

1 The *Pogonomyrmex californicus* social niche polymorphism is a
2 polygenic trait involving a young supergene

3
4 Mohammed Errabii¹, Ulrich R. Ernst^{1,§}, Aparna Lajmi², Eyal Privman², Jürgen Gadau^{1,†}, Lukas
5 Schrader^{1,‡}

6
7
8 ¹: Molecular Evolution and Sociobiology Group, Institute for Evolution & Biodiversity, University of
9 Münster, Hüfferstr. 1, DE-48149 Münster, Germany

10
11 ²: Department of Evolutionary and Environmental Biology, Institute of Evolution, University of Haifa,
12 Haifa, Israel

13
14 [‡]: equal contribution

15
16 [§]: current address: Apicultural State Institute, University of Hohenheim, August-von-Hartmann-Str.
17 13, DE-70599 Stuttgart, Germany

18
19 *Corresponding authors: Lukas Schrader, Jürgen Gadau
20 Email: lukas.schrader@uni-muenster.de; gadauj@uni-muenster.de

21
22
23 **Keywords:** **haplometrosis, pleometrosis, colony founding, supergene, social niche**
24 polymorphism, polygenic trait, *Pogonomyrmex*

26 **Abstract**

27 Social insects vary considerably in their social organization both between and within species. In
28 the California harvester ant, *Pogonomyrmex californicus* (Buckley 1867), colonies are commonly
29 founded and headed by a single queen (haplometrosis, primary monogyny). However, in some
30 populations in California (USA), unrelated queens cooperate not only during founding
31 (pleometrosis) but throughout the life of the colony (primary polygyny). The genetic architecture
32 and evolutionary dynamics of this complex social niche polymorphism (haplometrosis vs
33 pleometrosis) have remained unknown. Here, we provide a first analysis of its genomic basis and
34 evolutionary history. We discover a recently evolved (< 200 k years), 8 Mb non-recombining region
35 segregating with the observed social niche polymorphism, showing characteristics of a supergene
36 comparable to those underlying social polymorphisms in other ant species. However, we also find
37 remarkable differences to the other so far described social supergenes. Particularly, four additional
38 genomic regions not in linkage with the supergene show signatures of a selective sweep in the
39 pleometrotic population. Within these regions, we find for example genes crucial for epigenetic
40 regulation via histone modification (*chameau*) and DNA methylation (*dnmt1*). Our results suggest
41 that social morph in this species is a polygenic trait including an incipient supergene that evolved
42 less than 200 000 years ago.

43

44

45 **Introduction**

46 Colonies of social Hymenoptera are led by a single (monogyny) or multiple reproductive females
47 (polygyny) (Boomsma et al., 2014; Hölldobler and Wilson, 1977; Wilson, 1971). Such variations of
48 social structure are suggested to have an adaptive value in certain conditions (Hölldobler and
49 Wilson, 1977; Keller, 1993), and are conceptualized as alternative “social niches”, i.e. “the set of
50 social environments in which the focal individual has non-zero inclusive fitness” (Saltz et al., 2016).
51 In ants, species are often considered to be either monogynous or polygynous, but more and more cases
52 of intraspecific variability in social organization have been described (e.g. multiple *Formica* and
53 *Myrmica* species (Seppä et al., 1995), *Solenopsis invicta* (Fletcher, 1983; Ross et al., 2007),
54 *Messor pergandei* (Helms et al., 2013), *Pogonomyrmex californicus* (Overson et al., 2016),
55 *Leptothorax acervorum* (Gill et al., 2009) and *L. longispinosus* (Herbers, 1986)).

56 Species that show intraspecific variation in social organization are ideal to study the genomic
57 architecture and evolutionary dynamics underlying complex trait polymorphisms. Recent population
58 genomic studies in *Solenopsis* fire ants (Wang et al., 2013; Yan et al., 2020) and *Formica* wood
59 ants (Brelsford et al., 2020; Purcell et al., 2021, 2014) have provided significant insights into the
60 origin, evolution, and geographic distribution of social variants in these species. Importantly, these
61 studies led to the discovery of convergently evolved supergenes, i.e. genomic regions containing
62 clusters of linked loci (Schwander et al., 2014), underlying social niche polymorphisms in these
63 species. Suppression of recombination in these supergenes drives the evolution of two or more
64 diverged haplotype groups, similar to the X and Y haplotypes of sex chromosomes. Such genomic
65 architecture facilitates the evolution and maintenance of complex trait polymorphisms (e.g.
66 Brelsford et al., 2020; Hohenlohe et al., 2010; Joron et al., 2006; Matschiner et al., 2021; Nadeau
67 et al., 2012). In *Solenopsis* fire ants, monogynous queens are homozygous for the supergene SB
68 haplotype, whereas polygynous queens are heterozygous SB/Sb (Keller and Ross, 1998; Ross and
69 Keller, 1998). Homozygous Sb/Sb queens on the other hand, almost never reach reproductive
70 maturity (Keller and Ross, 1998). Conversely, in *Formica* species, monogynous queens are always
71 Sm/Sm homozygous, whereas polygynous queens can be either Sm/Sp or Sp/Sp (Avril et al., 2019;
72 Purcell et al., 2014).

73 The California harvester ant *Pogonomyrmex californicus* (Buckley, 1867) occurs throughout the
74 Southwestern USA and Northwestern Mexico (Johnson, 2002) and varies in terms of monogyny
75 and polygyny, with primary monogyny as the predominant social organization (Johnson, 2004). In
76 contrast to *Solenopsis* and *Formica* species, this variation is based on differences in colony
77 founding strategy, i.e. haplometrosis (queens found a colony alone, “primary monogyny”) vs
78 pleometrosis (multiple queens found a colony together, “primary polygyny”) (Haney and Fewell,
79 2018; Johnson, 2004; Overson et al., 2016; Rissing et al., 2000), and not re-adoption of queens or
80 colony budding (Glancey and Lofgren, 1988; Rosengren et al., 1993).

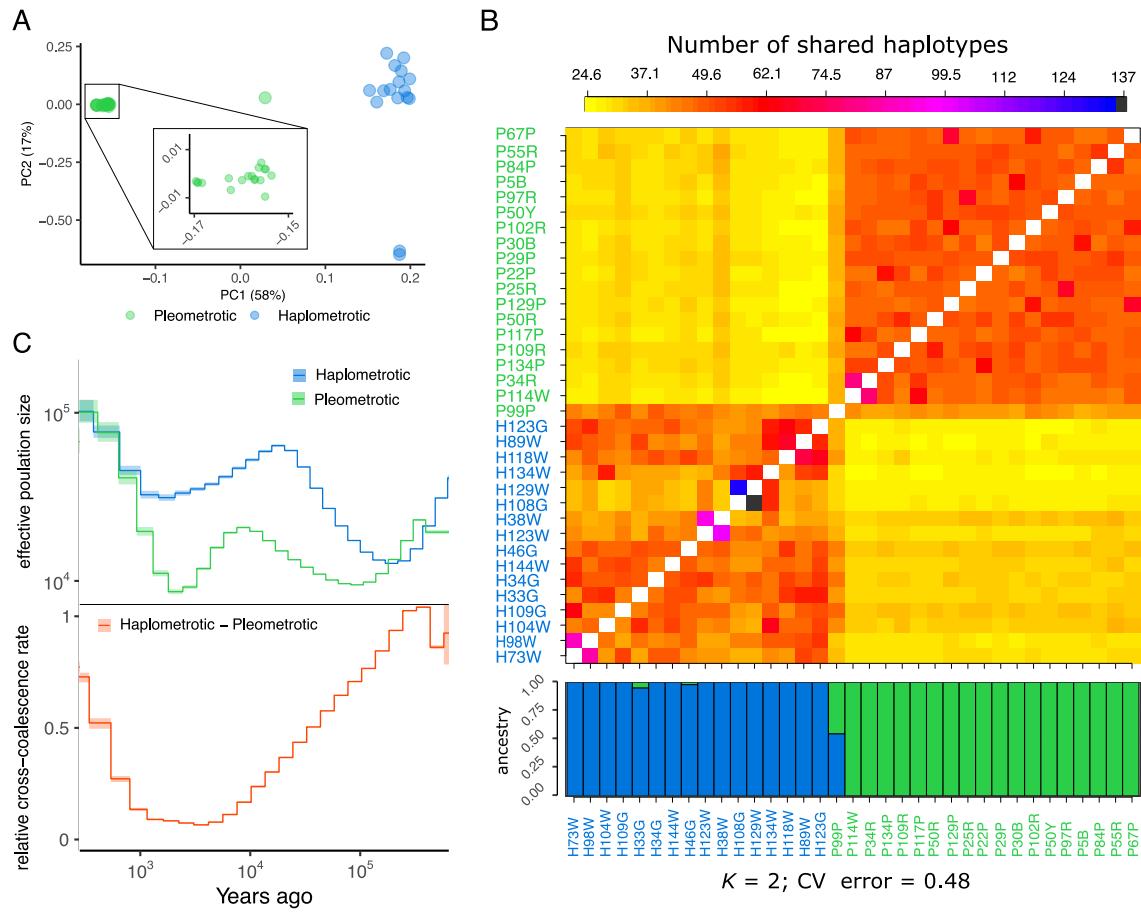
81 Haney and Fewell (Haney and Fewell, 2018) found that higher colony densities and lower resource
82 availabilities, i.e. harsher conditions, correlate with the frequency of pleometrosis and polygyny in
83 *P. californicus*, suggesting that different social niches (haplo- and pleometrosis) are adaptations to
84 different ecological niches. Hence, *P. californicus* queens construct their social niche (Saltz et al.,
85 2016) during colony founding through social interactions (Clark and Fewell, 2014; Overson et al.,
86 2014), analogous to ecological niche construction where organisms adaptively shape their
87 environmental conditions (Odling-Smee et al., 1996; Saltz, 2011; Saltz and Nuzhdin, 2014).

88 In this study, we analyzed the genomic architecture, population dynamics, and evolutionary history
89 of the social niche polymorphism in *P. californicus*, by comparing individuals from two populations
90 in Southern California that are almost fixed for either haplometrosis (H-population) or pleometrosis
91 (P-population) (Overson et al., 2014; Rissing et al., 2000). We identify a non-recombining region of
92 ca. 8 Mb that segregates with the observed polymorphism, showing all characteristics of a
93 supergene comparable to the ones underlying previously described social niche polymorphisms in
94 ants (Wang et al. 2013, Purcell et al. 2014). However, unlike in *Solenopsis* and *Formica* we also
95 find signatures of selective sweeps in the pleometrotic population outside the non-recombining
96 region, suggesting that the social niche polymorphism in *P. californicus* is a polygenic trait involving
97 not only a relatively young supergene, but also additional unlinked modifier loci.

98

99 **Results**

100 *Pogonomyrmex californicus* genome assembly


101 To improve the available fragmented genome assembly, we combined minION long-read
102 sequencing and 10X sequencing (Bohn et al., 2021) of pleometrotic individuals to produce a highly
103 contiguous reference genome assembly for *P. californicus*. The assembly spans 252.3 Mb across
104 199 scaffolds (N50 = 10.4 Mb, largest scaffold 20.75 Mb). We recovered 98.5% complete BUSCOs
105 (S:97.8%,D:0.7%,F:1.1%,M:0.4%,n:4415), suggesting a nearly complete genome assembly.
106 Genome annotation identified 22.79% repetitive sequences and 15,899 protein coding genes,
107 resembling repeat and gene contents reported for other published ant genomes (Boomsma et al.,
108 2017) (Dataset S1).

109

110 *The haplometrotic and pleometrotic populations are genetically distinct*

111 For our population genomic analyses, we performed whole genome sequencing of 35 founding
112 queens (19 from the P-population and 16 from the H-population) that were tested for their founding
113 behavior (haplo- or pleometrotic; Supplemental file, Table S1) in standardized sandwich assays
114 (Clark and Fewell, 2014). Principal Component Analyses (PCA) using 314,756 SNPs clearly
115 separated queens of the two populations (Figure 1A and Supplemental file, Figure S1). Further,
116 the PCA suggested higher genetic diversity in the H-population compared to the P-population. One
117 founding queen (P99P) collected from the P-population was positioned exactly between both
118 populations in the PCA (Figure 1A), likely representing an F1 hybrid between a haplo- and a
119 pleometrotic individual.

