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Abstract

The availability of proteomics datasets in the public domain, and in the PRIDE databasein
particular, has increased dramatically in recent years. This unprecedented large-scale
availability of data provides an opportunity for combined analyses of datasets to get
organism-wide protein abundance data in a consistent manner. We have reanalysed 24 public
proteomics datasets from healthy human individuals, to assess baseline protein abundance in
31 organs. We defined tissue as a distinct functional or structural region within an organ.
Overall, the aggregated dataset contains 67 healthy tissues, corresponding to 3,119 mass

spectrometry runs covering 498 samples, coming from 489 individuals.

We compared protein abundances between the different organs and studied the distribution of
proteins across organs. We also compared the results with data generated in analogous
studies. We also performed gene ontology and pathway enrichment analyses to identify
organ-specific enriched biological processes and pathways. As akey point, we have
integrated the protein abundance results into the resource Expression Atlas, where it can be
accessed and visualised either individually or together with gene expression data coming
from transcriptomics datasets. We believe thisis a good mechanism to make proteomics data

more accessible for life scientists.
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| ntroduction

High-throughput mass spectrometry (M S)-based proteomics approaches have matured and
generalised significantly, becoming an essential tool in biological research, sometimes
together with other “omics’ approaches such as genomics and transcriptomics. It is now
commonplace to make quantitative measurements of 2,000-3,000 proteinsin asingle LC-MS
run, and typically 6,000-7,000 proteins in workflows with fractionation. The most used
experimental approach is Data Dependent Acquisition (DDA) bottom-up proteomics. Among
existing DDA quantitative proteomics approaches, label-freeis very popular, although
|abelled-approaches such as metabolic-labelling (e.g., SILAC) and especialy techniques
based on the isotopic labelling of peptides (e.g., TMT) are growing in importance. In bottom-
up experiments, proteins are first digested into peptides using an enzyme (e.g., trypsin), and
typically several peptides are required per protein to give confidence in the measurement of
protein-level quantification across samples. Measured peptide intensity is correlated with
absolute protein abundance, but there can be differences depending on individual peptides
due to the considerable variation in the ionisation efficiency of these peptides. Different
peptides can aso be detected in different studies, giving rise to variability in protein
abundance. One further challenge in quantitative proteomics relates to the “ protein inference”
problem [1]. In brief, many peptide sequences cannot be uniquely mapped to a single protein
due to common conserved sequences present in different gene families (paralogs). During the
last decade technological advancesin MS have led to alarge number of studies that have
analysed protein abundances across various human tissues and organs [2-5]. These efforts are

complemented by the comprehensive characterisation of the human proteome performed
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within the Human Proteome Project (HPP) [6-8], although the HPP has been focused on the

identification of proteins, without performing any quantitative analysis.

In parallel with the technical developmentsin chromatography, MS and bioinformatics, the
proteomics community has evolved to largely support open data practices. In brief, this
means that datasets are released aongside publications, allowing other groups to check
findings or re-analyse data with different approaches to generate new findings. Therefore, in
recent years, the amount and variety of shared datasets in the public domain has grown
dramatically. This was driven by the establishment and maturation of reliable proteomics data
repositories, in tandem with policy recommendations by scientific journals and funding

agencies.

The PRIDE database [9], which is one of the founding members of the global

ProteomeX change consortium [10], is currently the largest resource worldwide for public
proteomics data deposition. As of October 2022, PRIDE hosts more than 29,500 datasets. Of
those, human datasets are by far the mgority, representing approximately 40% of all datasets.
Public datasets stored in PRIDE (or in other resources) present an opportunity to be
systematically reanalysed and integrated, in order to confirm the original results potentialy in
amore robust manner, obtain new insights, generate new hypotheses, and even be able to
answer biologically relevant questions orthogonal to those posed in the original studies. Such
integrative meta-analyses have already been successfully employed especialy in genomics
and transcriptomics [11-13]. Therefore, the large availability of public datasets has triggered

different types of datare-use activities, including “big data’ approaches (e.g. [14-16]) and the
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establishment of new data resources using re-analysed public datasets asthe basis[17-19]. In
this context of data re-use, the main interest of PRIDE is to disseminate and integrate
proteomics data into popular added-value bioinformatics resources at the European
Bioinformatics Institute (EMBL-EBI) such as Expression Atlas [20] (for quantitative
proteomics data), Ensembl [21] (proteogenomics) and UniProt [7] (protein sequences
information including post-translational modifications (PTMs)). The overall aim isto enable
life scientists (including those who are non-experts in proteomics) to have improved access to

proteomics-derived information. Expression Atlas (https://www.ebi.ac.uk/gxa/home) is an

added-value resource that enables easy access to integrated information about gene and
recently protein expression across species, tissues, cells, experimental conditions and
diseases. The Expression Atlas ‘bulk’ Atlas has two sections: baseline and differentia atlas.
Protein abundance results derived from the reanalysis of DDA public datasets of different
sources have started to be incorporated into Expression Atlas. The availability of such results
in Expression Atlas makes proteomics abundance data integrated with transcriptomics
information in the web interface. We have performed two DDA studies of this type so far.
First of all, we reported the reanalysis and integration into Expression Atlas of 11 public
guantitative datasets coming from cell lines and human tumour samples [22]. Additionally,
we have recently reported the reanalysis and integration of 23 datasets coming from mouse

and rat tissues in baseline conditions [23].

