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Abstract 

The highly ramified arbors of neuronal dendrites provide the substrate for the 
high connectivity and computational power of the brain. Altered dendritic 
morphology is associated with neuronal diseases. Many molecules have been 
shown to play crucial roles in shaping and maintaining dendrite morphology. Yet, 
the underlying principles by which molecular interactions generate branched 
morphologies are not understood. To elucidate these principles, we visualized 
the growth of dendrites throughout larval development of Drosophila sensory 
neurons and discovered that the tips of dendrites undergo dynamic instability, 
transitioning rapidly and stochastically between growing, shrinking, and paused 
states. By incorporating these measured dynamics into a novel, agent-based 
computational model, we showed that the complex and highly variable dendritic 
morphologies of these cells are a consequence of the stochastic dynamics of 
their dendrite tips. These principles may generalize to branching of other 
neuronal cell-types, as well as to branching at the subcellular and tissue levels. 
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Introduction 
 

 Neurons are polarized cells (Cajal, 1906) whose axons and dendrites are often 

highly branched. Branching provides the surface area necessary for dendrites to receive 

inputs from thousands of other cells or from the environment (Lefebvre et al., 2013), and 

for axons to output signals to multiple cells. In these ways, branching facilitates the high 

connectivity of the brain (Lefebvre et al., 2013). Thus, the morphology of the neurons, 

together with their synaptic connections (Fornito et al., 2015; Zheng et al., 2018), defines 

the structure of the nervous system, the connectome, which is viewed as a prerequisite 

for understanding brain function (Denk et al., 2012). Whereas much is known about the 

growth of axons, whose tips, the growth cones, are guided by extracellular signals and 

guidepost cells (Stoeckli, 2018), the mechanisms underlying the growth and branching of 

dendrites are poorly understood. Elucidation of these mechanisms is the goal of the 

present work.   

While many molecules have been shown to play crucial roles in shaping dendrites, 

the underlying rules by which molecular interactions generate branched morphologies is 

not understood. To investigate these rules, we have focused on dendrite morphogenesis 

in class IV dendritic arborization (da) neurons in Drosophila, a model system for 

dendritogenesis (Jan and Jan, 2010; Singhania and Grueber, 2014). These nociceptive 

neurons form a highly branched meshwork just under the cuticle that senses puncture of 

the larva by the ovipositor barbs of parasitic wasps and initiates avoidance behaviors 

(Basak et al., 2021; Robertson et al., 2013). Class IV cells are ideal for studying branching 

morphogenesis because they grow rapidly over 5 days of larval development, their 

branches are non-crossing due to self-avoidance mediated by the Down’s syndrome cell 

adhesion molecule (Hughes et al., 2007; Matthews et al., 2007; Soba et al., 2007) and 

other molecules (Emoto et al., 2004; Parrish et al., 2009), and they can be visualized 

using cell-specific labeling (Grueber et al., 2003; Jan and Jan, 2010). Many molecules 

that participate in dendrite morphogenesis have been identified: transcription factors 

(Jinushi-Nakao et al., 2007); extracellular matrix and integrins (Han et al., 2012; Kim et 

al., 2012); actin-associated proteins (Stürner et al., 2019); microtubule motors such as 

dynein and kinesin (Satoh et al., 2008; Zheng et al., 2008); microtubule regulators such 

as spastin (Sherwood et al., 2004), katanin (Stewart et al., 2012) and 𝛾-tubulin (Ori-

McKenney et al., 2012); and microRNAs such as bantam (Parrish et al., 2009). A major 
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difficulty, however, is that it is currently not possible to predict quantitatively how 

developmental processes occurring at the molecular and subcellular levels determine the 

morphology of the entire dendritic arbor.  

While several theoretical and computational models can produce dendrite-like 

branched morphologies, they are not grounded in molecular or development data. Early 

models, designed to describe and classify neurons, reconstituted morphologies based on 

the statistical properties of the observed arbors themselves (Ascoli and Krichmar, 2000; 

Nanda et al., 2018). Optimization-based models that minimize wiring (i.e., the total lengths 

of the branches) capture key features of neuronal morphology (Baltruschat et al., 2020; 

Cuntz et al., 2010), but lack connection to the cellular processes, as do models based on 

more abstract processes such as diffusion-limited aggregation (Luczak, 2006) and 

Turing-like pattern formation (Sugimura et al., 2007). More realistic models of Drosophila 

sensory cells, for example, capture important properties of the dendrite morphologies but 

use hypothetical branching and growth parameters (Ganguly et al., 2016; Palavalli et al., 

2021). Models of branching morphogenesis in tissues are of limited applicability to 

dendrites: models of branching in the lungs (Metzger et al., 2008) and kidneys (Lefevre 

et al., 2017; Short et al., 2014) produce stereotyped morphologies that are distinct from 

the highly variable morphologies of neurons (Kanari et al., 2018). Stochastic models 

developed for other tissues, such as the mammary glands, use properties that are specific 

to these systems, such as tip bifurcation (Hannezo et al., 2017). Thus, current 

computational models fall short in providing a mechanistic understanding of dendrite 

morphology.    

To circumvent these limitations, we have formulated a computational model that is 

based entirely on experimentally observed properties of dendrites measured over their 

development. The data-based model takes as input tip-growth dynamics, branching rates 

and self-avoidance measured using high-resolution, live-cell imaging in the developing 

animal. The model successfully recapitulates class IV dendrite morphogenesis and shows 

how the complex and variable morphology of dendritic arbors emerge from the 

microscopic dynamics of dendrite tips and provides insights into several mutant 

phenotypes. 
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Results  
 
 As Drosophila larvae grow (Figure 1A), the arbors of their class IV dendrites also 

grow (Figure 1B). By the end of larval development, the meshwork of branches covers 

the larval surface like chainmail and the individual dendritic arbors fill the eight abdominal 

segments with widths up to 500 μm. Each abdominal segment on the dorsal side, on 

which we focus, has two class IV neurons, one on either side of the dorsal midline (see 

Figure 1C and Figure S1A for definitions of the larval axes), and each occupying an 

approximately rectangular hemisegment. When the first instar larva hatches at 24 hr after 

egg-lay (egg-lay is defined as time zero), the widths of the dendritic arbors (green and 

blue points) are smaller than the hemisegments (solid lines) as shown in Figure 1D  (see 

Methods for how the sizes of the arbors and segments were calculated). Over the next 

24 hr, the arbors grow faster than the segments and reach the edges of the adjacent 

hemisegments. By 72 hr, the arbor has densely filled the hemisegment (Figure S1B) and 

thereafter grows with the growing hemisegment in a process called scaling (Parrish et al., 

2009). The tiling of the larval surface (Grueber et al., 2002), during which the dendrites 

do not cross into the adjacent hemisegments, is due to inhibitory interactions between 

neighboring class IV cells (Soba et al. 2007) and interactions with the adjacent epithelial 

cells (Parrish et al., 2009). We sought to understand how the dendrites grow and fill the 

hemisegments. 

 
Dendrite growth is not due to elongation of all branches in the arbor  

 We first asked whether class IV arbors grow through the elongation of all their 

branches, both internal and terminal (Figure 2A, upper panel). In other words, does the 

arbor expand uniformly as shown in Figure 2A (middle panel), as proposed by (Yang and 

Chien, 2019). Such uniform expansion describes the growth of the overlying epithelial 

cells, whose number remains constant over larval development (Parrish et al., 2009), and 

of class I cells, which expand concomitantly with the segments (Castro et al., 2020; 

Palavalli et al., 2021). To test the role of branch elongation in arbor expansion, we 

reimaged the same neurons at discrete times over development, at 24 & 48 hr, and at 48 

& 96 hr (Figure 2B). As the arbors grow, there is continuous addition and removal of 

branches. Nevertheless, it was possible to identify shared structural features of internal 

branches in the proximal region (Figure 2 C,D and Methods). The fractional increases in 

lengths of these identified internal branches were considerably less than the fractional 
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increase in length of the hemisegments along the AP and LR axes (Figure 2E), in 

agreement with earlier measurements (Baltruschat et al., 2020). Because elongation of 

internal branches contributes only 3% (24-48 hr) to 11% (48-96 hr) of the overall growth 

of the dendrites, other mechanisms must contribute to the bulk of arbor growth. This 

finding implies that the proximal branches are not rigidly attached to the adjacent 

epithelium but must slowly slip as the hemisegments grow, an interesting issue that we 

will not explore further here.   

 
Figure 1: Growth of 
larvae and class IV 
neurons over 
development 
A Whole-mount, living 

larvae imaged by 

spinning-disk confocal 

microscopy at 24 hr to 

120 hr (egg-lay defined 

as time zero). Class IV 

neurons are marked with 

the transmembrane 

protein CD4 tagged with 

GFP (genotype - 

;;ppkCD4-tdGFP). B 

Individual class IV cells 

from the A3 or A4 

segments. An A3 

segment is outlined in A 

(120 hr). C Cartoon of 

larvae as viewed from the dorsal side. The dashed line is dorsal midline. Anterior (A) is up and posterior 

(P) down. Left (DL) and right (DR) as viewed from the dorsal side (for the sake of simplicity we will mention 

DL-DR as LR everywhere in text and subsequent figures); the gray dashed arrow points in the ventral 

direction. D Growth of class IV arbors compared to their hemisegments. At 24 hr, the cell widths (solid 

circles with dashed lines through the averages) are smaller than the hemisegment widths (solid lines). In 

the next 24 hr, they touch the growing segment boundaries and by 72 hr (gray) they fill the hemisegment 

and then continue to grow with the hemisegment. The cell widths along each axis are defined as the sides 

of the rectangle which contains the same mass of branch skeleton distributed uniformly (see Methods). 
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Figure 2: Branch dilation 
does not account for 
dendrite growth. 
A Upper panel: internal branches are 

branches that lie between two branch 

points as distinct from terminal 

branches that end in a tip. Lower two 

panels: two models for dendrite 

growth. Middle: elongation of existing 

branches & infilling with new 

branches. Lower: maintenance of 

internal branches & growth and 

infilling with new branches. B 

Maximum-projection image of a GFP-

labeled class IV neuron cell (genotype 

- ;;ppkCD4-tdGFP) at 24 hr (magenta 

color) and same cell imaged at 48 hr 

(green color). 24 and 48hr images are 

combined with a leftward displacement of the latter. The area in the gray boundary (inset) is enlarged in C 

and D where conserved internal branches are marked with the same color circle and number (see 

Methods). E The fractional length changes of the hemisegments along the AP and LR axes were calculated 

from 24 hrs to 48 hrs and from 48 hrs to 96 hrs, together with the fractional length changes of the internal 

branches. Each blue and green circle is a different larva; the red circles correspond to several branch 

measurements in each of 6 larvae. 

