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Abstract 
 
Cancer occurs more frequently in men while autoimmune diseases (AIDs) occur more frequently 

in women. To explore whether these sex biases have a common basis, we collected 167 AID 

incidence studies from many countries for tissues that have both a cancer type and an AID that 

arise from that tissue.  Analyzing a total of 182 country-specific, tissue-matched cancer-AID 

incidence rate sex bias data pairs, we find that, indeed, the sex biases observed in the incidence 

of AIDs and cancers that occur in the same tissue are positively correlated across human tissues. 

The common key factor whose levels across human tissues are most strongly associated with 

these incidence rate sex biases is the sex bias in the expression of the 37 genes encoded in the 

mitochondrial genome. 

 

Introduction 
 
Both autoimmune diseases (AIDs) and cancers have notably sex-biased incidence rates. Most 

AIDs occur more often in women [1, 2], and most cancers occur more often in men [3, 4, 5]. 

While sex differences in several key biological factors have been implicated in the biased 

incidence rates observed for both AIDs and cancer, including inflammation and immunity, 

metabolism and sex hormones, their mechanistic underpinnings remain largely unexplained [2, 6, 

7]. 

 

 Given these observations, we asked whether the sex biases observed in the incidence of 

AIDs and cancers that occur in the same tissue are correlated across human tissues. This 

question is of fundamental interest, since an affirmative answer may suggest that there are 

common factors underlying their incidence. Establishing such a link between AIDs and cancers 
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could further prompt researchers to explore how pertaining findings in AIDs could cross fertilize 

cancer risk studies and and vice versa, potentially enhancing our ability to prevent and treat these 

diseases. 

 

 To explore whether these sex biases are correlated across human tissues, we collected 

population-based AID incidence studies for tissues that have both a cancer type and an AID that 

arise from that tissue. For countries for which we collected AID incidence data, we gathered 

incidence data for corresponding cancer types from national cancer registries. Analyzing a total 

of 182 country-specific, tissue-matched cancer-AID incidence rate sex bias data pairs, we find 

that the incidence rate sex biases observed for AIDs and cancers that occur in the same tissue are 

positively correlated across human tissues. In addition, we analyzed gene expression data from 

non-diseased tissue samples to determine if sex biases in gene set expression in these tissues are 

correlated with AID and cancer incidence rate sex biases in the same tissues. We find that the top 

positively enriched gene set across human tissues whose expression sex bias is most strongly 

associated with the incidence rate sex biases for AIDs, cancers, and AIDs and cancers considered 

jointly, is the set of 37 genes encoded in the mitochondrial genome. 

 

Results 
 
We surveyed 167 published AID studies and the cancer registries for 29 countries to assemble 

182 country-specific, tissue-matched cancer-AID incidence rate sex bias data pairs (Methods; 

Table S2). For each study, we calculated the incidence rate sex bias (IRSB) as 𝐼𝑅𝑆𝐵 =

log!(𝐼𝑅"#$% 𝐼𝑅&%"#$%⁄ ), where 𝐼𝑅"#$% and 𝐼𝑅&%"#$% are the male and female incidence rates, 

so that a value of zero indicates no bias, a positive value indicates a higher incidence rate in 
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males (termed a “male bias”) and a negative value indicates a higher incidence rate in females 

(similarly termed a “female bias”). Having assembled these data, we computed the mean IRSBs 

to get a view of tissue-matched cancer and AID incidence rate sex bias across tissues, yielding 

global IRSB values for 17 AIDs and 17 cancer types across 12 human tissues, comprising a total 

of 24 cancer-AID data pairs. As expected, most AID incidence rates are female-biased (a 

negative sex-bias score), while most cancer incidence rates are male-biased (a positive sex-bias 

score) (Figure 1A). Figure 1B presents the correlation of the IRSB of these disorders across 

human tissues, summed up across all countries surveyed. Notably, we find an overall positive 

correlation (Pearson correlation r=0.48 with two-sided t-test p=0.017, Spearman correlation 

r=0.43 with two-sided t-test, p=0.034). Repeating this analysis using various levels of cancer 

type classification shows a consistent and robust correlation (Figures S1-2, Table S4). (We used 

Pearson's product-moment correlation coefficient to measure correlation because it takes effect 

size into account. We also provide correlation test results based on Spearman's rank correlation 

coefficient as this assesses correlation differently and may be of interest to the reader. We 

considered a correlation test result significant when the t-test adjusted 𝑝 ≤ 0.05. We used the 