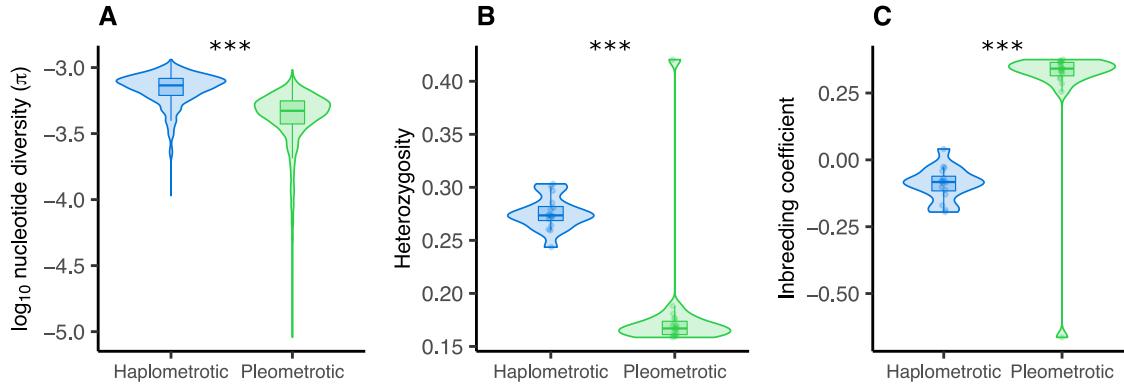
120 A detailed analysis of coancestry showed that queens share more haplotypes in within-population
121 pairs than in between-population pairs (Figure 1B). Consistent with an ongoing admixture between
122 the two populations, we found significant between-population haplotype-sharing in some
123 individuals (e.g. P99P and H38W) corroborated by ADMIXTURE analyses (Figure 1B and
124 Supplemental file, Figure S2).

125

126 **Figure 1. Population structure and demographic history in *P. californicus* populations.** (A) 127 Principal Component Analysis based on genome-wide SNP data of queens of the pleometrotic and 128 haplometrotic populations (a scatterplot matrix showing four principal components can be found in 129 Supplemental file, Figure S1). (B) fineSTRUCTURE coancestry heatmap showing the number of 130 shared haplotypes between donor (columns) and recipient (rows) queen pairs. ADMIXTURE plot 131 below the heatmap shows patterns of ancestry among populations of *P. californicus* at $k=2$ 132 (additional k values can be found in Supplemental file, Figure S2). Note that one queen (P99P) is 133 an apparent hybrid between the two populations. (C) Demographic history in *P. californicus* 134 computed using MSMC2 with eight phased haplotypes (i.e., four queens), representing the 135 pleometrotic and haplometrotic populations. Effective population size (N_e) is displayed in the top 136 panel and the relative cross-coalescence rate (rCCR) in the lower panel. Lines and shaded areas 137 are means and 95% confidence intervals, respectively.

138

139 Gene flow between the H- and P-populations is a recent phenomenon


140 We used MSMC2 (Schiffels and Wang, 2020) to reconstruct the demographic history of the P- and
141 H-populations (Figure 1C). Both populations showed a similar trajectory with a zigzag-like pattern
142 in effective population size (N_e) between approximately 500,000 to 400 years ago, indicative of two
143 separate bottlenecks: an ancient one about 400,000 until about 150,000 years ago and a recent
144 one between 15,000 to roughly 2,000 years ago. Following the first bottleneck, N_e consistently
145 remained smaller in the pleometrotic population until between 2,000 and 400 years ago, when N_e
146 started to increase again in both populations, reaching similarly high estimates in recent times.

147 We also inferred how these populations separated over time by estimating relative cross-
148 coalescence (rCCR) (Schiffels and Durbin, 2014) and found that the two populations started
149 diverging during the first bottleneck at ~300,000 years ago (Figure 1C). Around 5,000 years ago,
150 both populations were almost completely isolated (rCCR ≈ 0) but between 2,000 and 400 years
151 ago, rCCR increased rapidly, suggesting a growing genetic exchange, coinciding with population
152 expansions in both populations. This predicted recent gene flow is corroborated by evidence of
153 recent genetic admixture (Figures 1A and 1B).

154 Genetic diversity is significantly lower in the pleometrotic population

155 The P-population is genetically less variable than the H-population based on genome-wide
156 nucleotide diversity (π) and heterozygosity (Figures 2A and 2B). Both estimates were significantly
157 lower in the P- (median $\pi = 4.71\text{e-}4$, median het = 0.167) compared to the H-population (median π
158 = $7.33\text{e-}4$, median het = 0.274) (Figures 2A and 2B; π : Wilcoxon test: $W = 3497100$, $p < 2.2\text{e-}16$;
159 het: Wilcoxon test: $W = 288$, $p = 4.507\text{e-}07$). Accordingly, inbreeding was highly prevalent in the P-
160 population (median = 0.341), but absent in the H-population (median = -0.083) (Figure 2C;
161 Wilcoxon test: $W = 16$, $p = 4.507\text{e-}07$). Such genome-wide reductions of diversity in the
162 pleometrotic population could be explained by a population bottleneck (founder effect), concordant
163 with an overall positive Tajima's D in both populations (Supplemental file, Figure S3). This pattern
164 is consistent with the repeated colonization and extinction of ephemeral habitats by *P. californicus*.

165

166

167

168

169

170

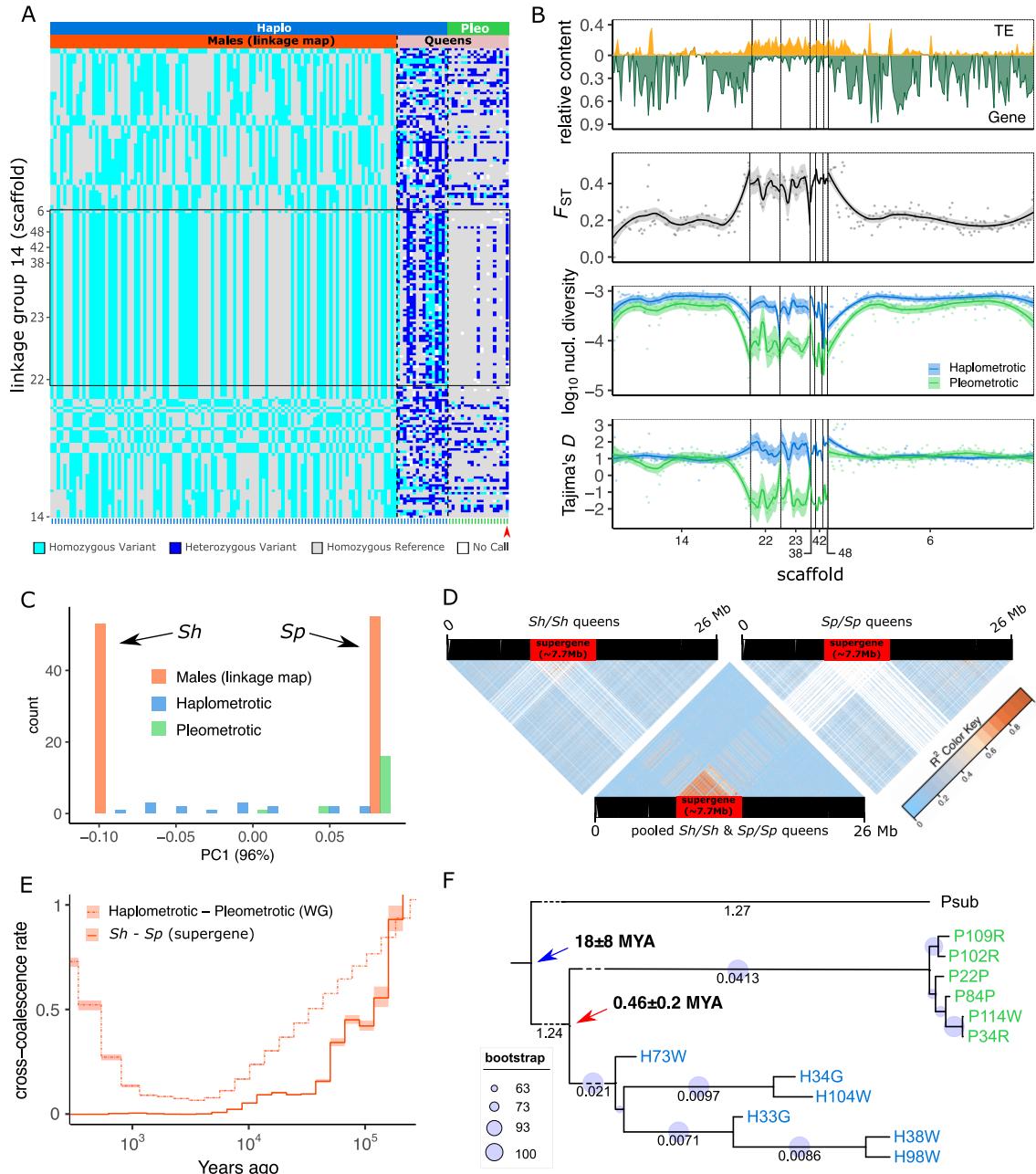

171

Figure 2. Higher Inbreeding and lower heterozygosity in the pleometrotic population. (A) Nucleotide diversity (π), (B) heterozygosity and (C) inbreeding coefficient in the haplometrotic (blue) and pleometrotic (green) populations. Heterozygosity and inbreeding coefficient were calculated on a per individual basis, while π estimates were calculated from 100-kb non-overlapping windows across the genome and averaged for each population. ***: P < 0.0001.

172 The social polymorphism in *P. californicus* is a polygenic trait involving a supergene

173 Genome scans uncovered two scaffolds (22 and 23) that showed a very distinct pattern from the
174 rest of the genome. Both scaffolds had high levels of genetic differentiation between the two social
175 morphs, reduced nucleotide diversity, negative Tajima's D , as well as very high extended haplotype
176 scores ($xpEHH$) in the pleometrotic population (Supplemental file, Figure S4). Further analyses
177 revealed that SNPs were in high linkage disequilibrium (LD), with little to no LD decay in these
178 scaffolds (Supplemental file, Figure S5).

179 Linkage analysis on 108 haploid males from a monogynous colony belonging to the H-population
180 using 2,980 ddRAD markers (double-digest Restriction-site Associated DNA sequencing) with no
181 missing data put all markers in 29 Linkage groups (data not shown). The supergene was found in
182 linkage group 14 (339 RAD markers, 255 cM over 26 Mb; Figure 3A) and included scaffolds 22 and
183 23 as well as three other small scaffolds. This ~8 Mb region contains 69 mapped markers in
184 complete linkage (Supplemental file, Figure S6). Hence, this is a non-recombining region co-
185 segregating with our social polymorphism, spanning across five complete physical scaffolds (22,
186 23, 38, 42, 48), and parts of scaffolds 6 and 14 (Supplemental file, Table S2). Visual inspection of
187 182 markers from both males and queens showed that distinct haplotypes extended along the
188 entire region, indicating absence of recombination (Figure 3A) across at least ~8 Mb, consistent
189 with patterns described for the supergenes in *Solenopsis* and *Formica* ants of non-recombining
190 regions of ~13 and ~10 Mb, respectively (Brelsford et al., 2020; Purcell et al., 2014; Wang et al.,
191 2013). Dense population genomic data using 5,363 SNPs genotyped across all 35 queens further
192 confirmed this finding (Supplemental file, Figure S7).

193

194

Figure 3. Genomic architecture and recombination rates at linkage group (LG) 14 harboring a putative supergene. (A) Genotypes for 108 sons from a single monogynous queen (haplometrotic population) based on RADseq markers and for the 35 queen samples from the pleometrotic and haplometrotic populations based on sites corresponding to RADseq markers from the whole genome resequencing data. Each row shows a SNP marker (182 in total) distributed across seven scaffolds on LG14. Columns (green ticks at the bottom for pleometrotic and blue ticks for haplometrotic) represent individual samples grouped by population (pleometrotic and haplometrotic) and dataset (males and queens). The black rectangle highlights the non-recombining putative supergene region, spanning scaffolds 22, 23, 38, 42, 48 and parts of scaffolds 6 and 14. Red arrowhead indicates the hybrid pleometrotic queen (P99P). (B) Sliding window analyses of LG14, showing (from top to bottom) the relative TE and gene content, genetic differentiation between populations (F_{ST}), nucleotide diversity (π) and Tajima's D estimates in the

206 pleometrotic (green) and haplometrotic (blue) populations. (C) Principal Component Analysis (PC1;
207 96%) based on 69 markers spanning the supergene region showing that the 108 male haplotypes
208 are either Sh (negative PC1 scores) or Sp (positive PC1 scores). Diploid queens on the other hand
209 are either homozygous for the Sp allele (most of pleometrotic queens, green bars) or heterozygous
210 Sh/Sp (most of the haplometrotic queens, blue bars). (D) Linkage disequilibrium (LD) estimates (r^2)
211 across LG 14 for Sh homozygous queens (n=6), pooled queens homozygous for Sh (n=6) and Sp
212 (n=6), and Sp homozygous queens only (n=6). The red rectangle shows the region of no
213 recombination between the Sh and Sp haplotypes. SNPs are ordered according to physical position
214 on the chromosome after lift over. Note that invariant marker sites are displayed in white,
215 dominating particularly the homozygous Sh/Sh and Sp/Sp LD plots. (E) Demographic history of the
216 supergene computed using MSMC2 with queens homozygous for the Sh (n=4) and Sp (n=4)
217 alleles. The solid line shows the relative cross-coalescence rate (rCCR) at the supergene, while
218 the dash-dotted line gives the genome-wide rCCR estimates. Lines and shaded areas are means
219 and 95% confidence intervals, respectively. (F) Maximum-likelihood (ML) tree for the supergene
220 region using 33,424 SNPs and *P. subnitidus* as outgroup species. Small branch length values at
221 the tips of the tree were omitted for ease of visualization (Newick tree can be found in Dataset S6).
222 The blue arrow indicates the upper bond estimate for the speciation of *P. subnitidus* and *P. californicus* 18 MYA (95% HPD ± 8). The red arrow indicates the upper bond estimate for the
223 formation of the Sh–Sp haplotype groups 0.46 (95% HPD ± 0.2) MYA.
224
225

