

Pancreatic cancer risk predicted from disease trajectories using deep learning

Davide Placido^{1,‡}, Bo Yuan^{2,3,4,‡}, Jessica X. Hjaltelin^{1,‡}, Amalie D. Haue^{1,5}, Piotr J Chmura¹, Chen Yuan^{2,3}, Jihye Kim⁶, Renato Umeton^{3,6,7,8}, Gregory Antell³, Alexander Chowdhury³, Alexandra Franz^{2,3,4}, Lauren Brais³, Elizabeth Andrews³, Debora S. Marks², Aviv Regev^{4,9}, Peter Kraft⁶, Brian M. Wolpin^{2,3,10}, Michael Rosenthal^{2,3,10}, Søren Brunak^{1,5,*}, Chris Sander^{2,3,4,*}

¹ Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark

² Harvard Medical School, Boston, USA

³ Dana-Farber Cancer Institute, Boston, USA

⁴ Broad Institute of MIT and Harvard, Boston, USA

⁵ Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark

⁶ Harvard T.H. Chan School of Public Health, Boston, USA

⁷ Massachusetts Institute of Technology, Cambridge, MA, USA

⁸ Weill Cornell Medicine, New York City, NY, USA

⁹ Currently: Genentech, South San Francisco, CA, USA

¹⁰ Brigham and Women's Hospital, Boston, USA

[‡] joint first authors: davide.placido@cpr.ku.dk, boyuan@g.harvard.edu, jessica.hu@cpr.ku.dk

^{*} joint senior authors: soren.brunak@cpr.ku.dk, chris_sander@hms.harvard.edu

31 **Abstract:**

32 Pancreatic cancer is an aggressive disease that typically presents late with poor patient outcomes.
33 There is a pronounced medical need for early detection of pancreatic cancer, which can be
34 addressed by identifying high-risk populations. Here we apply artificial intelligence (AI) methods
35 to a dataset of more than 6 million patient records with 24,000 pancreatic cancer cases in the
36 Danish National Patient Registry (Denmark) and, for comparison, a dataset of one million records
37 with 4,000 pancreatic cancer cases in the Mass General Brigham Healthcare System (Boston, US).
38 In contrast to existing methods that do not use temporal information, we explicitly train machine
39 learning models on the time sequence of diseases in patient clinical histories and test the ability to
40 predict cancer occurrence in time intervals of 3 to 60 months after risk assessment. We extract
41 from the AI machine an estimate of the contribution to prediction of individual disease features.
42 For cancer occurrence within 36 months, the performance of the best model (AUROC=0.88),
43 trained and tested on disease trajectories in the Danish dataset, substantially exceeds that of a
44 model without time information, even when disease events within a 3 month window before cancer
45 diagnosis are excluded from training (AUROC[3m]=0.84). Independent training and testing on the
46 Boston dataset reaches comparable performance (AUROC=0.87, AUROC[3m]=0.80), while
47 cross-application of the Danish deep learning model on the Boston dataset has lower accuracy
48 (AUROC=0.78, AUROC[3m]=0.70), indicating a requirement of independent training in health
49 systems with different coding practices. These results raise the state-of-the-art level of
50 performance of cancer risk prediction on real-world data sets and provide support for the design
51 of future screening trials for high-risk patients, e.g., to serial imaging or blood-based biomarkers
52 to facilitate earlier cancer detection. AI on real-world clinical records has the potential to shift
53 focus from treatment of late-stage to early-stage cancer, benefiting patients by improving lifespan
54 and quality of life.

55

56

57

58 Introduction

59 [[Clinical need for early detection]]

60 Pancreatic cancer is a leading cause of cancer-related deaths worldwide with increasing incidence
61 (Rahib et al. 2014). Early diagnosis of pancreatic cancer is a key challenge, as the disease is
62 typically detected at a late stage. Approximately 80% of pancreatic cancer patients are diagnosed
63 with locally advanced or distant metastatic disease, when long-term survival is extremely
64 uncommon (2-9% of patients at 5-years) (McGuigan et al. 2018). However, patients who present
65 with early-stage disease can be cured by a combination of surgery, chemotherapy and radiotherapy.
66 Indeed, more than 80% of patients with stage IA pancreatic ductal adenocarcinoma (PDAC)
67 achieve 5-year overall survival [National Cancer Institute, USA, (Blackford et al. 2020)]. Thus, a
68 better understanding of the risk factors for pancreatic cancer and detection at early stages has great
69 potential to improve patient survival and reduce overall mortality from this aggressive malignancy.

70 [[Known risk factors of limited use]]

71 The incidence rate of pancreatic cancer is substantially lower compared with other high mortality
72 cancers, such as lung, breast and colorectal cancer. Thus, age-based population screening is
73 difficult due to poor positive predictive values for potential screening tests and large numbers of
74 futile evaluations for patients with false-positive results. Moreover, few high-penetrance risk
75 factors are known for pancreatic cancer impeding early diagnosis of this disease. Risk of pancreatic
76 cancer has been assessed for many years based on family history, behavioral and clinical risk
77 factors and, more recently, circulating biomarkers and genetic predisposition (Amundadottir et al.
78 2009; Petersen et al. 2010; D. Li et al. 2012; Wolpin et al. 2014; Klein et al. 2018; Kim et al. 2020).
79 Currently, some patients with familial risk due to family history or inherited genetic mutation or
80 cystic lesions of the pancreas undergo serial pancreas-directed imaging to detect early pancreatic
81 cancers, but these patients account for less than 20% of those who develop pancreatic cancer. To
82 address the challenge of early detection of pancreatic cancer in the general population (Pereira et
83 al. 2020; Singhi et al. 2019), we aim to predict the risk of pancreatic cancer from real-world
84 longitudinal clinical records and identify high-risk patients, which will facilitate the design of
85 screening trials for early detection. Development of realistic risk prediction methods requires
86 access to high-quality clinical records and a choice of appropriate machine learning methods, in
87 particular deep learning techniques that work on large and noisy sequential datasets (Dietterich
88 2002; LeCun, Bengio, and Hinton 2015).

89 [[Earlier clinical ML work]]

90 We build on earlier work in the field of risk assessment based on clinical data and disease
91 trajectories using machine learning technology (Nielsen et al. 2019; Thorsen-Meyer et al. 2020).
92 AI methods have been applied to a number of clinical decision support problems (Shickel et al.
93 2018), such as choosing optimal time intervals for actions in intensive care units (Hyland et al.
94 2020), assessing cancer risk from images (Esteva et al. 2017; Yala et al. 2019; Yamada et al. 2019),
95 predicting the risk of potentially acute disease progression, such as in kidney injury (Tomašev et
96 al. 2019) and the likelihood of a next diagnosis based on past EHR sequences, in analogy to natural
97 language processing (Y. Li et al. 2020).

98 [[Earlier ML work on PDAC risk]]

99 For risk assessment of pancreatic cancer, recently machine learning predictive models using
100 patient records have been built using health interview survey data (Muhammad et al. 2019),
101 general practitioners' health records controlled against patients with other cancer types (Malhotra
102 et al. 2021), real-world hospital system data (Appelbaum, Cambronero, et al. 2021; X. Li et al.
103 2020), and from an electronic health record (EHR) database provided by TriNetX, LLC. (Chen et
104 al. 2021; Appelbaum, Berg, et al. 2021). While demonstrating the information value of health
105 records for cancer risk, these previous studies used only the occurrence of disease codes, not the
106 time sequence of disease states in a patient trajectory - in analogy to the 'bag-of-words' models in
107 natural language processing that ignore the actual sequence of words. Previous studies had used
108 the Danish health registries to generate population-wide disease trajectories, but in a non-
109 predictive manner (Hu et al. 2019; Jensen et al. 2014).

