinting at potential new 67 

therapeutic targets that could exploit this mechanism. We also demonstrate the relevance of 68 

quiescence to responses to a range of compounds targeting cell cycle, kinase signalling and 69 

epigenetic mechanisms in single cell datasets, and propose an expression signature that could be 70 

employed to detect treatment resistance induced by quiescent tumour cells. 71 

 72 
RESULTS 73 

Evaluating tumour cell quiescence from transcriptomic data 74 

We hypothesised that primary tumours contain varying numbers of quiescent cells, which reflect 75 

evolutionary adaptations to cellular stress and may determine their ability to overcome 76 

antiproliferative therapies. To capture this elusive phenotype, we developed a computational 77 

framework that would allow us to quantify quiescence signals in bulk and single cell sequenced 78 

cancer samples (Figure 1a). To define a signature of quiescence, we focused on genes that have been 79 

shown by Min and Spencer26 to be specifically activated or inactivated during quiescence that arises 80 

spontaneously or as a response to serum starvation, contact inhibition, MEK inhibition or CDK4/6 81 

inhibition. The activity of 139 of these genes changed in a coordinated manner across all these five 82 

distinct forms of quiescence, likely representing generic transcriptional consequences of this cellular 83 

state. The expression levels of these markers were used to derive a score reflecting the relative 84 

abundance of quiescent cells within individual tumours (see Methods, Supplementary Table 1).  85 
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To validate this signature and select the optimal method to score quiescence in individual samples 86 

amongst different enrichment/rank-based scoring methodologies35-38, we used seven single-cell and 87 

bulk datasets10,39-44 where actively proliferating and quiescent cells had been independently isolated 88 

and sequenced (Supplementary Figure 1a, Supplementary Table 2, Methods). A combined Z-score 89 

approach had the highest accuracy in detecting signals of quiescence, with a 91% mean performance 90 

in classifying cells as quiescent or cycling (Figure 1b, Supplementary Figure 1b). Our signature 91 

reflected an expected increase in p27 protein levels, which are elevated in quiescence45 92 

(Supplementary Figure 1c). It also outperformed classical cell cycle and arrest markers, such as the 93 

expression of targets of the DREAM complex, CDK2, Ki67 and of mini-chromosome replication 94 

maintenance (MCM) protein complex genes - which are involved in the initiation of eukaryotic 95 

genome replication (Figure 1c). Importantly, our approach provided a good separation between 96 

quiescent and proliferating samples across a variety of cancer types and models including cancer cell 97 

lines, 3D organoid cultures, circulating tumour cells and patient-derived xenografts (Supplementary 98 

Table 2), thereby demonstrating its broad applicability. Furthermore, the strength of the score 99 

appeared to reflect the duration of arrest in quiescence46 (Figure 1d).  100 

We further experimentally validated our methodology in nine lung adenocarcinoma cell lines. We 101 

estimated the fraction of quiescent cells in each of these cell lines using quantitative, single-cell 102 

imaging of phospho-Ser807/811-Rb (PRb, which labels proliferative cells47) and 24 hour EdU 103 

proliferation assays (Figure 1e-h). Cells that were negative for either PRb or EdU were defined as 104 

quiescent (see Methods, Figure 1e-f). There was a remarkably good correlation between our 105 

predicted quiescence levels and the fraction of quiescent cells, as assessed by lack of EdU 106 

incorporation (which happens during S phase) but particularly by lack of Rb phosphorylation. 107 

Phosphorylation and inactivation of the retinoblastoma protein is often used to define the boundary 108 

between G0 and G1, and was specifically shown to distinguish the G0 state recently by Stallaert et 109 

al47. Furthermore, a G1 signature (Methods) was not associated with these experimental 110 

measurements, suggesting our method recovers a state more similar to G0 arrest rather than a 111 

prolonged G1 state (Figure 1g-h). The quiescence correlations appeared robust to random removal 112 

of individual genes from the signature, with no single gene having an inordinate impact on the score 113 

(Supplementary Figure 1d-f). This provided further reassurance that our Z-score based methodology 114 

is successful in capturing quiescence signals from bulk tumour data. 115 

The spectrum of proliferation/quiescence capacity in solid primary tumours 116 

Having established a robust framework for quantifying tumour cell quiescence, we next profiled 117 

8,005 primary tumour samples across 31 solid cancer tissues from The Cancer Genome Atlas 118 
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(TCGA). After accounting for potential confounding signals of quiescent non-tumour cells from the 119 

microenvironment by correcting for tumour purity (see Methods, Supplementary Figure 1g-h), we 120 

observed an entire spectrum of fast proliferating to slowly cycling tumours, with the latter presenting 121 

stronger quiescence-linked signals (Figure 2a). While we acknowledge that no tumour would be 122 

entirely quiescent and we cannot identify individual quiescent cells within the tumour, this analysis 123 

does capture a broad range of phenotypes reflecting varying proliferation and cell cycle arrest rates, 124 

which suggests that quiescence is employed to different extents by tumours as an adaptive 125 

mechanism to various extrinsic and intrinsic stress factors. Cancers known to be frequently dormant, 126 

such as glioblastoma3,39, were amongst the highest ranked in terms of quiescence, along with kidney 127 

and adrenocortical carcinomas (Figure 2b). This is likely explained by the innate proliferative 128 

capacity of the respective tissues. Indeed, tissues with lower stem cell division rates presented a 129 

greater propensity for quiescence (Figure 2c)48.  130 

Importantly, we confirmed that our quiescence scores capture a cellular state that is distinct from that 131 

of cancer stem cells, marked by signatures associated with high telomerase activity and an 132 

undifferentiated state49,50, and that of senescent cells, marked by the Senescence-Associated 133 

Secretory Phenotype (SASP) and β-galactosidase activity51-53 (Figure 2d, Supplementary Figures 2a-134 

d). Our scores also showed strong negative correlations with the expression of proliferation markers 135 

(Figure 2d).  136 

Lastly, we confirmed expected dependencies on the p53/p21/DREAM activation axis: tumours that 137 

were proficient in TP53 or the components of the DREAM complex, as well as those with higher 138 

p21 expression, had elevated quiescence levels across numerous tissues (Figure 2e, Supplementary 139 

Figures 2e-f), although only 8 out of 139 quiescence genes are directly transcriptionally regulated by 140 

p5354. Nevertheless, p53 proficiency appears to be a non-obligatory dependency of quiescence, 141 

which is also observed to arise in p53 mutant scenarios in 21% of cases. p53 has also been shown to 142 

play a role in preventing the occurrence of larger structural events and polyploidy55-57, potentially 143 

explaining the lower quiescence levels we observed in tumours that had undergone whole genome 144 

duplication (Figure 2f).  145 

The genomic background of cancer cell quiescence 146 

Cancer evolution is often driven by a variety of genomic events, ranging from single base 147 

substitutions to larger scale copy number variation and rearrangements of genomic segments. It is 148 

reasonable to expect that certain mutations accumulated by the cancer cells might enable a more 149 

proliferative phenotype, impairing the ability of cells to enter quiescence, or – on the contrary – 150 
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might favour quiescence as a temporary adaptive mechanism to extreme levels of stress. Having 151 

obtained quiescence estimates for primary tumour samples, we set out to identify potential genomic 152 

triggers or constraints that may shape proliferation-quiescence decisions in cancer. We identified 285 153 

cancer driver genes that were preferentially altered (via mutations or copy number alterations) either 154 

in slow cycling or fast proliferating tumours (Figure 3a). Reassuringly, this list included genes 155 

previously implicated in driving cellular quiescence-proliferation decisions such as TP53 and 156 

MYC24,27. An additional 10 cancer genes showed signals of positive selection in the context of high 157 

quiescence/proliferation (Supplementary Table 3). We also investigated associations with mutagenic 158 

footprints of carcinogens (termed “mutational signatures”), which can be identified as trinucleotide 159 

substitution patterns in the genome58,59. 15 mutational signatures were linked with quiescence either 160 

within individual cancer studies or pan-cancer (Supplementary Figure 2g).  161 

Following the initial prioritisation of putative genomic constraints of quiescence, we employed 162 

machine learning to identify those events that could best distinguish slow cycling tumours with 163 

higher abundance of quiescent cells from fast proliferating ones, while accounting for tissue effects. 164 