There are other public resources providing access to reanalysed M S-based quantitative
proteomics datasets. ProteomicsDB [24] provides access to human protein abundance datain

addition to other recent (multi-omic) studies carried out on model organisms. Many
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additional human datasets coming from human tissues have been made publicly available in
recent years. Within the HPP, it is important to highlight that ProteomeX change resources
PeptideAtlas [25] and MasslVE provide peptide and protein identifications derived from the
reanalysis of public human datasets, but their main focus is not quantitative data.
Additionally, antibody-based protein abundance information can be accessed via the Human
Protein Atlas (HPA) [4]. Here, we report the reanalysis and integration of 24 public human
label-free datasets, and the incorporation of the results into Expression Atlas as baseline

studies.

Experimental Procedures

Datasets

As of September 2020, 3,930 public M'S human proteomics datasets were publicly available
in PRIDE. We manually filtered these 3,930 human datasets to select suitable datasets for
downstream analyses by applying several selection criteria. These selection criteriafor the
datasets to be reanalysed were: i) experimental data from healthy tissuesin baseline
conditions coming from label-free studies where no PTM-enrichment had been performed,; ii)
experiments performed on Thermo Fisher Scientific instruments (LTQ Orbitrap, LTQ
Orbitrap Elite, LTQ Orbitrap Velos, LTQ Orbitrap XL ETD, LTQ-Orbitrap XL ETD,
Orbitrap Fusion and Q-Exactive), because they represent the larger proportion of the relevant
public datasets available, and we preferred to avoid the heterogeneity introduced by using
data coming from different MS vendors; iii) availability of detailed sample metadatain the

original publication, or after contacting the original submitters; and iv) our previous
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experience in the team working with some datasets, which were discarded because they were
not considered to be usable (data not shown). Asaresult 16 human datasets from PRIDE
(Table 1). Additionally, 8 datasets coming from human brain samples (also generated in
Thermo Fisher Scientific instruments) were downloaded from alarge Alzheimer’s Disease
(AD) dataset described in [26], which was available viathe AMP-AD Knowledge Portal

(https://adknowledgeportal.synapse.org/). Due to ethical related issues, the AD datasets from

the AMP-AD Knowledge Portal are available under a controlled access agreement (i.e., data
made available only to approved users of the data included in the AMP-AD Knowledge

Portal) and were downloaded after obtaining the required authorisation.

The sample and experimental metadata was manually curated from their respective
publications or by contacting the origina authors/submitters. M etadata was annotated using
Annotare [27] and stored using the Investigation Description Format (IDF) and Sample and
Data Relationship Format (SDRF) file formats, required for their integration in Expression
Atlas. The IDF includes an overview of the experimental design including the experimental
factors, protocols, publication information and contact information. The SDRF file includes
sample metadata and describes the relationship between various sample characteristics and

the datafiles included in the dataset.

In addition to the quantification of proteinsin healthy tissues representing baseline conditions
described in this study, we also analysed samples in the same datasets that were from non-
healthy/non-normal samples which were included in the same datasets (which are not

discussed in this manuscript, but the results are also available in Expression Atlas). The
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selected datasets are listed in Table 1, including the original dataset identifiers, tissues and
organs included, number of M S runs and number of samples. The 24 datasets sum up atotal

of 498 samples from 67 different tissues classified in 31 organs.

Proteomics raw data processing

Datasets were analysed separately, using the same software and search database.
Peptide/protein identification and protein quantification were performed using MaxQuant
[28, 29] (version 1.6.3.4), on a high-performance Linux computing cluster. The input
parameters for each dataset such as MS1 and M S2 tolerances, digestive enzymes, fixed and
variable modifications were set as described in their respective publications together with two
missed cleavage sites. PSM (Peptide Spectrum Match) and protein FDR (False Discovery
Rate) levels were set at 1%. Other MaxQuant parameter settings were left as default:
maximum number of modifications per peptide: 5, minimum peptide length: 7, maximum
peptide mass: 4,600 Da. For match between runs, the minimum match time window was set
to 0.7 seconds and the minimum retention time alignment window was set to 20 seconds. The
MaxQuant parameter files are available for download from Expression Atlas. The UniProt
human reference proteome release-2019_05 (including isoforms, 95,915 sequences) was used
as the target sequence database. The inbuilt MaxQuant contaminant database was used and
the decoy database were generated by MaxQuant at the time of the analysis (on-the-fly) by
reversing the input database sequences after the respective enzymatic cleavage. The datasets
were run in amultithreading mode with a maximum of 60 threads and 300 GB of RAM per

dataset.
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Post-processing

The results coming from MaxQuant for each dataset were further processed downstream to
remove potential contaminants, decoys and protein groups which had fewer than 2 PSMs.
The protein intensities were normalised using the Fraction of Total (FOT) method, wherein
each protein “iBAQ” intensity valueis scaled to the total amount of signal in agiven MS run

and transformed to parts per billion (ppb).

A iBAQi/
ppb_iBAQ; ST iBAQ, |* 1,000,000,000

The bioconductor package ‘mygene’ [30] was used to assign Ensembl gene
identifiers/annotations to the protein groups by mapping the ‘ mgority protein identifiers’
within each protein group. This step is required for integration into Expression Atlas, because
at present, all abundance values have to be in the same reference system to be integrated. The
protein groups, whose protein identifiers were mapped to multiple Ensembl gene IDs, were
not integrated into Expression Atlas, but are available in Supplementary Table 1. In the case
of a protein group containing isoforms from the same gene, these mapped to a single unique
Ensembl gene ID and were not filtered out. In cases where two or more protein groups
mapped to the same Ensembl gene ID, their median intensity values were considered. The
parent genes to which the different protein groups were mapped to are equivalent to

“canonical proteins’ in UniProt (https.//www.uniprot.org/help/canonical_and_isoforms) and

therefore the term protein abundance is used to describe the protein abundance of the

canonical protein throughout the manuscript.