110 [[Advance here - better data and better ML]]

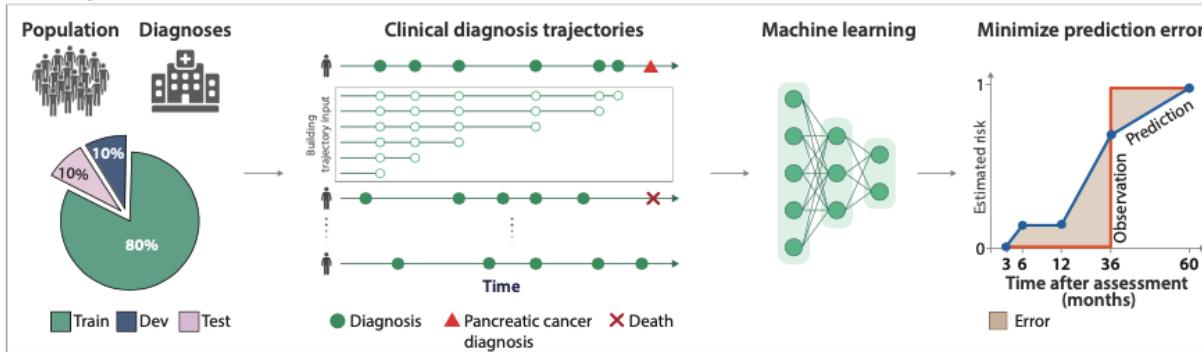
111 Here we exploit the power of advanced machine learning (ML) technology by focusing on the time
112 sequence of clinical events and by predicting the risk of cancer occurrence over a multi-year time
113 interval. This investigation was initially carried out using the Danish National Patient Registry
114 (DNPR) and data which covers 41 years (1977 to 2018) of clinical records for 8.6 million patients,
115 of which about 40,000 had a diagnosis of pancreatic cancer (Schmidt et al. 2015; Siggaard et al.
116 2020). To maximize predictive information extraction from these records we tested a range of ML
117 methods. These methods range from regression methods and machine learning without time
118 dependence to time series methods such as Gated Recurrent Units (GRU) and Transformer,
119 adapting AI methods that have been very successful in natural language processing and analysis
120 of other time series data (Cho et al. 2014; Tealab 2018; Vaswani et al. 2017).

121 [[Advance - prediction time intervals]]

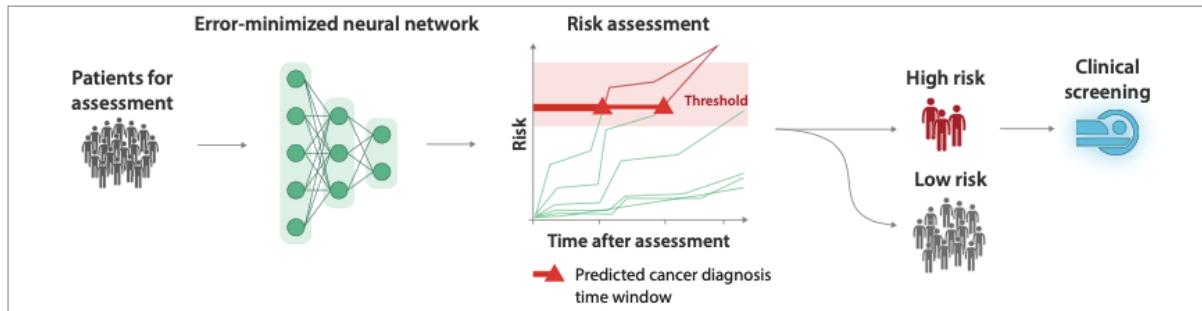
122 The likely action resulting from a personalized positive prediction of cancer risk ideally should
123 take into account the probability of the disease occurring within a shorter or longer time frame.
124 For this reason, we designed the prediction method to predict not only whether cancer is likely to
125 occur, but also to provide risk assessment in incremental time intervals following the assessment,
126 where time of assessment is defined as the day on which the risk prediction is performed based on
127 the history of clinical records of the particular patient. We also analyzed which diagnoses in a
128 patient's history of disease codes are most informative of cancer risk - not as isolated factors but
129 always in the context of the person's complete history of disease codes. Finally, we propose a
130 practical scenario for broadly-based screening trials, taking into consideration typically available
131 real-world data, the accuracy of prediction on such data, the scope of a screening trial, the cost and
132 success rate of clinical screening methods and the overall potential benefit of early treatment
133 (**Supplementary Text, Figure S5**).

A

Learning

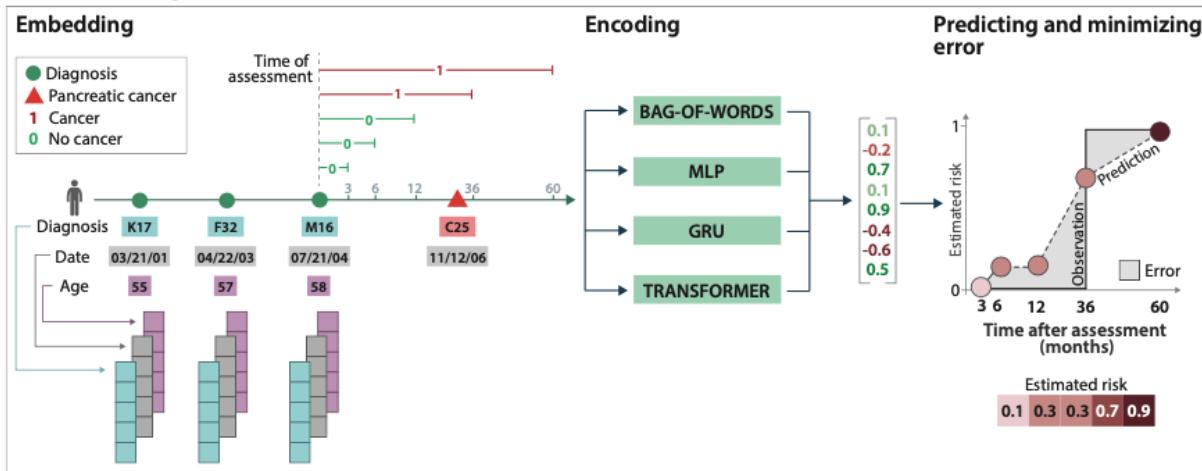


Prediction



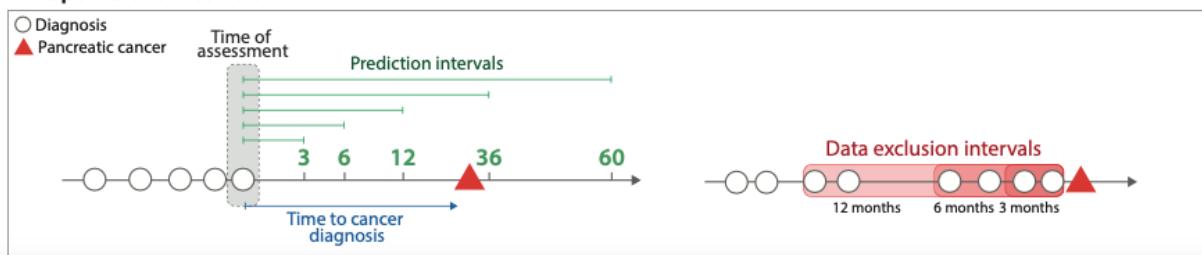
B

Machine learning architecture



C

Time points and intervals



135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160

Figure 1. Training and prediction of pancreatic cancer risk from disease trajectories.
(A) Learning: The general machine learning workflow starts with partitioning the data into training set (Train), development set (Dev) and test set (Test). The trajectories for training input are generated by sampling continuous subsequences of diagnoses for each patient's diagnosis history, each starting with the first record but with different end points. The training and development sets are used for training machine learning models to fit a risk score function (prediction) to a step function (observation) that represents the occurrence of a pancreatic cancer diagnosis, by minimizing the prediction error over all instances. Prediction: A model's ability to generalize is evaluated using the withheld 'test' set. The prediction model, depending on the prediction threshold selected from among possible operational points, discriminates between patients at higher and lower risk of pancreatic cancer. The risk model can guide the development of clinical screening initiatives. **(B)** The model trained with real-world clinical data has three steps: embedding, encoding and prediction. The embedding machine transforms categorical disease codes and time stamps of these disease codes into a latent space. The encoding machine extracts information from a disease history and summarizes each sequence in a characteristic fingerprint (vertical vector). The prediction machine then uses the fingerprint to generate predictions for cancer occurrence within different time intervals after the time of assessment (3, 6, 12, 36, 60 months). The model parameters are trained by minimizing the difference between the predicted and the actually observed cancer occurrence. **(C)** Terminology for time points and intervals. The end point of a disease trajectory is the time of assessment. From the time of assessment, cancer risk is assessed within 3, 6, 12, 36 and 60 months. To test the influence of close-to-cancer ICD codes on the prediction of cancer occurrence, exclusion intervals are used to remove diagnoses in the last 3, 6 and 12 months before cancer diagnosis.

161
162

163 **Results**

164 **Datasets**

165

166 **[[Dataset of disease trajectories: Denmark]]**

167

168 We used data from the DNPR, where all inpatient admissions to Danish hospitals have been
169 recorded since 1977, and outpatients and emergency visits have been included since 1994.
170 Demographic information was obtained by linkage to the Central Person Registry, which is
171 possible via the personal identification number introduced in 1968, that identifies any Danish
172 citizen uniquely over the entire lifespan (Schmidt, Pedersen, and Sørensen 2014). DNPR covers
173 approximately 8.6 million patients with 229 million hospital diagnoses, with on average 26.7
174 diagnosis codes per patient. For training we used trajectories of ICD (International Classification
175 of Diseases) codes with explicit time stamps for each hospital contact comprising diagnoses down
176 to the three-character category in the ICD hierarchy. We used data from January 1977 to April
177 2018 and filtered out patients with discontinuous or very short trajectories (<5 events in total),
178 ending up with 6.2 million patients (**Figure S1A**). The case cohort includes 23,985 pancreatic
179 cancer (PC) cases with cancer occurring at a median age of 70 years (mean age of 65±11 years
180 [men] and 67±12 years [women]) (**Figure 2, Table S1**).

