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Abstract:  31 

Pancreatic cancer is an aggressive disease that typically presents late with poor patient outcomes. 32 
There is a pronounced medical need for early detection of pancreatic cancer, which can be 33 
addressed by identifying high-risk populations. Here we apply artificial intelligence (AI) methods 34 
to a dataset of more than 6 million patient records with 24,000 pancreatic cancer cases in the 35 
Danish National Patient Registry (Denmark) and, for comparison, a dataset of one million records 36 
with 4,000 pancreatic cancer cases in the Mass General Brigham Healthcare System (Boston, US). 37 
In contrast to existing methods that do not use temporal information, we explicitly train machine 38 
learning models on the time sequence of diseases in patient clinical histories and test the ability to 39 
predict cancer occurrence in time intervals of 3 to 60 months after risk assessment. We extract 40 
from the AI machine an estimate of the contribution to prediction of individual disease features. 41 
For cancer occurrence within 36 months, the performance of the best model (AUROC=0.88), 42 
trained and tested on disease trajectories in the Danish dataset, substantially exceeds that of a 43 
model without time information, even when disease events within a 3 month window before cancer 44 
diagnosis are excluded from training (AUROC[3m]=0.84). Independent training and testing on the 45 
Boston dataset reaches comparable performance (AUROC=0.87, AUROC[3m]=0.80), while 46 
cross-application of the Danish deep learning model on the Boston dataset has lower accuracy 47 
(AUROC=0.78, AUROC[3m]=0.70), indicating a requirement of independent training in health 48 
systems with different coding practices. These results raise the state-of-the-art level of 49 
performance of cancer risk prediction on real-world data sets and provide support for the design 50 
of future screening trials for high-risk patients, e.g., to serial imaging or blood-based biomarkers 51 
to facilitate earlier cancer detection. AI on real-world clinical records has the potential to shift 52 
focus from treatment of late-stage to early-stage cancer, benefiting patients by improving lifespan 53 
and quality of life.  54 
 55 
 56 
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Introduction 58 

[[ Clinical need for early detection ]] 59 
Pancreatic cancer is a leading cause of cancer-related deaths worldwide with increasing incidence 60 
(Rahib et al. 2014). Early diagnosis of pancreatic cancer is a key challenge, as the disease is 61 
typically detected at a late stage. Approximately 80% of pancreatic cancer patients are diagnosed 62 
with locally advanced or distant metastatic disease, when long-term survival is extremely 63 
uncommon (2-9% of patients at 5-years) (McGuigan et al. 2018). However, patients who present 64 
with early-stage disease can be cured by a combination of surgery, chemotherapy and radiotherapy. 65 
Indeed, more than 80% of patients with stage IA pancreatic ductal adenocarcinoma (PDAC) 66 
achieve 5-year overall survival [National Cancer Institute, USA, (Blackford et al. 2020)]. Thus, a 67 
better understanding of the risk factors for pancreatic cancer and detection at early stages has great 68 
potential to improve patient survival and reduce overall mortality from this aggressive malignancy.  69 

[[ Known risk factors of limited use ]] 70 
The incidence rate of pancreatic cancer is substantially lower compared with other high mortality 71 
cancers, such as lung, breast and colorectal cancer. Thus, age-based population screening is 72 
difficult due to poor positive predictive values for potential screening tests and large numbers of 73 
futile evaluations for patients with false-positive results. Moreover, few high-penetrance risk 74 
factors are known for pancreatic cancer impeding early diagnosis of this disease. Risk of pancreatic 75 
cancer has been assessed for many years based on family history, behavioral and clinical risk 76 
factors and, more recently, circulating biomarkers  and genetic predisposition (Amundadottir et al. 77 
2009; Petersen et al. 2010; D. Li et al. 2012; Wolpin et al. 2014; Klein et al. 2018; Kim et al. 2020). 78 
Currently, some patients with familial risk due to family history or inherited genetic mutation or 79 
cystic lesions of the pancreas undergo serial pancreas-directed imaging to detect early pancreatic 80 
cancers, but these patients account for less than 20% of those who develop pancreatic cancer. To 81 
address the challenge of early detection of pancreatic cancer in the general population (Pereira et 82 
al. 2020; Singhi et al. 2019), we aim to predict the risk of pancreatic cancer from real-world 83 
longitudinal clinical records and identify high-risk patients, which will facilitate the design of 84 
screening trials for early detection. Development of realistic risk prediction methods requires 85 
access to high-quality clinical records and a choice of appropriate machine learning methods, in 86 
particular deep learning techniques that work on large and noisy sequential datasets (Dietterich 87 
2002; LeCun, Bengio, and Hinton 2015). 88 

[[ Earlier clinical ML work ]] 89 
We build on earlier work in the field of risk assessment based on clinical data and disease 90 
trajectories using machine learning technology (Nielsen et al. 2019; Thorsen-Meyer et al. 2020). 91 
AI methods have been applied to a number of clinical decision support problems (Shickel et al. 92 
2018), such as choosing optimal time intervals for actions in intensive care units (Hyland et al. 93 
2020), assessing cancer risk from images (Esteva et al. 2017; Yala et al. 2019; Yamada et al. 2019), 94 
predicting the risk of potentially acute disease progression, such as in kidney injury (Tomašev et 95 
al. 2019) and the likelihood of a next diagnosis based on past EHR sequences, in analogy to natural 96 
language processing (Y. Li et al. 2020).  97 
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[[ Earlier ML work on PDAC risk ]] 98 
For risk assessment of pancreatic cancer, recently machine learning predictive models using 99 
patient records have been built using health interview survey data (Muhammad et al. 2019), 100 
general practitioners' health records controlled against patients with other cancer types (Malhotra 101 
et al. 2021), real-world hospital system data (Appelbaum, Cambronero, et al. 2021; X. Li et al. 102 
2020), and from an electronic health record (EHR) database provided by TriNetX, LLC. (Chen et 103 
al. 2021; Appelbaum, Berg, et al. 2021). While demonstrating the information value of health 104 
records for cancer risk, these previous studies used only the occurrence of disease codes, not the 105 
time sequence of disease states in a patient trajectory - in analogy to the ‘bag-of-words’ models in 106 
natural language processing that ignore the actual sequence of words. Previous studies had used 107 
the Danish health registries to generate population-wide disease trajectories, but in a non-108 
predictive manner (Hu et al. 2019; Jensen et al. 2014).  109 

[[ Advance here - better data and better ML]] 110 
Here we exploit the power of advanced machine learning (ML) technology by focusing on the time 111 
sequence of clinical events and by predicting the risk of cancer occurrence over a multi-year time 112 
interval. This investigation was initially carried out using the Danish National Patient Registry 113 
(DNPR) and data which covers 41 years (1977 to 2018) of clinical records for 8.6 million patients, 114 
of which about 40,000 had a diagnosis of pancreatic cancer (Schmidt et al. 2015; Siggaard et al. 115 
2020). To maximize predictive information extraction from these records we tested a range of ML 116 
methods. These methods range from regression methods and machine learning without time 117 
dependence to time series methods such as Gated Recurrent Units (GRU) and Transformer, 118 
adapting AI methods that have been very successful in natural language processing and analysis 119 
of other time series data (Cho et al. 2014; Tealab 2018; Vaswani et al. 2017). 120 