Benjamini-Hochberg method to adjust p-values for multiple tests.) Second, studying this 

correlation in a country-specific manner for the four countries with at least 18 AID-cancer data 

pairs, we find a country-specific significant correlation for Sweden, while the correlations for 

Denmark, the UK and the USA have q-values (p-values corrected for multiple hypotheses 

testing) > 0.05 but are quite close to this threshold, showing a consistent trend for each country 

(Figure 1C). 
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Figure 1. Incidence rate sex biases for cancers and AIDs are positively correlated across 

tissues of origin. (A) Distribution across countries of incidence rate sex bias (X-axis) for 17 

AIDs and 17 cancer types (Y-axis). All data points are shown. Box shows interquartile range 

(IQR, first quartile to third quartile), with center bar representing the median (second quartile). 

Lefthand whisker extends from first quartile (Q1) to Q1-1.5*IQR or to the lowest value point, 

whichever is greater. Righthand whisker extends from third quartile (Q3) to Q3+1.5*IQR or to 

the highest value point, whichever is smaller. Positive median sex bias (red) indicates median 

with higher incidence rate in men; negative median sex bias (blue) indicates median with higher 

incidence rate in women. (B, C) Tissue-matched incidence rate sex biases for cancers (X-axis) 

and for autoimmune diseases (Y-axis) are displayed across different tissues of origin (circle 

color indicates the tissue). Positive values in each of the axes indicate male bias; negative values 

indicate female bias. The dashed line is the simple  linear regression line. Statistics in the top left 

corner include the Pearson's product-moment correlation r-value (Rp) and t-test p-value; and the 

Spearman's rank correlation coefficient value (Rs) and a t-test p-value (t-tests were two-sided for 

the global-level tests and one-sided for the country-level tests). For country-level tests, p-values 

were corrected for multiple testing using the Benjamini-Hochberg method to produce q-values. 

(B) Across-population averages, with the cancer-AID pairs labeled. (C) Population-level data 

for the four countries with the largest numbers of data pairs (at least 18 out of 24 cancer-AID 

pairs), maintaining the tissue color labels used in the top panel (USA, 20 pairs; Denmark, 

Sweden, & UK, each 18 pairs). AIDs: AD, Addison's disease; aGBM, anti-glomerular basement 

membrane nephritis; AHA, Autoimmune hemolytic anemia; AIG, Autoimmune gastritis; AIH, 

Autoimmune hepatitis; CD, Celiac disease; DLE, Discoid lupus erythematosus; GH, Graves' 

hyperthyroidism; HH, Hashimoto's hypothyroidism; ITP, Immune thrombocytopenic purpura; 
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LS, Localized scleroderma; MN, primary autoimmune membranous nephritis; MS, Multiple 

sclerosis; PBC, Primary biliary cholangitis; Pso, Psoriasis; T1D, Type 1 diabetes; UC, 

Ulcerative colitis. Cancers: ADGL, adrenal gland cancer; BCS, liver (biliary) 

cholangiosarcoma; COLON, colon cancer; CNS, central nervous system cancer; GBBT, 

gallbladder & biliary tract cancer; KDNY, kidney cancer; LIC, liver carcinoma; LIHB, liver 

hepatoblastoma; LIS, liver sarcoma; ML, myeloid leukemia (acute and chronic); MM, multiple 

myeloma; PANC, pancreatic cancer; SKM, skin melanoma; SMINT, small intestine cancer; 

STOM, stomach cancer; THC, thyroid carcinoma; THS, thyroid sarcoma. 

 

 Observing this fundamental correlation, we next asked if we could identify factors that 

might jointly modulate both the incidence rate sex bias observed in cancer and in AID across 

human tissues. We conducted both an unbiased general investigation and a hypothesis-driven 

one. We specifically examined four major factors that have been previously associated in the 

literature with the incidence rates of cancers and AIDs and/or their incidence rate sex biases. 

Those include (1) inflammatory or immune activity in the tissue [8, 9]; (2) expression of immune 

checkpoint genes [10, 11]; (3) the extent of X-chromosome inactivation [6, 12]; and finally, (4) 

mitochondrial activity [13, 14] and mitochondrial DNA copy number [15, 16].  

