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Abstract 37 

We present NOMIS (https://github.com/medicslab/NOMIS), a comprehensive open MRI tool to 38 

assess morphometric deviation from normality in the adult human brain. Based on MR 39 

anatomical images from 6,909 cognitively healthy individuals aged 18-100 years, we modeled 40 

1,344 measures computed using the open access FreeSurfer pipeline, considering account 41 

personal characteristics (age, sex, intracranial volume) and image quality (resolution, contrast-42 

to-noise ratio and surface reconstruction defect holes), and providing expected values for any 43 

new individual. Then, for each measure, the NOMIS tool was built to generate Z-score effect sizes 44 

denoting the extent of deviation from the normative sample. Depending on the user need, 45 

NOMIS offers four versions of Z-score adjusted on different sets of variables. While all versions 46 

consider head size and image quality, they can also incorporate age and/or sex, thereby 47 

facilitating multi-site neuromorphometric research across adulthood. 48 

  49 
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Introduction 50 

Despite the popularity of magnetic resonance imaging (MRI) to examine abnormalities in brain 51 

morphometry, tools quantifying normality are lacking. While age, sex and intracranial volume are 52 

well-known to influence brain volume and shape[1, 2] the determination of whether an 53 

individual’s brain region measurements are within normality faces multiple major challenges 54 

such as the lack of normative data across appropriate age groups, the influence of the MRI 55 

processing pipeline, the variety in neuroanatomical atlases used for parcellation and the 56 

uniqueness of the image acquisition itself[3, 4]. We made previous attempts[5-8] to produce such 57 

normative data in adulthood based on FreeSurfer, an open-access and fully automated 58 

segmentation software (http://freesurfer.net), for two specific brain atlases, namely Desikan-59 

Killiany[9] (DK) and Desikan-Killiany-Tourville[10] (DKT). This initial foray allowed for the 60 

quantification of the extent of deviation from normality for a given individual, according to 61 

personal characteristics such as age, sex and estimated intracranial volume (eTIV), while 62 

controlling for scanner magnetic field strength (MFS) and original equipment manufacturer 63 

(OEM).  64 

Leveraging this prior work, we offer a comprehensive tool called NOMIS (NOrmative 65 

Morphometry Image Statistics; https://github.com/medicslab/NOMIS). NOMIS can be used to 66 

produce normative values for any new adult individual, cognitively healthy or otherwise. Using 67 

this individual’s T1-weighted MRI, processed via the FreeSurfer 6.0 toolkit, one can derive Z-score 68 

effect sizes denoting the extent of deviation from the normative sample according to the 69 

individual’s characteristics (age, sex, and eTIV), while taking into account image quality 70 

information (resolution, contrast-to-noise ratio (CNR) and holes in surface reconstruction)[11, 71 
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12]. NOMIS contains 1,344 brain measures generated by FreeSurfer on 6,909 healthy individuals 72 

aged 18 to 100 years (mean ±sd: 55.0 ±20.0; 56.8% female). The normative data includes as 73 

before the DK[9] and DKT[10] atlases, as well as the Destrieux (a2009s)[13] neocortical atlas; 74 

neocortical pial and white surface areas, volumes and thicknesses; FreeSurfer’s default 75 

subcortical atlas[14], hippocampal subfields, brainstem subregions; its ex vivo-based labeling 76 

protocol atlas[15]; and the subcortical white matter parcellation according to the adjacent 77 

neocortical areas. Furthermore, to fulfill specific needs from researchers, we propose four 78 

versions of Z-score adjusted on different sets of variables. While all versions are adjusted for head 79 

size and image quality, the full version includes both age and sex whereas the three other 80 

versions are without age, without sex and without age and sex. Thus, a research group working 81 

on aging aiming at removing the variance of hippocampal volumes due to head size, sex, and 82 

image quality could use the version without age, which preserves the variance due to aging. 83 

When compared to our previous work on normative values, there are important new 84 

contributions in NOMIS:  85 

• The norms were calculated using a newer FreeSurfer software version 86 

• New variables were added to remove undesirable variance (CNR, surface holes, 87 

resolution) 88 

• New atlases were processed, such as Destrieux, hippocampal subfields, brainstem 89 

subregions, ex vivo-based labeling protocol atlas, subcortical white matter parcellation 90 

according to the adjacent neocortical areas 91 
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• The possibility of calculating normative scores while adjusting only some selected 92 

variables was introduced (intracranial volume with image quality in combination, or not, 93 

with age and/or sex)  94 

• The sample size of the normative sample was doubled, making the age distribution more 95 

uniform than previously 96 

The multiple scanner problem 97 

Different scanners produce different images, even in the same individuals, which produce 98 

in the end different morphometric values. One way of capturing inter-scanner variance is using 99 

information about the scanner (e.g. magnetic field strength and vendor). For the creation of 100 

NOMIS, and contrary to our previous work, we chose not to incorporate such information since 101 

the samples of individuals within each combination of scanner characteristic is likely to be 102 

different and thus, possibly bias-inducing due to known or unknown individuals’ characteristics 103 

stemming from recruitment in a particular study included in the training data. Therefore, to 104 

minimize inter-scanner variance, NOMIS strictly uses image information.  105 

Moreover, as a final validation step, we have compared the basic version of NOMIS (i.e. 106 

only adjusting for head size and image quality) with two global scaling harmonization techniques, 107 

namely NeuroCombat[16] and NeuroHarmonize[17] on their ability to reduce the mean effect 108 

and variance induced by different scanners. Such techniques model the differences between 109 

scanners to apply a post-hoc correction on morphometric estimates based on the complete set 110 

of data in the study. In that, they are fundamentally different from our attempt here at a 111 

normative tool to be used in new, separate studies. 112 
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Nevertheless, it should be noted that, while they are gaining popularity, harmonization 113 

techniques can potentially induce biases due to the different participants’ characteristics at each 114 

scanner[18, 19]. The main challenge to show that harmonization is actually working is that MRI 115 

provides relative measures for which that there is no gold standard;  each scanner yields its own 116 

measure, given its hardware software and other factors, even time of the day[20]. In order to 117 

properly test harmonization, we defined our own gold standard by using the Single Individual 118 

Across Networks (SIMON) dataset[21], comprised of images from a single person that was 119 

scanned within a short span at 12 sites for quality control purposes in the context of  within two 120 

Canadian studies. By harmonizing these 12 scanners using 547 MRIs from individuals scanned in 121 

these studies, as well as the quality-control 48 SIMON MRIs, we verified whether the variance of 122 

the SIMON measures was lower or not. Unfortunately, we conclude that none of the 123 

harmonization techniques reduce real inter-scanner variance. While neither does NOMIS, such is 124 

not our purpose. 125 

 126 

Materials and methods 127 

Normative sample 128 

The norms are based on a cross-sectional sample of 6,909 (initial sample: 7,399) cognitively 129 

healthy individuals aged 18 to 100 years, (mean ±sd; 55.0 ±20.0; 56.8% female), gathered from 130 

27 different datasets (Table 1). Supplementary Fig 1 shows the age distribution within each 131 

dataset. Scans were acquired from one of the three leading OEM (e.g. Siemens Healthcare 132 