 

Terminal dendrites grow from their tips and not from their bases 

 An alternative hypothesis to elongation of internal branches is that the growth of 

the arbor is due to branching and subsequent lengthening of the newly formed terminal 

branches (Figure 2A, lower panel). To test this hypothesis, the behavior of terminal 

dendrites was examined. Following birth by lateral branching from existing branches (Gao 

et al., 1999), terminal dendrites can: lengthen; shorten spontaneously or following contact 

with another branch; and pause (Figure 3A). Time-lapse imaging (Movies S1-S5) 

suggests that lengthening is due primarily to the addition of material near the tip. For 

example, the distances between the base of a branch and new branch points or bends 

do not change while the distal tips grow and shorten (Figure 3A, top-left panel; Movies 

S6-10). These observations argue against growth at the base and against uniform 

elongation along the length of terminal dendrites. Because new branches can form as 
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close as 2 μm to an existing tip, we estimate that growth occurs within ~2 μm of the distal 

ends. Thus, tip growth, which occurs on timescales of minutes, may contribute to the 

overall growth of the arbor. 

 

Figure 3: Dendrite tips transition between growing, shrinking and paused states. 

A Class IV dendrites growing (green star), 
birthing (yellow), colliding (blue), shrinking (red), 
and pausing (orange). Maximum projection 
spinning disk images of neurons were collected 
every 5 seconds for larval stage 24hr (genotype 
- ;;ppkCD4-tdGFP).  B The length of a dendrite 
as a function of time (see Methods). The black 
open circles represent the initial piecewise linear 
fit using 𝑁/6 segments, where 𝑁 is the total 

number of frames. The gray dots show the fitting 
after the iterative merging process (see 
Methods). Green, orange, and red indicated 
periods of growth, pausing, and shrinkage. C 
The root-mean-squared error before (black) and 
after (gray) merging for 91 trajectories (24 hr). 
The average error is 50 nm.  D The velocity 
distribution shows three distinct peaks 
representing the growing (G), paused (P), and 
shrinking (S) states. E Transition rates between 
the three states. 
 

 

 

 

 

 

 

 

High-resolution tracking shows that tips transition between periods of constant 

growth velocity 

 To determine whether tip growth can account for arbor expansion, we tracked the 

lengths of terminal dendrites over time with an accuracy of ~0.1 μm (Methods, Figure S2 

A-F). To ensure that mounting and imaging larvae did not interfere with growth, we 

restricted imaging to 20- to 30-minutes (Figure S1C). Typical trajectories show that 

dendrite growth is highly dynamic, with large fluctuations in velocity (Figure 3B, and 

Figure S2 G, I, K). To analyze tip trajectories, we first considered tip growth as a diffusion-

with-drift process, a common way to describe particles moving in a flow. However, we 
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ruled out this description because there were extended times of near-constant velocity: 

the green, red, and orange lines in Figure 3B (and Figure S2 G, I, K) clearly indicate 

periods of elongation, shortening, and stationarity. We therefore fit the trajectories to a 

piecewise linear continuous function, for which fast algorithms exist (D’Errico, 2021). This 

initial segmentation into regions of constant velocity provided a good fit to the tracking 

data (Figure 3B,C, black circles), showing that tip trajectories can be decomposed into 

sequential periods of linear growth or shrinkage. 

 

Dendrite tips undergo dynamic instability 

 We then asked the more difficult question of whether tips undergo dynamic 

transitions between growing (G), shrinking (S), and paused (P) states. In other words, 

can we classify the regions of constant growth into just three states such that transitions 

only occur between different states. Such a description is analogous to the dynamic 

instability of microtubules (Mitchison and Kirschner, 1984), which transition stochastically 

between two states: growing and shrinking.   

To test whether a three-state dynamic model could account for tip growth, we 

assigned each region to be in a growing, shrinking or paused state by fitting the histogram 

of velocities with a three-peaked distribution, such as shown in Figure 3D, to define 

velocity thresholds between growth and pause, and shrinkage and pause. We then 

merged adjacent regions that belonged to the same state. Through an iterative procedure 

(see Methods), we segmented the trajectories into growing, shrinking, and paused states, 

with transitions only between different states. The resulting trajectory (Figure 3B, gray 

lines) was an excellent fit to the data: the root-mean-squared error was on average ~0.05 

μm (Figure 3C), accounting for 85% to 99% of the variance (Figure S2 H, J, L). From 

these data, we calculated (i) the growing and shrinking speeds (Figure 3D) and (ii) the 

rates of the transitions between the three states (Figure 3E). At 24 hr, the growing and 

shrinking speeds were 1.61 m/min and 1.52 m/min, respectively, and the transition 

rates ranged from 0.31 to 0.95 per minute, corresponding to average lifetimes of individual 

states between 0.6 to 1.5 minutes. The net speed of dendrite elongation, ~0.034 m/min 

(Table 1A), is much smaller than the average speed in the growing state because the 

dendrites spend roughly equal times in the growing and shrinking states. 

This analysis shows that the growth trajectories accord with a three-state kinetic 

scheme, which provides a succinct yet comprehensive description of tip dynamics. This 
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scheme is a generalization of the Dogterom and Leibler model of microtubule dynamic 

instability (Dogterom and Leibler, 1993), with inclusion of a third, paused state, and the 

growing and shrinking states having distributions of speeds. 

 

Dendrite dynamics and branching rates change over development time 

 Throughout development, the growing and shrinking speeds were roughly 

unchanged (Table 1A). The main change over development was that the transition rates 

out of the paused state decreased two- to four-fold and the transition rates into the paused 

state increased by about 50%. As a result, the dendrites spend more time in the paused 

state: they become less dynamic.  

 Branching, which always occurs on the sides of existing branches, also slowed 

down over development. The branching rate per unit dendrite length decreased roughly 

ten-fold from 24 to 96 hr (Figure 4A, Table S1). This decrease is another manifestation of 

dendrites becoming less dynamic over time. The geometry of branching, however, 

remained constant over development: the mean angle of a new (daughter) branch was 

close to 90° at all developmental stages (Figure 4B, Table S1), and the spatial distribution 

of branching remained roughly uniform (Figure 4C and D). In summary, both growth and 

branching are highly stochastic throughout development, though the transition and 

branching rates slow down over time. 

 
Figure 4: Dendrite branching over 
development. 
A The rate of appearance of new branches 

normalized by the total branch length is plotted 

against developmental time. Each symbol 

represents a neuron from a different larva (except at 

24 hr where 3 neurons in each of 3 larvae were 

analyzed). The curve is an exponential fit with an 

offset (dotted line). Inset: The total branching rate 

per cell. B The distribution of branch angles between 

daughters at different developmental stages. The 

angle is zero when the new daughter grows parallel 

to the mother. Numbers of neurons: 6 (24 hr), 7 (36 

hr), 4 (48 hr and 96 hr), 5 (72 hr) C Spatial distribution of branching events at 24 hr (9 neurons from 3 

larvae). D Spatial distribution of branching events in 96 hr (6 neurons from 6 larvae). In both C and D, the 

soma positions are centered at the origin. Different colors represent different cells. 
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Dendrite tips retain memories: their dynamics are not Markovian 

 We tested whether the transitions between growth states are Markovian, meaning 

that they depend only on their current state: i.e., they do not depend on the history, and 

there is no memory of earlier states. Consistent with a Markov process, the lifetimes of 

the states were approximately exponential at long times (Figure S3 A-I), and the 

probability of a transition in the sequence of occupied states (e.g., GPGSPGPSG…) did 

not depend on the previous state. For example, we found that the likelihood of G→P did 

not depend on the prior state: that is SG→P and PG→P were equally likely.  

 There were several violations of the Markov property, however. First, following 

contact of a tip with another branch, the growth dynamics change: the rates out of the 

growing state increase, so the dendrites spend less time growing (Table 1B). Therefore, 

in addition to contact-induced retraction, there is a long-lasting alteration of the dynamics: 

the average tip-growth rate changes from positive to negative (Table 1), and the post-

contact dendrites shrink on average. This alteration implies that there is a long-lasting 

memory of the collision. Second, we found that the lifetimes of newly born dendrites were 

longer than expected for a Markov process. Following birth into the growing state, the 

transition rates, which were measured for older dendrites (>5 minutes after birth), predict 

that there will be an initial linear decrease in surviving dendrites due to the chance that a 

growing dendrite stochastically switches into a shrinking state, which then shortens and 

disappears. Instead, we found that the survival curve was initially flat, consistent with an 

initial growing state of 0.3 minutes (Figure S4A). Such a survival curve is another violation 

of the Markov process and implies that a newborn dendrite retains a memory of birth. 

Third, growth and shrinkage events with higher absolute speeds tended to have shorter 

lifetimes (Figure S3 J, K). Thus, while growth is highly stochastic, it deviates from being 

Markovian, indicating memory and “hidden variables” that influence the dynamics. These 

hidden variables are likely to be long-lived biochemical states (e.g., phosphorylation) 

triggered by dendrite birth or tip contact with other dendrites, which influence the 

dynamics.  
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Figure 5: Schematic of the agent-
based computational model 
A Cartoon diagram depicted the different 

components of the model: tips are born by 

branching and transition between growing, 

shrinking, and paused states. Upon contact 

with another branch, the tips retract. B 

Diagram of the transitions. Parameters are 

listed in Table 1 and Tables S1-2. 

 

 

 

An agent-based model incorporates measured tip properties  

 To test whether the dynamical properties of the dendrites measured above can 

account for the observed morphology, we developed an agent-based computational 

model to predict morphologies based on tip dynamics. The elementary “particle” in the 

model is the dendrite tip, which serves as the agent (Figure 5A). 

Tips were simulated using rules that closely followed the experimental 

measurements (see Figure 5B, Methods). Terminal dendrites lengthen and shorten with 

speeds sampled from the growth and shrinkage distributions (e.g., Figure 3D). They 

transition between growing, shrinking, and paused states according to the measured 

transition rates (Table 1), which were linearly interpolated between different 

developmental stages. Tip birth occurred randomly in time and space along extant 

branches with the measured branching rates (Figure 4A). The nascent daughter branch 

was assumed to start in a growing state (Figure 5) with an initial length of 0.5 m (Table 

S2) and included an initial lag of 0.3 min during which the transition out of the growing 

state was forbidden, in accordance with our observations. Dendrite death occurred when 

the last point disappeared during a shrinkage event. Contact, defined as a tip getting 

closer than 0.15 m to another branch (roughly the radius of the terminal branch (Liao et 

al., 2021), switched a growing tip to a shrinking one with the post-contact dynamics (Table 

1B). 

The initial larval morphology at 24 hr was established by (i) growing two to four 

branches from a point (the origin) using the embryonic growth parameters at (18-20 hr) 
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and (ii) allowing growth until the total branch length and number reached their values at 

24 hr. To model the segment boundary, we assumed that contact with neighboring 

dendrites induced shrinkage (Parrish et al., 2009). Neighbor interaction was implemented 

using a periodic boundary condition such that one side of a growing neuron feels its 

opposite side as if growing on the topological equivalent of a torus. Over time, we 

gradually increased the size of the boundary according to the measured segment growth 

rates (Figure 1D). 

 

Simulated dendritic trees recapitulate coarse-grained features of dendrite 

morphology 

 We simulated dendritic trees using the parameters from Table 1 and Tables S1,2, 

all of which were measured or tightly constrained by experiments. The simulations (Figure 

6A) recapitulated key properties of real arbors (Figure 6B).  

