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Abstract

We present NOMIS (https://github.com/medicslab/NOMIS), a comprehensive open MRI tool to

assess morphometric deviation from normality in the adult human brain. Based on MR
anatomical images from 6,909 cognitively healthy individuals aged 18-100 years, we modeled
1,344 measures computed using the open access FreeSurfer pipeline, considering account
personal characteristics (age, sex, intracranial volume) and image quality (resolution, contrast-
to-noise ratio and surface reconstruction defect holes), and providing expected values for any
new individual. Then, for each measure, the NOMIS tool was built to generate Z-score effect sizes
denoting the extent of deviation from the normative sample. Depending on the user need,
NOMIS offers four versions of Z-score adjusted on different sets of variables. While all versions
consider head size and image quality, they can also incorporate age and/or sex, thereby

facilitating multi-site neuromorphometric research across adulthood.
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50 Introduction

51 Despite the popularity of magnetic resonance imaging (MRI) to examine abnormalities in brain
52 morphometry, tools quantifying normality are lacking. While age, sex and intracranial volume are
53  well-known to influence brain volume and shape[l, 2] the determination of whether an
54  individual’s brain region measurements are within normality faces multiple major challenges
55 such as the lack of normative data across appropriate age groups, the influence of the MRI
56  processing pipeline, the variety in neuroanatomical atlases used for parcellation and the
57  uniqueness of the image acquisition itself[3, 4]. We made previous attempts[5-8] to produce such
58 normative data in adulthood based on FreeSurfer, an open-access and fully automated
59  segmentation software (http://freesurfer.net), for two specific brain atlases, namely Desikan-
60  Killiany[9] (DK) and Desikan-Killiany-Tourville[10] (DKT). This initial foray allowed for the
61 quantification of the extent of deviation from normality for a given individual, according to
62  personal characteristics such as age, sex and estimated intracranial volume (eTIV), while
63  controlling for scanner magnetic field strength (MFS) and original equipment manufacturer
64  (OEM).

65 Leveraging this prior work, we offer a comprehensive tool called NOMIS (NOrmative

66  Morphometry Image Statistics; https://github.com/medicslab/NOMIS). NOMIS can be used to

67  produce normative values for any new adult individual, cognitively healthy or otherwise. Using
68  thisindividual's T1-weighted MRI, processed via the FreeSurfer 6.0 toolkit, one can derive Z-score
69 effect sizes denoting the extent of deviation from the normative sample according to the
70  individual’s characteristics (age, sex, and eTIV), while taking into account image quality

71  information (resolution, contrast-to-noise ratio (CNR) and holes in surface reconstruction)[11,
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12]. NOMIS contains 1,344 brain measures generated by FreeSurfer on 6,909 healthy individuals
aged 18 to 100 years (mean #sd: 55.0 £20.0; 56.8% female). The normative data includes as
before the DK[9] and DKT[10] atlases, as well as the Destrieux (a2009s)[13] neocortical atlas;
neocortical pial and white surface areas, volumes and thicknesses; FreeSurfer's default
subcortical atlas[14], hippocampal subfields, brainstem subregions; its ex vivo-based labeling
protocol atlas[15]; and the subcortical white matter parcellation according to the adjacent
neocortical areas. Furthermore, to fulfill specific needs from researchers, we propose four
versions of Z-score adjusted on different sets of variables. While all versions are adjusted for head
size and image quality, the full version includes both age and sex whereas the three other
versions are without age, without sex and without age and sex. Thus, a research group working
on aging aiming at removing the variance of hippocampal volumes due to head size, sex, and
image quality could use the version without age, which preserves the variance due to aging.
When compared to our previous work on normative values, there are important new
contributions in NOMIS:
e The norms were calculated using a newer FreeSurfer software version
e New variables were added to remove undesirable variance (CNR, surface holes,
resolution)
e New atlases were processed, such as Destrieux, hippocampal subfields, brainstem
subregions, ex vivo-based labeling protocol atlas, subcortical white matter parcellation

according to the adjacent neocortical areas
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92 e The possibility of calculating normative scores while adjusting only some selected
93 variables was introduced (intracranial volume with image quality in combination, or not,
94 with age and/or sex)
95 e The sample size of the normative sample was doubled, making the age distribution more
96 uniform than previously
97  The multiple scanner problem
98 Different scanners produce different images, even in the same individuals, which produce

99 in the end different morphometric values. One way of capturing inter-scanner variance is using
100  information about the scanner (e.g. magnetic field strength and vendor). For the creation of
101 ~ NOMIS, and contrary to our previous work, we chose not to incorporate such information since
102 the samples of individuals within each combination of scanner characteristic is likely to be
103  different and thus, possibly bias-inducing due to known or unknown individuals’ characteristics
104  stemming from recruitment in a particular study included in the training data. Therefore, to
105  minimize inter-scanner variance, NOMIS strictly uses image information.

106 Moreover, as a final validation step, we have compared the basic version of NOMIS (i.e.
107  only adjusting for head size and image quality) with two global scaling harmonization techniques,
108  namely NeuroCombat[16] and NeuroHarmonize[17] on their ability to reduce the mean effect
109  and variance induced by different scanners. Such techniques model the differences between
110  scanners to apply a post-hoc correction on morphometric estimates based on the complete set
111  of data in the study. In that, they are fundamentally different from our attempt here at a

112 normative tool to be used in new, separate studies.
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113 Nevertheless, it should be noted that, while they are gaining popularity, harmonization
114  techniques can potentially induce biases due to the different participants’ characteristics at each
115  scanner[18, 19]. The main challenge to show that harmonization is actually working is that MRI
116  provides relative measures for which that there is no gold standard; each scanner yields its own
117  measure, given its hardware software and other factors, even time of the day[20]. In order to
118  properly test harmonization, we defined our own gold standard by using the Single Individual
119  Across Networks (SIMON) dataset[21], comprised of images from a single person that was
120  scanned within a short span at 12 sites for quality control purposes in the context of within two
121 Canadian studies. By harmonizing these 12 scanners using 547 MRIs from individuals scanned in
122 these studies, as well as the quality-control 48 SIMON MRIs, we verified whether the variance of
123 the SIMON measures was lower or not. Unfortunately, we conclude that none of the
124 harmonization techniques reduce real inter-scanner variance. While neither does NOMIS, such is
125  not our purpose.