(Erlangen, Germany); Philips Medical Systems (Best, Netherlands); or GE Healthcare (Milwaukee, 133 
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WI)) at MFS of either 1.5 or 3 Tesla. This study received the approval of the Institutional review 134 

board of neuroscience and mental health of the CIUSSS de la Capitale- Nationale (#217207). 135 

From all the samples mentioned, only cognitively healthy (control) participants were 136 

included. For the Nathan Kline Institute samples, which were projects recruiting in the general 137 

population, we excluded participants with history of schizophrenia or other psychotic disorders, 138 

bipolar disorders, major depressive disorders (recurrent), posttraumatic stress disorder, 139 

substance abuse/dependence disorders, neurodegenerative and neurological disorders, head 140 

injury with loss of consciousness/amnesia, and lead poisoning. Moreover, for the Parkinson's 141 

Progression Markers Initiative dataset, we excluded participants with a Geriatric Depression 142 

Scale[22] score of more than 5. 143 

Table 1. Datasets included in the normative sample 144 

Dataset n 

Autism Brain Imaging Data Exchange (ABIDE)[23] 183 

Alzheimer's Disease Neuroimaging Initiative (ADNI)[24] 672 

Australian Imaging Biomarkers and Lifestyle flagship study of ageing (AIBL)[25] 157 

Berlin Mind and Brain (Margulies, Villringer) CoRR sample (BMB)[26, 27] 50 

Cambridge Centre for Ageing and Neuroscience (CamCAN)[28, 29] 630 

Center of Biomedical Research Excellence (COBRE)[30] 70 

Cleveland CCF[31] 30 

Consortium for the Early Identification of Alzheimer's Disease (CIMA-Q)[32] 29 

Dallas Lifespan Brain Study (DLBS)[33] 304 

FIND lab sample (FIND) Lab[34] 13 

Functional Biomedical Informatics Research Network (FBIRN)[35] 33 

Lifespan Human Connectome Project in Aging (HCP-Aging)[36] 612 

International Consortium for Brain Mapping (ICBM) - MNI[37] 147 

Information eXtraction from Images (IXI)[38] 554 

F.M. Kirby Research Center neuroimaging reproducibility data (KIRBY-21)[39] 20 

Minimal Interval Resonance Imaging in Alzheimer's Disease (MIRIAD)[40] 21 

National Alzheimer's Coordinating Center (NACC)[41] 1562 

National Database for Autism Research (NDAR)[42] 56 
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Nathan Kline Institute Rockland Sample(NKI-RS)[43] 138 

Nathan Kline Institute Rockland Enhanced Sample (NKI-RES) [43] 436 

Open Access Series of Imaging Studies (OASIS)[44] 288 

POWER Neuroimage sample (POWER)[45] 26 

Parkinson's Progression Markers Initiative (PPMI)[46] 158 

Southwest University Adult Lifespan Dataset (SALD)[47] 490 

University of Wisconsin (Birn, Prabhakaran, Meyerand) CoRR sample (UWM)[26] 25 

Wayne State EF Dataset (Wayne State)[48] 108 

Yale Low-Resolution Controls Dataset (Yale)[49] 97 

Total 6909 

Among the datasets are the Alzheimer's Disease Neuroimaging Initiative (ADNI), the Australian 145 

Imaging, Biomarkers and Lifestyle study of aging (AIBL) and the Consortium pour l’identification 146 

précoce de la maladie Alzheimer - Québec (CIMA-Q) datasets. The ADNI (adni.loni.usc.edu) was 147 

launched in 2003 as a public-private partnership, led by Principal Investigator Michael W. Weiner, 148 

MD. (www.adni-info.org). The AIBL data was collected by the AIBL study group and AIBL study 149 

methodology has been reported previously by Ellis et al. (2009). For each dataset, approval from 150 

the local ethics board and informed consent of the participants were obtained. Founded in 2013, 151 

the main objective of CIMA-Q is to build a cohort of participants characterized in terms of 152 

cognition, neuroimaging and clinical outcomes in order to acquire biological samples allowing (1) 153 

to establish early diagnoses of Alzheimer’s disease, (2) to provide a well characterized cohort and 154 

(3) to identify new therapeutic targets. The principal investigator and director of CIMA-Q is Dr 155 

Sylvie Belleville from the Centre de recherche de l’Institut universitaire de gériatrie de Montréal, 156 

CIUSSS Centre-sud-de-l’Île-de-Montréal. CIMA-Q represent a common effort of several 157 

researchers from Québec affiliated to Université Laval, Université McGill, Université de Montréal, 158 

et Université de Sherbrooke. CIMA-Q recruited cognitively healthy participants, participants with 159 

subjective cognitive impairment, mild cognitive impairment, or Alzheimer’s disease, between 160 
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2013–2016. Volunteers were recruited from memory clinics, through advertisements posted in 161 

the community and amongst participants from the NuAge population study.  162 

 163 

Harmonization test sample 164 

For the harmonization test,  we used three datasets: 1) the complete CIMA-Q sample (n=208 165 

participants; 286 MRIs), which was described earlier in the method section, 2) the 166 

Comprehensive Assessment of Neurodegeneration and Dementia (COMPASS-ND; n=393) study 167 

conducted by the Canadian Consortium on Neurodegeneration in Aging (CCNA), and the 3) the 168 

SIMON dataset[19], comprised of images from single healthy volunteer scanned on the same 169 

scanner as those used for CIMA-Q and COMPASS-ND. From COMPASS-ND, we used participants 170 

that were either cognitively unimpaired participants (CU), with mild cognitive impairment (MCI), 171 

and with probable Alzheimer’s disease (AD), for a total of 273 participants. While CIMA-Q and 172 

COMPASS-ND were acquired at 18 different sites, we selected only data from scanners that had 173 

at least three participants other than SIMON, which resulted in a total of 547 images (300 CU, 174 

193 MCI, 54 AD) from 12 different scanners; each ranging from 7 to 145 participants. On those 175 

12 scanners, SIMON was scanned 48 times and was aged between 42-46 years old during that 176 

time.  177 

Brain segmentation 178 

 Brain segmentation was conducted using FreeSurfer version 6.0, a widely used and freely 179 

available automated processing pipeline that quantifies brain anatomy (http://freesurfer.net). 180 

All raw T1-weighted images were processed using the "recon-all -all" FreeSurfer command with 181 

the fully-automated directive parameters (no manual intervention or expert flag options) on the 182 
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CBRAIN platform[50]. Normative data were computed for volumes, neocortical thicknesses and 183 

white and pial surfaces areas for all atlases comprised in FreeSurfer 6.0: the default subcortical 184 

atlas[14] (aseg.stats), the Desikan-Killiany atlas[9] (DK, aparc.stats file), the Desikan-Killiany-185 

Tourville atlas[10] (DKT, aparc.DKT.stats file), the Destrieux atlas[13] (aparc.a2009s.stats file), the 186 

ex vivo atlas,[51] including entorhinal and perirhinal cortices, the brainstem sub-regions 187 

atlas[52], the Brodmann area maps which includes somatosensory areas, several motor and 188 

visual areas, as well as the hippocampal subfields atlas[53].  189 

The technical details of FreeSurfer’s procedures are described in prior publications. 190 