[[ Advance - prediction time intervals ]]  121 
The likely action resulting from a personalized positive prediction of cancer risk ideally should 122 
take into account the probability of the disease occurring within a shorter or longer time frame. 123 
For this reason, we designed the prediction method to predict not only whether cancer is likely to 124 
occur, but also to provide risk assessment in incremental time intervals following the assessment, 125 
where time of assessment is defined as the day on which the risk prediction is performed based on 126 
the history of clinical records of the particular patient. We also analyzed which diagnoses in a 127 
patient's history of disease codes are most informative of cancer risk - not as isolated factors but 128 
always in the context of the person’s complete history of disease codes. Finally, we propose a 129 
practical scenario for broadly-based screening trials, taking into consideration typically available 130 
real-world data, the accuracy of prediction on such data, the scope of a screening trial, the cost and 131 
success rate of clinical screening methods and the overall potential benefit of early treatment 132 
(Supplementary Text, Figure S5).  133 
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Figure 1. Training and prediction of pancreatic cancer risk from disease trajectories. 135 
(A) Learning: The general machine learning workflow starts with partitioning the data into 136 
training set (Train), development set (Dev) and test set (Test). The trajectories for training 137 
input are generated by sampling continuous subsequences of diagnoses for each patient’s 138 
diagnosis history, each starting with the first record but with different end points. The 139 
training and development sets are used for training machine learning models to fit a risk 140 
score function (prediction) to a step function (observation) that represents the occurrence 141 
of a pancreatic cancer diagnosis, by minimizing the prediction error over all instances. 142 
Prediction: A model’s ability to generalize is evaluated using the withheld ‘test’ set. The 143 
prediction model, depending on the prediction threshold selected from among possible 144 
operational points, discriminates between patients at higher and lower risk of pancreatic 145 
cancer. The risk model can guide the development of clinical screening initiatives. (B) The 146 
model trained with real-world clinical data has three steps: embedding, encoding and 147 
prediction. The embedding machine transforms categorical disease codes and time stamps 148 
of these disease codes into a latent space. The encoding machine extracts information from 149 
a disease history and summarizes each sequence in a characteristic fingerprint (vertical 150 
vector). The prediction machine then uses the fingerprint to generate predictions for cancer 151 
occurrence within different time intervals after the time of assessment (3, 6, 12, 36, 60 152 
months). The model parameters are trained by minimizing the difference between the 153 
predicted and the actually observed cancer occurrence. (C) Terminology for time points 154 
and intervals. The end point of a disease trajectory is the time of assessment. From the time 155 
of assessment, cancer risk is assessed within 3, 6, 12, 36 and 60 months. To test the 156 
influence of close-to-cancer ICD codes on the prediction of cancer occurrence, exclusion 157 
intervals are used to remove diagnoses in the last 3, 6 and 12 months before cancer 158 
diagnosis. 159 
 160 
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Results 163 

Datasets 164 
 165 
[[ Dataset of disease trajectories: Denmark ]] 166 
 167 
We used data from the DNPR, where all inpatient admissions to Danish hospitals have been 168 
recorded since 1977, and outpatients and emergency visits have been included since 1994. 169 
Demographic information was obtained by linkage to the Central Person Registry, which is 170 
possible via the personal identification number introduced in 1968, that identifies any Danish 171 
citizen uniquely over the entire lifespan (Schmidt, Pedersen, and Sørensen 2014). DNPR covers 172 
approximately 8.6 million patients with 229 million hospital diagnoses, with on average 26.7 173 
diagnosis codes per patient. For training we used trajectories of ICD (International Classification 174 
of Diseases) codes with explicit time stamps for each hospital contact comprising diagnoses down 175 
to the three-character category in the ICD hierarchy. We used data from January 1977 to April 176 
2018 and filtered out patients with discontinuous or very short trajectories (<5 events in total), 177 
ending up with 6.2 million patients (Figure S1A). The case cohort includes 23,985 pancreatic 178 
cancer (PC) cases with cancer occurring at a median age of 70 years (mean age of 65±11 years 179 
[men] and 67±12 years [women]) (Figure 2, Table S1).  180 
 181 
[[ Dataset of disease trajectories: Boston, US ]] 182 
 183 
For external validation, we used clinical records from the Mass General Brigham (MGB) hospital 184 
system in the US via their Research Patient Data Registry (RPDR), a centralized, access-controlled 185 
clinical data warehouse for use in research. As in the Danish dataset, we also used explicit 186 
longitudinal records from MGB, i.e., trajectories of ICD codes with explicit time stamps. We used 187 
data from 1982 to 2020 and filtered out patients with less than six months of contact or less than 188 
five recorded diagnosis codes (Figure S1b). The selected dataset (Figure 2) has 1.0 million 189 
patients with 3,904 pancreatic cancer patients (Methods). The median length of disease trajectories 190 
is 13 years and the median number of disease codes per patient is 168; the latter is much higher 191 
than in the Danish dataset (Figure 2C). The median age of pancreatic cancer diagnosis is 60 years, 192 
lower than in the Danish dataset (Figure 2C). These statistics might reflect the differences between 193 
the health care systems in the two locations, such as referral, billing and documentation practices.  194 
 195 
 196 
Model architecture  197 

[[ Network architecture/layers ]]  198 
The machine learning model for predicting cancer risk from disease trajectories consists of four 199 
parts: (1) input data for each event in a trajectory (disease code and time stamps), (2) embedding 200 
the event features onto real number vectors, (3) encoding the trajectories in a lower-dimensional 201 
latent space, and (4) predicting time-dependent cancer risk. (1) Input: In order to best exploit the 202 
longitudinality of the EHR data and provide an opportunity to discover early indicators of cancer 203 
risk, all contiguous subsequences of diagnoses from a patient’s history were sampled, starting with 204 
the earliest record and increasing gaps between the end of the trajectory and cancer occurrence for 205 
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positive cases (Methods). The partial trajectories provide information in support of prediction for 206 
different time spans between risk assessment and cancer occurrence, rather than just binary 207 
prediction that cancer will occur at any time after assessment. (2) Embedding: Each item in a 208 
disease trajectory is an event denoted with one of the >2,000 ICD disease codes. To extract 209 
informative features from such high-dimensional input, the ML process is designed to embed the 210 
categorical input vectors into a continuous, lower-dimensional space. Temporal information, i.e. 211 
diagnosis dates and age at diagnosis are also embedded (see Methods). The mapping of the input 212 
to the embedding layer is trained together with other parts of the model. (3) Encoding: The 213 
longitudinal nature of the disease trajectories allows us to construct time-sequence models using 214 
sequential neural networks, such as gated recurrent units (GRU) models (Cho et al. 2014). We also 215 
used the Transformer model (Vaswani et al. 2017) which uses an attention mechanism and 216 
therefore can capture time information and complex interdependencies. For comparison, we also 217 
tested a bag-of-words (i.e., bag-of-disease-codes) approach that ignores the time and order of 218 
disease events by pooling the elements of the event vectors. (4) Predicting: The embedding and 219 
encoding network layers map each disease trajectory onto a characteristic fingerprint vector in a 220 
low-dimensional latent space. This vector is then used as input to a feedforward network to 221 
estimate the risk of cancer within distinct prediction intervals ending a few months or several years 222 
after the end of a trajectory (the time of risk assessment). 223 

[[ Prediction of occurrence within a time interval ]] 224 
For each of the disease trajectories ending at time ta, a 5-dimensional risk score is calculated, where 225 
each dimension represents the risk of cancer occurrence within a particular prediction window 226 
after ta, e.g., 6-12 months or 12-36 months (Lin et al. 2008; Yala et al. 2021). The risk score is 227 
constrained to monotonically increase with time as the risk of cancer occurrence naturally 228 
increases over time, for a given disease trajectory. If and when the risk score exceeds a prediction 229 
threshold, cancer diagnosis is predicted to have occurred (Figure 1). In this way, the model uses a 230 
time sequence of disease codes for one person as input and predicts a cancer diagnosis to occur 231 
within 3, 6, 12, 36, 60, 120 months after the time ta of risk assessment; or not to occur at all in 120 232 
months. 233 

[[ Scanning hyperparameters for each model type ]] 234 

To comprehensively test the performance of different types of ML models, we first conducted an 235 
extensive search over hyperparameters and selected the best set of hyperparameters for each 236 
model, and then selected the best model type. The model types included transformer, GRU, a 237 
multilayer perceptron and bag-of-words. Each model was tested on specific hyperparameter 238 
configurations (Table S2). To avoid overfitting and to test generalizability of model predictions, 239 
we partitioned patient records randomly into 80%/10%/10% training/development/test sets. We 240 
conducted training only on the training set and used the development set to examine the 241 
performance for different hyperparameter settings, which guides model selection. Subsequently, 242 
the performance of the selected models was evaluated on the fully withheld test set and reported 243 
as an estimate of performance in prospective applications in health care settings with similar 244 
availability of longitudinal records. 245 
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Figure 2. Danish (DK) and Boston (MGB) patient registries used for machine 247 
learning of cancer risk. The Danish DNPR database (DK) of clinical records covers over 248 
8 million people for up to 41 years. The Boston MGB (RPDR) database covers only 1 249 
million people with long term data, but has a higher density of disease codes per time 250 
interval (Figure S4). (A) The incidence of pancreatic cancer peaks past the age of 50 years 251 
in both datasets. (B,C) The machine learning process has to cope with very different 252 
distributions of disease trajectories in terms of length of trajectories and density of the 253 
number of disease codes. The Danish (DK) dataset has a longer median length of disease 254 
trajectories, but lower median number of disease codes per patient compared to the MGB 255 
dataset. (D,E) An intuitive indication of the association of individual disease codes with 256 
subsequent diagnosis of pancreatic cancer is given by the relative incidence of known risk 257 
factors in cancer vs. non-cancer patients in the DK (D) and MGB (E) datasets, counting 258 
whether a disease code occurred at least once in a patient’s history and excluding events 259 
at or after cancer diagnosis.  260 