126

127 Materials and methods

128 Normative sample

129  The norms are based on a cross-sectional sample of 6,909 (initial sample: 7,399) cognitively
130  healthy individuals aged 18 to 100 years, (mean £sd; 55.0 20.0; 56.8% female), gathered from
131 27 different datasets (Table 1). Supplementary Fig 1 shows the age distribution within each
132 dataset. Scans were acquired from one of the three leading OEM (e.g. Siemens Healthcare

133 (Erlangen, Germany); Philips Medical Systems (Best, Netherlands); or GE Healthcare (Milwaukee,


https://doi.org/10.1101/2021.01.25.428063
http://creativecommons.org/licenses/by/4.0/

134

135

136

137

138

139

140

141

142

143

144

bioRxiv preprint doi: https://doi.org/10.1101/2021.01.25.428063; this version posted February 23, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

7

WI)) at MFS of either 1.5 or 3 Tesla. This study received the approval of the Institutional review
board of neuroscience and mental health of the CIUSSS de la Capitale- Nationale (#217207).
From all the samples mentioned, only cognitively healthy (control) participants were
included. For the Nathan Kline Institute samples, which were projects recruiting in the general
population, we excluded participants with history of schizophrenia or other psychotic disorders,
bipolar disorders, major depressive disorders (recurrent), posttraumatic stress disorder,
substance abuse/dependence disorders, neurodegenerative and neurological disorders, head
injury with loss of consciousness/amnesia, and lead poisoning. Moreover, for the Parkinson's
Progression Markers Initiative dataset, we excluded participants with a Geriatric Depression

Scale[22] score of more than 5.

Table 1. Datasets included in the normative sample
Dataset n
Autism Brain Imaging Data Exchange (ABIDE)[23] 183
Alzheimer's Disease Neuroimaging Initiative (ADNI)[24] 672
Australian Imaging Biomarkers and Lifestyle flagship study of ageing (AIBL)[25] 157
Berlin Mind and Brain (Margulies, Villringer) CoRR sample (BMB)[26, 27] 50
Cambridge Centre for Ageing and Neuroscience (CamCAN)[28, 29] 630
Center of Biomedical Research Excellence (COBRE)[30] 70
Cleveland CCF[31] 30
Consortium for the Early Identification of Alzheimer's Disease (CIMA-Q)[32] 29
Dallas Lifespan Brain Study (DLBS)[33] 304
FIND lab sample (FIND) Lab[34] 13
Functional Biomedical Informatics Research Network (FBIRN)[35] 33
Lifespan Human Connectome Project in Aging (HCP-Aging)[36] 612
International Consortium for Brain Mapping (ICBM) - MNI[37] 147
Information eXtraction from Images (IX1)[38] 554
F.M. Kirby Research Center neuroimaging reproducibility data (KIRBY-21)[39] 20
Minimal Interval Resonance Imaging in Alzheimer's Disease (MIRIAD)[40] 21
National Alzheimer's Coordinating Center (NACC)[41] 1562
National Database for Autism Research (NDAR)[42] 56
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Nathan Kline Institute Rockland Sample(NKI-RS)[43] 138
Nathan Kline Institute Rockland Enhanced Sample (NKI-RES) [43] 436
Open Access Series of Imaging Studies (OASIS)[44] 288
POWER Neuroimage sample (POWER)[45] 26

Parkinson's Progression Markers Initiative (PPMI)[46] 158
Southwest University Adult Lifespan Dataset (SALD)[47] 490
University of Wisconsin (Birn, Prabhakaran, Meyerand) CoRR sample (UWM)[26] 25

Wayne State EF Dataset (Wayne State)[48] 108
Yale Low-Resolution Controls Dataset (Yale)[49] 97

Total 6909

145  Among the datasets are the Alzheimer's Disease Neuroimaging Initiative (ADNI), the Australian
146  Imaging, Biomarkers and Lifestyle study of aging (AIBL) and the Consortium pour I'identification
147  précoce de la maladie Alzheimer - Québec (CIMA-Q) datasets. The ADNI (adni.loni.usc.edu) was
148  launchedin 2003 as a public-private partnership, led by Principal Investigator Michael W. Weiner,
149  MD. (www.adni-info.org). The AIBL data was collected by the AIBL study group and AIBL study
150  methodology has been reported previously by Ellis et al. (2009). For each dataset, approval from
151 the local ethics board and informed consent of the participants were obtained. Founded in 2013,
152 the main objective of CIMA-Q is to build a cohort of participants characterized in terms of
153  cognition, neuroimaging and clinical outcomes in order to acquire biological samples allowing (1)
154  toestablish early diagnoses of Alzheimer’s disease, (2) to provide a well characterized cohort and
155  (3) to identify new therapeutic targets. The principal investigator and director of CIMA-Q is Dr
156  Sylvie Belleville from the Centre de recherche de I'Institut universitaire de gériatrie de Montréal,
157  CIUSSS Centre-sud-de-I'lle-de-Montréal. CIMA-Q represent a common effort of several
158  researchers from Québec affiliated to Université Laval, Université McGill, Université de Montréal,
159 et Université de Sherbrooke. CIMA-Q recruited cognitively healthy participants, participants with

160  subjective cognitive impairment, mild cognitive impairment, or Alzheimer’s disease, between
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161  2013-2016. Volunteers were recruited from memory clinics, through advertisements posted in
162  the community and amongst participants from the NuAge population study.

163

164 Harmonization test sample

165  For the harmonization test, we used three datasets: 1) the complete CIMA-Q sample (n=208
166  participants; 286 MRIs), which was described earlier in the method section, 2) the
167  Comprehensive Assessment of Neurodegeneration and Dementia (COMPASS-ND; n=393) study
168  conducted by the Canadian Consortium on Neurodegeneration in Aging (CCNA), and the 3) the
169  SIMON dataset[19], comprised of images from single healthy volunteer scanned on the same
170  scanner as those used for CIMA-Q and COMPASS-ND. From COMPASS-ND, we used participants
171  that were either cognitively unimpaired participants (CU), with mild cognitive impairment (MClI),
172 and with probable Alzheimer’s disease (AD), for a total of 273 participants. While CIMA-Q and
173 COMPASS-ND were acquired at 18 different sites, we selected only data from scanners that had
174  at least three participants other than SIMON, which resulted in a total of 547 images (300 CU,
175 193 MCI, 54 AD) from 12 different scanners; each ranging from 7 to 145 participants. On those
176 12 scanners, SIMON was scanned 48 times and was aged between 42-46 years old during that
177  time.

178  Brain segmentation

179 Brain segmentation was conducted using FreeSurfer version 6.0, a widely used and freely

180  available automated processing pipeline that quantifies brain anatomy (http://freesurfer.net).

181  All raw T1-weighted images were processed using the "recon-all -all" FreeSurfer command with

182  the fully-automated directive parameters (no manual intervention or expert flag options) on the
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183  CBRAIN platform[50]. Normative data were computed for volumes, neocortical thicknesses and
184  white and pial surfaces areas for all atlases comprised in FreeSurfer 6.0: the default subcortical
185  atlas[14] (aseg.stats), the Desikan-Killiany atlas[9] (DK, aparc.stats file), the Desikan-Killiany-
186  Tourville atlas[10] (DKT, aparc.DKT.stats file), the Destrieux atlas[13] (aparc.a2009s.stats file), the
187  ex vivo atlas,[51] including entorhinal and perirhinal cortices, the brainstem sub-regions
188  atlas[52], the Brodmann area maps which includes somatosensory areas, several motor and
189  visual areas, as well as the hippocampal subfields atlas[53].

