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Abstract

Speciation, the continuous process by which new species form, is often investigated by
looking at the variation of nucleotide diversity and differentiation across the genome (hereafter
genomic landscapes). A key challenge lies in how to determine the main evolutionary forces at
play shaping these patterns. One promising strategy, albeit little used to date, is to comparatively
investigate these genomic landscapes as a progression through time by using a series of species
pairs along a divergence gradient. Here, we resequenced 201 whole-genomes from eight closely
related Populus species, with pairs of species at different stages along the speciation gradient to
learn more about divergence processes. Using population structure and ancestry analyses, we
document extensive introgression between some species pairs, especially those with parapatric
distributions. We further investigate genomic landscapes, focusing on within-species (nucleotide
diversity and recombination rate) and among-species (relative and absolute divergence) summary
statistics of diversity and divergence. We observe highly conserved patterns of genomic
divergence across species pairs. Independent of the stage across the divergence gradient, we find
support for signatures of linked selection (i.e., the interaction between natural selection and
genetic linkage) in shaping these genomic landscapes, along with gene flow and standing genetic
variation. We highlight the importance of investigating genomic patterns on multiple species
across a divergence gradient and discuss prospects to better understand the evolutionary forces

shaping the genomic landscapes of diversity and differentiation.

Keywords: differentiation islands, divergence, introgression, identity-by-descent, linked
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Introduction

Understanding the evolutionary forces that shape genetic variation is a central goal of
biology. Numerous population genomic studies have recently documented variation of the levels
of within-species genetic diversity and among-species differentiation across the genome
(hereafter genomic landscapes). Most frequently, these studies point to a highly heterogeneous
nature of these landscapes, leading to further investigations into the evolutionary forces
responsible for genomic regions of elevated and reduced differentiation between diverging
populations or species (Ellegren, et al. 2012; Martin, et al. 2013; Lamichhaney, et al. 2015;
Vijay, et al. 2016; Sendell-Price, et al. 2020).

Hotspots of elevated genetic differentiation relative to genomic background are often
referred to as ‘differentiation islands’ or ‘speciation islands’ and are assumed to form around loci
underlying local adaptation and/or reproductive isolation. Thus, delineating differentiation
islands has recently become a major topic of research in the field of speciation and adaptation
genomics (Burri 2017b; Martin and Jiggins 2017; Ravinet, et al. 2018; Tavares, et al. 2018;
Stankowski, et al. 2019). Such investigations are best suited for groups still experiencing
interspecific gene flow, i.e., species diverging under an isolation-with-migration or a secondary
contact scenario (Harrison and Larson 2016; Roux, et al. 2016; Wolf and Ellegren 2017; Leroy,
et al. 2020; Yamasaki, et al. 2020). Genomic regions containing barrier loci are more resistant to
gene flow and are therefore expected to show higher levels of differentiation (the islands) as
compared to the rest of the genome (the sea level, Wu 2001). A number of empirical studies in
plants have proved the joint role of gene flow and selection in shaping these highly
heterogeneous genomic landscapes of differentiation and identified reproductive isolation genes

(e.g. Tavares, et al. 2018; Martin, et al. 2019; Stankowski, et al. 2019).

Heterogeneous differentiation landscapes can however also emerge due to other genomic
features not causally linked to reproductive barriers and speciation (Booker and Keightley 2018).
Linked selection, the interaction between natural selection and genetic linkage may contribute to
these diversity and differentiation landscapes. Two forms of linked selection are generally
recognised: background selection and genetic hitchhiking; although their relative importance is

still debated (Stephan 2010). Background selection (Charlesworth, et al. 1993), the effect of
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82  natural selection against deleterious alleles at linked neutral polymorphism, is known to reduce
83  diversity, particularly in regions with relatively high gene density (Corbett-Detig, et al. 2015;
84  Wolf and Ellegren 2017). Similarly, due to genetic hitchhiking, neutral alleles are dragged along
85  with positively selected ones (Smith and Haigh 1974). Linked selection reduces effective
86  population size (Ne) and can lead to regions of decreased diversity and elevated relative
87  differentiation. In regions of low recombination, linked selection can generate footprints that
88 extend over larger genomic regions around the positively or negatively selected loci
89  (Charlesworth and Campos, 2014). Thus, nucleotide diversity (e.g., 7) and relative differentiation
90 (e.g., Fsr) estimates are expected to be negatively correlated (Burri 2017a). Such correlations
91  have been reported in Ficedula flycatchers (Burri, et al. 2015), Heliconius (Edelman, et al. 2019;
92  Martin, et al. 2019; Van Belleghem, et al. 2021), Helianthus sunflowers (Renaut, et al. 2013), the
93  Pacific cupped oyster (Gagnaire, et al. 2018), warblers (Irwin, et al. 2018), and hummingbirds
94  (Henderson and Brelsford 2020).

