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Abstract 

The availability of proteomics datasets in the public domain, and in the PRIDE database in 

particular, has increased dramatically in recent years. This unprecedented large-scale 

availability of data provides an opportunity for combined analyses of datasets to get 

organism-wide protein abundance data in a consistent manner. We have reanalysed 24 public 

proteomics datasets from healthy human individuals, to assess baseline protein abundance in 

31 organs. We defined tissue as a distinct functional or structural region within an organ. 

Overall, the aggregated dataset contains 67 healthy tissues, corresponding to 3,119 mass 

spectrometry runs covering 498 samples, coming from 489 individuals. 

We compared protein abundances between the different organs and studied the distribution of 

proteins across organs. We also compared the results with data generated in analogous 

studies. We also performed gene ontology and pathway enrichment analyses to identify 

organ-specific enriched biological processes and pathways. As a key point, we have 

integrated the protein abundance results into the resource Expression Atlas, where it can be 

accessed and visualised either individually or together with gene expression data coming 

from transcriptomics datasets. We believe this is a good mechanism to make proteomics data 

more accessible for life scientists. 

 

  

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 1, 2022. ; https://doi.org/10.1101/2021.09.10.459811doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.10.459811
http://creativecommons.org/licenses/by-nd/4.0/


 

 

 

4 

 

 

 

 

 

 

Introduction 

High-throughput mass spectrometry (MS)-based proteomics approaches have matured and 

generalised significantly, becoming an essential tool in biological research, sometimes 

together with other “omics” approaches such as genomics and transcriptomics. It is now 

commonplace to make quantitative measurements of 2,000-3,000 proteins in a single LC-MS 

run, and typically 6,000-7,000 proteins in workflows with fractionation. The most used 

experimental approach is Data Dependent Acquisition (DDA) bottom-up proteomics. Among 

existing DDA quantitative proteomics approaches, label-free is very popular, although 

labelled-approaches such as metabolic-labelling (e.g., SILAC) and especially techniques 

based on the isotopic labelling of peptides (e.g., TMT) are growing in importance. In bottom-

up experiments, proteins are first digested into peptides using an enzyme (e.g., trypsin), and 

typically several peptides are required per protein to give confidence in the measurement of 

protein-level quantification across samples. Measured peptide intensity is correlated with 

absolute protein abundance, but there can be differences depending on individual peptides 

due to the considerable variation in the ionisation efficiency of these peptides. Different 

peptides can also be detected in different studies, giving rise to variability in protein 

abundance. One further challenge in quantitative proteomics relates to the “protein inference” 

problem [1]. In brief, many peptide sequences cannot be uniquely mapped to a single protein 

due to common conserved sequences present in different gene families (paralogs). During the 

last decade technological advances in MS have led to a large number of studies that have 

analysed protein abundances across various human tissues and organs [2-5]. These efforts are 

complemented by the comprehensive characterisation of the human proteome performed 
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within the Human Proteome Project (HPP) [6-8], although the HPP has been focused on the 

identification of proteins, without performing any quantitative analysis. 

 

In parallel with the technical developments in chromatography, MS and bioinformatics, the 

proteomics community has evolved to largely support open data practices. In brief, this 

means that datasets are released alongside publications, allowing other groups to check 

findings or re-analyse data with different approaches to generate new findings. Therefore, in 

recent years, the amount and variety of shared datasets in the public domain has grown 

dramatically. This was driven by the establishment and maturation of reliable proteomics data 

repositories, in tandem with policy recommendations by scientific journals and funding 

agencies.  

 

The PRIDE database [9], which is one of the founding members of the global 

ProteomeXchange consortium [10], is currently the largest resource worldwide for public 

proteomics data deposition. As of October 2022, PRIDE hosts more than 29,500 datasets. Of 

those, human datasets are by far the majority, representing approximately 40% of all datasets. 

Public datasets stored in PRIDE (or in other resources) present an opportunity to be 

systematically reanalysed and integrated, in order to confirm the original results potentially in 

a more robust manner, obtain new insights, generate new hypotheses, and even be able to 

answer biologically relevant questions orthogonal to those posed in the original studies. Such 

integrative meta-analyses have already been successfully employed especially in genomics 

and transcriptomics [11-13]. Therefore, the large availability of public datasets has triggered 

different types of data re-use activities, including “big data” approaches (e.g. [14-16]) and the 
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establishment of new data resources using re-analysed public datasets as the basis [17-19]. In 

this context of data re-use, the main interest of PRIDE is to disseminate and integrate 

proteomics data into popular added-value bioinformatics resources at the European 

Bioinformatics Institute (EMBL-EBI) such as Expression Atlas [20] (for quantitative 

proteomics data), Ensembl [21] (proteogenomics) and UniProt [7] (protein sequences 

information including post-translational modifications (PTMs)). The overall aim is to enable 

life scientists (including those who are non-experts in proteomics) to have improved access to 

proteomics-derived information. Expression Atlas (https://www.ebi.ac.uk/gxa/home) is an 

added-value resource that enables easy access to integrated information about gene and 

recently protein expression across species, tissues, cells, experimental conditions and 

diseases. The Expression Atlas ‘bulk’ Atlas has two sections: baseline and differential atlas. 

Protein abundance results derived from the reanalysis of DDA public datasets of different 

sources have started to be incorporated into Expression Atlas. The availability of such results 

in Expression Atlas makes proteomics abundance data integrated with transcriptomics 

information in the web interface. We have performed two DDA studies of this type so far. 

First of all, we reported the reanalysis and integration into Expression Atlas of 11 public 

quantitative datasets coming from cell lines and human tumour samples [22]. Additionally, 

we have recently reported the reanalysis and integration of 23 datasets coming from mouse 

and rat tissues in baseline conditions [23]. 

There are other public resources providing access to reanalysed MS-based quantitative 

proteomics datasets. ProteomicsDB [24] provides access to human protein abundance data in 

addition to other recent (multi-omic) studies carried out on model organisms. Many 
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additional human datasets coming from human tissues have been made publicly available in 

recent years. Within the HPP, it is important to highlight that ProteomeXchange resources 

PeptideAtlas [25] and MassIVE provide peptide and protein identifications derived from the 

reanalysis of public human datasets, but their main focus is not quantitative data. 

Additionally, antibody-based protein abundance information can be accessed via the Human 

Protein Atlas (HPA) [4]. Here, we report the reanalysis and integration of 24 public human 

label-free datasets, and the incorporation of the results into Expression Atlas as baseline 

studies.  