An ensemble elastic net selection approach similar to the one described by Pich et al60  was applied 165 

for this purpose (Figure 3b, Methods). Our pan-cancer model identified tissue type to be a major 166 

determinant of quiescence levels (Supplementary Figure 3a). It also uncovered a reduced set of 60 167 

genomic events linked with proliferation/quiescence switches, including SNVs and copy number 168 

losses in 17 cancer genes, as well as amplifications of 13 cancer genes (Figure 3c). These events 169 

could then be successfully employed to predict quiescence in a separate test dataset, thus internally 170 

validating our model (Supplementary Figure 3b). Thus, while these events are not necessarily 171 

causative, the link is strong enough to be identifying quiescent states from genomic data alone. Such 172 

events may also pinpoint cellular vulnerabilities that could be exploited therapeutically. 173 

Overall, the genomic dependencies of quiescence mainly comprised genes involved in cell cycle 174 

pathways, p53 regulation and ubiquitination (most likely of cell cycle targets), TGF-b signalling 175 

mediators and RUNX2/3 regulation which have previously been shown to play a role in controlling 176 

proliferation and cell cycle entry61 (Supplementary Figure 3c). Invariably, this analysis has captured 177 

several events that are well known to promote cellular proliferation in cancer: this is expected and 178 

confirms the validity of our model. It was reassuring that a functional TP53, lack of MYC 179 

amplification and lower mutation rates (Figure 3c) were amongst the top ranked characteristics of 180 

highly quiescent tumours, which also displayed less aneuploidy. However, our analysis has also 181 

uncovered novel dependencies of quiescence-proliferation decisions that have not been reported 182 

previously, such as CEP89 and LMNA amplifications observed in fast cycling tumours, or ZMYM2 183 
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deletions prevalent in samples with high levels of quiescence. ZMYM2 has recently been described 184 

as a novel binding partner of B-MYB and has been shown to be important in facilitating the G1/S 185 

cell cycle transition62. p16 (CDKN2A) deletions, one of the frequent early events during cancer 186 

evolution63,64, were enriched in quiescent tumours. RB1 deletions and amplifications were both 187 

associated with a reduction in tumour cell quiescence, which might reflect the dual role of RB1 in 188 

regulating proliferation and apoptosis65.  189 

Our model also calls to attention to the broader mutational processes associated with this cellular 190 

state. Such processes showed fairly weak and heterogeneous correlations with quiescence within 191 

individual cancer tissues (Supplementary Figure 2g), but their contribution becomes substantially 192 

clearer pan-cancer once other genomic sources are accounted for. In particular, we identified an 193 

association between quiescence and mutagenesis induced by the AID/APOBEC family of cytosine 194 

deaminases as denoted by signature SBS258 (Figure 3c). As highlighted by Mas-Ponte and Supek66, 195 

APOBEC/AID driven mutations tend to be directed towards early-replicating, gene-rich regions of 196 

the genome, inducing deleterious events on several genes including ZMYM2, which our pan-cancer 197 

model has linked with higher quiescence.  198 

In turn, defective DNA mismatch repair, as evidenced by signatures SBS44, SBS20, SBS15, SBS14 199 

and SBS658, was prevalent in fast cycling tumours (Figure 3c). Mismatch repair deficiencies lead to 200 

hypermutation in a phenomenon termed “microsatellite instability” (MSI), which has been linked 201 

with increased immune evasion67. Cancers particularly prone to MSI include colon, stomach and 202 

endometrial carcinomas68, where this state was indeed linked with lower quiescence (Figure 3d). 203 

Furthermore, quiescent tumours were depleted of alterations across all DNA damage repair pathways 204 

(Figure 3e).  205 

Our measurements of quiescence also reflected expected cycling patterns across 27 MCF7 strains69: 206 

cell lines with longer doubling times exhibited higher quiescence (Figure 3f). This coincided with a 207 

depletion of PTEN mutations, a dependency highlighted by the pan-cancer model.  208 

When checking for dependencies in individual cancer tissues, 27 out of the 28 genes identified by 209 

the model were significantly associated with quiescence/proliferation decisions in at least one tissue, 210 

most prominently in breast, lung and liver cancers which also represent the largest studies within 211 

TCGA (Figure 3g, top panel). Most of these genomic insults were linked with a decrease in 212 

quiescence. In external validation datasets these associations, including deletions in PTEN and 213 

LRP1B or amplifications of MYC, CEP89 or STAG1, featured most prominently in the largest cohort 214 

of breast cancer samples (Figure 3g, bottom panel). These results highlight the fact that although a 215 
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pan-cancer approach is suited to capture genomic events that are universally associated with 216 

quiescence, certain genetic alterations may facilitate a higher or lower propensity of quiescence in a 217 

single tissue only.  218 

Indeed, when building a tissue-specific breast cancer model of quiescence using a combined 219 

ANOVA and random forest classification approach (Supplementary Figure 4a), we not only 220 

recovered the associations with the TP53, MYC, KLF6, LMNA, ETV6 and RAD21 events already 221 

seen in the pan-cancer model (Supplementary Figure 4b), but identified additional events which 222 

validated in the METABRIC cohort and were also seen in several other cancers, e.g. bladder, lung 223 

and lower grade glioma (Supplementary Figure 4c). Notably, the APOBEC mutational signature 224 

SBS2 was the strongest genomic signal linked with quiescence in breast cancer (Supplementary 225 

Figure 4b,d) and was most prevalent in Her2+ tumours, although the Luminal A subtype showed the 226 

highest levels of quiescence overall, as expected given its well-known lower proliferative capacity70 227 

(Supplementary Figure 4e,f). 228 

Validation of CEP89 as a modulator of proliferation/quiescence capacity 229 

To gain more insight into the underlying biology of tumour cell quiescence, we sought to 230 

experimentally validate associations highlighted by the pan-cancer model. We focused on the impact 231 

of CEP89 activity on quiescence-proliferation decisions due to the high ranking of this putative 232 

oncogene in the model, the relatively unexplored links between CEP89 and cell cycle control, as 233 

well as its negative(?) association with quiescence across a variety of cancer cell lines 234 

(Supplementary Figure 5a-c). The function of CEP89 is not well characterised, however, the encoded 235 

protein has been proposed to function as a centrosomal-associated protein71,72. Centrosomes function 236 

as major microtubule-organising centres in cells, playing a key role in mitotic spindle assembly73 237 

and the mitotic entry checkpoint74. Moreover, centrosomes act as sites of ubiquitin-mediated 238 

proteolysis of cell cycle targets75, and members of several growth signalling pathways, such as Wnt 239 

and NF-kB, localise at these structures76,77. Several genetic interactions have also been reported 240 

between CEP89 and key cell cycle proteins, including cyclin D278 (Figure 4a).  241 

Our model linked CEP89 amplification with fast cycling tumours (Figure 3c). Centrosome 242 

amplification is a common feature of tumours with high proliferation rates and high genomic 243 

instability79, and overexpression of centrosomal proteins can alter centriole structure80,81. Indeed, 244 

CEP89 amplified tumours presented elevated expression of a previously reported centrosome 245 

amplification signature (CA20)79 (Figure 4b), which was strongly anticorrelated with quiescence 246 
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levels (Figure 4c). Furthermore, CEP89 expression was prognostic across multiple cancer tissues 247 

(Figure 4d) and linked with toxicity of several cancer compounds in cell line models (Supplementary 248 

Figure 5d). 249 

We validated this target in the lung adenocarcinoma cell line NCI-H1299 showing high levels of 250 

CEP89 amplification. Cep89 depletion via siRNA knockdown caused a consistent decrease in cell 251 

number, in the absence of any detectable cell death, and an increase in the fraction of quiescent cells 252 

as measured by PRb and EdU assays (Figure 4e-f). Thus, we propose CEP89 as a novel cell 253 

proliferation regulator that may be exploited in certain scenarios to control tumour growth. 254 

