

1 **Effective cell membrane tension is independent of polyacrylamide substrate**
2 **stiffness**

3 Eva Kreysing^{1,*}, Jeffrey Mc Hugh^{2,3,*}, Sarah K. Foster^{1,4}, Kurt Andresen⁵, Ryan D.
4 Greenhalgh¹, Eva K. Pillai¹, Andrea Dimitracopoulos¹, Ulrich F. Keyser^{2,#}, Kristian
5 Franze^{1,6,7,#}

6

7 1) Department of Physiology, Development and Neuroscience, University of
8 Cambridge, Cambridge CB2 3DY, UK

9 2) Biological and Soft Systems, Maxwell Centre, Cavendish Laboratory, Cambridge
10 CB3 0HE, UK

11 3) Neuroglial Interactions in Cerebral Physiopathology, CIRB, CNRS UMR
12 7241/INSERM U1050, Collège de France, Paris 75005, France

13 4) Systems Biology of Microbial Communities, Cluster of Excellence – CMFI,
14 University of Tübingen, 72076 Tübingen, Germany

15 5) Department of Physics, Gettysburg College, Gettysburg, PA 17325, United States
16 of America

17 6) Institute of Medical Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg,
18 91052 Erlangen, Germany.

19 7) Max-Planck-Zentrum für Physik und Medizin, 91054 Erlangen, Germany

20

21 * These authors contributed equally.

22 # To whom correspondence should be addressed: ufk20@cam.ac.uk or

23 kf284@cam.ac.uk

25 **Abstract**

26 Most animal cells are surrounded by a cell membrane and an underlying actomyosin cortex.
27 Both structures are linked, and they are under tension. In-plane membrane tension and cortical
28 tension both influence many cellular processes, including cell migration, division, and
29 endocytosis. However, while actomyosin tension is regulated by substrate stiffness, how
30 membrane tension responds to mechanical substrate properties is currently poorly understood.
31 Here, we probed the effective membrane tension of neurons and fibroblasts cultured on glass
32 and polyacrylamide substrates of varying stiffness using optical tweezers. In contrast to
33 actomyosin-based traction forces, both peak forces and steady state tether forces of cells
34 cultured on hydrogels were independent of substrate stiffness and did not change after
35 blocking myosin II activity using blebbistatin, indicating that tether and traction forces are not
36 directly linked. Peak forces in fibroblasts on hydrogels were about twice as high as those in
37 neurons, indicating stronger membrane-cortex adhesion in fibroblasts. Steady state tether
38 forces were generally higher in cells cultured on hydrogels than on glass, which we explain by a
39 mechanical model. Our results provide new insights into the complex regulation of effective
40 membrane tension and pave the way for a deeper understanding of the biological processes it
41 instructs.

42

43 **Introduction**

44 The cell membrane is supported by the underlying actomyosin cortex, and molecular linkers
45 form tight connections between the two layers. Osmotic pressure resulting from ion gradients
46 across the membrane and interactions of the membrane with the force-generating actomyosin
47 cytoskeleton contribute to a tension across the membrane. This membrane tension regulates
48 many cellular processes, such as cell migration, division, stem cell fate choice, and endo- and
49 exocytosis^{1–6}. Despite its biological importance^{7–9}, membrane tension is still difficult to
50 quantify. In-plane membrane tension is defined as the force per unit length acting tangentially
51 on the plasma membrane. Because of the membrane's coupling to cytoskeletal elements,
52 measurements of the 'effective' membrane tension usually contain contributions of the
53 underlying actomyosin cortex and other force-generating elements^{10,11}.

54 The actomyosin cortex is coupled to the extracellular environment through transmembrane
55 proteins such as integrins and cadherins, which transmit tensile forces generated by acto-
56 myosin interaction to the environment. The resulting traction forces, and hence cytoskeletal
57 tension, increase with substrate stiffness for most cell types^{12,13}, suggesting that the measured
58 effective membrane tension should also increase on stiffer substrates. However, the regulation
59 of membrane tension by substrate mechanics is yet to be probed experimentally.

60

61 **Results**

62 Here, we used optical tweezers (OT) to probe membrane properties of cells cultured on
63 polyacrylamide substrates of different stiffnesses as well as on glass. Using a membrane-

64 adherent bead held in an optical trap, we pulled membrane tethers from cells, and the resulting
65 tether forces served as an indicator for effective membrane tension ^{2,14,15} (Fig. 1a, b; Fig. S1,
66 Video S1). Throughout a pull, the force on the tether can be continuously monitored, resulting
67 in a characteristic force-time curve (Fig. 1c). The force rises quickly after initiation of the pull
68 and reaches a peak before decreasing sharply. In agreement with Sheetz¹⁴, we attribute this
69 peak force (PF) to the initial local detachment of plasma membrane from the actomyosin cortex
70 (Fig. 1a), although it may also be influenced by measurement parameters such as the adhesion
71 area between the bead and the cell membrane¹⁶.

72 Subsequently, the tether is pulled until it reaches a set length. During this elongation process,
73 the plasma membrane slides over the actin cortex while bonds between the membrane and the
74 lipid-binding proteins located in or at the cortex are broken and quickly re-established¹⁷. At the
75 same time, membrane proteins may accumulate at the base of the tether and influence the
76 pulling force¹⁵. Overall, the measured forces then decrease during the elongation phase.

77 Afterwards, the bead is held in a stable position and the steady-state force (SSF) is measured
78 (Fig. 1b). The SSF is thought to reflect a combination of the in-plane plasma membrane tension
79 and the cortical tension, with the strength of the membrane-cortex adhesion determining the
80 coupling between these two elements^{17,18}. As such, the SSF depends in a non-linear manner on
81 the number of cortex-plasma membrane linkers such as ERM proteins¹⁹.

82 To test the effect of substrate mechanics and cortical tension on effective membrane tension,
83 we performed tether pulls in fibroblasts, which possess a dense actomyosin cortex, and in
84 neuronal axons, whose sub-membranous cytoskeleton is characterized by actin rings spaced by
85 spectrin tetramers²⁰. Cells were cultured on glass as well as on hydrogels fabricated within a

86 stiffness range adjusted to match their natural environment. For fibroblasts, hydrogel
87 stiffnesses ranged from 100Pa (very soft; similar to subcutaneous adipose tissue), to 10kPa
88 (stiff; already in the stiffness range of many fibrotic tissues)²¹. For neurons, the highest
89 substrate stiffness used was 1kPa, corresponding to the highest stiffness experienced by this
90 type of neuron *in vivo*²².

91 Peak forces (PFs) measured in fibroblasts were about twice as high as those measured in
92 neuronal axons (Fig. 2b, f). Within each cell type, PFs were similar across all tested hydrogel
93 substrates. Steady state forces (SSFs), which were comparable between fibroblasts and
94 neurons, were also similar across all polyacrylamide substrate stiffnesses (Fig. 2c, g).