181

182 **[[Dataset of disease trajectories: Boston, US]]**

183

184 For external validation, we used clinical records from the Mass General Brigham (MGB) hospital
185 system in the US via their Research Patient Data Registry (RPDR), a centralized, access-controlled
186 clinical data warehouse for use in research. As in the Danish dataset, we also used explicit
187 longitudinal records from MGB, i.e., trajectories of ICD codes with explicit time stamps. We used
188 data from 1982 to 2020 and filtered out patients with less than six months of contact or less than
189 five recorded diagnosis codes (**Figure S1b**). The selected dataset (**Figure 2**) has 1.0 million
190 patients with 3,904 pancreatic cancer patients (Methods). The median length of disease trajectories
191 is 13 years and the median number of disease codes per patient is 168; the latter is much higher
192 than in the Danish dataset (**Figure 2C**). The median age of pancreatic cancer diagnosis is 60 years,
193 lower than in the Danish dataset (**Figure 2C**). These statistics might reflect the differences between
194 the health care systems in the two locations, such as referral, billing and documentation practices.

195

196

197 **Model architecture**

198 **[[Network architecture/layers]]**

199 The machine learning model for predicting cancer risk from disease trajectories consists of four
200 parts: (1) **input** data for each event in a trajectory (disease code and time stamps), (2) **embedding**
201 the event features onto real number vectors, (3) **encoding** the trajectories in a lower-dimensional
202 latent space, and (4) **predicting** time-dependent cancer risk. (1) **Input:** In order to best exploit the
203 longitudinality of the EHR data and provide an opportunity to discover early indicators of cancer
204 risk, all contiguous subsequences of diagnoses from a patient's history were sampled, starting with
205 the earliest record and increasing gaps between the end of the trajectory and cancer occurrence for

206 positive cases (Methods). The partial trajectories provide information in support of prediction for
207 different time spans between risk assessment and cancer occurrence, rather than just binary
208 prediction that cancer will occur at any time after assessment. (2) **Embedding**: Each item in a
209 disease trajectory is an event denoted with one of the >2,000 ICD disease codes. To extract
210 informative features from such high-dimensional input, the ML process is designed to embed the
211 categorical input vectors into a continuous, lower-dimensional space. Temporal information, i.e.
212 diagnosis dates and age at diagnosis are also embedded (see Methods). The mapping of the input
213 to the embedding layer is trained together with other parts of the model. (3) **Encoding**: The
214 longitudinal nature of the disease trajectories allows us to construct time-sequence models using
215 sequential neural networks, such as gated recurrent units (GRU) models (Cho et al. 2014). We also
216 used the Transformer model (Vaswani et al. 2017) which uses an attention mechanism and
217 therefore can capture time information and complex interdependencies. For comparison, we also
218 tested a bag-of-words (i.e., bag-of-disease-codes) approach that ignores the time and order of
219 disease events by pooling the elements of the event vectors. (4) **Predicting**: The embedding and
220 encoding network layers map each disease trajectory onto a characteristic fingerprint vector in a
221 low-dimensional latent space. This vector is then used as input to a feedforward network to
222 estimate the risk of cancer within distinct prediction intervals ending a few months or several years
223 after the end of a trajectory (the time of risk assessment).

224 **[[Prediction of occurrence within a time interval]]**

225 For each of the disease trajectories ending at time t_a , a 5-dimensional risk score is calculated, where
226 each dimension represents the risk of cancer occurrence within a particular prediction window
227 after t_a , e.g., 6-12 months or 12-36 months (Lin et al. 2008; Yala et al. 2021). The risk score is
228 constrained to monotonically increase with time as the risk of cancer occurrence naturally
229 increases over time, for a given disease trajectory. If and when the risk score exceeds a prediction
230 threshold, cancer diagnosis is predicted to have occurred (**Figure 1**). In this way, the model uses a
231 time sequence of disease codes for one person as input and predicts a cancer diagnosis to occur
232 within 3, 6, 12, 36, 60, 120 months after the time t_a of risk assessment; or not to occur at all in 120
233 months.

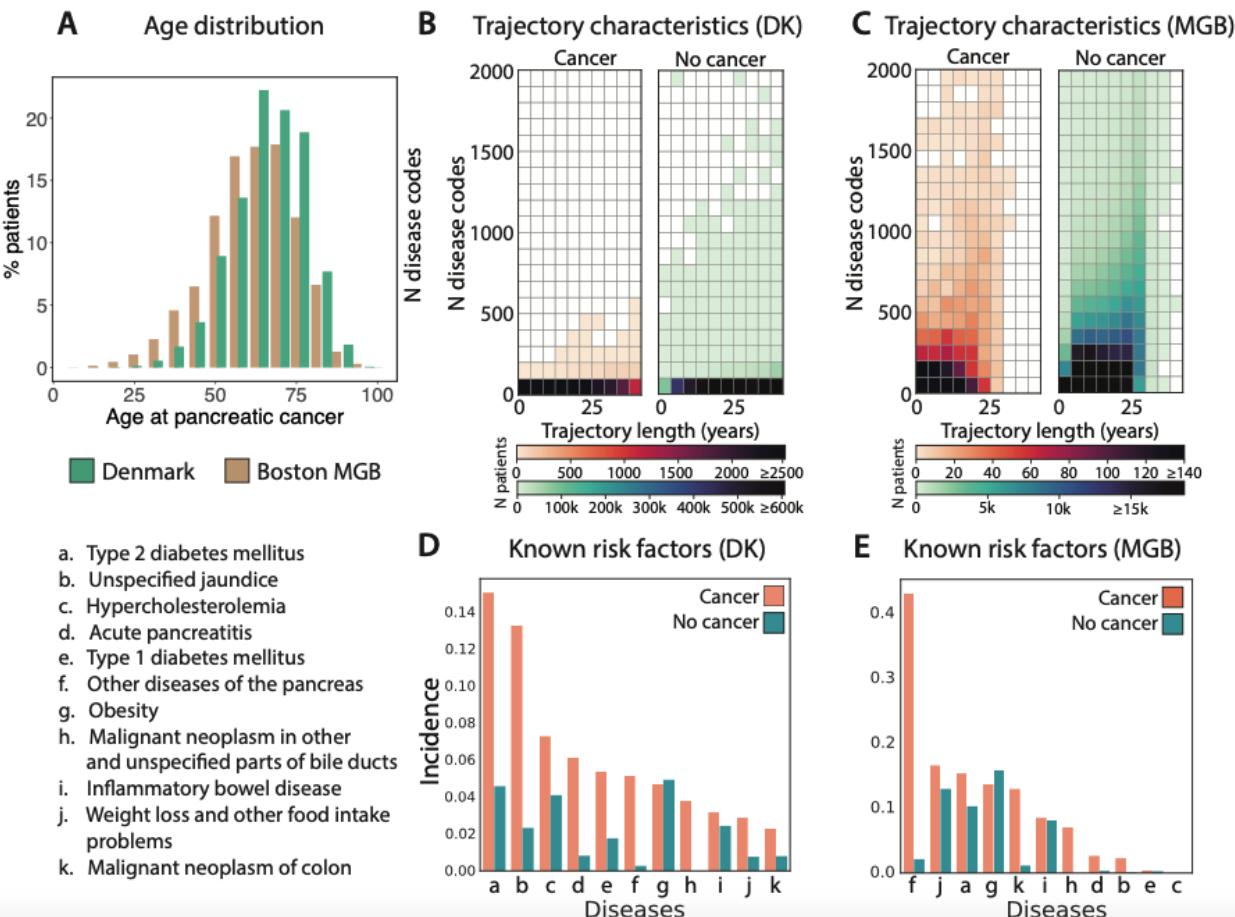
234 **[[Scanning hyperparameters for each model type]]**

235 To comprehensively test the performance of different types of ML models, we first conducted an
236 extensive search over hyperparameters and selected the best set of hyperparameters for each
237 model, and then selected the best model type. The model types included transformer, GRU, a
238 multilayer perceptron and bag-of-words. Each model was tested on specific hyperparameter
239 configurations (**Table S2**). To avoid overfitting and to test generalizability of model predictions,
240 we partitioned patient records randomly into 80%/10%/10% training/development/test sets. We
241 conducted training only on the training set and used the development set to examine the
242 performance for different hyperparameter settings, which guides model selection. Subsequently,
243 the performance of the selected models was evaluated on the fully withheld test set and reported
244 as an estimate of performance in prospective applications in health care settings with similar
245 availability of longitudinal records.