Experimental Procedures 

Datasets 

As of September 2020, 3,930 public MS human proteomics datasets were publicly available 

in PRIDE. We manually filtered these 3,930 human datasets to select suitable datasets for 

downstream analyses by applying several selection criteria. These selection criteria for the 

datasets to be reanalysed were: i) experimental data from healthy tissues in baseline 

conditions coming from label-free studies where no PTM-enrichment had been performed; ii) 

experiments performed on Thermo Fisher Scientific instruments (LTQ Orbitrap, LTQ 

Orbitrap Elite, LTQ Orbitrap Velos, LTQ Orbitrap XL ETD, LTQ-Orbitrap XL ETD, 

Orbitrap Fusion and Q-Exactive), because they represent the larger proportion of the relevant 

public datasets available, and we preferred to avoid the heterogeneity introduced by using 

data coming from different MS vendors; iii) availability of detailed sample metadata in the 

original publication, or after contacting the original submitters; and iv) our previous 
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experience in the team working with some datasets, which were discarded because they were 

not considered to be usable (data not shown). As a result 16 human datasets from PRIDE 

(Table 1). Additionally, 8 datasets coming from human brain samples (also generated in 

Thermo Fisher Scientific instruments) were downloaded from a large Alzheimer’s Disease 

(AD) dataset described in [26], which was available via the AMP-AD Knowledge Portal 

(https://adknowledgeportal.synapse.org/). Due to ethical related issues, the AD datasets from 

the AMP-AD Knowledge Portal are available under a controlled access agreement (i.e., data 

made available only to approved users of the data included in the AMP-AD Knowledge 

Portal) and were downloaded after obtaining the required authorisation.  

 

The sample and experimental metadata was manually curated from their respective 

publications or by contacting the original authors/submitters. Metadata was annotated using 

Annotare [27] and stored using the Investigation Description Format (IDF) and Sample and 

Data Relationship Format (SDRF) file formats, required for their integration in Expression 

Atlas. The IDF includes an overview of the experimental design including the experimental 

factors, protocols, publication information and contact information. The SDRF file includes 

sample metadata and describes the relationship between various sample characteristics and 

the data files included in the dataset.  

 

In addition to the quantification of proteins in healthy tissues representing baseline conditions 

described in this study, we also analysed samples in the same datasets that were from non-

healthy/non-normal samples which were included in the same datasets (which are not 

discussed in this manuscript, but the results are also available in Expression Atlas). The 
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selected datasets are listed in Table 1, including the original dataset identifiers, tissues and 

organs included, number of MS runs and number of samples. The 24 datasets sum up a total 

of 498 samples from 67 different tissues classified in 31 organs. 

 

Proteomics raw data processing 

 

Datasets were analysed separately, using the same software and search database. 

Peptide/protein identification and protein quantification were performed using MaxQuant 

[28, 29] (version 1.6.3.4), on a high-performance Linux computing cluster. The input 

parameters for each dataset such as MS1 and MS2 tolerances, digestive enzymes, fixed and 

variable modifications were set as described in their respective publications together with two 

missed cleavage sites. PSM (Peptide Spectrum Match) and protein FDR (False Discovery 

Rate) levels were set at 1%. Other MaxQuant parameter settings were left as default: 

maximum number of modifications per peptide: 5, minimum peptide length: 7, maximum 

peptide mass: 4,600 Da. For match between runs, the minimum match time window was set 

to 0.7 seconds and the minimum retention time alignment window was set to 20 seconds. The 

MaxQuant parameter files are available for download from Expression Atlas. The UniProt 

human reference proteome release-2019_05 (including isoforms, 95,915 sequences) was used 

as the target sequence database. The inbuilt MaxQuant contaminant database was used and 

the decoy database were generated by MaxQuant at the time of the analysis (on-the-fly) by 

reversing the input database sequences after the respective enzymatic cleavage. The datasets 

were run in a multithreading mode with a maximum of 60 threads and 300 GB of RAM per 

dataset. 
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Post-processing 

The results coming from MaxQuant for each dataset were further processed downstream to 

remove potential contaminants, decoys and protein groups which had fewer than 2 PSMs. 

The protein intensities were normalised using the Fraction of Total (FOT) method, wherein 

each protein “iBAQ” intensity value is scaled to the total amount of signal in a given MS run 

and transformed to parts per billion (ppb). 

 

���_����� � 	 ����� ∑ �����
�

���

� 
 � 1,000,000,000 

 
The bioconductor package ‘mygene’ [30] was used to assign Ensembl gene 

identifiers/annotations to the protein groups by mapping the ‘majority protein identifiers’ 

within each protein group. This step is required for integration into Expression Atlas, because 

at present, all abundance values have to be in the same reference system to be integrated. The 

protein groups, whose protein identifiers were mapped to multiple Ensembl gene IDs, were 

not integrated into Expression Atlas, but are available in Supplementary Table 1. In the case 

of a protein group containing isoforms from the same gene, these mapped to a single unique 

Ensembl gene ID and were not filtered out. In cases where two or more protein groups 

mapped to the same Ensembl gene ID, their median intensity values were considered. The 

parent genes to which the different protein groups were mapped to are equivalent to 

‘canonical proteins’ in UniProt (https://www.uniprot.org/help/canonical_and_isoforms) and 

therefore the term protein abundance is used to describe the protein abundance of the 

canonical protein throughout the manuscript. 
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Integration into Expression Atlas 

The calculated canonical protein abundances (mapped as genes), the validated SDRF files 

and summary files detailing the quality of post-processing were integrated into Expression 

Atlas (release 37, March 2021) as proteomics baseline experiments (E-PROT identifiers are 

available in Table 1). 

Protein abundance comparison across datasets 

Since datasets were analysed separately, the protein abundances, available in ppb values 

within each dataset were converted into ranked bins for comparison of abundances across 

datasets. The normalised protein abundances per MS run, as described above, were ranked 

and grouped into 5 bins, wherein proteins with the lowest protein abundance values were in 

bin 1 and those with the highest abundance values were in bin 5. Additionally, distinct tissue 

regions or organs within a dataset were grouped into batches and were binned separately. In 

this study, ‘tissue’ is defined as a distinct functional or structural region within an ‘organ’. 

For example, corpus callosum, anterior temporal lobe, dorsolateral prefrontal cortex were 

defined as tissues that are part of the brain (organ) and similarly left ventricle, aorta and 

tricuspid valve are defined as tissues in heart (organ). 