190 The technical details of FreeSurfer's procedures are described in prior publications.
191  Briefly, this processing includes motion correction, removal of non-brain tissue using a hybrid
192  watershed/surface deformation procedure, automated Talairach transformation, intensity
193  normalization, tessellation of the gray matter white matter boundary, automated topology
194  correction, and surface deformation following intensity gradients to optimally place the
195  gray/white and gray/cerebrospinal fluid borders at the location where the greatest shift in
196 intensity defines the transition to the other tissue class. Once the cortical models are complete,
197  a number of deformable procedures can be performed for further data processing and analysis
198  including surface inflation, registration to a spherical atlas which is based on individual cortical
199  folding patterns to match cortical geometry across subjects and parcellation of the cerebral
200  cortex into units with respect to gyral and sulcal structure. This method uses both intensity and
201  continuity information from the entire three-dimensional MRI volume in segmentation and
202  deformation procedures to produce representations of cortical thickness, calculated as the
203  closest distance from the gray/white boundary to the gray/cerebrospinal fluid boundary at each

204  vertex on the tessellated surface. The maps are created using spatial intensity gradients across
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205  tissue classes and are therefore not simply reliant on absolute signal intensity. Procedures for the
206  measurement of cortical thickness have been validated against histological analysis [54] and
207  manual measurements[55, 56]. Estimated intracranial volume[57] was taken from the aseg.stats
208  FreeSurfer output file. We added the total ventricle volume (labeled as “ventricles”) using the
209  sum of all ventricles and the corpus callosum (labeled as “cc”) using the sum of all corpus
210  callosum segments.

211  Quality control and sample selection

212 A flow chart detailing the final analysis sample is shown in Fig 1. From an initial pool of 7,399
213 MRIs, nine images failed the FreeSurfer pipeline. Following processing, each of the remaining
214 7,390 brain segmentations was visually inspected through at least 20 evenly distributed coronal
215  sections by O.P. (see Supplementary materials for quality control examples). After quality control,
216  445images (6.0%) were removed from further analyses due to segmentation problems, the main
217  reason being that parts of the brain were not completely segmented (e.g. temporal and occipital
218  poles. During visual inspection, 26 brains were found to have signal alterations or clear significant
219  brainlesions and were excluded. Quality control image examples are displayed as Supplementary
220  materials (setup, segmentation errors and abnormalities). In addition to visual inspection, we
221  excluded participants if at least one of the 1,344 brain region measures was missing (n=10). In
222 fine, the analysis sample was composed of 6,909 individual MRiIs.

223

224 Fig 1. Flow chart of the images.

225  Training, validation and test sample
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226 We randomly selected 10% of the whole sample (n=691) to test the models in an
227  independent sample (age: 55.1 £20.1, range 18-100; 58.5% female). This test sample was not
228  used to build the models predicting normative values. The remaining 90% was used as training
229  sample (age: 54.9 £20.0, range 18-100; 56.7% female) to build and validate the models. Leave-
230  10%-out cross-validation was used to validate the model in the training sample.

231  Clinical samples evaluations

232 We evaluated the usefulness of normative values using clinical samples of individuals with
233 schizophrenia (n=72; Age: 38.2 £13.9, range 18-65; 19% female) from the COBRE dataset, as well
234 as participants with clinically ascertained Alzheimer's disease (n=157 Age: 74.8 +8.1, range 55-
235  90; 43% female) from the baseline ADNI-2 dataset.

236  Image quality predictors

237  Image quality predictors included voxel size (resolution) and two measures of image quality,
238  one global, and the second local. The first was the total number of defect holes over the whole
239  cortex, i.e. topological errors in the initial cortical surface reconstructions. The total number
240  correlated well with visual inspection of the whole image by trained raters [11]. This measure
241  was extracted from the aseg.stats FreeSurfer output file. The second measure was contrast-to-
242 noise ratio (CNR) assessed in each region (R) and therefore used as a regional measure of image
243 quality. For each region, CNR was calculated after FreeSurfer preprocessing using gray matter
244 (GM) and cerebral white matter (WM) intensities from the brain.mgz file and the following

245  formula:

(GMi mean — WM mean )?
(GMg variance + WM variance)

246 CNRy =

247
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248  Outliers removal

249 For each brain measure, to exclude potential abnormalities, outliers with Z scores lower than -
250  3.29 and higher than 3.29 (p < .001) were removed before computing the statistical model. This
251 procedure allowed the identification of brain regions that were either very small or very large
252  when compared to the rest of the sample and thus, might not be good representative of
253 normality. For volumes and surfaces, this procedure was applied in proportion to eTIV (i.e.
254  regional measure/eTIV). Since cortical thickness is not affected by eTIV, the outliers screening
255  procedure was applied directly on the raw values. The number of outliers was below 1% for all
256  regions (mean £sd of all atlases: 0.45% +0.10%) except the right long insular gyrus and central
257  sulcus of the insula white surface (1.1%) and pericallosal sulcus volume (1.1%) of the Destrieux
258  atlas. Detailed results can be found in the supplementary material as csv files.

259  Regression models and statistical analyses

260  For each brain region measure, the normative values were produced following two linear
261 regression models. First, a Model 1 was conducted with image quality predictors (voxel size,
262  surface defect holes and CNR) and eTIV. Then, Model 2 with age and sex was applied on the
263  residuals of Model 1. In order to respect the normality of the residuals, surface holes and all
264  ventricles variables, except the 4th (3", lateral, inferior lateral and the sum of all ventricles), were
265  log transformed. For ventricles and white matter regions, CNR of the total brain gray matter was
266  used while for the brainstem subregions and hippocampal subfields, CNR from the whole
267  brainstem and whole hippocampus were used, respectively. Quadratic and cubic terms for age,
268  CNR and surface holes were included. Since voxel size has a relatively limited variability (mean:

269 1.02, std: 0.24, range: 0.18-2.2), we chose not to include quadratic and cubic terms for this
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270  variable. We also included all interactions except for voxel size (Model 1: eTIV X surface holes,
271 eTIV x CNR, CNR X surface holes ; Model 2: age X sex). Feature selection was conducted with a
272  10-fold cross-validation[58] backward elimination procedure, retaining the model with the
273  subset of predictors that produced the lowest predicted residual sum of squares. For each

274  selected final model, the fit of the data was assessed using R? coefficient of determination:

i —f)?
Yi(Y; — ¥)?