 (i) Arbor growth: In the absence of a boundary, the widths of simulated arbors 

initially grew at 10 m/hr, and then, after 48 to 72 hr, they slowed down to 4 m/hr (Figure 

S5 Aii). Thus, the dendrite initially grew faster than the hemisegments (which grow at 4 

μm/hour), leading to complete infilling by 72 hr; after 72 hr, arbor growth was just sufficient 

to keep up with segment growth. Contact-based retraction with the adjacent cell kept the 

dendrite confined to the hemisegment (i.e., tiling). 

 (ii) Total branch length and number: The simulations predicted the observed 

increases in total branch length (Figure 6C) and number (Figure 6D), as well as the mean 

branch length (Figure 6E). The branch length distributions were roughly exponential in 

the simulations and the data (Figure S6 A-E). An interesting feature of the branch number 

is the initial burst (24-36 hr) and subsequent plateau (36-72 hr). The burst is predicted by 

the model and arises from two features of tip growth: the high initial branching rate (Figure 

4A), and the perseverance of the initial growth of branches (i.e., a delay in transitioning 

out of the growing state). Without perseverance, which is a memory of birth, the plateau 

is less pronounced, showing that the initiation of branching is an important determinant 

of arbor morphology.  

 There were some discrepancies between the data and the model. For example, 

the branch number of the simulated arbors saturated at 120 hr, while that of the real 

arbors continued to increase with an associated late decrease in mean branch length of 

real arbors. These discrepancies may indicate that dynamical properties change after 96 
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hr, the last time at which the dynamic parameters were measured (simulations beyond 

96 hr are extrapolations). Another possible source of the discrepancy at 120 hours may 

be due the high branch density at intersegment boundaries along the AP axis (Figure 6B, 

right) arising from close cell-cell interactions, which were not predicted by the model. 

Nevertheless, we believe that the model is in good agreement with the average properties 

of the arbors. 

 
 

 
 

Figure 6: The agent-based model accords with overall neuronal growth 

A Example of a simulated neuron using the parameters in Table 1 and Tables S1-2 at different 

developmental stages. Same scale bar as in B. B Example of the skeleton of a real neuron at 120 hr. C 

Total branch length over developmental for simulated and real neurons. D Total number of branches. E 

Mean branch length (total branch length/total number of branches). 

 

Simulated arbors capture the variability of dendrite morphology 

 In addition to predicting average branch properties, the model also predicted the 

variation of these features. For example, the measured branch numbers are highly 

variable, with coefficients of variation (SD/mean, CV) ranging from 0.11 to 0.22 over 
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development. This CV is even larger than that of a Poisson process, a prototypical 

random process whose CV equals the inverse square root of the branch number 

(expected range 0.02 to 0.06). This comparison to a Poisson process indicates that 

branch number is highly variable from arbor to arbor, a manifestation of the stochasticity 

of the morphology. Total branch length and average branch length were also highly 

variable. Importantly, the simulations recapitulated this variability (Figure 6C-E). Thus, the 

model predicted both the average properties and the stochasticity of the branch number 

and length. 

 

Simulated arbors recapitulate fine-scale properties of dendrite morphology 

 The branches of both the simulated and real arbors formed dense meshworks 

(Figure 7A,B). We estimated the extent to which the branches cover the arbor using the 

box-counting method (Falconer, 1990) in which the number of boxes that contain a branch 

is plotted against the size of the boxes (Figure 7C). We found that the logarithm of box 

number was approximately proportional to the logarithm of box size, indicating that the 

patterns have scale-free and fractal-like properties. The proportionality breaks down at 

box sizes below 5 μm, the size of the “holes” in the pattern due to the average branch 

size. We defined the fractal dimension as the slope of the log-log plot (the power-law 

exponent) in the central region encompassing the middle 50% of the points (Figure 7C 

dashed lines). The fractal dimension increased from 1.4 to 1.8 from 24 hr to 120 hr for 

both the simulated and real arbors (Figure 7D). Because a region containing a single line 

has a fractal dimension of 1 whereas a region completely filled region has a fractal 

dimension of 2, the dendritic patterns are of intermediate dimension and at 120 hr nearly 

fill the plane (fractal dimension 1.8). Though the fractal dimensions of real arbors were 

consistently lower by about 0.1, we nevertheless conclude that the simulated arbors 

recapitulate the real arbors in this metric. 

 

Simulations recapitulate the radial orientation of dendrite branches 

 We discovered that class-IV cells have an unexpected long-range order: branches 

are not randomly oriented but instead tended to be parallel to the radial orientation (Figure 

7E-F, Figure S6 F-J). The simulations also displayed radial orientation. Radial orientation 

is a consequence of contact-based retraction; if contact-based retraction is replaced by 
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contact-based pausing, the radial orientation was greatly reduced (Figure 7F, dotted 

curve). 

 
 
Figure 7: The agent-based model 
recapitulates the fine-scale patterns of 
real arbors. 
A Model arbor at 72 hr. Light green branches 

indicate the outer 5% of the arbors excluded from 

the analysis to mitigate against spurious boundary 

effects (see Methods). Boxes with two different 

sizes are shown in the background.  B 

Skeletonized real arbor at 72 hr. Light gray 

branches were excluded from the analysis. C The 

number of boxes that contain a branch (y-axis) is 

plotted against the box size (x-axis). The slopes 

over the central 50% of the data (vertical dashed 

lines) define the fractal dimensions. D Fractal 

dimensions of real and simulated arbors both 

increase over developmental. E Diagram defining 

the radial orientation. F Radial orientation of a 

simulated tree (green solid line) and a real arbor 

(black) at 72 hr. Simulated tree with pausing 

instead of retraction (green dotted curve). 

 

 

 

Morphological predictions of the model 

 The agent-based model allowed us to explore which parameters are most 

important for arbor growth and mesh size (Figure S5) and provides hypothesis for the 

phenotypes of mutants.  

 A surprising finding was that branching drives overall arbor growth: increasing the 

branching rate not only increased the number and density of branches, as expected, but 

also increased arbor size (Figure S5B). Indeed, setting the average velocity of dendrite 

extension to zero still resulted in arbor growth, albeit slower (Figure S5E and Figure S7), 

showing that branching without net tip growth can drive arbor expansion. This is not to 

imply that the average tip growth rate is unimportant: doubling the net growth rate doubled 
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the dendrite area (Figure S5D) and halving the net growth rate halved the dendrite area 

(Figure S5D). The latter finding accounts for the reduced arbors in Katanin (Kat-60L1) 

mutants, which spend less time in the paused states and more time in the shrinking state 

(Stewart et al., 2012): the mutant cells will therefore have a reduced net growth rate 

compared to controls, leading to smaller size (see Table S3). 

 Another surprising finding was that fluctuations in branch length also lead to 

growth. When the fluctuations were increased (by reducing the tip-transition rates) the 

growth rate increased, and vice versa (Figure S5C). This suggests an unexpected growth 

mechanism: length fluctuations are locked in by the formation of new branches, as only 

terminal branches can shorten and disappear. This stresses the importance of branching 

in growth.  

 The branching angle also affected arbor growth: if the branch angle was decreased 

to 45° (i.e., growth towards the direction of the mother branch), arbor growth increased, 

showing that outward growing branches are more likely to survive. The persistence of 

branch growth after birth was also important.  

 Our model shows dendrite density is set by the interplay between branching and 

self-avoidance. Branching is a form of positive feedback that increases branch density 

(Figure S5B). Therefore, branching is essential not just for expansion but for infilling the 

hemisegment. Self-avoidance is negative feedback: reducing self-avoidance in the model 

increases the branch density (Table S3), which is observed in studies in which self-

avoidance molecules are mutated (Emoto et al., 2004; Hughes et al., 2007; Matthews et 

al., 2007; Soba et al., 2007).  

By performing this variational analysis (e.g., Figure S5), we could identify which of 

the 67 parameters (see Methods) are key to overall dendrite growth and morphology. The 

key parameters are: the net growth velocity and its variance together with the net 

shrinkage following contact (3 parameters) and the branching rate (1 parameter) and 

angle (2 parameters). In the absence of the boundary, these determine the growth rate, 

the branch number and length, together with the fine structure (fractal dimension and 

radial orientation). While the detailed growth and morphology depend on the change of 

these 6 parameters over development (and the boundary), these parameters are the 

fundamental ones that specify growth and morphology.  
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Discussion  

 We have discovered that the tips of Drosophila class IV dendrites transition 

stochastically between three states - growing, shrinking, and paused. This allows 

dendrites to explore extracellular space, analogous to the exploration of intracellular 

space by microtubules undergoing dynamic instability (Kirschner and Mitchison, 1986). 

Our modeling shows that these transitions, together with lateral branching, and contact-

mediated retraction, give rise to the complex and highly variable morphology of the 

dendritic arbors, allowing them to fulfill their biological functions. The dense, almost 

unbroken meshwork optimizes detection of the fine ovipositor barbs of parasite wasps 

(Basak et al., 2021; Robertson et al., 2013). And the radial orientation of branches, a form 

of long-range order that emerges from local interactions (Toner and Tu, 1995; Vicsek et 

al., 1995), in this case contact-induced retraction, reduces the path distance to the cell 

body: this minimizes signaling delays and wiring costs (Baltruschat et al., 2020). Thus, 

stochastic tip dynamics may partially solve the riddle of how “the morphological features 

displayed by neurons appear to obey precise rules that are accompanied by useful 

consequences” (Cajal, 1995).  

 

Model limitations  

 The agent-based model fails to account for some features of class IV cells. For 

example, the model does not extrapolate well to 120 hr, suggesting that important 

developmental changes may occur after 96 hr. The model also fails to predict the 

asymmetry of real arbors, which form close contacts with class IV cells in the adjacent 

segment along the AP axis but not along the LR axis (Figure 6A,B); the model contains 

no asymmetries. Thus, the interactions between neighbors is more than just the contact-

based retractions assumed in the model. Another shortcoming is that many simulated 

branches have sharp angles, whereas real branches are smoother: this is because when 

a mother branch shrinks back to a daughter in the model, the original branch angle is 

preserved (average 90 degrees), whereas in the real cells the bend smoothens over time 

(see an example of this in Supp. movie 7). Thus, there are important features of real class 

IV dendritic arbors that are not accounted for. Other important aspects of dendrite 

morphology, such as branch diameters (Liao et al. 2021) and the three-dimensionality of 

class IV cells (Han et al. 2012), have not been included in the model. Moreover, the model 

does not take into account the guidance of class IV dendrites by external cues such as 
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the cuticular epithelium (Parrish et al., 2009; Uçar et al., 2021) and other neurons 

(Grueber et al., 2002), though theoretical tools have recently been developed to 

incorporate these cues  (Parrish et al., 2009; Uçar et al., 2021). Finally, the internal 

branches in our model are completely immobile, whereas we have observed internal 

branch movements with respect to the substrate. Despite these limitations, however, our 

model provides a framework on which to build more complex interactions.       