10
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I ntegration into Expression Atlas

The calculated canonical protein abundances (mapped as genes), the validated SDRF files
and summary files detailing the quality of post-processing were integrated into Expression
Atlas (release 37, March 2021) as proteomics baseline experiments (E-PROT identifiers are

availablein Table 1).

Protein abundance comparison across datasets

Since datasets were analysed separately, the protein abundances, available in ppb values
within each dataset were converted into ranked bins for comparison of abundances across
datasets. The normalised protein abundances per M S run, as described above, were ranked
and grouped into 5 bins, wherein proteins with the lowest protein abundance values werein
bin 1 and those with the highest abundance values were in bin 5. Additionally, distinct tissue
regions or organs within a dataset were grouped into batches and were binned separately. In
this study, ‘tissue’ is defined as a distinct functional or structural region within an ‘organ’.
For example, corpus callosum, anterior temporal |obe, dorsolateral prefrontal cortex were
defined as tissues that are part of the brain (organ) and similarly left ventricle, aorta and

tricuspid valve are defined as tissuesin heart (organ).

During the rank-bin transformation, if a protein was not detected in any of the samples within
abatch, we did not assign it a bin value, but annotated it as an NA (corresponding to not
detected) value instead. However, if a protein was not detected in some samples of the batch
but had protein abundance values in other samples within the batch, we assigned the lowest

bin value 1 to those samples in that batch that were undetected. For example, in a dataset

11
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comprising tissue samples from brain, all samples from tissue regions such as corpus
callosum, were grouped into a batch and the ppb abundances were transformed into bins. If
any of the samples within a batch had no abundance values for a protein, they were marked as
NA. If some samples within the batch had missing abundance values, the missing abundance
values of those samples for that protein were assigned the bin value 1. Binned abundances of
those proteins that were detected in at least 50% of the samples in heart and brain datasets
were selected for PCA (Principal Component Analysis). To compare which normalisation
methods performed better at removing batch effects, the iBAQ protein abundances were also
normalised using the ComBat [31] and Limma [32] methods. PCA was performed in R using
the Stats package. A Pearson correlation coefficient for all samples was calculated on

pai rwise complete observations of bin transformed iBAQ vauesin R. Samples were

hierarchically clustered on columns and rows using Euclidean distances.

Comparison of theresultswith the protein abundance valuesfrom the Human Protein
Atlas and ProteomicsDB

Results from our analysis were compared with protein abundance data available at the HPA.
Abundance profiles of proteins in normal human tissues were downloaded from HPA version
21.0. Protein abundance with reliability score labelled as * Uncertain’ were not considered in
the comparison. For the purposes of easing the comparison and computing correlation, the
categorical protein abundance levels in data downloaded from the HPA were assigned
numerical values closely matching the protein abundance bins used in our analysis. Protein
abundance levels annotated as ‘Low’, ‘Medium’ and ‘High’ were assigned values 1, 2 and 3

respectively. The level annotated as ‘Not detected’ was assigned NA and those annotated as

12
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‘Ascending’, ‘Descending’ and ‘ Not representative’ were all assigned avalue of 1. For the
purpose of this comparison, we re-binned our protein abundance datainto just 3 categories:
bins 1, 2, and 3 representing low, medium and high abundances, respectively. The
‘randomised edit distance difference’ was calculated across all pairs of organsincluded in
this study and HPA. The ‘randomised edit distance difference’ is the difference between the
‘true edit distance’ and the ‘randomised edit distance’ of protein abundance bins.
Randomised edit distance difference = mean(random edit distance;., - true edit distance;.r).
The ‘true edit distance’ of a protein was computed as the absol ute difference between the
protein abundance bins of both pairs. The ‘randomised edit distance’ is calculated as the
mean of the absolute difference between bin value of pair 1 and randomised bin value of pair
2, after sampling it 10 times, ie., randomised edit distance = mean (3;1°[abs(binl —

random(bin2))]). This was done using the base R package.

Normalised protein intensities from ProteomicsDB [33] were queried for organs that werein
common in our study (31 organs). Values were obtained using ProteomicsDB Application
Programming Interface. For different tissue samples we aggregated the normalised intensities
using the median of their respective organs. The intensities were log2 normalised and

compared.

Comparison of label-free protein abundances with protein abundances generated using
aTMT approach
The protein abundances cal culated across various baseline human organg/tissues using the

TMT-labelling method were obtained from [3] (Supplementary file * NIHM S1624446-
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supplement-2’, sheet: * C protein normalized abundance’). Protein abundances of the
respective organs measured across different TMT channels and runs were aggregated using
the median and log2 transformed. Different tissue samples from oesophagus, heart, brain and

colon were aggregated into their respective organs. Pearson’s correlation was calculated in R.

Organ-specific expression profile analysis

To investigate the organ-specific protein-based abundance profile, we carried out a
modification of the classification scheme done by Uhlén et al. [4]. Briefly, each of the 13,070
canonical proteins that were mapped from the protein groups, was classified into one of three
categories based on the bin levelsin 31 organs: (1) “Organ-enriched”: one unique organ with
bin values 2-fold higher than the mean bin value across all organs; (2) “Group enriched”:
group of 2-7 organs with bin values 2-fold higher than the mean bin value across al organs;
and (3) “Mixed”: the remaining canonical proteins that are not part of the above two

categories.