 261 
Evaluation of model performance 262 

[[ Picking a best model - DK ]]  263 
We evaluated the different models using the precision-recall curve (PRC) and then report 264 
performance numbers at the  operating point on the receiver-operating curve (ROC) that 265 
maximizes the F1 score (Figure 3), which  strikes a balance between precision (positive predictive 266 
value) and recall (sensitivity). In the final performance evaluation of different types of ML models 267 
on the test set, the models which explicitly use and encode the time sequence of disease codes, i.e., 268 
GRU and Transformer, ranked highest (Figure 3A-C, Table S3). For the prediction of cancer 269 
incidence within 3 years of the assessment date (the date of risk prediction), the Transformer model 270 
had the best performance (AUROC=0.879 [0.877-0.880]), followed by GRU (AUROC=0.852 271 
[0.850-0.854]). The bag-of-words model that ignores the time information along disease 272 
trajectories performed significantly less well (AUROC=0.807 [0.805-0.809]). At the chosen 273 
operating point that maximizes the F1 score (Methods), the model has a precision of 18.1% (17.1-274 
19.9), a recall of 12.3% (11.7-12.9) and a specificity of 99.88% (99.87-99.90). In order to gain a 275 
better intuition regarding the impact of applying the model in a real case scenario, we also report 276 
the odds ratio (OR) of cancer patients in the high-risk group for the deep learning models. The OR 277 
is defined as the odds of getting pancreatic cancer for a high risk patient divided by the odds of 278 
getting pancreatic cancer for a low risk patient (Table S6). The odds ratio for the Transformer 279 
model is 47.5 for 20% recall and 159.0 for 10% recall.     280 
 281 
[[ Comparison with previous models ]]  282 
 283 
Earlier work also developed ML methods on real-world data clinical records and predicted 284 
pancreatic cancer risk (Appelbaum, Cambronero, et al. 2021; Appelbaum, Berg, et al. 2021; Chen 285 
et al. 2021; X. Li et al. 2020). These previous studies had encouraging results, but neither used the 286 
time sequence of disease histories nor memory or attention mechanisms in the neural network to 287 
extract time-sequential longitudinal features. For comparison we implemented analogous 288 
approaches, a bag-of-words model and a multilayer perceptron (MLP) model. We evaluated the 289 
non-time-sequential models on the DNPR dataset, and the performance for predicting cancer 290 
occurrence within 36 months was AUROC=0.807 (0.805-0.809) for the bag-of-words model and 291 
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0.845 (0.843-0.847) for the MLP model. Compared to the time-sequential models, e.g., 292 
Transformer, which has an odds ratio of 159.0 at 10% recall, the bag-of-words/MLP models have 293 
a much lower odds ratio of 4.0/21.0, respectively, also at 10% recall. In other words, when taking 294 
time series into account, the odds ratio increases by nearly a factor of 40 (Table S3). 295 

[[ Prediction for prediction time intervals ]]  296 
It is also of clinical interest to consider risk of cancer over different time intervals. The ML models 297 
in this work yield risk scores for pancreatic cancer occurrence within 3, 6, 12, 36 and 60 months 298 
of the date of risk assessment. As expected, it is more challenging to predict cancer occurrence 299 
within longer rather than shorter time intervals (Figure 4A&C). Indeed, prediction performance 300 
for the best model decreases from an AUROC of 0.908 (0.906-0.911) for cancer occurrence within 301 
12 months to an AUROC of 0.879 (0.877-0.880) for occurrence within 3 years (Figure 3D-E). 302 
For each ML model and each prediction interval, we picked the operational points that maximize 303 
the F1 score, which is the harmonic mean of recall and precision (Sasaki 2007). 304 

[[ Performance with data exclusion ]]  305 
Disease codes within a short time before diagnosis of pancreatic cancer are most probably directly 306 
predictive such that even without any machine learning, well-trained clinicians would include 307 
pancreatic cancer in their differential diagnosis. Even more so, disease codes just prior to 308 
pancreatic cancer occurrence are either semantically similar to it or encompass it (e.g., neoplasm 309 
of the digestive tract). To infer earlier detection, we therefore separately trained the models 310 
excluding from the input diseases diagnoses in the last 3 or 6 months prior to the diagnosis of 311 
pancreatic cancer (Figure 1C). As expected, e.g. when training with data exclusion, the 312 
performance decreased to AUROC of 0.862 (0.857-0.866) for 3 months exclusion and a AUROC 313 
of 0.834 (0.830-0.838) for 6 months exclusion - both for prediction of cancer occurence within 12 314 
months (Table S3A).  315 

[[ Information contribution as a function of time gap between of assessment 316 
and cancer occurrence ]]   317 
The exclusion of trajectories ending very close to pancreatic cancer removes the influence of 318 
disease codes that represent symptoms of pancreatic cancer or are otherwise easily attributable to 319 
pancreatic cancer. However, data exclusion of such late events alone does not quantify the 320 
influence of longer term risk factors on prediction. In an attempt to estimate the performance of 321 
the model when possible peri-diagnostic codes are excluded, we report the recall rate of prediction 322 
as a function of the time-to-cancer, defined as the time between the end of disease trajectory and 323 
the occurrence of cancer (Figure 4A, C). As expected, recall levels decrease with time-to-cancer, 324 
from 8% for cancer occurring about 1 year after assessment to a recall of 4% for cancer occurring 325 
about 3 years after assessment - for both the models trained with and without 3 months data 326 
exclusion. This suggests that the model not only learns from symptoms very close to pancreatic 327 
cancer but also from longer disease history, albeit at lower accuracy.  328 

[[Performance by cross-application of a trained model to a different dataset]]  329 
In order to assess the predictive performance of the model in other health care systems, we applied 330 
the best machine learning model trained on the Danish DNPR to disease trajectories of patients in 331 
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the Boston MGB dataset, without any adaptation except for mapping the ICD codes from one 332 
system to the other. Prediction performance for cancer occurrence within 3 years declined 333 
significantly from an AUROC of 0.879 (0.877-0.880), for a Denmark-trained transformer model 334 
applied to Danish DNPR patient data (test set), to an AUROC of 0.776 (0.773-0.778), for the same 335 
model applied to Boston MGB patient data (Figure 3H). Cross-application required mapping the 336 
ICD codes used in Denmark (ICD-10 and ICD-8 codes from The Danish Medical Classification 337 
System; Sundhedsvæsenets Klassifikations System (SKS)) to the ICD-10-CM and ICD-9-CM codes 338 
used in the Boston MGB system. The most striking difference between the two systems is the 339 
shorter and more dense disease history in the Boston MGB trajectories compared to the Danish 340 
ones (Figure 2B-C). These differences plausibly contribute to the lower performance when cross-341 
applying the machine learning model trained in one health system to another. We conclude that 342 
independent training is indicated to achieve good performance in a very different dataset.  343 
 344 