 

Dendrite tips: an intermediate organizational principle of dendrite morphology 

 Our results strongly support the concept that the dendrite tip is a “branching engine 

…  that initiates, directs, and maintains branch outgrowth during development and 

regrowth” (Lu and Werb, 2008). The dendrite tip, with a diameter of only 0.2 μm (Liao et 

al., 2021) and with dynamics on the timescale of ~1 minute (the state lifetimes), generates 

structures up to 500 μm in diameter (>1000-times larger sizes) over five days (>1000-

times longer times). Tips, therefore, are intermediate in length- and timescales between 

molecules (small size and short-time scale motions) and morphology (large size and long-

timescale motions). 

 The concept of the dendrite tip as a branching machine has four important 

implications. First, if the molecular basis of tip growth and branching can be elucidated, 

our agent-based model will provide a full connection between genotype and phenotype, 

with the caveats that morphogenesis is stochastic and some features such as three 

dimensionality are not included. Second, altered tip dynamics due to mutations and 

diseases may underly altered dendrite morphologies (see Introduction and the 

Predictions of the model section). Third, tip rules may specify neuronal identity, often 

defined by dendrite morphology (DeFelipe et al., 2013).  And fourth, the stochastic nature 

of the tip rules may facilitate the evolution of neuronal cell types. This is because 

developmental stochasticity amplifies genetic variation by allowing a large class of 

morphologies to be sampled for each genotype. While some morphological outliers may 

function poorly, others might be beneficial, and genetic and/or epigenetic mechanisms 

could selectively stabilize these beneficial morphologies. 

 

Potential molecular mechanisms underlying dendrite tip dynamics and branching 

 Neurite elongation by tip growth also occurs in axons (Dent et al., 2011) and in 

other dendrites, such as those in C. elegans PVD neurons (Liang et al., 2020).  An 
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important difference between dendrite tips in class IV cells and the growth cones seen in 

these other cells is that the tips of class IV dendrites are much smaller. The diameter of 

class IV terminal dendrites is only ~200 nm (Liao et al., 2021), as small as a single 

filopodium, the finest feature of growth cones observed under the light microscope. Thus, 

tip-growth mechanisms in class IV dendrites likely differ from growth-cone-based growth. 

An important open question is how the cytoskeleton and membranes reach the dendrite 

tips: what are the relative contributions of diffusion, filament polymerization (Jinushi-

Nakao et al., 2007; Ori-McKenney et al., 2012; Yalgin et al., 2015),  motor-driven transport 

(Weiner et al., 2016) and motor-driven sliding (Winding et al., 2016)? 

 

General mechanisms of branching morphogenesis  

Dendrite tips share features of branch tips in other systems. Tip cells drive branching in 

branched tissues such as the mammary glands (Lu and Werb, 2008). The growing ends 

of cytoskeletal filaments, with associated nucleation factors, drive branching of organelles 

such as the microtubule-based mitotic spindle (Decker et al., 2018; Petry et al., 2013) and 

the actin-based lamellipodium (Pollard and Borisy, 2003). In all three cases (dendrites, 

tissues and cytoskeleton), the tips operate at shorter length-scales and timescales than 

those of the structures they produce. Furthermore, they all respond to external signals: 

contact-based retraction of dendrite tips, cortex-induced catastrophe of microtubule ends 

(Komarova et al., 2002), and self-avoidance of mammary-gland branches (Lu and Werb, 

2008). Finally, all three are stochastic and generate highly variable morphologies. Given 

these commonalities, it is likely that the principles that we have elucidated for dendrites 

generalize to other branched systems.  

 

Branching 

 Our observation that branching is an intensive property—the total rate of formation 

of branches is almost independent of arbor size (Figure 4A, inset)—is evidence that there 

are only a limited number of “branching factors” being produced in the entire cell per unit 

time. The uniform distribution of new branches suggests that the branching factors are 

dispersed throughout the cells, perhaps by molecular motors. Several phenotypes of 

molecular motor mutants in class IV cells support this hypothesis. The perturbation of 

molecular motors and their adapter proteins, including dynein (Arthur et al., 2015; Satoh 

et al., 2008; Zheng et al., 2008) and kinesins (Kelliher et al., 2018; Satoh et al., 2008), 
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result in non-uniform branch densities, as expected if the distribution of branching factors 

were disrupted (see Table S3). 

 

 

Generalization of the agent-based model to other neurons  

 To explore the generality of our model, we have simulated different neuronal cell 

types, such as Drosophila class I neurons, mammalian retinal ganglion cells, Purkinje 

cells and starburst amacrine cells. By modifying the input parameters, our model was able 

to successfully capture the key morphological features of these cells as shown in the 

Figure S8. In class I cells, contact-based tip retraction leads to secondary branches being 

orthogonal to the primary branch even when the initial branching angles are uniformly 

distributed (Figure S8A); this confirms the finding of (Palavalli et al., 2021) and is related 

to the radial orientation of class IV cells described above. Contact-based retraction also 

leads to the radial orientation of retinal ganglion cells (Figure S8B), though we found 

better agreement using a small branching angle (45 degrees relative to the direction of 

the mother). To simulate Purkinje cells, we assumed slow tip growth of dendritic tips and 

complete retraction after contact to recapitulate the locally parallel branch orientations 

(Figure S8C). To simulate starburst amacrine cells, it was necessary to replace lateral 

branching with tip bifurcation (Figure S8D). Though our model can recapitulate certain 

aspects of the morphologies of these cells, these simulations are just predictions based 

on hypothetical model parameters and need to be tested experimentally. Nevertheless, 

these examples show that the model is versatile and has predictive potential beyond just 

Drosophila class IV sensory neurons.  

 If the dendrite branching rules deduced for class IV cells do indeed generalize to 

other neurons, then they may facilitate mapping connectomes by providing anatomical 

constraint on connectivity, as well as giving insight into genetic disorders that affect 

morphology (Forrest et al., 2018; Kapitein and Hoogenraad, 2015; Koleske, 2013; 

Kulkarni and Firestein, 2012). 
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Materials and Methods 
 
Fly Stocks and maintenance 
The fly line ;;ppk-cd4-tdGFP (homozygous) was used to image class IV dendritic 
arborization neurons and was a kind gift from Dr. Chun Han (Cornell University). Fly 
crosses were maintained in fly chambers at 25 °C, 60% humidity in a Darwin Chamber 
with 12 -hour light/dark cycles. An apple-agar plate was used to collect the fly embryos 
and a big drop of yeast paste was put in the center of the agar plate to induce egg-laying.  
 Apple-agar plates were made by mixing 4X apple juice concentrate (355 ml), water 
(300 ml), dextrose (155 gm), sucrose (80 g). This solution was stirred and heated to 
dissolve the sugars, and agar (Bacto agar, Becton Dickinson, 60 g) and 1.25N NaOH (70 
ml) were added. The solution was covered loosely with foil and autoclaved in the liquid 
cycle for 30 min. The plating mixture contained 100 ml of this apple-agar concentrate, 
197 ml of water, and 3 ml of Acid mix A—an equal mixture of propionic acid (100%, 83.6 
ml, and 16.4 ml water) and phosphoric acid (100%, 8.3 ml and 91.7 ml water). 
 For neuron morphometrics, embryos were collected every 15 minutes and imaged 
when they reached the appropriate age After Egg Lay (AEL): 24hr, 48hr, 72hr, 96hr, and 
120hr.  
 
Sample preparation 
For imaging, embryos of appropriate age (18 hr to 22 hr AEL) were collected from apple-
agar plates and dechorionated by gently rolling them on a piece of double-sided tape 
stuck to a glass slide. The dechorionated embryos were then placed with their dorsal side 
down on a No. 1.5 coverslip, MatTex, with a small drop of halocarbon oil 700. A piece of 
wet Kim wipe was placed near the embryos to maintain humidity during imaging. No 
anesthetics were used for embryo imaging. For larvae imaging, larvae of ages 24 hr, 48 
hr, 72 hr, 96 hr, and 120 hr were washed with 20% and 5% sucrose solution, anesthetized 
using FlyNap (Carolina Biologicals, Burlington, NC, USA), and transferred to apple-agar 
plates to recover for 1-5 minutes. After recovery, larvae were gently placed with their 
dorsal side up on a 1% agar bed adhered to a glass slide and imaged in a drop of 50% 
PBS, 50% Halocarbon oil 700 (Sigma Aldrich). Larvae were further immobilized by gently 
pressing them with a 22mm X 22mm coverslip lined with Vaseline or vacuum grease.  
 
Imaging 
Samples were imaged on a spinning disk microscope: a Yokogawa CSU-W1 disk (pinhole 
size 50 μm) built on a fully automated Nikon TI inverted microscope with perfect focus, 
488nm laser illumination at 18-21 % laser power, either a 40X (1.25 NA, 0.1615-micron 
pixel size) or a 60X (1.20 NA, 0.106-micron pixel size) water immersion objective, an 
sCMOS camera (Zyla 4.2 plus), and Nikon Elements software. The temperature of the 
sample region was maintained using an objective space heater at 25°C (OKO labs stage 
heater). Samples were manually focused to identify abdominal third and fourth segments 
(A3 or A4 neurons) before image acquisition. Full-frame movies (2048×2048 pixels) 
containing 6 to 12 1-μm sections were collected every 4-6 s. Static images for 
morphometric studies were acquired using a 60X water immersion objective for 24 hr and 
40X objective for later stages. Images were stitched using in-house code 
(https://github.com/oliviertrottier/neuron-stitch). Movies were curated for subsequent 
offline analysis. Image analysis (segmentation, skeletonization, branching analysis, and 
angle measurements) was done using ImageJ. 
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Controls for growth  
Class IV neurons are susceptible to mechanical pressure, which, if too large, stops growth 
and causes degeneration. Therefore, embryos were imaged without an overlying 
coverslip. Larvae were immobilized with minimal pressure under a coverslip and were 
placed on a 1% agar bed. As a control, we plotted the size of neurons throughout imaging 
to confirm that they remain on the “standard” growth curve (Figure S1 C).  
 
 
Segment length determination 
The Drosophila larval abdomen is divided into eight abdominal segments (Figure 1C & 
Figure S1A). Each segment on the dorsal side has two neurons, each occupying a hemi 
segment (Figure 1C). Each hemisegment is approximately rectangular with an Anterior-
Posterior (AP) and Left-Right axis. The width of the segment along the AP axis was 
measured as the distance between the cell bodies of the adjacent neurons along the AP 
axis. The LR width was measured as the distance between cell bodies in adjacent 
hemisegments across the dorsal midline corrected for the offset of the cell bodies, which 
are not in the centers of the cells but displaced away from the midline. These segment 
widths were measured abdominal segments A2 to A5 for three larvae for all the respective 
stages. 
   
Arbor skeletonization and branch length measurements 
 Scanning-confocal images were maximally projected and individual dendrites 
manually segmented from their neighbors. The segmented neurons were binarized using 
a custom algorithm and skeletonized using MATLAB’s ‘bwmorph’. The individual 

branches were identified by subtracting the branch points identified by ‘bwmorph’ from 

the skeleton. The pixel coordinates of the branches were smoothed using a spline prior 
to calculating the total length of all branches and their average length. 
 