275 RZ=1
276  where the numerator is the residual sum of squares (Y is the value of the variable to be predicted
277  andfis the predicted value), the denominator is the total sum of squares (¥ is the mean) and i is
278  the index over subjects. To assess the unique contribution of each predictor, we used the Img
279  metricin the R package[59] relaimpo[60]. This metric is a R? partitioned by averaging sequential
280  sums of squares over all orderings of the predictors. Brain figures were made using the ggseg R
281 package[61]. In order to compare the effects of each predictor, the sum of all relaimpo R? terms
282  related to each variable was computed (i.e. quadratic, cubic, and half of interaction values). For
283  example, the variance explained by age includes the R? sum for age, age?, age3, age X sex /2.
284  When a term was not included within a model, its R? value was given 0.

285 The models were verified by examining the difference between R? of the training sample
286  and R? of the independent test sample of healthy controls. It was expected that the test R would
287  be within 10% from the value of the training R%. Then, patterns of normality deviations were

288  examined with the Z score effect sizes using the validation samples of healthy individuals and of

289 individuals with AD and SZ.

~>

290 7. = Yo~
P~ RMSE


https://doi.org/10.1101/2021.01.25.428063
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.01.25.428063; this version posted February 23, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

15

291  Zscore effect sizes (Zop) were obtained by subtracting the Predicted value (Y) from the Observed
292 value (Y,) divided by the root mean square error (RMSE) of the model predicting the value [62].
293  Harmonization test

294 While the goal of NOMIS differs, we compared its results with twoharmonization procedures,
295  NeuroCombat[16] and NeuroHarmonize[17] on the aseg volume and DKT cortical volume and
296  thickness measures (matrix of 146 brain measures) from the harmonization dataset (SIMON,
297  CIMA-Q and COMPASS-ND). We used the scanner identification number as “batch” (i.e. site)
298  variable. For NeuroCombat, we also specified age and eTIV as covariates to preserve their effects.
299  Tocompare harmonization procedures with NOMIS, after harmonization, eTIV was regressed out
300  from the brain volume measures. Finally, to compare them on the same scale for statistical
301 analyses on the variance and figure presentations, all measures were transformed into T and Z
302  scores, respectively (see Supplementary Fig 2 as example).

303  We had three expectations following harmonization procedures. Compared to raw data, these
304  procedures should:

305 e Reduce the variance of the measures from the 48 SIMON MRIs

306 o Maintain or increase effect sizes for hippocampi volumes and entorhinal thicknesses
307 between CU, MCl, and AD groups

308 o Maintain or increase effect sizes for the relationships between hippocampi volumes and
309 entorhinal thicknesses and episodic memory as measured by the delayed recall performance of
310 the Rey Auditory Verbal Learning Test (RAVLT)[63] and Logical Memory Test[64].

311  The change in variance was assess using the quartile coefficient of dispersion (QCD):

Q3 — 01

12 —_—
3 Q3 +0Q1
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313  where Q1 and Q3 are the first and third quartile, respectively, and the Levene’s test for
314  homogeneity of variance:

315 Z; = |yi._yi|
316 wherejandj are the groups and the individuals, respectively. The Levene's test is equivalent to
317 aone-way between-groups analysis of variance (ANOVA) with the dependent variable being the
318  absolute value of the difference between a score (Y) and the mean of the group (Y). For each
319  harmonization procedure, a one-way ANOVA on the QCD of the 146 measures before (raw) and
320  after harmonization was conducted and a Levene’s test on each of the 146 measures was

321 conducted.

322  All statistics were conducted using python’s module Scikit-learn[65] and Statsmodel[66].

323

324 Results

325  Asexamples, figures in this report display results for subcortical volumes and DKT neocortical
326  atlases volumes and thicknesses. Full detailed results for all atlases are provided as

327  supplementary information as csv files.

328 Model 1 -Image quality and eTIV

329  The R%for model 1 ranged between 0.003 to 0.75, with a mean +sd of 0.23 + 0.15. The highest
330  R?were observed in brain measures with the largest volumes and surface areas (i.e. left and
331  right white surface areas 0.82 and 0.81, and left and right pial surface areas 0.79 and 0.78, brain
332  segmentation volume 0.75, supratentorial volume 0.75). Fig 2 shows the R? portion due to

333  image quality and eTIV for neocortical volumes and thicknesses of the DKT atlas parcellation, as
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334  well as subcortical volumes. Image quality had a substantial impact with a mean +sd of 0.08

335  40.09, 0.14 +0.05 and 0.13 +0.05, for subcortical, neocortical volume and thickness values,

336  respectively. A high amount of variance due to eTIV was observed in subcortical and neocortical
337  volumes 0.22 £0.12 and 0.26 +0.08, respectively while it had nearly impact on cortical thickness
338  measures 0.01 +0.01.

339 Model 2 - Age and sex

340 The R? for model 2 ranged between 0.02 to 0.51, with a mean +sd of 0.23 +0.14, 0.08
341  +0.04and 0.11 +£0.07, for subcortical volumes, neocortical volumes and thicknesses, respectively.
342 One should note that the R? in model 2 cannot be compared to that of model 1 since the total
343  variance in model 2 is the remaining variance after model 1 (residuals). The highest R? were
344  observed in the largest regions and ventricles (i.e. all ventricles volume 0.51, brain segmentation
345  volume 0.49, left and right lateral ventricles 0.49 and 0.49, supratentorial volumes 0.46). The
346  lowest age and sex effects were generally on pial and white surface areas (0.00 £0.10 and 0.03
347  +0.02). Fig 3 illustrates the R? for age and sex. As shown, sex did not explain much variance while
348  age had a very different impact depending on the part of the brain with a higher impact in
349  subcortical volumes and associative cortices, both in volume and thickness.

350  Models validation

351 Model 1 and Model 2 were examined in the independent test sample and nearly all
352  models showed equivalent or higher R? on the test set than on the training set (the difference
353  test minus training for all atlases: Model 1-0.026 £0.027, Model 2 -0.005 +0.018; Fig. 4). In model
354 1, the worse test differences were in the Destrieux atlas where 5 measures out of 592 were below

355  -10%: pial surface areas of the left superior temporal sulcus (-0.13) and right fronto-marginal
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356  gyrus (of Wernicke) and sulcus (-0.12), the left subcallosal area, subcallosal gyrus volume (-0.10),
357  the white surface area of the left lateral aspect of the superior temporal gyrus (0.10) and the
358  right fronto-marginal gyrus (of Wernicke) and sulcus volume (-0.10). In Model 2, all measures had
359  R2differences below 10%, the worse being the left and right putamen volumes (-0.09 and -0.08).
360  One should note that the models for these measures appear to be slightly less generalizable than
361  the others.

362 Fig 5 and Fig 6 show the mean and std Z scores adjusted for age and sex when the models
363 are applied on the independent young and older healthy controls samples. As expected, the
364 mean Z scores were very close to 0 while the std were very close to 1 (mean #std, Young,
365  subcortical regions: -0.06 £1.04, cortical volume: 0.04 £1.13, cortical thickness: 0.04 £0.99; Older,
366  subcortical regions: 0.02 £1.04, cortical volume: 0.01 £0.96, cortical thickness: 0.01 +1.02).