Characterisation of individual quiescence programmes 255 

While we had previously examined a generic quiescence programme, cancer cells can enter this state 256 

due to different stimuli17 and this may inform its aetiology and manifestation. To explore this, we re-257 

scored tumours based on gene expression programmes specific to serum starvation, contact 258 

inhibition, MEK inhibition, CDK4/6 inhibition or spontaneously occurring quiescence as defined by 259 

Min and Spencer26 (see Methods). We observed a good correlation between the estimates 260 

representing individual quiescence programmes and the expression of genes associated with the 261 

corresponding form of quiescence in the literature (Figure 5a-e, Supplementary Figure 6). CDK4/6 262 

inhibition-induced quiescence levels were further validated using external RNA-seq datasets from 263 

cancer cell lines and xenograft mice sequenced before and after treatment with the CDK4/6 inhibitor 264 

Palbociclib82,83 (Figure 5f, Supplementary Table 4). Interestingly, we also observed significant 265 

differences in spontaneous quiescence scores before and after treatment. Indeed, p21 activity has 266 

been linked with the Palbociclib mechanism of action84,85, and this analysis suggests potential 267 

similarities between CDK4/6 inhibition and p21-dependent quiescence phenotypes.  268 

Having validated our framework for quantifying stimulus-specific quiescence programmes, we 269 

proceeded to estimate the dominant form of quiescence in different cancer types (Figure 5g). We 270 

found a range of quiescence aetiologies across most tissues, while a minority of cancers were 271 

dominated by a single form of quiescence, e.g. serum starvation in all quiescent pheochromocytomas 272 

and paragangliomas, contact inhibition in 88% of head and neck carcinomas and CDK4/6 inhibition 273 

in 80% of quiescent adrenocortical carcinomas. While we do not wish to claim that the state of cell 274 

cycle arrest will have necessarily been induced by the actual predicted stimulus (impossible in the 275 

case of CDK4/6 or MEK inhibition, as the analysed samples are all treatment-naïve), we suggest that 276 

the downstream signalling cascade may resemble that triggered by such stimuli, e.g. via CDK4/6 or 277 

MEK loss of function mutations. Amongst these states, spontaneous quiescence appeared most 278 
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strongly dependent on p53 functionality (Supplementary Table 5).  This points to common 279 

transcriptional features of drug-tolerant quiescent cells in different cancer settings that could be 280 

employed in designing ways to eradicate these cells in the future. 281 

Role of quiescence in driving therapeutic resistance in cancer uncovered from single cell data 282 

Overall, tumour cell quiescence appears to be beneficial for the long-term outcome of cancer patients 283 

(Figure 6a, Supplementary Figure 7a). Indeed, such slow cycling, indolent tumours would have 284 

higher chances of being eradicated earlier in the disease, which is consistent with reported worse 285 

prognosis of patients with higher tumour cell proliferation rates and less stable, more mutated 286 

genomes86. As expected, quiescence levels were increased in stage 1 tumours, although later stages 287 

also exhibited this phenotype occasionally (Supplementary Figure 7b). However, outcomes do vary 288 

depending on the quiescence subtype, with worse survival observed upon contact inhibition (Figure 289 

6b). The outcomes also vary by tissue, with lung, colon or esophageal carcinoma patients displaying 290 

significantly worse prognosis in the context of high tumour cell quiescence (Figure 6c).  291 

While quiescence may confer an overall survival advantage in most cancers, it can also provide a 292 

pool of cells that are capable of developing resistance to therapy10,87. Using our methodology, we 293 

indeed observed an increase in quiescence levels in cell lines following treatment with EGFR, BRAF 294 

and CDK4/6 inhibitors, as well as conventionally used chemotherapies such as 5-Fluorouracil (5-295 

FU) in multiple bulk RNA-seq datasets (Figure 6d).  296 

Furthermore, the recent widespread availability of single-cell transcriptomics offers the opportunity 297 

to investigate the impact of quiescence on such therapies with much greater granularity than is 298 

allowed by bulk data. Using our quiescence signature and single-cell data from RKO and SW480 299 

colon cancer cell lines treated with 5-FU88, we could observe quiescence-proliferation decisions 300 

following conventional chemotherapy treatment. Within the p53 proficient cell line RKO, the 301 

fraction of quiescent cells increased from 41% to 93% after treatment with a low dose (10 μM) of 5-302 

FU and persisted at higher doses (Figure 6e-f). In contrast, a comparable increase was not observed 303 

in TP53 mutant SW480 cells, further emphasizing the key role of p53 as a regulator of quiescence 304 

(Figure 6g-h). This implies that although TP53 mutations confer a more aggressive tumour 305 

phenotype, TP53 wild-type tumour cells are more likely to be capable of entering a quiescent 306 

“persistent” state associated with drug-resistance. SW480 cells showed higher apoptotic activity 307 

following treatment compared to RKO cells, particularly within actively cycling cells, further 308 

corroborating that cells capable of entering quiescence may be less vulnerable to this therapy 309 

(Supplementary Figure 7c-d).  310 
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Similarly, using single cell data from an EGFR mutant Non-Small Cell Lung Cancer (NSCLC) cell 311 

line treated with the EGFR inhibitor Erlotinib89, we predicted that 40% of cells were likely to exist 312 

in a quiescent state prior to treatment. EGFR inhibition led to a massive decrease in cell numbers 313 

immediately after treatment, mostly due to proliferating cells dying off (Supplementary Figures 7e-314 

f), while the proportion of quiescent cells increased to 96% at day 1, indicating an immediate 315 

selective advantage for such cells (Figure 6i-j). Interestingly, these cells appear to gradually start 316 

proliferating again in the following days during continuous treatment, with the percentage of 317 

proliferating cells approaching pre-treatment levels by day 11 (Figure 6j). The same trend captured 318 

by our signature could be observed upon KRAS and BRAF inhibition in different cell line models 319 

(Supplementary Figure 7g-j, Supplementary Table 4)10,89. Furthermore, during the first days of 320 

treatment the NSCLC cells that survived EGFR inhibition appeared to reside in a state most 321 

resembling that induced by serum starvation (Figures 6k-l). Both EGFR kinase inhibitors and serum 322 

starvation have been shown to trigger autophagy90, which may explain the convergence between this 323 

inhibitory trigger and the type of quiescence response. At day 11 most of the remaining quiescent 324 

cells appeared in a state similar to that preceding the treatment (Figure 6l). 325 

Thus, quiescence appears to explain resistance to broad acting chemotherapy agents as well as 326 

targeted molecular inhibitors of the Ras/MAPK signalling pathway, being either selected for, or 327 

induced immediately upon treatment, and gradually waning over time as cells start re-entering the 328 

cell cycle. Using massively multiplexed chemical transcriptomic data, we also analysed responses to 329 

188 small molecule inhibitors in cell lines at single-cell resolution91 (Supplementary Figure 8). We 330 

observed a large increase in quiescence following treatment with compounds targeting cell cycle 331 

regulation and tyrosine kinase signalling, consistent with our previous results, but also for 332 

compounds modulating epigenetic regulation, e.g. histone deacetylase inhibitors – thus highlighting 333 

the broad relevance of quiescence. 334 

Tumour cell quiescence signature for use in single-cell transcriptomics data 335 

Our ability to probe the nature of quiescent phenotypes in scRNA-seq data using a defined 336 

quiescence signature could aid the development of methods to selectively target quiescent drug-337 

resistant persister cells. However, a major challenge of scRNA-seq data analysis is the high 338 

percentage of gene dropout, which could impact our ability to evaluate quiescence using the full 139 339 

gene signature. The scRNA-seq datasets we analysed exhibited an average drop-out of 8.5 genes out 340 

of the full gene signature. While our scoring method remains robust to such levels of dropout 341 

(Supplementary Figure 1c-e), we also employed machine learning to reduce our initial list of 139 342 

markers of quiescence to a robust 35-gene signature, comprised mainly of RNA metabolism and 343 
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splicing-regulating factors, but also of genes involved in cell cycle progression, ageing and 344 

senescence, which could be applied to sparser datasets with larger levels of gene dropout (Methods, 345 