Dendrite arbor width 
 The arbors of class IV are approximately rectangular with axes parallel to the AP 
and LR axes. If the mass of the dendrite skeleton is uniformly distributed in a rectangle, 
then the widths, 𝐷AP and 𝐷LR, are: 

𝐷AP = √12 𝑅g
AP    and    𝐷LR = √12 𝑅g

LR , with 𝑅g = √
1

𝑁
∑ (𝑟𝑗 − 𝑟̅)

2𝑁
𝑗=1  

where 𝑅g is the radius of gyration, 𝑁 is the total number of occupied pixels in the skeleton, 

𝑟𝑗 is the projection onto the respective axis of the jth occupied pixel and 𝑟̅ is the mean 

projected position of all occupied pixels. 𝑅g is the standard deviation of the dendrite pixels 

i.e., their spread from the center. We confirmed that the widths defined in this way were 
good approximations to the rectangles containing 95% of the skeletal mass. 
 
Analysis of the elongation of internal branches  
 To study the possible role that the elongation of internal branches in arbor growth, 
we imaged the same dorsal neurons (A3, A4, and A5) every 24 hrs. Larvae were mounted 
and imaged as described but without the use of anesthetics. Their movement was 
minimized by imaging at 4 °C for 2-5 mins. They were then returned to the apple-agar 
plate in the Darwin Chamber. The larvae were imaged using 20X and 40X objectives. For 
image analysis, the same neurons at 24 & 48 hr, and 48 & 96hr were segmented and 
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aligned using ImageJ to identify conserved non-terminal internal branches in the proximal 
region. The fractional increases in branches and segment lengths were defined as 

Fractional length change =
Final length − Initial length

Initial length
 

 
Branching rate and branch angle 
 To determine branching events, time-lapse movies of duration 20-30 minutes were 
analyzed manually using ImageJ. A new protrusion of length >0.25 μm was scored as a 
new branch. The total branching rate (min-1) was calculated by dividing the total number 
of branching events by the total time. The specific branching rate (μm-1min-1) was 
calculated as the total branching rate divided by the total branch length. The spatial 
distribution of all branching events was plotted using MATLAB with the soma at the origin 
(𝑥 = 0, 𝑦 = 0). The angle of new branches was measured using the angle tool of ImageJ 

(zero angle defined as in the direction of the mother). The angle distribution graph was 
plotted using Prism. 
 
Fractal Dimension 
We used the box-counting method to calculate the fractal dimension. For each box width, 
𝑊, we measured the number of boxes, 𝑁(𝑊), needed to cover all the occupied pixels of 
the skeleton (Figure 7A,B). 𝑁(𝑊) is approximately linear on a log-log plot (Figure 7C) 

indicative of a power law. The middle 50% of points (between the dashed lines in Figure 
7C) was fit to 𝑁(𝑊) = 𝑊−𝐷f to obtain the fractal dimension 𝐷f. 

 
Tip-tracking algorithm 
 To quantify the dynamical properties of the tips, we developed an in-house 
algorithm to track dendritic tips and determine dendrite length-time curves. Time-lapse 
movies were stabilized, maximum-projected (ImageJ), and terminal dendrites selected for 
analysis based on their separation from neighboring dendrites and the signal-to-
background ratio. Terminal dendrites were selected throughout the arbor. Examples are 
shown in Figure 3 A. Extraneous objects were manually deleted.  
 To track the growing and shrinking tips, the algorithm determined the longitudinal 
centerline of the terminal dendrite and the location of its end for each frame. The central 
line was computed by fitting Gaussians to the cross-sectional intensity profiles at regular 
intervals along the backbone of the dendrite using: 

𝐼(𝑥) = 𝐼0 𝑒
−(𝑥 − 𝑥c)2

2𝜎2  +  𝑑 
(Demchouk et al., 2011) where 𝑥 is the position along a normal to the dendrite, 𝐼0 is the 
peak intensity value, 𝑥c is the center of the Gaussian, 𝜎 is the standard deviation and 𝑑 

is the measured camera offset (100) plus the background fluorescence. To compute the 
location of the tip, (𝑥tip, 𝑦tip), we fit a 2-dimensional Gaussian function convolved with an 

error function using (Demchouk et al., 2011): 

𝐼(𝑥, 𝑦) = 𝐼0 exp [
−[(𝑦 − 𝑦tip)𝑐𝑜𝑠𝜃 − (𝑥 − 𝑥tip)𝑠𝑖𝑛𝜃]

2

2𝜎𝑣
2 ] ∙  erfc [

(𝑦 −  𝑦tip)𝑐𝑜𝑠𝜃 − (𝑥 − 𝑥tip)𝑠𝑖𝑛𝜃

𝜎𝑝
]  +  𝑑 

where 𝐼0 is the peak intensity, 𝜃 is the angular direction of the tip, and 𝜎𝑣 and 𝜎𝑝 are the 

standard deviations along the orthogonal and parallel directions. The length of the 
dendrite in each frame was determined by fitting the center line and the tip with a cubic 
spline. Length-time traces were smoothed with a median filter of size 3 to remove glitches. 
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 To estimate the precision of our tracking algorithm, we used two different 
approaches. In the first, we tracked synthetic images of capped cylindrical tubes of known 
length and radius with fluorophores placed randomly on their surfaces (10% labeling 
density) and convolved with a point spread function (350 nm FWHM). To ensure that our 
algorithm could perform robustly under a wide range of signal-to-background ratios, we 
tested the tracking accuracy with decreasing signal to background ratios. The typical 

precision was ≪1 pixel (100 nm) even for low signal-to-background ratios (Ruhnow et al., 

2011). (ii) We tracked the position of in-vivo dendritic tips that are in long-term paused 
states and found that the average standard deviation of length was ~0.1 μm (< 1 pixel, 
0.1615 μm) as shown in Figure S2 D. This accuracy is comparable to and, in some cases, 
better than available software, such as, FIESTA (Ruhnow et al., 2011), JFilament (Smith 
et al., 2010), and Simple Neurite Tracer (Longair et al., 2011). Using a parallelized 
method, several hundred tips can be tracked simultaneously. A caveat of our method is 
that it can only track filaments that are reasonably free of extraneous objects, excessive 
noise, and have no breaks, discontinuities, or overlapping segments. 
 
Calculating velocities and transition rates  
 Fitting piecewise linear functions to the data is an ill-posed problem (Hansen and 
O’Leary, 1993) because a perfect fit can always be achieved with a large enough number 
of segments (equal to the number of data points minus one). To circumvent this problem, 
we defined a temporal resolution, T (in frames), that is necessary to distinguish a 
transition event from the noise in the data. Then, the maximum number of segments in 
each trajectory was calculated by dividing the total number of data points (total number 
of frames) by the temporal resolution. We used simulated data to estimate the temporal 
resolution that performs the best. We generated Markovian trajectories with known and 

realistic velocity distribution (1.5 m/min) and transition rates (0.5 min-1), similar to those 

shown the Figure 3. We then, added Gaussian white noise of standard deviation 0.25 m 

to the trajectories to mimic the experimental noise. To analyze the trajectories, we used 
the following steps as shown in Figure S9: 
(i) We fit the trajectories with piecewise linear function considering Ndata/T as the initial 
number of segments (Nseg). 
(ii) The velocity distribution (slope of the segments) was fitted to a lognormal-Gaussian-
lognormal distribution: 

𝑣𝑇 =
1 − 𝐶G − 𝐶S

√{2𝜋𝜎P
2}

𝑒
{−

(𝑣−𝜇P)2

2𝜎P
2 }

+ (𝑣 > 0)
𝐶G

𝑣√{2𝜋𝜎G
2}

𝑒
{

(log(𝑣)−𝜇G)2

2𝜎G
2 }

+ (𝑣 < 0)
𝐶S

|𝑣|√{2𝜋 𝜎S
2}

𝑒
{−

(log|𝑣|−𝜇S)2

2𝜎S
2 }

 

where the 𝐶’s are the normalization constants, the ’s are the means, the ’s are the 
standard deviations and the subscripts P, G, S stand for paused, growth, and shrinkage 

states respectively. The first term is a Gaussian and denotes the paused state, whereas 
2nd and 3rd terms are log-normal distributions representing the growth and shrinkage 
states.  
After fitting the above velocity distribution, the intersections between the paused and 
growth distribution (IG) and the paused and shrinkage distribution (IS) were calculated, 
and the segments labeled using these two velocity thresholds. 
(iii) Consecutive segments with similar labels were then merged. This process decreased 
the number of segments (Nn

seg). The trajectories were then refitted with the new number 
of segments. Steps (ii) and (iii) were repeated until Nn

seg stabilized.  
(iv) Finally, the transition rates were calculated by counting the total number of transitions 
from one state to another and then dividing that number by the total time spent in that 
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state. For example, if 𝑁GP is the total number of transitions from G to P state and 𝑇G is the 

total time spent in the G state, then the transition rate from G to P is 𝐾GP =  
𝑁GP

𝑇G
.  

 Figure S9 shows the working protocol along with the validation of our analysis 
method. To estimate the optimal frame resolution, we plotted the root-mean-squared 
difference between the input and output transition rates as a function of the frame 
resolution. Our analysis clearly shows that temporal resolution of 6 frames generates the 

best results for rates ~0.5/min and noise ~0.25 m.  We used this frame resolution for all 

our tip dynamics data analysis. 
 
Average tip velocity & validation of segmentation 
 The segmentation yields a set of intervals, 𝑖, with associated distances, 𝑑𝑖, 
durations, 𝑡𝑖 and velocities, 𝑣𝑖 = 𝑑𝑖/𝑡𝑖. The distribution of velocities is fit to a lognormal-

Gaussian-lognormal model 𝑝(𝑣) with parameters 𝑃G, 𝜇G, 𝜎G, 𝑃P, 0, 𝜎P, 𝑃S, 𝜇S, 𝜎S such that 

 1 = ∫ 𝑝(𝑣)𝑑𝑣 = 𝑃G + 𝑃P + 𝑃S        (1) 

and 

 ∫ 𝐿𝜇𝐺,𝜎𝐺
(𝑣)𝑑𝑣 = ∫ 𝐿𝜇𝑆,𝜎𝑆

(𝑣)𝑑𝑣 = ∫ 𝐺0,𝜎𝑃
(𝑣)𝑑𝑣 = 1     (2) 

where 𝐿𝜇𝐺,𝜎𝐺
(𝑣) and 𝐿𝜇𝑆,𝜎𝑆

(𝑣) are the log-normal distributions corresponding to growth 

and shrinkage and 𝐺0,𝜎𝑃
(𝑣) is the Gaussian distribution of the paused state. Transitions 

can only occur between unlike states. This imposes an important structure on the data: 
there are two threshold velocities 𝑣+ and 𝑣− such that if the segment velocity 𝑣𝑖 > 𝑣+ then 
it is assigned to be a growing segment. Likewise, if 𝑣𝑖 < 𝑣− it is a shrinking segment. The 

ones in the middle are paused.   
 The average velocity as: 