95 In contrast, actomyosin-based traction forces, i.e., contractile cellular forces exerted on the
96 substrate, are known to scale with substrate stiffnesses for both neurons and fibroblasts^{23,24}.
97 We measured these forces in our culture conditions using traction force microscopy (TFM),
98 where cells are cultured on soft, elastic hydrogels with embedded fluorescent nanoparticles
99 (see Methods)²⁵. Forces exerted by the cells lead to local substrate deformations, which can be
100 tracked using fluorescence imaging of the nanoparticles, whose displacement can be used to
101 calculate traction forces²⁶.

102 We confirmed that traction forces exhibited by both cell types increased significantly with
103 increasing substrate stiffness within the investigated stiffness range (Fig. 2d, Fig. S2). Similarly,
104 net forces, which are obtained by integrating traction forces across neuronal growth cones, and
105 which provide an approximation for the tension exerted by a growth cone on its axon^{23,27},
106 significantly increased on stiffer substrates (Fig 2h). These data indicated that traction forces

107 and net forces assessed by 2D traction force microscopy and tether forces measured by OT are
108 not tightly coupled.

109 In order to further examine the interplay between cortical tension and effective membrane
110 tension, we measured tether forces in fibroblasts cultured on 10 kPa hydrogels, where we
111 would expect the highest cytoskeletal tension²⁴, following treatment with the myosin II (and
112 thus contractility) inhibitor blebbistatin. Blebbistatin treatment had no significant effect on
113 either PFs or SSFs (Fig. 3), suggesting that there is indeed no strong coupling between
114 actomyosin-based cortical tension and average effective membrane tension in cells cultured on
115 hydrogels.

116 As numerous *in vitro* studies use glass-bottomed culture dishes, and the surface properties of
117 glass differ considerably from those of hydrogels, we also cultured fibroblasts and neurons on
118 glass to test whether effective membrane tension is comparable in both culture environments.

119 In neurons, PFs measured in axons cultured on glass were indeed like those observed on
120 hydrogels (Fig. 2f). However, PFs for fibroblasts cultured on glass were significantly lower than
121 those for fibroblasts grown on hydrogels (Fig. 2b). Similarly, SSFs were significantly lower for
122 fibroblasts and neurons cultured on glass compared to those cultured on hydrogels (Fig. 2c, g).
123 Unlike on hydrogels, tether forces measured on glass were similar for fibroblasts and neurons
124 (Fig. 2).

125 While PFs did not change significantly after blocking actomyosin contractility in fibroblasts
126 cultured on glass, SSFs increased on glass following blebbistatin treatment²⁸ (Fig 3b), reaching
127 values similar to SSFs seen in fibroblasts cultured on hydrogels. These data showed that

128 effective membrane tension depends on the type of culture substrate, and they suggested that
129 the coupling between the cell cortex and the membrane also differs between glass and
130 hydrogel substrates.

131

132 **Discussion**

133 Here we found that the steady-state tether forces, which are thought to scale with effective
134 membrane tension, do not change as a function of hydrogel substrate stiffness within a
135 physiologically relevant stiffness range in both fibroblasts and neurons (Fig. 2c, g). In contrast,
136 actomyosin-based traction and net forces increased on stiffer substrates (Fig. 2d, h), as shown
137 previously²⁴, suggesting that the effective membrane tension measured by OT dorsolaterally to
138 adhesion sites is not directly linked to cellular contractility on hydrogels²⁹. In line with this
139 interpretation, the application of the myosin II blocker, blebbistatin, did not alter the effective
140 membrane tension of fibroblasts cultured on hydrogels (Fig. 3).

141 Alternatively, membrane tension might be influenced by cortical tension on short time scales
142 but is then actively regulated to resume original values quickly³⁰. Another possibility is that
143 traction forces and membrane tension are coupled also on longer time scales but traction
144 forces transmitted from focal adhesions and ventral stress fibres to the actin cortex³¹ dissipate
145 with increasing distance from the stress fibres. Thus, on hydrogels enhanced cortical tension
146 might be limited to ventral areas of the cell surface not accessible by OT. This would be in line
147 with a recent study suggesting that cortical tension in dorsolateral parts of the cell are largely
148 independent of traction forces²⁴.

149 If cortical and membrane tension are coupled, membrane tension would then only change
150 locally³² near focal adhesions and stress fibres³¹, which would not be seen when probed further
151 away. Such local membrane tension heterogeneities would explain, for example, why the
152 mechanosensitive ion channel Piezo1, which is thought to be activated by membrane tension, is
153 activated only near focal adhesion sites despite being distributed across the whole cell
154 surface³³.

155 The effective membrane tension was higher in cells cultured on hydrogels than in those
156 cultured on glass (Fig. 2). Fibroblasts developed much stronger stress fibres on glass than on
157 hydrogels (Fig. S3)³⁴, indicating considerably larger traction forces. The strong contraction of
158 stress fibres and the embedding actin cortex³³ on glass could propagate further within the actin
159 cortex than on hydrogels. The concomitant decrease in cortex area could cause the membrane
160 to relax also in areas assessed by OT in cells cultured on glass, as schematically indicated in
161 Figure 4, explaining why tether forces were lower on glass than on hydrogels (Fig. 2).

162 This could not only explain why SSFs in fibroblasts were lower on glass than on hydrogels (Fig.
163 2c, Fig. 4b) but also why blebbistatin treatment, which relaxes both stress fibres, led to a
164 significant increase in SSFs on glass but not on hydrogels (Figs. 3b, 4c-d). The tension exerted
165 by growth cones on the distal axon, which increased on stiffer substrates (Fig. 2h), could
166 similarly lead to membrane relaxation in neurons cultured on glass (Fig. 2g). Alternatively, or
167 additionally, differences in physical and chemical properties between glass and hydrogels could
168 also activate different signalling pathways involved in the regulation of membrane tension
169 homeostasis³⁰.