367 Using the independent healthy control test sample, Fig 7 and Fig 8 display examples of
368  how the normative values remove the different effects on the left cortical thickness and volumes.
369

370  Fig 2. R? from Model 1 for cortical volumes and thicknesses from the DKT atlas and subcortical
371  volumes. Top: Variance due to image quality predictors. Bottom: Variance due to estimated
372  intra-cranial volume (eTIV).

373  Fig 3. R? from Model 2 for neocortical volumes and thicknesses from the DKT atlas and

374  subcortical volumes. Top: Variance due to age. Bottom: Variance due to sex. One should note
375  that the R? in model 2 cannot be compared to that of model 1 since the total variance in

376  model 2 is the remaining variance after model 1 (residuals).
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377  Fig 4. Difference of R? between training and test samples. Top: Model 1 for Image quality and
378  eTIV. Bottom: Model 2 for Age and sex.

379  Fig 5. Mean normative Z scores on cortical volumes and thicknesses from the DKT atlas and
380  subcortical volumes of young (18-34 years old) and older (65-92 years old) healthy

381  participants. Note that the scaling chosen was to be comparable to that of Fig 9.

382  Fig 6. Variance of the normative Z scores on cortical volumes and thicknesses from the DKT
383 atlas and subcortical volumes of young (18-34 years old) and older (65-92 years old) healthy
384  participants. Std: standard deviation. The Std is expected to be near 1.

385  Fig 7. Example of the four NOMIS Z scores alternatives on the left cortical thickness values of
386  the test sample. Note that all four alternative are adjusted for image quality.

387  Fig 8. Examples of the impact of contrast-to-noise ratio (CNR) and surface holes on the raw
388 and normed data of the test sample. Top: CNR on Left cortical thickness. Bottom: Surface

389 holes on left cortical volume. Left: Raw data. Right: Normed data.

390

391  Clinical validation

392 We validated the normative values in individuals with clinically ascertained Alzheimer's
393  disease and schizophrenia, which showed expected patterns of mean deviations from otherwise
394  cognitively/behaviorally healthy individuals (Fig 9). In the Alzheimer’s disease group, the mean
395  deviations from normality covered the frontal, temporal and parietal cortices with enlarged
396  ventricles, but were especially more pronounced in the hippocampus and entorhinal cortex. In
397  schizophrenia, atrophy was widespread to nearly all of the cortex. Supplementary Fig 3 displays

398  the variance of the scores in those two groups.
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399

400  Fig 9. Mean normative Z scores on cortical volumes and thicknesses from the DKT atlas and
401  subcortical volumes of participants with Alzheimer’s disease and with schizophrenia.

402

403  Comparison of NOMIS and harmonization procedures

404 Fig 10 shows the SIMON subcortical and left cortical morphometric values (see
405  Supplementary Fig 4 for right cortical values) before (raw) and after harmonization procedures
406  and NOMIS normalization. Qualitatively, the variance of all measures was high before and after
407  harmonization, as well as after NOMIS normalization. Fig 11 displays the QCD for subcortical and
408  left cortical morphometric measures (see Supplementary Fig 5 for right cortical QCD values). QCD
409  was highly different from a measure to another and globally harmonization procedures did not
410  significantly lower QCD (NeuroCombat F: 1.96, p=.16; NeuroHarmonize F: 2.34, p=.13). On the
411  other hand, NOMIS significantly reduced the QCD (F: 4.14, p = .04). Levene’s tests also indicated
412  that the harmonization procedures and NOMIS values had equivalent variance than that of the
413  raw values, even without correction for multiple comparison (p values ranging from .26 to .99).
414  Fig 12 shows two examples of measures (left hippocampal volume and left entorhinal thickness)
415 across the 12 different sites and reveals that, before and after harmonization or NOMIS, there is
416  ahigh variability between sites, but also within some sites.

417 Both harmonization procedures systematically diminished all effect sizes between CU and
418 MCI (range: -0.01 to -0.11) and CU and AD (range: -0.09 to -0.20) groups. After NOMIS
419  normalization, the effects sizes increased for hippocampal volumes (CU-MCI left: +0.14, right:

420  +0.14; CU-AD: left: +0.12, right: +0.11) while it decreased for entorhinal volume (CU-MCI left: -
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421  0.01, right: -0.02; CU-AD: left: -0.08, right: -0.09) and thickness (CU-MCI left: -0.12, right: -0.16;
422  CU-AD: left: -0.21, right: -0.28). These results are shown in Fig 13 (left hemisphere) and
423  Supplementary Fig 6 (right hemisphere). Finally, we observed (Fig. 14) that both harmonization
424  procedures systematically lowered the magnitude of the correlations between the six
425  morphometric values and episodic memory scores. NOMIS on the other hand increased the
426  correlations with hippocampal volumes, slightly decreased the ones with entorhinal cortices and
427  performed similarly to harmonization procedures for entorhinal cortices thicknesses.

428

429  Fig 10. Boxplots showing the SIMON subcortical volumes and left neocortical volumes and
430  thicknesses before (Raw) and after harmonization procedures (NeuroCombat and
431  NeuroHarmonize) and NOMIS. Boxes show the first and third quartiles with the line denoting
432  the median. Whiskers represent the lowest/highest datum still within 1.5 interquartile range
433  (1QR) of the lower/higher quartile. Right neocortical volumes and thicknesses are shown in
434  Supplementary Fig 4.

435  Fig 11. Quartile coefficient of dispersion of the SIMON subcortical volumes and left neocortical
436  volumes and thicknesses before (Raw) and after harmonization procedures (NeuroCombat and
437  NeuroHarmonize) and NOMIS. Values for the right neocortical volumes and thicknesses are
438  shown in Supplementary Fig 5.

439  Fig 12. Boxplots showing the SIMON left hippocampal volumes and right entorhinal thicknesses
440  before (Raw) and after harmonization procedures (NeuroCombat and NeuroHarmonize) and

441  NOMIS for the 12 different sites. Boxes show the first and third quartiles with the line denoting
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442  the median. Whiskers represent the lowest/highest datum still within 1.5 interquartile range
443  (1QR) of the lower/higher quartile.

444  Fig 13. Boxplots showing the effect sizes (Cohen’s d) between cognitively unimpaired (CU), mild
445  cognitive impairment (MCI) and Alzheimer’s disease (AD) groups for the left hippocampal
446  volume and left entorhinal volume and thickness before (Raw) and after harmonization
447  procedures (NeuroCombat and NeuroHarmonize) and NOMIS. Boxes show the first and third
448  quartiles with the line denoting the median. Whiskers represent the lowest/highest datum still
449  within 1.5 interquartile range (IQR) of the lower/higher quartile. Values for the right
450  hemisphere are shown in Supplementary Fig 6.