Characteristics of Danish and Boston MGB dataset

General cohort information	Danish dataset	Boston MGB dataset
Dataset timeline	1977-2018	1982-2021
Total N patients	8,110,706	1,015,978
Male (%)	4,030,504 (49.7%)	414,728 (40.8%)
Female (%)	4,080,202 (50.3%)	601,224 (59.2%)
Median N disease codes per patient	22	168
Median length of trajectory in years	23.0	13.0
PC cohort information		
Total N patients	23,985	3,904
Male (%)	11,880 (49.5%)	1,866 (47.8%)
Female (%)	12,105 (50.5%)	2,038 (52.2%)
Median N disease codes per patient	18	99
Median length of trajectory in years	17.0	7.0
Median age at PC diagnosis	70.0	60.0
N disease codes 3 months pre-PC	95,358	109,280
N disease codes 6 months pre-PC	27,131	65,966
N disease codes 12 months pre-PC	38,109	96,114
N disease codes >12 months pre-PC	480,830	737,522

Abbreviations: PC: pancreatic cancer.



247 **Figure 2. Danish (DK) and Boston (MGB) patient registries used for machine**
248 **learning of cancer risk.** The Danish DNPR database (DK) of clinical records covers over
249 8 million people for up to 41 years. The Boston MGB (RPDR) database covers only 1
250 million people with long term data, but has a higher density of disease codes per time
251 interval (**Figure S4**). **(A)** The incidence of pancreatic cancer peaks past the age of 50 years
252 in both datasets. **(B,C)** The machine learning process has to cope with very different
253 distributions of disease trajectories in terms of length of trajectories and density of the
254 number of disease codes. The Danish (DK) dataset has a longer median length of disease
255 trajectories, but lower median number of disease codes per patient compared to the MGB
256 dataset. **(D,E)** An intuitive indication of the association of individual disease codes with
257 subsequent diagnosis of pancreatic cancer is given by the relative incidence of known risk
258 factors in cancer vs. non-cancer patients in the DK **(D)** and MGB **(E)** datasets, counting
259 whether a disease code occurred at least once in a patient's history and excluding events
260 at or after cancer diagnosis.

262 Evaluation of model performance

263 [[Picking a best model - DK]]

264 We evaluated the different models using the precision-recall curve (PRC) and then report
265 performance numbers at the operating point on the receiver-operating curve (ROC) that
266 maximizes the F1 score (**Figure 3**), which strikes a balance between precision (positive predictive
267 value) and recall (sensitivity). In the final performance evaluation of different types of ML models
268 on the test set, the models which explicitly use and encode the time sequence of disease codes, i.e.,
269 GRU and Transformer, ranked highest (**Figure 3A-C, Table S3**). For the prediction of cancer
270 incidence within 3 years of the assessment date (the date of risk prediction), the Transformer model
271 had the best performance (AUROC=0.879 [0.877-0.880]), followed by GRU (AUROC=0.852
272 [0.850-0.854]). The bag-of-words model that ignores the time information along disease
273 trajectories performed significantly less well (AUROC=0.807 [0.805-0.809]). At the chosen
274 operating point that maximizes the F1 score (Methods), the model has a precision of 18.1% (17.1-
275 19.9), a recall of 12.3% (11.7-12.9) and a specificity of 99.88% (99.87-99.90). In order to gain a
276 better intuition regarding the impact of applying the model in a real case scenario, we also report
277 the odds ratio (OR) of cancer patients in the high-risk group for the deep learning models. The OR
278 is defined as the odds of getting pancreatic cancer for a high risk patient divided by the odds of
279 getting pancreatic cancer for a low risk patient (**Table S6**). The odds ratio for the Transformer
280 model is 47.5 for 20% recall and 159.0 for 10% recall.

281 [[Comparison with previous models]]

282 Earlier work also developed ML methods on real-world data clinical records and predicted
283 pancreatic cancer risk (Appelbaum, Cambronero, et al. 2021; Appelbaum, Berg, et al. 2021; Chen
284 et al. 2021; X. Li et al. 2020). These previous studies had encouraging results, but neither used the
285 time sequence of disease histories nor memory or attention mechanisms in the neural network to
286 extract time-sequential longitudinal features. For comparison we implemented analogous
287 approaches, a bag-of-words model and a multilayer perceptron (MLP) model. We evaluated the
288 non-time-sequential models on the DNPR dataset, and the performance for predicting cancer
289 occurrence within 36 months was AUROC=0.807 (0.805-0.809) for the bag-of-words model and
290

292 0.845 (0.843-0.847) for the MLP model. Compared to the time-sequential models, e.g.,
293 Transformer, which has an odds ratio of 159.0 at 10% recall, the bag-of-words/MLP models have
294 a much lower odds ratio of 4.0/21.0, respectively, also at 10% recall. In other words, when taking
295 time series into account, the odds ratio increases by nearly a factor of 40 (**Table S3**).

296 [[Prediction for prediction time intervals]]

297 It is also of clinical interest to consider risk of cancer over different time intervals. The ML models
298 in this work yield risk scores for pancreatic cancer occurrence within 3, 6, 12, 36 and 60 months
299 of the date of risk assessment. As expected, it is more challenging to predict cancer occurrence
300 within longer rather than shorter time intervals (**Figure 4A&C**). Indeed, prediction performance
301 for the best model decreases from an AUROC of 0.908 (0.906-0.911) for cancer occurrence within
302 12 months to an AUROC of 0.879 (0.877-0.880) for occurrence within 3 years (**Figure 3D-E**).
303 For each ML model and each prediction interval, we picked the operational points that maximize
304 the F1 score, which is the harmonic mean of recall and precision (Sasaki 2007).

305 [[Performance with data exclusion]]

306 Disease codes within a short time before diagnosis of pancreatic cancer are most probably directly
307 predictive such that even without any machine learning, well-trained clinicians would include
308 pancreatic cancer in their differential diagnosis. Even more so, disease codes just prior to
309 pancreatic cancer occurrence are either semantically similar to it or encompass it (e.g., neoplasm
310 of the digestive tract). To infer earlier detection, we therefore separately trained the models
311 excluding from the input diseases diagnoses in the last 3 or 6 months prior to the diagnosis of
312 pancreatic cancer (**Figure 1C**). As expected, e.g. when training with data exclusion, the
313 performance decreased to AUROC of 0.862 (0.857-0.866) for 3 months exclusion and a AUROC
314 of 0.834 (0.830-0.838) for 6 months exclusion - both for prediction of cancer occurrence within 12
315 months (**Table S3A**).

316 [[Information contribution as a function of time gap between of assessment 317 and cancer occurrence]]

318 The exclusion of trajectories ending very close to pancreatic cancer removes the influence of
319 disease codes that represent symptoms of pancreatic cancer or are otherwise easily attributable to
320 pancreatic cancer. However, data exclusion of such late events alone does not quantify the
321 influence of longer term risk factors on prediction. In an attempt to estimate the performance of
322 the model when possible peri-diagnostic codes are excluded, we report the recall rate of prediction
323 as a function of the time-to-cancer, defined as the time between the end of disease trajectory and
324 the occurrence of cancer (**Figure 4A, C**). As expected, recall levels decrease with time-to-cancer,
325 from 8% for cancer occurring about 1 year after assessment to a recall of 4% for cancer occurring
326 about 3 years after assessment - for both the models trained with and without 3 months data
327 exclusion. This suggests that the model not only learns from symptoms very close to pancreatic
328 cancer but also from longer disease history, albeit at lower accuracy.