170 The PF, which is the initial force required to detach the membrane from the cortex, is related to
171 membrane-cortex adhesion¹⁴ (in analogy to attempting to open Velcro from the middle).
172 Fibroblasts have a dense actomyosin cortex, and proteins such as ezrin/radixin/moesin (ERM
173 proteins) can link the membrane to the cortex across the cell surface. Neuronal axons, on the
174 other hand, have a periodic actin-spectrin network underneath their membrane²⁰ and much
175 less area for ERM proteins to connect the membrane to actin rings. This morphological
176 difference may lead to lower membrane-cortex adhesion in axons compared to fibroblasts,
177 explaining why PFs are about twice as high in fibroblasts compared to axons cultured on
178 physiologically stiff hydrogels. A low membrane-cortex coupling could also explain why tethers
179 pulled from axons can freely “slide” along the axon as observed in a previous¹⁵ and the current
180 study (video S2). To our knowledge, tether sliding has not been reported in fibroblasts.
181 Our results confirm that membrane tension measurements need to be interpreted carefully.
182 Effective membrane tension dorsolaterally of adhesion sites did not depend on substrate
183 stiffness within a physiological stiffness range, yet it varied between hydrogels and glass, and
184 between cell types. Future technological developments enabling highly resolved quantitative
185 membrane tension measurements will shed light on the molecular control of local membrane
186 tension, an important regulator of many cellular functions.
187

188 **Acknowledgments**

189 The authors would like to thank Alex Winkel and Joy Thompson for AFM measurements of
190 hydrogels, Liz Williams for preparation of hydrogels, and Ewa Paluch, Ruby Peters and Aki Stubb
191 for discussions. J. Mc H. acknowledges funding from AFOSR (Grant No. FA9550-17-1-0118). S. K.
192 F. acknowledges funding from the Herchel Smith Foundation. U. F. K. was supported by an ERC
193 Consolidator Grant DesignerPores No. 647144, K. F. was supported by the European Research
194 Council (Consolidator Grant 772426) and the Alexander von Humboldt Foundation (Alexander
195 von Humboldt Professorship).

196 **Author Contributions**

197 J. Mc H., E. K., and K. A. performed tether pulling experiments. J. Mc H. analysed the results
198 from OT experiments. E. K. cultured 3T3 fibroblasts and prepared hydrogels. S. K. F. dissected
199 and cultured *Xenopus laevis* RGCs and prepared hydrogels. A.D. performed TFM experiments
200 with 3T3 fibroblasts. R. G. performed the TFM experiments with neurons and all TFM analyses.
201 E. K. and E. P. performed the immunostainings. J. Mc H., E. K., K. F., and U. F. K. designed
202 experiments with 3T3 fibroblasts. J. Mc H., S. K. F., K. A., and U. F. K. designed pulling
203 experiments with *X. laevis* RGCs. S. K. F., J. Mc H., E. K., U.F.K. and K. F. conceived the project. E.
204 K., J. Mc H., S. K. F., U.F.K. and K.F. wrote the manuscript.

205

206 **Competing interests**

207 The authors declare no competing interests.

208 **References**

209 1. Raucher, D. & Sheetz, M. P. Cell Spreading and Lamellipodial Extension Rate Is
210 Regulated by Membrane Tension. *J. Cell Biol.* **148**, 127–136 (2000).

211 2. Nussenzveig, H. M. Cell membrane biophysics with optical tweezers. *Eur. Biophys. J.*
212 **47**, 499–514 (2018).

213 3. Gauthier, N. C., Fardin, M. A., Roca-Cusachs, P. & Sheetz, M. P. Temporary
214 increase in plasma membrane tension coordinates the activation of exocytosis and
215 contraction during cell spreading. *Proc. Natl. Acad. Sci. U. S. A.* **108**, 14467–14472
216 (2011).

217 4. Keren, K. *et al.* Mechanism of shape determination in motile cells. *Nature* **453**, 475–
218 480 (2008).

219 5. De Belly, H. *et al.* Membrane Tension Gates ERK-Mediated Regulation of Pluripotent
220 Cell Fate. *Cell Stem Cell* **28**, 273–284.e6 (2021).

221 6. Dai, J. & Sheetz, M. P. Regulation of endocytosis, exocytosis, and shape by
222 membrane tension. *Cold Spring Harb. Symp. Quant. Biol.* **60**, 567–571 (1995).

223 7. Sheetz, M. P. Cell control by membrane–cytoskeleton adhesion. *Nat. Rev. Mol. Cell
224 Biol.* **2**, 392–396 (2001).

225 8. Pontes, B., Monzo, P. & Gauthier, N. C. Membrane tension: A challenging but
226 universal physical parameter in cell biology. *Semin. Cell Dev. Biol.* **71**, 30–41 (2017).

227 9. Pontes, B. *et al.* Membrane tension controls adhesion positioning at the leading edge
228 of cells. *J. Cell Biol.* **216**, 2959–2977 (2017).

229 10. Salbreux, G., Charras, G. & Paluch, E. Actin cortex mechanics and cellular
230 morphogenesis. *Trends Cell Biol.* **22**, 536–545 (2012).

231 11. Clark, A. G., Wartlick, O., Salbreux, G. & Paluch, E. K. Stresses at the Cell
232 Surface during Animal Cell Morphogenesis. *Curr. Biol.* **24**, R484–R494 (2014).

233 12. Califano, J. P. & Reinhart-King, C. A. Substrate Stiffness and Cell Area Predict
234 Cellular Traction Stresses in Single Cells and Cells in Contact. *Cell. Mol. Bioeng.* **3**,
235 68–75 (2010).

236 13. Sabass, B., Gardel, M. L., Waterman, C. M. & Schwarz, U. S. High Resolution
237 Traction Force Microscopy Based on Experimental and Computational Advances.
238 *Biophys. J.* **94**, 207–220 (2008).

239 14. Sheetz, M. P. Cell control by membrane–cytoskeleton adhesion. *Nat. Rev. Mol.*
240 *Cell Biol.* **2**, 392–396 (2001).

241 15. Datar, A., Bornschlögl, T., Bassereau, P., Prost, J. & Pullarkat, P. A. Dynamics of
242 membrane tethers reveal novel aspects of cytoskeleton-membrane interactions in
243 axons. *Biophys. J.* **108**, 489–497 (2015).

244 16. Koster, G., Cacciuto, A., Derényi, I., Frenkel, D. & Dogterom, M. Force barriers
245 for membrane tube formation. *Phys. Rev. Lett.* **94**, 16–19 (2005).

246 17. Sens, P. & Plastino, J. Membrane tension and cytoskeleton organization in cell
247 motility. *J. Phys. Condens. Matter* **27**, (2015).

248 18. Gauthier, N. C., Masters, T. A. & Sheetz, M. P. Mechanical feedback between
249 membrane tension and dynamics. *Trends Cell Biol.* **22**, 527–535 (2012).

250 19. Paraschiv, A. *et al.* Influence of membrane-cortex linkers on the extrusion of
251 membrane tubes. *Biophys. J.* **120**, 598–606 (2021).

252 20. Xu, K., Zhong, G. & Zhuang, X. Actin, spectrin, and associated proteins form a
253 periodic cytoskeletal structure in axons. *Science* **339**, 452–456 (2013).

254 21. Wells, R. G. Tissue Mechanics and Fibrosis. *Biochim. Biophys. Acta* **1832**, 884–
255 890 (2013).