 

During the rank-bin transformation, if a protein was not detected in any of the samples within 

a batch, we did not assign it a bin value, but annotated it as an NA (corresponding to not 

detected) value instead. However, if a protein was not detected in some samples of the batch 

but had protein abundance values in other samples within the batch, we assigned the lowest 

bin value 1 to those samples in that batch that were undetected. For example, in a dataset 
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comprising tissue samples from brain, all samples from tissue regions such as corpus 

callosum, were grouped into a batch and the ppb abundances were transformed into bins. If 

any of the samples within a batch had no abundance values for a protein, they were marked as 

NA. If some samples within the batch had missing abundance values, the missing abundance 

values of those samples for that protein were assigned the bin value 1. Binned abundances of 

those proteins that were detected in at least 50% of the samples in heart and brain datasets 

were selected for PCA (Principal Component Analysis). To compare which normalisation 

methods performed better at removing batch effects, the iBAQ protein abundances were also 

normalised using the ComBat [31] and Limma [32] methods. PCA was performed in R using 

the Stats package. A Pearson correlation coefficient for all samples was calculated on 

pairwise complete observations of bin transformed iBAQ values in R. Samples were 

hierarchically clustered on columns and rows using Euclidean distances. 

 

Comparison of the results with the protein abundance values from the Human Protein 

Atlas and ProteomicsDB 

Results from our analysis were compared with protein abundance data available at the HPA. 

Abundance profiles of proteins in normal human tissues were downloaded from HPA version 

21.0. Protein abundance with reliability score labelled as ‘Uncertain’ were not considered in 

the comparison. For the purposes of easing the comparison and computing correlation, the 

categorical protein abundance levels in data downloaded from the HPA were assigned 

numerical values closely matching the protein abundance bins used in our analysis. Protein 

abundance levels annotated as ‘Low’, ‘Medium’ and ‘High’ were assigned values 1, 2 and 3 

respectively. The level annotated as ‘Not detected’ was assigned NA and those annotated as 
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‘Ascending’, ‘Descending’ and ‘Not representative’ were all assigned a value of 1. For the 

purpose of this comparison, we re-binned our protein abundance data into just 3 categories: 

bins 1, 2, and 3 representing low, medium and high abundances, respectively. The 

‘randomised edit distance difference’ was calculated across all pairs of organs included in 

this study and HPA. The ‘randomised edit distance difference’ is the difference between the 

‘true edit distance’ and the ‘randomised edit distance’ of protein abundance bins. 

Randomised edit distance difference = mean(random edit distance1-n - true edit distance1-n). 

The ‘true edit distance’ of a protein was computed as the absolute difference between the 

protein abundance bins of both pairs. The ‘randomised edit distance’ is calculated as the 

mean of the absolute difference between bin value of pair 1 and randomised bin value of pair 

2, after sampling it 10 times, ie., randomised edit distance = mean (∑ �abs�bin1 ���
�

random�bin2�)]). This was done using the base R package. 

 

Normalised protein intensities from ProteomicsDB [33] were queried for organs that were in 

common in our study (31 organs). Values were obtained using ProteomicsDB Application 

Programming Interface. For different tissue samples we aggregated the normalised intensities 

using the median of their respective organs. The intensities were log2 normalised and 

compared. 

 

Comparison of label-free protein abundances with protein abundances generated using 

a TMT approach 

The protein abundances calculated across various baseline human organs/tissues using the 

TMT-labelling method were obtained from [3] (Supplementary file ‘NIHMS1624446-
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supplement-2’, sheet: ‘C protein normalized abundance’). Protein abundances of the 

respective organs measured across different TMT channels and runs were aggregated using 

the median and log2 transformed. Different tissue samples from oesophagus, heart, brain and 

colon were aggregated into their respective organs. Pearson’s correlation was calculated in R. 

Organ-specific expression profile analysis 

To investigate the organ-specific protein-based abundance profile, we carried out a 

modification of the classification scheme done by Uhlén et al. [4]. Briefly, each of the 13,070 

canonical proteins that were mapped from the protein groups, was classified into one of three 

categories based on the bin levels in 31 organs: (1) “Organ-enriched”: one unique organ with 

bin values 2-fold higher than the mean bin value across all organs; (2) “Group enriched”: 

group of 2-7 organs with bin values 2-fold higher than the mean bin value across all organs; 

and (3) “Mixed”: the remaining canonical proteins that are not part of the above two 

categories. 

 

Enriched gene ontology (GO) terms analysis was performed by means of the over-

representation test, combining the “Organ-enriched” and “Group enriched” mapped gene lists 

for each organ. The computational analysis was carried out in the R environment with the 

package clusterProfiler [34] version 3.16.1, using the function enrichGO() for the GO over-

representation test, using the parent gene list of all detected canonical proteins as the 

background set. Setting the p-value cut-off to 0.05 and the q-value cut-off to 0.05. 

Additionally, Reactome [35] pathway analysis was carried out by using mapped gene lists 

(indicated by the protein groups) and running pathway-topology and over-representation 
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analysis. First, “Project to human” option was selected with the combining list of “Organ-

enriched” and “Group enriched” entities. Afterwards, those pathways with p-value > 0.05 

were filtered out. The hierarchical clustering was done based on the distances calculated on 

the p-values using the ggdendro package in R. 

 

 

Results 

Human baseline proteomics datasets 

We manually selected 24 label-free publicly available human proteomics datasets coming 

from PRIDE and from the AMP-AD Knowledge Portal databases (Table 1). These datasets 

were selected to represent baseline conditions and therefore included samples annotated as 

healthy or normal from a wide range of biological tissues. The datasets were restricted to 

include those label-free datasets generated on Thermo Fisher Scientific Instruments. See 

more details about dataset selection in the ‘Methods’ section.  