Briefly, this processing includes motion correction, removal of non-brain tissue using a hybrid 191 

watershed/surface deformation procedure, automated Talairach transformation, intensity 192 

normalization, tessellation of the gray matter white matter boundary, automated topology 193 

correction, and surface deformation following intensity gradients to optimally place the 194 

gray/white and gray/cerebrospinal fluid borders at the location where the greatest shift in 195 

intensity defines the transition to the other tissue class. Once the cortical models are complete, 196 

a number of deformable procedures can be performed for further data processing and analysis 197 

including surface inflation, registration to a spherical atlas which is based on individual cortical 198 

folding patterns to match cortical geometry across subjects and parcellation of the cerebral 199 

cortex into units with respect to gyral and sulcal structure. This method uses both intensity and 200 

continuity information from the entire three-dimensional MRI volume in segmentation and 201 

deformation procedures to produce representations of cortical thickness, calculated as the 202 

closest distance from the gray/white boundary to the gray/cerebrospinal fluid boundary at each 203 

vertex on the tessellated surface. The maps are created using spatial intensity gradients across 204 
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tissue classes and are therefore not simply reliant on absolute signal intensity. Procedures for the 205 

measurement of cortical thickness have been validated against histological analysis [54] and 206 

manual measurements[55, 56]. Estimated intracranial volume[57] was taken from the aseg.stats 207 

FreeSurfer output file. We added the total ventricle volume (labeled as “ventricles”) using the 208 

sum of all ventricles and the corpus callosum (labeled as “cc”) using the sum of all corpus 209 

callosum segments. 210 

Quality control and sample selection 211 

A flow chart detailing the final analysis sample is shown in Fig 1. From an initial pool of 7,399 212 

MRIs, nine images failed the FreeSurfer pipeline. Following processing, each of the remaining 213 

7,390 brain segmentations was visually inspected through at least 20 evenly distributed coronal 214 

sections by O.P. (see Supplementary materials for quality control examples). After quality control, 215 

445 images (6.0%) were removed from further analyses due to segmentation problems, the main 216 

reason being that parts of the brain were not completely segmented (e.g. temporal and occipital 217 

poles. During visual inspection, 26 brains were found to have signal alterations or clear significant 218 

brain lesions and were excluded. Quality control image examples are displayed as Supplementary 219 

materials (setup, segmentation errors and abnormalities). In addition to visual inspection, we 220 

excluded participants if at least one of the 1,344 brain region measures was missing (n=10). In 221 

fine, the analysis sample was composed of 6,909 individual MRIs. 222 

 223 

Fig 1. Flow chart of the images. 224 

Training, validation and test sample 225 
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 We randomly selected 10% of the whole sample (n=691) to test the models in an 226 

independent sample (age: 55.1 ±20.1, range 18-100; 58.5% female). This test sample was not 227 

used to build the models predicting normative values. The remaining 90% was used as training 228 

sample (age: 54.9 ±20.0, range 18-100; 56.7% female) to build and validate the models. Leave-229 

10%-out cross-validation was used to validate the model in the training sample. 230 

Clinical samples evaluations 231 

 We evaluated the usefulness of normative values using clinical samples of individuals with 232 

schizophrenia (n=72; Age: 38.2 ±13.9, range 18-65; 19% female) from the COBRE dataset, as well 233 

as participants with clinically ascertained Alzheimer's disease (n=157 Age: 74.8 ±8.1, range 55-234 

90; 43% female) from the baseline ADNI-2 dataset. 235 

Image quality predictors 236 

Image quality predictors included voxel size (resolution) and two measures of image quality, 237 

one global, and the second local. The first was the total number of defect holes over the whole 238 

cortex, i.e. topological errors in the initial cortical surface reconstructions. The total number 239 

correlated well with visual inspection of the whole image by trained raters [11]. This measure 240 

was extracted from the aseg.stats FreeSurfer output file. The second measure was contrast-to-241 

noise ratio (CNR) assessed in each region (R) and therefore used as a regional measure of image 242 

quality. For each region, CNR was calculated after FreeSurfer preprocessing using gray matter 243 

(GM) and cerebral white matter (WM) intensities from the brain.mgz file and the following 244 

formula: 245 

!"#$ = 	
(()$	*+,-	 − 	/)	*+,-	)1	

(()$	2,34,-5+	 + 	/)	2,34,-5+)
		 246 

 247 
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Outliers removal 248 

For each brain measure, to exclude potential abnormalities, outliers with Z scores lower than -249 

3.29 and higher than 3.29 (p < .001) were removed before computing the statistical model. This 250 

procedure allowed the identification of brain regions that were either very small or very large 251 

when compared to the rest of the sample and thus, might not be good representative of 252 

normality. For volumes and surfaces, this procedure was applied in proportion to eTIV (i.e. 253 

regional measure/eTIV). Since cortical thickness is not affected by eTIV, the outliers screening 254 

procedure was applied directly on the raw values. The number of outliers was below 1% for all 255 

regions (mean ±sd of all atlases: 0.45% ±0.10%) except the right long insular gyrus and central 256 

sulcus of the insula white surface (1.1%) and pericallosal sulcus volume (1.1%) of the Destrieux 257 

atlas. Detailed results can be found in the supplementary material as csv files.  258 

Regression models and statistical analyses 259 

For each brain region measure, the normative values were produced following two linear 260 

regression models. First, a Model 1 was conducted with image quality predictors (voxel size, 261 

surface defect holes and CNR) and eTIV. Then, Model 2 with age and sex was applied on the 262 

residuals of Model 1. In order to respect the normality of the residuals, surface holes and all 263 

ventricles variables, except the 4th (3rd, lateral, inferior lateral and the sum of all ventricles), were 264 

log transformed. For ventricles and white matter regions, CNR of the total brain gray matter was 265 

used while for the brainstem subregions and hippocampal subfields, CNR from the whole 266 

brainstem and whole hippocampus were used, respectively. Quadratic and cubic terms for age, 267 

CNR and surface holes were included. Since voxel size has a relatively limited variability (mean: 268 

1.02, std: 0.24, range: 0.18-2.2), we chose not to include quadratic and cubic terms for this 269 
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variable. We also included all interactions except for voxel size (Model 1: eTIV X surface holes, 270 

eTIV x CNR, CNR X surface holes ; Model 2: age X sex). Feature selection was conducted with a 271 

10-fold cross-validation[58] backward elimination procedure, retaining the model with the 272 

subset of predictors that produced the lowest predicted residual sum of squares. For each 273 

selected final model, the fit of the data was assessed using R2 coefficient of determination: 274 

#1 = 	1	 −	∑ (9: − ƒ:)
1:

∑ (9: − 9<)1:
	 275 

where the numerator is the residual sum of squares (Y is the value of the variable to be predicted 276 

and f is the predicted value), the denominator is the total sum of squares (9<  is the mean) and 4 is 277 

the index over subjects. To assess the unique contribution of each predictor, we used the lmg 278 

metric in the R package[59] relaimpo[60]. This metric is a R2 partitioned by averaging sequential 279 

sums of squares over all orderings of the predictors. Brain figures were made using the ggseg R 280 

package[61]. In order to compare the effects of each predictor, the sum of all relaimpo R2 terms 281 

related to each variable was computed (i.e. quadratic, cubic, and half of interaction values). For 282 

example, the variance explained by age includes the R2 sum for age,  age2, age3, age X sex /2. 283 

When a term was not included within a model, its R2 value was given 0.  284 

The models were verified by examining the difference between R2 of the training sample 285 

and R2 of the independent test sample of healthy controls. It was expected that the test R2 would 286 

be within 10% from the value of the training R2. Then, patterns of normality deviations were 287 

examined with the Z score effect sizes using the validation samples of healthy individuals and of 288 

individuals with AD and SZ.  289 

=>? = 	
9@ −	9<
#)AB  290 
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Z score effect sizes (ZOP) were obtained by subtracting the Predicted value (9<) from the Observed 291 

value (Yo) divided by the root mean square error (RMSE) of the model predicting the value [62]. 292 

Harmonization test 293 

While the goal of NOMIS differs, we compared its results with twoharmonization procedures, 294 

NeuroCombat[16] and NeuroHarmonize[17] on the aseg volume and DKT cortical volume and 295 

thickness measures (matrix of 146 brain measures) from the harmonization dataset (SIMON, 296 

CIMA-Q and COMPASS-ND). We used the scanner identification number as “batch” (i.e. site) 297 

variable. For NeuroCombat, we also specified age and eTIV as covariates to preserve their effects. 298 

To compare harmonization procedures with NOMIS, after harmonization, eTIV was regressed out 299 

from the brain volume measures. Finally, to compare them on the same scale for statistical 300 

analyses on the variance and figure presentations, all measures were transformed into T and Z 301 

scores, respectively (see Supplementary Fig 2 as example). 302 

We had three expectations following harmonization procedures. Compared to raw data, these 303 

procedures should:  304 

• Reduce the variance of the measures from the 48 SIMON MRIs  305 

• Maintain or increase effect sizes for hippocampi volumes and entorhinal thicknesses 306 

between CU, MCI, and AD groups 307 

• Maintain or increase effect sizes for the relationships between hippocampi volumes and 308 

entorhinal thicknesses and episodic memory as measured by the delayed recall performance of 309 

the Rey Auditory Verbal Learning Test (RAVLT)[63] and Logical Memory Test[64]. 310 

The change in variance was assess using the quartile coefficient of dispersion (QCD): 311 

C3	 − 	C1
C3 + C1  312 
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where Q1 and Q3 are the first and third quartile, respectively, and the Levene’s test for 313 

homogeneity of variance:  314 

=:E = 	 F9:E − 9G:F 315 

where i and j are the groups and the individuals, respectively. The Levene's test is equivalent to 316 

a one-way between-groups analysis of variance (ANOVA) with the dependent variable being the 317 

absolute value of the difference between a score (Y) and the mean of the group (9G). For each 318 

harmonization procedure, a one-way ANOVA on the QCD of the 146 measures before (raw) and 319 

after harmonization was conducted and a Levene’s test on each of the 146 measures was 320 

conducted. 321 

All statistics were conducted using python’s module Scikit-learn[65] and Statsmodel[66]. 322 

 323 

Results 324 

As examples, figures in this report display results for subcortical volumes and DKT neocortical 325 

atlases volumes and thicknesses. Full detailed results for all atlases are provided as 326 

supplementary information as csv files.  327 

Model 1 – Image quality and eTIV 328 

The R2 for model 1 ranged between 0.003 to 0.75, with a mean ±sd of 0.23 ± 0.15. The highest 329 

R2 were observed in brain measures with the largest volumes and surface areas (i.e. left and 330 

right white surface areas 0.82 and 0.81, and left and right pial surface areas 0.79 and 0.78, brain 331 

segmentation volume 0.75, supratentorial volume 0.75). Fig 2 shows the R2 portion due to 332 

image quality and eTIV for neocortical volumes and thicknesses of the DKT atlas parcellation, as 333 
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well as subcortical volumes. Image quality had a substantial impact with a mean ±sd of 0.08 334 

±0.09, 0.14 ±0.05 and 0.13 ±0.05, for subcortical, neocortical volume and thickness values, 335 

respectively. A high amount of variance due to eTIV was observed in subcortical and neocortical 336 

volumes 0.22 ±0.12 and 0.26 ±0.08, respectively while it had nearly impact on cortical thickness 337 

measures 0.01 ±0.01. 338 

Model 2 – Age and sex 339 

The R2 for model 2 ranged between 0.02 to 0.51, with a mean ±sd of 0.23 ±0.14, 0.08 340 

±0.04 and 0.11 ±0.07, for subcortical volumes, neocortical volumes and thicknesses, respectively. 341 

One should note that the R2 in model 2 cannot be compared to that of model 1 since the total 342 

variance in model 2 is the remaining variance after model 1 (residuals). The highest R2 were 343 

observed in the largest regions and ventricles (i.e. all ventricles volume 0.51, brain segmentation 344 

volume 0.49, left and right lateral ventricles 0.49 and 0.49, supratentorial volumes 0.46). The 345 

lowest age and sex effects were generally on pial and white surface areas (0.00 ±0.10 and 0.03 346 

±0.02). Fig 3 illustrates the R2 for age and sex. As shown, sex did not explain much variance while 347 

age had a very different impact depending on the part of the brain with a higher impact in 348 

subcortical volumes and associative cortices, both in volume and thickness. 349 

Models validation 350 

Model 1 and Model 2 were examined in the independent test sample and nearly all 351 

models showed equivalent or higher R2 on the test set than on the training set (the difference 352 

test minus training for all atlases: Model 1 -0.026 ±0.027, Model 2 -0.005 ±0.018; Fig. 4). In model 353 

1, the worse test differences were in the Destrieux atlas where 5 measures out of 592 were below 354 

-10%: pial surface areas of the left superior temporal sulcus (-0.13) and right fronto-marginal 355 
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gyrus (of Wernicke) and sulcus (-0.12), the left subcallosal area, subcallosal gyrus volume (-0.10), 356 

the white surface area of the left lateral aspect of the superior temporal gyrus (0.10) and the 357 

right fronto-marginal gyrus (of Wernicke) and sulcus volume (-0.10). In Model 2, all measures had 358 

R2 differences below 10%, the worse being the left and right putamen volumes (-0.09 and -0.08).  359 

One should note that the models for these measures appear to be slightly less generalizable than 360 

the others.  361 

Fig 5 and Fig 6 show the mean and std Z scores adjusted for age and sex when the models 362 

are applied on the independent young and older healthy controls samples. As expected, the 363 

mean Z scores were very close to 0 while the std were very close to 1 (mean ±std, Young, 364 

subcortical regions: -0.06 ±1.04, cortical volume: 0.04 ±1.13, cortical thickness: 0.04 ±0.99; Older, 365 

subcortical regions: 0.02 ±1.04, cortical volume: 0.01 ±0.96, cortical thickness: 0.01 ±1.02).  366 