256 22. Franze, K., Janmey, P. A. & Guck, J. Mechanics in Neuronal Development and
257 Repair. *Annu. Rev. Biomed. Eng.* **15**, 227–251 (2013).

258 23. Koch, D., Rosoff, W. J., Jiang, J., Geller, H. M. & Urbach, J. S. Strength in the
259 Periphery: Growth Cone Biomechanics and Substrate Rigidity Response in
260 Peripheral and Central Nervous System Neurons. *Biophys. J.* **102**, 452–460 (2012).

261 24. Rheinlaender, J. *et al.* Cortical cell stiffness is independent of substrate
262 mechanics. *Nat. Mater.* **19**, 1019–1025 (2020).

263 25. Schwarz, U. S. & Soiné, J. R. D. Traction force microscopy on soft elastic
264 substrates: A guide to recent computational advances. *Biochim. Biophys. Acta BBA -*
265 *Mol. Cell Res.* **1853**, 3095–3104 (2015).

266 26. Huang, Y. *et al.* Traction force microscopy with optimized regularization and
267 automated Bayesian parameter selection for comparing cells. *Sci. Rep.* **9**, 539
268 (2019).

269 27. Franze, K. Integrating Chemistry and Mechanics: The Forces Driving Axon
270 Growth. *Annu. Rev. Cell Dev. Biol.* **36**, 61–83 (2020).

271 28. Lieber, A. D., Yehudai-Resheff, S., Barnhart, E. L., Theriot, J. A. & Keren, K.
272 Membrane Tension in Rapidly Moving Cells Is Determined by Cytoskeletal Forces.
273 *Curr. Biol.* **23**, 1409–1417 (2013).

274 29. Mandal, K. *et al.* Soft hyaluronic gel promotes cell spreading, stress fibers, focal
275 adhesion, membrane tension by phosphoinositide signaling, not traction force. *ACS*
276 *Nano* **13**, 203–214 (2019).

277 30. Thottacherry, J. J. *et al.* Mechanochemical feedback control of dynamin
278 independent endocytosis modulates membrane tension in adherent cells. *Nat.*
279 *Commun.* **9**, 1–14 (2018).

280 31. Vignaud, T. *et al.* Stress fibres are embedded in a contractile cortical network.
281 *Nat. Mater.* 1–11 (2020) doi:10.1038/s41563-020-00825-z.

282 32. Shi, Z., Graber, Z. T., Baumgart, T., Stone, H. A. & Cohen, A. E. Cell membranes
283 resist flow. *Cell* **175**, 1769–1779.e13 (2018).

284 33. Ellefsen, K. L. *et al.* Myosin-II mediated traction forces evoke localized Piezo1-
285 dependent Ca 2+ flickers. *Commun. Biol.* **2**, 1–13 (2019).

286 34. Walcott, S. & Sun, S. X. A mechanical model of actin stress fiber formation and
287 substrate elasticity sensing in adherent cells. *Proc. Natl. Acad. Sci.* **107**, 7757–7762
288 (2010).

289 35. Leung, K.-M. *et al.* Asymmetrical β-actin mRNA translation in growth cones
290 mediates attractive turning to netrin-1. *Nat. Neurosci.* **9**, 1247–1256 (2006).

291 36. Nieuwkoop, P. D. & Faber, J. *Normal table of xenopus laevis (daudin)*.
292 (Routledge, 1994).

293 37. Mc Hugh, J., Andresen, K. & Keyser, U. F. Cation dependent electroosmotic flow
294 in glass nanopores. *Appl. Phys. Lett.* **115**, 113702 (2019).

295 38. Gittes, F. & Schmidt, C. F. Chapter 8 signals and noise in micromechanical
296 measurements. in *Methods in cell biology*. vol. 55 129–156 (Academic Press, 1997).

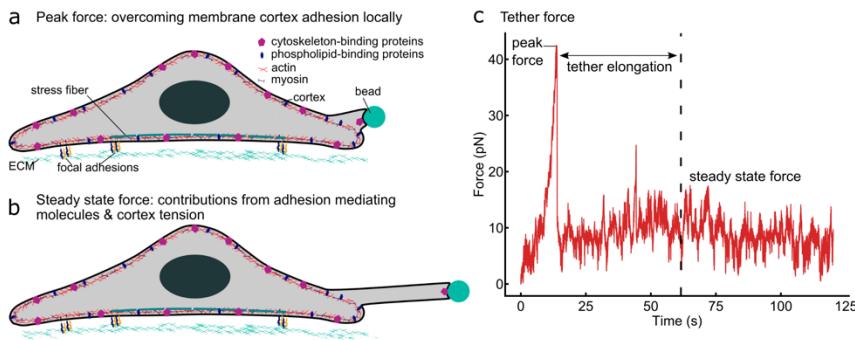
297 39. Buer, C. S., Weathers, P. J. & Swartzlander, G. A. Changes in Hechtian strands
298 in cold-hardened cells measured by optical microsurgery. *Plant Physiol.* **122**, 1365–
299 1377 (2000).

300 40. Kucik, D. F., Kuo, S. C., Elson, E. L. & Sheetz, M. P. Preferential attachment of
301 membrane glycoproteins to the cytoskeleton at the leading edge of lamella. *J. Cell
302 Biol.* **114**, 1029–1036 (1991).

303 41. Hochmuth, R. M., Shao, J. Y., Dai, J. & Sheetz, M. P. Deformation and flow of
304 membrane into tethers extracted from neuronal growth cones. *Biophys. J.* **70**, 358–
305 369 (1996).

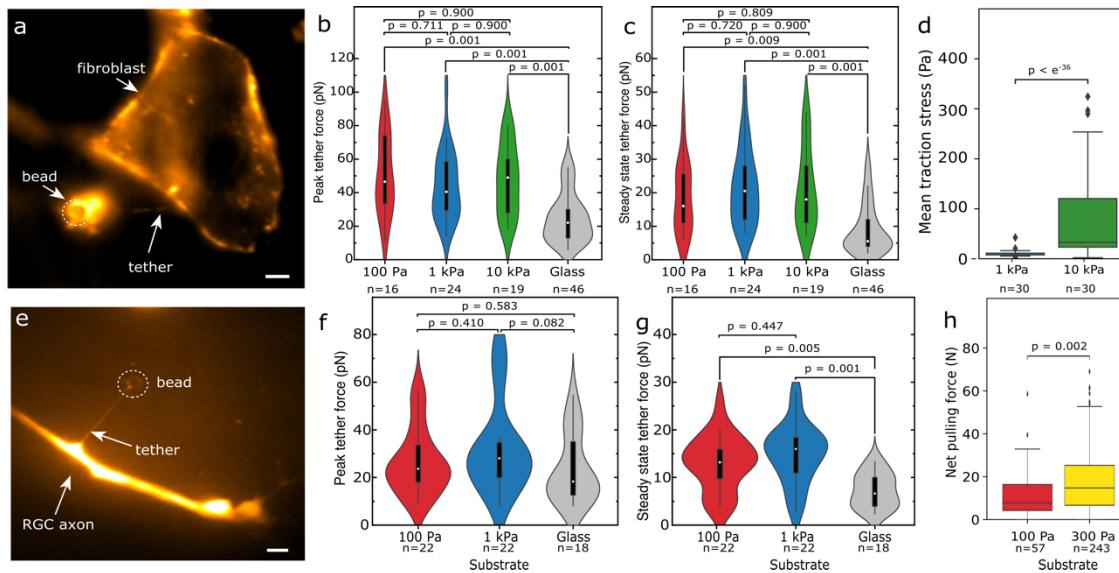
306 42. Pontes, B. *et al.* Cell cytoskeleton and tether extraction. *Biophys. J.* **101**, 43–52
307 (2011).