 

 Having these literature-driven specific hypotheses in mind, we still have chosen to begin 

by systematically charting the landscape of gene sets whose sex-biased enrichment in normal 

tissues is associated with IRSB in cancers and AIDs in an unbiased manner (see subsection 'Gene 

expression analysis of human tissues' in Methods). We analyzed gene expression data from non-

diseased tissue samples from GTEx v8 [17], for tissues in which both cancer and AID arise; 
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GTEx data were available for 10 of the 12 tissues we studied above (Table S3). First, (1) for 

each gene in each tissue we calculated the expression sex bias (ESB) as 𝐸𝑆𝐵 =

log!(𝐺𝐸"#$% 𝐺𝐸&%"#$%⁄ ), where 𝐺𝐸"#$% or 𝐺𝐸&%"#$% denote the average gene expression in 

TPM (transcripts-per-million) for male or female samples of the tissue. (2) Second, we computed 

the correlation of the expression sex bias of each gene with AID or cancer IRSBs (we abbreviate 

these correlations as corrESB/IRSB). We also computed aggregated or "joint" 𝑐𝑜𝑟𝑟%'( )*'(⁄  values 

as the average for each gene of its 𝑐𝑜𝑟𝑟%'( )*'(⁄  value for AID IRSBs and its 𝑐𝑜𝑟𝑟%'( )*'(⁄  value 

for cancer IRSBs. (3) Finally, for each of these three phenotypes, we ranked all the genes from 

top to bottom by the corrESB/IRSB values and performed a gene set enrichment analysis (GSEA) 

[18, 19] to identify gene sets and pathways that were either significantly positively or negatively 

associated with IRSB. In total, this analysis covered 7763 gene sets, including gene ontology 

biological process sets and chromosome-location based sets from MSigDB [20], three X-

chromosome gene sets (fully escape X-inactivation, variably escape X-inactivation, and 

pseudoautosomal region) [21], and finally, the two separate sets of nuclear-encoded genes whose 

protein products localize to the mitochondria and the 37 mitochondrial-genome-encoded genes 

[22]. 

 

 Figure 2 shows the top positively and negatively corrESB/IRSB enriched sets with p ≤ 10-3 

after multiple hypotheses test correction for AID incidence (positive, Panel A; negative Panel B), 

for cancer incidence (positive, Panel C; negative Panel D), and their joint aggregate enrichment 

for both AID and cancer incidence (positive, Panel E, negative, Panel F). Strikingly, the top 

enriched gene set (highest normalized enrichment score (NES)) in all three phenotypes is the set 

of 37 genes encoded on the mitochondrial genome, including many genes with high corrESB/IRSB 
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values. In contrast, while the (much larger) set of all genes encoding proteins that localize to the 

mitochondria is significantly enriched for cancer IRSB, it is not significantly enriched for AID 

IRSB, where it is only ranked 3842 out of 6420 (negatively) enriched gene sets. Several 

immune-related gene sets also show high and significant corrESB/IRSB positive enrichments in 

accordance with one of our initial hypotheses (Figure 2). However, the three different X 

chromosome gene sets studied in light of another one of our original hypotheses are not 

significantly enriched in corrESB/IRSB values. Finally, several mRNA processing gene sets show 

strong negative significant correlations and high negative NES scores with AID and cancer 

incidence.  

 

 

Figure 2. GSEA results for correlations of gene expression sex bias with IRSB. Top 5 

positively and negatively enriched gene sets, with adjusted p ≤ 10-3, for AID incidence (positive, 

A; negative, B), cancer incidence (positive, C; negative, D), and AIDs and cancers jointly 

(positive, E; negative, F). For each gene set the plot shows: (Gene set) name;(Gene ranks) bar 
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plot of corrESB/IRSB values ordered from highest correlation at the left to lowest at the right (bars 

for genes in the gene set are black); (NES) normalized enrichment score; and (padj) Benjamini-

Hochberg corrected p-value. Abbreviated gene set names: (1) Gene Ontology Biological 

Process (GOBP) Nuclear transcribed mRNA catabolic process nonsense-mediated decay; (2) 

GOBP Humoral immune response mediated by circulating immunoglobulin; (3) GOBP Nuclear 

transcribed mRNA catabolic process. 