451  Fig14. Correlations between episodic memory score and morphometric measures before (Raw)
452  and after harmonization procedures (NeuroCombat and NeuroHarmonize) and NOMIS.

453

454 Discussion

455 Recent initiatives for morphometric normative data includes percentile fitting curves on
456  subcortical regions [67], deep learning-based segmentation of subcortical regions and cortical
457  lobes for east Asians [68], and yearly percentage of brain volume changes [69]. To our knowledge,
458  there is no other automated calculator for normative morphometric values available to
459  researchers except the one from our previous work using FreeSurfer 5.3

460  (https://github.com/medicslab/mNormsFS53). These prior normative data from our group[5-7]

461  were relatively limited in terms of atlases and sample size. With nearly seven thousand
462  participants and 1,344 brain measures, NOMIS offers a comprehensive neuromorphometric

463  normative tool based on a very large sample. In addition, an innovation of NOMIS is its flexibility.
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464  Depending onthe user need, it has four versions of Z-score adjusted on different sets of variables.
465  Allversions include head size and image quality, but can also take into account age and/or sex or
466  without age and sex. Therefore, research groups looking for traditional norms, as well as others
467  wanting to lower the variance due to head size and image quality while preserving age and/or
468  sex variances can take advantage of NOMIS. Another strength of NOMIS is that the normative
469  values were created on a various amalgam of cognitively healthy participants from multiple
470  countries, with data acquired from a wide variety of MRI scanners and image quality, maximizing
471  its generalizability. A novelty to prior existing normative data, is the addition of the image quality
472  impact on the morphometry measures. Figures 2 shows that its effect is not trivial on cortical
473  volume and thickness. As shown by our results, our new normative data should help to remove
474  some undesirable variance due to scanners and image quality. Furthermore, the results from
475  NOMIIS also show that in independent samples, the Z scores behaved as expected, that is with a
476  mean of 0 and standard deviation of 1 in healthy individuals and with marked mean deviations
477  targeted to the medial temporal lobes in participants with AD and throughout the cortex in
478  participants with SZ.

479 Despite these strengths, users should keep in mind that before using NOMIS, it is
480  mandatory to verify FreeSurfer segmentations and that while it will remove parts of variance due
481 to head size and image quality, it won’t correct for segmentation errors or image artefacts.
482 Moreover, the normative sample, comprised essentially of research volunteers in academic-led
483  environments, was recruited using a non-probability sampling method and may not be
484  representative of the targeted population by the user.

485 Norms and multi-site data harmonization
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486 The main aim of the normative values is to quantify the deviation from normality of
487  measurements for a new individual (i.e. one who is not in the sample used to define normality).
488  Because the norms remove some variance due to image quality, they can also be a useful and
489  simple way of lowering the noise between scanners in multi-site studies. However, norms should
490 not be considered an optimal technique to remove variances in multi-site studies; other
491  strategies are meant to specifically tackle multi-site variance. Studies should use in fact a
492  combination of approaches, including harmonized procedures for data acquisition, normative
493  values such as the one proposed herein, and post-hoc correction.

494 A harmonized scanning procedure, such as the Canadian Dementia Imaging Protocol
495  (CDIP)[70], addresses variations due to parameter and sequence dissimilarities, including quality
496  control and assurance, for example through scanning at all sites of an object of known geometric
497  and contrast properties (i.e. a “phantom”) as well as human volunteers. Recent data from the
498  SIMON dataset [21], including non-harmonized and CDIP-harmonized scans, demonstrated how
499  using a harmonized protocol reduces variability across sites; however, some notable variance
500 remained[71, 72], (see also Figs 10-12). The idea of a harmonized protocol is however limited to
501  specificinitiatives due to the high amount of resources it requires to implement.

502 Post-hoc harmonization procedures on the other hand have been developed to pool data
503 from different sites in large studies. Various of procedures have been proposed [16-19, 73] and
504  aim to lower differences in morphometric data between sites by generally applying scaling
505  corrections based on differences in the morphometric data themselves. The scaling corrections
506  are applicable for the sites/scanners included in the analysis and not for future sites/scanners or

507  data. This makes such post-hoc correction analysis-specific and needs to be conducted each time
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508  some data are removed or added to an analysis. Such an approach can be very useful for large
509  multi-centric studies but is not applicable for generating normative values aiming to be applied
510  onfuture data. It is also vulnerable to selection bias since the scaling factors are not based on the
511  images or scanner characteristics, but on the difference of data between sites/scanners[18, 19].
512 Thus, distinct characteristics of the participants at a given site can affect the scaling factors and
513  post-hoc scaling factors should be used when the aim of a study is not vulnerable to sources of
514  variance between sites that are not related to image acquisition.

515 We compared NOMIS values to two post-hoc harmonization procedures, namely
516  NeuroCombat[16] and NeuroHarmonize[17] and while globally NOMIS slightly lowered the
517  variance of the values from the same individuals originating from 12 different scanners, these
518  two procedures were worse than NOMIS and did not significantly reduce true variance induced
519 by different scanners. We also verified effect sizes of well-established effects in MCl and AD
520  participants and once again the harmonization procedures were either similar or worse than
521  NOMIS. NeuroCombat and NeuroHarmonize systematically lowered the morphometric
522  differences between CU, MCl and AD participants while NOMIS lowered the entorhinal volume
523  and thickness effect sizes and increased the hippocampal volume differences between these
524  groups. These results suggest that caution should be exercised when using post-hoc
525  harmonization; the use of a calibration technique (e.g. repeated scans of human volunteers as
526  part of the study) is strongly encouraged.

527  Using NOMIS

528 The NOMIS tool is a user-friendly automated script in Python, freely accessible

529  (https://github.com/medicslab/NOMIS). Users only need to pre-process their images with
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FreeSurfer 6.0 using automated directive parameters, then specify the individuals’ characteristics
to the script, which will automatically compute Z-scores based on the FreeSurfer output. One can
choose the version of the Z-score by including in the csv file only the variables that need to be
adjusted and the script automatically selects the appropriate version of predictors. The predictive
models and all statistical parameters are provided along with the script. We anticipate that this

tool will be of broad interest to the neuroscientific community.
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563  Lilly and Company; Eurolmmun; F. Hoffmann-La Roche Ltd and its affiliated company

564  Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.;Janssen Alzheimer Immunotherapy

565 Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development
566  LLC.; Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research;
567  Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging;
568  Servier; Takeda Pharmaceutical Company; and Transition Therapeutics. The Canadian Institutes
569  of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector
570  contributions are facilitated by the Foundation for the National Institutes of Health

571 (www.fnih.org). The grantee organization is the Northern California Institute for Research and
572  Education, and the study is coordinated by the Alzheimer's Therapeutic Research Institute at
573  the University of Southern California. ADNI data are disseminated by the Laboratory for Neuro
574  Imaging at the University of Southern California.