 𝑣𝑑 ≡
∑ 𝑑𝑖𝑖

∑ 𝑡𝑖𝑖
=

∑ 𝑣𝑖𝑡𝑖𝑖

∑ 𝑡𝑖𝑖
=

𝑛𝑣̅𝑡̅+𝑛𝑟𝑣,𝑡𝜎𝑣𝜎𝑡

𝑛𝑡̅
= 𝑣̅ + 𝑟𝑣,𝑡𝜎𝑣

𝜎𝑡

𝑡̅
        (3) 

where 𝑣̅ is the mean velocity, 𝑡̅ is the mean time, and 𝑟𝑣,𝑡 is the Pearson correlation 

coefficient. We used the definition of the Pearson’s correlation coefficient 

 𝑟𝑥,𝑦 = 𝜎𝑥,𝑦/𝜎𝑥𝜎𝑦 and cross-correlation 𝜎𝑥,𝑦 = (
1

𝑛
) ∑ 𝑥𝑖𝑦𝑖𝑖 − 𝑥̅𝑦̅  to calculate equation 3. The 

average velocity 𝑣𝑑 has two parts: 𝑣̅, calculated assuming 𝑡𝑖 and 𝑣𝑖 are independent of 

each other, and a cross-correlation term, 𝑟𝑣,𝑡𝜎𝑣
𝜎𝑡

𝑡̅
. 𝑣̅ is given by: 

𝑣̅ = 𝑃𝐺 ∙ 𝑉̅𝐺 + 𝑃𝑠 ∙ 𝑉̅𝑆          (4) 

where 𝑉̅𝐺 and 𝑉̅𝑆 are the first moments of the lognormal velocity distributions for growth 
and paused states, and 𝑃𝐺 and 𝑃𝑠 can be calculated from the master equation associated 

with the transition matrix:  
 𝑑𝑃𝐺(𝑡)

𝑑𝑡
= −( 𝐾𝐺𝑃 + 𝐾𝐺𝑆)𝑃𝐺(𝑡) + 𝐾𝑃𝐺 𝑃(𝑡) + 𝐾𝑆𝐺 𝑃𝑠(𝑡) 

(5) 

 
 𝑑𝑃𝑃(𝑡)

𝑑𝑡
= 𝐾𝐺𝑃 𝑃𝐺(𝑡) − (𝐾𝑃𝐺 + 𝐾𝑃𝑆) 𝑃𝑃(𝑡) + 𝐾𝑆𝑃𝑃𝑠(𝑡) 

(6) 

 
 𝑑𝑃𝑠(𝑡)

𝑑𝑡
= 𝐾𝐺𝑆  𝑃𝐺(𝑡) + 𝐾𝑃𝑆  𝑃𝑃(𝑡) − (𝐾𝑆𝐺 + 𝐾𝑆𝑃)𝑃𝑠(𝑡) 

(7) 

 
where 𝐾𝑖𝑗,𝑗≠𝑖  𝑖, 𝑗 = {𝐺, 𝑃, 𝑆} are the transition rates. The steady state solution, assuming 
𝑑𝑃𝐺(𝑡)

𝑑𝑡
=

𝑑𝑃𝑃(𝑡)

𝑑𝑡
=

𝑑𝑃𝑠(𝑡)

𝑑𝑡
= 0 and using equation 1, is: 
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𝑃𝐺 =

𝐾𝑃𝐺 ∗ 𝐾𝑆𝐺  +  𝐾𝑃𝐺 ∗ 𝐾𝑆𝑃  +  𝐾𝑃𝑆 ∗ 𝐾𝑆𝐺

𝐷
 

(8) 

 
 

𝑃𝑃 =
𝐾𝐺𝑃 ∗ 𝐾𝑆𝐺 + 𝐾𝐺𝑃 ∗ 𝐾𝑆𝑃  +  𝐾𝐺𝑆 ∗ 𝐾𝑆𝑃

𝐷
 

(9) 

   
 

𝑃𝑠 =
𝐾𝐺𝑆 ∗ 𝐾𝑃𝐺 + 𝐾𝐺𝑃 ∗ 𝐾𝑃𝑆  +  𝐾𝐺𝑆 ∗ 𝐾𝑃𝑆

𝐷
 

(10) 

Where, 𝐷 = 𝐾𝐺𝑆 ∙ 𝐾𝑃𝐺  +  𝐾𝐺𝑃 ∙ 𝐾𝑃𝑆  +  𝐾𝐺𝑆 ∙ 𝐾𝑃𝑆  +  𝐾𝐺𝑃 ∙ 𝐾𝑆𝐺 + 𝐾𝐺𝑃 ∙ 𝐾𝑆𝑃  +  𝐾𝐺𝑆 ∙ 𝐾𝑆𝑃  +
𝐾𝑃𝐺 ∙ 𝐾𝑆𝐺  +  𝐾𝑃𝐺 ∙ 𝐾𝑆𝑃  +  𝐾𝑃𝑆 ∙ 𝐾𝑆𝐺. 

 
 Finally, the average velocity is: 

𝑣𝑑 = 𝑃𝐺 ∙ 𝑉̅𝐺 + 𝑃𝑃 . 𝑉̅𝑃 + 𝑃𝑠 ∙ 𝑉̅𝑆 + 𝑟𝑣,𝑡𝜎𝑣
𝜎𝑡

𝑡̅
      (11) 

The average velocity is a key parameter, which controls the growth of the simulated arbor 
(Figure S5 D & E). The average velocity calculated in this way from the transition matrix 
agreed with that calculated directly from the raw traces at all developmental stages (Table 
1) considering the Pearson correlation coefficient 𝑟𝑣,𝑡 = 0 (Figure S3 L) This validates of 

our segmentation scheme. 
 
Computational model: 
 The agent-based two-dimensional computational model of dendritic growth 
incorporated the fundamental processes that govern the morphogenesis of Class IV 
neurons: (i) branching, (ii) tip dynamics, and (iii) contact-based retraction (non-
overlapping). We started our simulation with randomly oriented 2-4 branches emanating 
from the origin (cell body). Each branch is a filament, and points (𝑥, 𝑦) are added at 0.1 

m (∆𝑙) intervals as the branch grows. The simulation is divided into 0.1-minute time steps 
(𝑡). The details of individual processes are as follows: 

Branching: 
Assuming the branching is a random process, we visit all the branches randomly and 

calculated the branching probability 𝑃𝑏 = 1 − 𝑒−𝐿𝑏𝜔𝑏∆𝑡, where 𝐿𝑏 is the length of the 

branch and 𝜔𝑏is the branching rate per unit time per unit length (Figure 4A). Then, a 
uniformly distributed unit random number 𝑅(0,1) is compared to 𝑃𝑏 to spawn a nascent 

branch from a random point on the mother branch. The branching angle is chosen 
randomly from the measured branch angle distribution which is distributed normally with 

a mean ~90 and standard deviation ~26 as shown in Figure 4B and Table S1. Each 

newly spawned branch is assumed to start in the growing phase with an initial length of 

0.5 m.    

Tip Dynamics: 
Each branch with a free end (tip) follows a Markov process (after an initial lag, see below), 
transitioning between growing (G), paused (P), and shrinking (S) states with measured 

transition rates (𝐾𝑖𝑗,𝑗≠𝑖  𝑖, 𝑗 = {𝐺, 𝑃, 𝑆};) and velocities (𝑉{𝐺,𝑃,𝑆}) for free tips (Figure 3 D,E & 

Table 1). The transition dynamics is implemented using a standard ‘Monte-Carlo’ method. 

At each time step, the total probability of transition is calculated using 𝑃𝑖 = 1 − 𝑒−𝐾𝑡𝑜𝑡∆𝑡, 

where 𝐾𝑡𝑜𝑡 is the sum of the transition rates from one particular state: 𝐾𝑡𝑜𝑡 = ∑ 𝐾𝑖𝑗
𝑗≠𝑖
𝑗={𝐺,𝑃,𝑆} . 

For example, the total transition rate from the growth state is 𝐾𝑡𝑜𝑡 = 𝐾𝐺𝑃 + 𝐾𝐺𝑆. 
Subsequently, 𝑃𝑖 is compared with a uniform random number 𝑅(0,1) to implement the 

transition. If there is a transition, it happens maintaining the ratio 𝐾𝑖𝑗/𝐾𝑡𝑜𝑡. After the 
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transition, the tip is assigned with corresponding state velocity, the magnitude of which is 
randomly chosen from their respective velocity distributions (lognormal for growth and 
shrinkage and normal for paused) (Figure 3D). The growth process is implemented by 
adding new points to the existing branch tip at each time step, 𝑡, as follows:  

𝑙𝐺 = 𝑉𝐺𝑡 

𝑥𝑘+𝑛 = 𝑥𝑘+𝑛−1 + ∆𝑙 𝑐𝑜𝑠𝜑𝑘+𝑛−1;    𝑛 = 1 …
𝑙𝐺

∆𝑙
 

𝑦𝑘+𝑛 = 𝑦𝑘+𝑛−1 + ∆𝑙 𝑠𝑖𝑛𝜑𝑘+𝑛−1;    𝑛 = 1 …
𝑙𝐺

∆𝑙
 

𝜑𝑘
𝑛 = 𝜑𝑘−1

𝑛 + √
2∆𝑙

𝑙𝑝
Θ 

Where, 𝑘 is the index of the last point in the previous time step and 𝑙𝑝 is the persistence 

length of the branches (set to 150 m, Table S2). Additionally, the ∆𝑙 value of the last 
point is adjusted if 𝑙G is not an integer multiple of ∆𝑙. Θ is a unit Gaussian variable centered 

at zero.  
 While shrinking, points from the branches are removed until the shrinking length 
𝑙𝑆 = 𝑉𝑆𝑡 is reached.  

Contact-based retraction: 
It has been shown by several studies that Dscam molecules play an important role in the 
self-avoidance of dendritic tips in Class IV neurons (Matthews et al., 2007; Soba et al., 
2007). To investigate the phenomenon, we measured the dynamics of the dendritic tips 
after a collision/contact event has occurred. Interestingly, we observed that the transition 
rates are altered after contact as shown in Table 1B and leads to an overall shrinkage of 
the dendritic tips. To implement this observation in the model, we assumed that the 

contact is achieved whenever a tip comes very close (<0.15 m, ~average radius of 

branches, Table S2) to a nearby branch. Further, we used the altered tip dynamical 
parameters after a tip makes a contact (post-contact). Because it is difficult to measure 
how long the tips remain in their post-contact dynamics, we added this as a free 
parameter in the model (Table S2). It was chosen to be longer than the expected lifetimes 
of post-contact dendrites (10-15 minutes). 
Boundary Condition: 
Individual Class IV neurons grow within the hemisegments (Grueber et al., 2002). We 
have experimentally measured the segment sizes in the AP and LR directions at different 
developmental stages as shown in Figure 1D. Linearly fits to the growing region (24 to 96 
hr) defined the growth rates of the boundary used in our model. Because there is self-
avoidance interaction between the neighboring neurons, we used a periodic boundary 
condition.   
Initial condition: 
To avoid any ambiguity in the initial timepoint in the simulation, we divided the simulation 
process into two halves. We started our simulation at 14 hr with 2-4 randomly oriented 

branches of length ~15 m and allowed them to grow with the 18 hr tip dynamics data 

(Table 1 A) and the 24 hr branching rate. When the dendritic tree reached the measured 
value of total branch number at 24 hr, we reassigned this time as 24 hr. In this way, we 
simulated larval morphogenesis. 
Initial Lag 
There is an unexpected paucity of dendrite deaths at short times. To analyze this, we 
calculated the survival probability of the branches in the following way: 
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Suppose dendritic tips are born and die throughout the observation period 𝑇. Divide 𝑇 into 
small equal intervals 𝑑𝑡. Let, 
 𝑓(0) = Number{die in time [0, 𝑑𝑡)}/Number{alive at time 0}  

 𝑓(𝑑𝑡) = Number{die in time [𝑑𝑡, 2𝑑𝑡)}/Number{alive at time 𝑑𝑡}  
 𝑓(2𝑑𝑡) = Number{die in time [2𝑑𝑡, 3𝑑𝑡)}/Number{alive at time 2𝑑𝑡} …etc. 