 

To obtain a clearer visualization of the key positively enriched gene sets described above, 

we summarized the expression of the genes composing a given gene set in a normal GTEx tissue 

by computing their geometric mean, giving us a single activity summary value (see subsection 

'Gene expression analysis of human tissues' in Methods). We then computed the correlation 

across tissues between these summary values of the gene sets in each normal tissue and the 

IRSBs of cancers or AIDs (Figure 3). In concordance with the results of the unbiased analysis 

presented above, we do not observe a significant correlation between cancer or AID incidence 

rate sex bias and the expression of key immune checkpoint genes (CTLA-4, PD-1, or PD-L1, 

Figure S3), or the extent of X-chromosome inactivation (quantified by the expression of XIST 

lncRNA [23], Figure S4). We also do not find such significant consistent correlations for the top 

immune gene sets found via the unbiased analysis (previously shown in Figure 2).  However, we 

do find strong correlations between these summary values for the mitochondrial gene set, which 

was ranked highest in Figure 2 (gene set "MT"): Remarkably, we find that the sex bias of 

mtRNA expression in GTEx tissues is positively correlated both with AID incidence rate sex 

bias (Pearson r=0.56, one-sided t-test p=0.018) and with cancer incidence rate sex bias (Pearson 

r=0.67, one-sided t-test p=0.0058) (Figures 3A and 3B; the correlations between mtRNA 
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expression and cancer and AID incidence rates for each of the sexes individually are provided in 

Figure S5). The significance of these two associations is further supported by observing that the 

basic correlation between cancer and AID IRSBs becomes insignificant when we compute the 

partial correlation between these two variables while controlling for the mtRNA expression bias 

(Pearson r=0.21, two-sided t-test p=0.42). Overall, these findings are in line with previous 

reports linking mitochondrial activity [13, 14] and mtDNA copy number [15, 16] with higher 

AID and cancer risk.  

 

 

Figure 3. Mitochondrial gene expression is a strong correlate of sex biases in incidence rate of 

autoimmune diseases and cancer types across tissues. The correlation between expression ratio 

of mitochondrial gene expression in male vs female tissues (X-axis) with the incidence rate sex 

biases of (A) autoimmune diseases (Y-axis) and (B) cancer types (Y-axis) across human tissues 

(circle color indicates the tissue). AIDs: AD, Addison's disease; aGBM, anti-glomerular 

basement membrane nephritis; AIG, Autoimmune gastritis; AIH, Autoimmune hepatitis; CD, 

Celiac disease; DLE, Discoid lupus erythematosus; GH, Graves' hyperthyroidism; HH, 
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Hashimoto's hypothyroidism; LS, Localized scleroderma; MN, primary autoimmune 

membranous nephritis; MS, Multiple sclerosis; Pso, Psoriasis; T1D, Type 1 diabetes; UC, 

Ulcerative colitis. Cancers: ADGL, adrenal gland cancer; CNS, central nervous system cancer; 

COLON, colon cancer; KDNY, kidney cancer; LIC, liver carcinoma; LIHB, liver 

hepatoblastoma; LIS, liver sarcoma; PANC, pancreatic cancer; SMINT, small intestine cancer; 

SKM, skin melanoma; STOM, stomach cancer; THC, thyroid carcinoma; THS, thyroid sarcoma. 

Discussion 

The correlative findings between the expression of mitochondrially encoded genes and cancer 

and AID IRSBs across human tissues are quite surprising, giving rise to two further fundamental 

questions. First, what biological mechanisms may be associated with sex differences in overall 

mitochondrial functioning? One potential candidate may be estrogen signaling, which has been 

shown to regulate at least four mitochondrial functions relevant to health and disease [24], 

including, (1) biogenesis of mitochondria, whose levels differ across sexes and tissues [25], (2) 

T-cell metabolism (including mitochondrial activity measured by Seahorse assays) and T-cell 

survival (estimated by retention of inner membrane potential) [26], (3) unfolded protein response 

[27] (mediated partly via mitochondrial superoxide dismutase) [28], and (4) generation of 

reactive oxygen species (ROS) [29]. Second, how might sex differences in mitochondria 

functioning modulate the sex-biased incidence observed in cancers and AIDs? One possible 

mechanism is through differences in ROS production, which notably involves quite a few 

mitochondrially encoded genes: Increased mitochondrial ROS generation has been associated 

with both the initiation and intensification of autoimmunity in several organ-specific AIDs [13] 

and with cancer initiation and progression [14]. More generally, alterations in mtDNA copy 
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number have been associated with increased risk of lymphoma and breast cancer, [15] and 

somatic mtDNA mutations producing mutated peptides may trigger autoimmunity [16]. 