226 Similar to the pattern described for the supergenes in *Solenopsis* and *Formica*, transposable
227 element (TE) content in the *P. californicus* non-recombining region was significantly increased
228 (Wilcoxon test: $W = 14448$, $p < 2.2\text{e-}16$), whereas exon content was significantly reduced compared
229 to the rest of the same linkage group (Figure 3B and Supplemental file, Figure S8A; Wilcoxon test:
230 $W = 1602.5$, $p < 2.2\text{e-}16$). This is consistent with the prediction that TEs accumulate in regions of
231 low recombination (Dolgin and Charlesworth, 2008; Kent et al., 2017). Further, genetic
232 differentiation as measured by F_{ST} between the H- and P-population was significantly increased in
233 the supergene compared to the rest of the linkage group (Figure 3B and Supplemental file, Figure
234 S8B; Wilcoxon test: $W = 12261$, $p < 2.2\text{e-}16$). Additionally, nucleotide diversity and Tajima's D in
235 this region were significantly reduced in the pleometrotic population (Figure 3B and Supplemental
236 file, Figures S8C and S7D; Kruskal–Wallis rank sum test _{nucleotide diversity}, $\chi^2 = 254.77$, $df = 3$, $p <$
237 $2.2\text{e-}16$; Kruskal–Wallis rank sum test _{Tajima's D} , $\chi^2 = 177.81$, $df = 3$, $p < 2.2\text{e-}16$; results of pairwise
238 Wilcoxon rank sum *post hoc* tests are displayed in the figure). Finally, 156 expressed transcripts
239 from a previously published RNA-seq dataset (Helmkampf et al., 2016) mapped to the supergene.
240 13 of those transcripts (8.3 %) were reported to be significantly associated with aggression
241 depending on the social context of the queens (no significant enrichment, Dataset S2).

242 PCA on 69 markers along this region showed that PC1, which explains 96% of the variation,
243 separates the male dataset of our mapping population into two distinct clusters, which we labeled
244 as the Sh and Sp haplotype groups, indicating that these males are the progeny of a heterozygous
245 Sh/Sp mother queen (Figure 3C and Supplemental file, Figure S9). Superimposing SNP data from
246 H- and P-queens to the PCA revealed that all but two pleometrotic queens (besides the hybrid
247 queen) were homozygous for the Sp allele, while most haplometrotic queens were either
248 heterozygous (Sh/Sp) or homozygous for the Sh allele (Figure 3C and Supplemental file, Figure
249 S9). Further support for the suppression of recombination between Sh and Sp alleles came from
250 LD analyses across queens. Along the region, there was strong LD in a mixed pool of Sh/Sh and
251 Sp/Sp queens as well as heterozygous Sh/Sp, but not in separate pools of Sh/Sh queens or Sp/Sp
252 queens (Figure 3D and Supplemental file, Figure S10), indicating recombination in homozygous,
253 but not in heterozygous queens. Such suppression of recombination in heterozygotes is a common

254 characteristic of supergenes (Charlesworth, 2016; Schwander et al., 2014; Wang et al., 2013; Yan
255 et al., 2020). Taken together, these data indicate the presence of an ~8 Mb non-recombining
256 supergene with two major haplotypes (Sh and Sp) in the two populations of *P. californicus*,
257 segregating with the social niche polymorphism in colony founding. Unlike other social supergene
258 systems (e.g. in *Solenopsis*) (Ross et al., 2007), there were no deviations from Hardy-Weinberg
259 equilibrium (HWE) regarding the frequency of Sh/Sh, Sh/Sp and Sp/Sp genotypes at the supergene
260 locus in either population (pleometrotic: χ^2 (df = 1, N = 19) = 0.1396, p = 0.713; haplometrotic: χ^2
261 (df = 1, N = 16) = 0.0711, p = 0.789) (Supplemental file, Table S3).

262 Coalescence modelling revealed that the demographic histories of the supergene and the rest of
263 the genome only diverged within the last 2,000 years. Since then, cross-coalescence quickly
264 increased across the genome, consistent with a secondary onset of gene flow between H- and P-
265 populations, while remaining nearly zero in the supergene (Figure 3E). These findings suggest that
266 Sh and Sp haplotypes initially diverged due to allopatric separation during the isolation period of
267 the H- and P-population between approximately 200,000 and 5,000 years ago. During this period,
268 one or multiple mutations suppressing recombination between Sh and Sp likely occurred (e.g.
269 inversions), rendering the two haplotypes isolated, despite the admixture between the two
270 populations. Consistent with a very recent origin of the supergene, phylogenetic analysis of Sh and
271 Sp alleles with *P. subnitidus* as outgroup (which occurs in sympatry with *P. californicus*) showed
272 that Sh and Sp diverged less than 0.46 (95% highest probability density (HPD) 0.26-0.66) MYA
273 (Figure 3F).

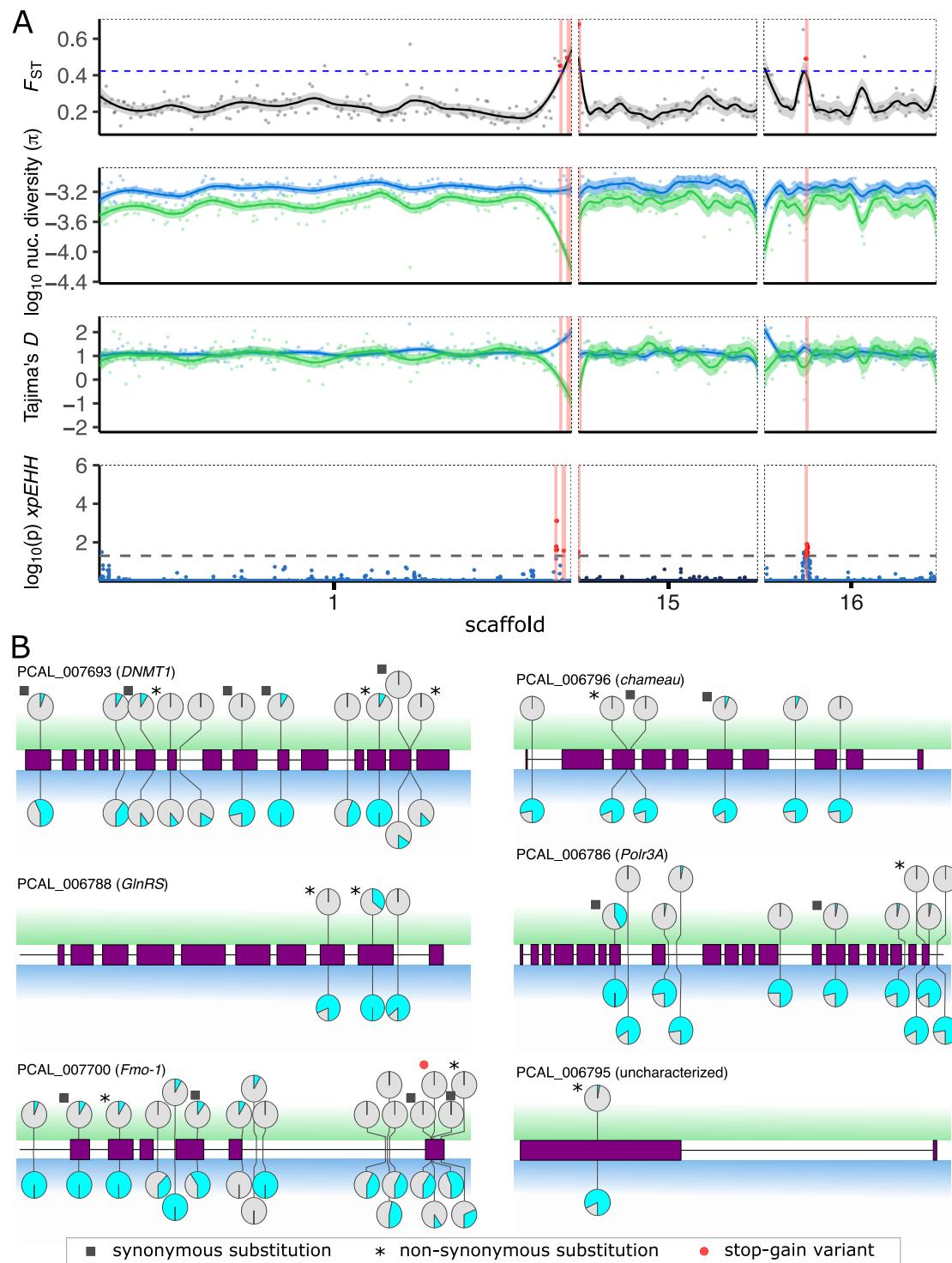
274 In addition to the supergene region, our genome scans revealed several regions under divergent
275 selection between H- and P-queens. We first identified highly differentiated (outlier) regions by
276 estimating F_{ST} in 100 kb non-overlapping windows across the genome (Supplemental file, Figures
277 S4 and S11) and subsequently compared estimates of Tajima's *D* and nucleotide diversity in the
278 two populations to identify signatures of selective sweeps (Supplemental file, Figure S4). After
279 clustering adjacent windows, we retained 51 clusters with negative Tajima's *D* and reduced
280 nucleotide diversity consistent with signatures of selective sweeps, of which 49 showed signatures

281 of positive selection in the P-population and two in the H-population (Dataset S3). Cross-population
282 extended haplotype homozygosity (*xpEHH*) tests (Sabeti et al., 2007) (Supplemental file, Figure
283 S4) identified 340 outlier SNPs in 32 genomic locations under selection (Dataset S4). Overlapping
284 both analyses resulted in 17 remaining candidate regions under selection in the P-population
285 (Supplemental file, Table S4). Exonic SNPs in all 17 candidate regions included 70 synonymous
286 changes and 73 non-synonymous variants affecting the protein sequence (Table 1).

287

288 **Table 1.** Effects of single nucleotide polymorphisms (SNPs) found in candidate regions that show
289 strong signatures of selection in the pleometrotic population. We annotated 6,077 putative effects
290 on protein coding genes of 3,347 SNPs.
291

Effect	Count	Proportion [%]
3'UTR	13	0.21
5'UTR	1	0.02
Downstream	1391	22.89
Intergenic	3022	49.73
Intron	181	2.98
Nonsynonymous variant	73	1.20
Synonymous variant	70	1.15
Upstream	1319	21.70
Other	7	0.12


292

293

294 Intriguingly, the supergene contained 12 of these 17 regions (on scaffolds 14, 22 and 23). The
295 remaining five regions showing clear signatures of selective sweeps in the P-population were
296 clustered on scaffolds 1, 9, 15, and 16 (Supplemental file, Figure S4). These regions could initially
297 not be placed into a linkage group due to the lack of ddRAD markers. To exclude regions potentially
298 in linkage with the supergene, we constructed a relaxed linkage map with 11,986 (instead of 2,980)
299 leniently filtered ddRAD markers ($MAF \geq 0.4$ and 30% missingness). In this map, one of the
300 candidate regions (scaffold 9) was contained in the supergene. The four remaining regions on
301 scaffolds 1, 15 and 16 (Figure 4A), were placed into three different linkage groups, indicating that
302 these regions are independent of the supergene.

303 Among the 48 genes in these four remaining regions, 34 are likely functional as they are not
304 encoding TE proteins, are expressed, or homologous to other known insect proteins (Dataset S5).
305 Six of these 34 genes are particularly promising candidates to sustain the social niche
306 polymorphism, as they carry non-synonymous variants with a nearly perfect association of
307 phenotype and genotype, in that >90% of haplometrotic individuals carry the alternative and >90%
308 of pleometrotic individuals carry the reference allele (Figure 4B). Further, regions harboring the six
309 genes exhibit *EHHS* scores revealing a pattern of increased extended haplotype homozygosity in
310 the pleometrotic population (Supplemental file, Figure S12), suggesting selective sweeps.

311 Visual inspection of variant positions showed that the most common pattern for all six genes is that
312 pleometrotic queens are fixed for the reference allele (except for the hybrid P99P queen), while
313 haplometrotic queens are either heterozygous or homozygous for alternate alleles (Supplemental
314 file, Figures S13A-S13F), which is indeed consistent with a selective sweep fixing the reference
315 allele in the P-population.