[[ Model performance by independent training on a different dataset ]]  345 

Motivated by the decrease in performance when testing the Denmark-derived model on the Boston 346 
MGB dataset, we trained and evaluated the model on the Boston MGB dataset from scratch. For 347 
the independently trained model, the performance is much higher than in cross-application, with a 348 
test-set AUROC of 0.869 (0.867-0.870) for cancer occurring within 36 months. At the operating 349 
point maximizing F1 score, the model has a precision of 19.4% (19.1%-19.7%), a recall of 31.0% 350 
(30.4%-31.5%) and a specificity of 99.51% (99.50%-99.52%). At 20% recall, the odds ratio for 351 
the high risk group for independent training is 112 compared to 7.6 for cross-application. Similar 352 
to the models trained independently on the Danish DNPR, the GRU and transformer models 353 
performed much better than the model without temporal information (bag-of-words).  354 
 355 
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Figure 3. Performance of the machine learning (ML) models in predicting pancreatic 357 
cancer occurrence. Performance of different ML models for prediction of cancer 358 
occurrence within 36 months for the Danish DNPR (DK) dataset (A,B,C) and Boston Mass 359 
General Brigham (MGB) dataset (D,E,F). (A,D) Precision-recall curves (PRC): precision 360 
(true positives as a fraction of predicted positives) against recall (true positives as a fraction 361 
of observed positives) for different models, at different prediction thresholds along the 362 
curve. One way to choose an operational point (F1 point) is to balance precision and recall 363 
by optimizing the F1 score (red point; Methods). (B,E) Confusion matrix for each model, 364 
at the F1 point, with the fraction of true positives, true negatives, false positives and false 365 
negatives, normalized by column. (C,F) Receiver operating characteristic curves (ROC): 366 
true positive rate TPR (recall, sensitivity) against false positive rate FPR (false negatives 367 
as a fraction of observed negatives = (1-specificity)), at different prediction thresholds 368 
along the curve. A random prediction has very low precision for all values of recall 369 
(horizontal dotted line in A and D; AUPRC=incidence=0.004) and equal TPR and FPR 370 
(diagonal line in C and F; AUROC=0.5). The Transformer is the best performing model 371 
for 36-month prediction of cancer occurrence for nearly all operational points (A,C,D,F). 372 
Odds ratios are defined as the odds of getting pancreatic cancer for a high risk patient 373 
divided by the odds of getting pancreatic cancer for a low risk patient (G-K). Odds ratios 374 
for the different ML models for (G) the Danish models applied to the Danish dataset, (H) 375 
the Danish models applied to the Boston dataset and (I) the Boston models applied to the 376 
Boston dataset. (J-K) The odds ratios decrease at higher data exclusion intervals and 377 
higher recall thresholds. (J) Odds ratios for the Danish GRU model, trained with data 378 
exclusion intervals, applied to the Danish dataset. (K) Odds ratios for the Boston GRU 379 
model, trained with data exclusion intervals, applied to the Boston dataset. (L) Prediction 380 
performance (by AUROC) was significantly lower when using only 23 known risk factors, 381 
rather than 2000 disease codes (no data exclusion). 382 

 383 
Predictive Features  384 

[[ Interpretation: contribution of known risk factors ]]  385 

Although the principal criterion for the potential impact of screening trials is robust predictive 386 
performance, it is of interest to interpret the features of any predictive method: which diagnoses 387 
are most informative of cancer risk and at what time point? We used two methods for the 388 
identification of factors that contribute most to positive prediction. One method uses prior 389 
knowledge and limits the input for training and testing to disease types, which have been reported 390 
to be indicative of the likely occurrence of pancreatic cancer (Yuan et al. 2020; Klein 2021). The 391 
result is that these 23 known risk factors are moderately  predictive of cancer but are much less 392 
informative compared to the more than 2,000 available diseases (Table S4, Figure 3L). The 393 
relationship between age, number of disease codes and pancreatic cancer occurrence is also 394 
consistent with the fact that increasing age has been reported as a major risk factor of pancreatic 395 
cancer (Figure 2A, S6). 396 

[[ Interpretation: contributing factors by gradient method ]] 397 
A second, explicitly computational method infers the contribution of a particular input variable to 398 
the prediction by the machine learning engine using the integrated gradients (IG) algorithm 399 
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(Sundararajan, Taly, and Yan 2017) (Figure 4B,D). The IG contribution was calculated separately 400 
for different times to cancer diagnosis, in particular at 0-6 months, 6-12 months, 12-24 months and 401 
24-36 months after assessment, for all patients developing cancer. The aim was to explore how 402 
diseases contribute differently to the risk of pancreatic cancer, depending on how close to 403 
pancreatic cancer they occurred. There is a tendency for diseases, which in normal clinical practice 404 
are known to indicate the potential presence of pancreatic cancer, to have a higher contribution to 405 
prediction for trajectories that end closer to cancer diagnosis. On the other hand, putative early risk 406 
factors plausibly have a higher IG score for the trajectories that end many months before cancer 407 
diagnosis. As an additional check, we computed the contribution for the model trained also with 3 408 
months data exclusion.  409 
 410 

[[ Interpretation: contributing early factors ]]  411 

The top contributing features extracted from the trajectories with time to cancer diagnosis in 0-6 412 
months - such as unspecified jaundice, diseases of biliary tract, abdominal-pelvic pain, weight loss 413 
and neoplasms of digestive organs - may be symptoms of or otherwise closely related to pancreatic 414 
cancer (Table S5). It is also of interest to identify early risk factors for pancreatic cancer. For 415 
trajectories with longer time between assessment and cancer diagnosis, other disease codes - such 416 
as type 2 diabetes and insulin-independent diabetes - make an increasingly large contribution, 417 
consistent with epidemiological studies (Yuan et al. 2020; Klein et al. 2013; Kim et al. 2020) and 418 
the observed disease distribution in the DNPR dataset (Figure 4, S3). Other factors, such as 419 
cholelithiasis (gallstones) and reflux disease, are perhaps of interest in terms of potential 420 
mechanistic hypotheses, such as inflammation of the pancreas prior to cancer as a result of 421 
cholelithiasis or a hypothetical link between medication by proton pump inhibitors such as 422 
omeprazole in reflux disease and the effect of increased levels of gastrin on the state of the pancreas 423 
(Alkhushaym et al. 2020).  424 

[[ Interpretation for 3 month exclusion interval]] 425 
Overall the contribution of the diseases calculated for the model trained with 3 months data 426 
exclusion is similar to the one calculated for the model without data exclusion. The main difference 427 
is in the order of the disease contribution, as the diseases that more frequently are diagnosed as a 428 
consequence of subclinical pancreatic cancer - which are not included in the training of the 3 429 
months data exclusion model - have lower contribution than the longer term risk factors. The 430 
interpretation of individual risk factors from the ML feature list as causative may be subject to 431 
misinterpretation as their contribution here is only evaluated in the context of complete disease 432 
histories. However, our main goal in this report is to achieve robust predictive power from disease 433 
trajectories, rather than mechanistic interpretations. 434 
 435 
 436 
 437 
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 438 
Figure 4. Predictive capacity and feature contributions of disease trajectories  439 
(A-B) Distribution of recall (sensitivity) values at the F1 operational point as a function of 440 
time-to-cancer (time between the end of a disease trajectory and cancer diagnosis). The 441 
recall values drop significantly with time-to-cancer. (A) For models trained on all data. (B) 442 
For models trained with 3 months data exclusion. (C-D) Top 10 features that contribute to 443 
the cancer prediction in time-to-cancer intervals of 0-6, 6-12, 12-24 and 24-36 months. The 444 
features are sorted by the contribution score (Supplementary Tables S5). We used an 445 
integrated gradient (IG) method to calculate the contribution score for each input feature 446 
for each trajectory, then summed over all trajectories with cancer diagnosis within the 447 
indicated time interval. All data in the figure for the Danish DNPR dataset, 36 months 448 
prediction interval. 449 

 450 

Discussion  451 

[[ Advances in this work ]] 452 
Here we present a new framework for applying deep learning methods using comprehensive 453 
datasets of disease trajectories to predict cancer risk. Our study was designed to make explicit use 454 
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of the time sequence of disease events; and, to assess the ability to predict cancer risk for increasing 455 
intervals between the time of assessment (the end of the disease trajectory) and cancer occurrence. 456 
Earlier work has demonstrated the potential of applying AI methods to assess pancreatic cancer 457 
risk but did not exploit the information in the temporal sequence of diseases (Appelbaum, 458 
Cambronero, et al. 2021; Chen et al. 2021). Our results indicate that using the time ordering in 459 
disease histories as input significantly improves the predictive power of AI methods in anticipating 460 
pancreatic cancer occurrence.  461 

[[ Comparison of performance in a different healthcare system ]] 462 

A single, globally robust model that predicts cancer risk for patients in different countries and 463 
different healthcare systems remains elusive. Cross-application of the Danish model to the Boston 464 
MGB database had significantly lower performance (Fig. 3H), in spite of common use of ICD 465 
disease codes. One of the reasons for this mismatch could be the differences in clinical practice, 466 
such as frequency of reporting disease codes in the clinical records, the typical threshold for 467 
seeking medical attention, potential influence of billing constraints on what is recorded, as well as 468 
referral practice to the local Boston MGB hospitals from other locations, in contrast to the more 469 
uniform and comprehensive national nature of the Danish DNPR disease registry. However, the 470 
AI methods used are sufficiently robust to achieve a similarly high level of performance in the 471 
Boston MGB system when independently trained. With significant differences in healthcare 472 
systems, independent model training in different geographical locations may be necessary to 473 
achieve desired model performance.  474 