 Using the independent healthy control test sample, Fig 7 and Fig 8 display examples of 367 

how the normative values remove the different effects on the left cortical thickness and volumes. 368 

 369 

Fig 2. R2 from Model 1 for cortical volumes and thicknesses from the DKT atlas and subcortical 370 

volumes. Top: Variance due to image quality predictors. Bottom: Variance due to estimated 371 

intra-cranial volume (eTIV).  372 

Fig 3. R2 from Model 2 for neocortical volumes and thicknesses from the DKT atlas and 373 

subcortical volumes. Top: Variance due to age. Bottom: Variance due to sex. One should note 374 

that the R2 in model 2 cannot be compared to that of model 1 since the total variance in 375 

model 2 is the remaining variance after model 1 (residuals). 376 
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Fig 4. Difference of R2 between training and test samples. Top: Model 1 for Image quality and 377 

eTIV. Bottom: Model 2 for Age and sex.  378 

Fig 5. Mean normative Z scores on cortical volumes and thicknesses from the DKT atlas and 379 

subcortical volumes of young (18-34 years old) and older (65-92 years old) healthy 380 

participants. Note that the scaling chosen was to be comparable to that of Fig 9.  381 

Fig 6. Variance of the normative Z scores on cortical volumes and thicknesses from the DKT 382 

atlas and subcortical volumes of young (18-34 years old) and older (65-92 years old) healthy 383 

participants. Std: standard deviation. The Std is expected to be near 1. 384 

Fig 7. Example of the four NOMIS Z scores alternatives on the left cortical thickness values of 385 

the test sample. Note that all four alternative are adjusted for image quality. 386 

Fig 8. Examples of the impact of contrast-to-noise ratio (CNR) and surface holes on the raw 387 

and normed data of the test sample. Top: CNR on Left cortical thickness. Bottom: Surface 388 

holes on left cortical volume. Left: Raw data. Right: Normed data. 389 

 390 

Clinical validation 391 

We validated the normative values in individuals with clinically ascertained Alzheimer's 392 

disease and schizophrenia, which showed expected patterns of mean deviations from otherwise 393 

cognitively/behaviorally healthy individuals (Fig 9). In the Alzheimer’s disease group, the mean 394 

deviations from normality covered the frontal, temporal and parietal cortices with enlarged 395 

ventricles, but were especially more pronounced in the hippocampus and entorhinal cortex. In 396 

schizophrenia, atrophy was widespread to nearly all of the cortex. Supplementary Fig 3 displays 397 

the variance of the scores in those two groups.  398 
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 399 

Fig 9. Mean normative Z scores on cortical volumes and thicknesses from the DKT atlas and 400 

subcortical volumes of participants with Alzheimer’s disease and with schizophrenia. 401 

 402 

Comparison of NOMIS and harmonization procedures  403 

 Fig 10 shows the SIMON subcortical and left cortical morphometric values (see 404 

Supplementary Fig 4 for right cortical values) before (raw) and after harmonization procedures 405 

and NOMIS normalization. Qualitatively, the variance of all measures was high before and after 406 

harmonization, as well as after NOMIS normalization. Fig 11 displays the QCD for subcortical and 407 

left cortical morphometric measures (see Supplementary Fig 5 for right cortical QCD values). QCD 408 

was highly different from a measure to another and globally harmonization procedures did not 409 

significantly lower QCD (NeuroCombat F: 1.96, p=.16; NeuroHarmonize F: 2.34, p=.13). On the 410 

other hand, NOMIS significantly reduced the QCD (F: 4.14, p = .04). Levene’s tests also indicated 411 

that the harmonization procedures and NOMIS values had equivalent variance than that of the 412 

raw values, even without correction for multiple comparison (p values ranging from .26 to .99). 413 

Fig 12 shows two examples of measures (left hippocampal volume and left entorhinal thickness) 414 

across the 12 different sites and reveals that, before and after harmonization or NOMIS, there is 415 

a high variability between sites, but also within some sites.  416 

 Both harmonization procedures systematically diminished all effect sizes between CU and 417 

MCI (range: -0.01 to -0.11) and CU and AD (range: -0.09 to -0.20) groups. After NOMIS 418 

normalization, the effects sizes increased for hippocampal volumes (CU-MCI left: +0.14, right: 419 

+0.14; CU-AD: left: +0.12, right: +0.11) while it decreased for entorhinal volume (CU-MCI left: -420 
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0.01, right: -0.02; CU-AD: left: -0.08, right: -0.09) and thickness (CU-MCI left: -0.12, right: -0.16; 421 

CU-AD: left: -0.21, right: -0.28). These results are shown in Fig 13 (left hemisphere) and 422 

Supplementary Fig 6 (right hemisphere). Finally, we observed (Fig. 14) that both harmonization 423 

procedures systematically lowered the magnitude of the correlations between the six 424 

morphometric values and episodic memory scores. NOMIS on the other hand increased the 425 

correlations with hippocampal volumes, slightly decreased the ones with entorhinal cortices and 426 

performed similarly to harmonization procedures for entorhinal cortices thicknesses. 427 

 428 

Fig 10. Boxplots showing the SIMON subcortical volumes and left neocortical volumes and 429 

thicknesses before (Raw) and after harmonization procedures (NeuroCombat and 430 

NeuroHarmonize) and NOMIS. Boxes show the first and third quartiles with the line denoting 431 

the median. Whiskers represent the lowest/highest datum still within 1.5 interquartile range 432 

(IQR) of the lower/higher quartile. Right neocortical volumes and thicknesses are shown in 433 

Supplementary Fig 4. 434 

Fig 11. Quartile coefficient of dispersion of the SIMON subcortical volumes and left neocortical 435 

volumes and thicknesses before (Raw) and after harmonization procedures (NeuroCombat and 436 

NeuroHarmonize) and NOMIS. Values for the right neocortical volumes and thicknesses are 437 

shown in Supplementary Fig 5. 438 

Fig 12. Boxplots showing the SIMON left hippocampal volumes and right entorhinal thicknesses 439 

before (Raw) and after harmonization procedures (NeuroCombat and NeuroHarmonize) and 440 

NOMIS for the 12 different sites. Boxes show the first and third quartiles with the line denoting 441 
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the median. Whiskers represent the lowest/highest datum still within 1.5 interquartile range 442 

(IQR) of the lower/higher quartile. 443 

Fig 13. Boxplots showing the effect sizes (Cohen’s d) between cognitively unimpaired (CU), mild 444 

cognitive impairment (MCI) and Alzheimer’s disease (AD) groups for the left hippocampal 445 

volume and left entorhinal volume and thickness before (Raw) and after harmonization 446 

procedures (NeuroCombat and NeuroHarmonize) and NOMIS. Boxes show the first and third 447 

quartiles with the line denoting the median. Whiskers represent the lowest/highest datum still 448 

within 1.5 interquartile range (IQR) of the lower/higher quartile. Values for the right 449 

hemisphere are shown in Supplementary Fig 6. 450 

Fig 14. Correlations between episodic memory score and morphometric measures before (Raw) 451 

and after harmonization procedures (NeuroCombat and NeuroHarmonize) and NOMIS. 452 