324 These regions are highly differentiated, have reduced diversity and Tajima's *D* in the pleometrotic
325 population and show a significant *xpEHH* peak. Lines and shaded areas are means and 95%
326 confidence intervals, respectively. Data for other scaffolds (1-25) are shown in Supplemental file,
327 Figure S4. (B) Lollipop plots showing all variants affecting each of the six candidate genes (gene
328 models in purple). The pie charts display frequencies of the reference (grey) and alternate (cyan)
329 alleles in the pleometrotic (top; green background) and haplometrotic population (bottom; blue
330 background).

331 Apart from one uncharacterized protein (PCAL_006795) without functional annotation, the
332 candidates encode evolutionarily well conserved proteins with functionally characterized orthologs
333 in *D. melanogaster*. PCAL_006788 is orthologous to *GlnRS* (FBgn0027090), which encodes a
334 tRNA synthetase involved in neurogenesis (Chihara et al., 2007). PCAL_006786 encodes an RNA
335 polymerase III, orthologous to the transcriptional regulator *Polr3A* (FBgn0030687). PCAL_007700
336 encodes a flavin-containing monooxygenase homologous to *Drosophila Fmo-1* (FBgn0034943)
337 and *Fmo-2* (FBgn0033079), which are suspected to be involved in xenobiotic detoxification and
338 ageing (Rossner et al., 2017). The two remaining genes PCAL_006796 and PCAL_007693
339 particularly caught our attention, as they are orthologs of genes involved in epigenetic regulation of
340 transcriptional activity. PCAL_006796 encodes *chameau* (ortholog to FBgn0028387), a MYST
341 histone acetyl transferase involved in transcriptional regulation via histone modification (Carrozza
342 et al., 2003). PCAL_007693 encodes *DNMT1* (which was lost in Diptera), the principal methyl
343 transferase in invertebrates for epigenetic regulation via DNA methylation (Lyko, 2018). While these
344 candidates suggest that epigenetic transcriptional regulation modulates the social niche
345 polymorphisms in *P. californicus*, in-depth functional studies will be necessary to explore how
346 *chameau* or *DNMT1* are indeed involved in the expression of haplo- and pleometrosis.

347

348 **Discussion**

349 The social niche polymorphism (Saltz et al., 2016) in colony founding of *P. californicus* was first
350 reported over 20 years ago (Rissing et al., 2000). This polymorphism arises from differences in the
351 social interaction among founding queens, which will eventually lead to fundamentally different
352 colony structures, where either unrelated queens cooperate (i.e. primary polygyny) or a single
353 queen monopolizes reproduction (i.e. primary monogyny) (Overson et al., 2016). The principal
354 change underlying the emergence of pleometrosis in *P. californicus* is hence the evolution of a
355 lifelong tolerance for unrelated co-founding queens. Given that the majority of North American
356 *Pogonomyrmex sensu stricto* are primarily monogynous, pleometrosis is likely a derived trait,
357 adaptive under resource limitation and increased territorial conflicts (Haney and Fewell, 2018).
358 Since its original description, we have learned a lot about behavioral, physiological, ecological, and
359 socio- genetic correlates of haplo- and pleometrosis (Clark and Fewell, 2014; Haney and Fewell,
360 2018; Johnson, 2004, 2002; Overson et al., 2016, 2014; Shaffer et al., 2016). However, the
361 genomic architecture and evolutionary history was unknown.

362 Our study reveals that the social polymorphism in *P. californicus* is associated with an
363 approximately 8 Mb non-recombining region, reminiscent of social supergenes described for social
364 polymorphisms in *Solenopsis* fire ants (Wang et al., 2013) and *Formica* wood ants (Purcell et al.,
365 2014). However, we also find genomic, population genetic, and ecological characteristics unique
366 to the *Pogonomyrmex* system, highlighting the independent evolutionary histories of the social
367 niche polymorphism in *Pogonomyrmex*, *Formica* and *Solenopsis*. These differences could possibly
368 relate to the *Pogonomyrmex* supergene being much younger (*Pogonomyrmex*: ~0.2 MYA,
369 *Solenopsis*: 0.39–1.1 MYA (Cohen and Privman, 2020; Wang et al., 2013; Yan et al., 2020) and
370 *Formica*: 20–40 M years (Brelsford et al., 2020)).

371 Our analyses provide several lines of evidence that the 8 Mb non-recombining region is indeed a
372 supergene. This region is similar in size to the supergenes in *Formica* and *Solenopsis* (8 Mb vs. 11
373 and 12.7 Mb). According to estimates of F_{ST} , genetic divergence between individuals from the two
374 social forms is significantly higher within this region compared to other parts of the genome, which

375 parallels the patterns reported for the other supergenes (Pracana et al., 2017). Tajima's *D* and
376 haplotype homozygosity statistics suggest a selective sweep of the Sp haplotype, similar to the
377 *Solenopsis* Sb haplotype (Cohen and Privman, 2020). Very low LD decay and absence of
378 recombinant F1 offspring suggest little to no recombination between Sh and Sp haplotypes at this
379 locus. Further, TEs are significantly enriched at the supergene, as expected in the absence of
380 recombination following a Muller's ratchet dynamic (Bachtrog, 2008).

381 Intriguingly, the association between social form and supergene genotype is not perfect. While
382 pleometrotic queens were predominantly homozygous (85%) for a single supergene haplotype
383 (Sp), most of the haplometrotic queens (93%) carried at least one copy of the Sh haplotype. This
384 suggests that supergene genotype alone is insufficient to determine the social form in this species
385 - a fundamental difference to the supergenes described in other ants (Brelsford et al., 2020; Ross
386 and Keller, 1998)! Several other characteristics of the *P. californicus* social polymorphism differ
387 from the well-studied examples in *Solenopsis* and *Formica* as well. In both, *S. invicta* and *F. selysi*,
388 there is little evidence for genetic differentiation of polygyne and monogyne populations, with both
389 forms often occurring in sympatry (Chapuisat et al., 2004; Shoemaker et al., 2006). In *P.*
390 *californicus* however, certain populations are nearly fixed for either the haplo- or the pleometrotic
391 strategy (Overson et al., 2016). The current study further corroborates Overson's et al. (2016)
392 finding of significantly reduced gene flow between the two focal populations both at the nuclear and
393 mitochondrial level. Genetic differentiation between haplo- and pleometrotic *P. californicus* is hence
394 significantly higher than between social forms in *S. invicta* and *F. selysi*, both in sympatry and in
395 allopatry (Chapuisat et al., 2004; Shoemaker et al., 2006). Similar levels of differentiation have
396 however been described between monogyne and polygyne individuals in other *Formica* species,
397 such as *F. exsecta* or *F. truncorum* (Brelsford et al., 2020). As we do not find significant deviations
398 from HWE at the supergene in either population, there appears to be no intrinsically lethal haplotype
399 combinations, unlike in *Formica* and *Solenopsis* where lethal combinations exist (either due to
400 intrinsic factors or behavioral exclusion of one genotype) and are presumed crucial for the
401 maintenance of the social niche polymorphism in these species (Avril et al., 2020; Ross, 1997).

402 In *Formica* and *Solenopsis*, the derived polygyne form is associated with the dominant supergene
403 haplotype, while in *P. californicus* it is associated with the recessive haplotype (Sp). That is,
404 polygyne *P. californicus* queens are homozygous for the derived Sp haplotype, while monogyne
405 queens are homozygous for the ancestral haplotype in the other species. This difference has
406 implications for the evolutionary dynamics of both neutral and adaptive processes of the supergene,
407 and the evolution of genes contributing to the novel traits on the derived haplotype. Notably, the *P.*
408 *californicus* Sp haplotype cannot accumulate as many deleterious mutations as the *Solenopsis* Sb
409 haplotype, because it has to be functional in a homozygous state in the pleometrotic queens.

410 Further, unlike in *Solenopsis* and *Formica*, we find additional genomic regions other than the
411 supergene that segregate with the social polymorphism in *P. californicus*. Theoretical models for
412 supergene evolution predict gradual elaboration of supergenes by integration of formerly unlinked
413 modifier loci, particularly in heterogeneous environments (Yeaman, 2013). According to these
414 models, natural selection will favor genomic rearrangements that eventually join the supergene with
415 previously unlinked but co-evolved loci in linkage (Thompson and Jiggins, 2014). This is consistent
416 with our analyses showing that recombination at the supergene ceased only between
417 approximately 200,000 to 5,000 years ago, almost overlapping with the 95% HPD estimates of the
418 Sh and Sp divergence time (i.e. 0.26–0.66 MYA). However, Charlesworth and Charlesworth (1975)
419 already argued that a scenario of coalescence of unlinked modifier loci with a supergene is credible
420 only if all loci are already on the same chromosome. Hence, an alternative fate for the unlinked loci
421 we describe here could be that they in fact persist as (e.g. population-specific) ‘modifier loci’, similar
422 to the genetic architecture for refined Batesian mimicry described in *Papilio dardanus* (Clark et al.,
423 2008; Clarke and Sheppard, 1963; Thompson and Timmermans, 2014) and *Heliconius numata*
424 (Jones et al., 2012). The presence of unlinked modifier loci influencing the expression and
425 ameliorating negative fitness effects of major quantitative trait loci is not unusual (Flint and Mackay,
426 2009), yet none have been described so far for the known social supergenes. Future studies that
427 genetically and phenotypically characterize additional haplometrotic, pleometrotic, and mixed
428 populations of *P. californicus* will be vital to resolve whether the same unlinked loci we describe

429 are involved in social polymorphism within other populations as well or have indeed evolved as
430 modifier loci unique to our two focal populations.

431 The four differentiated (physically unlinked) genomic regions outside the supergene that potentially
432 contribute to the expression of haplometrosis or pleometrosis, either by epistatic or additive
433 interactions with the supergene, contain 34 genes showing evidence of a selective sweep.
434 Intriguingly, correlation of genotype and phenotype were nearly perfect for the DNA
435 methyltransferase *DNMT1* and the histone acetyltransferase *chameau* (i.e. all P-individuals carry
436 the reference allele, all H-individuals carry the alternative allele), both of which could be relevant
437 for epigenetically regulating the expression of the alternative phenotypes. As pleometrotic queens
438 show a higher behavioral (e.g. division of labor) (Clark and Fewell, 2014; Overson et al., 2014) and
439 physiological (gene expression) (Helmkampf et al., 2016) plasticity than haplometrotic queens
440 during colony founding, differences in epigenetic regulation of plastic traits like division of labor
441 could be highly relevant for maintaining the two divergent social morphs.

442 With regard to the behavioral syndrome underlying the social polymorphism, previous population
443 screens and behavioral experiments showed that not all individuals from haplometrotic populations
444 act aggressively and, *vice versa*, not all queens from the pleometrotic population are tolerant
445 against co-foundresses (Clark and Fewell, 2014; Overson et al., 2014), indicating that social morph
446 and the underlying genetic loci are not fixed in either population. In our study, the four queens that
447 showed an apparent mismatch between the social supergene genotype and population, behaved
448 according to their population of origin and not their supergene genotype (Supplemental file, Table
449 S1).

450 These observations suggest that environmental conditions, in particular the social context and
451 interactions with co-founding queens (indirect genetic effects), might shift the expression of certain
452 behavioral traits involved in this complex social niche polymorphism (Clark and Fewell, 2014;
453 Overson et al., 2014; Saltz et al., 2016). We note that the margin of error of our behavioral assays
454 to discriminate haplometrotic and pleometrotic individuals is certainly larger than for e.g.

455 morphological or other obvious dimorphisms. In particular, if environmental, ecological and social
456 conditions that we can only poorly emulate under laboratory conditions also contribute to the
457 expression of the social morph. Regardless, we conclude from these patterns that the social morph
458 in this species is controlled or at least regulated by a polygenic architecture including an incipient
459 supergene, but that –ultimately– the expression of haplometrosis or pleometrosis is also impacted
460 by social context and environmental and ecological conditions (Haney and Fewell, 2018).

461 Our coalescent analysis indicates that the haplo- and pleometrotic populations started to separate
462 approximately 300,000 years ago, reaching almost complete isolation around 5,000 years ago,
463 before gene flow between these two populations increased again considerably. In accordance,
464 some individuals showed clear patterns of hybridization, recent co-ancestry and admixture (e.g.
465 potential F1 hybrid queen P99P; Figures 1A and 1B), consistent with ongoing admixture between
466 the two populations, which are only 50 km apart. The onset of gene flow between the haplometrotic
467 and pleometrotic population starting ~2,000 years ago could secondarily reduce genetic
468 differentiation between both forms everywhere but in the non-recombining supergene, eventually
469 resulting in the pattern also observed in *Solenopsis invicta* and *Formica selysi*, where genetic
470 differentiation between both social morphs is nearly exclusively restricted to the supergene
471 (Pracana et al., 2017; Purcell et al., 2014).