[[ Clinical trials and application in clinical practice ]] 475 
Successful implementation of early diagnosis and treatment of pancreatic cancer in clinical 476 
practice will likely require three essential steps: identification of high-risk patients, detection of 477 
early cancer or precancerous states by detailed screening of high-risk patients, and effective 478 
treatment after early detection (Singhi et al. 2019; Kenner et al. 2021). The overall impact in 479 
clinical practice depends on the success rates in each of these stages. This work only addresses the 480 
first stage. With a reasonably accurate method for predicting cancer risk one can direct appropriate 481 
high-risk patients into clinical screening trials. A sufficiently enriched pool of high-risk patients 482 
would make detailed screening tests more affordable, as such tests are likely to be prohibitively 483 
expensive at a population level and enhance the positive predictive value of such tests.  484 
 485 
Although the level of performance reported here exceeds that of previous prediction models, 486 
implementation in clinical practice requires additional considerations. A careful choice of 487 
operational point is required, which is not necessarily the one maximizing F1, which balances 488 
precision and recall and was used above as a point of reference. The criteria for initiating clinical 489 
screening trials should take into account the cost / benefit balance of screening and intervention 490 
(Pandharipande et al. 2016) (example estimate in Results S1) as well as the expectations and 491 
concerns of patients enrolled in a trial and of those identified as high risk and offered advanced 492 
clinical test. The specific design of such trials will require close collaboration between data 493 
scientists and practicing clinicians to determine appropriate evaluation and follow-up once high-494 
risk patients are identified by risk assessment tools. Nevertheless, the current late-stage 495 
presentation of about 80% of pancreatic cancer patients with incurable disease suggests that 496 
innovative approaches will be required to improve patient outcomes for this highly lethal 497 
malignancy.  498 
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 499 
For example, based on the prediction accuracy reported here, one can realistically design clinical 500 
screening trials, with software applied to health records of, e.g., 1 million patients, followed by 501 
identification of those at highest risk and recruitment into a clinical trial with detailed screening 502 
tests for, e.g., 200 high-risk patients. Implementation requires choosing an operational point 503 
along the PRC curve with an achievable high positive predictive value, which is important to 504 
reduce false positives and therefore minimize unnecessary effort and anxiety. Exploiting the 505 
trade-off between precision and recall, one can in this scenario accept lower recall as a clinical 506 
trial with limited enrollment cannot in any case detect cancer in a large number of patients. The 507 
particular advantage of this ‘predict-select-screen’ process is that computational screening of a 508 
large population in the first step is inexpensive while the costly second step of sophisticated 509 
clinical screening and therapeutic intervention programs is limited to a much smaller number of 510 
patients, those at highest risk. 511 
 512 

[[ Challenges for future improvements ]] 513 
We expect further increases in prediction accuracy with the availability of data beyond disease 514 
codes, such as prescriptions, laboratory values, observations in clinical notes, diagnosis and 515 
treatment records from general practitioners (Malhotra et al. 2021) and abdominal imaging 516 
(computed tomography, magnetic resonance imaging), as well as inherited genetic profiles. To 517 
achieve a globally useful set of prediction rules, access to large data sets of disease histories 518 
aggregated nationally or internationally will be extremely valuable. An ideal scenario for a multi-519 
institutional collaboration would be to employ federated learning across a number of different 520 
healthcare systems (Konečný et al. 2016). Federated learning obviates the need for sharing primary 521 
data and only requires permission to run logically identical computer codes at each location and 522 
then share and aggregate results.  523 
 524 

[[ Impact on patients ]] 525 

Prediction performance at the level shown here may be sufficient for the design of real world 526 
clinical screening trials, in which high-risk patients are assigned to high specificity screening tests 527 
and, if cancer is detected, offered early treatment. AI on real-world clinical records has the 528 
potential to produce a scalable workflow for early detection of pancreatic cancer in the community, 529 
to shift focus from treatment of late- to early-stage cancer, improve the quality of life of patients, 530 
and increase the benefit/cost ratio of cancer care.  531 
 532 
  533 
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Methods 534 

Processing of the population-level dataset 535 

[[Danish DNPR dataset]] 536 
The first part of the project was conducted using a dataset of disease histories from the Danish 537 
National Patient Registry (DNPR), covering all 229 million hospital diagnoses of 8.6 million 538 
patients between 1977-2018. This includes inpatient contacts since 1977 and outpatient and 539 
emergency department contacts since 1995, but not data from the general practitioners' records 540 
(Schmidt et al. 2015). DNPR access was approved by the Danish Health Data Authority (FSEID-541 
00003092 and FSEID-00004491.) Each entry of the database includes data on the start and end 542 
date of an admission or visit, as well as diagnosis codes. The diagnoses are coded according to the 543 
International Classification of Diseases (ICD-8 until 1994 and ICD-10 since then). The accuracy 544 
of cancer diagnosis disease codes, as examined by the Danish Health and Medicines Authority, 545 
has been reported to be 98% accurate (89.4% correct identification for inpatients and 99.9% for 546 
outpatients) (Thygesen et al. 2011). For cancer diagnoses specifically, the reference evaluation 547 
was based on detailed comparisons between randomly sampled discharges from five different 548 
hospitals and review of a total of 950 samples (Schmidt et al. 2015). We used both the ICD-8 code 549 
157 and ICD-10 code C25, malignant neoplasm of pancreas, to define pancreatic cancer (PC) 550 
cases.  551 

The most up-to-date ICD classification system has a hierarchical structure, from the most general 552 
level, e.g., C: Neoplasms, to the most specific four-character subcategories e.g. C25.1: Malignant 553 
neoplasm of body of pancreas. DNPR contains ICD-10 codes for disease administration after 1994 554 
and ICD-8 codes for the remaining period of the registry. The Danish version of the ICD-10 is 555 
more detailed than the international ICD-10 but less detailed than the clinical modification of the 556 
ICD-10 (ICD-10-CM). In this study, we used the three-character category ICD codes (n=2,997) in 557 
constructing the predictive models and defined “pancreatic cancer (PC) patients” as patients with 558 
at least one code under C25: Malignant neoplasm of pancreas. For the diagnosis codes in the 559 
DNPR, we removed disease codes labelled as ‘temporary’ or ‘referral’ (8.3% removed, Figure 560 
S1), as these can be misinterpreted when mixed with the main diagnoses and are not valuable for 561 
the purposes of this study.  562 

Danish citizens have since 1968 been assigned a unique lifetime Central Person Registration (CPR) 563 
Number, which is useful for linking to person-specific demographic data. Using these we retrieved 564 
patient status as to whether patients are active or inactive in the CPR system as well as information 565 
related to residence status. We applied a demographic continuity filter. For example, we excluded 566 
from consideration residents of Greenland, patients who lack a stable place of residence in 567 
Denmark, as these would potentially have discontinuous disease trajectories. By observation time 568 
we mean active use of the healthcare system.  569 

At this point, the dataset comprised a total of 8,110,706 patients, of which 23,601 had the ICD-10 570 
pancreatic cancer code C25 and 14,720 had the ICD-8 pancreatic cancer code 157. We used both 571 
ICD-10 and ICD-8 independently, without semantic mapping, while retaining the pancreatic 572 
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cancer occurrence label, assuming that machine learning is able to combine information from both. 573 
Subsequently, we removed patients that have too few diagnoses (<5 events). The number of 574 
positive patients used for training after applying the length filter are 23,985 (82% ICD-10 and 18% 575 
ICD-8). Coincidentally, this resulted in a more strict filtering for ICD-8 events which were used 576 
only in 1977-1994. The final dataset was then randomly split into training (80%), development 577 
(10%) and test (10%) data, with the condition that all trajectories from a patient were only included 578 
in one split group (train/dev/test), to avoid any information leakage between training and 579 
development/test datasets.  580 

[[Boston MGB dataset]] 581 
The MGB dataset is from the Mass General Brigham Research Patient Data Registry (RPDR), 582 
including data items from the Dana-Farber/ Brigham and Women’s Cancer Center, and contains 583 
ICD-9-CM and ICD-10-CM codes for disease administration, both are more detailed modifications 584 
to the ICD-9/10 international version. Data access for the study was granted under the Institutional 585 
Review Board (IRB) Protocol 2019P000993 (Computational Approaches to Identifying High-Risk 586 
Pancreatic Cancer Populations: High Risk Cohorts Through Real World Data). Analogously to 587 
DNPR, we used the three-character category ICD codes for identifying pancreatic cancer, 588 
respectively C25 for ICD-10 and 157 for ICD-9. The end date was similarly defined as the date of 589 
death for the patients, the date of the last hospital visit, or, if the patient on file is still alive, the 590 
end date used to select from the MGB dataset (2020), whichever is earlier.  591 
 592 
Training 593 
 594 
The following processing steps were carried out identically for DNPR and MGC datasets. For each 595 
patient, whether or not they ever had pancreatic cancer, the data was augmented by using all 596 
continuous partial trajectories of (minimal length >=5 diagnoses) from the beginning of their 597 
disease history and ending at different time points, which we call the time of assessment. For 598 
cancer patients, we used only trajectories that end before cancer diagnoses, i.e. ta<tcancer<tdeath. We 599 
used a step function annotation indicating cancer occurrence at different time points (3, 6, 12, 600 
36, 60, 120 months) after the end of each partial trajectory. For the positive (‘PC’) cases this 601 
provides the opportunity to learn from disease histories with a significant time gap between the 602 
time of assessment and the time of cancer occurrence. For example, for a patient, who had 603 
pancreatitis a month or two just before the cancer diagnosis, it is of interest to learn which earlier 604 
disease codes might have been predictive of cancer occurrence going back at least several months 605 
or perhaps years. The latter is also explored by separately re-training of the ML model excluding 606 
data from the last three or six months before cancer diagnosis. 607 