Figure 7a-b, Supplementary Table 6). The optimised signature of quiescence performed similarly to 346 

the initial broadly defined programme in distinguishing highly quiescent and fast cycling tumours 347 

(Figure 7c), showed an average dropout of only 0.5 genes across the scRNA-seq datasets used in this 348 

study (Figure 7d), was similarly prognostic (p=0.004) and showed comparable profiles of resistance 349 

to treatment (Figure 7e, Supplementary Figure 9). This minimal expression signature could be 350 

employed to track and further study emerging quiescence-induced resistance in a variety of 351 

therapeutic scenarios. 352 

DISCUSSION 353 

Despite its crucial role in cancer progression and resistance to therapies, tumour cell quiescence has 354 

remained poorly characterised due to the scarcity of suitable models and biomarkers for large-scale 355 

tracking in the tissue or blood. The lack of proliferative markers such as Ki67 or CDK229,92 does not 356 

uniquely distinguish quiescence from other cell cycle phases, e.g. G1 or S. Furthermore, these and 357 

other reliable markers of G0 arrest such as p27 or p13045 are best captured at protein level, which is 358 

much more sparsely measured, and expression does not accurately reflect their activity. This study 359 

overcame this limitation by employing genes active in different forms of quiescence whose patterns 360 

of expression are distinct from markers of a longer G1 phase, senescence or stemness. We have 361 

extensively validated our method and signature in single cell datasets and cancer cell lines, and have 362 

demonstrated that it can reliably and robustly capture signals of quiescence both in bulk tissue as 363 

well as in single cells. The versatility of this signature is evidenced by high classification accuracies 364 

across a variety of solid cancer datasets. More variable performance was observed when applied to 365 

hematopoietic stem cells as it was not designed to capture signals in this context (Supplementary 366 

Figure 1b). While we cannot exclude that the patterns captured may also occasionally reflect cell 367 

cycle arrest in G1 or G2, this broad signature would still capture phenotypes resulting from intrinsic 368 

or extrinsic cellular stress that reflect temporary tumour adaptation during the course of cancer 369 

evolution or upon treatment with drugs. Thus, studying such states is relevant for identifying 370 

vulnerabilities that could be exploited at different time points during the course of cancer treatment.  371 

We show that quiescence is pervasive across different solid cancers and generally associated with 372 

more stable, less mutated genomes with intact DNA damage repair pathways. We also find a link 373 

between APOBEC mutagenesis and higher levels of quiescence. We identify mutational events 374 

affecting a variety of genes such as PTEN, CEP89, CYLD, LMNA that appear unfavourable to cell 375 

cycle arrest, thus potentially implicating them in influencing quiescence-proliferation decisions. 376 
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Among these, we propose and validate CEP89 as a novel modulator of quiescence capacity in non-377 

small cell lung cancer. As such, CEP89 could be targeted to induce and actively maintain quiescence 378 

in a scenario where this is favourable, possibly in combination with other cancer therapies. 379 

Neoplastic events enriched in quiescent tumours, such as p16 or ZMYM2 deletions, could mark 380 

elevated genomic stress that renders cells more prone to cell cycle arrest. Such targets should be 381 

further validated and could be exploited to either counteract quiescence or induce it.  382 

These large-scale genomic associations with quiescence are only currently feasible in bulk datasets. 383 

However, bulk sequenced data has a major limitation in capturing an average signal across all cells 384 

within the tumour, which prevents individual cell state identification and counting. Our subsequent 385 

exploration of single cell datasets across 193 therapeutic scenarios complements this analysis and 386 

illustrates the power of applying our signature in single cells.  387 

Our signature of quiescence is prognostic and marks primary tumours with a lower proliferative 388 

capacity before treatment, but we also clearly demonstrate that it can be employed to track resistance 389 

to multiple cell cycle, kinase signalling and epigenetic targeting regimens, where it often appears as 390 

a short-lived phenotype. In this setting, vulnerabilities of quiescent cells could be exploited for 391 

combination therapies. Quiescent cells utilise several mechanisms to achieve drug resistance, 392 

including upregulation of stress-induced pathways such as anti-apoptotic BCL-2 signalling93, anti-393 

ROS programmes26 or immune evasion13. Further studies are needed to elucidate which of these 394 

mechanisms are specifically employed on a case-by-case basis. Moreover, a key open question 395 

remains: does quiescence drive resistance in a Darwinian fashion, as a pre-existing population that 396 

is selected for upon drug treatment, or is it instead an acquired phenotype? Our single cell analyses 397 

cannot exclude either scenario, but the optimised signature we propose for single cell data makes it 398 

tractable to a variety of further future studies in this area.  399 

Our findings contribute to the understanding of the aetiology and genetic context of quiescence in 400 

cancer. This is particularly relevant to identifying new anti-proliferative targets, but also for the 401 

detection and eradication of drug tolerant persister cells, which have been frequently, although not 402 

always, observed to be driven by slow cycling or entirely quiescent7,8. Importantly, the state of cancer 403 

quiescence that we have studied here is distinct from that of disseminated tumour cells causing 404 

clinical dormancy and cancer relapse, often after many years from the treatment of the primary 405 

tumour6,94. Here, we have focused on understanding how tumours make proliferation and quiescence 406 

decisions during the earlier stages of cancer development, within the treatment-naïve primary tumour 407 

and as an immediate response to anti-cancer therapies. However, since the dormancy of disseminated 408 

tumour cells is fundamentally enabled through a long but temporary cell cycle arrest, we believe our 409 
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findings of the fundamental processes linked with quiescence could in the future help inform a better 410 

characterisation of dormant tumour cells when combined with specific microenvironmental 411 

signatures that are critical for enabling that process.   412 

Overall, our study provides, for the first time, a pan-cancer view of cellular quiescence and its 413 

evolutionary constraints, underlying novel mutational dependencies which could be exploited in the 414 

clinic. We propose a quiescence signature which can be robustly measured in bulk tissue or single 415 

cells, and could inform therapeutic strategies or risk of relapse. This signature could be assessed in 416 

the clinic to track rapidly emerging resistance, e.g. through liquid biopsies or targeted gene panels. 417 

We hope these insights can be used as building blocks for future studies into the different regulators 418 

of quiescence, including epigenetics and microenvironmental interactions, as well as the mechanisms 419 

by which it enables therapeutic resistance both in solid and haematological malignancies.  420 

 421 

MATERIALS AND METHODS 422 

Selection of quiescence marker genes 423 

Generic quiescence markers: 424 

Differential expression analysis results comparing cycling immortalised, non-transformed human 425 

epithelial cells and cells in five different forms of quiescence (spontaneous quiescence, contact 426 

inhibition, serum starvation, CDK4/6 inhibition and MEK inhibition) were obtained from Min and 427 

Spencer26. A total of 195 genes were differentially expressed in all five forms of quiescence under 428 

an adjusted p-value cut-off of 0.05. This gene list, reflective of a generic quiescence phenotype, was 429 

subjected to the following refinement and filtering steps: (1) selection of genes with a unidirectional 430 

change of expression across all five forms of quiescence; (2) removal of genes involved in other cell 431 

cycle stages included in the “KEGG_CELL_CYCLE” gene list deposited at MSigDB; (3) removal 432 

of genes showing low standard deviation and low levels of expression within the TCGA dataset, or 433 

which showed low correlation with the pan-cancer expression of the transcriptional targets of the 434 

DREAM complex, the main effector of quiescence, in TCGA. The resulting 139-gene signature is 435 

presented in Supplementary Table 1. 436 

Quiescence subtype-specific markers: 437 

Gene lists representing spontaneous quiescence, contact inhibition, serum starvation, CDK4/6 438 

inhibition and MEK inhibition programmes were obtained using genes differentially expressed in 439 
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each individual quiescence form using an adjusted p-value cutoff of 0.05. The gene lists were 440 

subjected to filtering steps 2 and 3 described above. Following the refinement steps, 10 upregulated 441 

and 10 downregulated genes with highest log2 fold changes were selected for each quiescence type. 442 