Enriched gene ontology (GO) terms analysis was performed by means of the over-
representation test, combining the “Organ-enriched” and “ Group enriched” mapped gene lists
for each organ. The computational analysiswas carried out in the R environment with the
package clusterProfiler [34] version 3.16.1, using the function enrichGO() for the GO over-
representation test, using the parent gene list of al detected canonical proteins as the
background set. Setting the p-value cut-off to 0.05 and the g-value cut-off to 0.05.
Additionally, Reactome [35] pathway analysis was carried out by using mapped gene lists

(indicated by the protein groups) and running pathway-topology and over-representation

14
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analysis. First, “Project to human” option was selected with the combining list of “Organ-
enriched” and “Group enriched” entities. Afterwards, those pathways with p-value > 0.05
were filtered out. The hierarchical clustering was done based on the distances calculated on

the p-values using the ggdendro package in R.

Results

Human baseline proteomics datasets

We manually selected 24 |abel-free publicly available human proteomics datasets coming
from PRIDE and from the AMP-AD Knowledge Portal databases (Table 1). These datasets
were selected to represent baseline conditions and therefore included samples annotated as
healthy or normal from awide range of biological tissues. The datasets were restricted to
include those |abel-free datasets generated on Thermo Fisher Scientific Instruments. See

more details about dataset selection in the ‘Methods’ section.

In total the aggregated datasets represent 67 healthy tissues, corresponding to 3,119 M S runs
covering 498 samples, coming from 489 individuals. In this study, ‘tissue’ isdefined asa
distinct functional or structural region within an ‘organ’. The cumulative CPU time used for
the reanalyses was approximately 2,750 hours or 114 calendar days. The numbers of protein
groups, peptides, unique peptides identified and protein coverage in each dataset are shown in

Table 1.

15
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Table 1. List of proteomics datasets that were reanalysed. *Dataset identifiers starting with ‘PXD’ come from the PRIDE database and those
identifiers starting by ‘syn’ come from the AMP-AD Knowledge Portal. 3Only normal samples within this dataset are reported in this study.
However, results from both normal and disease samples are available in Expression Atlas. Unique protein sample batches available in any given
dataset are considered as individual samples (for example, dataset E-PROT-34 (PXD004143) consists of four experiment batches, where
materials from two donors are each digested with LysC and trypsin, and therefore these four unique batches are considered as four different
samples). T Numbers after post-processing. The proteomics results in Expression Atlas can be accessed using the link:
https.//www.ebi.ac.uk/gxa/experiments E-PROT-X X/Results, where XX should be replaced by the E-PROT accession number shown in the
table. The raw proteomics datasets in PRIDE can be accessed using the link: https.//www.ebi.ac.uk/pride/archive/projects/PXDxxxxxx, where
PXDxxxxxx should be replaced by the PRIDE dataset identifier shown in the table.
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The resulting protein abundances of all samples have been made available in Expression
Atlas. These ‘proteomics baseline’ quantification results can be viewed as abundance
heatmaps against the gene symbols and the quantification matrices can be downloaded as text
files together with annotated metadata of donor samples, experimental parameters, and a
summary file describing the analysis with representative charts (quality assessment)
summarising the output of the post-processed samples. The protocol for datareanaysisis

summarised in Figure 1.

- 4 . N .
( Curation W Analysis g QA & Integration h
into EA
select
A~ r S_

- ‘ datasets - E

S = '

] MS raw files MaxQuant
PRIDE and metadata
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Portal database

templates Post-processing

Annotare —

Post-process
summary

e*p;;';?,“ R =R [

Normalised
v protein
=—  SPRF&IDF abundances EBI
= > Expression Atlas
. J . J . /

Figure 1. An overview of the study design and reanalysis pipeline. QA: Quality assessment.

Protein coverage acr oss samples

For simplicity of comparison, we broadly grouped 67 tissues into 31 major types of organs.

Asexplained in ‘Methods’, we defined ‘tissue’ as a distinct functional or structural region
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within an ‘organ’. For example, corpus callosum, anterior temporal lobe, dorsolateral
prefrontal cortex were all defined astissuesin brain (which isthe ‘organ’). After post-
processing the output files from MaxQuant, 11,653 protein groups (36.3% of identified
protein groups across all datasets) were uniquely present in only one organ and 380 protein
groups (1.2%) were ubiquitously observed (Supplementary Table 2). This does not imply that
these proteins are unique to these organs. Merely, this is the outcome considering the selected

datasets.

We mapped the isoforms in the protein groups to their respective parent gene names, which
we will use as equivalent to ‘canonical proteins’ in UniProt (see ‘Methods’), from now on in
the manuscript. Overall, 13,070 different genes were mapped from protein identifiersin the
protein groups. We denote the term * protein abundance’ to mean ‘canonical protein
abundance’ from here on. We then estimated the number of proteins identified across organs,
which indicated that greater than 70% of all canonical proteins were present in a majority of
organs (Figure 2A, 2C). We also observed the highest numbers of common proteinsin
samples from tonsil (92.2%) and brain (90.9%) and the lowest numbers in samples from

umbilical artery (7.2%).