308 43. Moshayedi, P. *et al.* The relationship between glial cell mechanosensitivity and
309 foreign body reactions in the central nervous system. *Biomaterials* **35**, 3919–3925
310 (2014).


311 44. Koser, D. E. *et al.* Mechanosensing is critical for axon growth in the developing
312 brain. *Nat. Neurosci.* **19**, 1592–1598 (2016).

313 45. Moshayedi, P. *et al.* Mechanosensitivity of astrocytes on optimized
314 polyacrylamide gels analyzed by quantitative morphometry. *J. Phys. Condens. Matter*
315 **22**, (2010).

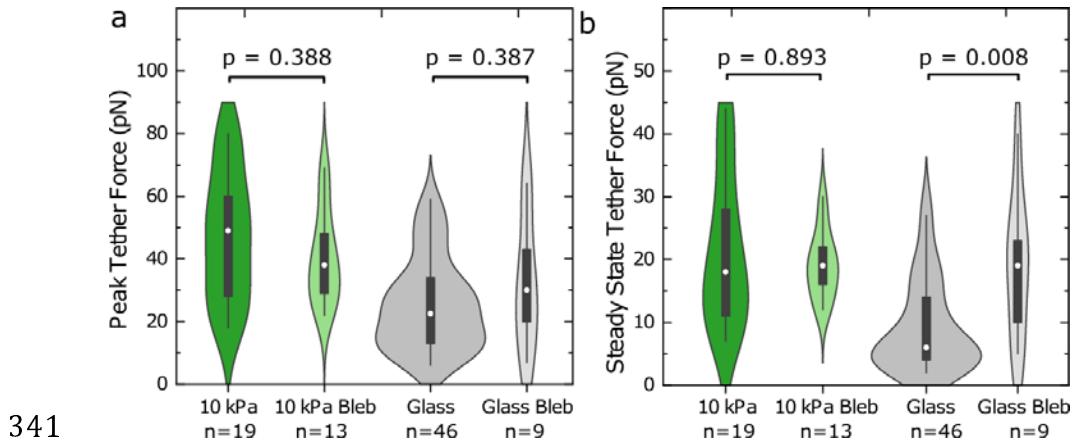
316


317

318 **Figures**

319

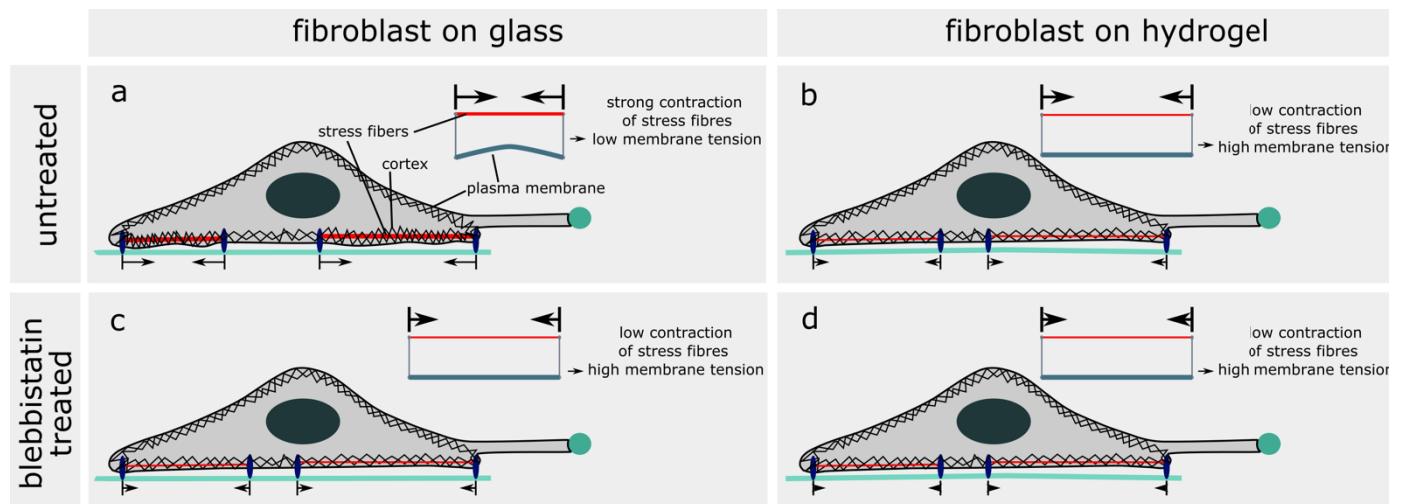
320 **Figure 1: Illustration of an OT measurement.** Peak and steady state tether forces provide
321 different insights into cell membrane properties. (a) When an OT pull is initiated, the local
322 membrane-cortex adhesion first needs to be overcome, resulting in a peak force (PF) measured
323 at the beginning of the experiment (see (c)). (b) After tether extension, the bead is held
324 stationary, and the steady state force (SSF), which scales with effective membrane tension, is
325 recorded. (c) A typical force-time curve recorded during a tether pull, showing a peak (PF) at
326 the beginning of the pull and a plateau (SSF) when the tether is held at its maximum extension.



327

328 **Figure 2: Tether and traction forces of fibroblasts and neurons on different substrates. (a-d)**

329 3T3 fibroblasts and (e-h) *Xenopus* retinal ganglion cell axons; shear moduli of polyacrylamide
330 substrates are provided in Pa. (a, e) Fluorescence images of membrane tethers pulled from a
331 3T3 fibroblast and an axon. Fibroblast membranes were labelled with CellMask membrane
332 stain, neurons with Tetramethylrhodamine Dextran. Scale bars: 5 μ m. (b) Peak tether forces
333 (PFs) and (c) steady state tether forces (SSFs) were similar on all hydrogels irrespective of their
334 stiffness (Kruskal-Wallis tests followed by Tukey posthoc tests), but significantly larger than on
335 glass. (d) 3T3 fibroblasts exerted higher traction forces on stiffer hydrogels compared to on
336 softer ones (two-tailed Mann-Whitney test). (f) PFs in axons were similar on all hydrogel and
337 glass substrates. (g) SSFs in neurons were similar on different hydrogels but higher than those
338 measured on glass. (h) Net forces (growth cone forces pulling on the axon) were higher on
339 stiffer hydrogels than on softer ones (two-tailed Mann-Whitney test).