95 To understand the processes behind the heterogeneous differentiation landscapes along a
96 divergence gradient, a suite of summary statistics, widely used in population genomics, has been
97 employed (Han, et al. 2017; Irwin, et al. 2018). These summary statistics include (i) the average
98 nucleotide diversity within populations (x), (i1) the relative differentiation between populations

99  (Fsr) and (ii1) the absolute divergence between populations (Dxy) (see Box 1).

Box 1: Correlations of genomic landscapes under different scenarios of divergence

Following Han et al (2017) and Irwin et al (2018) four main evolutionary scenarios can be
hypothesized. The first scenario is ‘divergence with gene flow’ where selection at loci
contributing to reproductive isolation restricts gene exchange between diverging species, locally
elevating genomic differentiation (leading to both high Fsr and Dyxy) and reducing genetic
diversity. The second scenario is ‘allopatric selection’ where linked selection occurs
independently within each species after the split leading locally to lower = and higher Fysr.
Allopatric selection has opposite effects on Dyy, leaving it quite unchanged in combination. The
third scenario is ‘recurrent selection’ where the same selective pressure reduces diversity at
selected and linked loci leading to lower polymorphism within populations but similar
divergence, ie. relatively low 7 and Dyy due to its dependence on ancestral polymorphism and
high Fgr. The fourth and last scenario is ‘balancing selection’ where ancestral polymorphism is
maintained between nascent species, resulting in elevated genetic diversity and low genetic
differentiation. Then 7 is expected to be higher than neutral (as is Dyxy, due to the high ancestral
diversity) while Fris expected to be low.

100
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Box 1 Figure: Expected correlations of pairs of summary statistics describing the genomic landscapes of
diversity and differentiation associated with the four different scenarios proposed by Han et al (2017) and
Irwin et al (2018). Positive and negative relationships are shown in red and blue, respectively. In the
second column, local patterns associated with each scenario are described, i.e. (1) divergence with gene
flow (a reproductive barrier to gene flow), (2) allopatric selection (a selective sweep in one of the two
populations), (3) recurrent selection (a footprint of ancestral and still ongoing selection), (4) balancing
selection. Average T corresponds to the averaged value of w for the two species included in the
pairwise comparison. Given that both © and population-scale recombination rates (p) are dependent

on Ne, similar relationships are expected for the relation with Fsp or Dxy and p, as compared with T.
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101 In this study, we focused on white poplars and aspens from the section Populus within
102  the genus Populus. These trees are widely distributed in Eurasia and North America (Supporting
103  Fig. S1 and Table S1) and provide a set of species pairs along the continuum of divergence.
104  Divergence times among species pairs vary from 1.3 to 4.8 million years ago (Shang, et al.
105  2020). This provides an excellent system to investigate the evolution of genomic landscapes of
106  diversity and divergence through time and to better understand the relative contribution of
107  different evolutionary processes to genomic landscapes. We use whole genome resequencing
108  data from eight Populus species (Supporting Fig. S1 and Table S1) to address the following
109  questions: (1) How do genomic landscapes of differentiation accumulate along the divergence
110 gradient? (2) Are differentiation patterns across the genomic landscape repeatable among
111  independent lineages? (3) What are the main evolutionary processes driving these heterogeneous
112 landscapes of diversity and differentiation along the divergence gradient? (4) Which divergence

113 scenario is consistent with ‘differentiation islands’ in each species pair?