 453 

Discussion 454 

Recent initiatives for morphometric normative data includes percentile fitting curves on 455 

subcortical regions [67], deep learning-based segmentation of subcortical regions and cortical 456 

lobes for east Asians [68], and yearly percentage of brain volume changes [69]. To our knowledge, 457 

there is no other automated calculator for normative morphometric values available to 458 

researchers except the one from our previous work using FreeSurfer 5.3 459 

(https://github.com/medicslab/mNormsFS53). These prior normative data from our group[5-7] 460 

were relatively limited in terms of atlases and sample size. With nearly seven thousand 461 

participants and 1,344 brain measures, NOMIS offers a comprehensive neuromorphometric 462 

normative tool based on a very large sample. In addition, an innovation of NOMIS is its flexibility. 463 
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Depending on the user need, it has four versions of Z-score adjusted on different sets of variables. 464 

All versions include head size and image quality, but can also take into account age and/or sex or 465 

without age and sex. Therefore, research groups looking for traditional norms, as well as others 466 

wanting to lower the variance due to head size and image quality while preserving age and/or 467 

sex variances can take advantage of NOMIS. Another strength of NOMIS is that the normative 468 

values were created on a various amalgam of cognitively healthy participants from multiple 469 

countries, with data acquired from a wide variety of MRI scanners and image quality, maximizing 470 

its generalizability. A novelty to prior existing normative data, is the addition of the image quality 471 

impact on the morphometry measures. Figures 2 shows that its effect is not trivial on cortical 472 

volume and thickness. As shown by our results, our new normative data should help to remove 473 

some undesirable variance due to scanners and image quality. Furthermore, the results from 474 

NOMIS also show that in independent samples, the Z scores behaved as expected, that is with a 475 

mean of 0 and standard deviation of 1 in healthy individuals and with marked mean deviations 476 

targeted to the medial temporal lobes in participants with AD and throughout the cortex in 477 

participants with SZ.   478 

Despite these strengths, users should keep in mind that before using NOMIS, it is 479 

mandatory to verify FreeSurfer segmentations and that while it will remove parts of variance due 480 

to head size and image quality, it won’t correct for segmentation errors or image artefacts. 481 

Moreover, the normative sample, comprised essentially of research volunteers in academic-led 482 

environments, was recruited using a non-probability sampling method and may not be 483 

representative of the targeted population by the user. 484 

Norms and multi-site data harmonization 485 
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The main aim of the normative values is to quantify the deviation from normality of 486 

measurements for a new individual (i.e. one who is not in the sample used to define normality). 487 

Because the norms remove some variance due to image quality, they can also be a useful and 488 

simple way of lowering the noise between scanners in multi-site studies. However, norms should 489 

not be considered an optimal technique to remove variances in multi-site studies; other 490 

strategies are meant to specifically tackle multi-site variance. Studies should use in fact a 491 

combination of approaches, including harmonized procedures for data acquisition, normative 492 

values such as the one proposed herein,  and post-hoc correction.  493 

A harmonized scanning procedure, such as the Canadian Dementia Imaging Protocol 494 

(CDIP)[70], addresses variations due to parameter and sequence dissimilarities, including quality 495 

control and assurance, for example through scanning at all sites of an object of known geometric 496 

and contrast properties (i.e. a “phantom”) as well as human volunteers. Recent data from the 497 

SIMON dataset [21], including non-harmonized and CDIP-harmonized scans,  demonstrated how 498 

using a harmonized protocol reduces variability across sites; however, some notable variance 499 

remained[71, 72], (see also Figs 10-12). The idea of a harmonized protocol is however limited to 500 

specific initiatives due to the high amount of resources it requires to implement.  501 

Post-hoc harmonization procedures on the other hand have been developed to pool data 502 

from different sites in large studies. Various of procedures have been proposed [16-19, 73] and 503 

aim to lower differences in morphometric data between sites by generally applying scaling 504 

corrections based on differences in the morphometric data themselves. The scaling corrections 505 

are applicable for the sites/scanners included in the analysis and not for future sites/scanners or 506 

data. This makes such post-hoc correction analysis-specific and needs to be conducted each time 507 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 23, 2022. ; https://doi.org/10.1101/2021.01.25.428063doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.25.428063
http://creativecommons.org/licenses/by/4.0/


 25 

some data are removed or added to an analysis. Such an approach can be very useful for large 508 

multi-centric studies but is not applicable for generating normative values aiming to be applied 509 

on future data. It is also vulnerable to selection bias since the scaling factors are not based on the 510 

images or scanner characteristics, but on the difference of data between sites/scanners[18, 19]. 511 

Thus, distinct characteristics of the participants at a given site can affect the scaling factors and 512 

post-hoc scaling factors should be used when the aim of a study is not vulnerable to sources of 513 

variance between sites that are not related to image acquisition.  514 

We compared NOMIS values to two post-hoc harmonization procedures, namely 515 

NeuroCombat[16] and NeuroHarmonize[17] and while globally NOMIS slightly lowered the 516 

variance of the values from the same individuals originating from 12 different scanners, these 517 

two procedures were worse than NOMIS and did not significantly reduce true variance induced 518 

by different scanners. We also verified effect sizes of well-established effects in MCI and AD 519 

participants and once again the harmonization procedures were either similar or worse than 520 

NOMIS. NeuroCombat and NeuroHarmonize systematically lowered the morphometric 521 

differences between CU, MCI and AD participants while NOMIS lowered the entorhinal volume 522 

and thickness effect sizes and increased the hippocampal volume differences between these 523 

groups. These results suggest that caution should be exercised when using post-hoc 524 

harmonization; the use of a calibration technique (e.g. repeated scans of human volunteers as 525 

part of the study) is strongly encouraged. 526 

Using NOMIS 527 

The NOMIS tool is a user-friendly automated script in Python, freely accessible 528 

(https://github.com/medicslab/NOMIS). Users only need to pre-process their images with 529 
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FreeSurfer 6.0 using automated directive parameters, then specify the individuals’ characteristics 530 

to the script, which will automatically compute Z-scores based on the FreeSurfer output. One can 531 

choose the version of the Z-score by including in the csv file only the variables that need to be 532 

adjusted and the script automatically selects the appropriate version of predictors. The predictive 533 

models and all statistical parameters are provided along with the script. We anticipate that this 534 

tool will be of broad interest to the neuroscientific community. 535 

  536 
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Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd and its affiliated company 563 

Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.;Janssen Alzheimer Immunotherapy 564 

Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development 565 

LLC.; Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; 566 

Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; 567 

Servier; Takeda Pharmaceutical Company; and Transition Therapeutics. The Canadian Institutes 568 

of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector 569 

contributions are facilitated by the Foundation for the National Institutes of Health 570 

(www.fnih.org). The grantee organization is the Northern California Institute for Research and 571 

Education, and the study is coordinated by the Alzheimer's Therapeutic Research Institute at 572 

the University of Southern California. ADNI data are disseminated by the Laboratory for Neuro 573 