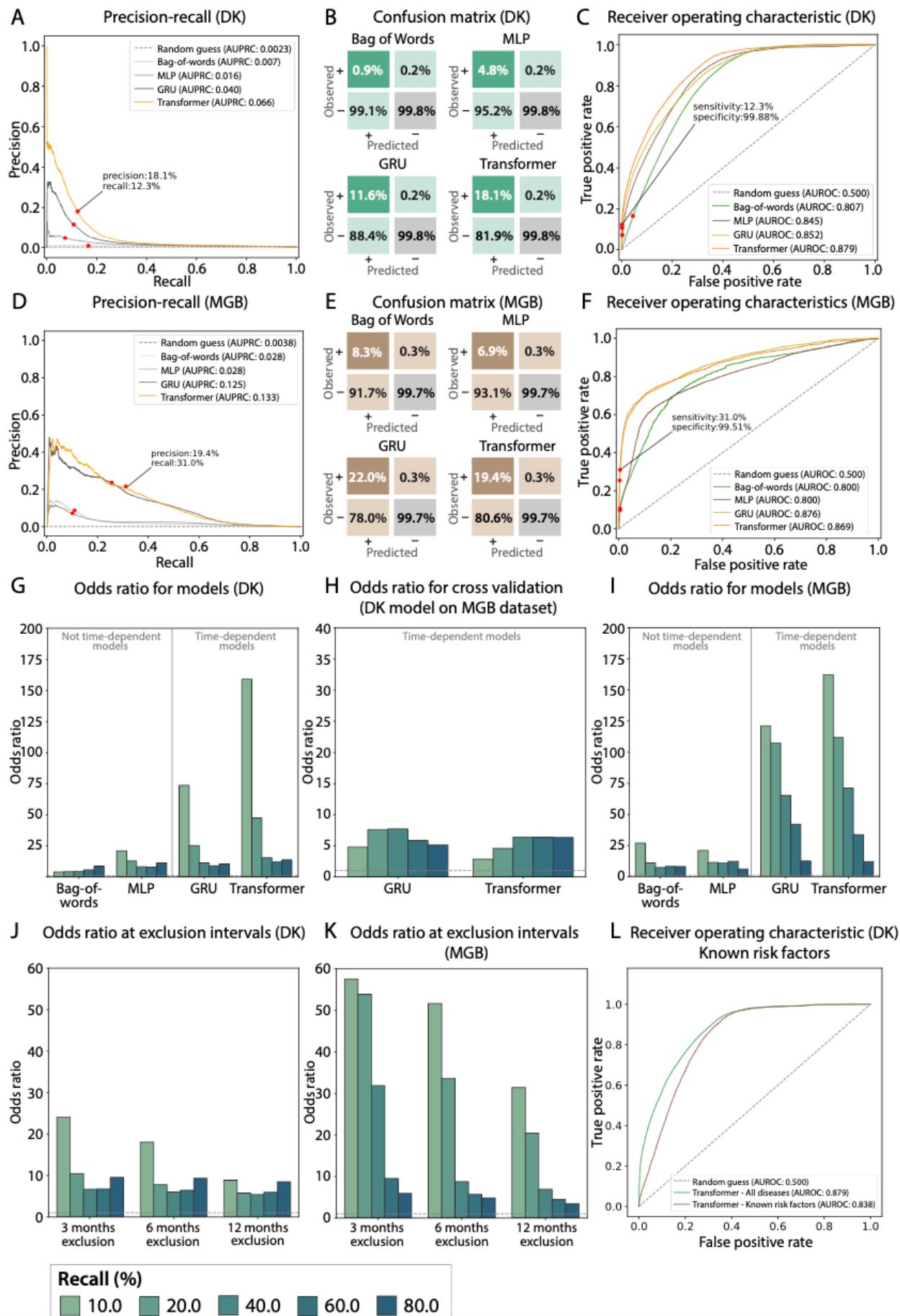
329 [[Performance by cross-application of a trained model to a different dataset]]

330 In order to assess the predictive performance of the model in other health care systems, we applied
331 the best machine learning model trained on the Danish DNPR to disease trajectories of patients in

332 the Boston MGB dataset, without any adaptation except for mapping the ICD codes from one
333 system to the other. Prediction performance for cancer occurrence within 3 years declined
334 significantly from an AUROC of 0.879 (0.877-0.880), for a Denmark-trained transformer model
335 applied to Danish DNPR patient data (test set), to an AUROC of 0.776 (0.773-0.778), for the same
336 model applied to Boston MGB patient data (**Figure 3H**). Cross-application required mapping the
337 ICD codes used in Denmark (ICD-10 and ICD-8 codes from The Danish Medical Classification
338 System; Sundhedsvæsenets Klassifikations System (SKS)) to the ICD-10-CM and ICD-9-CM codes
339 used in the Boston MGB system. The most striking difference between the two systems is the
340 shorter and more dense disease history in the Boston MGB trajectories compared to the Danish
341 ones (**Figure 2B-C**). These differences plausibly contribute to the lower performance when cross-
342 applying the machine learning model trained in one health system to another. We conclude that
343 independent training is indicated to achieve good performance in a very different dataset.
344

345 **[[Model performance by independent training on a different dataset]]**

346 Motivated by the decrease in performance when testing the Denmark-derived model on the Boston
347 MGB dataset, we trained and evaluated the model on the Boston MGB dataset from scratch. For
348 the independently trained model, the performance is much higher than in cross-application, with a
349 test-set AUROC of 0.869 (0.867-0.870) for cancer occurring within 36 months. At the operating
350 point maximizing F1 score, the model has a precision of 19.4% (19.1%-19.7%), a recall of 31.0%
351 (30.4%-31.5%) and a specificity of 99.51% (99.50%-99.52%). At 20% recall, the odds ratio for
352 the high risk group for independent training is 112 compared to 7.6 for cross-application. Similar
353 to the models trained independently on the Danish DNPR, the GRU and transformer models
354 performed much better than the model without temporal information (bag-of-words).
355



357 **Figure 3. Performance of the machine learning (ML) models in predicting pancreatic**
358 **cancer occurrence.** Performance of different ML models for prediction of cancer
359 occurrence within 36 months for the Danish DNPR (DK) dataset (**A,B,C**) and Boston Mass
360 General Brigham (MGB) dataset (**D,E,F**). (**A,D**) Precision-recall curves (PRC): precision
361 (true positives as a fraction of predicted positives) against recall (true positives as a fraction
362 of observed positives) for different models, at different prediction thresholds along the
363 curve. One way to choose an operational point (F1 point) is to balance precision and recall
364 by optimizing the F1 score (red point; Methods). (**B,E**) Confusion matrix for each model,
365 at the F1 point, with the fraction of true positives, true negatives, false positives and false
366 negatives, normalized by column. (**C,F**) Receiver operating characteristic curves (ROC):
367 true positive rate TPR (recall, sensitivity) against false positive rate FPR (false negatives
368 as a fraction of observed negatives = (1-specificity)), at different prediction thresholds
369 along the curve. A random prediction has very low precision for all values of recall
370 (horizontal dotted line in **A** and **D**; AUPRC=incidence=0.004) and equal TPR and FPR
371 (diagonal line in **C** and **F**; AUROC=0.5). The Transformer is the best performing model
372 for 36-month prediction of cancer occurrence for nearly all operational points (**A,C,D,F**).
373 Odds ratios are defined as the odds of getting pancreatic cancer for a high risk patient
374 divided by the odds of getting pancreatic cancer for a low risk patient (**G-K**). Odds ratios
375 for the different ML models for (**G**) the Danish models applied to the Danish dataset, (**H**)
376 the Danish models applied to the Boston dataset and (**I**) the Boston models applied to the
377 Boston dataset. (**J-K**) The odds ratios decrease at higher data exclusion intervals and
378 higher recall thresholds. (**J**) Odds ratios for the Danish GRU model, trained with data
379 exclusion intervals, applied to the Danish dataset. (**K**) Odds ratios for the Boston GRU
380 model, trained with data exclusion intervals, applied to the Boston dataset. (**L**) Prediction
381 performance (by AUROC) was significantly lower when using only 23 known risk factors,
382 rather than 2000 disease codes (no data exclusion).

383
384 **Predictive Features**

385 **[[Interpretation: contribution of known risk factors]]**

386 Although the principal criterion for the potential impact of screening trials is robust predictive
387 performance, it is of interest to interpret the features of any predictive method: which diagnoses
388 are most informative of cancer risk and at what time point? We used two methods for the
389 identification of factors that contribute most to positive prediction. One method uses prior
390 knowledge and limits the input for training and testing to disease types, which have been reported
391 to be indicative of the likely occurrence of pancreatic cancer (Yuan et al. 2020; Klein 2021). The
392 result is that these 23 known risk factors are moderately predictive of cancer but are much less
393 informative compared to the more than 2,000 available diseases (**Table S4, Figure 3L**). The
394 relationship between age, number of disease codes and pancreatic cancer occurrence is also
395 consistent with the fact that increasing age has been reported as a major risk factor of pancreatic
396 cancer (**Figure 2A, S6**).