 

In total the aggregated datasets represent 67 healthy tissues, corresponding to 3,119 MS runs 

covering 498 samples, coming from 489 individuals. In this study, ‘tissue’ is defined as a 

distinct functional or structural region within an ‘organ’. The cumulative CPU time used for 

the reanalyses was approximately 2,750 hours or 114 calendar days. The numbers of protein 

groups, peptides, unique peptides identified and protein coverage in each dataset are shown in 

Table 1.
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Expression 
Atlas 
accession 
number 

Proteomics 
dataset 
identifier* 

Tissues  Organs Mass 
spectrometer 

Number of 
MS runs 

Number 
of 
samples 

Fractionation Number 
of 
protein 
groups† 

Number of 
peptides† 

Number of 
unique 
peptides† 

Number of 
unique genes 
(canonical 
proteins) 
mapped†  

E-PROT-29 PXD010154 [36] 

Adrenal gland, Bone 
marrow, Brain, Colon, 
Duodenum, 
Esophagus, Fallopian 
tube oviduct, Fat 
adipose tissue, 
Gallbladder, Heart, 
Kidney, Liver, Lung, 
Lymph node, Ovary, 
Pancreas, Pituitary 
hypophysis, Placenta, 
Prostate, Rectum, 
Salivary gland, Small 
intestine, Smooth 
muscle, Spleen, 
Stomach, Testis, 
Thyroid, Tonsil, 
Urinary bladder, 
Uterine endometrium, 
Vermiform appendix 

Adrenal gland, 
Bone marrow, 
Brain, Colon, 
Duodenum, 
Esophagus, 
Fallopian tube 
oviduct, Fat adipose 
tissue, Gallbladder, 
Heart, Kidney, 
Liver, Lung, 
Lymph node, 
Ovary, Pancreas, 
Placenta, Prostate, 
Rectum, Salivary 
gland, Small 
intestine, Smooth 
muscle, Spleen, 
Stomach, Testis, 
Thyroid, Tonsil, 
Urinary bladder, 
Uterine 
endometrium, 
Vermiform 
appendix 

Q-Exactive Plus 1,795 37 Yes 19,382 874,825 346,894 12,622 

E-PROT-33 PXD005819 [37] 
Anterior pituitary 
gland 
(adenohypophysis) 

Brain LTQ-Orbitrap 
Velos 

33 2 Yes 1,936 12,112 10,174 1,207 

E-PROT-34 PXD004143 [38] Dorsolateral prefrontal 
cortex 

Brain Thermo 
Orbitrap Fusion 

80 4 Yes 9,929 203,798 124,355 7,633 
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E-PROT-35 PXD006233 [39] Middle temporal lobe Brain Orbitrap Elite 192 6 Yes 7,030 62,455 46,786 5,264 

E-PROT-36 PXD012755 [40] 
Cerebellar 
hemispheric cortex, 
Occipital cortex 

Brain 
OrbitrapVelos 
Elite 15 15 No 3,033 25,514 20,125 2,264 

E-PROT-40 PXD001608 [41] Colon Colon Q-Exactive Plus 30 10 No 5,943 73,053 56,756 4,789 

E-PROT-41 PXD002029 [42] Colon Colon Q-Exactive Plus 24 8 No 4,608 25,300 22,032 3,211 

E-PROT-42 
PXD000547, 
PXD000548 [43] 

Corpus callosum, 
Anterior temporal lobe 

Brain LTQ-Orbitrap 
XL 

40, 
40 

2, 
2 

Yes 1,353, 
1,873 

8,250, 
12,503 

6,739, 
10,071 

868, 
1,304 

E-PROT-43 PXD010271 [44] 
Liver, Ovary, 
Pancreas, Substantia 
nigra 

Liver, Ovary, 
Pancreas, Brain 

Velos Orbitrap, 
Q-Exactive 

55 54 No 5,927 75,320 50,652 4,528 

E-PROT-44 PXD004332 [45] Pineal gland Brain 
LTQ-Orbitrap 
Velos 

56 3 Yes 4,953 49,455 38,884 3,692 

E-PROT-45 PXD006675 [46] 

Aorta, Aortic valve, 
Atrial septum, Inferior 
vena cava, Left atrium, 
Left ventricle, Mitral 
valve, Pulmonary 
artery, Pulmonary 
valve, Pulmonary 
vein, Right atrium, 
Right ventricle, 
Tricuspid valve, 
Ventricular septum 

Cardiovascular 
system (Heart) Q-Exactive HF 347 42 Yes 9,160 161,943 98,692 7,602 

E-PROT-46 § PXD008934 [47] Left ventricle 
Cardiovascular 
system (Heart) Q-Exactive 7 7 No 2,977 31,755 25,704 2,294 

E-PROT-51 § syn6038852 [48] 
Dorsolateral prefrontal 
cortex 

Brain Q-Exactive Plus 11 11 No 4,962 56,558 41,312 3,803 
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E-PROT-52 § syn21444980 [26] Dorsolateral prefrontal 
cortex Brain Q-Exactive Plus 83 83 No 3,846 55,290 39,470 3,127 

E-PROT-53 § syn7204174 [49] Dorsolateral prefrontal 
cortex Brain Q-Exactive Plus 26 26 No 5,658 101,460 64,060 4,454 

E-PROT-54 § syn3606087 [50] 
Dorsolateral prefrontal 
cortex 

Brain Q-Exactive Plus 11 11 No 4,751 58,302 40,469 3,626 

E-PROT-55 § syn4624471 [50] Precuneus Brain Q-Exactive Plus 13 13 No 4,829 60,129 42,179 3,695 

E-PROT-56 § syn7431984 [51] Temporal cortex Brain Q-Exactive Plus 31 31 No 5,997 113,820 68,951 4,675 

E-PROT-57 § syn6038797 [52] Frontal pole Brain Q-Exactive Plus 53 53 No 5,812 91,285 59,701 4,420 

E-PROT-58 § syn21443008 [26] Dorsolateral prefrontal 
cortex 

Brain Q-Exactive Plus 47 47 No 5,050 86,685 55,386 4,053 

E-PROT-61 § PXD012131 [53] 

Amygdala, Caudate 
nucleus, Cerebellum, 
Entorhinal cortex, 
Inferior parietal 
lobule, Middle frontal 
gyrus, Neocortex, 
Superior temporal 
gyrus, Thalamus, 
Visual cortex 

Brain 
Orbitrap Fusion 
Lumos 

114 15 Yes 10,097 192,397 113,310 7,826 

E-PROT-63 PXD020187 [54] Umbilical artery Umbilical artery 
nano-ESI 
Orbitrap-Elite 

10 10 No 1,505 10,365 7,702 933 

E-PROT-65 § PXD015079 [55] Prefrontal cortex, 
Vermiform appendix 

Brain, Vermiform 
appendix 

Q-Exactive HF-
X 

6 6 No 2,313 24,162 18,892 1,694 

TOTAL 24 datasets 67 tissues 31 organs 
 3,119 MS 

runs 
498 
Samples 
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Table 1. List of proteomics datasets that were reanalysed. *Dataset identifiers starting with ‘PXD’ come from the PRIDE database and those 

identifiers starting by ‘syn’ come from the AMP-AD Knowledge Portal. §Only normal samples within this dataset are reported in this study. 