Imaging at the University of Southern California. 574 

http://adni.loni.usc.edu/ 575 

 576 

Australian Imaging Biomarkers and Lifestyle flagship study of ageing (AIBL): Part of the data 577 

used in this study was obtained from the Australian Imaging Biomarkers and Lifestyle flagship 578 

study of ageing (AIBL) funded by the Commonwealth Scientific and Industrial Research 579 
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Organisation (CSIRO) which was made available at the ADNI database 580 

(www.loni.usc.edu/ADNI). The AIBL researchers contributed data but did not participate in 581 

analysis or writing of this report. AIBL researchers are listed at www.aibl.csiro.au 582 

 583 

Berlin Mind and Brain (Margulies, Villringer) CoRR sample (BMB). Zuo, X.N., et al. (2014). An 584 

open science resource for establishing reliability and reproducibility in functional connectomics. 585 

Scientific data, 1, 140049. doi: 10.1038/sdata.2014.49. 586 

http://fcon_1000.projects.nitrc.org/indi/CoRR/html/bmb_1.html 587 

 588 

Cambridge Centre for Ageing and Neuroscience (CamCAN): CamCAN funding was provided by the 589 

UK Biotechnology and Biological Sciences Research Council (grant number BB/H008217/1), 590 

together with support from the UK Medical Research Council and University of Cambridge, UK. 591 

http://www.mrc-cbu.cam.ac.uk/datasets/camcan/ 592 

 593 

Center of Biomedical Research Excellence (COBRE): The imaging data and phenotypic 594 

information was collected and shared by the Mind Research Network and the University of New 595 

Mexico funded by a National Institute of Health COBRE: 1P20RR021938-01A2. 596 

http://fcon_1000.projects.nitrc.org/indi/retro/cobre.html 597 

 598 

Cleveland Clinic (Cleveland CCF): Funded by the National Multiple Sclerosis Society. 599 

http://fcon_1000.projects.nitrc.org/indi/retro/ClevelandCCF.html 600 

 601 
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Comprehensive Assessment of Neurodegeneration and Dementia (COMPASS-ND) study: The 602 

COMPASS-ND study is conducted by the Canadian Consortium on Neurodegeneration in Aging 603 

(CCNA; www.ccna-ccnv.ca). The CCNA is supported by a grant from the Canadian Institutes of 604 

Health Research (CIHR) with funding from several partners.  605 

 606 

Consortium for the Early Identification of Alzheimer's Disease (CIMA-Q): Part of the data used in 607 

this article were obtained from the Consortium pour l’identification précoce de la maladie 608 

Alzheimer - Québec (CIMA-Q). As such, the investigators within the CIMA-Q contributed to the 609 

design, the implementation, the acquisition of clinical, cognitive, and neuroimaging data and 610 

biological samples. A list of the CIMA-Q investigators is available on cima-q.ca.  CIMA-Q was 611 

funded in 2013 with a $2,500,000 grant from the Fonds d’Innovation Pfizer - Fond de Recherche 612 

Québec – Santé sur la maladie d’Alzheimer et les maladies apparentées. 613 

 614 

Dallas Lifespan Brain Study (DLBS): This study is supported by the Center for Vital Longevity, the 615 

University of Texas at Dallas, the University of Texas Southwestern Medical Center, the National 616 

Institutes of Health and Aging, AVID Radiopharmaceuticals, the Aging Mind Foundation and the 617 

Alzheimer’s Association. http://fcon_1000.projects.nitrc.org/indi/retro/dlbs.html 618 

 619 

FIND lab sample. Funded by the Dana Foundation; John Douglas French Alzheimer's 620 

Foundation; National Institutes of Health (AT005733, HD059205,HD057610, NS073498, 621 

NS058899). http://fcon_1000.projects.nitrc.org/indi/retro/find_stanford.html 622 

 623 
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Functional Biomedical Informatics Research Network (FBIRN): Provided by the Biomedical 624 

Informatics Research Network under the following support: U24-RR021992, by the National 625 

Center for Research Resources at the National Institutes of Health, U.S.A. 626 

http://www.birncommunity.org/resources/data/ 627 

 628 

Lifespan Human Connectome Project in Aging (HCP-Aging): HCP-Aging  data were obtained 629 

from the National Institute of Mental Health (NIMH) Data Archive (NDA). NDA is a collaborative 630 

informatics system created by the National Institutes of Health to provide a national resource 631 

to support and accelerate research in mental health. Dataset identifier: 632 

http://dx.doi.org/10.15154/1520138. This manuscript reflects the views of the authors and may 633 

not reflect the opinions or views of the NIH or of the Submitters submitting original data to 634 

NDA. http://nda.nih.gov 635 

 636 

International Consortium for Brain Mapping (ICBM). The ICBM (Principal Investigator: John 637 

Mazziotta, MD, PhD) was funded was provided by the National Institute of Biomedical Imaging 638 

and BioEngineering. ICBM is the result of efforts of co-investigators from UCLA, Montreal 639 

Neurologic Institute, University of Texas at San Antonio, and the Institute of Medicine, 640 

Juelich/Heinrich Heine University - Germany." https://ida.loni.usc.edu/login.jsp?project=ICBM 641 

 642 

Information eXtraction from Images (IXI): Data collected as part of the project 643 

EPSRC GR/S21533/02 - http://brain-development.org/ixi-dataset/ 644 

 645 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 23, 2022. ; https://doi.org/10.1101/2021.01.25.428063doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.25.428063
http://creativecommons.org/licenses/by/4.0/


 32 

F.M. Kirby Research Center neuroimaging reproducibility data (KIRBY-21). Landman, B.A. et al. 646 

“Multi-Parametric Neuroimaging Reproducibility: A 3T Resource Study”, NeuroImage. (2010) 647 

NIHMS/PMC:252138 doi:10.1016/j.neuroimage.2010.11.047  648 

https://www.nitrc.org/projects/multimodal 649 

 650 

Minimal Interval Resonance Imaging in Alzheimer's Disease (MIRIAD): The MIRIAD investigators 651 

did not participate in analysis or writing of this report. The MIRIAD dataset is made available 652 

through the support of the UK Alzheimer's Society (RF116). The original data collection was 653 

funded through an unrestricted educational grant from GlaxoSmithKline (6GKC). 654 

http://miriad.drc.ion.ucl.ac.uk 655 

 656 

National Alzheimer's Coordinating Center  (NACC): The NACC database is funded by NIA/NIH 657 

Grant U01 AG016976. NACC data are contributed by the NIA-funded ADCs: P30 AG019610 (PI 658 

Eric Reiman, MD), P30 AG013846 (PI Neil Kowall, MD), P30 AG062428-01 (PI James Leverenz, 659 

MD) P50 AG008702 (PI Scott Small, MD), P50 AG025688 (PI Allan Levey, MD, PhD), P50 660 

AG047266 (PI Todd Golde, MD, PhD), P30 AG010133 (PI Andrew Saykin, PsyD), P50 AG005146 661 

(PI Marilyn Albert, PhD), P30 AG062421-01 (PI Bradley Hyman, MD, PhD), P30 AG062422-01 (PI 662 