Quantification of tumour cell quiescence 443 

The GSVA R package was used to implement the combined z-score35, ssGSEA36 and GSVA37 gene 444 

set enrichment methods. For the above three methods a separate score was obtained for genes 445 

upregulated in quiescence and genes downregulated in quiescence, following which a final 446 

quiescence score was obtained by subtracting the two scores. The singscore single-sample gene 447 

signature scoring method38 was implemented using the singscore R package. In addition to these, we 448 

also calculated a mean scaled quiescence score based on the refined list of genes upregulated and 449 

downregulated in quiescence, as well as a curated housekeeping genes from the 450 

“HSIAO_HOUSEKEEPING_GENES” list deposited at MSigDB, as follows: 451 

QS = 	
1
n∑𝐺! −	

1
n∑𝐺"

1
n∑𝐺#

 452 

QS = mean scale quiescence score 453 

GU = expression of genes upregulated in quiescence 454 

GD = expression of genes downregulated in quiescence 455 

GH = expression of housekeeping genes 456 

n = number of genes in each gene set 457 

Quiescence scores for the TCGA cohort were derived from expression data scaled by tumour purity 458 

estimates. The pan-cancer TCGA samples were also classified into “high” or “low” quiescence 459 

groups based on k-means clustering (k=2) on the expression data of 139 quiescence biomarker genes, 460 

following the removal of tissue-specific expression differences using the ComBat function from the 461 

sva R package95. 462 

Measuring the duration of quiescence 463 

We employed the GSE124109 dataset from Fujimaki et al46 where rat embryonic fibroblasts were 464 

transcriptomically profiled as they moved from short to long-term quiescence in the absence of 465 
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growth signals. The derived quiescence scores using our combined z-score methodology increased 466 

from short to longer-term quiescence. 467 

Validation of quiescence scoring methodologies 468 

Single-cell RNA-sequencing validation datasets: 469 

Datasets were obtained from the ArrayExpress and Gene Expression Omnibus (GEO) databases 470 

though the following GEO Series accession numbers: GSE83142, GSE75367, GSE137912, 471 

GSE139013, GSE90742 and E-MTAB-4547. Quality control analysis was standardised using the 472 

SingleCellExperiment96 and scater97 R packages. Normalisation was performed using the scran98 R 473 

package.  474 

Bulk RNA-sequencing validation datasets:  475 

Datasets were obtained from the GEO database through the following GEO Series accession 476 

numbers: GSE93391, GSE114012, GSE131594, GSE152699, GSE124854, GSE135215, GSE99116 477 

and GSE124109. GSE114012 count data were normalised to TPM values using the GeoTcgaData R 478 

package. All normalised datasets were log-transformed before further analysis.  479 

The accuracy with which the quiescence scoring methods could separate proliferating and quiescent 480 

samples within the validation datasets was determined by calculating the area under the curve of the 481 

receiver operating characteristic (ROC) curves, using the plotROC R package.  482 

Experimental validation in lung adenocarcinoma cell lines  483 

The average fraction of cancer cells spontaneously entering quiescence was estimated for nine lung 484 

adenocarcinoma cell lines (NCIH460, A549, NCIH1666, NCIH1944, NCIH1563, NCIH1299, 485 

NCIH1650, H358, L23) using EdU and phospho-Rb staining proliferation assays.  486 

Cell lines were obtained from ATCC or Sigma and regularly checked for mycoplasma. A549 and 487 

NCIH460 were cultured in DMEM (Gibco). NCIH358, NCIH1299 and NCIH1563 were maintained 488 

in RPMI-1640 (Gibco) supplemented with 5mM sodium pyruvate and 0.5% glucose. NCIH1944, 489 

NCIH1666, NCIH1650 and L23 were grown in RPMI-1640 ATCC formulation (Gibco). A427 were 490 

cultured in EMEM (ATCC). A549, NCIH460, H358, NCIH1299, NCIH1563, A427 were 491 

supplemented with 10% heat inactivated FBS. NCIH1666 with 5% heat-inactivated FBS and all 492 

other cell lines with 10% non-heat inactivated FBS. All cell lines had penicillin-streptomycin (Gibco) 493 

added to 1%. Cells were maintained at 37°C and 5% CO2. To calculate the quiescent fraction, A549 494 
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and NCIH460 cells were plated at a density of 500 cells/well, and all other cell lines at a density of 495 

1000/well, in 384well CellCarrier Ultra plates (PerkinElmer) in the relevant media. 24h later, 5 μM 496 

EdU was added and cells were incubated for a further 24h before fixing in a final concentration of 497 

4% formaldehyde (15 min, RT), permeabilization with PBS/0.5% Triton X-100 (15 min, RT) and 498 

blocking with 2% BSA in PBS (60 min, RT). The EdU signal was detected using Click-iT chemistry, 499 

according to the manufacturer’s protocol (ThermoFisher). Cells were also labelled for phospho-500 

Ser807/811 Rb (PRb) using Rabbit mAb 8516 (CST) at 1:2000 in blocking solution, overnight at 501 

4°C. Unbound primary antibody was washed three times in PBS and secondary Alexa-conjugated 502 

antibodies were used to detect the signal (ThermoFisher, 1:1000, 1h at RT). Finally nuclei were 503 

labelled with Hoechst 33258 (1 μg/ml, 15 min RT) before imaging on a high-content widefield 504 

Operetta microscope, 20x N.A. 0.8. Automated image analysis (Harmony, PerkinElmer) was used 505 

to segment and quantify nuclear signals in imaged cells. Quiescent cells were defined by the absence 506 

of EdU or PRb staining, determined by quantification of their nuclear expression (Figure 1e-f). 507 

The quiescence scores for cancer cell lines were calculated using corresponding log-transformed 508 

RPKM normalised bulk RNA-seq data from the Cancer Cell Line Encyclopedia (CCLE) database99. 509 

CEP89 was depleted by ON-Target siRNA Pool from Horizon. NCI-H1299 cells were reverse 510 

transfected in 384 well plates with 20nM of Non-targeting control (NTC) or CEP89-targeting siRNA 511 

using Lipofectamine RNAiMax (ThermoFisher), according to the manufacturer’s instructions. Cells 512 

were left for 24h, before 5 μM EdU was added for the final 24h and then cells were processed as 513 

above to determine the quiescent fraction. To determine the level of Cep89 depletion by western 514 

blot, cells were reverse transfected with siRNA in 24 well plates. 48h after transfection, cells were 515 

lysed directly in 1x SDS sample buffer with 1mM DTT (ThermoFisher). Samples were separated on 516 

pre-cast 4-20% Tris-Glycine gels, transferred to PVDF using the iBlot2 system and membranes 517 

blocked in blocking buffer (5% milk in TBS) for 1h at RT. The membrane was then cut and the upper 518 

half was incubated in 1:1000 Cep89 antibody (Sigma, HPA040056), the bottom half in B-actin 519 

antibody 1:2000 (CST; 3700S) diluted in blocking buffer overnight at 4’C. Membranes were washed 520 

three times in TBS-0.05% TritonX-100 before being incubated in secondary anti-rabbit (Cep89) or 521 

anti-mouse (B-actin) HRP conjugated antibodies (CST 7074P2 and CST 7076P2, respectively) 522 

diluted 1:2000 in blocking buffer for 1h at RT. Membranes were washed three times again and signal 523 

detected using Clarity ECL solution (BioRad) and scanned on an Amersham ImageQuant 800 524 

analyser.   525 

 526 
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Multi-omics discovery cohort 527 

FPKM normalised RNA-sequencing expression data, copy number variation gene-level data, RPPA 528 

levels for p27 as well as mutation annotation files aligned against the GRCh38 human reference 529 

genome from the Mutect2 pipeline were downloaded using the TCGABiolinks R package 100 for 530 