However, results from both normal and disease samples are available in Expression Atlas.  Unique protein sample batches available in any given 

dataset are considered as individual samples (for example, dataset E-PROT-34 (PXD004143) consists of four experiment batches, where 

materials from two donors are each digested with LysC and trypsin, and therefore these four unique batches are considered as four different 

samples). † Numbers after post-processing. The proteomics results in Expression Atlas can be accessed using the link: 

https://www.ebi.ac.uk/gxa/experiments/E-PROT-XX/Results, where XX should be replaced by the E-PROT accession number shown in the 

table. The raw proteomics datasets in PRIDE can be accessed using the link: https://www.ebi.ac.uk/pride/archive/projects/PXDxxxxxx, where 

PXDxxxxxx should be replaced by the PRIDE dataset identifier shown in the table. 
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The resulting protein abundances of all samples have been made available in Expression 

Atlas. These ‘proteomics baseline’ quantification results can be viewed as abundance 

heatmaps against the gene symbols and the quantification matrices can be downloaded as text 

files together with annotated metadata of donor samples, experimental parameters, and a 

summary file describing the analysis with representative charts (quality assessment) 

summarising the output of the post-processed samples. The protocol for data reanalysis is 

summarised in Figure 1. 

 

 

Figure 1. An overview of the study design and reanalysis pipeline. QA: Quality assessment. 
 

Protein coverage across samples 

For simplicity of comparison, we broadly grouped 67 tissues into 31 major types of organs. 

As explained in ‘Methods’, we defined ‘tissue’ as a distinct functional or structural region 
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within an ‘organ’. For example, corpus callosum, anterior temporal lobe, dorsolateral 

prefrontal cortex were all defined as tissues in brain (which is the ‘organ’). After post-

processing the output files from MaxQuant, 11,653 protein groups (36.3% of identified 

protein groups across all datasets) were uniquely present in only one organ and 380 protein 

groups (1.2%) were ubiquitously observed (Supplementary Table 2). This does not imply that 

these proteins are unique to these organs. Merely, this is the outcome considering the selected 

datasets. 

We mapped the isoforms in the protein groups to their respective parent gene names, which 

we will use as equivalent to ‘canonical proteins’ in UniProt (see ‘Methods’), from now on in 

the manuscript. Overall, 13,070 different genes were mapped from protein identifiers in the 

protein groups. We denote the term ‘protein abundance’ to mean ‘canonical protein 

abundance’ from here on. We then estimated the number of proteins identified across organs, 

which indicated that greater than 70% of all canonical proteins were present in a majority of 

organs (Figure 2A, 2C). We also observed the highest numbers of common proteins in 

samples from tonsil (92.2%) and brain (90.9%) and the lowest numbers in samples from 

umbilical artery (7.2%). 

The higher number of proteins identified in brain could be attributed to the greater 

representation of samples (339 samples out of 498, 68.0%). However, tonsil was represented 

only by 7 samples and were all derived from one dataset (PXD010154). It is worth noting 

that the sample preparation protocol for the tonsil samples employed seven different 

proteases (Trypsin, LysC, ArgC, GluC, AspN, LysN and Chymotrypsin) for tissue digestion 

[36], thus significantly increasing its peptide coverage [36]. The sample size of umbilical 
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artery, which showed significantly lower protein coverage than other organs, were 10 

samples.  

The largest number of canonical proteins were identified in dataset PXD010154 (Figure 2C), 

which comprises numerous tissue samples (31 tissues) including samples from tonsil. The 

dynamic range of protein abundances in all organs is shown in Figure 2B. On the other hand, 

protein abundances among datasets showed that PXD010154 had the lowest median protein 

abundances (Figure 2D). We also compared the quantity of spectral data from various organs 

and datasets with the number of canonical proteins identified in them, to detect any organ or 

dataset that showed enrichment of proteins relative to the amount of data. We observed a 

linear relation between the number of proteins identified and the amount of spectral data 

present in the organ samples or datasets (Figure 2E).  
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Figure 2. (A) Number of canonical proteins identified across different organs. The number 

within the parenthesis indicates the number of samples. (B) Range of normalised iBAQ 

protein abundances across different organs. The number within the parenthesis indicates the 

number of samples. In Panels (A) and (B), the term heart is used in a broader sense to mean 

cardiovascular system. (C) Canonical proteins identified across different datasets. The 

number within the parenthesis indicate the number of unique tissues in the dataset. (D) Range 

of normalised iBAQ protein abundances across different datasets. The number within 

parenthesis indicate the number of unique tissues in the dataset. (E) Comparison of total 

spectral data with the number of canonical proteins identified in each dataset and organ. (F) 

Distribution of canonical proteins identified across organs. 
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Distribution of canonical protein identifications per organ 

We observed that 37.1% (4,853) of the identified canonical proteins were expressed in 30 

different organs (Figure 2F). The low number of proteins identified in umbilical artery (933) 

samples greatly influenced the protein distribution. As a result, 7.0% (917) of all identified 

canonical proteins were present in all 31 organs, whereas 4.2% (565) of the identified 

canonical proteins were present uniquely in one organ. However, it is important to highlight 

that the list of concrete canonical proteins that were detected in just one organ should be 

taken with caution since the list is subjected to inflated FDR, due to the accumulation of false 

positives when analysing the datasets separately. However, this should not be an issue in the 

case of proteins detected across 5 datasets or more, since the number of commonly detected 

decoy protein hits enabled to calculate a protein FDR less than 1% (Figure S1 in 

Supplementary Figures).  

Protein abundance comparison across organs 

Next, we compared the protein abundances to see how proteins compared across different 

organs. Inter-dataset batch effects make comparisons challenging. We transformed the 

normalised iBAQ intensities into ranked bins as explained in ‘Methods’. The bin transformed 

protein abundances in all organs are provided in Supplementary Table 3. 
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To compare protein abundance across all organs, a pairwise Pearson correlation coefficients 

of binned protein abundances was calculated across 498 samples (Figure 3). We observed a 

good correlation of protein abundance within the brain (median R2 = 0.61) and cardiovascular 

system (median R2 = 0.41) samples, which represent the two organ groups with the largest 

number of samples. We tested the effectiveness of various normalisation methods in reducing 

batch effects, by performing a PCA on samples coming from cardiovascular system and brain 

datasets. The brain and cardiovascular system samples analysed constituted the largest 

numbers in the aggregated dataset, including 19 and 3 datasets, respectively. First, we 

performed PCA on the normalised iBAQ values, wherein the brain samples did not cluster 

either by tissues or by datasets. However, for cardiovascular system samples, we observed 

clustering of samples by datasets and not by tissue type (Figure S2 in Supplementary 

Figures). We then tested the ComBat and Limma normalisation methods on iBAQ values, 

which neither showed clustering of samples by tissues nor by datasets for both cardiovascular 

system and brain samples (Figures S3 and S4 in Supplementary Figures).  