397 **[[Interpretation: contributing factors by gradient method]]**

398 A second, explicitly computational method infers the contribution of a particular input variable to
399 the prediction by the machine learning engine using the integrated gradients (IG) algorithm

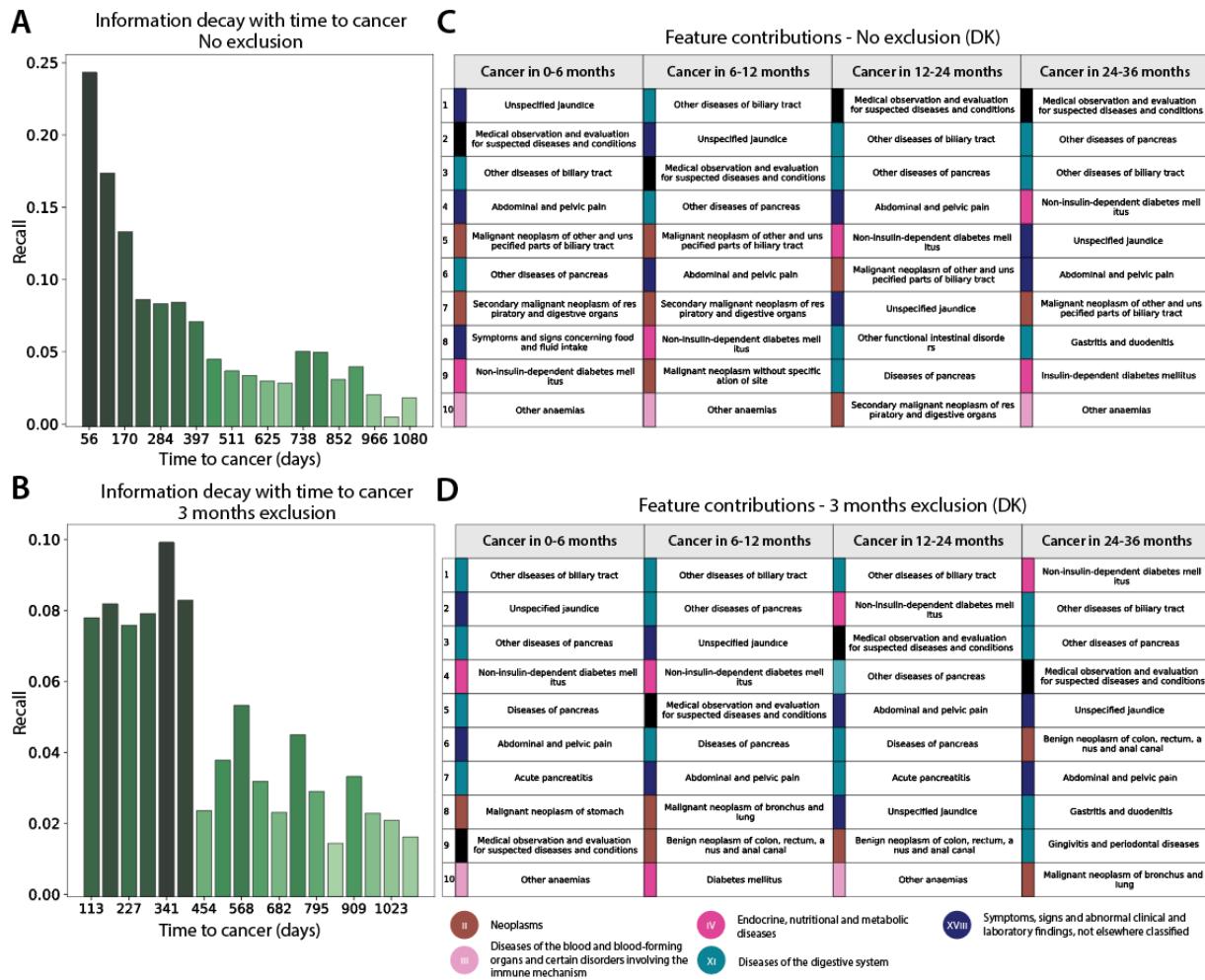
400 (Sundararajan, Taly, and Yan 2017) (**Figure 4B,D**). The IG contribution was calculated separately
401 for different times to cancer diagnosis, in particular at 0-6 months, 6-12 months, 12-24 months and
402 24-36 months after assessment, for all patients developing cancer. The aim was to explore how
403 diseases contribute differently to the risk of pancreatic cancer, depending on how close to
404 pancreatic cancer they occurred. There is a tendency for diseases, which in normal clinical practice
405 are known to indicate the potential presence of pancreatic cancer, to have a higher contribution to
406 prediction for trajectories that end closer to cancer diagnosis. On the other hand, putative early risk
407 factors plausibly have a higher IG score for the trajectories that end many months before cancer
408 diagnosis. As an additional check, we computed the contribution for the model trained also with 3
409 months data exclusion.
410

411 [[Interpretation: contributing early factors]]

412 The top contributing features extracted from the trajectories with time to cancer diagnosis in 0-6
413 months - such as unspecified jaundice, diseases of biliary tract, abdominal-pelvic pain, weight loss
414 and neoplasms of digestive organs - may be symptoms of or otherwise closely related to pancreatic
415 cancer (**Table S5**). It is also of interest to identify early risk factors for pancreatic cancer. For
416 trajectories with longer time between assessment and cancer diagnosis, other disease codes - such
417 as type 2 diabetes and insulin-independent diabetes - make an increasingly large contribution,
418 consistent with epidemiological studies (Yuan et al. 2020; Klein et al. 2013; Kim et al. 2020) and
419 the observed disease distribution in the DNPR dataset (**Figure 4, S3**). Other factors, such as
420 cholelithiasis (gallstones) and reflux disease, are perhaps of interest in terms of potential
421 mechanistic hypotheses, such as inflammation of the pancreas prior to cancer as a result of
422 cholelithiasis or a hypothetical link between medication by proton pump inhibitors such as
423 omeprazole in reflux disease and the effect of increased levels of gastrin on the state of the pancreas
424 (Alkhushaym et al. 2020).

425 [[Interpretation for 3 month exclusion interval]]

426 Overall the contribution of the diseases calculated for the model trained with 3 months data
427 exclusion is similar to the one calculated for the model without data exclusion. The main difference
428 is in the order of the disease contribution, as the diseases that more frequently are diagnosed as a
429 consequence of subclinical pancreatic cancer - which are not included in the training of the 3
430 months data exclusion model - have lower contribution than the longer term risk factors. The
431 interpretation of individual risk factors from the ML feature list as causative may be subject to
432 misinterpretation as their contribution here is only evaluated in the context of complete disease
433 histories. However, our main goal in this report is to achieve robust predictive power from disease
434 trajectories, rather than mechanistic interpretations.
435
436
437



438
439
440 **Figure 4. Predictive capacity and feature contributions of disease trajectories**
441 (A-B) Distribution of recall (sensitivity) values at the F1 operational point as a function of
442 time-to-cancer (time between the end of a disease trajectory and cancer diagnosis). The
443 recall values drop significantly with time-to-cancer. (A) For models trained on all data. (B)
444 For models trained with 3 months data exclusion. (C-D) Top 10 features that contribute to
445 the cancer prediction in time-to-cancer intervals of 0-6, 6-12, 12-24 and 24-36 months. The
446 features are sorted by the contribution score (Supplementary Tables S5). We used an
447 integrated gradient (IG) method to calculate the contribution score for each input feature
448 for each trajectory, then summed over all trajectories with cancer diagnosis within the
449 indicated time interval. All data in the figure for the Danish DNPR dataset, 36 months
450 prediction interval.

451 **Discussion**

452 **[[Advances in this work]]**

453 Here we present a new framework for applying deep learning methods using comprehensive
454 datasets of disease trajectories to predict cancer risk. Our study was designed to make explicit use

455 of the time sequence of disease events; and, to assess the ability to predict cancer risk for increasing
456 intervals between the time of assessment (the end of the disease trajectory) and cancer occurrence.
457 Earlier work has demonstrated the potential of applying AI methods to assess pancreatic cancer
458 risk but did not exploit the information in the temporal sequence of diseases (Appelbaum,
459 Cambronero, et al. 2021; Chen et al. 2021). Our results indicate that using the time ordering in
460 disease histories as input significantly improves the predictive power of AI methods in anticipating
461 pancreatic cancer occurrence.

462 **[[Comparison of performance in a different healthcare system]]**

463 A single, globally robust model that predicts cancer risk for patients in different countries and
464 different healthcare systems remains elusive. Cross-application of the Danish model to the Boston
465 MGB database had significantly lower performance (Fig. 3H), in spite of common use of ICD
466 disease codes. One of the reasons for this mismatch could be the differences in clinical practice,
467 such as frequency of reporting disease codes in the clinical records, the typical threshold for
468 seeking medical attention, potential influence of billing constraints on what is recorded, as well as
469 referral practice to the local Boston MGB hospitals from other locations, in contrast to the more
470 uniform and comprehensive national nature of the Danish DNPR disease registry. However, the
471 AI methods used are sufficiently robust to achieve a similarly high level of performance in the
472 Boston MGB system when independently trained. With significant differences in healthcare
473 systems, independent model training in different geographical locations may be necessary to
474 achieve desired model performance.