For patients without a pancreatic cancer diagnosis we only include trajectories that end earlier 608 
than 2 years before the end of their disease records (due to death or the freeze date of the DNPR 609 
data used here). This avoids the uncertainty of cases in which undiagnosed cancer might have 610 
existed before the end of the records. The datasets were sampled in small batches for efficient 611 
computation, as is customary in ML. Due to the small number of cases of pancreatic cancer 612 
compared to controls, we used balanced sampling from the trajectories of the patients in the 613 
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training set such that each batch has an approximately equal number of positive (cancer) and 614 
negative (non-cancer) trajectories.  615 
 616 
 617 
Model development 618 

A desired model for such diagnosis trajectories consists of three parts: embedding of the 619 
categorical disease features, encoding time sequence information, and assessing the risk of cancer. 620 
We embed the discrete and high-dimensional disease vectors in a continuous and low-dimensional 621 
latent space (Mikolov et al. 2013; Gehring et al. 2017). Such embedding is data-driven and trained 622 
together with other parts of the model. For ML models not using embedding, each categorical 623 
disease was represented in numeric form as a one-hot encoded vector. The longitudinal records of 624 
diagnoses allowed us to construct time-sequence models with sequential neural networks. After 625 
embedding, each sequence of diagnoses, was encoded into a feature vector using different types 626 
of sequential layers (recurrent neural network, RNN, and gated recurrent units, GRU), attention 627 
layers (transformer), or simple pooling layers (bag-of-words model and multilayer perceptron 628 
model [MLP]). The encoding layer also included age inputs, which has been demonstrated to have 629 
a strong association with pancreatic cancer incidence (Klein 2021). Finally, the embedding and 630 
encoding layers were connected to a fully-connected feedforward network (FF) to make 631 
predictions of future cancer occurrence following a given disease history (the bag-of-words model 632 
only uses a single linear layer).  633 
 634 
The model output consists of a risk score that monotonically increases for each time interval in the 635 
follow-up period after risk assessment. As cancer by definition occurs before cancer diagnosis, the 636 
risk score at a time point t is interpreted as quantifying the risk of cancer occurrence between ta, 637 
the end of the disease trajectory (the time of assessment), and time t = ta + 3, 6, 12, 36, 60, 120 638 
months. For a given prediction threshold, scores that exceed such threshold at time t are considered 639 
to indicate cancer occurrence prior to t. We currently do not distinguish between different stages 640 
of cancer, neither in training from cancer diagnoses nor in the prediction of cancer occurrence.  641 
 642 
The model parameters were trained by minimizing the prediction error quantified as the difference 643 
between the observed cancer diagnosis in the form of a step function (0 before the occurrence of 644 
cancer, 1 from the time of cancer diagnosis) and the predicted risk score in terms of a positive 645 
function that monotonically increases from 0, using a cross-entropy loss function, with the sum 646 
over the five time points, and L2 regularization on the parameters (Figure 1A). 647 

 648 
where 𝑡 ∈ {3,6,12,36,60,120}	months; 𝑁! = 6 for non-cancer patient and 𝑁! ≤ 6 for cancer 649 
patients where we only use the time points before the cancer diagnosis; 𝑖 =650 
1,2,3, . . . , 𝑁samples;	𝛩	is the set of model parameters; 𝜆" is the regularization strength; 𝑝̂ is the 651 
model prediction; 𝑥# are the input disease trajectories, 𝑦#,% = 1for cancer occurrence and 𝑦#,% = 0 652 
for no cancer within 𝑡-month time window. 653 
 654 
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The transformer model, unlike the recurrent models, does not process the input as a sequence of 655 
time steps but rather uses an attention mechanism to enhance the embedding vectors correlated 656 
with the outcome. In order to enable the transformer to digest temporal information such as the 657 
order of the exact dates of the diseases inside the sequence, we used positional embedding to 658 
encode the temporal information into vectors which were then used as weights for each disease 659 
token. Here we adapted the positional embedding from (Vaswani et al. 2017) using the values 660 
taken by cosine waveforms at 128 frequencies observed at different times. The times used to 661 
extract the wave values were the age at which each diagnosis was administered and the time 662 
difference between each diagnosis. In this way the model is enabled to distinguish between the 663 
same disease assigned at different times as well as two different disease diagnoses far and close in 664 
time. The parameters in the embedding machine, which addresses the issue of data representation 665 
suitable for input into a deep learning network, were trained together with the encoding and 666 
prediction parts of the model with back propagation (Figure 2). 667 
 668 
To comprehensively test different types of neural networks and the corresponding 669 
hyperparameters, we conducted a large parameter search for each of the network types (Table S2). 670 
The different types of models include simple feed-forward models (LR, MLP) and more complex 671 
models that can take the sequential information of disease ordering into consideration (GRU and 672 
Transformer). See supplementary table with comparison metrics across different models (Table 673 
S3). In order to estimate the uncertainty of the performances, the 95% confidence interval was 674 
constructed using 200 resamples of bootstrapping with replacement.  675 
 676 
Evaluation 677 
 678 
The evaluation was carried out separately for each prediction interval of 0-3, 0-6, 0-12, 0-36, and 679 
0-60 months. For example, consider the prediction score for a particular trajectory at the end of 680 
the 3 year prediction interval (Fig.1C). If the score is above the threshold, one has a correct positive 681 
prediction, if cancer has occurred at any time within 3 years; and a false positive prediction, if 682 
cancer has not occurred within 3 years. If the score is below the threshold, one has a false negative 683 
prediction if cancer has occurred at any time within 3 years; and a true negative prediction, if 684 
cancer has not occurred within 3 years. As both training and evaluation make use of multiple 685 
trajectories per patient, with different end-of-trajectory points, the performance numbers are 686 
computed over trajectories. 687 
 688 
The odds ratio (OR) was calculated as the odds of getting pancreatic cancer when classified at high 689 
risk divided by the odds of getting pancreatic cancer when classified at low risk, after picking a 690 
specific recall level. 691 

𝑂𝑅	 = 𝑇𝑃/𝐹𝑃𝐹𝑁/𝑇𝑁 692 

where TP = True Positives,  FP = False Positives,  FN = False Negatives,  TN = True negatives. 693 
For the 0-36 months prediction interval, the observation is diagnosis of pancreatic cancer within 694 
36 months of assessment, yes/no; and the prediction is high risk / low risk at a given operational 695 
threshold (e.g., by choosing a specific level of recall).  696 
 697 
 698 
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Cross-application 699 

Few adaptations were necessary in order to test the model trained on the Danish DNPR data on 700 
the Boston MGB dataset. In particular, the ICD-9-CM codes were first converted to ICD-10-CM 701 
codes using the mapping available on the National Center for Health Statistic (NHCS, 702 
www.cdc.gov/nchs) and then, once truncated at the three-characters level, were matched to the 703 
respective ICD-10 codes from the DNPR. In this way we created a joint ‘vocabulary’ where disease 704 
codes from the MGB dataset were mapped to the same embedded representation of the matching 705 
disease code in DNPR-trained models. In spite of overall semantic agreement of the internationally 706 
standardized ICD codes (50,656 out of 53,552 can be matched), the translation from one coding 707 
system to the other caused missing values in the input. Indeed, some ICD-9-CM codes (n=969) 708 
could not be matched to a single ICD-10-CM code and some ICD-10-CM codes (n=1,927) had no 709 
match with the ICD-10 codes in DNPR. We compared the performance results from cross-710 
application to those of the independently trained models by evaluating them against the same test 711 
data (subset of Boston MGB data).  712 
  713 