 

We then decided to use the bin-transformed protein abundances (see ‘Methods’). First, we 

observed that brain samples were clustered together according to their tissue type (Figure 

4A). All brain tissue samples, except those coming from the dorsolateral prefrontal cortex 

(DLPFC) were part of individual datasets. The DLPFC samples were derived from six 

separate datasets, of which five of them were part of the Consensus Brain Protein 

Coexpression study [26]. The DLPFC samples clustered into two groups: a large group that 

comprised samples from the Consensus Protein Coexpression study and a smaller cluster with 
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samples from dataset PXD004143 (Figure 4B), indicating that there was still a residual batch 

effect. 

 

Similarly, we observed cardiovascular system samples clustered according to their tissue 

types (Figure 4C). All cardiovascular system samples except those coming from left ventricle 

were part of an individual dataset. Interestingly, we observed 3 major clusters: one wherein 

all valve samples (aortic valve, mitral valve, pulmonary valve and tricuspid valve) were 

clustered together. A second cluster where the samples from ventricles and atriums were 

clustered in a large group together with other cardiovascular system samples. Finally, left 

ventricle samples from dataset PXD008934 (Figure 4D) formed a separate cluster indicating 

that there were still batch effects which were not completely removed. 
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Figure 3. Heatmap of pairwise Pearson correlation coefficients across all samples. Colours 

on the heatmap represents the correlation coefficient and was calculated using the bin 

transformed iBAQ values. The samples are hierarchically clustered on columns and rows 

using Euclidean distances. The clusters composed of brain and cardiovascular system (heart) 

samples are highlighted with black borders. The abbreviations used in the organs’ header are: 

B: Brain, C: Colon, H: Heart, L: Liver, O: Ovary and P: Pancreas. 
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Figure 4. (A) PCA of brain samples coloured by the tissue types. (B) PCA of brain samples 

coloured by their respective dataset identifiers. (C) PCA of cardiovascular system (heart) 

samples coloured by the tissue types. (D) PCA of cardiovascular system (heart) samples 

coloured by their respective dataset identifiers. The numbers in parenthesis indicate the 

number of datasets for each tissue. Binned values of canonical proteins quantified in at least 

50% of the samples were used to perform the PCA. 

 

Comparison of protein abundance values with previous studies 
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We first compared the protein abundances resulting from our reanalysis with those reported 

in the original publications. By comparing the number of protein groups or genes identified in 

individual datasets we observed that the differences between our analysis and the original 

published results ranged from as low as 1.3% (E-PROT-53, dataset syn7204174) to as high as 

43.2% (E-PROT-36, dataset PXD012755). Similarly, the difference at the level of identified 

peptides ranged from a minimum of 0.29% (E-PROT-33, dataset PXD005819) to a maximum 

of 57.2% (E-PROT-36, dataset PXD012755) (Supplementary Table 4). These differences in 

overall numbers could be due to various factors, including the used target protein sequence 

database and the analysis software and version used.  

 

We then compared our results with protein abundance data available in ProteomicsDB [33] 

and found a good correlation in abundance across various organs. As it can be seen in Figure 

S5 in Supplementary Figures the highest correlation was found in salivary gland (R2 = 0.75) 

and the lowest one in ovary (R2 = 0.52). However, it should be noted that one of the datasets 

included in our analysis (dataset PXD010154) is also included in ProteomicsDB. 

Additionally, we also made a comparison between our protein abundance results and those 

found in a large study across multiple human organs using TMT-labelling method [3]. Figure 

S6 in Supplementary Figures shows the Pearson’s correlations of protein abundances 

between both studies, which was generally lower than in the case of ProteomicsDB data, 

ranging from 0.22 to 0.48 across various organs.  

 

In addition, we compared our results with protein abundances computed using antibody-

based methods, available in the Human Protein Atlas (HPA). Firstly, we performed a 
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qualitative analysis in which we compared the number of proteins identified in matching 

organs in our analysis with those proteins identified in the HPA. There were 30 organs that 

were in common between both studies (except for umbilical artery which was not available in 

HPA). The comparison results are shown in Figure S7 in Supplementary Figures. Our 

analysis shows that an average of 43.7% of all proteins identified in HPA were also present in 

our aggregated dataset, with the highest number of common identified proteins found in brain 

(50.4%) and the lowest number of proteins in common was in adipose tissue (27.2%). On the 

other hand, an average of 40.4% of proteins were only identified in our analysis and were not 

present in the results analysed in HPA. The largest and the lowest number of proteins that 

were identified only in our analysis were in adipose tissue (61.6%) and in testis (30.2%), 

respectively. Lastly, an average of 15.8% of the proteins were exclusive to HPA and not 

identified across any organs in our analysis. Of these proteins the largest HPA exclusive 

group of proteins was present in vermiform appendix (21.6%) and the lowest was found in 

adrenal gland (8.9%).  

 

We then compared protein abundances by first transforming the abundances in HPA into 

numerical bins. Protein abundance data from HPA are annotated in 3 categorical groups as 

‘Low’, ‘Medium’ and ‘High’, which, we converted into 3 numerical bins 1, 2, and 3 

respectively. For the purpose of this comparison, we re-binned our protein abundance data 

into just 3 categories: bins 1, 2, and 3 representing low, medium and high abundances, 

respectively (see ‘Methods’). To identify difference between noise and signal we calculated 

the randomised edit distance difference metric across all organs between the two studies (see 

Methods). The higher ‘randomised edit distance difference’ indicates that there is a difference 
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between signal and random noise. The randomised edit distance difference matrix (Figure S8 

in Supplementary Figures) shows that the randomised edit distance difference between 

organs within HPA are low (average randomised edit distance difference = 0.18) compared to 

that of organs within our study (average randomised edit distance difference = 0.43). This 

seems to suggest that the overall protein abundances generated in this study are less noisy 

than the abundance data available in HPA. 