Ronald Petersen, MD, PhD), P50 AG005138 (PI Mary Sano, PhD), P30 AG008051 (PI Thomas 663 

Wisniewski, MD), P30 AG013854 (PI Robert Vassar, PhD), P30 AG008017 (PI Jeffrey Kaye, MD), 664 

P30 AG010161 (PI David Bennett, MD), P50 AG047366 (PI Victor Henderson, MD, MS), P30 665 

AG010129 (PI Charles DeCarli, MD), P50 AG016573 (PI Frank LaFerla, PhD), P30 AG062429-01(PI 666 

James Brewer, MD, PhD), P50 AG023501 (PI Bruce Miller, MD), P30 AG035982 (PI Russell 667 
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Swerdlow, MD), P30 AG028383 (PI Linda Van Eldik, PhD), P30 AG053760 (PI Henry Paulson, MD, 668 

PhD), P30 AG010124 (PI John Trojanowski, MD, PhD), P50 AG005133 (PI Oscar Lopez, MD), P50 669 

AG005142 (PI Helena Chui, MD), P30 AG012300 (PI Roger Rosenberg, MD), P30 AG049638 (PI 670 

Suzanne Craft, PhD), P50 AG005136 (PI Thomas Grabowski, MD), P30 AG062715-01 (PI Sanjay 671 

Asthana, MD, FRCP), P50 AG005681 (PI John Morris, MD), P50 AG047270 (PI Stephen 672 

Strittmatter, MD, PhD). https://www.alz.washington.edu/ 673 

 674 

National Database for Autism Research (NDAR): Data were obtained from the National Institute 675 

of Mental Health (NIMH) Data Archive (NDA). NDA is a collaborative informatics system created 676 

by the National Institutes of Health to provide a national resource to support and accelerate 677 

research in mental health. Dataset identifier: http://dx.doi.org/10.15154/1520138. This 678 

manuscript reflects the views of the authors and may not reflect the opinions or views of the 679 

NIH or of the Submitters submitting original data to NDA. http://nda.nih.gov 680 

 681 

Nathan Kline Institute Rockland (NKI-R) sample (NKI-RS) and Enhanced Sample (NKI-RES): 682 

Principal support for the NKI-RES project is provided by the NIMH BRAINS R01MH094639-01. 683 

Funding for key personnel also provided in part by the New York State Office of Mental Health 684 

and Research Foundation for Mental Hygiene. Funding for the decompression and 685 

augmentation of administrative and phenotypic protocols provided by a grant from the Child 686 

Mind Institute (1FDN2012-1). Additional personnel support provided by the Center for the 687 

Developing Brain at the Child Mind Institute, as well as NIMH R01MH081218, R01MH083246, 688 

and R21MH084126. Project support also provided by the NKI Center for Advanced Brain 689 
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Imaging (CABI), the Brain Research Foundation, the Stavros Niarchos Foundation and the NIH 690 

P50 MH086385-S1 (NKI-RS ). http://fcon_1000.projects.nitrc.org/indi/pro/nki.html 691 

http://fcon_1000.projects.nitrc.org/indi/enhanced/ 692 

 693 

Open access series of imaging studies (OASIS): The OASIS project was funded by grants P50 694 

AG05681, P01 AG03991, R01 AG021910, P50 MH071616, U24 RR021382, and R01 MH56584. 695 

http://www.oasis-brains.org/ 696 

 697 

POWER: This database was supported by NIH R21NS061144 R01NS32979 R01HD057076 698 

U54MH091657 K23DC006638 P50 MH71616 P60 DK020579-31 , McDonnell Foundation 699 

Collaborative Action Award, NSF IGERT DGE-0548890, Simon's Foundation Autism Research 700 

Initiative grant, Burroughs Wellcome Fund, Charles A. Dana Foundation, Brooks Family Fund, 701 

Tourette Syndrome Association, Barnes-Jewish Hospital Foundation, McDonnell Center for 702 

Systems Neuroscience, Alvin J. Siteman Cancer Center, American Hearing Research Foundation 703 

grant, Diabetes Research and Training Center at Washington University grant. 704 

http://fcon_1000.projects.nitrc.org/indi/retro/Power2012.html 705 

 706 

Parkinson’s Progression Markers Initiative (PPMI): PPMI – a public-private partnership – is 707 

funded by the Michael J. Fox Foundation for Parkinson’s Research and funding partners, 708 

including Abbvie, Allergan, Amathus, Avid Radiopharmaceuticals, Biogen Idec, BioLegend, 709 

Bristol-Myers, Celgene, Cenali, Covance, GE Healthcare, Genentech, GlaxoSmithKline, Glolub 710 

Capital, Handl Therapeutics, Insitro, Janssen Neuroscience, Eli Lilly and Company, Lundbeck, 711 
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Merck, Meso Scale Discovery, Neurocrine, Pfizer, Piramal, Prevail, Roche, Sanofi Genzyme, 712 

Servier, Takeda, Teva, UCB, Verily, and Voyager Therapeutics. See http://www.ppmi-info.org for 713 

further details. 714 

 715 

Southwest University Adult Lifespan Dataset (SALD): SALD was supported by the National 716 

Natural Science Foundation of China (31470981; 31571137; 31500885), National Outstanding 717 

young people plan, the Program for the Top Young Talents by Chongqing, the Fundamental 718 

Research Funds for the Central Universities (SWU1509383,SWU1509451,SWU1609177), Natural 719 

Science Foundation of Chongqing (cstc2015jcyjA10106), Fok Ying Tung Education Foundation 720 

(151023) , General Financial Grant from the China Postdoctoral Science Foundation 721 

(2015M572423, 2015M580767), Special Funds from the Chongqing Postdoctoral Science 722 

Foundation (Xm2015037, Xm2016044), Key research for Humanities and social sciences of 723 

Ministry of Education (14JJD880009). http://fcon_1000.projects.nitrc.org/indi/retro/sald.html 724 

 725 

University of Wisconsin, Madison (Birn, Prabhakaran, Meyerand) CoRR sample (UWM): Zuo, 726 

X.N., et al. (2014). An open science resource for establishing reliability and reproducibility in 727 

functional connectomics. Scientific data, 1, 140049. doi: 10.1038/sdata.2014.49 728 

http://fcon_1000.projects.nitrc.org/indi/CoRR/html/uwm_1.html 729 

 730 

Wayne State EF Dataset: This dataset was supported by National Institute on Aging grants R01-731 

AG011230, R37-AG011230, R03-AG024630 to Naftali Raz, Ph.D. 732 

http://fcon_1000.projects.nitrc.org/indi/retro/wayne_EF.html 733 
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 734 

Yale Low-Resolution Controls Dataset: Scheinost D, Tokoglu F, Shen X, Finn ES, Noble S, 735 

Papademetris X, Constable RT. Fluctuations in Global Brain Activity Are Associated With 736 

Changes in Whole-Brain Connectivity of Functional Networks. IEEE Trans Biomed Eng. 2016 737 

Dec;63(12):2540-2549. Epub 2016 Aug 16. 738 

http://fcon_1000.projects.nitrc.org/indi/retro/yale_lowres.html  739 
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