114 Results and Discussions

115  Strong interspecific structure despite interspecific introgression

116 A large dataset of 30,539,136 high-quality SNPs was obtained by identifying SNPs among
117  individuals from seven Populus species (after the exclusion of P. giongdaoensis, see Materials
118 and Methods). Neighbor-joining (Fig. 1a) and admixture analyses (based on a subset of 85,204
119  unlinked SNPs, Fig. 1b and Supporting Figs. S4 and S5) identified seven genetic groups, which
120  were consistent with previously identified species boundaries based on phylogenomic analyses
121 (Shang et al, 2020). Additionally, Admixture also indicated potential introgression between the
122 subtropical species P. adenopoda and two recently diverged species, P. davidiana and P.
123 rotundifolia (Fig. 1b and Supporting Fig. S5). Identity-by-descent (IBD) analyses (Fig. 1c) also
124  identified seven reliable clusters, corresponding to the same species boundaries, but further
125  pinpointed some shared haplotypes among the aspen species P. davidiana, P. rotundifolia and P.
126  tremula, indicating recent introgression or incomplete lineage sorting among these species. The
127 IBD results also provide support for extensive introgression between two pairs of highly
128  divergent species with overlapping distributions, including P. alba and P. tremula, and also P.

129  grandidentata and P. tremuloides. These results suggest a scenario of divergence with ongoing
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130  gene flow for some species pairs, either due to isolation-with-migration or secondary contact,

131  maintained even after substantial divergence times (net divergence d,: 0.023 for P. alba - P.

132 tremula; d,: 0.025 for P. tremuloides - P. grandidentata).
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134  Figure 1. Genetic structure among Populus (poplar and aspen) accessions investigated. (a) Neighbor-

135  joining tree based on all SNPs for seven Populus species. Colored clusters represent different species

136  according to legend. (b) Estimated membership of each individual’s genome for K = 5 to K = 8 as

137  estimated by Admixture (best K = 7). (c) Identity by descent (IBD) analysis for seven Populus species.

138  Heatmap colours represent the shared haplotype length between species. (d) The maximum likelihood

139  tree inferred by TreeMix under a strictly bifurcating model with two migration events.
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140 We have further confirmed that the tree topology recovered with TreeMix (Pickrell and
141 Pritchard 2012) was consistent with phylogenetic relationships found in a previous study (Shang,
142 et al. 2020). This expected main topology explained 95.8% of the total variance under a drift-
143 only model of divergence. In addition, TreeMix was used to infer putative migration events in
144  Populus (Fig. 1d). Adding a single migration edge allowed us to account for 98.9% of the total
145  variance (Supporting Fig. S6). This event was inferred from P. grandidentata to P. tremuloides
146  and is consistent with previous reports of extensive hybridization and introgression between
147  these two species (Deacon, et al. 2019). A second migration edge was inferred from P.
148  adenopoda to P. rotundifolia, which allowed us to explain 99.6% of the total variance (Fig. 1d).
149 By adding more migration edges, the variance explained plateaued (increasing by less than 0.1%,
150 which was considered as too marginal, Supporting Fig. S6). Therefore, we considered the
151  bifurcating tree with two migration events as the best scenario in this analysis explaining the
152 historical relationships among these Populus species based on our data and sampling.

153

154  Detecting local genomic patterns consistent with the four scenarios

155 Using non-overlapping 10kb sliding windows spanning the genome, we reported diversity
156  and divergence estimates for all species and species pairs (Fig. 2a). Mean Fsr varied from 0.23
157  between P. davidiana - P. rotundifolia to 0.71 between P. adenopoda - P. grandidentata,
158  whereas Dyy ranged from 0.016 (P. davidiana - P. rotundifolia) to 0.028 (P. adenopoda - P.
159  grandidentata). The average m varied from 3.5x107 in P. grandidentata to 8.4x10” in P.
160  tremuloides (Fig. 2a). The relatively high average = value observed in Populus species is
161  consistent with the large SMC++-inferred effective population sizes for these species
162  (Supplementary Note 1) and the fast LD decay (Supporting Fig. S7). In addition to nucleotide
163  diversity and differentiation across 10kb sliding windows, we also computed p. Since both 7 and
164  p scale with Ne, significant correlations of the diversity and recombination landscapes were
165 expected and were indeed empirically observed for each species (correlations ranging from 0.12

166  for P. adenopoda and 0.23 for P. davidiana).