340

342 **Figure 3: Inhibition of actomyosin contractility increases SSFs on glass but not on hydrogels.**

343 (a) The application of 20 μ M Blebbistatin did not significantly alter PFs on hydrogels or on glass
344 (Mann-Whitney test). (b) SSFs of fibroblasts grown on glass but not on hydrogels increased
345 significantly following blebbistatin treatment. The untreated conditions correspond to the data
346 shown in Figure 2.

347

348

349 **Figure 4: Toy model of substrate type-dependent effective membrane tension.** Schematic
350 representation of the cell cortex, stress fibres and cell membrane in fibroblasts on glass and
351 hydrogel substrates without and with blebbistatin treatment. (a) In fibroblasts on glass
352 substrates without blebbistatin treatment, the strong contraction of stress fibres, which is
353 transmitted to the nearby actin cortex³¹, might lead to the relaxation of the membrane and
354 thus reduce membrane tension. (b) In fibroblasts on hydrogel substrates without blebbistatin
355 treatment, we observed fewer stress fibres, most likely resulting in lower contractility and less
356 relaxation of the membrane. The resulting membrane tension is higher compared to that of
357 cells on glass. (c) In fibroblasts on glass substrates with blebbistatin treatment, the stress fibres
358 relax. This might increase membrane tension. (d) In fibroblasts on hydrogel substrates with
359 blebbistatin treatment, fewer stress fibres relax, and the effect on membrane tension is too low
360 to be detected by OT.

361 **Materials and methods**

362 **NIH 3T3 fibroblast cell culture**

363 3T3 cells were cultured in plastic cell culture flasks in culture media (90 ml DMEM with
364 glutamine (Gibco 22320-022), 10 ml Fetal Bovine Serum (Gibco 25300054), 1 ml
365 Penicillin-Streptomycin-Amphotericin B Mixture (PSF, Lonza 17-745E)). After reaching
366 confluence, cells were enzymatically detached. For this step, cells were washed twice
367 with prewarmed (37°C) PBS (Sigma D8537) and then incubated with 1ml 10% TrypLE
368 (Thermo Fisher Scientific A1285901) in PBS at 37°C for 5 min. 5 ml culture media was
369 then added, and the cells were cultured in fresh culture flasks or plated on glass dishes
370 and polyacrylamide (PAA) hydrogels for 4-48 h prior to experiments.

371 Hydrogels of 3 different elastic moduli (shear moduli = 100 Pa, 1 kPa, and 10 kPa) were
372 prepared and functionalized as described below. PAA gels as well as glass bottom
373 culture dishes were coated with 0.01 mg/ml PDL in PBS for at least 4 h (typically
374 overnight) followed by 0.02 mg/ml fibronectin in PBS for at least 4 h. Culture media was
375 exchanged with prewarmed (37°C) imaging media (Live Cell Imaging Solution,
376 henceforth ‘imaging media’ (Thermo Fisher Scientific A14291DJ)) supplemented with
377 1% PSF 15 min prior to measurements.

378 For the blebbistatin treatment, cells were incubated with 20 µM blebbistatin (Sigma-
379 Aldrich, B0560-1MG) for 15 min prior to measurement. For visualisation of membrane
380 tethers, fibroblasts were stained with CellMask Orange Plasma Membrane Stain
381 (ThermoFisher Scientific, USA, C10045-100 µl). The dye was added to the imaging
382 media in the culture dish at 1:1000 dilution 15 min prior to the tether pulls.

383 **Xenopus laevis** retinal ganglion cell culture

384 All animal experiments were conducted in compliance with the Ethical Review

385 Committee of the University of Cambridge and Home office Guidelines.

386 *Xenopus* embryos were derived from *in vitro* fertilization of eggs kindly provided by the

387 Gurden Institute Frog Facility (University of Cambridge, UK). For fluorescent labelling of

388 *Xenopus* neurons, 5 nL of 0.2% w/v tetramethylrhodamine-labeled dextran (Thermo

389 Fisher, D3308) diluted in nuclease-free water was injected in each dorsal blastomere of

390 a 4-cell stage *Xenopus* embryo. Injections were performed as previously described³⁵.

391 Embryos were grown at 14-16°C with daily cleaning in 0.1X Modified Barth's Saline

392 (10X MBS: 88mM NaCL, 2.4mM NaHCO₃, 1mM HEPES, 0.82mM MgSO₄, 0.33mM

393 Ca(NO₃)₂, 0.41 mM CaCl₂, pH 7.6).

394 All dissections took place at stage 35/36 (stages according to Nieuwkoop and Faber³⁶).

395 In the case of dextran-injected embryos, embryos were screened using a fluorescence

396 stereomicroscope prior to dissection to ensure the presence of dextran in the eye

397 primordia (note that dextran-injected embryos are morphologically normal). Embryos

398 were anesthetized prior to dissection in 20% tricaine methanesulfonate solution

399 (MS222, pH 7.6-7.8, with 1x PSF) and subsequently immobilized in a Sylgard®184-

400 lined petri dish using a bent 0.2 mm insect bin (Austerlitz). Eye primordia were carefully

401 explanted using a 0.15 mm insect pin (Austerlitz) held in a pin holder. Explants were

402 immediately transferred to 60% L15 media (Sigma-Aldrich, L4386, pH 7.6-7.8, with 1x

403 PSF, henceforth referred to as 'Xenopus culture media').

404 Following dissection, explants were placed with the lens facing up onto PAA gels or
405 glass bottom culture dishes. The hydrogels were prepared as described below.

406 Hydrogels and glass dishes were coated overnight (hydrogels) or for 30 min (glass) with
407 0.01 mg/ml PDL (Sigma-Aldrich, P6407, diluted in PBS) followed by 2 h in 5 µg/mL
408 laminin (Sigma-Aldrich, L2020, diluted in PBS). Following explant plating, dishes were
409 allowed to sit for 1-2 h on the benchtop to allow explants to adhere, and then were
410 moved to a 20°C incubator overnight.