 

Our analyses have a few limitations and we list three main ones. First, the majority of our 

AID-cancer data pairs are from European countries (113 of 182 [62%]), which might introduce 

geographic, ethnic, or social biases. Second, factors beyond biological drivers, such as sex 

differences in the propensity to seek medical care or reporting of specific diseases, are not 

characterized in the datasets studied. However, putative disease-specific effects may be 

somewhat mitigated given the opposite tendency of sex biases for AIDs and cancers in a study of 

tissue-specific correlations like ours. Third, although much of the incidence rate data is age-

standardized, we could not take additional steps to account for age-related incidence rate 

differences as the sample sizes available are too small to enable doing such an analysis in a 

robust manner. 

 

As in humans, sex differences have been reported in animal studies of diseases, which 

has prompted us to search the literature and survey previous studies of sex bias in disease 

incidence in rodent models of cancers and AIDs.  We focused on studies of sex difference in 

spontaneous and/or autochthonous carcinogenesis by either carcinogen treatment or genetic 

engineering, excluding transplantation of syngeneic animals because these animals do not model 

disease development (representative examples are listed in Tables S5-6 for cancer and AIDs 

respectively.) Table S5 lists our cancer incidence findings, where the sex bias was male skewed 

in colon, liver, kidney, pancreas, and stomach, and higher in females in the thyroid, consistent 

with the human reports. Interestingly, for colon, liver, kidney, pancreas, and thyroid, the sex bias 
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disappeared or was reduced when the animals were subjected to castration/ovariectomy or 

hormone treatment, supporting the notion that the differences in these organs are likely to be 

driven by sex hormones. Table S6 lists AID rodent models that allow for direct comparisons to 

the human data.  The AID sex bias reported is however generally higher in males than in 

females, in difference from the human findings, but the higher male bias observed in kidney, 

colon, pancreas, and skin compared to the thyroid is maintained.  

 

 In summary, we find a surprising overall positive correlation between cancer and AID 

incidence rate sex biases across many different human tissues. Among key factors that have been 

previously associated with sex bias in either AID or cancer incidence, we find that the sex bias in 

the expression of mitochondrially encoded genes (and possibly in the expression of a few 

immune pathways) stands out as a key factor whose aggregate level across human tissues is quite 

strongly associated with these incidence rate sex biases. Our findings thus call for further 

mechanistic studies on the role of mitochondrial gene expression in determining cancer and AID 

incidence and their incidence rate sex biases. 

 

Methods 

Overview 
 
Our analysis is divided into two main parts: curation and analysis of disease incidence rate data; 

and investigation of associations between incidence rates and gene expression in corresponding 

non-diseased human tissue samples. First we studied the association of incidence rates for AIDs 

and cancers occurring in the same tissue. We collected incidence data for AIDs from published 

studies, and for each country for which we found incidence data for a given AID, we collected 
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incidence data from that country's national cancer registry for cancers occurring in the same 

tissue as the AID. We matched AID and cancer incidence data by tissue and by country to 

produce country-specific tissue-matched AID-cancer incidence rate data pairs. We then 

computed across-tissue correlations between AIDs and cancers for male incidence rates, female 

incidence rates, overall incidence rates, and incidence rate sex biases, at both the individual 

country level and the across-country global level. 

 

 Next we used non-diseased human tissue transcriptomic data from GTEx [17] to 

investigate possible factors across human tissues that might be associated with incidence rate sex 

biases. We computed correlations between incidence rate sex biases and either expression of 

individual genes or enrichment of human functional gene sets across tissues.  

 

Autoimmune disease incidence data curation 
 
We first performed an extensive literature search for sex-specific incidence data for AIDs. For 

each AID, we searched for original studies mentioning the disease and epidemiology, prevalence, 

incidence, incidence rate, or sex bias using Google Scholar. We considered only population-based 

studies that use clinical inclusion criteria and have at least 25 cases for a given disease. We 

evaluated whether or not a study was population-based using either (a) the characteristics of the 

existing data source used in the study (e.g., a mandatory country-wide reporting registry) or (b) 

estimates showing that the data collected in the study were likely representative of the overall 

population. We evaluated whether or not a study used clinical diagnostic criteria by looking for 

use of a disease-specific blood test, a histological assay, or other evidence used  to confirm 

diagnosis and rule out similar non-autoimmune conditions. Additionally, we considered only AIDs 
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with a focal primary tissue (e.g., we included ulcerative colitis but excluded Crohn's disease), for 

which we could find incidence data for at least three countries. We excluded sex-specific tissues.  