475 **[[Clinical trials and application in clinical practice]]**

476 Successful implementation of early diagnosis and treatment of pancreatic cancer in clinical
477 practice will likely require three essential steps: identification of high-risk patients, detection of
478 early cancer or precancerous states by detailed screening of high-risk patients, and effective
479 treatment after early detection (Singhi et al. 2019; Kenner et al. 2021). The overall impact in
480 clinical practice depends on the success rates in each of these stages. This work only addresses the
481 first stage. With a reasonably accurate method for predicting cancer risk one can direct appropriate
482 high-risk patients into clinical screening trials. A sufficiently enriched pool of high-risk patients
483 would make detailed screening tests more affordable, as such tests are likely to be prohibitively
484 expensive at a population level and enhance the positive predictive value of such tests.

485
486 Although the level of performance reported here exceeds that of previous prediction models,
487 implementation in clinical practice requires additional considerations. A careful choice of
488 operational point is required, which is not necessarily the one maximizing F1, which balances
489 precision and recall and was used above as a point of reference. The criteria for initiating clinical
490 screening trials should take into account the cost / benefit balance of screening and intervention
491 (Pandharipande et al. 2016) (example estimate in **Results S1**) as well as the expectations and
492 concerns of patients enrolled in a trial and of those identified as high risk and offered advanced
493 clinical test. The specific design of such trials will require close collaboration between data
494 scientists and practicing clinicians to determine appropriate evaluation and follow-up once high-
495 risk patients are identified by risk assessment tools. Nevertheless, the current late-stage
496 presentation of about 80% of pancreatic cancer patients with incurable disease suggests that
497 innovative approaches will be required to improve patient outcomes for this highly lethal
498 malignancy.

499

500 For example, based on the prediction accuracy reported here, one can realistically design clinical
501 screening trials, with software applied to health records of, e.g., 1 million patients, followed by
502 identification of those at highest risk and recruitment into a clinical trial with detailed screening
503 tests for, e.g., 200 high-risk patients. Implementation requires choosing an operational point
504 along the PRC curve with an achievable high positive predictive value, which is important to
505 reduce false positives and therefore minimize unnecessary effort and anxiety. Exploiting the
506 trade-off between precision and recall, one can in this scenario accept lower recall as a clinical
507 trial with limited enrollment cannot in any case detect cancer in a large number of patients. The
508 particular advantage of this ‘predict-select-screen’ process is that computational screening of a
509 *large* population in the first step is inexpensive while the costly second step of sophisticated
510 clinical screening and therapeutic intervention programs is limited to a much *smaller* number of
511 patients, those at highest risk.

512

513 [[Challenges for future improvements]]

514 We expect further increases in prediction accuracy with the availability of data beyond disease
515 codes, such as prescriptions, laboratory values, observations in clinical notes, diagnosis and
516 treatment records from general practitioners (Malhotra et al. 2021) and abdominal imaging
517 (computed tomography, magnetic resonance imaging), as well as inherited genetic profiles. To
518 achieve a globally useful set of prediction rules, access to large data sets of disease histories
519 aggregated nationally or internationally will be extremely valuable. An ideal scenario for a multi-
520 institutional collaboration would be to employ federated learning across a number of different
521 healthcare systems (Konečný et al. 2016). Federated learning obviates the need for sharing primary
522 data and only requires permission to run logically identical computer codes at each location and
523 then share and aggregate results.

524

525 [[Impact on patients]]

526 Prediction performance at the level shown here may be sufficient for the design of real world
527 clinical screening trials, in which high-risk patients are assigned to high specificity screening tests
528 and, if cancer is detected, offered early treatment. AI on real-world clinical records has the
529 potential to produce a scalable workflow for early detection of pancreatic cancer in the community,
530 to shift focus from treatment of late- to early-stage cancer, improve the quality of life of patients,
531 and increase the benefit/cost ratio of cancer care.

532

533

534 **Methods**

535 **Processing of the population-level dataset**

536 **[[Danish DNPR dataset]]**

537 The first part of the project was conducted using a dataset of disease histories from the Danish
538 National Patient Registry (DNPR), covering all 229 million hospital diagnoses of 8.6 million
539 patients between 1977-2018. This includes inpatient contacts since 1977 and outpatient and
540 emergency department contacts since 1995, but not data from the general practitioners' records
541 (Schmidt et al. 2015). DNPR access was approved by the Danish Health Data Authority (FSEID-
542 00003092 and FSEID-00004491.) Each entry of the database includes data on the start and end
543 date of an admission or visit, as well as diagnosis codes. The diagnoses are coded according to the
544 International Classification of Diseases (ICD-8 until 1994 and ICD-10 since then). The accuracy
545 of cancer diagnosis disease codes, as examined by the Danish Health and Medicines Authority,
546 has been reported to be 98% accurate (89.4% correct identification for inpatients and 99.9% for
547 outpatients) (Thygesen et al. 2011). For cancer diagnoses specifically, the reference evaluation
548 was based on detailed comparisons between randomly sampled discharges from five different
549 hospitals and review of a total of 950 samples (Schmidt et al. 2015). We used both the ICD-8 code
550 157 and ICD-10 code C25, *malignant neoplasm of pancreas*, to define pancreatic cancer (PC)
551 cases.

552 The most up-to-date ICD classification system has a hierarchical structure, from the most general
553 level, e.g., *C: Neoplasms*, to the most specific four-character subcategories e.g. *C25.1: Malignant*
554 *neoplasm of body of pancreas*. DNPR contains ICD-10 codes for disease administration after 1994
555 and ICD-8 codes for the remaining period of the registry. The Danish version of the ICD-10 is
556 more detailed than the international ICD-10 but less detailed than the clinical modification of the
557 ICD-10 (ICD-10-CM). In this study, we used the three-character category ICD codes (n=2,997) in
558 constructing the predictive models and defined “pancreatic cancer (PC) patients” as patients with
559 at least one code under *C25: Malignant neoplasm of pancreas*. For the diagnosis codes in the
560 DNPR, we removed disease codes labelled as ‘temporary’ or ‘referral’ (8.3% removed, **Figure**
561 **S1**), as these can be misinterpreted when mixed with the main diagnoses and are not valuable for
562 the purposes of this study.

563 Danish citizens have since 1968 been assigned a unique lifetime Central Person Registration (CPR)
564 Number, which is useful for linking to person-specific demographic data. Using these we retrieved
565 patient status as to whether patients are active or inactive in the CPR system as well as information
566 related to residence status. We applied a demographic continuity filter. For example, we excluded
567 from consideration residents of Greenland, patients who lack a stable place of residence in
568 Denmark, as these would potentially have discontinuous disease trajectories. By observation time
569 we mean active use of the healthcare system.

570 At this point, the dataset comprised a total of 8,110,706 patients, of which 23,601 had the ICD-10
571 pancreatic cancer code *C25* and 14,720 had the ICD-8 pancreatic cancer code *157*. We used both
572 ICD-10 and ICD-8 independently, without semantic mapping, while retaining the pancreatic

573 cancer occurrence label, assuming that machine learning is able to combine information from both.
574 Subsequently, we removed patients that have too few diagnoses (<5 events). The number of
575 positive patients used for training after applying the length filter are 23,985 (82% ICD-10 and 18%
576 ICD-8). Coincidentally, this resulted in a more strict filtering for ICD-8 events which were used
577 only in 1977-1994. The final dataset was then randomly split into training (80%), development
578 (10%) and test (10%) data, with the condition that all trajectories from a patient were only included
579 in one split group (train/dev/test), to avoid any information leakage between training and
580 development/test datasets.

581 **[[Boston MGB dataset]]**

582 The MGB dataset is from the Mass General Brigham Research Patient Data Registry (RPDR),
583 including data items from the Dana-Farber/ Brigham and Women's Cancer Center, and contains
584 ICD-9-CM and ICD-10-CM codes for disease administration, both are more detailed modifications
585 to the ICD-9/10 international version. Data access for the study was granted under the Institutional
586 Review Board (IRB) Protocol 2019P000993 (*Computational Approaches to Identifying High-Risk*
587 *Pancreatic Cancer Populations: High Risk Cohorts Through Real World Data*). Analogously to
588 DNPR, we used the three-character category ICD codes for identifying pancreatic cancer,
589 respectively *C25* for ICD-10 and *157* for ICD-9. The end date was similarly defined as the date of
590 death for the patients, the date of the last hospital visit, or, if the patient on file is still alive, the
591 end date used to select from the MGB dataset (2020), whichever is earlier.

592
593 **Training**
594

595 The following processing steps were carried out identically for DNPR and MGC datasets. For each
596 patient, whether or not they ever had pancreatic cancer, the data was augmented by using all
597 continuous **partial trajectories** of (minimal length ≥ 5 diagnoses) from the beginning of their
598 disease history and ending at different time points, which we call the time of assessment. For
599 cancer patients, we used only trajectories that end before cancer diagnoses, i.e. $t_a < t_{cancer} < t_{death}$. We
600 used a **step function annotation** indicating cancer occurrence at different time points (3, 6, 12,
601 36, 60, 120 months) after the end of each partial trajectory. For the positive ('PC') cases this
602 provides the opportunity to learn from disease histories with a significant time gap between the
603 time of assessment and the time of cancer occurrence. For example, for a patient, who had
604 pancreatitis a month or two just before the cancer diagnosis, it is of interest to learn which earlier
605 disease codes might have been predictive of cancer occurrence going back at least several months
606 or perhaps years. The latter is also explored by separately re-training of the ML model **excluding**
607 data from the last three or six months before cancer diagnosis.