The organ elevated proteome and the over-representative biological processes 

As explained in ‘Methods’, according to their abundances, canonical proteins were divided in 

three different groups according to their organ-specificity: “Organ-enriched”, “Group 

enriched” and “Mixed” (see Supplementary Table 5). We considered elevated canonical 

proteins those which were classified as an “Organ-enriched” or “Group enriched” instead of 

the “Mixed” group. The analysis (Figure 5A) showed that on average, 3.8% of the total 

elevated canonical proteins were organ group-specific. The highest ratio was found in the 

adrenal gland (9.3%), brain (7.5%) and liver (7.1%), and the lowest ratio in gall bladder 

(2.3%) and umbilical artery (0.1%). In addition, 0.4% of the total canonical proteins were 

unique organ-enriched. The highest ratio was found in brain (3.8%), cardiovascular system 

(1.4%) and liver (0.5%) and the lowest ratio (~0.1%) was found in tonsil and uterine 

endometrium.  

Then, we performed a Gene Ontology (GO) enrichment analysis using the GO terms related 

to biological processes for those canonical proteins that were “organ-enriched” and “group-

enriched”, is shown in Table 2. As a summary, 358 GO terms were found statistically 

significative across all organs (see Supplementary Table 6). The terms found were in 
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agreement with the known functions of the respective organs. The brain had the largest 

number of “organ-enriched” canonical proteins (457), among the biological processes 

associated stand out the regulatory function on membrane potential (GO:0042391), 

neurotransmitter transport (GO:0006836), modulation of chemical synaptic transmission 

(GO:0050804), regulation of trans-synaptic signalling (GO:0099177) and potassium ion 

transport (GO:0006813). The second organ with a greater number of “organ-enriched” 

canonical proteins was cardiovascular system (137). The enriched biological processes 

involved were related with striated muscle cell differentiation (GO:0051146), sarcomere 

organisation (GO:0045214), muscle structure development (GO:0061061) and regulation of 

myotube differentiation (GO:0010830). As expected, there were common GO terms that were 

shared between the organs, such as: detoxification of inorganic compound (GO:0061687) in 

liver and kidney, import across plasma membrane (GO:0098739) in kidney, brain and 

umbilical artery, processes involved in tissues with high cell division turnover like 

chromosome segregation (GO:0007059) in bone marrow and testis. 

Organ GO ID Description Adjusted p-value 

Adrenal gland GO:0031649 Heat generation 7.94*10-4 

Bone marrow GO:0034080 CENP-A containing nucleosome assembly 1.49*10-3 

Brain GO:0042391 Regulation of membrane potential 1.71*10-11 

Fallopian tube 
oviduct 

GO:0044782 Cilium organization 2.88*10-48 

Gallbladder GO:0017158 Regulation of calcium ion-dependent exocytosis 1.17*10-2 

Cardiovascular 
system (Heart) 

GO:0051146 Striated muscle cell differentiation 9.58*10-6 

Kidney GO:0046942 Carboxylic acid transport 4.81*10-16 

Liver GO:0097501 Stress response to metal ion 1.08*10-3 

Lung GO:0003002 Regionalization 8.83*10-3 

Lymph node GO:0002250 Adaptive immune response 1.93*10-4 

Ovary GO:0008544 Epidermis development 8.42*10-7 

Placenta GO:0044706 Multi-multicellular organism process 4.84*10-3 
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Testis GO:0048232 Male gamete generation 5.00*10-24 

Thyroid GO:0098742 Cell-cell adhesion via plasma-membrane adhesion 
molecules 

1.34*10-2 

Tonsil GO:0031424 Keratinization 3.20*10-5 

Umbilical artery GO:0001937 Negative regulation of endothelial cell proliferation 1.75*10-3 

 

Table 2. Analysis of the GO terms for each organ using the elevated organ-specific canonical 

proteins and group-specific as described in the ‘Methods’ section. 

 

Next, we performed a pathway-enrichment analysis using Reactome [35] to analyse canonical 

proteins that were “organ-enriched” and “group-enriched” (see Supplementary Table 7). The 

heatmap (Figure 5B) shows the statistically significant pathways, (p-value < 0.05) across the 

organs. The total number of pathways found in all the organs were 928, and the largest 

number of pathways was found in the brain with 67 pathways. The pathways found were 

consistent with the GO analysis and with the expected function in each organ. We observed a 

‘cell cycle’ cluster of over-represented pathways related to bone marrow and testis (R-HSA-

1640170 , R-HSA-69620, R-HSA-73886, R-HSA-2500257 and R-HSA-69618), expected in 

high cell turnover tissues, the digestion pathway (R-HSA-192456) in pancreas and stomach, a 

neuronal system cluster of pathways (R-HSA-112316) in the brain, and pathways related to 

the transport of small molecules (R-HSA-382551, R-HSA-425407, R-HSA-425393 and R-

HSA-425366) in kidney. 
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Figure 5. (A) Analysis of organ-specific canonical proteins. The analysis comprises the 

number of canonical proteins found in 31 organs, classified in three groups: “organ-

enriched”, “group enriched” and “group mixed”. (B) Pathway analysis of the over-

represented canonical proteins, showing the statistically significant representative pathways 

(p-value < 0.05) in 31 organs. In Panels (A) and (B), the term heart is used in a broader sense 

to mean cardiovascular system. 

 

Integration of results into Expression Atlas 

Protein abundance results from label-free experiments across various tissues were integrated 

into Expression Atlas. The abundances of each protein are represented in terms of their 

canonical gene symbols since Expression Atlas is designed as a gene-centric resource. 

Proteomics results can be accessed using the link www.ebi.ac.uk/gxa/experiments/E-PROT-

xx/Downloads (replacing xx with the corresponding identifier for each dataset). For each 

dataset, the raw unprocessed MaxQuant output files (proteinGroups.txt) are made available to 

download together with the input experimental parameters (mqpar.xml) to MaxQuant, as well 

as the metadata annotation file of each sample. We also provide a summary of the quality 
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assessment of the results. Supplementary File 8 provides a brief manual on how to access 

proteomics data in Expression Atlas. 

Discussion 

We here include a combined analysis of human baseline proteomics datasets representing 

baseline protein abundance across 67 healthy tissues grouped in 31 organs. This type of study 

has been enabled by the large amount of data in the public domain, as the proteomics 

community is now embracing open data policies. The large-scale availability of MS data in 

public databases such as PRIDE enables integrated metaanalyses of proteomics data covering 

a wide array of tissues and biological conditions. The main aim of our study was to provide a 

systems-wide baseline protein abundance catalogue across various tissues and organs, which 

could be used as a reference (especially to those non-experts in proteomics) and help to 

reduce redundant efforts of similar computationally expensive reanalyses.  