472 Supergenes have long been suspected to facilitate the emergence and maintenance of complex
473 phenotypes (Schwander et al., 2014). The success of the polygynous form in *S. invicta* in its
474 introduced range is attributed to its ability to efficiently colonize disturbed areas rather than its
475 higher competitive abilities (King and Tschinkel, 2006). This might be similar in *P. californicus*
476 where pleometrosis can be very successful and nearly reaching fixation in newly colonized
477 disturbed habitats.

478 Theoretical models suggest that pleometrotic populations might be stable against invasions from
479 haplometrotic individuals, if pleometrosis occurs above a certain frequency, because single
480 haplometrotic queens would be out-competed by polygynous colonies (Shaffer et al., 2016).

481 Conversely, the founding success of pleometrotic queens is likely negatively correlated with the
482 frequency of haplometrotic individuals in a population, as pleometrotic/haplometrotic pairings
483 commonly result in the death of the former. This would explain the rareness of high frequency
484 pleometrotic populations (Johnson, 2002), as such populations can only evolve when the frequency
485 of pleometrosis constantly remains above a certain threshold. Such social dynamics may also
486 explain the geographical separation between populations that are nearly fixed for either social form,
487 which allows for genetic divergence also outside of the supergene.

488 Conclusion

489 Pleometrosis and primary polygyny in *P. californicus* appear to have evolved as an adaptation to
490 difficult environments, i.e. higher colony densities and resource limitation. However, this social
491 niche is generally rare in *P. californicus* and has reached fixation in only a few populations. The
492 genetic architecture underlying this social niche polymorphism shows similarities, but also striking
493 differences to previously studied social niche polymorphisms in *Formica* and *Solenopsis*.
494 *Pogonomyrmex* also harbors a supergene, which is similar in size and has two major segregating
495 haplotypes, as in the other systems. However, there is currently no evidence for intrinsic lethality
496 or the selective killing of individuals carrying a certain genotype combination in *P. californicus*.
497 Whereas the dominant haplotype is associated with polygyny in *Solenopsis* (Sb) and *Formica* (Sp),
498 our results suggest that the haplometrotic Sh allele is dominant in *P. californicus*. This might
499 additionally limit the frequency of pleometrosis, but it also allows for its persistence in an otherwise
500 predominantly haplometrotic species as a recessive allele, invisible to selection. Apart from the
501 supergene, there are at least four additional regions showing signatures of a selective sweep in the
502 pleometrotic population/social phenotype. Candidate genes linked to epigenetic modifications in
503 these regions show strict co-segregation with the social form implicating them in the expression of
504 haplo- or pleometrosis. Further studies are necessary to understand the relevance and interactions
505 of these loci for the expression of the different social phenotypes, as they might turn out to be more
506 important than the supergene itself. We are aware of the limitations of our current study, focusing
507 on just two geographically separated, non-panmictic populations, as we cannot entirely exclude
508 that the supergene and other genetic differences are demographic effects (i.e. fixation by drift) or

509 local adaptations to some unknown ecological factor rather than to social phenotype. However, a
510 strong association of the supergene and the additional loci with the social phenotype currently is
511 the most likely explanation. Further populations of *P. californicus*, where both haplo- and
512 pleometrotic forms co-occur sympatrically, are known (Haney, 2017), offering the necessary setting
513 for further studies to disentangle the different evolutionary forces and conclusively describe the
514 genetic architecture of this social niche polymorphism. Already, our study showcases that the
515 genetic architecture underlying social niche polymorphisms may be much more complex and
516 diverse than previously appreciated.

517 **Materials and Methods**

518 Further details about Materials and Methods are provided in the Supplemental file.

519 *Ant Collection*

520 We collected gynes of *P. californicus* after their nuptial flights in 2018 and 2019 at Pine Valley
521 (32.822 N, -116.528 W; predominantly pleometrotic population, P-population) and Lake Henshaw
522 resort (33.232 N, -116.760 W; predominantly haplometrotic population, H-population), California,
523 USA, which are 50 km apart. We tested for aggressive interactions between queen pairs in
524 sandwich assays (Supplemental file) (Clark and Fewell, 2014).

525

526 *Genome sequencing*

527 DNA libraries (NEBNext® Ultra™ II FS DNA Libraries) of 16 queens from the H-population and 19
528 from the P-population were paired-end sequenced (2x 75 bp, average coverage 12x) at the
529 Genomic Core Facility of the University of Münster (Germany), using a NextSeq 500 (Supplemental
530 file, Table S1).

531

532 *Genome assembly and annotation*

533 We sequenced and assembled the genome of *P. californicus* ("Pcal2") using data from MinION
534 long reads (MinION, Oxford Nanopore Technologies, Oxford, UK), Illumina short reads, and
535 previously published 10X Chromium linked reads (Bohn et al., 2021). For long read library
536 preparation (Oxford Nanopore kit SQK-LSK109), we used 2 µg of DNA extracted from three white
537 worker pupae from a pleometrotic colony ("Pcal18-02"). The library was sequenced for 48 h on a
538 MinION, generating 1,650,688 reads that were trimmed and filtered with PoreChop (v.0.2.4) and
539 FiltLong (v.0.2.0). We assembled the genome from ~30x filtered Nanopore data using the following
540 strategy. We created one assembly using CANU (v.2.0) (Koren et al., 2017) and a second assembly
541 using wtdbg2 (v.2.5). Both assemblies were processed and optimized as follows: After contig
542 assembly, we used SSPACE (v.3.0) (Boetzer et al., 2011) for scaffolding, LR_closer for gap filling,
543 and ntedit for polishing with long-read data. We then used short-read, short-insert Illumina data
544 from three samples (P50Y, P67P, P55R) for scaffolding with SSPACE before three rounds of

545 polishing with Pilon (Walker et al., 2014). The polished assembly was super-scaffolded with publicly
546 available 10X Chromium data for *P. californicus* (accession SRX8051306) (Bohn et al., 2021) using
547 scaff10x and subsequent correction with break10x. Finally, we combined both assemblies with
548 ntjoin, using the CANU-based assembly as reference and removed redundancies with funannotate
549 clean (v.1.7.1).

550 We combined de-novo libraries from RepeatModeler2 (v.2.0.1) and EDTA (v.1.8.3) with public
551 resources from RepBase (RepBase25.04.invrep.fa) and Dfam (Dfam3.0.arthropod.fa) for repeat
552 annotation with RepeatMasker (v.4.0.7). Protein-coding and tRNA genes were annotated with
553 funannotate v.1.7.1 in the soft-masked genome, including homology-based gene predictions from
554 GeMoMa (v.1.7) (Keilwagen et al., 2016) and supported by RNAseq data of 18 heads of *P.*
555 *californicus* (Ernst et al., unpublished) and previously published long-read RNAseq data of a pool
556 of workers (Bohn et al., 2021).

557

558 Read mapping and variant calling

559 Short-read data was cleaned with Trimmomatic (v.0.38) (Bolger et al., 2014). Paired reads were
560 mapped to the genome assembly using BWA-MEM (v.0.7.17-r1188) (Li and Durbin, 2009). After
561 marking duplicates using Picard's MarkDuplicates (v.2.20.0), we performed joint-variant calling
562 across all samples with the GATK (Van der Auwera et al., 2013) and filtered variant calls with
563 VCFtools (v.0.1.16) (Danecek et al., 2011). After a visual inspection of mapping quality of reads
564 across the genome (Supplemental file, Figure S14), we excluded fragmented scaffolds with low
565 mapping quality and considered 613,411 SNPs identified in the 25 largest scaffolds (representing
566 88.2% of the assembly) for further analyses.

567

568 Statistical phasing

569 We used SHAPEIT (v.2.r904) (Delaneau et al., 2012) to statistically phase the 25 largest scaffolds
570 of the *P. californicus* genome based on 210,013 SNPs with no missing data (i.e. genotyped in all
571 35 queens), as no reference panel is available for *P. californicus*. Scaffolds 22 and 23 displayed

572 an atypical architecture potentially representing a supergene (discussed further below) and were
573 thus excluded (along with three other small scaffolds) for fineSTRUCTURE and MSMC2 analyses.

574

575 Population structure analyses

576 LD-pruning with PLINK yielded 314,756 SNPs that we used for Principal Component Analyses
577 (PCA), considering four eigenvectors. LD-pruned SNPs were further used for ADMIXTURE
578 (v.1.3.0) analyses (Alexander et al., 2009) with 2 to 4 clusters. To better characterize the
579 relationships among queens in our sample, we used the haplotype-based approach implemented
580 in fineSTRUCTURE (Lawson et al., 2012). In our model, we assumed a uniform recombination
581 rate, based on the estimate of 14 cM/Mb found in *Pogonomyrmex rugosus* (Sirviö et al., 2011).

582

583 Demographic population history analysis

584 We inferred demographic population history and the relative cross-coalescence rate (rCCR) using
585 Multiple Sequential Markovian Coalescence modeling (MSMC2) (Schiffels and Durbin, 2014) on
586 four queens (i.e. eight phased haplotypes) from the haplotropic (H123G, H118W, H73W and
587 H123W) and pleiotropic populations (P22P, P134P, P117P and P109R). Mappability masks were
588 generated using SNPABLE [<http://lh3lh3.users.sourceforge.net/snpable.shtml>]. We ran 1,000
589 bootstrap replicates, each time randomly sampling 60 Mb for each of the analyzed genomes. To
590 obtain the time in years, we assumed a generation time of 4 years and a similar mutation rate as
591 in honey bees (Yang et al., 2015), i.e. 3.6×10^{-9} mutations * nucleotide⁻¹ * generation⁻¹.

592

593 Population genomic estimates

594 We used VCFtools (v.0.1.16) (Danecek et al., 2011) to estimate nucleotide diversity (π) (--window-
595 π) and Tajima's D (--TajimaD) within each population using 100 kb non-overlapping windows
596 across the genome. VCFtools' --het function was employed to calculate heterozygosity and
597 inbreeding coefficient on a per individual basis. Linkage disequilibrium (LD) decay was estimated
598 by calculating pairwise r^2 values between all markers within 200 kb windows using VCFtools' --hap-
599 r^2 function in each of the two populations. We used SNP markers with a minor allele frequency

600 (MAF) of 0.2 to minimize the effects of rare variants and averaged r^2 values between all pairs of
601 markers in 100 bp distance bins for visualization.

602

603 *Genome scan for selection*

604 We screened genomes of both populations for evidence of selection using an F_{ST} outlier approach
605 (Akey et al., 2010; Fabian et al., 2012; Kelley et al., 2006; Kolaczkowski et al., 2011) and by
606 identifying regions of extended haplotype homozygosity (selective sweeps) (Sabeti et al., 2007;
607 Tang et al., 2007), comparing the haplotropic and pleiotropic populations. We excluded a total
608 of six queens from pairs with relatedness > 0.4 and a potential F1 hybrid (P99P) from the analyses.
609 We used mean F_{ST} , nucleotide diversity π , and Tajima's D estimated in 100 kb non-overlapping
610 windows across the genome and from the empirical distribution of F_{ST} values, we considered the
611 top 5% of windows as differentiated.

612 F_{ST} estimates can be affected due to variation in recombination rate across the genome (Booker et
613 al., 2020). Hence, we further applied the cross-population extended haplotype homozygosity
614 ($xpEHH$) and the site-specific extended haplotype homozygosity ($EHHS$) tests (Sabeti et al., 2007;
615 Tang et al., 2007), to detect signatures of selective sweeps. The $xpEHH$ analyses were performed
616 on the phased data from unrelated queens using the R package rehh (v.3.1.2) (Gautier et al., 2017).
617 We used the Benjamani & Hochberg method for FDR correction and set a p-value of 0.05 as a
618 threshold to identify outlier SNPs. Outliers occurring within 100 kb of each other were grouped,
619 resulting in 32 clusters distributed across multiple scaffolds (Dataset S4). Regions within ± 100
620 kb around the most significant SNP of each cluster were regarded as candidates for positive
621 selective sweeps. Regions identified by F_{ST} and by $xpEHH$ overlapped at 17 genomic loci
622 (Supplemental file, Table S4).

623

624 *Characterization of candidate genes and SNPs*

625 For functional characterization of genes, we performed BLAST (blastx) (Altschul et al., 1990)
626 searches against the nr database (December 2019), used OrthoFinder (v.2.3.1) (Emms and Kelly,
627 2019) to identify *Drosophila melanogaster* orthologs, and used RepeatProteinMask to identify

628 genes encoding TE proteins. We used SnpEff (v.5.0) (Cingolani et al., 2012) to annotate putative
629 effects on protein-coding genes of all 3,347 SNPs contained in the candidate regions (Table 1). For
630 the manual review of genes contained in genomic regions showing evidence for a selective sweep,
631 we removed TE-encoded genes as well as genes without RNAseq support and no known homology
632 to any proteins in the nr database, resulting in 34 putatively functional genes. Of these, 18 genes
633 showed non-synonymous variants in our dataset (Dataset S5). In six of these 18 genes at least
634 one non-synonymous variant showed a pattern where over 90% of the individuals from the H-
635 population carried the alternative allele (i.e. either 0/1 or 1/1) and over 90% of the individuals from
636 the P-population carried the reference allele (i.e. either 0/1 or 0/0) (Figure 4B).