Then we can write the survival probability as: 

𝐷(𝑡) = ∏[1 − 𝑓(𝑖)]

𝑡/𝑑𝑡

𝑖=0

 

The survival probability of the experimentally observed dendritic tips was measured 
manually and then calculated by using the above formula. This is shown by the solid black 
line in Figure S4 A. The survival curve does not decay exponentially which led us to 
conclude that the tips have some initial period of sustained growth which we termed as 
initial lag 𝜏𝑙𝑎𝑔. To estimate the amount of initial lag we simulated 1000 free tips with 48 hr 

tip dynamics data (because it is in the middle of the developmental time) and implemented 
an initial lag (𝜏𝑙𝑎𝑔) during which the tips did not switch into the paused or shrinking states 

(𝐾𝐺𝑃 = 𝐾𝐺𝑆 = 0; 𝑡 ≤ 𝜏𝑙𝑎𝑔). We calculated the survival probability by dividing number of 

alive branches by the total number of branches. The survival probability increases with 
the initial lag 𝜏𝑙𝑎𝑔 as shown by the dotted lines in Figure S4A. The dark blue is the best fit 

to the real data ( 𝜏𝑙𝑎𝑔 = 0.3 min, Table S2) and we used this value in our model. 

 
Markovian tests of the tip trajectories 
 The tip dynamics is not a ‘Markovian process’. The non-Markovian traits are shown 
by the presence of initial lag during nascent branch formation (τlag) and the change of 

dynamics after contact (Table S2). However, the dynamics is a first-order process as 
shown by the single exponential decay of phase durations as shown in Figure S3 A-I 
which points towards the fact that the dynamics don’t have any long-term memory. To 
confirm this, we calculated the state-state auto-correlation function (data not shown). The 
average autocorrelation function quickly becomes uncorrelated showing the absence of 
any long-term memory in the states. 
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Table 1. Dynamical parameters of dendrite tips at different developmental stages.  
 

A: Pre-contact tip-dynamics parameters 

Age 
(hr) 

Tip velocity parameters Tip transition rates Corr. Average tip velocity 

𝜇G , 𝜎G 

(m/min) 

𝜇P , 𝜎P 

(m/min) 

𝜇S , 𝜎S 

(m/min) 

𝑘GP 
(min-1) 

𝑘GS 
(min-1) 

𝑘PG 
(min-1) 

𝑘PS 
(min-1) 

𝑘SG 
(min-1) 

𝑘SP 
(min-1) 

r & p 𝑣𝑑
𝑇𝑟𝑎𝑐𝑘𝑠 

(m/min) 

𝑣𝑑
𝑇𝑟𝑎𝑛𝑀𝑎𝑡 

(m/min) 

18-20  
(E) 

0.37, 0.34 
𝑉G = 1.53 

0, 0.36 0.43, 0.37 
𝑉S = 1.65 

0.696 0.509 0.423 0.296 0.669 0.71 0.017 
0.09 

0.097 
±0.0158 

0.100 
±0.0151 

24 
(L1) 

0.41, 0.36 
𝑉G = 1.61 

0, 0.34 0.35, 0.37 
𝑉S = 1.52 

0.784 0.64 0.335 0.314 0.598 0.946 0.008 
0.65 

0.034 
±0.0196 

0.038 
±0.0191 

48 
(L2) 

0.40, 0.39 
𝑉G = 1.61 

0, 0.25 0.0, 0.41 
𝑉S = 1.1 

0.933 0.435 0.155 0.235 0.282 1.251 0.045 
0.24 

0.020 
±0.1545 

0.026 
±0.0177 

96 
(L3) 

0.36, 0.52 
𝑉G = 1.64 

0, 0.25 0.19, 0.44 
𝑉S = 1.33 

0.923 0.799 0.116 0.117 0.575 1.276 0.002 
0.9 

0.008 
±0.0039 

0.022 
±0.0177 

B: Post-contact tip-dynamics parameters 

Age 
(hr) 

Tip velocity parameters Tip transition rates Corr Average tip velocity 

𝜇G
∗ , 𝜎G

∗ 
(m/min) 

𝜇P
∗ , 𝜎P

∗ 
(m/min) 

𝜇S
∗ , 𝜎S

∗ 
(m/min) 

𝑘GP
∗  

(min-1) 

𝑘GS
∗  

(min-1) 

𝑘PG
∗  

(min-1) 

𝑘PS
∗  

(min-1) 

𝑘SG
∗  

(min-1) 

𝑘SP
∗  

(min-1) 

r & p 𝑣𝑑
𝑇𝑟𝑎𝑐𝑘𝑠 

(m/min) 

𝑣𝑑
𝑇𝑟𝑎𝑛𝑀𝑎𝑡 

(m/min) 

18-20  

(E) 

0.53, 0.49 

𝑉G
∗ = 1.9 

0, 0.28 0.53, 0.54 

𝑉S
∗ = 1.9 

0.635 0.992 0.263 0.401 0.469 0.593 0.07 

0.12 

-0.42 

±0.07 

-0.34 

±0.07 

48 

(L2) 

0.40, 0.50 

𝑉G
∗ = 1.7 

0, 0.25 0, 0.38 

𝑉S
∗ = 1.1 

1.446 1.24 0.134 0.29 0.239 0.814 0.018 

0.76 

-0.23 

±0.05 

-0.19 

±0.04 

Errors are SE. 
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Supplementary Materials 
 

Supplementary Figures 
 
Figure S1: Definitions of the axes, the coverage index and neuronal growth 
controls 
 

 

A Definitions of the anterior-posterior (AP) and dorsal left (DL) and dorsal right (DR) axes. This 

larva was imaged from the dorsal side up, which was adjacent to the coverslip surface closest to 

the objective. A2, A3, A4, and A5 correspond to the dorsal abdominal segments. The white 

dashed line is the dorsal midline. This larva is ~24 hr after egg lay (genotype - ;;ppkCD4-

tdGFP). The AP length was measured as the distance between the cell bodies of the adjacent 

neurons on the anterior and posterior sides. The DL-DR length was measured as the distance 

between cell bodies in adjacent hemisegments (across the midline) corrected for the offset of 

the cell bodies, which are not in the centers of the cells but displaced away from the midline. For 

sake of simplicity we are calling DL-DR as LR B The coverage index over development time 

(𝑛 ≥ 5 neurons). The coverage index is calculated as the ratio the dendrite area (AP cell width x 

LR cell width, from Figure 1D) divided by the dorsal hemisegment area (AP hemisegment width 

x LR hemisegment, width from Figure 1D). C Control showing that imaging does not perturb 

growth. The growth of cells was assessed by measuring the cell radius (calculated as √(area/π)) 

over time. Lines connect cells at the beginning and end of imaging. This shows that the imaging 

conditions do not retard growth. 
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Figure S2: Tracking dendrite tips 

 

A Example of a fluorescently labeled terminal dendrite. B The center of the dendrite was located by 

fitting the cross-sections (blue line in B) to a Gaussian. The precision is approximately 0.1 μm. C The 

position of the tip of the dendrite was calculated by fitting the end intensity profile (red box in A) to a 

2D function corresponding to a Gaussian in the perpendicular direction and an error function the 

parallel direction (see Methods) D Montage of simulated images of cylindrical tubes (6 μm blue, 8 

μm red) that are fluorescently labeled with 10% labeling density on the surface with signal-to-

background ratio (SBR), defined as the mean signal divided by the standard deviation of background 

noise, varying from 33 (left) to 9 (right). The pixel size is 100 nm. The measured length distribution is 

shown in the bottom panel (200 independently generated images for each SBR). E The lengths of 

several live-imaged dendrites that were in their paused state as a function of time. F The standard 

deviation of the measured lengths in E is shown. The accuracy is high even for live imaging 

condition. G The standard deviation of the tracked lengths is ~1 pixel (108 nm). Examples of tracked 

dendritic length as a function of time: G 24 hr. I 48 hr. and K 96 hr. The green, orange, and red lines 

denote examples of growing, paused, and shrinking states. The tips tend to spend more time in the 

paused state over developmental time. H, J, and L show the statistics of the piecewise-linear fitting. 
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Figure S3: Correlation between state velocities and lifetimes and state durations. 
 

 

 

The distribution durations for the shrinking (S), paused (P), and growing (G) states at 24 hr (A-C), 48 hr 

(D-F), and 96 hr (G-I) plotted using semi-log axes. The distributions are very close to exponentials (dotted 

lines) expected if switching among the states is first order. The slope of the dotted lines is the inverse of 

the lifetimes spent in the states: for example, at 24 hr, the sum of the transition rates from growing state is 

(𝐾GP + 𝐾GS = 0.696 + 0.509 = 1.205 min-1 (Table 1 A), close to the slope of the lifetime distribution of 1.38 

min-1 (F). J The correlation between shrinking velocities (𝑉S) and shrinking lifetimes (𝑇S) shows a 

significant correlation with Pearson’s correlation coefficient 𝑟=0.064. K Similarly, a significant correlation 

is observed between growth velocities (𝑉G) and growth lifetimes (𝑇G). L Pearson’s correlation coefficient 

(𝑟) between state velocities (𝑉𝑖) and lifetimes (𝑇𝑖) for 18-20 hr data. The value of 𝑟 is small (0.017) and 

there is no significant correlation between 𝑉𝑖 and 𝑇𝑖.  
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Figure S4: Evidence for persistent growth after birth. 