 

 We collected 188 AID-country incidence rate datasets from 167 studies. For each dataset, 

we calculated the incidence rate sex bias (IRSB) as  

𝐼𝑅𝑆𝐵 = log!(𝐼𝑅"#$% 𝐼𝑅&%"#$%⁄ ) (𝐴) 

so that a value of zero indicates no bias, a positive value indicates a higher incidence rate in 

males (termed a “male bias”) and a negative value indicates a higher incidence rate in females 

(similarly termed a “female bias”). A majority of the studies provided sex-specific (123 of 188 

datasets, 65%) and total (143 of 188, 76%) incidence rates (IR): 

𝐼𝑅,-, =	𝑐𝑎𝑠𝑒𝑠,-, 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛,-,⁄ (𝐵) 

(where: "POP" stands for either the "MALE", "FEMALE", or "TOTAL" population; 

𝑐𝑎𝑠𝑒𝑠.-.#$ = 𝑐𝑎𝑠𝑒𝑠"#$% + 𝑐𝑎𝑠𝑒𝑠&%"#$%; and 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛.-.#$ = 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛"#$% +

𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛&%"#$%). Most studies reported IR as cases per year per 105 persons; those using a 

different scale were converted to this scale. We used "crude" incidence rates (as defined above) 

when available; some studies provided only age-adjusted incidence rates.  

 
 
Estimating incidence rates 

For each of the four incidence rate measures we consider (IRSB, IRF, IRM, and RTOTAL) the 

majority of studies provided a value, while other studies gave values for other measures (i.e. 

different incidence rates or case counts) that can be used to estimate the value of that measure. 

For a given measure we can divide our AID-country datasets into four groups (Table 1): (1) 

those with the measure's value but not the values of other measures we can use to estimate that 
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value; (2) those with the measure's value and the values of other measures we can use to estimate 

that value; (3) those without the measure's value but with the values of other measures we can 

use to estimate that value; and (4) those with neither the measure's value nor the values of 

measures we can use to estimate that value. For each measure, we assessed the accuracy of our 

estimator by comparing the actual and estimated values for datasets in group (2), and then used 

that same estimator to estimate values for datasets in group (3).  

 

Table 1. Measures to estimate, measures needed for estimators, and numbers of datasets with 

values for these measures. Numbers indicate dataset count and percentage (out of 188 total 

datasets) for each group of datasets (1-4) described in the text.  

(a) 
Measure to 

estimate 

(b)  
Measures 
needed for 
estimator 

(1) 
Datasets 
with (a) 

(2) 
Datasets 

with (a) & 
(b) 

(3) 
Datasets 

with (b) but 
not (a) 

(4) 
Datasets 

with neither 
(a) nor (a) 

IRSB casesM/casesF 125 (66%) 105 (56%) 63 (34%) 0 (0%) 

IRM, IRF 
IRTOTAL, 

casesM/casesF 
 

123 (65%) 84 (45%) 41 (22%) 24 (13%) 

IRTOTAL IRM, IRF 143 (76%) 101 (54%) 22 (12%) 23 (12%) 
 

 

 The estimators for all four measures require a value for the population's sex ratio  

𝑆𝑒𝑥_𝑅𝑎𝑡𝑖𝑜 =
𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛&%"#$%
𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛"#$%

(𝐶) 

As only one study provided the background population sex ratio, we estimated measures using 

either a sex ratio of 1:1 or the sex ratio for the corresponding population (matching the specific 
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country during the years the study was conducted) according to United Nations estimates [30]. 

Based on (A), (B), and (C), we estimated IRSB, IRF, IRM, and RTOTAL as: 

𝐼𝑅𝑆𝐵 = log! D
𝑐𝑎𝑠𝑒𝑠"#$%
𝑐𝑎𝑠𝑒𝑠&%"#$%

× 𝑆𝑒𝑥_𝑅𝑎𝑡𝑖𝑜F  

𝐼𝑅&%"#$% = 𝐼𝑅.-.#$ ×
𝑐𝑎𝑠𝑒𝑠&%"#$%
𝑐𝑎𝑠𝑒𝑠.-.#$

× (1 + 1 𝑆𝑒𝑥_𝑅𝑎𝑡𝑖𝑜⁄ ) 

𝐼𝑅"#$% = 𝐼𝑅.-.#$ ×
𝑐𝑎𝑠𝑒𝑠"#$%
𝑐𝑎𝑠𝑒𝑠.-.#$

× (1 + 𝑆𝑒𝑥_𝑅𝑎𝑡𝑖𝑜) 