The higher number of proteinsidentified in brain could be attributed to the greater
representation of samples (339 samples out of 498, 68.0%). However, tonsil was represented
only by 7 samples and were all derived from one dataset (PXD010154). It is worth noting
that the sample preparation protocol for the tonsil samples employed seven different
proteases (Trypsin, LysC, ArgC, GIuC, AspN, LysN and Chymotrypsin) for tissue digestion

[36], thus significantly increasing its peptide coverage [36]. The sample size of umbilical
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artery, which showed significantly lower protein coverage than other organs, were 10

samples.

The largest number of canonical proteins were identified in dataset PXD010154 (Figure 2C),
which comprises numerous tissue samples (31 tissues) including samples from tonsil. The
dynamic range of protein abundancesin al organsis shown in Figure 2B. On the other hand,
protein abundances among datasets showed that PXD010154 had the lowest median protein
abundances (Figure 2D). We aso compared the quantity of spectral data from various organs
and datasets with the number of canonical proteins identified in them, to detect any organ or
dataset that showed enrichment of proteins relative to the amount of data. We observed a
linear relation between the number of proteins identified and the amount of spectral data

present in the organ samples or datasets (Figure 2E).
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Figure 2. (A) Number of canonical proteins identified across different organs. The number
within the parenthesis indicates the number of samples. (B) Range of normalised iBAQ
protein abundances across different organs. The number within the parenthesis indicates the
number of samples. In Panels (A) and (B), the term heart is used in a broader sense to mean
cardiovascular system. (C) Canonical proteins identified across different datasets. The
number within the parenthesis indicate the number of unique tissues in the dataset. (D) Range
of normalised iBAQ protein abundances across different datasets. The number within
parenthesis indicate the number of unique tissues in the dataset. (E) Comparison of total
spectral data with the number of canonical proteinsidentified in each dataset and organ. (F)
Distribution of canonical proteins identified across organs.
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Distribution of canonical protein identifications per organ

We observed that 37.1% (4,853) of the identified canonical proteins were expressed in 30
different organs (Figure 2F). The low number of proteins identified in umbilical artery (933)
samples greatly influenced the protein distribution. As aresult, 7.0% (917) of all identified
canonical proteins were present in all 31 organs, whereas 4.2% (565) of the identified
canonical proteins were present uniquely in one organ. However, it is important to highlight
that the list of concrete canonical proteins that were detected in just one organ should be
taken with caution since the list is subjected to inflated FDR, due to the accumulation of false
positives when analysing the datasets separately. However, this should not be an issue in the
case of proteins detected across 5 datasets or more, since the number of commonly detected
decoy protein hits enabled to calculate a protein FDR less than 1% (Figure S1in

Supplementary Figures).

Protein abundance comparison across organs

Next, we compared the protein abundances to see how proteins compared across different
organs. Inter-dataset batch effects make comparisons challenging. We transformed the
normalised iBAQ intensities into ranked bins as explained in ‘Methods' . The bin transformed

protein abundances in all organs are provided in Supplementary Table 3.
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To compare protein abundance across all organs, a pairwise Pearson correlation coefficients
of binned protein abundances was calculated across 498 samples (Figure 3). We observed a
good correlation of protein abundance within the brain (median R? = 0.61) and cardiovascular
system (median R? = 0.41) samples, which represent the two organ groups with the largest
number of samples. We tested the effectiveness of various normalisation methods in reducing
batch effects, by performing a PCA on samples coming from cardiovascular system and brain
datasets. The brain and cardiovascular system samples analysed constituted the largest
numbers in the aggregated dataset, including 19 and 3 datasets, respectively. First, we
performed PCA on the normalised iBAQ values, wherein the brain samples did not cluster
either by tissues or by datasets. However, for cardiovascular system samples, we observed
clustering of samples by datasets and not by tissue type (Figure S2 in Supplementary
Figures). We then tested the ComBat and Limma normalisation methods on iBAQ values,
which neither showed clustering of samples by tissues nor by datasets for both cardiovascular

system and brain samples (Figures S3 and $4 in Supplementary Figures).

We then decided to use the bin-transformed protein abundances (see ‘Methods'). First, we
observed that brain samples were clustered together according to their tissue type (Figure
4A). All brain tissue samples, except those coming from the dorsolateral prefrontal cortex
(DLPFC) were part of individual datasets. The DLPFC samples were derived from six
separate datasets, of which five of them were part of the Consensus Brain Protein
Coexpression study [26]. The DLPFC samples clustered into two groups: alarge group that

comprised samples from the Consensus Protein Coexpression study and a smaller cluster with
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samples from dataset PXD004143 (Figure 4B), indicating that there was still aresidual batch

effect.

Similarly, we observed cardiovascular system samples clustered according to their tissue
types (Figure 4C). All cardiovascular system samples except those coming from left ventricle
were part of an individual dataset. Interestingly, we observed 3 major clusters: one wherein
al valve samples (aortic valve, mitral valve, pulmonary valve and tricuspid valve) were
clustered together. A second cluster where the samples from ventricles and atriums were
clustered in a large group together with other cardiovascular system samples. Finally, left
ventricle samples from dataset PXD008934 (Figure 4D) formed a separate cluster indicating

that there were still batch effects which were not completely removed.
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Figure 3. Heatmap of pairwise Pearson correlation coefficients across all samples. Colours
on the heatmap represents the correlation coefficient and was calculated using the bin
transformed iBAQ values. The samples are hierarchically clustered on columns and rows
using Euclidean distances. The clusters composed of brain and cardiovascular system (heart)
samples are highlighted with black borders. The abbreviations used in the organs’ header are:
B: Brain, C: Colon, H: Heart, L: Liver, O: Ovary and P: Pancreas.
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Figure 4. (A) PCA of brain samples coloured by the tissue types. (B) PCA of brain samples
coloured by their respective dataset identifiers. (C) PCA of cardiovascular system (heart)
samples coloured by the tissue types. (D) PCA of cardiovascular system (heart) samples
coloured by their respective dataset identifiers. The numbersin parenthesis indicate the
number of datasets for each tissue. Binned values of canonical proteins quantified in at least
50% of the samples were used to perform the PCA.