167 We then identified regions that could be consistent with the alternative divergence scenarios
168  (described in Box 1) for five representative species pairs (Supporting Fig. S8). These species

169  pairs were selected to represent distinct stages across the divergence gradient, from early to late
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170  stages of speciation (blue labels in Fig. 2a). Our results are consistent with a heterogeneous
171 distribution of the four scenarios along the genome for all five species pairs (Fig. 2b, see also
172 Supporting Fig. S9-S13 and Table S2). This generates different genome-wide patterns of
173  correlations among species pairs, rather than a single scenario at play across the whole genome
174  (Fig. 2c, Box 1). The majority of the genome (74.3%-78.7%) in all five species pairs fits a
175  scenario of “allopatric selection”, in which the excess of Fsrwas driven by low z and not higher
176 Dxy (rosa bars in Fig. 2b, Supporting Fig. S9-S13 and Table S2). Such a signature is consistent
177  with recent footprints of positive or background selection on genomic differentiation and is
178  therefore consistent with the hypothesis of a prime role of linked selection (see also
179  Supplementary Note 2 for an explicit detection of selective sweeps). Genomic regions fitting the
180  scenario of ‘balancing selection’ (scenario d in Supporting Fig. S8) are the second most frequent
181 for all investigated species pairs (11.6%-13.9% of detected regions). This scenario is
182  characterized by an elevated Dxy but a low Fgr implying the action of balancing selection in
183  shaping the heterogeneous landscape of divergence. In addition, we found support for
184  divergence-with-gene flow in all five species pairs (5.5%-8.1%), suggesting that genomic
185  heterogeneity in the levels of gene flow due to species barriers play a role in shaping genomic
186  differentiation landscapes. Interestingly, this result holds true for all five species pairs we
187  investigated in detail, i.e., regardless of the level of gene flow or the stage along the Populus
188  speciation continuum. Indeed, limited gene flow was inferred between P. adenopoda - P. alba,
189  but regions with high Dxy were also identified in this highly diverged species pair and could be
190 rather due to shared ancestral polymorphisms. In contrast, at the early stage of divergence, local
191  barriers to gene flow may play an important role in genomic heterogeneous divergence, as
192  significantly positive correlations between Dyxy and Fsr are found (Fig. 3c), which is consistent
193  with a divergence with gene-flow scenario (Box 1 figure). Besides, for early stages of divergence
194  background selection may have too limited power to explain alone regional patterns of

195  accentuated differentiation (Burri 2017b).
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197  Figure 2. (a) Observed variance in Fsy, Dxy for all species pairs, and & and p for seven Populus species,
198  calculated across 10kb windows. The five representative species pairs were labeled in blue. Note that the
199  unit of p is 4Ner and that p is log-scaled. (b) Landscapes of w, Fs, and Dxyon chromosome 1 for the two
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201  and p between P. davidiana and P. rotundifolia. P values less than 0.001 are summarized with three
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203  Conserved genomic landscapes across the continuum of divergence

204 We calculated genome-wide correlations of divergence, nucleotide diversity, and
205 recombination across non-overlapping 10kb windows spanning the whole genome between
206  pairwise comparisons of species or species pairs (Fig. 2a). The degree of correlation of both the
207  relative and absolute divergence landscapes between pairs of species supports a highly conserved
208  pattern among the five investigated species pairs (Fig. 3a-b, between P. adenopoda -P. alba and
209  P. tremula -P. alba for Fsr and between P. rotundifolia - P. davidiana and P. rotundifolia - P.
210  tremula for Dyy). The correlations of Fgr landscapes become stronger when the overall
211  differentiation increases. For instance, the correlation of Fgr between P. tremula - P. alba and P.
212 rotundifolia - P. davidiana is 0.24, while the value for the two most divergent species pairs
213 (between P. adenopoda - P. alba and P. tremuloides - P. grandidentata) is 0.56. This may be the
214  case that the effect of linked selection accumulates as differentiation advances. Comparing
215 landscapes of the nucleotide diversity m between species (Fig. 3c), we observed that the
216  correlation coefficients vary substantially, from 0.16 (P. tremula versus P. grandidentata) to
217 0.52 (P. rotundifolia versus P. davidiana). The correlation generally decreases with the
218  phylogenetic distance. We notably reported the strongest correlation coefficient for the
219  phylogenetically closest pair of species: P. rotundifolia and P. davidiana (Fig. 3c). Pairwise
220  comparisons of the local recombination rates inferred independently for all species also revealed
221  only positive correlations (Fig. 3d), with the highest positive correlation coefficient of p again
222  observed between the two closest related species, P. davidiana and P. rotundifolia (0.47), while
223 the weaker correlation was observed for P. davidiana and P. grandidentata (0.08). Most of the
224 lower values (correlation coefficients < 0.2) were found when comparing P. grandidentata with
225  other species, suggesting again a unique recombination landscape in this species. Interestingly,
226  correlations of m were in general higher than those of p, indicating that not only recombination
227  rate variation shapes nucleotide diversity. Overall, landscapes of genetic diversity, divergence
228  and recombination rate remain relatively stable across different species or species pairs (Fig. 3),
229  which implies relatively conserved genomic features across all species. This phenomenon has
230  also been observed in few other plant and animal model systems (Nosil and Feder 2012; Renaut,