Interpreting clinically relevant features 714 

In order to find the features that are strongly associated with pancreatic cancer, we have used an 715 
attribution method for neural networks called integrated gradients (Sundararajan, Taly, and Yan 716 
2017). This method calculates the contribution of input features, called attribution, cumulating the 717 
gradients calculated along all the points in the path from the input to the baseline. We chose the 718 
output of interest to be the 36-month prediction. Positive and negative attribution scores 719 
(contribution to prediction) indicate positive correlation with pancreatic cancer patients and non-720 
pancreatic-cancer patients, respectively. Since the gradient cannot be calculated with respect to the 721 
indices used as input of the embedding layer, the input used for the attribution was the output of 722 
the embedding layer. Then, the attribution at the token level was obtained summing up over each 723 
embedding dimension and summing across all the patient trajectories. Similarly, for each 724 
trajectory, we calculated the age contribution as the sum attribution of the integrated gradients of 725 
the input at the age embedding layer.  726 

 727 

  728 
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Supplementary Materials 934 

Figure S1. Preprocessing and filtering of the DK and MGB disease trajectory  935 
datasets. 936 
 937 
Filtering of the Danish (DK) and Boston MGB patient registries prior to training: in the Danish 938 
dataset, patient status codes were used to remove discontinuous disease histories such as patients 939 
living in Greenland, patients with alterations in their patient ID or patients who lack a stable 940 
residence in Denmark. We also removed referral and temporary diagnosis codes which are not the 941 
final diagnosis codes and can be misleading to use for training. Patients with short trajectories (<5 942 
diagnosis codes) were removed. The final set of patients were split into Training (80 %), Validation 943 
(10%) and Testing set (10%).  944 
 945 
For the Boston MGB dataset, the first step was an extra layer of patient ID de-identification, which 946 
was done by adding a unique random small time shift per patient. Similar to the Danish dataset 947 
filtering, short trajectories (<5 diagnosis codes) were removed and patients split into Training (80 948 
%), Validation (10%) and Test set (10%).  949 
 950 
  951 
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Figure S1A - Denmark (DK) DNPR 952 

 953 
 954 

955 
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Figure S1B - Boston MGB (RPDR) 956 
 957 

 958 
 959 
 960 
 961 
 962 
 963 
 964 
 965 
 966 
 967 
 968 
 969 
 970 
Table S1. Description of the patient cohorts used in this study (DK). 971 
 972 

Population Metadata (n=8,110,706 persons) 
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Gender Male  Female  

Total Count 4,030,504 (49.69%) 4,080,202 (50.31%) 

Alive 2,754,152 (33.96%) 2,827,021 (34.86% ) 

Dead 1,276,352 (15.74%) 1,253,181 (15.45%) 

After continuity and length filtering 2,938,248 (36.23%) 3,239,989 (39.95%) 

Age at last record (0-10) 216,329 (2.67%) 204,774 (2.52%) 

Age at last record (10-20) 332,326 (4.10%) 314,445 (3.88%) 

Age at last record (20-30) 322,802 (3.98%) 298,219 (3.68%) 

Age at last record (30-40) 283,200 (3.49%) 305,470 (3.77%) 

Age at last record (40-50) 323,811 (3.99%) 380,730 (4.69%) 

Age at last record (50-60) 368,686 (4.55%) 419,100 (5.17%) 

Age at last record (60-70) 373,220 (4.60%) 402,625 (4.96%) 

Age at last record (70-80) 394,789 (4.87%) 408,890 (5.04%) 

Age at last record (80-90) 258,193 (3.18%) 342,174 (4.22%) 

Age at last record (90-100) 63,470 (0.78%) 156,154 (1.93%) 

Age at last record (100-110) 1,422 (0.02%) 7,391 (0.09%) 

Age at last record (110-120)  7 (0.00%) 

  973 
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 974 
Pancreatic Cancer Patients (n=23,985) 

 Male Female 

Total Count 11,880 (49.53%) 12,105 50.47% 

Age at pancreatic cancer diagnosis (0-10) 1 (0.00%) 1 (0.00% ) 

Age at pancreatic cancer diagnosis (10-20) 1 (0.00%) 7 (0.03%) 

Age at pancreatic cancer diagnosis (20-30) 11 (0.05%) 11 (0.05%) 

Age at pancreatic cancer diagnosis (30-40) 92 (0.38%) 93 (0.39%) 

Age at pancreatic cancer diagnosis (40-50) 474 (1.98%) 417 (1.74%) 

Age at pancreatic cancer diagnosis (50-60) 1,626 (6.78%) 1,304 (5.44%) 

Age at pancreatic cancer diagnosis (60-70) 3,585 (14.95%) 2,950 (12.30%) 

Age at pancreatic cancer diagnosis (70-80) 4,017 (16.75%) 4,076 (16.99%) 

Age at pancreatic cancer diagnosis (80-90) 1,925 (8.03%) 2,751 (11.47%) 

Age at pancreatic cancer diagnosis (90-100) 148 (0.62%) 490 (2.04%) 

Age at pancreatic cancer diagnosis (100-110)  5 (0.02%) 

 975 
 976 
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Table S2. Hyperparameter search for machine learning models. 978 
 979 
To comprehensively test different types of neural networks and the corresponding 980 
hyperparameters, we conducted a large parameter search for each of the network types. The 981 
different types of models include simple feed-forward models (LR, MLP) and more complex 982 
models that can take the sequential information of disease ordering into consideration (RNN, GRU 983 
and Transformer). The hyperparameters of the best performing model are in bold. 984 
 985 

 Type of ML model 

Hyper-parameters Bag of words MLP GRU Transformer 

Dropout 0 0,0.1 0,0.1 0, 0.1 

Weight decay 0.001 0,0.001 0,0.001 0, 0.001 

Only prior knowledge 
diseases 

False, True False False False, True 

Dimension of hidden 
layer  

- 32, 128, 256 32, 64, 128, 256 32, 256 

Number of hidden 
layers  

- 1, 2 1, 2, 4 1, 2, 4 

Age input None None None, positional 
embedding 

None, positional 
embedding 

Time input None None None, positional 
embedding 

None, positional 
embedding 

Number of Heads - - - 8, 16, 32 

  986 
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Table S3. Performance of exclusion experiments. 987 
 988 
A summary of performance of different models trained with different data exclusion intervals for 989 
different prediction intervals. In order to estimate the uncertainty of the performance metrics, 95% 990 
confidence interval (CI) were computed using 200 resamples (bootstrapping with replacement); 991 
these time intervals may be slightly too narrow due to the estimated small number of trajectories 992 
from a single patient in a particular sample, but provide a reasonable guide. Specificity, precision, 993 
and recall are for the F1-optimal operational point.   994 
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Table S4. Known risk factor disease codes. 1007 
 1008 
A subset of 23 diseases that have been considered as risk factors for pancreatic cancer (Yuan et 1009 
al. 2020; Klein 2021) were chosen for the “known risk factor” analysis. Indeed, most of these are 1010 
flagged by the IG feature extraction method to make a significant contribution to the ML 1011 
prediction of cancer occurrence (Figure 4). These risk factors were used to train a separate time-1012 
series model ‘Transformer - known risk factors’ for comparison to the model trained on all ICD 1013 
codes (Figure 3).  1014 
 1015 