9,712 TCGA primary tumour samples across 31 solid cancer types. Haematological malignancies 531 

were excluded as the quiescence markers were derived in epithelial cells and might not be equally 532 

suited to capture this phenotype in blood. For patients with multiple samples available, one RNA-533 

seq barcode entry was selected for each individual patient resulting in 9,631 total entries. All 534 

expression data were log-transformed for downstream analysis. During quiescence score calculation, 535 

expression data for the primary tumour samples was scaled according to tumour purity estimates 536 

reported by Hoadley et al101 to account for potential confounding quiescence signals coming from 537 

non-tumour cells in the microenvironment. Samples with purity estimates lower than 30% were 538 

removed, leaving 8,005 samples for downstream analysis.  539 

The mutation rates of all TCGA primary tumour samples were determined by log-transforming the 540 

total number of mutations in each sample divided by the length of the exome capture (38Mb).   541 

TP53 functional status was assessed based on somatic mutation and copy number alterations as 542 

described in Zhang et al102. TP53 mutation and copy number for the TCGA tumours were 543 

downloaded from cBioPortal (http://www.cbioportal.org). Tumours with TP53 oncogenic mutations 544 

(annotated by OncoKB) and copy-number alterations (GISTIC score ≤ -1) were assigned as TP53 545 

mutant and CNV loss. Tumours without these TP53 alterations were assigned as TP53 wild type. 546 

The effects of the TP53 mutation status on quiescence score were then determined with a linear 547 

model approach with the quiescence score as a dependent variable and mutational status as an 548 

independent variable. The P values were FDR-adjusted. 549 

APOBEC mutagenesis enriched samples were determined through pan-cancer clustering of 550 

mutational signature contributions as described in Wiecek et al103. The APOBEC mutagenesis cluster 551 

was defined as the cluster with highest mean SBS2 and SBS13 contribution. This was repeated 100 552 

times and only samples which appeared in the APOBEC cluster at least 50 times were counted as 553 

being APOBEC enriched. 554 

Aneuploidy scores and whole genome duplication events across TCGA samples were obtained from 555 

Taylor et al104. Microsatellite instability status for uterine corpus endometrial carcinoma, as well as 556 

stomach and colon adenocarcinoma samples were obtained from Cortes-Ciriano et al68. Telomerase 557 
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enzymatic activity “EXTEND” scores were obtained from Noureen et al49. Expression-based cancer 558 

cell stemness indices were obtained from Malta et al50. Centrosome amplification transcriptomic 559 

signature (CA20) scores were obtained from Almeida et al79. 560 

PHATE dimensionality reduction 561 

The phateR R package105 was used to perform the dimensionality reduction with a constant seed for 562 

reproducibility. The ComBat function from the sva R package106 was used to remove tissue-specific 563 

expression patterns from the TCGA RNA-seq data. 564 

Cancer stem cell division estimates 565 

The mean stem cell division estimates for different cancer types used in this study were obtained 566 

from Tomasetti and Vogelstein48. 567 

Positive selection analysis 568 

Genes positively selected specifically in samples clustered into low or high quiescence groups were 569 

identified based on dN/dS analysis using the dNdScv R package107, run with default parameters. 570 

Genes showing signals of positive selection in either the highly quiescent or fast proliferating 571 

samples which encoded olfactory receptors were discarded from downstream analysis. 572 

Mutational signature estimation 573 

Mutational signature contributions were inferred as described in Wiecek et al103. 574 

Machine learning of quiescence-linked features via ensemble elastic net regression models 575 

The COSMIC database was used to source a list of 723 known drivers of tumorigenesis (Tiers 1+2). 576 

285 oncogenes and tumour suppressors from a curated list showed a significant enrichment or 577 

depletion of mutations or copy number variants in quiescent samples either pan-cancer or within 578 

individual TCGA studies.  579 

To classify highly quiescent from fast proliferating tumours, the 286 genes were used as input 580 

features for an ensemble elastic net regression model along the tumour mutational rate, whole-581 

genome doubling estimates, ploidy, aneuploidy scores, 10 positively selected genes and 15 582 

mutational signatures, which showed a significant correlation with quiescence scores either pan-583 
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cancer or within individual TCGA studies. The caret R package was used to build an elastic net 584 

regression model 1000 times on the training dataset of 3,753 TCGA primary tumour samples (80% 585 

of the total dataset). Only samples with at least 50 mutations were used in the model, for which 586 

mutational signatures could be reliably estimated. For each of the 1000 iterations, we randomly 587 

selected 90% of the samples from the training dataset to build the model. Only features which were 588 

included in all 1000 model iterations were selected for further analysis. To test the performance of 589 

our approach, a linear regression model was built using the reduced list of genomic features and their 590 

corresponding coefficients averaged across the 1000 elastic net regression model iterations. When 591 

applying the resulting linear regression model on the internal validation dataset of 936 samples, we 592 

found a strong correlation between the observed and predicted quiescence scores (R = 0.73, p < 2.2e-593 

16). 594 

SHAP values for the linear regression model used to predict quiescence scores were obtained using 595 

the fastshap R package. 596 

Gene enrichment and network analysis  597 

Gene set enrichment analysis was carried out using the ReactomePA R package, as well as 598 

GeneMania108 and ConsensusPathDB109. Interactions between CEP89 and other cell cycle 599 

components were inferred using the list of cell cycle genes provided by cBioPortal and GeneMania 600 

to reconstruct the expanded network with direct interactors (STAG1, CCND2, STAT3). Networks 601 

were visualised using Cytoscape110. 602 

Gene lists 603 

Genes associated with the G1 phase of the cell cycle were obtained from the curated 604 

“REACTOME_G1_PHASE “ list deposited at MSigDB.  605 

Genes associated with apoptosis were obtained from the curated “HALLMARK_APOPTOSIS” list 606 

deposited at MSigDB. 607 

Genes associated with the senescence-associated secretory phenotype were obtained from Basisty et 608 

al53. Lists of genes making up the various DNA damage repair pathways were derived from Pearl et 609 

al111.  610 

Genes associated with contact inhibition were obtained from the curated “contact inhibition” gene 611 

ontology term. Genes associated with serum starvation were obtained from the curated 612 
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“REACTOME_CELLULAR_RESPONSE_TO_STARVATION” list deposited at MSigDB. MEK 613 

inhibition was assessed based on the activity of the MAPK pathway as determined using an 614 

expression signature (MPAS) consisting of 10 downstream MAPK transcripts112. 615 

Validation of the genomic features of quiescence 616 

For elastic net model feature validation, RNA-seq data was downloaded for six cancer studies from 617 

cBioPortal113, along with patient-matched whole-genome, whole-exome and targeted sequencing 618 

data. The 6 datasets used comprise breast cancer (SMC114 and METABRIC115), paediatric Wilms’ 619 

tumor (TARGET116), bladder cancer, prostate adenocarcinoma and sarcoma (MSKCC117-119) studies. 620 

The data were processed and analysed in the same manner as the TCGA data. RNA-seq data for 27 621 

MCF7 cell line strains, alongside cell line growth rates and targeted mutational sequencing data were 622 

obtained from Ben-David et al69. 623 

Genomic dependency modelling in breast cancer 624 

An ANOVA-based feature importance classification was used and identified 30 genomic features 625 

most discriminative of samples with lower and higher than average quiescence scores. A random 626 

forest model was then built using the identified features and correctly classified samples according 627 

to their quiescence state with a mean accuracy of 74% across five randomly sampled test datasets 628 

from the cohort.  629 

Survival analysis  630 

Multivariate Cox Proportional Hazards analysis was carried out using the coxph function from the 631 

survival R package. The optimal quiescence score cut-off value of 2.95 was determined using the 632 

surv_cutpoint function. 633 

Treatment response scRNA-seq and bulk RNA-seq data 634 

Datasets have been obtained from the GEO database through the following GEO Series accession 635 

numbers: GSE134836, GSE134838, GSE134839, GSE137912, GSE149224, GSE124854, 636 

GSE135215, GSE99116, GSE152699, GSE178839 and GSE139944. The umap R package was used 637 

for dimensionality reduction with constant seed for reproducibility.  638 

 639 
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Quiescence subtype determination 640 