637

638 *Haplotype frequencies*

639 We calculated haplotype frequencies for the putative supergene region and tested for potential
640 departure from Hardy-Weinberg equilibrium using a χ^2 test (Supplemental file, Table S3).
641 Haplotypes were assigned manually, based on visual inspection of the suggested supergene region
642 (Supplemental file, Figure S7); predominantly homozygous for the reference alleles (i.e. from a
643 pleometrotic population) and alternate allele were assigned “Sp/Sp” and “Sh/Sh”, respectively, and
644 predominantly heterozygous regions were assigned “Sh/Sp”.

645

646 *RAD sequencing and analysis*

647 DNA of males collected from a monogynous colony at Lake Henshaw (H-population) in 2019 was
648 used to construct reduced representation genomic libraries following Inbar et al. (Inbar et al., 2020),
649 using a modified double-digest (EcoR1 and Mse1) Restriction-site Associated DNA sequencing
650 (ddRADseq) protocol (Parchman et al., 2012; Peterson et al., 2012). Briefly, genomic DNA was
651 digested at 37°C for 8hrs and ligated with uniquely barcoded adaptors. The adaptor ligated
652 products were PCR amplified, pooled, and size-selected using Beckman Coulter, Agencourt
653 AMPure XP beads. Libraries were sequenced in one lane of a paired-end, 150 bp reads, on a
654 HiSeq X Ten Illumina sequencer.

655 We used fastQC (v.0.11.7), Trimmomatic (v.0.39) (Bolger et al., 2014), and *process_radtags*
656 (STACKS v.2.2) (Rochette et al., 2019) for quality control, filtering, and demultiplexing the raw data.
657 Reads were mapped with Bowtie2 v2.3.4.2 (Langmead et al 2012) and alignments processed with
658 *ref_map.pl* and *populations* (STACKS v.2.2), resulting in 55,340 raw variants. After filtering with
659 VCFtools (v.0.1.16) (Danecek et al., 2011) and excluding heterozygous markers we arrived at a
660 final set of 2,980 markers used for building a genetic map.
661 Markers were mapped with MultiPoint [<http://www.multiqtl.com>] using the backcross population
662 setting. A maximum threshold recombination frequency of 0.25 resulted in 29 linkage groups (data
663 not shown). A skeleton map was generated using delegate markers and Kosambi's mapping
664 function was used to convert recombination frequencies to centimorgans (Kosambi, 1943).

665

666 Characterization of the supergene

667 To investigate the potential supergene identified in the current study, we used SNP markers from
668 queens (whole genome resequencing) and males (RADseq). We used BCFtools' (v.1.9) *isec* and
669 *merge* functions to extract 182 shared SNPs between the two datasets found on LG14. Genotypes
670 of the males and queens at LG14 were visualized using VIVA (v.0.4.0) (Tollefson et al., 2019). To
671 further characterize the two alleles of the supergene, we performed a PCA on 69 SNP markers
672 identified in the non-recombining area of LG14 (i.e. scaffolds 22, 23, 38, 42, 48, and parts of 6 and
673 14) in datasets of males and queens.

674 To investigate recombination suppression in the supergene region, we used SNP data from six
675 queens homozygous for the Sh allele (H104W, H33G, H34G, H38W, H73W and H98W) and six
676 others homozygous for the Sp allele (P22P, P102R, P114W, P109R, P34R, P84P), assigned based
677 on visual inspection of their genotypes (Supplemental file, Figure S7). After VCF lift over (on
678 scaffolds 14, 22, 23, 38, 42, 48 and 6 into LG14) using flo (Pracana et al., 2017) and picard's
679 *LiftoverVcf* (v.2.20.0), we used VCFtools (v.0.1.16) (Danecek et al., 2011) for filtering and
680 LDheatmap (v.1.0-4) (Shin et al., 2006) to visualize pairwise linkage disequilibrium (LD). We
681 calculated gene and TE content in 100 kb sliding windows across LG14 using our *P. californicus*
682 gene and TE annotations, respectively. To explore whether any of the transcripts previously shown

683 to be associated with the aggressive behavior of queens (Helmkampf et al., 2016) belong to the
684 supergene, we aligned the assembled transcripts to the Pcal2 reference genomes using GMAP
685 (Wu and Watanabe, 2005). We only retained the top hits with at least 70% query coverage, yielding
686 7303 (out of 7890) transcripts unambiguously aligned to the reference genome. We then used
687 BEDtools (v.2.29.2) (Quinlan and Hall, 2010) to extract transcripts that mapped to the supergene
688 region (Dataset S2).

689

690 Dating the supergene formation

691 We estimated the divergence between Sh and Sp by computing the rCCR, using MSMC2 (Schiffels
692 and Durbin, 2014) on four Sh/Sh queens (H104W, H38W, H73W and H98W) and four Sp/Sp
693 queens (P114W, P50R, P84P and P97R). We limited the analysis to the supergene region
694 (scaffolds 22, 23 and part of scaffold 6) and ran 500 bootstraps by randomly sampling 2 Mb each
695 time.

696 Further, we performed a phylogenetic analysis of Sh and Sp alleles with *P. subnitidus* as an
697 outgroup species. Sequencing data of one *P. subnitidus* individual was generated and processed
698 as described above for *P. californicus*. Joint SNP calling was performed using GATK (Van der
699 Auwera et al., 2013) and a maximum-likelihood (ML) tree was constructed based on 33,424 SNPs
700 at the supergene region (scaffolds 22, 23, 38, 42, 48 and parts of scaffolds 6 and 14), using RAxML
701 (Stamatakis, 2014) under the GTRGAMMA model with bootstrapping.

702 We then used a fossil-calibrated dated phylogeny (Ward et al., 2015) to date the split between the
703 Sh and Sp haplotype groups using a phylogenetic approach. The Ward et al. (Ward et al., 2015)
704 phylogeny dated the split between *P. vermiculatus* and *P. imberbiculus* at 18 (95% HPD ± 8) MYA.
705 This is an upper bound on the speciation date of *P. californicus* and *P. subnitidus* according to the
706 most recent *Pogonomyrmex* phylogeny (Johnson and Moreau, 2016). We calculated a ratio of 1:39
707 between the speciation time of *P. subnitidus* and *P. californicus*, and the Sh–Sb haplotypes
708 divergence time. Based on our dating reference (i.e. 18 ± 8 MYA), we obtained 0.46 (95% HPD
709 ± 0.20) MYA as an upper bound for the divergence between the two haplotype groups, which is
710 consistent with the MSMC2 analysis. We note that the confidence in the age inference is

711 strengthened by the agreement between two distinct approaches: the inference by MSMC2 is
712 based on a coalescent model, which is a distinct approach from the phylogenetic dating approach.
713 The former approach depends on estimates of mutation rate and generation time, whereas the
714 latter depends on fossil calibration points. The tree figure was produced using interactive Tree Of
715 Life (iTOL) (Letunic and Bork, 2021).

716

717 **Data Availability**

718 The genome assembly and the raw sequencing data prior to trimming and mapping are available
719 at NCBI (BioProject: PRJNA682388; release pending acceptance). A detailed description of our
720 bioinformatic analysis pipelines is publicly available at <https://github.com/merrbii/Pcal-SocialPolymorphism>.

722

723 **Acknowledgments**

724 We thank Pine Valley Academy (Pine Valley, California, USA) for support and the staff of Lake
725 Henshaw resort (Lake Henshaw, California, USA) for permission to collect ants on their premises.
726 Thanks to Jenny Märzhäuser, Tobias van Elst and Ti Eriksson for help in collecting the ants, and
727 to Jennifer Fewell for hosting us at Arizona State University, Tempe, Arizona, USA. We are grateful
728 for Hilde Schwitte's and Una Hadziomerovic's help in DNA extraction, barcoding, and library
729 construction. JG and UE were funded by the German Research Foundation (DFG) as part of the
730 SFB TRR 212 (NC³) – TP C04 project numbers 316099922 and 396780988. ME was funded by
731 the German Research Foundation (DFG) – 403813881 with grant to LS (SCHR 1554/2-1) under
732 the priority program “Rapid evolutionary adaptation: Potential and constraints” (SPP 1819). ME
733 acknowledges support by the DFG Research Training Group 2220 “Evolutionary Processes in
734 Adaptation and Disease”.

735

736 **Competing interests**

737 The authors have no conflict of interest to declare.

738

739 **Author Contributions**

740 JG, UE, ME and LS designed the research, UE organized sample collection and behavioral assays,
741 AL, LS, ME, UE, EP and JG analyzed data, ME, UE, LS and JG wrote the manuscript, JG and LS
742 coordinated the project, all authors revised the manuscript.

743

744 References

745 Akey JM, Ruhe AL, Akey DT, Wong AK, Connelly CF, Madeoy J, Nicholas TJ, Neff MW. 2010.
746 Tracking footprints of artificial selection in the dog genome. *Proc Natl Acad Sci U S A*
747 **107**:1160–1165. doi:10.1073/pnas.0909918107

748 Alexander DH, Novembre J, Lange K. 2009. Fast model-based estimation of ancestry in
749 unrelated individuals. *Genome Res* **19**:1655–1664. doi:10.1101/gr.094052.109

750 Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. *J*
751 *Mol Biol* **215**:403–410. doi:10.1016/S0022-2836(05)80360-2

752 Avril A, Purcell J, Béniguel S, Chapuisat M. 2020. Maternal effect killing by a supergene
753 controlling ant social organization. *Proc Natl Acad Sci U S A* **117**:17130–17134.
754 doi:10.1073/pnas.2003282117

755 Avril A, Purcell J, Brelsford A, Chapuisat M. 2019. Asymmetric assortative mating and queen
756 polyandry are linked to a supergene controlling ant social organization. *Mol Ecol* **28**:1428–
757 1438. doi:10.1111/MEC.14793

758 Bachtrog D. 2008. The temporal dynamics of processes underlying Y chromosome degeneration.
759 *Genetics* **179**:1513–1525. doi:10.1534/genetics.107.084012

760 Boetzer M, Henkel C V., Jansen HJ, Butler D, Pirovano W. 2011. Scaffolding pre-assembled
761 contigs using SSPACE. *Bioinformatics* **27**:578–579. doi:10.1093/bioinformatics/btq683

762 Bohn J, Halabian R, Schrader L, Shabardina V, Steffen R, Suzuki Y, Ernst UR, Gadau J,
763 Makałowski W. 2021. Genome assembly and annotation of the California harvester ant
764 *Pogonomyrmex californicus*. *G3 Genes, Genomes, Genet* **11**.
765 doi:10.1093/G3JOURNAL/JKAA019

766 Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: A flexible trimmer for Illumina sequence
767 data. *Bioinformatics* **30**:2114–2120. doi:10.1093/bioinformatics/btu170

768 Booker TR, Yeaman S, Whitlock MC. 2020. Variation in recombination rate affects detection of
769 outliers in genome scans under neutrality. *Mol Ecol* **29**:4274–4279. doi:10.1111/MEC.15501

770 Boomsma JJ, Brady SG, Dunn RR, Gadau J, Heinze J, Keller L, Moreau CS, Sanders NJ,
771 Schrader L, Schultz TR, Sundström L, Ward PS, Wcislo WT, Zhang G, The GAGA
772 Consortium. 2017. The Global Ant Genomics Alliance (GAGA). *Myrmecological News*
773 **25**:61–66.

774 Boomsma JJ, Huszár DB, Pedersen JS. 2014. The evolution of multiqueen breeding in eusocial
775 lineages with permanent physically differentiated castes. *Anim Behav* **92**:241–252.
776 doi:10.1016/j.anbehav.2014.03.005

777 Brelsford A, Purcell J, Avril A, Tran Van P, Zhang J, Brütsch T, Sundström L, Helanterä H,
778 Chapuisat M. 2020. An Ancient and Eroded Social Supergene Is Widespread across
779 Formica Ants. *Curr Biol* **30**:304–311.e4. doi:10.1016/j.cub.2019.11.032

780 Buckley SB. 1867. Descriptions of new species of North American Formicidae. *Proc Entomol Soc*
781 *Philadelphia* **6**:152–172.