Comparison of protein abundance values with previous studies
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We first compared the protein abundances resulting from our reanalysis with those reported
in the original publications. By comparing the number of protein groups or genesidentified in
individual datasets we observed that the differences between our analysis and the original
published results ranged from as low as 1.3% (E-PROT-53, dataset syn7204174) to as high as
43.2% (E-PRQOT-36, dataset PXD012755). Similarly, the difference at the level of identified
peptides ranged from a minimum of 0.29% (E-PROT-33, dataset PXD005819) to a maximum
of 57.2% (E-PROT-36, dataset PXD012755) (Supplementary Table 4). These differencesin
overall numbers could be due to various factors, including the used target protein sequence

database and the analysis software and version used.

We then compared our results with protein abundance data available in ProteomicsDB [33]
and found a good correlation in abundance across various organs. As it can be seen in Figure
S5 in Supplementary Figures the highest correlation was found in salivary gland (R? = 0.75)
and the lowest onein ovary (R? = 0.52). However, it should be noted that one of the datasets
included in our analysis (dataset PXD010154) is also included in ProteomicsDB.
Additionally, we also made a comparison between our protein abundance results and those
found in alarge study across multiple human organs using TM T-labelling method [3]. Figure
S6 in Supplementary Figures shows the Pearson’s correlations of protein abundances
between both studies, which was generally lower than in the case of ProteomicsDB data,

ranging from 0.22 to 0.48 across various organs.

In addition, we compared our results with protein abundances computed using antibody-

based methods, available in the Human Protein Atlas (HPA). Firstly, we performed a
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gualitative analysis in which we compared the number of proteins identified in matching
organsin our analysis with those proteins identified in the HPA. There were 30 organs that
were in common between both studies (except for umbilical artery which was not availablein
HPA). The comparison results are shown in Figure S7 in Supplementary Figures. Our
analysis shows that an average of 43.7% of all proteinsidentified in HPA were also present in
our aggregated dataset, with the highest number of common identified proteins found in brain
(50.4%) and the lowest number of proteins in common was in adipose tissue (27.2%). On the
other hand, an average of 40.4% of proteins were only identified in our analysis and were not
present in the results analysed in HPA. The largest and the lowest number of proteins that
were identified only in our analysis were in adipose tissue (61.6%) and in testis (30.2%),
respectively. Lastly, an average of 15.8% of the proteins were exclusive to HPA and not
identified across any organsin our analysis. Of these proteins the largest HPA exclusive
group of proteins was present in vermiform appendix (21.6%) and the lowest was found in

adrenal gland (8.9%).

We then compared protein abundances by first transforming the abundances in HPA into
numerical bins. Protein abundance data from HPA are annotated in 3 categorica groups as
‘Low’, ‘Medium’ and ‘High’, which, we converted into 3 numerical bins1, 2, and 3
respectively. For the purpose of this comparison, we re-binned our protein abundance data
into just 3 categories: bins 1, 2, and 3 representing low, medium and high abundances,
respectively (see ‘Methods’). To identify difference between noise and signal we calculated
the randomised edit distance difference metric across all organs between the two studies (see

Methods). The higher ‘randomised edit distance difference’ indicates that there is a difference
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between signal and random noise. The randomised edit distance difference matrix (Figure S8
in Supplementary Figures) shows that the randomised edit distance difference between
organs within HPA are low (average randomised edit distance difference = 0.18) compared to
that of organs within our study (average randomised edit distance difference = 0.43). This
seems to suggest that the overall protein abundances generated in this study are less noisy

than the abundance data available in HPA.

The organ elevated proteome and the over -r epr esentative biological processes

Asexplained in ‘Methods', according to their abundances, canonical proteins were divided in
three different groups according to their organ-specificity: “Organ-enriched”, “ Group
enriched” and “Mixed” (see Supplementary Table 5). We considered elevated canonical
proteins those which were classified as an “ Organ-enriched” or “ Group enriched” instead of
the “Mixed” group. The analysis (Figure 5A) showed that on average, 3.8% of the total
elevated canonical proteins were organ group-specific. The highest ratio was found in the
adrenal gland (9.3%), brain (7.5%) and liver (7.1%), and the lowest ratio in gall bladder
(2.3%) and umbilical artery (0.1%). In addition, 0.4% of the total canonical proteins were
unique organ-enriched. The highest ratio was found in brain (3.8%), cardiovascular system
(1.4%) and liver (0.5%) and the lowest ratio (~0.1%) was found in tonsil and uterine

endometrium.