231 etal. 2014; Burri, et al. 2015; Wang, et al. 2020).
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Figure 3. Correlations analyses of within-species diversity or among-species divergence landscapes (a-b)
Correlation coefficients of Fsr or Dxy between species pairs. The species pairs are ordered across the
divergence gradient (arrows). Comparisons containing a shared species were masked (grey squares). (c-
d) Correlation coefficients of w or p between species. The order of the species is based on the order of

species divergence from the root. All the values are significantly positively correlated (p < 0.001).

Correlated patterns of genome-wide variation across the Populus continuum of divergence

The conserved genomic patterns observed across independent species pairs indicates the role

of linked selection in shaping genomic landscapes of differentiation (Fig. 3), in which
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242 background selection could play a major role, as deleterious mutations are much more common
243 than beneficial ones. We then test if background selection may have driven these patterns alone.
244 According to a generally accepted expectation proposed by Burri (2017b), the correlations
245  between genomic variation and genome features should be impacted by background selection.
246  First, the correlation between Fsr and p becomes stronger with divergence, as lineage-specific
247  effects of background selection accumulate with time. Second, Dxr and z are highly correlated
248  with one another under BGS, because diversity can be inherited from ancestors, being passed
249  down over lineage splits. Third, 7 and p remain highly correlated, because background selection

250  continues to play a role in the daughter populations after speciation.

251 The use of several species across a continuum of divergence allows us to evaluate how the
252  correlations evolve through this continuum, from early to late stages of speciation. To this end,
253  we used the level of genetic distance between each species pair (d,: Dxr — mean x) as a proxy for
254  the divergence time and we reported linear relationships between correlation coefficients across
255  the 21 species pairs (Fig. 4). However, the correlation analysis between genomic variation and
256  recombination rate showed different patterns from expectations under background selection. We
257  found negative relationships between Fsr and p, but no significant changes associated with time
258  since divergence (Fig. 4a). This is inconsistent with expectations under background selection
259  (Burri 2017b). Similar investigations for = and Fsr showed significantly negative correlations
260  while the trend became stronger as divergence increases (Fig. 4b). We also recovered a strong
261  positive correlation between 7 and p (Fig. 4c), and a similar trend was found as for the
262  investigation of & and Dyy (Fig. 4d). This trend is inconsistent with the general hypothesis that
263 such correlations should remain highly correlated as divergence increases (Burri 2017b). For
264  each species, we detected significant negative correlations between gene density and 7z in all
265  other Populus species (Supporting Fig. S14). The consistency is either due to background
266  selection or genetic hitchhiking (Nordborg, et al. 2005; Stephan 2010). Pairwise correlations
267  between Dxy and Fsr were significantly positive across the entire divergence continuum, and
268 these correlations tend to become weaker as divergence increases (Fig. 4e). The observed
269  patterns differ from expectations under a simple scenario with background selection as the sole
270  factor shaping the heterogeneous landscape of differentiation across species, indicating that