TCGA cohort studies: 641 

Samples with evidence of quiescence characterised by a generic quiescence score > 0 were further 642 

subclassified based on the most likely form of quiescence exhibited, among CDK4/6 inhibition, 643 

contact inhibition, MEK inhibition, spontaneous quiescence or serum starvation, using subtype-644 

specific expression signatures. We opted for a conservative approach and classed each quiescent 645 

sample into a specific quiescence subtype if the quiescence score for the corresponding programme 646 

was higher than one standard deviation of the distribution across the TCGA cohort, and if the score 647 

was significantly higher than for the remaining programmes when assessed using a Student’s t test. 648 

Samples which could not be classified into any of the five quiescence states characterised in this 649 

study were classified as “uncertain”.  650 

Single-cell RNA seq treatment response datasets: 651 

The quiescence subtype of individual single cells was inferred by mapping such individual cells onto 652 

the reference dataset of MCF10A cells reflecting different forms of quiescence obtained from Min 653 

and Spencer26. The ComBat R package was used to remove the study batch effect between the 654 

expression data to be classified and the reference bulk RNA-seq data. PCA dimensionality reduction 655 

analysis was then used on the combined datasets using the prcomp R function. For each patient 656 

sample or single-cell expression data entry, a k-nearest neighbour algorithm classification was 657 

performed using the knn function from the class R package. During the classification the three nearest 658 

reference bulk RNA-seq data points were considered, with two nearest neighbours with identical 659 

class needed for classification.  660 

Optimisation of the quiescence signature 661 

We investigated if a subset of the 139 quiescence-related genes could act as a more reliable marker 662 

of quiescence that would bypass dropout issues in single cell data. This was performed in three steps:  663 

(1) Assessment of individual importance as quiescence marker for a given gene  664 

We collected three high confidence single cell expression datasets separating quiescent from 665 

proliferating cells. A random forest model was trained on each dataset separately to predict the 666 

quiescence state of a given cell based on the expression levels of the 139 genes. The Gini indices 667 

corresponding to each gene in the model were normalised to a range of values between 0 and 1, 668 

which would reflect how important an individual gene was for determining quiescence state 669 
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relative to the other 138 genes. The procedure was repeated 1000 times for each of the three 670 

datasets, and the average Gini coefficients across iterations were stored. 671 

(2) Prioritisation of gene subsets based on cumulative importance in the model 672 

Genes were placed in the candidate subset if their importance metric was above a given threshold 673 

in at least one of the datasets. By gradually increasing the threshold from 0 to 1, different gene 674 

combinations were produced. 675 

(3) External validation of candidate subsets 676 

The gene combinations in (2) were tested for their ability to predict quiescence. For this, a 677 

separate validation dataset was utilized, which contained gene expression levels for the 139 genes 678 

in the 10 lung cancer cell lines previously employed for experimental validation, along with the 679 

quiescence state of the lines as inferred by PRb and EdU staining. For each gene subset, a 680 

combined z-score of quiescence was calculated from the expression levels as described 681 

previously. The correlations between this z-score and the two experimental measurements of 682 

quiescence were used to establish the ability of a gene combination to predict quiescence. Among 683 

the top performing subsets, a 35 gene signature with a mean correlation of 78% between predicted 684 

and measured quiescence levels in the test data (p=0.016) showed the highest correlation with 685 

PRb measurements capturing short-lived quiescence, the more common state observed in single 686 

cell treatment datasets. Therefore, this signature was deemed to achieve the best trade-off 687 

between gene numbers and signal capture. 688 

The optimised gene signature is provided in Supplementary Table 6. 689 

Statistical analysis 690 

Groups were compared using a two-sided Student’s t test, Wilcoxon rank-sum test or ANOVA, as 691 

appropriate. P-values were adjusted for multiple testing where appropriate using the Benjamini-692 

Hochberg method. Graphs were generated using the ggplot2 and ggpubr R packages. 693 

Data availability 694 

The results published here are in part based upon data generated by the TCGA Research Network: 695 

https://www.cancer.gov/tcga, METABRIC (https://ega-archive.org/studies/EGAS00000000083), 696 

MSK-IMPACT (https://www.mskcc.org/msk-impact), or deposited at cBioPortal 697 

(https://www.cbioportal.org/) and GEO (https://www.ncbi.nlm.nih.gov/geo/). All data comply with 698 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 23, 2022. ; https://doi.org/10.1101/2021.11.12.468410doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.12.468410
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

   
 

25 

ethical regulations, with approval and informed consent for collection and sharing already obtained 699 

by the relevant consortia. 700 

Code availability 701 

All code developed for the purpose of this study can be found at the following repository: 702 

https://github.com/secrierlab/CancerCellQuiescence  703 
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FIGURE LEGENDS 970 

Figure 1: Methodology for quantifying cancer cell quiescence. (a) Workflow for evaluating 971 

quiescence from RNA-seq data. 139 genes differentially expressed in multiple forms of quiescence 972 

were employed to score quiescence across cancer tissues. (b) Receiver operating characteristic 973 

(ROC) curves illustrating the performance of the z-score methodology on separating actively 974 

proliferating and quiescent cells in seven single-cell (continuous curves) and bulk RNA-seq (dotted 975 

curves) datasets. AUC = area under the curve. (c) Compared classification accuracies of the z-score 976 

approach and classic cell proliferation markers across the seven single-cell/bulk RNA-seq validation 977 

datasets. (d) Quiescence levels of embryonic fibroblast cells under serum starvation for various 978 

amounts of time. Replicates are depicted in the same colour. (e) Representative images of lung cancer 979 

cell lines immunostained and analysed to detect the quiescent fraction. Hoechst (labels all nuclei) is 980 

in blue, PRb in green and EdU in red in merged image. White dashed circles highlight quiescent cells 981 

that are negative for both PRb and EdU signals. Scale bar: 100 µm. (f) Graphs show single cell 982 

quantification of PRb and EdU intensities taken from images and used to define the cut-off to 983 

calculate the quiescent fraction (QF; green boxes). Images in (e) and graphs in (f) are taken from the 984 

A549 cell line. (g-h) Correlation between theoretical estimates of a quiescence or G1 state and the 985 

fraction of cells entering quiescence in nine lung adenocarcinoma cell lines, as assessed through (g) 986 

phospho-Rb assays and (h) EdU assays. Mean of n=3 is shown for the average percentage of 987 

quiescent cells. 988 

 989 

Figure 2: Pan-cancer evaluation of proliferative heterogeneity and linked tumour hallmarks. 990 

(a) PHATE plot illustrating the wide spectrum of proliferative to slow cycling/quiescent states across 991 

8,005 primary tumour samples from TCGA. Each sample is coloured according to the relative 992 

quiescence level. (b) Variation in tumour quiescence levels across different cancer tissues. (c) 993 

Correlation between mean quiescence scores and stem cell division estimates for various tissue types. 994 

(d) Correlating tumour quiescence scores with cancer cell stemness (Stemness Index), telomerase 995 

activity (EXTEND score), p21 activity (CDKN1A) and the expression of several commonly used 996 

proliferation markers. The Pearson correlation coefficient is displayed. RC – replication complex. 997 

(e) Consistently higher levels of quiescence are detected in samples with functional p53. (f) Lower 998 

quiescence scores are observed in tumours with one or two whole genome duplication events. 999 

Wilcoxon rank-sum test p-values are displayed in boxplots, *p<0.05; **p<0.01; ***p<0.001; 1000 

****p<0.0001. 1001 

 1002 
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Figure 3: Genomic landscape of proliferation/quiescence decisions in cancer. (a) Cancer drivers 1003 

with mutations or copy number alterations depleted pan-cancer in a quiescence context. Features 1004 

further selected by the pan-cancer model are highlighted. (b) Schematic of the ensemble elastic net 1005 

modelling employed to prioritise genomic changes associated with tumour quiescence. (c) Genomic 1006 

events significantly associated with quiescence, ranked according to their importance in the model 1007 