Then, we performed a Gene Ontology (GO) enrichment analysis using the GO terms related
to biological processes for those canonical proteins that were “organ-enriched” and “group-
enriched”, is shown in Table 2. As asummary, 358 GO terms were found statistically
significative across al organs (see Supplementary Table 6). The terms found werein

31


https://doi.org/10.1101/2021.09.10.459811
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.10.459811; this version posted December 1, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

agreement with the known functions of the respective organs. The brain had the largest
number of “organ-enriched” canonical proteins (457), among the biological processes
associated stand out the regulatory function on membrane potential (GO:0042391),
neurotransmitter transport (GO:0006836), modulation of chemical synaptic transmission
(GO:0050804), regulation of trans-synaptic signalling (GO:0099177) and potassium ion
transport (GO:0006813). The second organ with a greater number of “organ-enriched”
canonical proteins was cardiovascular system (137). The enriched biological processes
involved were related with striated muscle cell differentiation (GO:0051146), sarcomere
organisation (GO:0045214), muscle structure devel opment (GO:0061061) and regulation of
myotube differentiation (GO:0010830). As expected, there were common GO terms that were
shared between the organs, such as: detoxification of inorganic compound (GO:0061687) in
liver and kidney, import across plasma membrane (GO:0098739) in kidney, brain and
umbilical artery, processesinvolved in tissues with high cell division turnover like

chromosome segregation (GO:0007059) in bone marrow and testis.

Organ GO ID Description Adjusted p-value
Adrenal gland G0:0031649 Heat generation ‘ 7.94%10*
Bone marrow GO:0034080 CENP-A containing nucleosome assembly 1.49*10°
Brain GO:0042391 Regulation of membrane potential ‘ 171*10M
Fallopian tube GO:0044782 Cilium organization 28810
oviduct

Gallbladder GO0:0017158 Regulation of calcium ion-dependent exocytosis ‘ 1.17*10
Cardiovascular GO:0051146 Striated muscle cell differentiation 9.58+10°
system (Heart)

Kidney G0:0046942 Carboxylic acid transport ‘ 4.81*107°
Liver GO0:0097501 Stress response to metal ion 1.08*10°
Lung GO:0003002 Regionalization ‘ 8.83+10°
Lymph node G0:0002250 Adaptive immune response 1.93*10*
Ovary GO:0008544 Epidermis development ‘ 8.42¥107
Placenta GO:0044706 Multi-multicellular organism process 4.84+10°
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Testis GO:0048232 Male gamete generation ‘ 5.00¢10%
" . Cell-cell adhesion via plasma-membrane adhesion a2
Thyroid GO:0098742 molecules 1.34*10
Tonsl GO:0031424 Keratinization ‘ 3.20%10°
Umbilical artery GO:0001937 Negative regulation of endothelial cell proliferation 1.75+10°

Table 2. Analysis of the GO terms for each organ using the elevated organ-specific canonical
proteins and group-specific as described in the ‘Methods' section.

Next, we performed a pathway-enrichment analysis using Reactome [35] to analyse canonical
proteins that were “ organ-enriched” and “group-enriched” (see Supplementary Table 7). The
heatmap (Figure 5B) shows the statistically significant pathways, (p-value < 0.05) across the
organs. The total number of pathways found in al the organs were 928, and the largest
number of pathways was found in the brain with 67 pathways. The pathways found were
consistent with the GO analysis and with the expected function in each organ. We observed a
‘cell cycle’ cluster of over-represented pathways related to bone marrow and testis (R-HSA-
1640170 , R-HSA-69620, R-HSA-73886, R-HSA-2500257 and R-HSA-69618), expected in
high cell turnover tissues, the digestion pathway (R-HSA-192456) in pancreas and stomach, a
neuronal system cluster of pathways (R-HSA-112316) in the brain, and pathways related to
the transport of small molecules (R-HSA-382551, R-HSA-425407, R-HSA-425393 and R-

HSA-425366) in kidney.
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Figureb. (A) Analysis of organ-specific canonical proteins. The analysis comprises the
number of canonical proteins found in 31 organs, classified in three groups: “organ-
enriched”, “group enriched” and “group mixed”. (B) Pathway analysis of the over-
represented canonical proteins, showing the statistically significant representative pathways
(p-value < 0.05) in 31 organs. In Panels (A) and (B), the term heart is used in abroader sense

to mean cardiovascular system.

Integration of resultsinto Expression Atlas

Protein abundance results from label-free experiments across various tissues were integrated
into Expression Atlas. The abundances of each protein are represented in terms of their
canonical gene symbols since Expression Atlasis designed as a gene-centric resource.
Proteomics results can be accessed using the link www.ebi.ac.uk/gxa/experiments/E-PROT -
xx/Downloads (replacing xx with the corresponding identifier for each dataset). For each
dataset, the raw unprocessed M axQuant output files (proteinGroups.txt) are made available to
download together with the input experimental parameters (mgpar.xml) to MaxQuant, as well

as the metadata annotation file of each sample. We also provide a summary of the quality
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assessment of the results. Supplementary File 8 provides a brief manual on how to access

proteomics data in Expression Atlas.

Discussion

We here include a combined analysis of human baseline proteomics datasets representing
baseline protein abundance across 67 healthy tissues grouped in 31 organs. This type of study
has been enabled by the large amount of datain the public domain, as the proteomics
community is now embracing open data policies. The large-scale availability of MS datain
public databases such as PRIDE enables integrated metaanal yses of proteomics data covering
awide array of tissues and biological conditions. The main aim of our study was to provide a
systems-wide baseline protein abundance catal ogue across various tissues and organs, which
could be used as a reference (especialy to those non-experts in proteomics) and help to

reduce redundant efforts of similar computationally expensive reanalyses.