271  additional evolutionary factors contribute to the observed signal (Burri 2017b). Our analyses in-
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273  Figure 4. Correlations between variables for all species comparisons plotted against the averaged d,,
274 used here as a measure of divergence time. The filled triangles indicate when the correlation coefficients
275  are significant (p < 0.01). The blue triangles correspond to the correlation coefficients of the five
276  representative species pairs shown in Fig. 2a and 3a-b. The results for all the other species pairs are
277  shown in red. The upper panels show how the relationships between Fgr and (a) Dxy, or (b) average ©
278  vary for pairs of species with increasing divergence time; and between average rt and Dyy for all species
279 pairs investigated (c). The lower panels show how the relationships between average p and (d) Fsr, and

280  (e) Dxy, and (f) average & vary for pairs of species with increasing divergence time.
281

282  -dicate that extensive gene flow and incomplete lineage sorting may contribute to differentiation
283  landscapes as well, in particular in the early stages of the speciation continuum. However, with
284  increasing divergence, the reduced gene flow and limited shared standing genetic variation may
285  contribute less to differentiation landscapes. Consistent with our findings, studies in monkey

286  flowers, threespine stickleback, and avian species also suggest that background selection may be
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287  too subtle to drive alone conserved genomic patterns across multiple species (Irwin, et al. 2018;
288  Stankowski, et al. 2019; Rennison, et al. 2020). Indeed, these studies indicate either adaptive
289  introgression or shared standing genetic variation also play major roles in generating similar

290  patterns of genomic differentiation.

291 Conclusions

292  In this study, we investigated the evolution of the genomic landscape across a divergence time
293  continuum of seven species of Populus. By investigating evolution of diversity and
294  differentiation landscapes across this divergence continuum, we provide a valuable case-study in
295 terms of the number of species pairs analyzed (see also Stankowski, et al. 2019). Our analyses
296  support the primary role of linked selection, in particular background selection in shaping the
297  empirical patterns of genomic differentiation, but its contribution alone is not sufficient to
298 maintain the general consistency between these genomic landscapes. The observed positive
299  correlations between Fsr and Dyy in all species pairs indicate that shared ancient polymorphism
300 must also play a very important role. Besides, our study also confirmed the importance of gene
301 flow in this plant system. We observed extensive introgression among species with parapatric
302  distributions, despite a high level of divergence among the most divergent hybridizing species
303 (d, = 0.025). This is notable since the net divergence values are larger than the upper boundary
304 for the ‘grey zone of speciation’ reported by Roux et al. (2016) for both vertebrate and
305 invertebrate animals (d, from 0.005 to 0.02). Further investigations across divergence continua in
306  other plant systems are needed to determine if this is a general pattern in plants, or a feature of
307 the specific demographic and evolutionary history of the Populus system. In the future, the
308 investigation of speciation along multiple species complexes, together with the inclusion of the
309 different scenarios of selection in more sophisticated demographic modeling approaches could

310 represent a major step forward to provide a better description of the processes at play.

311
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312  Materials and methods

313  Sampling, sequencing and read processing

314  Species of the genus Populus are perennial woody plants, dioecious, and widely distributed
315  across the Northern Hemisphere (Stettler, et al. 1996). The genus Populus comprises six sections
316  containing 29 species, among which ten species form the section Populus (Stettler, et al. 1996;
317  Jansson, et al. 2010). The genus Populus is well studied not only due to the trees’ economic and
318 ecological importance, but also due to their small genome sizes (<500Mb), diploidy through the
319  genus (2n = 38), wind pollination, extensive gene flow among species, and sexual and vegetative
320 reproductive strategies (Rajora and Dancik 1992; Martinsen, et al. 2001; Suarez-Gonzalez, et al.
321  2016). Among all woody perennial angiosperm species, the genome of Populus trichocarpa was
322 sequenced and published first (Tuskan, et al. 2006). In addition to P. trichocarpa, another well-

323  annotated genome assembly is available (P. tremula; Schiffthaler, et al. 2019).