(highest to lowest). Each point depicts an individual tumour sample, coloured by the value of the 1008 

respective feature. For discrete variables purple indicates the presence of the feature and green its 1009 

absence. The Shapley values indicate the impact of individual feature values on the quiescence score 1010 

prediction. (d) Quiescence levels are significantly reduced in microsatellite unstable (MSI) samples 1011 

in stomach adenocarcinoma (STAD) and uterine corpus endometrial carcinoma (UCEC), with the 1012 

same trend (albeit not significant) shown in colon adenocarcinoma (COAD). Wilcoxon rank-sum 1013 

test *p<0.05; **p<0.01. (e) Genomic alterations are depleted across DNA repair pathways during 1014 

quiescence. Odds ratios of mutational load on pathway in quiescence are depicted, along with 1015 

confidence intervals. CS=chromosome segregation; p53=p53 pathway; UR=ubiquitylation response; 1016 

CPF=checkpoint factors; TM=telomere maintenance; CR=chromatin remodelling; TLS=translesion 1017 

synthesis; NHEJ=non-homologous end joining; NER=nucleotide excision repair; MMR=mismatch 1018 

repair; FA=Fanconi Anaemia; BER=base excision repair. (f) Quiescence is increased in cell lines 1019 

with slow doubling time across MCF7 strains, which also show lower prevalence of PTEN 1020 

mutations. (g) Tissue-specific changes in quiescence between samples with/without quiescence-1021 

associated deletions (blue), amplifications (red) and SNVs (brown) within the TCGA cohort (top) 1022 

and external validation datasets (bottom).  1023 

 1024 

Figure 4: CEP89 amplification is associated with lower tumour quiescence. (a) Network 1025 

illustrating CEP89 interactions with cell cycle genes (from GeneMania). The edge colour indicates 1026 

the interaction type, with green representing genetic interactions, orange representing predicted 1027 

interactions and purple indicating pathway interactions. The edge width illustrates the interaction 1028 

weight. (b) CA20 scores are significantly increased in TCGA primary tumours containing a CEP89 1029 

amplification. (c) Pan-cancer relationship between CA20 scores and tumour quiescence across the 1030 

TCGA cohort. (d) Cox proportional hazards analysis estimates of the log hazards ratio for the impact 1031 

of CEP89 expression on patient prognosis within individual cancer studies, after adjusting for tumour 1032 

stage. Patients with high expression of CEP89 show significantly worse prognosis within ACC, 1033 

LUSC, LIHC, KIRC and STAD, but significantly better prognosis within HNSC, PAAD and KIRP 1034 

studies. (e) Western blot showing depletion of Cep89 protein 48h after siRNA transfection of NCI-1035 

H1299 cells. Mock is lipofectamine only, NTC is Non-targeting control siRNA. B-actin is used as a 1036 
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loading control. (f) Graphs show that Cep89 depletion in NCI-H1299 cells leads to a reduction in 1037 

nuclear number and an increase in the fraction of quiescent cells, measured by an increase in the 1038 

percentage of EdU negative (24h EdU pulse) and Phospho-Ser 807/811 Rb negative cells. One-Way 1039 

ANOVA, *p<0.05, **p<0.01. Mean of n=3. 1040 

 1041 

Figure 5: Pan-cancer characterisation of individual quiescence programmes. (a-e) Comparison 1042 

of correlation coefficients between quiescence programme scores and (a) mean expression of CDK4 1043 

and CDK6, (b) mean expression of curated contact inhibition genes, (c) a transcriptional MAPK 1044 

Pathway Activity Score (MPAS), (d) mean expression of curated serum starvation genes, and (e) 1045 

CDKN1A expression, across TCGA cancers. The correlations expected to be strongest (either 1046 

negative or positive) are denoted by an asterisk. The generic quiescence score refers to scores 1047 

calculated using the original list of 139 genes differentially expressed across all 5 forms of 1048 

quiescence. (f) Comparison of quiescence programme scores measured in cancer cell lines before 1049 

(grey) and after (red) Palbociclib treatment across three validation studies. Datasets used for 1050 

validation are denoted by their corresponding GEO series accession number. (g) Predicted 1051 

quiescence type composition of samples estimated to be highly quiescent across individual cancer 1052 

types. The same colour legend as in (a) is applied. Gray bars represent the proportion of samples for 1053 

which the quiescence type could not be estimated. 1054 

 1055 

Figure 6: Impact of tumour cell quiescence on patient prognosis and treatment response. (a) 1056 

Disease-specific survival based on tumour quiescence for patients from TCGA within 15 years of 1057 

follow up. Patients with high levels of quiescence in primary tumours showed significantly better 1058 

prognosis than patients with low quiescence. (b-c) Hazard ratio ranges illustrating the impact of 1059 

different forms of quiescence (b) and different tissues (c) on patient prognosis, after taking into 1060 

account potential confounding factors. Values above 0 indicate significantly better prognosis in the 1061 

context of high tumour quiescence. (d) Change in quiescence scores inferred from bulk RNA-seq 1062 

across breast, pancreatic, colorectal and skin cancer cells in response to treatment with the CDK4/6 1063 

inhibitor Palbociclib, 5-FU or the BRAF inhibitor Vemurafenib. (e-f) UMAP plot illustrating the 1064 

response of the TP53-proficient RKO colorectal cancer cell line to various 5-FU doses and the 1065 

corresponding proportions of cells predicted to be quiescent/proliferating. Each dot is an individual 1066 

cell, coloured according to its quiescence level. (g-h) The same as previous, but for the TP53-1067 

deficient SW480 cell line. (i-j) UMAP plot illustrating the response of individual PC9 NSCLC cells 1068 

to the EGFR inhibitor Erlotinib across several time points and the corresponding proportion of cells 1069 

predicted to be quiescent/proliferating. (k) Principal component analysis illustrating the 1070 
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superimposition of scRNA-seq profiles (circles) of quiescent NSCLC cells before/after EGFR 1071 

inhibition onto the bulk RNA-seq reference data (triangles) for MCF10A cells occupying various 1072 

quiescence states. (l) The proportion of NSCLC cells in (k) predicted to occupy different quiescence 1073 

states across several time points. 1074 

 1075 

Figure 7: Optimisation of quiescence signature for use in scRNA-seq data. (a) Methodology for 1076 

refining the gene signature of quiescence: random forest classifiers are trained to distinguish 1077 

quiescent from cycling tumours on three high confidence datasets; Gini index thresholding is 1078 

optimised to prioritise a final list of 35 genes. (b) Gini index variation, correlation with 1079 

experimentally measured quiescence via EdU and PRb staining assays, and corresponding p-values 1080 

are plotted as the number of genes considered in the model is increased. The red dotted line indicates 1081 

the threshold chosen for the final solution of 35 genes. The black dotted line indicates the threshold 1082 

for p-value significance. (c) Additional external validation of the 35 gene signature acting as a 1083 

classifier of quiescent and proliferation cells in single cell and bulk datasets. (d) Dropout in single 1084 

cell data by gene signature. The percentage of genes out of the 35 (red) and 139 (grey) gene lists with 1085 

reported expression across the single-cell RNA-seq datasets analysed in this study. (e) Proportion of 1086 

cycling and quiescent cells estimated in single cell datasets of p53 wild type and mutant lines treated 1087 

with 5FU, as well as cells treated with EGFR inhibitors. Data as in Figure 7. 1088 

 1089 

 1090 

 1091 
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FIGURES 1093 

 1094 

Figure 1: Methodology for quantifying cancer cell quiescence  1095 
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Figure 2: Pan-cancer evaluation of proliferative heterogeneity and linked tumour hallmarks 1097 
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Figure 3: Genomic landscape of proliferation/quiescence decisions in cancer 1099 
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Figure 4: CEP89 amplification is associated with lower tumour quiescence 1101 
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Figure 5: Pan-cancer characterisation of individual quiescence programmes 1104 
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Figure 6: Impact of tumour cell quiescence on patient prognosis and treatment response  1106 
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Figure 7: Optimisation of quiescence signature for use in scRNA-seq data 1109 
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