411 **Immunostainings**

412 Cells were washed twice with prewarmed (37°C) PBS. Afterwards, they were fixed and
413 permeabilized with 4% PFA (Thermo Fisher 28908) and 0.2% tritonX (Sigma-Aldrich
414 T8787) in PBS for 10 min at room temperature (RT). The cells were washed once with
415 PBS at RT. Cells were incubated with DAPI (1.7 µg/ml Sigma-Aldrich D9542) and
416 Phalloidin (Life Technologies A12379, diluted 1:300) in 1% Bovine Serum Albumin
417 (Sigma-Aldrich A3294) in PBS for 1 h at RT. In the end, the dishes were washed twice
418 with PBS. Cells were imaged with a Leica DMi8 epifluorescence setup with a ×63 oil
419 objective (NA 1.4, Leica).

420 **Optical tweezers and force measurement**

421 OT measurements took place on a custom-built inverted microscope³⁷. Briefly, a 5 W
422 1064 nm ytterbium fibre laser (YLM-5-LP, IPG Laser, Germany) was used at a high
423 power (> 1 W) to minimize intensity fluctuations. Excess power was redirected to a
424 beam dump and the power at the optical trap itself was 600 mW. The trap was

425 generated by overfilling the back aperture of an NA 1.2 UPlanSApo water immersion
426 objective (Olympus, Japan) with the laser beam.

427 To enable controlled positioning of samples, the sample stage was mounted on top of a
428 precision piezoelectric stage (P-517.43 and E-710.3, Physik Instrumente, Germany)
429 with a positioning resolution of 1 nm. The sample stage was illuminated by a white fibre
430 light source (DC-950 Fiber-Lite, Edmund Optics, USA). White light entered the objective
431 and then passed through a dichroic mirror (DM) to a 550 nm short pass DM (DMSP550,
432 Thorlabs, USA). This passed light below 550 nm to the 532 nm notch DM. This mirror
433 coupled the fluorescence laser into the microscope, and in the process blocked the
434 portion of incoming white light ranging from 515 to 540 nm. Light that passed through
435 the notch DM was focused onto a CMOS camera (MC1362, Mikrotron, Germany), which
436 was used for tracking particles in the optical trap. Light above 550 nm was passed to
437 the fluorescence imaging camera (optiMOS Scientific CMOS, Teledyne Imaging, USA),
438 which was used to find beads to trap, locate cells, and record fluorescence images of
439 tethers.

440 Forces were measured with the OT by modelling a particle in the trap potential as a
441 Hookean mass and spring system. By tracking the position of a trapped particle and
442 multiplying this by a calibrated trap stiffness constant, the force experienced by the
443 particle was determined. Trap calibration was performed using the power spectrum
444 method³⁸. Postprocessing of the data was done using a custom script in Python 3.6,
445 which is available on GitHub <https://github.com/mchughj33/mem-tension>.

446 **OT bead functionalisation**

447 As reported previously^{39,40}, beads with 2 μ m diameter (Kisker PC-S-2.0) were
448 functionalized with Concanavalin A (ConA, from Canavalia, Sigma-Aldrich, C2272-
449 10MG) as follows.

450 10 μ L bead solution were added into 100 μ L of 2 mg/mL ConA in a tube (low-protein
451 binding) and incubated for 30 min at 4°C. Beads were washed twice via centrifugation
452 in 100 μ L of 5mg/mL bovine serum albumin (BSA, Sigma-Aldrich, A3294) in 200mM Tris
453 (Sigma, GE17-1321-01) in ddH₂O. All centrifugation steps were conducted at 4°C,
454 10,000 rcf. After the final wash, 1 ml imaging media supplemented with 1% PSF was
455 added and gently mixed by pipetting.

456 **Membrane tether pulling experiments**

457 15 min prior to each fibroblast measurement, the culture medium was exchanged with
458 pre-heated (37°C) imaging medium supplemented with 1% PSF. For Xenopus
459 experiments, Xenopus medium was exchanged with RT imaging medium ~15 minutes
460 prior to imaging.

461 In each OT experiment, 2 μ l functionalised beads (see above) were added to the culture
462 media and a bead captured in the trap. To reduce variations in the contact area
463 between bead and cell¹⁶, all relevant measurement parameters were tightly controlled.
464 Beads of one size (2.16 μ m) were used, ConA coated beads were prepared freshly for
465 each experiment under temperature-controlled conditions, and the beads were attached
466 by bringing them into contact with the cells for the same amount of time (5 seconds, see
467 below).

468 During the entire process, the position of the bead relative to the laser trap was
469 recorded in order to measure the force produced by the tether pull. Before attaching the
470 bead to the cell, a short recording of the Brownian motion of the trapped bead was
471 taken. The mean force from each recording was used to define the point of zero force in
472 the subsequent analysis of each respective pull. Afterwards, the bead was carefully
473 brought into contact with the cell membrane. The image of the bead was monitored for a
474 change in the interference pattern around the bead, indicating contact between the
475 bead and membrane. At this point the beads was held stationary for 5 s. Then it was
476 moved approximately 0.25 μm away from the cell while monitoring the particle tracking
477 system to see if the mean displacement of the bead from the trap centre was reduced,
478 which signified that the bead was attached to the membrane.

479 Beads were then moved away from the cell at $0.1 \mu\text{m s}^{-1}$ in the case of 3T3 fibroblasts
480 and $0.5 \mu\text{m s}^{-1}$ in the case of neurons, leading to the formation of a membrane tether
481 between the cell and the bead. After reaching the end of the pull, 10 μm for 3T3
482 fibroblasts and 20 μm for neurons, the bead was held stationary for 30 s. The protocol
483 for pulling tethers from neurons was based on previous work⁴¹. Due to high rate of
484 tether loss during preliminary pulls with fibroblasts, to the pulling velocity was reduced,
485 leading to a subsequent decrease in the pull distance to avoid reducing experimental
486 throughput. Pontes et al. showed that varying the velocities for tether pulls in 3T3
487 fibroblasts within the range of 0.07 $\mu\text{m/s}$ to 1 $\mu\text{m/s}$, did not affect the force results⁴². We
488 therefore do not expect this velocity change to affect our observations. For each pull,
489 the peak force was defined as the maximum force value reached, and the steady state
490 force was determined as the mean of the 30 s period at the end of the pull during which

491 the bead was held stationary. Analysis was performed using custom analysis scripts
492 written in python 3.6.