 

 

 
We manually measured the time between branch initiation and branch death at different stages of the 

larva (24, 48,72, and 96 hr AEL, 3 movies for each stage). From these data, we calculated the survival 

probability by dividing the number of alive branches by the total number of branches using the formula 

described in the Methods. The black line is the average survival probability of the real dendrite tips. The 

survival probability does not start decaying exponentially as one might expect if it were a Poisson 

process. Rather, it shows some initial lag. This observation led us to believe that branch initiation is not a 

simple Poisson process. To estimate the initial lag period, we simulated 1000 branches with initial length 

0.5 m and implemented a lag time (𝜏𝑙𝑎𝑔) by preventing the tips to switch into the paused or shrinkage 

state ( 𝐾𝐺𝑃 = 𝐾𝐺𝑆 = 0; 𝑡 ≤ 𝜏𝑙𝑎𝑔). A branch is deleted in the simulation when its length is <0.1 m. The 

survival probability increases with the initial lag  as shown by the dotted lines. The dark blue is the best 

fit to the real data ( 𝜏𝑙𝑎𝑔 = 0.3 min). 
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Figure S5: Sensitivity of morphology to branching and growth parameters. 

 

A Control with parameters from Table 1 and Tables S1-2 without any boundary restriction. The black and 

blue dashed lines represent LR and AP widths respectively. The solid lines represent the simulated 

segment sizes over development. The simulation shows that initially (24-48 hr) the neurons grow faster 

than the real segment and then grow with a constant rate equal to the segment growth rate (~0.06 

m/min) until 96 hr. The segment widths saturate after 96 hr even without a boundary. B Branching rate 

was doubled (green) and halved (magenta) compared to the control, keeping all other parameters 

unchanged. All arbor properties are normalized by the respective unconstrained controls. Fold change is 

plotted against time for (ii) arbor size, (iii) branch number, (iv) branch length, (v) mean branch length, and 

(vi) fractal dimension.  C All transition rates were doubled (green) and halved (magenta): this leads to a 

decrease and increase in the variability of growth. D The mean tip velocity (drift) was increased (green) 

and decreases (magenta) 2-fold. E The average (drift) velocity was set to zero (green) and a negative 

value (-0.02 /min, magenta). Shaded regions represent standard error of mean. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 26, 2022. ; https://doi.org/10.1101/2021.10.13.464245doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.13.464245
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 41 of 49 

 

 

 

Figure S6: Branch length and radial orientation distributions. 

 

 
A-E Branch length distribution over different developmental stages for real and simulated arbors with 

exponential fits (dashed lines). F-J Radial orientation of branches over developmental time for real and 

simulated arbors. The branches are preferentially oriented in the radial direction. This preference is due to 

contact-based retraction. The dotted curves show diminished radial preference when branches are 

paused after contact in the simulation. Shades represents standard deviations.  

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 26, 2022. ; https://doi.org/10.1101/2021.10.13.464245doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.13.464245
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 42 of 49 

 

 

 

 
Figure S7: Branching drives arbor expansion when the net tip growth is zero 

 

 
 
To understand the relationship between the short-term dynamics (the growth-shrink-pause dynamics 
including branching) and the long-term formation of stable branches, we explored our simulation keeping 
the net growth of tips at zero (meaning there is no net growth from G-P-S dynamics) and varied the 
branching rate (as shown by the red, black and blue lines in the top inset). We observed, even for zero 
net growth, that the dendritic arbor grows in size as shown by the LR widths (different colored arbors 
correspond to the differently colored branching rates in the top inset). The bottom panel shows the color-
coded final arbor sizes. 
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Figure S8: Generalization of our model to other systems 

 

 
A (i) A representative simulated Drosophila class-I dendrite at 25 hr. Class-I dendrites were 

simulated by initializing the model with a single static primary branch and then allowing 

branching from primary and secondary branches with rates  0.05exp(−𝑡/5) + 0.005 μm−1min−1 

and 0.005exp(−𝑡/5) + 0.0005 μm−1min−1) respectively, where 𝑡 is time in hrs. (ii) The 

simulation recapitulates one of the key findings in (Palavalli et al., 2021) namely that the 

secondary branches are orthogonal to the primary branch (blue histogram peaking around 90) 

even though the initial angles were uniformly distributed (gray). This is a consequence of 

contact-based retraction. (iii) The number of secondary and non-secondary branches 

approaches 22 and 30 at long times respectively, in accordance with data from (Palavalli et al., 

2021). B Different retinal ganglion cells were simulated using different branching rates and a 

small branching angle (45 relative to the direction of the mother). The morphologies are similar 

to those of marmoset retinal ganglion cells (Masri et al., 2019). C A real Purkinje cell (i) ((Murru 

et al., 2019), raw data downloaded from NeuroMorpho.org) was simulated using slow growth of 

dendritic tips and complete retraction after contact to recapitulate the locally parallel branch 

orientations (ii). D An example of a real starburst amacrine cell (i) ((Bloomfield and Miller, 1986), 

raw data downloaded from NeuroMorpho.org) and a simulated cell (ii) in which it was necessary 

to replace lateral branching with tip bifurcation to recapitulate the observed morphology. 
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Figure S9: Validation of trajectory analysis method.   
 

 
 
We simulated 200 Markov trajectories with realistic input parameters shown in A and B and then added 

Gaussian white noise on the individual points of the trajectories. We used the transition rate as 0.5 /min 

because of the observed fact that the individual states last ~1 minute. C The flowchart of the trajectory 

analysis method. D We varied the Frame resolution to find the optimal resolution. The root-mean-squared 

error between the input and output transition rate matrix is plotted as a function of frame resolution. 

Frame resolution of 6 provides the best result and we chose this value for all our analyses. E &F The 

output velocity distribution and transition rate matrix using frame resolution 6. Our method of analysis 

produced a faithful reproduction of the input parameters. 
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Supplementary Tables 

Table S1: Branching rates  
Age 
(hr) 

Total branching ratea 
(min-1)  (Mean ± SD) 

Linear branching rateb  

(m-1⋅min-1)  (Mean ± SD) 

Branching anglec  
(°)  (Mean ± SD) 

Numbers 

(rates, angles) 

18 (E) 4.26 ± 0.59 0.0109 ± 0.0015 85 ± 25 𝑛 =  9, 5 

24 (L1) 7.59 ± 1.52 0.0095 ± 0.0017 88 ± 26 𝑛 =  9, 7 

36 (L1) 5.77 ± 2.67 0.0031 ± 0.0009 85 ± 25 𝑛 = 6,7 

48 (L2) 4.86 ± 1.59 0.0019 ± 0.0007 86 ± 26 𝑛 = 6,4 

72 (L2) 8.31 ± 2.37 0.0011 ± 0.0004 90 ± 25 𝑛 = 6,5 

96 (L3) 11.12 ± 2.52 0.0011 ± 0.0006 91 ± 25 𝑛 = 6,4 
aOver the entire dendrite arbor 
bPer total dendrite length  
cAngle between dendrites is zero in the distal direction of the mother.  
Standard deviation (SD).  
 

Table S2: Model parameters 

Name Description Value 

𝑙initial Initial length of nascent branch 0.50 m 

𝑙interaction Length scale of contact 0.15 m 

𝜏post−contact Post-contact dynamics duration 15 min 

𝜏lag Initial lag of nascent branch 0.3 min 

𝑙P Persistence length 150 m 

𝑅soma Radius of soma 10 m 

𝜇𝑏
𝜃 Mean branching angle 𝜋/2 

𝜎𝑏
𝜃 Standard dev. of branching angle 𝜋/7 
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Table S3: Mutations and morphologies 

*Mutants display additional phenotypes not accounted for in the model. 

Mutation Reference Morphology Features of mutants 
accounted for by the 
model 

Simulated neuron Parameters 

Non-uniform branching 

Dynein 
intermediate 
light chain 
(Dlic) 

(Arthur et al., 
2015; Satoh et 
al., 2008; 
Zheng et al., 
2008) 
 

 
Fig 2C (Arthur et al., 2015) 

Downsizing of the 
overall arbor, arbors fail 
to fill the hemisegment. 
More branches in the 
proximal region.* 

 
 
 
 

 

 
 
 
 
Non uniform 
branching, 
primary 
branch has 
basal 
branching 
rate.  

Lis-1 (Liu et al., 
2000; Satoh et 
al., 2008; 
Zheng et al., 
2008) 

 
Fig 1C (Zheng et al., 2008) 

Downsizing of the 
overall arbor, arbors fail 
to fill the hemisegment.* 

Change in tip dynamics 

katanin (Stewart et al., 
2012) 
 

 

 
Fig 3B (Stewart et al., 
2012) 

Decreased dendritic 
branch number, length   
and density. 

 

Terminal 
branches 
spend less 
time in the 
paused state 
and more 
time in the 
shrinking 
state. 

Self-avoidance 

Trc (Emoto et al., 
2004) 

 
Arrows represent 
dendrites crossovers 
Fig 1D (Emoto et al., 2004) 

More branches and 
branch crossovers.* 
 

 
 
 
 

 

Branches are 
allowed to 
cross 10 % 
of the time. 

Dscam (Hughes et al., 
2007; 
Matthews et 
al., 2007; Soba 
et al., 2007) 

 
Arrows represent 
dendrite crossovers 
Fig 1F (Soba et al., 2007) 

More branches and 
branch crossovers.* 
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Supplementary movies 
Movie S1. Time-lapse movie of a growing neuron: 
 

 
 

Time lapse movie of an fast embryonic neuronal growth at 17.5hr AEL was acquired using a spinning disk 

confocal microscope. The movie was full-frame (2048x 2048 pixels) and a complete stack of images 

(7um) was produced every 5 mins interval. Genotype of embryo was ;;ppkCD4-tdGFP . 

 
 
Movie S2. Tip growth and branching: Time lapse movie at 24hr AEL was acquired using a spinning 

disk confocal microscope. A cropped stack of images (7um) was produced every 5 seconds interval. 

Genotype of larvae was ;;ppkCD4-tdGFP . 

 

 
Example of dendrite tip growth and branching 

 
Movie S3. Self-avoidance and shrinkage: Time lapse movie at 24hr AEL were acquired using a 

spinning disk confocal microscope. A cropped stack of images (7um) was produced every 5 seconds 

interval. Genotype of larvae was ;;ppkCD4-tdGFP . 

 
 
 

 
Example of contact-based retraction 

 
Movie S4. Self-avoidance and growth: Time lapse movie at 24hr AEL was acquired using a spinning 

disk confocal microscope. A cropped stack of images (7um) was produced every 5 seconds interval. 

Genotype of larvae was ;;ppkCD4-tdGFP . 
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Example of dendritic self-avoidance 

 
Movie S5. Tip pause: Time lapse movie at 24hr AEL was acquired using a spinning disk confocal 

microscope. A cropped stack of images (7um) was produced every 5 seconds interval. Genotype of 

larvae was ;;ppkCD4-tdGFP . 

 
 

 
Example of a tip going into a paused state 

Movie S6-10. Tip growth, bending, and branching. 
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Dendrite lengthening is likely due to the addition of materials at the dendrite tip. The green stars show 

dendrite tip lengthening, the yellow star is birth of new branch, and the red star is a shrinkage event. 

White arrows point to the bending of growing tips. In example two, where the branch disappears, a sharp 

bend smoothens over time. In examples 3,4, and 5, the white arrows correspond to structural features 

such as branches and bends that remain fixed during growth and shortening. All time lapse movies 

shown above were acquired from different 24hr larvae using spinning disk confocal. Genotype of all 

larvae was ;;ppkCD4-tdGFP . 
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