782 Carrozza MJ, Utley RT, Workman JL, Côté J. 2003. The diverse functions of histone
783 acetyltransferase complexes. *Trends Genet* **19**:321–329. doi:10.1016/S0168-
784 9525(03)00115-X

785 Chapuisat M, Bocherens S, Rosset H. 2004. Variable queen number in ant colonies: No impact
786 on queen turnover, inbreeding, and population genetic differentiation in the ant *Formica*
787 *selysi*. *Evolution (N Y)* **58**:1064–1072. doi:10.1111/j.0014-3820.2004.tb00440.x

788 Charlesworth D. 2016. The status of supergenes in the 21st century: Recombination suppression
789 in Batesian mimicry and sex chromosomes and other complex adaptations. *Evol Appl* **9**:74–
790 90. doi:10.1111/eva.12291

791 Charlesworth D, Charlesworth B. 1975. Theoretical genetics of batesian mimicry II. Evolution of
792 supergenes. *J Theor Biol* **55**:305–324. doi:10.1016/S0022-5193(75)80082-8

793 Chihara T, Luginbuhl D, Luo L. 2007. Cytoplasmic and mitochondrial protein translation in axonal
794 and dendritic terminal arborization. *Nat Neurosci* **10**:828–837. doi:10.1038/nn1910

795 Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Wang L, Land SJ, Lu X, Ruden DM. 2012. A
796 program for annotating and predicting the effects of single nucleotide polymorphisms,
797 SnpEff: SNPs in the genome of *Drosophila melanogaster* strain w1118; iso-2; iso-3. *Fly*
798 (*Austin*) **6**:80–92. doi:10.4161/fly.19695

799 Clark R, Brown SM, Collins SC, Jiggins CD, Heckel DG, Vogler AP. 2008. Colour pattern
800 specification in the Mocker swallowtail *Papilio dardanus*: the transcription factor *invected* is
801 a candidate for the mimicry locus H. *Proc R Soc B Biol Sci* **275**:1181–1188.
802 doi:10.1098/RSPB.2007.1762

803 Clark RM, Fewell JH. 2014. Social dynamics drive selection in cooperative associations of ant
804 queens. *Behav Ecol* **25**:117–123. doi:10.1093/beheco/art093

805 Clarke CA, Sheppard PM. 1963. Interactions between major genes and polygenes in the
806 determination of the mimetic patterns of *Papilio dardanus*. *Evolution (N Y)* **17**:404–413.
807 doi:10.1111/j.1558-5646.1963.tb03297.x

808 Cohen P, Privman E. 2020. The social supergene dates back to the speciation time of two
809 *Solenopsis* fire ant species. *Sci Rep* **10**:1–9. doi:10.1038/s41598-020-67999-z

810 Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, Handsaker RE, Lunter G,
811 Marth GT, Sherry ST, McVean G, Durbin R. 2011. The variant call format and VCFtools.
812 *Bioinformatics* **27**:2156–2158. doi:10.1093/bioinformatics/btr330

813 Delaneau O, Marchini J, Zagury JF. 2012. A linear complexity phasing method for thousands of
814 genomes. *Nat Methods* **9**:179–181. doi:10.1038/nmeth.1785

815 Dolgin ES, Charlesworth B. 2008. The Effects of Recombination Rate on the Distribution and
816 Abundance of Transposable Elements. *Genetics* **178**:2169–2177.
817 doi:10.1534/GENETICS.107.082743

818 Emms DM, Kelly S. 2019. OrthoFinder: Phylogenetic orthology inference for comparative
819 genomics. *Genome Biol* **20**:238. doi:10.1186/s13059-019-1832-y

820 Fabian DK, Kapun M, Nolte V, Kofler R, Schmidt PS, Schlötterer C, Flatt T. 2012. Genome-wide
821 patterns of latitudinal differentiation among populations of *Drosophila melanogaster* from
822 North America. *Mol Ecol* **21**:4748–4769. doi:10.1111/j.1365-294X.2012.05731.x

823 Fletcher DJC. 1983. Three newly-discovered polygynous populations of the fire ant, *Solenopsis*
824 *invicta*, and their significance. *J Georg Entomol Soc* **18**:538–543.

825 Flint J, Mackay TFC. 2009. Genetic architecture of quantitative traits in mice, flies, and humans.
826 *Genome Res* **19**:723–733. doi:10.1101/GR.086660.108

827 Gautier M, Klassmann A, Vitalis R. 2017. rehh 2.0: a reimplementation of the R package rehh to
828 detect positive selection from haplotype structureMolecular Ecology Resources. pp. 78–90.
829 doi:10.1111/1755-0998.12634

830 Gill RJ, Arce A, Keller L, Hammond RL. 2009. Polymorphic social organization in an ant. *Proc R
831 Soc B Biol Sci* **276**:4423–4431. doi:10.1098/rspb.2009.1408

832 Glancey BM, Lofgren CS. 1988. Adoption of Newly-Mated Queens: A Mechanism for Proliferation
833 and Perpetuation of Polygynous Red Imported Fire Ants, *Solenopsis invicta* Buren. *Florida
834 Entomol* **71**:581. doi:10.2307/3495016

835 Haney BR. 2017. Ecological Drivers and Reproductive Consequences of Queen Cooperation in
836 the California Harvester Ant *Pogonomyrmex californicus*. Arizona State University, Tempe,
837 USA.

838 Haney BR, Fewell JH. 2018. Ecological drivers and reproductive consequences of non-kin
839 cooperation by ant queens. *Oecologia* **187**:643–655. doi:10.1007/s00442-018-4148-9

840 Helmkampf M, Mikheyev AS, Kang Y, Fewell J, Gadau J. 2016. Gene expression and variation in
841 social aggression by queens of the harvester ant *Pogonomyrmex californicus*. *Mol Ecol*
842 **25**:3716–3730. doi:10.1111/mec.13700

843 Helms KR, Newman NJ, Helms Cahan S. 2013. Regional variation in queen and worker
844 aggression in incipient colonies of the desert ant *Messor pergandei*. *Behav Ecol Sociobiol*
845 **67**:1563–1573. doi:10.1007/s00265-013-1568-8

846 Herbers JM. 1986. Nest site limitation and facultative polygyny in the ant *Leptothorax
847 longispinosus*. *Behav Ecol Sociobiol* **19**:115–122. doi:10.1007/BF00299946

848 Hohenlohe PA, Bassham S, Etter PD, Stiffler N, Johnson EA, Cresko WA, Stiffler N, Bassham S,
849 Hohenlohe PA. 2010. Population Genomics of Parallel Adaptation in Threespine Stickleback
850 using Sequenced RAD Tags. *PLoS Genet* **6**:e1000862. doi:10.1371/journal.pgen.1000862

851 Hölldobler B, Wilson EO. 1977. The number of queens: An important trait in ant evolution.
852 *Naturwissenschaften* **64**:8–15. doi:10.1007/BF00439886

853 Inbar S, Cohen P, Yahav T, Privman E. 2020. Comparative study of population genomic
854 approaches for mapping colony-level traits. *PLOS Comput Biol* **16**:e1007653.

doi:10.1371/journal.pcbi.1007653

Johnson RA. 2004. Colony founding by pleometrosis in the semiclastral seed-harvester ant *Pogonomyrmex californicus* (Hymenoptera: Formicidae). *Anim Behav* **68**:1189–1200. doi:10.1016/j.anbehav.2003.11.021

Johnson RA. 2002. Semi-clastral colony founding in the seed-harvester ant *Pogonomyrmex californicus*: A comparative analysis of colony founding strategies. *Oecologia* **132**:60–67. doi:10.1007/s00442-002-0960-2

Johnson RA, Moreau CS. 2016. A new ant genus from southern Argentina and southern Chile, *Patagonomyrmex* (Hymenoptera: Formicidae). *Zootaxa* **4139**:1–31. doi:10.11646/zootaxa.4139.1.1

Jones RT, Salazar PA, ffrench-Constant RH, Jiggins CD, Joron M. 2012. Evolution of a mimicry supergene from a multilocus architecture. *Proc R Soc B Biol Sci* **279**:316–325. doi:10.1098/RSPB.2011.0882

Joron M, Papa R, Beltrán M, Chamberlain N, Mavárez J, Baxter S, Abanto M, Birmingham E, Humphray SJ, Rogers J, Beasley H, Barlow K, ffrench-Constant RH, Mallet J, McMillan WO, Jiggins CD. 2006. A conserved supergene locus controls colour pattern diversity in *Heliconius* butterflies. *PLoS Biol* **4**:1831–1840. doi:10.1371/journal.pbio.0040303

Keilwagen J, Wenk M, Erickson JL, Schattat MH, Grau J, Hartung F. 2016. Using intron position conservation for homology-based gene prediction. *Nucleic Acids Res* **44**:89. doi:10.1093/nar/gkw092

Keller L. 1993. The Assessment of Reproductive Success of Queens in Ants and Other Social Insects. *Oikos* **67**:177. doi:10.2307/3545107

Keller L, Ross KG. 1998. Selfish genes: A green beard in the red fire ant. *Nature* **394**:573–575. doi:10.1038/29064

Kelley JL, Madeoy J, Calhoun JC, Swanson W, Akey JM. 2006. Genomic signatures of positive selection in humans and the limits of outlier approaches. *Genome Res* **16**:980–989. doi:10.1101/gr.5157306

Kent T V, Uzunović J, Wright SI. 2017. Coevolution between transposable elements and recombination. *Philos Trans R Soc B Biol Sci*. doi:10.1098/rstb.2016.0458

King JR, Tschinkel WR. 2006. Experimental evidence that the introduced fire ant, *Solenopsis invicta*, does not competitively suppress co-occurring ants in a disturbed habitat. *J Anim Ecol* **75**. doi:10.1111/j.1365-2656.2006.01161.x

Kolaczkowski B, Kern AD, Holloway AK, Begun DJ. 2011. Genomic differentiation between temperate and tropical Australian populations of *Drosophila melanogaster*. *Genetics* **187**:245–260. doi:10.1534/genetics.110.123059

Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM. 2017. Canu: Scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. *Genome Res* **27**:722–736. doi:10.1101/gr.215087.116

Kosambi DD. 1943. The Estimation of Map Distances from Recombination Values. *Ann Eugen* **12**:172–175. doi:10.1111/j.1469-1809.1943.tb02321.x

Lawson DJ, Hellenthal G, Myers S, Falush D. 2012. Inference of Population Structure using Dense Haplotype Data. *PLoS Genet* **8**:1002453. doi:10.1371/journal.pgen.1002453

Letunic I, Bork P. 2021. Interactive tree of life (iTOL) v5: An online tool for phylogenetic tree display and annotation. *Nucleic Acids Res* **49**:W293–W296. doi:10.1093/nar/gkab301

Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. *Bioinformatics* **25**:1754–1760. doi:10.1093/bioinformatics/btp324

Lyko F. 2018. The DNA methyltransferase family: A versatile toolkit for epigenetic regulation. *Nat Rev Genet*. doi:10.1038/nrg.2017.80

Matschiner M, Barth JMI, Torresen OK, Star B, Baalsrud HT, Brieuc MSO, Pampoulie C, Bradbury I, Jakobsen KS, Jentoft S. 2021. Origin and fate of supergenes in Atlantic cod. *bioRxiv* 1–34. doi:10.1101/2021.02.28.433253

Nadeau NJ, Whibley A, Jones RT, Davey JW, Dasmahapatra KK, Baxter SW, Quail MA, Joron M, ffrench-Constant RH, Blaxter ML, Mallet J, Jiggins CD. 2012. Genomic islands of divergence in hybridizing heliconius butterflies identified by large-scale targeted sequencing. *Philos Trans R Soc B Biol Sci* **367**:343–353. doi:10.1098/rstb.2011.0198

Odling-Smee PJ, Laland KN, Feldman MW. 1996. Niche construction. *Am Nat* **147**:641–648.

doi:10.1086/285870
Overson R, Fewell JH, Gadau J. 2016. Distribution and origin of intraspecific social variation in the California harvester ant *Pogonomyrmex californicus*. *Insectes Soc* **63**:531–541.
doi:10.1007/s00040-016-0497-8

Overson R, Gadau J, Clark RM, Pratt SC, Fewell JH. 2014. Behavioral transitions with the evolution of cooperative nest founding by harvester ant queens. *Behav Ecol Sociobiol* **68**:21–30. doi:10.1007/s00265-013-1618-2

Parchman TL, Gompert Z, Mudge J, Schilkey FD, Benkman CW, Buerkle CA. 2012. Genome-wide association genetics of an adaptive trait in lodgepole pine. *Mol Ecol* **21**:2991–3005.
doi:10.1111/j.1365-294X.2012.05513.x

Peterson BK, Weber JN, Kay EH, Fisher HS, Hoekstra HE. 2012. Double digest RADseq: An inexpensive method for de novo SNP discovery and genotyping in model and non-model species. *PLoS One* **7**. doi:10.1371/journal.pone.0037135

Pracana R, Priyam A, Levantis I, Nichols RA, Wurm Y. 2017. The fire ant social chromosome supergene variant Sb shows low diversity but high divergence from SB. *Mol Ecol* **26**:2864–2879. doi:10.1111/mec.14054

Purcell J, Brelsford A, Wurm Y, Perrin N, Chapuisat M. 2014. Convergent genetic architecture underlies social organization in ants. *Curr Biol* **24**:2728–2732.
doi:10.1016/j.cub.2014.09.071

Purcell J, Lagunas-Robles G, Rabeling C, Borowiec ML, Brelsford A. 2021. The maintenance of polymorphism in an ancient social supergene. *Mol Ecol* **00**:1–13. doi:10.1111/mec.16196

Quinlan AR, Hall IM. 2010. BEDTools: A flexible suite of utilities for comparing genomic features. *Bioinformatics* **26**:841–842. doi:10.1093/bioinformatics/btq033

Rissing SW, Johnson RA, Martin JW. 2000. Colony Founding Behavior of Some Desert Ants: Geographic Variation in Metrosis. *Psyche A J Entomol* **103**:95–101.
doi:10.1155/2000/20135

Rochette NC, Rivera-Colón AG, Catchen JM. 2019. Stacks 2: Analytical methods for paired-end sequencing improve RADseq-based population genomics. *Mol Ecol* **28**.
doi:10.1111/mec.15253

Rosengren R, Sundström L, Fortelius W. 1993. Monogyny and polygyny in *Formica* ants: the results of alternative dispersal tactics In: Keller L, editor. Queen Number and Sociality in Insects. Oxford University Press. pp. 308–333.