324  Two hundred and one samples were collected from eight species of Populus section Populus in
325  Eurasia and North America (supplemental material, Fig. S1 and Table S1). The leaves were dried
326  in silica gel first and were then used for genomic DNA extraction with Plant DNeasy Mini Kit
327  (Qiagen, Germany). To increase the purity of total DNA, we used the NucleoSpin gDNA Clean-
328  up kit (Macherey-Nagel, Germany). Whole genome resequencing was performed with 2 x 150bp
329  paired-end sequencing technology on Illumina HiSeq 3000 sequencer at the Institute of Genetics,

330  University of Bern, Switzerland.

331 All raw sequencing reads were mapped to the P. tremula 2.0 reference genome (Schiffthaler,
332 et al. 2019) using BWA-MEM, as implemented in bwa v0.7.10 (Li 2013). Samtools v1.3.1 was
333 used to remove alignments with mapping quality below 20 (Li, et al. 2009). Read-group
334  information including library, lane, sample identity and duplicates was recorded using Picard
335  v2.5 (http://broadinstitute.github.io/picard/). Sequencing reads around insertions and deletions
336 (i.e., indels) were realigned using RealignerTargetCreator and IndelRealigner in the Genome
337  Analysis Toolkit (GATK v3.6) (DePristo, et al. 2011). We used the GATK HaplotypeCaller and
338  then GenotypeGVCFs for individual SNP calling and for joint genotyping, respectively, among
339  all samples using default parameters. Finally, we performed several filtering steps using GATK

340 to retain only high-quality SNPs: (1) ‘QD’ < 2.0; (2) 'FS > 60.0"; (3) 'MQ < 40.0'; (4)
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341 'ReadPosRankSum < -8.0"; (5) 'SOR > 4.0"; (6) 'MQRankSum < -12.5'Moreover, we also
342  excluded loci with missing data of more than 30% and discarded two individuals with very low

343  depth of  coverage (< 10), as calculated  using VCFtools v0.1.15

344  (http://vcftools.sourceforge.net/man_latest.html). The scripts for SNP calling are available at
345  https://doi.org/10.5281/zenodo.6785344.

346  Family relatedness and population structure analysis

347  To avoid pseudoreplication due to the inclusion of clone mates, we estimated kinship coefficients
348  using the KING toolset for family relationship inference based on pairwise comparisons of SNP
349 data (http://people.virginia.edu/~wc9c/KING/manual.html). The software classifies pairwise
350 relationships into four categories according to the estimated kinship coefficient: a negative
351  kinship coefficient estimation indicates the lack of a close relationship. Estimated kinship
352  coefficients higher than >0.354 correspond to duplicates, while coefficients ranging from [0.177,
353 0.354], [0.0884, 0.177] and [0.0442, 0.0884] correspond to 1*-degree, 2nd—degree, and 3rd—degree
354  relationships, respectively. This analysis identified 13 duplicated genotypes out of a total of 32
355 samples from the Korean population of P. davidiana. In addition, all individuals of P.
356  giongdaoensis were identified as clone mates (supplementary material, Fig. S2). Therefore, these
357 two populations were eliminated from subsequent analyses and only 7 species were kept for the

358  analyses.

359 After discarding individuals with low depth and high inbreeding coefficient (F > 0.9, P.
360 giongdaoensis) as well as clones identified with the KING toolset, we used VCFtools v0.1.15
361  (http://vcftools.sourceforge.net/man_latest.html) to calculate the mean depth of coverage and
362  heterozygosity for each individual. The depth of coverage was relatively homogeneous

363  (supplementary material, Fig. S3) and varied from 21x to 32x.
364

365 We used PLINK (Purcell, et al. 2007) to generate a variance-standardized relationship matrix
366  for principal components analysis (PCA) and a distance matrix to build a neighbor joining tree
367 (NJ-tree) with all filtered SNPs. The NJ tree was constructed using PHYLIP v.3.696
368  (https://evolution.genetics .washington.edu/phylip.html). Both PCA and NJ-tree analyses were
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369 performed based on the full set of SNPs. In addition, we used ADMIXTURE v1.3 for the
370 maximum-likelihood estimation of individual ancestries (Alexander and Lange 2011). First, we
371  generated the input file from a VCF containing unlinked SNPs. Besides, sites with missing data
372  more than 30% have been filtered out. This analysis was run for K from 1 to 10, and the
373  estimated parameter standard errors were generated using 200 bootstrap replicates. The best K
374  was taken to be the one with the lowest cross-validation error. We also performed an IBD blocks
375 analysis using BEAGLE v5.1 (Browning and Browning 2013) to detect identity-by-descent
376  segments between pairs of species. The parameters we used are: window=100,000;