 1016 
 1017 
 1018 
 1019 
 1020 
 1021 
 1022 
 1023 
 1024 
 1025 
 1026 
 1027 
 1028 
 1029 
Table S5. Disease attribution without and with 3 months data exclusion 1030 
 1031 
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In order to discover the top diseases that contribute to our model’s risk prediction, we calculated 1032 
the contribution score for all input features using integrated gradients (IG), an attribution method 1033 
for neural networks. The IG contribution score (arbitrary units) was calculated for trajectories 1034 
with cancer occurrence in the time windows  0-6 months, 6-12 months, 12-24 months and 24-36 1035 
months both without data exclusion (A) and with 3 months data exclusion (B).  1036 
 1037 
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Figure S3. Distribution of disease codes as a function of age in the database.  1054 
 1055 
Distribution of disease codes for a representative subset of diseases known to contribute to the risk 1056 
of pancreatic cancer, as a fraction of all pancreatic cancer patients (orange) and all non-cancer 1057 
patients (blue). The similarity of the distributions for some of these diseases with the distribution 1058 
of occurrence of pancreatic cancer (red line, Gaussian fit to cancer diagnosis data) is consistent 1059 
with either a direct or indirect contribution to cancer risk - but not taken as evidence in this work. 1060 
The disease codes are ICD-10/ICD-8.  1061 
 1062 
 1063 
  1064 
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Figure S4. Distribution of disease codes over years and age in the Danish (DK) and 1066 
Boston (MGB) datasets.  1067 
 1068 
Distribution of disease codes over time and age for the Danish DNPR (A,C) and Boston MGB 1069 
datasets (B,D) for the pancreatic cancer (‘cancer’) and non-pancreatic-cancer (‘non-cancer’) cases. 1070 
The disease code frequency is the total number of disease codes summed over all patients in the 1071 
selected groups (cancer vs. non-cancer) divided by the total number of disease codes in the entire 1072 
database.  1073 
(A) The DNPR dataset has both ICD-8 and ICD-10 disease codes. The transition from ICD-8 to 1074 
ICD-10 occurred in 1994, after which the disease code frequency increased significantly over the 1075 
years. This increase could be due to alterations in clinical coding practices or due to higher disease 1076 
awareness in the population. In this study, we did not perform mapping from ICD-8 to ICD-10 1077 
codes. Instead, the model was trained on the non-mapped ICD-8 and ICD-9 codes for it to learn 1078 
coding patterns independently of a mapping. (B) Disease distribution over time for the Boston 1079 
MGB dataset. The dataset includes both ICD-9 and ICD-10 codes, for which we similarly did not 1080 
apply any mapping. (C) Disease distribution over age for the Danish DNPR dataset showing an 1081 
interesting increase of disease codes (all diseases) with age for the pancreatic cancer cases. (D) 1082 
Disease distribution over age for the Boston MGB dataset.  1083 
 1084 
 1085 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 5, 2022. ; https://doi.org/10.1101/2021.06.27.449937doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.27.449937
http://creativecommons.org/licenses/by-nc-nd/4.0/


48 

 1086 
 1087 
 1088 
 1089 
 1090 
 1091 
  1092 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 5, 2022. ; https://doi.org/10.1101/2021.06.27.449937doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.27.449937
http://creativecommons.org/licenses/by-nc-nd/4.0/


49 

Figure S5. ROC curves for the transformer model for different prediction and 1093 
exclusion intervals. 1094 
 1095 
For the transformer model, ROC curves were analysed across different prediction intervals (3, 6, 1096 
12, 36 and 60 months) and exclusion intervals (0, 3, 6 and 12 months). As expected, it is more 1097 
challenging to predict cancer occurrence in longer rather than shorter time intervals. We also see 1098 
that it becomes more challenging to predict cancer outcomes with higher exclusion intervals.  1099 
 1100 

 1101 
 1102 

(A-B) The DNPR ROC curves plot true positive rate (TPR) against false positive rate (FPR) 1103 
different prediction thresholds, where TPR is the true positives as a fraction of observed positives 1104 
(recall) and FPR is the false negatives as a fraction of observed negatives (1-specificity). A random 1105 
prediction (diagonal line) would have very low precision for equal TPR and FPR (AUROC=0.5). 1106 
Exclusion intervals are assessed in 0, 3, 6 or 12 months months. (A) The best-performing 1107 
Transformer models are evaluated for different prediction intervals starting at the time of 1108 
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assessment and ending at time points up to 60 months. The performance of the transformer model 1109 
is best for the 0-6 month time interval, but still reasonable up to the 0-60 month prediction interval. 1110 
Transformer performance (36-month) compared to the same model trained by (B) excluding from 1111 
the input diseases diagnoses in the last 0, 3, 6 or 12 months prior to the diagnosis of pancreatic 1112 
cancer. (C-D) The Boston MGB ROC curves for prediction intervals (C) and exclusion intervals 1113 
(D).  1114 
 1115 
 1116 
 1117 
Figure S6. Age as a contributing factor 1118 
The integrated gradient method was used to extract the contribution (arbitrary units) of patient age 1119 
to the prediction at the time of assessment. This confirmed that the positive contribution to risk 1120 
rises strongly from age 50. As for the disease contributions, the age contribution was calculated in 1121 
relation to the 3 year (after the time of assessment/prediction) cancer risk.  1122 
 1123 

 1124 
 1125 
 1126 
  1127 
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Result S1: Draft economic considerations for the design of clinical screening trial 1128 
 1129 
We propose a toy estimate of a practical scenario for a screening trial, taking into account typically 1130 
available real-world data, the accuracy of prediction on such data, the estimated cost of a screening 1131 
trial, the cost of clinical screening methods and the overall potential benefit of treatment.  1132 
 1133 
The detailed design of a screening program, to be explored in clinical trials, depends on the 1134 
organization of a particular health care system. In a ‘walk in’ scenario, in approximate analogy to 1135 
colonoscopic screening for colorectal cancer, patients older than, e.g., age 50 would be invited for 1136 
assessment of their risk by the prediction tool every 5 years and, if identified as high-risk, offered 1137 
extensive clinical testing. In a ‘national system’ scenario, possible in centralized health systems 1138 
with location-independent centralized aggregation of electronic health records, risk assessment 1139 
could be done on an ongoing basis, possibly for each patient whenever a new disease event occurs. 1140 
If a high-risk prediction is triggered, the responsible physician would receive an alert. With this 1141 
diversity of scenarios, it is reasonable to propose clinical screening trials in several countries 1142 
tailored to their particular health system. 1143 
 1144 
To illustrate the economic benefits of such a screening and to stimulate discussion regarding the 1145 
optimization of trial design, we have made a first-order-estimate for a clinical screening trial of 1146 
10,000 people using the best model (the transformer model). For simplicity, we have made no 1147 
assumptions regarding age distribution. Here is a simple economic model.  1148 

 1149 
Net Benefit = Average benefit for each correctly identified cancer patient * TP 1150 

!"!#$%&'$(&%)!*+,*%-*!.$(!*/01!1&)12(&-3!,/'&*%'!4!5 1151 

!"!6/-&0!0$-'!,*(!*%($77**!4!8 1152 
 1153 
where the screening cohort is N=10,000 and TP is the number of true positives, i.e., the number of 1154 
correctly identified high-risk patients, and P is the number of actual positive patients, which we 1155 
estimated using cancer incidence of the DNPR dataset. In our cost-benefit estimate, we arbitrarily 1156 
set the screening trial cost at $200 per enrollee, the additional monitoring expense for a patient 1157 
predicted at high risk by screening at $10,000 and the extra cost saved for advanced treatment for 1158 
each monitored patient at $200,000, averaged over those in which cancer is detected (savings in 1159 
excess of $200,000) and those in which it is not detected (no savings).  1160 
 1161 

 1162 
 1163 
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Figure S7. An estimate of financial benefits for different models. We analyzed each 1164 
possible operational point and calculated the corresponding cost and benefit, using 1165 
ballpark estimates. We plotted the net benefits as a function of coverage of cancer 1166 
patients, i.e. recall or sensitivity. Covering more cancer patients plausibly leads to a larger 1167 
total benefit, but the total cost also increases. The optimal point is picked for maximal net 1168 
benefit.  1169 
 1170 
An optimal decision threshold has to balance the cost of assessment and testing against the 1171 
potential financial benefit for reducing treatment cost. Using this simplified model, we estimated 1172 
the net benefits of different models with all possible operational points. Such a screening trial for 1173 
10,000 people would have $760,000 net benefit by choosing the balance between true and false 1174 
positives such that the net benefit is optimal. This corresponds to a precision of 14.0% and a 1175 
specificity of 99.7%. In contrast, a less good model GRU would have $540K net benefits but a 1176 
bag-of-words model (baseline) would have no net benefits for any operational point because of the 1177 
low incidence of pancreatic cancer. 1178 
 1179 
The proposed concrete but hypothetical design of a screening trial is intended to guide the debate 1180 
and ultimate decisions regarding implementation with clinicians and healthcare professionals. 1181 
However, this calculation is based on roughly estimated numbers and does not reflect real-world 1182 
cost analysis. Nor does this economic model reflect the non-monetary benefits to patients’ quality 1183 
of life, which should be the dominant factor in the design of trials and early intervention programs. 1184 
In a real-world scenario, clinicians and payers in a particular health system have the opportunity 1185 
to optimize the design of such screening trials with realistic cost-benefit parameters, as well as 1186 
consideration of communication ethics and the non-financial aspects of patient benefit.  1187 
 1188 
A key challenge for future realistic economic estimates is the mapping between ICD (diagnosis) 1189 
codes to CPT (billing) codes that are used for expense calculations and reimbursements. In 1190 
addition, in the US, there is substantial geographical variability in reimbursement even for the 1191 
same CPT/billing codes. 1192 
 1193 
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