Ross KG. 1997. Multilocus evolution in fire ants: Effects of selection, gene flow and recombination. *Genetics* **145**. doi:10.1093/genetics/145.4.961

Ross KG, Keller L. 1998. Genetic control of social organization in an ant. *Proc Natl Acad Sci* **95**:14232–14237. doi:10.1073/pnas.95.24.14232

Ross KG, Krieger MJB, Keller L, Shoemaker DD. 2007. Genetic variation and structure in native populations of the fire ant *Solenopsis invicta*: Evolutionary and demographic implications. *Biol J Linn Soc* **92**:541–560. doi:10.1111/j.1095-8312.2007.00853.x

Rossner R, Kaeberlein M, Leiser SF. 2017. Flavin-containing monooxygenases in aging and disease: Emerging roles for ancient enzymes. *J Biol Chem*. doi:10.1074/jbc.R117.779678

Sabeti PC, Varilly P, Fry B, Lohmueller J, Hostetter E, Cotsapas C, Xie X, Byrne EH, McCarroll SA, Gaudet R, Schaffner SF, Lander ES, Frazer KA, Ballinger DG, Cox DR, Hinds DA, Stuve LL, Gibbs RA, Belmont JW, Boudreau A, Hardenbol P, Leal SM, Pasternak S, Wheeler DA, Willis TD, Yu F, Yang H, Zeng C, Gao Y, Hu H, Hu W, Li C, Lin W, Liu S, Pan H, Tang X, Wang J, Wang W, Yu J, Zhang B, Zhang Q, Zhao Hongbin, Zhao Hui, Zhou J, Gabriel SB, Barry R, Blumenstiel B, Camargo A, Defelice M, Faggart M, Goyette M, Gupta S, Moore J, Nguyen H, Onofrio RC, Parkin M, Roy J, Stahl E, Winchester E, Ziaugra L, Altshuler D, Shen Yan, Yao Z, Huang W, Chu X, He Y, Jin L, Liu Y, Shen Yan, Sun W, Wang Haifeng, Wang Yi, Wang Ying, Xiong X, Xu L, Waye MMY, Tsui SKW, Xue H, Wong JTF, Galver LM, Fan JB, Gunderson K, Murray SS, Oliphant AR, Chee MS, Montpetit A, Chagnon F, Ferretti V, Leboeuf M, Olivier JF, Phillips MS, Roumy S, Sallée C, Verner A, Hudson TJ, Kwok PY, Cai D, Koboldt DC, Miller RD, Pawlikowska L, Taillon-Miller P, Xiao M, Tsui LC, Mak W, You QS, Tam PKH, Nakamura Y, Kawaguchi T, Kitamoto T, Morizono T, Nagashima A, Ohnishi Y, Sekine A, Tanaka T, Tsunoda T, Deloukas P, Bird CP, Delgado M, Dermitzakis ET, Gwilliam R, Hunt S, Morrison J, Powell D, Stranger BE, Whittaker P,

967 Bentley DR, Daly MJ, De Bakker PIW, Barrett J, Chretien YR, Maller J, McCarroll S,
968 Patterson N, Pe'Er I, Price A, Purcell S, Richter DJ, Saxena R, Sham PC, Stein LD,
969 Krishnan L, Smith AV, Tello-Ruiz MK, Thorisson GA, Chakravarti A, Chen PE, Cutler DJ,
970 Kashuk CS, Lin S, Abecasis GR, Guan W, Li Y, Munro HM, Qin ZS, Thomas DJ, McVean
971 G, Auton A, Bottolo L, Cardin N, Eyheramendy S, Freeman C, Marchini J, Myers S, Spencer
972 C, Stephens M, Donnelly P, Cardon LR, Clarke G, Evans DM, Morris AP, Weir BS, Johnson
973 TA, Mullikin JC, Sherry ST, Feolo M, Skol A, Zhang H, Matsuda I, Fukushima Y, MacEr DR,
974 Suda E, Rotimi CN, Adebamowo CA, Ajayi I, Aniagwu T, Marshall PA, Nkwodimma C,
975 Royal CDM, Leppert MF, Dixon M, Peiffer A, Qiu R, Kent A, Kato K, Niikawa N, Adewole IF,
976 Knoppers BM, Foster MW, Clayton EW, Watkin J, Muzny D, Nazareth L, Sodergren E,
977 Weinstock GM, Yakub I, Birren BW, Wilson RK, Fulton LL, Rogers J, Burton J, Carter NP,
978 Clee CM, Griffiths M, Jones MC, McLay K, Plumb RW, Ross MT, Sims SK, Willey DL, Chen
979 Z, Han H, Kang L, Godbout M, Wallenburg JC, L'Archevêque P, Bellemare G, Saeki K,
980 Wang Hongguang, An D, Fu H, Li Q, Wang Z, Wang R, Holden AL, Brooks LD, McEwen JE,
981 Guyer MS, Wang VO, Peterson JL, Shi M, Spiegel J, Sung LM, Zacharia LF, Collins FS,
982 Kennedy K, Jamieson R, Stewart J. 2007. Genome-wide detection and characterization of
983 positive selection in human populations. *Nature* **449**:913–918. doi:10.1038/nature06250
984 Saltz JB. 2011. Natural genetic variation in social environment choice: Context-dependent gene-
985 environment correlation in *Drosophila melanogaster*. *Evolution (N Y)* **65**. doi:10.1111/j.1558-
986 5646.2011.01295.x
987 Saltz JB, Geiger AP, Anderson R, Johnson B, Marren R. 2016. What, if anything, is a social
988 niche? *Evol Ecol* **30**:349–364. doi:10.1007/s10682-015-9792-5
989 Saltz JB, Nuzhdin S V. 2014. Genetic variation in niche construction: Implications for
990 development and evolutionary genetics. *Trends Ecol Evol*. doi:10.1016/j.tree.2013.09.011
991 Schiffels S, Durbin R. 2014. Inferring human population size and separation history from multiple
992 genome sequences. *Nat Genet Vol* **46**. doi:10.1038/ng.3015
993 Schiffels S, Wang K. 2020. MSMC and MSMC2: The multiple sequentially Markovian
994 coalescentMethods in Molecular Biology. Humana Press Inc. pp. 147–166.
995 doi:10.1007/978-1-0716-0199-0_7
996 Schwander T, Libbrecht R, Keller L. 2014. Supergenes and complex phenotypes. *Curr Biol*.
997 doi:10.1016/j.cub.2014.01.056
998 Seppä P, Sundström L, Punttila P. 1995. Facultative polygyny and habitat succession in boreal
999 ants. *Biol J Linn Soc* **56**:533–551. doi:10.1111/j.1095-8312.1995.tb01109.x
1000 Shaffer Z, Sasaki T, Haney B, Janssen M, Pratt SC, Fewell JH. 2016. The foundress's dilemma:
1001 Group selection for cooperation among queens of the harvester ant, *Pogonomyrmex*
1002 *californicus*. *Sci Rep* **6**:1–9. doi:10.1038/srep29828
1003 Shin J-H, Blay S, Mcneney B, Graham J. 2006. LDheatmap: An R Function for Graphical Display
1004 of Pairwise Linkage Disequilibria between Single Nucleotide Polymorphisms. *JSS J Stat*
1005 *Softw* **16**. doi:10.18637/jss.v000.i00
1006 Shoemaker DDW, Ahrens ME, Ross KG. 2006. Molecular phylogeny of fire ants of the
1007 *Solenopsis saevissima* species-group based on mtDNA sequences. *Mol Phylogenet Evol*
1008 **38**. doi:10.1016/j.ympev.2005.07.014
1009 Sirviö A, Pamilo P, Johnson RA, Page RE, Gadau J. 2011. Origin and evolution of the dependent
1010 lineages in the genetic caste determination system of *pogonomyrmex* ants. *Evolution (N Y)*
1011 **65**:869–884. doi:10.1111/j.1558-5646.2010.01170.x
1012 Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large
1013 phylogenies. *Bioinformatics* **30**:1312–1313. doi:10.1093/bioinformatics/btu033
1014 Tang K, Thornton KR, Stoneking M. 2007. A New Approach for Using Genome Scans to Detect
1015 Recent Positive Selection in the Human Genome. *PLoS Biol* **5**:e171.
1016 doi:10.1371/journal.pbio.0050171
1017 Thompson MJ, Jiggins CD. 2014. Supergenes and their role in evolution. *Heredity (Edinb)*.
1018 doi:10.1038/hdy.2014.20
1019 Thompson MJ, Timmermans MJTN. 2014. Characterising the Phenotypic Diversity of *Papilio*
1020 *dardanus* Wing Patterns Using an Extensive Museum Collection. *PLoS One* **9**:e96815.
1021 doi:10.1371/JOURNAL.PONE.0096815
1022 Tollefson GA, Schuster J, Gelin F, Agudelo A, Ragavendran A, Restrepo I, Stey P, Padbury J,

1023 Uzun A. 2019. VIVA (VIsualization of VAriants): A VCF File Visualization Tool. *Sci Rep* **9**:1–7. doi:10.1038/s41598-019-49114-z

1024

1025 Van der Auwera GA, Carneiro MO, Hartl C, Poplin R, del Angel G, Levy-Moonshine A, Jordan T, Shakir K, Roazen D, Thibault J, Banks E, Garimella K V., Altshuler D, Gabriel S, DePristo MA. 2013. From fastQ data to high-confidence variant calls: The genome analysis toolkit best practices pipeline. *Curr Protoc Bioinforma* **43**:11.10.1-11.10.33. doi:10.1002/0471250953.bi1110s43

1026

1027

1028

1029

1030 Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, Cuomo CA, Zeng Q, Wortman J, Young SK, Earl AM. 2014. Pilon: An Integrated Tool for Comprehensive Microbial Variant Detection and Genome Assembly Improvement. *PLoS One* **9**:e112963. doi:10.1371/journal.pone.0112963

1031

1032

1033

1034 Wang J, Wurm Y, Nipitwattanaphon M, Riba-Grognuz O, Huang Y-C, Shoemaker D, Keller L. 2013. A Y-like social chromosome causes alternative colony organization in fire ants. *Nature* **493**:664–668. doi:10.1038/nature11832

1035

1036

1037 Ward PS, Brady SG, Fisher BL, Schultz TR. 2015. The evolution of myrmicine ants: Phylogeny and biogeography of a hyperdiverse ant clade (Hymenoptera: Formicidae). *Syst Entomol* **40**:61–81. doi:10.1111/syen.12090

1038

1039

1040 Wilson EO. 1971. The insects societies., Heredity.

1041 Wu TD, Watanabe CK. 2005. GMAP: A genomic mapping and alignment program for mRNA and EST sequences. *Bioinformatics* **21**:1859–1875. doi:10.1093/bioinformatics/bti310

1042

1043 Yan Z, Martin SH, Gotzek D, Arsenault S V., Duchen P, Helleu Q, Riba-Grognuz O, Hunt BG, Salamin N, Shoemaker DW, Ross KG, Keller L. 2020. Evolution of a supergene that regulates a trans-species social polymorphism. *Nat Ecol Evo* **4**:240–249. doi:10.1038/s41559-019-1081-1

1044

1045

1046

1047 Yang S, Wang L, Huang J, Zhang X, Yuan Y, Chen JQ, Hurst LD, Tian D. 2015. Parent-progeny sequencing indicates higher mutation rates in heterozygotes. *Nature* **523**:463–467. doi:10.1038/nature14649

1048

1049

1050 Yeaman S. 2013. Genomic rearrangements and the evolution of clusters of locally adaptive loci. *Proc Natl Acad Sci* **110**:E1743–E1751. doi:10.1073/PNAS.1219381110

1051

1052

1053