𝐼𝑅.-.#$ =	 𝐼𝑅" × D
1

1 + 𝑆𝑒𝑥_𝑅𝑎𝑡𝑖𝑜F + 𝐼𝑅& × D
𝑆𝑒𝑥_𝑅𝑎𝑡𝑖𝑜

1 + 𝑆𝑒𝑥_𝑅𝑎𝑡𝑖𝑜F 

 

 
 To assess the accuracy of our estimators we compared the actual and estimated values for 

datasets in group (2) in two ways (Table 2). First, we computed the Pearson's correlation 

coefficient r between the two values. All estimators were accurate: for each the correlation 

coefficient was close to 1 and the one-sided t-test was significant. Second, we computed a simple 

linear model of the form 𝑥/012/3 = 𝛽 × 𝑥45167/14 + 𝛼. All estimators were accurate: for each the 

coefficient 𝛽 was close to 1 and the  r2 close to 1 (where r is the Pearson's correlation 

coefficient). For all four measures the estimators performed well, but for each measure the 

estimator using a sex ratio of 1:1 performed as good as or slightly better than the estimator using 

the sex ratio based on the United Nations estimates. Accordingly, for our analyses we used 

estimators with a sex ratio of 1:1. For all of our analyses, results computed using only given 

values, and not estimates, were consistent with results computed using both given and estimated 

values (the code for this paper includes scripts to reproduce all tests and figures using data that 

either includes or excludes estimated values.) 
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Table 2. Pearson's correlation coefficient and simple linear model results for estimators. For 

each measure, each of two estimators (with sex ratio as 1:1 or from the United Nations 

estimates) is shown with its simple linear model coefficient 𝛽, intercept 𝛼, and r2, and its 

Pearson's correlation coefficient r and one-sided t-test p-value. 

Measure Estimator 𝜷 𝜶 r2 r p 

𝐼𝑅𝑆𝐵 
𝐼𝑅𝑆𝐵8:8 0.922 -0.0254 0.966 0.983 6.04E-78 

𝐼𝑅𝑆𝐵:; 0.923 -0.0585 0.963 0.981 5.54E-76 

𝐼𝑅&%"#$% 
𝐼𝑅&%"#$%,8:8 1.020 -0.303 0.997 0.998 1.15E-107 

𝐼𝑅&%"#$%,:; 1.035 -0.307 0.997 0.999 5.04E-105 

𝐼𝑅"#$% 
𝐼𝑅"#$%,8:8 0.975 0.228 0.997 0.999 6.10E-108 

𝐼𝑅"#$%,:; 0.959 0.236 0.997 0.999 2.26E-105 

𝐼𝑅.-.#$ 
𝐼𝑅.-.#$;8:8 1.013 -0.123 1.000 1.000 1.09E-182 

𝐼𝑅.-.#$;:; 1.013 -0.136 1.000 1.000 1.39E-182 

 

 

Combining data for each country 

When multiple studies were available for an AID in a country, we used the across-study arithmetic 

mean of each incidence rate measure as the measure value for that AID-country pair (for 𝐼𝑅"#$%, 

𝐼𝑅&%"#$%, 𝐼𝑅.-.#$, or 𝐼𝑅𝑆𝐵 measures). Overall, surveying 167 published studies 

(Supplementary References), we calculated 133 country-specific AID incidence rate sex bias 
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data points for 17 AIDs in 33 countries (Table S1, e.g., the mean incidence rate sex bias for Type 

1 diabetes in Spain is one such data point). 

Cancer incidence data curation 
 
Cancer incidence rates were calculated from GLOBOCAN [31] data for all but three countries. 

For each country for which we had AID data, we computed each cancer type's incidence rate 

measure for each year and then averaged the yearly measure values to produce a single measure 

value for each country-cancer pair (for 𝐼𝑅"#$%, 𝐼𝑅&%"#$%, 𝐼𝑅.-.#$, or 𝐼𝑅𝑆𝐵 measures). Cancer 

data for Finland [32], Sweden [33], and Taiwan [34] were collected from country-specific 

databases. For Finland and Sweden we calculated each incidence rate measure as the across-year 

average yearly measure for each cancer type for the most recent 20 years (1999-2019) for each 

country. For Taiwan we calculated each measure as the average of the measure for the two 

available time periods (1998-2002, 2003-2007). Overall, we calculated 165 country-specific 

cancer incidence rate sex bias data points for 17 cancer subtypes in 29 countries (Table S2; for 

an additional four countries we were unable to find population-level cancer incidence data). 