575  http://adni.loni.usc.edu/

576
577  Australian Imaging Biomarkers and Lifestyle flagship study of ageing (AIBL): Part of the data
578  used in this study was obtained from the Australian Imaging Biomarkers and Lifestyle flagship

579  study of ageing (AIBL) funded by the Commonwealth Scientific and Industrial Research
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580  Organisation (CSIRO) which was made available at the ADNI database
581  (www.loni.usc.edu/ADNI). The AIBL researchers contributed data but did not participate in

582  analysis or writing of this report. AIBL researchers are listed at www.aibl.csiro.au

583

584  Berlin Mind and Brain (Margulies, Villringer) CoRR sample (BMB). Zuo, X.N., et al. (2014). An
585  open science resource for establishing reliability and reproducibility in functional connectomics.
586  Scientific data, 1, 140049. doi: 10.1038/sdata.2014.49.

587  http://fcon 1000.projects.nitrc.org/indi/CoRR/html/bmb 1.html

588

589  Cambridge Centre for Ageing and Neuroscience (CamCAN): CamCAN funding was provided by the
590 UK Biotechnology and Biological Sciences Research Council (grant number BB/H008217/1),
591 together with support from the UK Medical Research Council and University of Cambridge, UK.

592  http://www.mrc-cbu.cam.ac.uk/datasets/camcan/

593

594  Center of Biomedical Research Excellence (COBRE): The imaging data and phenotypic

595  information was collected and shared by the Mind Research Network and the University of New
596  Mexico funded by a National Institute of Health COBRE: 1P20RR021938-01A2.

597  http://fcon 1000.projects.nitrc.org/indi/retro/cobre.html

598
599  Cleveland Clinic (Cleveland CCF): Funded by the National Multiple Sclerosis Society.

600  http://fcon 1000.projects.nitrc.org/indi/retro/ClevelandCCF.html

601
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602  Comprehensive Assessment of Neurodegeneration and Dementia (COMPASS-ND) study: The
603  COMPASS-ND study is conducted by the Canadian Consortium on Neurodegeneration in Aging

604  (CCNA; www.ccna-ccnv.ca). The CCNA is supported by a grant from the Canadian Institutes of

605  Health Research (CIHR) with funding from several partners.

606

607  Consortium for the Early ldentification of Alzheimer's Disease (CIMA-Q): Part of the data used in
608  this article were obtained from the Consortium pour I'identification précoce de la maladie

609  Alzheimer - Québec (CIMA-Q). As such, the investigators within the CIMA-Q contributed to the
610 design, the implementation, the acquisition of clinical, cognitive, and neuroimaging data and
611 biological samples. A list of the CIMA-Q investigators is available on cima-g.ca. CIMA-Q was
612  fundedin 2013 with a $2,500,000 grant from the Fonds d’Innovation Pfizer - Fond de Recherche
613  Québec—Santé sur la maladie d’Alzheimer et les maladies apparentées.

614

615  Dallas Lifespan Brain Study (DLBS): This study is supported by the Center for Vital Longevity, the
616 University of Texas at Dallas, the University of Texas Southwestern Medical Center, the National
617 Institutes of Health and Aging, AVID Radiopharmaceuticals, the Aging Mind Foundation and the

618  Alzheimer’s Association. http://fcon 1000.projects.nitrc.org/indi/retro/dlbs.html

619
620  FIND lab sample. Funded by the Dana Foundation; John Douglas French Alzheimer's
621 Foundation; National Institutes of Health (AT005733, HD059205,HD057610, NS073498,

622  NS058899). http://fcon 1000.projects.nitrc.org/indi/retro/find stanford.html

623


https://doi.org/10.1101/2021.01.25.428063
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.01.25.428063; this version posted February 23, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

31

624  Functional Biomedical Informatics Research Network (FBIRN): Provided by the Biomedical
625 Informatics Research Network under the following support: U24-RR021992, by the National
626  Center for Research Resources at the National Institutes of Health, U.S.A.

627  http://www.birncommunity.org/resources/data/

628

629  Lifespan Human Connectome Project in Aging (HCP-Aging): HCP-Aging data were obtained

630  from the National Institute of Mental Health (NIMH) Data Archive (NDA). NDA is a collaborative
631 informatics system created by the National Institutes of Health to provide a national resource
632  tosupport and accelerate research in mental health. Dataset identifier:

633  http://dx.doi.org/10.15154/1520138. This manuscript reflects the views of the authors and may
634  not reflect the opinions or views of the NIH or of the Submitters submitting original data to

635  NDA. http://nda.nih.gov

636

637  International Consortium for Brain Mapping (ICBM). The ICBM (Principal Investigator: John
638  Mazziotta, MD, PhD) was funded was provided by the National Institute of Biomedical Imaging
639  and BioEngineering. ICBM is the result of efforts of co-investigators from UCLA, Montreal

640  Neurologic Institute, University of Texas at San Antonio, and the Institute of Medicine,

641  Juelich/Heinrich Heine University - Germany." https://ida.loni.usc.edu/login.jsp?project=ICBM

642
643  Information eXtraction from Images (IXI): Data collected as part of the project

644  EPSRC GR/S21533/02 - http://brain-development.org/ixi-dataset/

645
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646  F.M. Kirby Research Center neuroimaging reproducibility data (KIRBY-21). Landman, B.A. et al.
647  “Multi-Parametric Neuroimaging Reproducibility: A 3T Resource Study”, Neurolmage. (2010)
648  NIHMS/PMC:252138 d0i:10.1016/j.neuroimage.2010.11.047

649  https://www.nitrc.org/projects/multimodal

650

651 Minimal Interval Resonance Imaging in Alzheimer's Disease (MIRIAD): The MIRIAD investigators
652  did not participate in analysis or writing of this report. The MIRIAD dataset is made available
653  through the support of the UK Alzheimer's Society (RF116). The original data collection was
654  funded through an unrestricted educational grant from GlaxoSmithKline (6GKC).