493 **Hydrogels for fibroblasts**

494 Deformable hydroxy-polyacryamide substrates for fibroblast cultures were prepared as
495 described previously^{24,43}. Briefly, for each gel a top coverslip and a glass-bottomed
496 culture dish (MatTek P35G-0.20-C and Ibidi 81158 were used for OT and TFM,
497 respectively) were prepared. Both coverslips were first washed in 70% ethanol and
498 distilled water, and then dried. Bottom coverslips were wiped with a cotton bud soaked
499 in 1M NaOH, dried, and then incubated in (3-aminopropyl)trimethoxysilane (APTMS,
500 Sigma Aldrich, 281778) for 3 min. APTMS was washed off thoroughly in ddH2O and
501 coverslips were then incubated in a 0.5% solution of glutaraldehyde (Sigma Aldrich,
502 G6257) for 30 min and then rinsed 3x with distilled water. Top coverslips were treated
503 for 10 min with Rain-X (Shell Car Care International). Acrylamide (AA, Sigma Aldrich,
504 A4058) stock solution was made by mixing 500 μ L of 40% Acrylamide + 65 μ L of 100%
505 Hydroxyacrylamide (Sigma Aldrich, 697931). Afterwards the gel premix was prepared
506 by mixing 500 μ L Acrylamide stock solution with 250 μ L 2% Bisacrylamide (BA, Fisher
507 Scientific, BP1404-250). The premix was diluted in PBS to achieve the different shear
508 moduli according to the **table 1**. For TFM gels, 10 μ L of PBS was replaced by 10 μ L
509 bead solution (FluoSpheresTM Carboxylate-Modified Microspheres, 0.2 μ m, dark red
510 fluorescent)) and the gel mix was sonicated for 30 s to separate the beads.

Volume of gel	Volume of PBS	Shear modulus (G')

premix		
53 μ L	447 μ L	0.1 kPa
75 μ L	425 μ L	1 kPa
150 μ L	350 μ L	10 kPa

511 Table 1: Hydroxy-polyacrylamide gel composition used for fibroblasts

512

513 Freshly-made premixes were de-gassed under vacuum for 4-6 min. To each 500 μ L of
514 final gel solution, 1.5 μ L 0.3% (v/v) N, N, N', N'-tetramethylethylenediamine (TEMED,
515 Thermo Fisher, 15524-010) and 5 μ L 0.1% (w/v) ammonium persulfate (APS, Sigma,
516 215589) solution were added and the premix was gently mixed. 14 μ L or 10 μ L of this
517 mixture were pipetted on the bottom coverslip and 18 mm or 16 mm top coverslips (for
518 14 μ L and 10 μ L volume, respectively) were placed on top (with RainX-treated side
519 facing down). The gels were soaked in PBS for at least 20 min before the top coverslips
520 were removed. Afterwards, they were washed twice with PBS and then treated with
521 ultraviolet light for 30 min. Hydrogels were coated as described above.

522 **Hydrogels for neurons**

523 Deformable polyacrylamide gel substrates were prepared as described previously^{44,45}
524 for neuron culture. The coverslips were prepared as described in the hydroxy-acryamide
525 gel protocol using MatTek dishes as the bottom coverslip. The gel mix was prepared
526 according to **table 2** to achieve the different shear moduli. For TFM gels, the PBS

527 volume was reduced by 10 μ L and replaced by 10 μ L bead solution and the gel mix was
528 sonicated for 30 s to separate the beads.

Volume of AA	Volume of BA	Volume of PBS	Shear modulus (G')
63 μ L	10 μ L	427 μ L	0.1 kPa
63 μ L	17.5 μ L	419.5 μ L	0.3 kPa
94 μ L	15 μ L	391 μ L	1 kPa

529
530 Table 2: Polyacrylamide gel composition used for neurons
531
532 Freshly-made gel mixes were briefly de-gassed under vacuum for 4-6 min. To each 500
533 μ L of final gel solution, 1.5 μ L 0.3% (v/v) TEMED and 5 μ L 0.1% (w/v) APS solution
534 were added and gently mixed. 7 μ L, 14 μ L of this mixture were pipetted onto the bottom
535 coverslip and 18 mm top coverslips were placed on top (with RainX treated side facing
536 down) for OT experiments and TFM experiments, respectively. The gels were soaked in
537 PBS for at least 20 min before the top coverslips were removed. The gels were
538 subsequently functionalized via a 4h treatment with hydrazine hydrate (Sigma Aldrich,
539 225819), followed by 1 h in 5% acetic acid (Fisher Scientific, 10171460), and then
540 washed thoroughly in PBS. Afterwards, they were treated with ultraviolet light for 30
541 min. Hydrogels were coated as described above.

542 **TFM**

543 24 h after plating, fibroblasts were imaged with an inverted microscope (Leica DMi8) at
544 37°C and 5% CO₂, equipped with a digital sCMOS camera (ORCA-Flash4.0,
545 Hamamatsu Photonics), an EL6000 illuminator (Leica) and a ×63 oil objective (NA =
546 1.4, Leica). Images were acquired with Leica LAS X software. Fluorescence images of
547 beads and wide-field images of cells were taken every 2 min for 10 minutes. After image
548 acquisition, the culture media was exchanged with Trypsin-EDTA (Gibco) to detach
549 cells from the gel. Reference images of fluorescent beads were taken 15 min after
550 trypsinization.

551 16 - 24 h after plating, *Xenopus* eye primordia explants were imaged using an inverted
552 Nikon microscope (Ti-E at room temperature) equipped with an sCMOS camera (Prime
553 BSI Scientific, Photometrics), a CoolLED pE-4000, and ×60 oil objective (NA = 1.4,
554 Nikon). Fluorescence images of beads and wide-field images of cells were taken every
555 5 min for 1 h. After image acquisition, the culture media was exchanged with Trypsin-
556 EDTA (Gibco) or 20% sodium dodecyl sulfate solution (Severn Biotech Ltd., 20-4002-
557 01) to detach the explants from the gel. Reference images of fluorescent beads were
558 taken 15 min after trypsinization or immediately after sodium dodecyl sulfate treatment.

559 Traction stress maps were calculated for each frame. Traction stresses were averaged
560 over time (12 frames for neurons, 5 frames for fibroblasts) for each cell. Postprocessing
561 of the data and statistical analyses were done with a custom script in Python 3.8 and is
562 available on GitHub <https://github.com/rg314/pytraction>.

563 **Statistics**

564 OT data are shown as violin plots, TFM data as box plots. Violin shapes are kernel
565 density estimations, boxes indicate the range of data that falls between the first and
566 third quartile, whiskers show the range of data within 1.5 times the interquartile range.
567 Density estimator width is based on the number of samples at a given value. Median
568 values for each dataset are marked by a white circle. Lines between violins indicate
569 significant differences in the samples. The boxplot diagrams were generated using
570 python seaborn. The borders of the box indicate the quartiles of the dataset, the median
571 is indicated by a line within the box, and the whiskers include 1.5*interquartile range.
572 Points that were determined to be outliers were plotted individually. Kruskal-Wallis one-
573 way analysis of variance (ANOVA) tests followed by a Tukey posthoc test were used for
574 statistical analysis when comparing multiple groups. When comparing two groups, a
575 Mann-Whitney test was used.