Pairing AID and cancer incidence data 
 
Across 12 human tissues we paired 17 AIDs with 17 cancer types for a total of 24 cancer-AID 

data pairs. To compute the correlation between AIDs and cancer incidence rate sex biases across 

tissues, we grouped AIDs with matched cancers occurring in the same tissue in the same country 

(Table S3). For example, for the UK, we paired thyroid AID data points for Hashimoto's 

hypothyroidism and Graves' hyperthyroidism with cancer data points for thyroid carcinoma and 

thyroid sarcoma, resulting in 4 possible thyroid cancer-AID pairs. The 133 country-specific AID 

incidence rate sex bias data points were matched to the 165 country-specific cancer incidence 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 3, 2022. ; https://doi.org/10.1101/2021.09.07.459207doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.07.459207
http://creativecommons.org/licenses/by-nc-nd/4.0/


21 
 

rate sex bias data points, yielding a total of 182 country-specific, tissue-matched cancer-AID 

incidence rate sex bias data pairs that are jointly present in both the AID and cancer datasets  

(Table S2).  

Gene expression analysis of human tissues 
 
Gene expression was calculated from GTEx v8 data [17] provided in transcripts-per-million 

(TPM). For gene i and tissue k with m samples we calculated the within-tissue gene expression 

(GE) as the arithmetic mean TPM across samples as (where "POP" stands for either the "MALE", 

"FEMALE", or "TOTAL" population): 

𝐺𝐸,-,,6,> =
1
𝑚M 𝑇𝑃𝑀,-,,6,?,>

7

?@8
 

and the gene expression sex bias (ESB) as: 

𝐸𝑆𝐵6,> =	 log!Q𝐺𝐸"#$%,6,> 𝐺𝐸&%"#$%,6,>⁄ R 

where both 𝐺𝐸"#$%,6,> and 𝐺𝐸&%"#$%,6,> are positive. 

 For a set of n genes N and tissue k with m samples, we calculated the within-tissue gene set 

activity (GSA) as the geometric mean of gene expression across genes: 

𝐺𝑆𝐴,-,,;,> = DS 𝐺𝐸,-,,6,>
A

6@8
F
8 A⁄

 

and the gene set activity sex bias (ASB) as: 

𝐴𝑆𝐵;,> = log!Q𝐺𝑆𝐴"#$%,;,> 𝐺𝑆𝐴&%"#$%,;,>⁄ R 

where both 𝐺𝑆𝐴"#$%,;,> and 𝐺𝑆𝐴&%"#$%,;,> are positive. 

Gene set enrichment analysis across human functional pathways  
 
We performed gene set enrichment analysis (GSEA) in three steps. First, for each gene in each 

tissue we calculated the gene expression sex bias (ESB). Second, we computed the across-tissue 
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Spearman correlation of the ESB of each gene with AID or cancer IRSBs (we abbreviate these 

correlations as 𝑐𝑜𝑟𝑟%'( )*'(⁄ ). We also computed aggregated or "joint" 𝑐𝑜𝑟𝑟%'( )*'(⁄  values as the 

average for each gene of its 𝑐𝑜𝑟𝑟%'( )*'(⁄  value for AID IRSBs and its 𝑐𝑜𝑟𝑟%'( )*'(⁄  value for 

cancer IRSBs. Finally, for each of these three phenotypes, we ordered all the genes from greatest 

to least by the 𝑐𝑜𝑟𝑟%'( )*'(⁄  values and performed a GSEA [19] to identify gene sets and pathways 

that were either significantly positively or negatively associated with IRSB (for gene sets used see 

Results). We considered GSEA results significant if the adjusted 𝑝 ≤ 10BC (we used the 

Benjamini-Hochberg method to adjust p-values for multiple tests) and ranked the results by 

normalized enrichment score (NES) [19]. 

Code and data availability 
 
Code and data used for analysis are available on Zenodo at [link]. Statistical analyses and figure 

preparation were performed on a Macintosh computer (OS 12.5.1; 32GB memory; 8-core 2.3GHz 

processor) in RStudio (v2021.09.0+351 "Ghost Orchid" release) [35] running the R language 

(v4.1.2) [36]. Processed data files are provided with the scripts. All data used was publicly 

available. Plots produced in R were aligned and lettered using Inkscape (v1.0) (inkscape.org) to 

produce multi-plot figures. 
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