377  overlap=10,000; ibdtrim=100; ibdlod=10.
378  Demographic trajectory reconstruction

379  To reconstruct the demographic history of Populus species, we first inferred the history of
380  species splits and mixture based on genome wide allele frequency data using TreeMix v1.13
381  (Pickrell and Pritchard 2012). We removed the sites with missing data and performed linkage
382  pruning. We then ran TreeMix implementing a default bootstrap and a block size of 500 SNPs (-
383  k=500). The best migration edge was evaluated according to the greatest increase of total
384  variation explained. The plotting R functions of the Treemix suite were then used to visualize the

385  results.
386  Nucleotide diversity and divergence estimates

387 Nucleotide diversity, as well as relative and absolute divergence estimates were calculated based
388 on genotype likelihoods. We used ANGSD v0.93
389  (http://www.popgen.dk/angsd/index.php/ANGSD) to estimate statistical parameters from the
390 BAM files for all Populus species. First, we used ‘dosaf I’ to calculate site allele frequency
391 likelihood and then used ‘realSFS’ to estimate folded site frequency spectra (SFS). Genome-
392  wide diversity and Tajima’s D were calculated with the parameter ‘-doThetas 1’ in ANGSD
393  based on the folded SFS of each species. We selected two population genomic statistics to
394  estimate divergence Fsr and Dxy. We estimated SFS for each population separately and then used
395 it as a prior to generate a 2D-SFS for each species pair. Fsr of each species pair were estimated
396  with the parameters ‘realSFS fst’ based on the 2D-SFS. Finally, we averaged the Fsr value of

397 sites over 10kb windows. To estimate Dyxy, we used ANGSD to calculate minor allele
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398 frequencies with the parameters ‘-GL [ -doMaf 1 -only_proper_pairs 1 -uniqueOnly 1 -
399  remove_bads 1 -C 50 -minMapQ 30 -minQ 20 -minind 4 -SNP_pval le-3 -skipTriallelic 1 -
400  doMajorMinor 5° and then computed Dyxy as follows: Dxy =A;*B,+A,*B;, with A and B being
401  the allele frequencies of A and B, and 1 and 2 being the two populations. We averaged Dxy

402  across 10kb windows.

403 To examine the relationships among diversity, differentiation, and recombination landscapes,
404  we estimated Pearson’s correlation coefficient between pairs of these statistics. These tests were
405  performed across genomic windows for the 21 possible Populus species pairs. Finally, we used

406  d, (Dxy— mean r) as a measure of divergence time.
407  Population-scale recombination rate and linkage disequilibrium

408  We estimated population scaled recombination rate with FastEPRR (Gao, et al. 2016) for each
409  species separately. To eliminate the effect of sample size on the estimation of recombination rate,
410 we downsampled to 13 randomly selected individuals for each species, corresponding to the
411  number of individuals available for Populus davidiana (pdav). First, we filtered all missing and
412 non-biallelic sites with VCFtools and then phased the data with the parameters “impute=true
413  nthreads=20 window=10,000 overlap=1,000 gprobs=false” in Beagle v5.1 (Browning and
414  Browning 2013). Finally, we ran FastEPRR v2.0 (Gao, et al. 2016) with a window size of 10kb.
415  After getting the results, we estimated the correlation between recombination rate of one species
416  to another. To evaluate LD decay, we used PLINK (Purcell, et al. 2007) to obtain LD statistics
417  for each species. Parameters were set as follows: ‘--maf 0.1 --r* gz --ld-window-kb 500 --ld-

418  window 99999 --ld-window-r* 0’. LD decay was finally plotted in R.
419  Divergent regions of exceptional differentiation

420  We further investigated genomic differentiation landscapes across multiple species pairs along
421  the Populus divergence gradient and identified which evolutionary factors contribute to genomic
422  differentiation. We reported genomic regions showing elevated or decreased values of Fsr, Dxy
423  and 7 across 10kb windows. Windows falling above the top 5% or below the bottom 5% of Fsr
424  and Dyy were considered. For these specific windows, we then classified them following the four

425 models of divergence suggested by Irwin ef al. 2018 and Han et al 2017. These four models
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426  differ in the role of gene flow (with or without), or the type of selection (selective sweep,

427  background selection or balancing selection).
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