655 http://miriad.drc.ion.ucl.ac.uk

656

657  National Alzheimer's Coordinating Center (NACC): The NACC database is funded by NIA/NIH
658  Grant U01 AG016976. NACC data are contributed by the NIA-funded ADCs: P30 AG019610 (PI
659  Eric Reiman, MD), P30 AG013846 (PI Neil Kowall, MD), P30 AG062428-01 (Pl James Leverenz,
660  MD) P50 AG008702 (Pl Scott Small, MD), P50 AG025688 (Pl Allan Levey, MD, PhD), P50

661  AGO047266 (Pl Todd Golde, MD, PhD), P30 AG010133 (Pl Andrew Saykin, PsyD), P50 AG005146
662 (Pl Marilyn Albert, PhD), P30 AG062421-01 (PI Bradley Hyman, MD, PhD), P30 AG062422-01 (PI
663  Ronald Petersen, MD, PhD), P50 AG005138 (Pl Mary Sano, PhD), P30 AG008051 (Pl Thomas
664  Wisniewski, MD), P30 AG013854 (Pl Robert Vassar, PhD), P30 AG0O08017 (Pl Jeffrey Kaye, MD),
665 P30 AG010161 (Pl David Bennett, MD), P50 AG047366 (PI Victor Henderson, MD, MS), P30
666  AG010129 (PI Charles DeCarli, MD), P50 AG016573 (PI Frank LaFerla, PhD), P30 AG062429-01(PI

667 James Brewer, MD, PhD), P50 AG023501 (P! Bruce Miller, MD), P30 AG035982 (Pl Russell
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668  Swerdlow, MD), P30 AG028383 (PI Linda Van Eldik, PhD), P30 AG053760 (Pl Henry Paulson, MD,
669  PhD), P30 AG010124 (Pl John Trojanowski, MD, PhD), P50 AG005133 (Pl Oscar Lopez, MD), P50
670  AG005142 (Pl Helena Chui, MD), P30 AG012300 (Pl Roger Rosenberg, MD), P30 AG049638 (PI
671  Suzanne Craft, PhD), P50 AG005136 (Pl Thomas Grabowski, MD), P30 AG062715-01 (Pl Sanjay
672  Asthana, MD, FRCP), P50 AG005681 (Pl John Morris, MD), P50 AG047270 (Pl Stephen

673  Strittmatter, MD, PhD). https://www.alz.washington.edu/

674

675  National Database for Autism Research (NDAR): Data were obtained from the National Institute
676  of Mental Health (NIMH) Data Archive (NDA). NDA is a collaborative informatics system created
677 by the National Institutes of Health to provide a national resource to support and accelerate
678  research in mental health. Dataset identifier: http://dx.doi.org/10.15154/1520138. This

679  manuscript reflects the views of the authors and may not reflect the opinions or views of the

680  NIH or of the Submitters submitting original data to NDA. http://nda.nih.gov

681

682  Nathan Kline Institute Rockland (NKI-R) sample (NKI-RS) and Enhanced Sample (NKI-RES):

683  Principal support for the NKI-RES project is provided by the NIMH BRAINS RO1IMH094639-01.
684  Funding for key personnel also provided in part by the New York State Office of Mental Health
685  and Research Foundation for Mental Hygiene. Funding for the decompression and

686  augmentation of administrative and phenotypic protocols provided by a grant from the Child
687  Mind Institute (1FDN2012-1). Additional personnel support provided by the Center for the
688  Developing Brain at the Child Mind Institute, as well as NIMH RO1MH081218, RO1MH083246,

689 and R21MH084126. Project support also provided by the NKI Center for Advanced Brain
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690  Imaging (CABI), the Brain Research Foundation, the Stavros Niarchos Foundation and the NIH

691 P50 MH086385-S1 (NKI-RS ). http://fcon 1000.projects.nitrc.org/indi/pro/nki.html

692  http://fcon 1000.projects.nitrc.org/indi/enhanced/

693
694  Open access series of imaging studies (OASIS): The OASIS project was funded by grants P50
695 AG05681, P01 AG03991, R0O1 AG021910, P50 MH071616, U24 RR021382, and R01 MH56584.

696  http://www.o0asis-brains.org/

697

698  POWER: This database was supported by NIH R21NS061144 RO1NS32979 RO1HD057076

699  U54MH091657 K23DC006638 P50 MH71616 P60 DK020579-31, McDonnell Foundation

700  Collaborative Action Award, NSF IGERT DGE-0548890, Simon's Foundation Autism Research
701 Initiative grant, Burroughs Wellcome Fund, Charles A. Dana Foundation, Brooks Family Fund,
702  Tourette Syndrome Association, Barnes-Jewish Hospital Foundation, McDonnell Center for
703 Systems Neuroscience, Alvin J. Siteman Cancer Center, American Hearing Research Foundation
704  grant, Diabetes Research and Training Center at Washington University grant.

705  http://fcon 1000.projects.nitrc.org/indi/retro/Power2012.html

706

707  Parkinson’s Progression Markers Initiative (PPMI): PPMI — a public-private partnership —is
708  funded by the Michael J. Fox Foundation for Parkinson’s Research and funding partners,

709  including Abbvie, Allergan, Amathus, Avid Radiopharmaceuticals, Biogen ldec, BioLegend,
710  Bristol-Myers, Celgene, Cenali, Covance, GE Healthcare, Genentech, GlaxoSmithKline, Glolub

711 Capital, Handl Therapeutics, Insitro, Janssen Neuroscience, Eli Lilly and Company, Lundbeck,
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712 Merck, Meso Scale Discovery, Neurocrine, Pfizer, Piramal, Prevail, Roche, Sanofi Genzyme,

713 Servier, Takeda, Teva, UCB, Verily, and Voyager Therapeutics. See http://www.ppmi-info.org for

714  further details.

715

716  Southwest University Adult Lifespan Dataset (SALD): SALD was supported by the National

717  Natural Science Foundation of China (31470981; 31571137; 31500885), National Outstanding
718  young people plan, the Program for the Top Young Talents by Chongging, the Fundamental

719  Research Funds for the Central Universities (SWU1509383,SWU1509451,SWU1609177), Natural
720  Science Foundation of Chongqing (cstc2015jcyjA10106), Fok Ying Tung Education Foundation
721 (151023), General Financial Grant from the China Postdoctoral Science Foundation

722 (2015M572423, 2015M580767), Special Funds from the Chongqing Postdoctoral Science

723  Foundation (Xm2015037, Xm2016044), Key research for Humanities and social sciences of

724 Ministry of Education (14JJD880009). http://fcon 1000.projects.nitrc.org/indi/retro/sald.html

725

726  University of Wisconsin, Madison (Birn, Prabhakaran, Meyerand) CoRR sample (UWM): Zuo,
727  X.N., et al. (2014). An open science resource for establishing reliability and reproducibility in
728  functional connectomics. Scientific data, 1, 140049. doi: 10.1038/sdata.2014.49

729  http://fcon 1000.projects.nitrc.org/indi/CoRR/html/uwm 1.html

730
731  Wayne State EF Dataset: This dataset was supported by National Institute on Aging grants RO1-
732 AG011230, R37-AG011230, R03-AG024630 to Naftali Raz, Ph.D.

733 http://fcon 1000.projects.nitrc.org/indi/retro/wayne EF.html
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734

735  Yale Low-Resolution Controls Dataset: Scheinost D, Tokoglu F, Shen X, Finn ES, Noble S,
736  Papademetris X, Constable RT. Fluctuations in Global Brain Activity Are Associated With
737  Changes in Whole-Brain Connectivity of Functional Networks. IEEE Trans Biomed Eng. 2016
738  Dec;63(12):2540-2549. Epub 2016 Aug 16.
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