 

Unlike what was done in one previous study performed by us [22], and analogously to what 

we did with a more recent study performed using data generated from baseline rat and mouse 

tissues[23], here we analysed each dataset separately using the same software and the same 

search protein sequence database. The disadvantage of this approach is that the FDR 

statistical thresholds are applied at a dataset level and not to all datasets together as a whole, 

with the potential accumulation of false positives across datasets. However, this does not 

represent an issue in the case of proteins detected in common several datasets (in this 

particular study, at least 5 datasets will provide a protein FDR of less than 1%, Figure S1 in 

Supplementary Figures), since the number of commonly detected false positives is reduced in 

parallel with the increase in the number of common datasets where a given protein is 
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detected. This means that proteins that are only detected in a small number of datasets could 

potentially be false positives (considering the applied 1% FDR at the protein level), but that 

does not mean that they are. At that point, researchers should seek for confirmation of the 

existence of the protein (if that is their goal) via alternative sources as well.  Different 

reanalyses of some of the datasets used in this study, with different FDR calculation methods, 

have been published independently [56, 57]. 

 

In our view, the objective of integrating quantitative proteomics information with other omics 

data types (in this case transcriptomics) in resources used by non-proteomics researchers such 

as Expression Atlas is only feasible in a sustainable manner using a dataset per dataset 

analysis approach, at least at present. This enables that: (i) computing requirements for the 

reanalyses are realistic given the large volume of files included in the potentially very large-

combined datasets; (ii) interesting additional datasets could be added at a different time point 

without having to reanalyse all datasets together again; (iii) future updates in the results are 

more feasible to perform; and (iv) (semi)-automation of the reanalyses is achievable, making 

again these efforts more sustainable. We followed this same overall approach in the recent 

study we performed in mouse and rat tissues in baseline conditions [23]. Additionally, we 

compared our results with previous analogous studies performed in baseline tissue using MS 

and also the antibody-based data available in the HPA. These comparisons generated quite 

different results depending on each study.  

 

One of the major bottlenecks was, as reported before, the curation of dataset metadata, 

consisting in mapping files to samples and biological conditions. Detailed sample and donor 
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metadata is crucial for result reproducibility and we found detailed metadata available in 

PRIDE for just a handful of datasets. The required information either was inferred or were 

requested by contacting the respective study’s authors. If no responses were obtained, such 

datasets could not be considered for the reanalysis. Therefore, to aid reproducibility of results 

in the future, we need to improve the provision of metadata by data submitters. A format to 

enable that has been developed (the SDRF-Proteomics format, as part of the new MAGE-

TAB-Proteomics format), which can be submitted optionally to PRIDE [58]. We expect that 

it will become increasingly used for data submissions to PRIDE, once the right tooling is 

available and submitters have been educated appropriately. 

 

Another one of the major challenges in the reanalyses of a large number of proteomics 

datasets is the integration of results from different datasets since batch effects are inevitable. 

We used a rank-binned normalisation of abundances, which transformed protein abundances 

across datasets and samples to bins of 1 to 5. This approach is useful to reduce batch effects, 

although we acknowledge there is also loss of signal through this transformation. We also 

acknowledge that this method is not ideal in all circumstances, but in our view, it generally 

works better when compared to popular methods to reduce batch effects such as ComBat and 

Limma. Since our method computes protein abundances in terms of their canonical protein 

and gene identifiers, we acknowledge that using median of intensities to aggregate 

abundances over protein groups with isoforms coming from the same canonical protein may 

not represent the total dum of all proteins and may influence ranking during binning. 
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Although the combined dataset contains a higher representation of particular tissues 

(especially brain), we believe it represents the current state of the art with regard to public 

baseline human proteomics studies carried out in tissues. The analysis search strategy used in 

this study focused only on detecting known coding protein sequences, using the UniProt 

reference proteome, in the same way as performed in the original studies. Therefore, it was 

not possible to detect any Single Amino Acid Variants or equivalent isobaric combinations 

involving PTMs. However, the effect of this limitation in the analysis should be in our view, 

relatively small, because of the type of samples used in this study (healthy tissues) which did 

not involve e.g. tumour samples. The availability of the results through Expression Atlas 

enables the integration of mRNA and proteomics abundance information, offering an 

interface for researchers to access this type of information. The next step will be the 

integration of datasets in the differential part of Expression Atlas. The work required is more 

complex there at different levels, including the downstream statistical differential analysis. 

Also, availability of the mapping between the channels (e.g. in TMT, SILAC experiments) 

and the samples is very rare at present. In parallel, work has also started in integrating in 

Expression Atlas proteomics data generated using Data Independent Acquisition (DIA) 

approaches [59].  

 

The generated baseline protein abundance data can be used with different purposes. For 

instance, quantitative proteomics data can be used for the generation of co-expression 

networks and/or the inference of protein complexes. Protein abundance data could also be 

used to potentially refine the recently developed AlphaFold-based protein complexes 

predictions [60]. Additionally, it is possible to use artificial intelligence approaches to impute 
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protein abundance values using calculated abundance values as training data [61]. It would 

also be possible to perform expression correlation studies between gene and protein 

expression information. However, this type of studies can only be performed optimally if the 

same samples are analysed by both techniques, as reported in the original publication for 

dataset PXD010154 [36]. It should also be highlighted that a growing number of studies are 

using non-MS based proteomics techniques such as the use of affinity reagents (e.g. the 

Olink® and Somalogic® platforms), due to the increased throughput that they can provide. 

Initial studies are being performed to compare these with MS approaches. 

 

In conclusion the results presented here represent a large-scale meta-analysis of public human 

baseline proteomics datasets. We also show the challenges in this kind of analyses, providing 

a roadmap for such future studies.  
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Supplementary Table 4: Table showing the comparison of protein and peptide identification 
numbers across various datasets with the reported ones in their respective original 
publications. 

Supplementary Table 5: ‘Organ-enriched’ and ‘Group-enriched’ elevated proteomes in 
various organs. 

Supplementary Table 6: Gene Ontology enrichment analysis of ‘organ-enriched’ and 
‘group-enriched’ proteins. 

Supplementary Table 7: Reactome pathway-enrichment analysis of “organ-enriched” and 
“group-enriched” proteins. 

Supplementary File 8: Tutorial on how to browse proteomics abundance data in Expression 
Atlas. 

Supplementary Figures: Supplementary figures of ComBat and Limma normalisation 
methods and comparison of the results with previous studies. 
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