Unlike what was done in one previous study performed by us [22], and analogously to what
we did with amore recent study performed using data generated from baseline rat and mouse
tissueg[23], here we analysed each dataset separately using the same software and the same
search protein sequence database. The disadvantage of this approach is that the FDR
statistical thresholds are applied at a dataset level and not to all datasets together as awhole,
with the potential accumulation of false positives across datasets. However, this does not
represent an issue in the case of proteins detected in common several datasets (in this
particular study, at least 5 datasets will provide a protein FDR of less than 1%, Figure S1in
Supplementary Figures), since the number of commonly detected false positivesis reduced in

parallel with the increase in the number of common datasets where a given protein is
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detected. This means that proteins that are only detected in a small number of datasets could
potentially be false positives (considering the applied 1% FDR at the protein level), but that
does not mean that they are. At that point, researchers should seek for confirmation of the
existence of the protein (if that istheir goal) via alternative sources as well. Different
reanalyses of some of the datasets used in this study, with different FDR calculation methods,

have been published independently [56, 57].

In our view, the objective of integrating quantitative proteomics information with other omics
datatypes (in this case transcriptomics) in resources used by non-proteomics researchers such
as Expression Atlasis only feasible in a sustainable manner using a dataset per dataset
analysis approach, at least at present. This enables that: (i) computing requirements for the
reanalyses are realistic given the large volume of filesincluded in the potentially very large-
combined datasets; (ii) interesting additional datasets could be added at a different time point
without having to reanalyse all datasets together again; (iii) future updatesin the results are
more feasible to perform; and (iv) (semi)-automation of the reanalyses is achievable, making
again these efforts more sustainable. We followed this same overall approach in the recent
study we performed in mouse and rat tissues in baseline conditions [23]. Additionally, we
compared our results with previous analogous studies performed in baseline tissue using MS
and also the antibody-based data available in the HPA. These comparisons generated quite

different results depending on each study.

One of the major bottlenecks was, as reported before, the curation of dataset metadata,

consisting in mapping files to samples and biological conditions. Detailed sample and donor
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metadata is crucial for result reproducibility and we found detailed metadata available in
PRIDE for just a handful of datasets. The required information either was inferred or were
requested by contacting the respective study’ s authors. If no responses were obtained, such
datasets could not be considered for the reanalysis. Therefore, to aid reproducibility of results
in the future, we need to improve the provision of metadata by data submitters. A format to
enable that has been developed (the SDRF-Proteomics format, as part of the new MAGE-
TAB-Proteomics format), which can be submitted optionally to PRIDE [58]. We expect that
it will become increasingly used for data submissions to PRIDE, once theright tooling is

available and submitters have been educated appropriately.

Another one of the mgor challenges in the reanalyses of alarge number of proteomics
datasets is the integration of results from different datasets since batch effects are inevitable.
We used a rank-binned normalisation of abundances, which transformed protein abundances
across datasets and samples to bins of 1 to 5. This approach is useful to reduce batch effects,
although we acknowledge there is aso loss of signal through this transformation. We aso
acknowledge that this method is not ideal in all circumstances, but in our view, it generally
works better when compared to popular methods to reduce batch effects such as ComBat and
Limma. Since our method computes protein abundances in terms of their canonical protein
and gene identifiers, we acknowledge that using median of intensities to aggregate
abundances over protein groups with isoforms coming from the same canonical protein may

not represent the total dum of all proteins and may influence ranking during binning.
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Although the combined dataset contains a higher representation of particular tissues
(especialy brain), we believe it represents the current state of the art with regard to public
baseline human proteomics studies carried out in tissues. The analysis search strategy used in
this study focused only on detecting known coding protein sequences, using the UniProt
reference proteome, in the same way as performed in the original studies. Therefore, it was
not possible to detect any Single Amino Acid Variants or equivalent isobaric combinations
involving PTMs. However, the effect of this limitation in the analysis should be in our view,
relatively small, because of the type of samples used in this study (healthy tissues) which did
not involve e.g. tumour samples. The availability of the results through Expression Atlas
enables the integration of MRNA and proteomics abundance information, offering an
interface for researchers to access this type of information. The next step will be the
integration of datasets in the differential part of Expression Atlas. The work required is more
complex there at different levels, including the downstream statistical differential analysis.
Also, availability of the mapping between the channels (e.g. in TMT, SILAC experiments)
and the samplesis very rare at present. In parallel, work has also started in integrating in
Expression Atlas proteomics data generated using Data Independent Acquisition (DIA)

approaches[59].

The generated baseline protein abundance data can be used with different purposes. For
instance, quantitative proteomics data can be used for the generation of co-expression
networks and/or the inference of protein complexes. Protein abundance data could also be
used to potentially refine the recently developed AlphaFold-based protein complexes

predictions [60]. Additionally, it is possible to use artificial intelligence approaches to impute
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protein abundance values using calculated abundance values as training data [61]. It would
also be possible to perform expression correlation studies between gene and protein
expression information. However, this type of studies can only be performed optimally if the
same samples are analysed by both techniques, as reported in the original publication for
dataset PXD010154 [36]. It should also be highlighted that a growing number of studies are
using non-M S based proteomics techniques such as the use of affinity reagents (e.g. the
Olink” and Somalogic” platforms), due to the increased throughput that they can provide.

Initial studies are being performed to compare these with M S approaches.

In conclusion the results presented here represent a large-scale meta-analysis of public human
baseline proteomics datasets. We aso show the challengesin this kind of analyses, providing

aroadmap for such future studies.
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