608 For patients **without** a pancreatic cancer diagnosis we only include trajectories that end earlier
609 than 2 years before the end of their disease records (due to death or the freeze date of the DNPR
610 data used here). This avoids the uncertainty of cases in which undiagnosed cancer might have
611 existed before the end of the records. The datasets were sampled in small batches for efficient
612 computation, as is customary in ML. Due to the small number of cases of pancreatic cancer
613 compared to controls, we used balanced sampling from the trajectories of the patients in the

614 training set such that each batch has an approximately equal number of positive (cancer) and
615 negative (non-cancer) trajectories.

616

617

618 **Model development**

619 A desired model for such diagnosis trajectories consists of three parts: embedding of the
620 categorical disease features, encoding time sequence information, and assessing the risk of cancer.
621 We embed the discrete and high-dimensional disease vectors in a continuous and low-dimensional
622 latent space (Mikolov et al. 2013; Gehring et al. 2017). Such embedding is data-driven and trained
623 together with other parts of the model. For ML models not using embedding, each categorical
624 disease was represented in numeric form as a one-hot encoded vector. The longitudinal records of
625 diagnoses allowed us to construct time-sequence models with sequential neural networks. After
626 embedding, each sequence of diagnoses, was encoded into a feature vector using different types
627 of sequential layers (recurrent neural network, RNN, and gated recurrent units, GRU), attention
628 layers (transformer), or simple pooling layers (bag-of-words model and multilayer perceptron
629 model [MLP]). The encoding layer also included age inputs, which has been demonstrated to have
630 a strong association with pancreatic cancer incidence (Klein 2021). Finally, the embedding and
631 encoding layers were connected to a fully-connected feedforward network (FF) to make
632 predictions of future cancer occurrence following a given disease history (the bag-of-words model
633 only uses a single linear layer).

634

635 The model output consists of a risk score that monotonically increases for each time interval in the
636 follow-up period after risk assessment. As cancer by definition occurs before cancer diagnosis, the
637 risk score at a time point t is interpreted as quantifying the risk of cancer occurrence between t_a ,
638 the end of the disease trajectory (the time of assessment), and time $t = t_a + 3, 6, 12, 36, 60, 120$
639 months. For a given prediction threshold, scores that exceed such threshold at time t are considered
640 to indicate cancer occurrence prior to t . We currently do not distinguish between different stages
641 of cancer, neither in training from cancer diagnoses nor in the prediction of cancer occurrence.

642

643 The model parameters were trained by minimizing the prediction error quantified as the difference
644 between the observed cancer diagnosis in the form of a step function (0 before the occurrence of
645 cancer, 1 from the time of cancer diagnosis) and the predicted risk score in terms of a positive
646 function that monotonically increases from 0, using a cross-entropy loss function, with the sum
647 over the five time points, and L2 regularization on the parameters (**Figure 1A**).

$$648 \text{loss} = \frac{1}{N} \frac{1}{N_T} \sum_{i,t} \left[y_{i,t} \log[\hat{p}_{\Theta,t}(x_i)] + (1 - y_{i,t}) \log[1 - \hat{p}_{\Theta,t}(x_i)] \right] + \lambda_2 \|\Theta\|_2$$

649

650 where $t \in \{3, 6, 12, 36, 60, 120\}$ months; $N_T = 6$ for non-cancer patient and $N_T \leq 6$ for cancer
651 patients where we only use the time points before the cancer diagnosis; $i = 1, 2, 3, \dots, N_{\text{samples}}$;
652 Θ is the set of model parameters; λ_2 is the regularization strength; \hat{p} is the
653 model prediction; x_i are the input disease trajectories, $y_{i,t} = 1$ for cancer occurrence and $y_{i,t} = 0$
654 for no cancer within t -month time window.

655 The transformer model, unlike the recurrent models, does not process the input as a sequence of
656 time steps but rather uses an attention mechanism to enhance the embedding vectors correlated
657 with the outcome. In order to enable the transformer to digest temporal information such as the
658 order of the exact dates of the diseases inside the sequence, we used positional embedding to
659 encode the temporal information into vectors which were then used as weights for each disease
660 token. Here we adapted the positional embedding from (Vaswani et al. 2017) using the values
661 taken by cosine waveforms at 128 frequencies observed at different times. The times used to
662 extract the wave values were the age at which each diagnosis was administered and the time
663 difference between each diagnosis. In this way the model is enabled to distinguish between the
664 same disease assigned at different times as well as two different disease diagnoses far and close in
665 time. The parameters in the embedding machine, which addresses the issue of data representation
666 suitable for input into a deep learning network, were trained together with the encoding and
667 prediction parts of the model with back propagation (**Figure 2**).
668

669 To comprehensively test different types of neural networks and the corresponding
670 hyperparameters, we conducted a large parameter search for each of the network types (**Table S2**).
671 The different types of models include simple feed-forward models (LR, MLP) and more complex
672 models that can take the sequential information of disease ordering into consideration (GRU and
673 Transformer). See supplementary table with comparison metrics across different models (**Table**
674 **S3**). In order to estimate the uncertainty of the performances, the 95% confidence interval was
675 constructed using 200 resamples of bootstrapping with replacement.
676

677 **Evaluation**

678

679 The evaluation was carried out separately for each prediction interval of 0-3, 0-6, 0-12, 0-36, and
680 0-60 months. For example, consider the prediction score for a particular trajectory at the end of
681 the 3 year prediction interval (Fig.1C). If the score is above the threshold, one has a correct positive
682 prediction, if cancer has occurred at any time within 3 years; and a false positive prediction, if
683 cancer has not occurred within 3 years. If the score is below the threshold, one has a false negative
684 prediction if cancer has occurred at any time within 3 years; and a true negative prediction, if
685 cancer has not occurred within 3 years. As both training and evaluation make use of multiple
686 trajectories per patient, with different end-of-trajectory points, the performance numbers are
687 computed over trajectories.
688

689 The odds ratio (OR) was calculated as the odds of getting pancreatic cancer when classified at high
690 risk divided by the odds of getting pancreatic cancer when classified at low risk, after picking a
691 specific recall level.

$$692 \quad OR = \frac{TP/FP}{FN/TN}$$

693 where TP = True Positives, FP = False Positives, FN = False Negatives, TN = True negatives.
694 For the 0-36 months prediction interval, the observation is diagnosis of pancreatic cancer within
695 36 months of assessment, yes/no; and the prediction is high risk / low risk at a given operational
696 threshold (e.g., by choosing a specific level of recall).
697
698

699 **Cross-application**

700 Few adaptations were necessary in order to test the model trained on the Danish DNPR data on
701 the Boston MGB dataset. In particular, the ICD-9-CM codes were first converted to ICD-10-CM
702 codes using the mapping available on the National Center for Health Statistic (NHCS,
703 www.cdc.gov/nchs) and then, once truncated at the three-characters level, were matched to the
704 respective ICD-10 codes from the DNPR. In this way we created a joint ‘vocabulary’ where disease
705 codes from the MGB dataset were mapped to the same embedded representation of the matching
706 disease code in DNPR-trained models. In spite of overall semantic agreement of the internationally
707 standardized ICD codes (50,656 out of 53,552 can be matched), the translation from one coding
708 system to the other caused missing values in the input. Indeed, some ICD-9-CM codes (n=969)
709 could not be matched to a single ICD-10-CM code and some ICD-10-CM codes (n=1,927) had no
710 match with the ICD-10 codes in DNPR. We compared the performance results from cross-
711 application to those of the independently trained models by evaluating them against the same test
712 data (subset of Boston MGB data).
713

714 **Interpreting clinically relevant features**

715 In order to find the features that are strongly associated with pancreatic cancer, we have used an
716 attribution method for neural networks called integrated gradients (Sundararajan, Taly, and Yan
717 2017). This method calculates the contribution of input features, called attribution, cumulating the
718 gradients calculated along all the points in the path from the input to the baseline. We chose the
719 output of interest to be the 36-month prediction. Positive and negative attribution scores
720 (contribution to prediction) indicate positive correlation with pancreatic cancer patients and non-
721 pancreatic-cancer patients, respectively. Since the gradient cannot be calculated with respect to the
722 indices used as input of the embedding layer, the input used for the attribution was the output of
723 the embedding layer. Then, the attribution at the token level was obtained summing up over each
724 embedding dimension and summing across all the patient trajectories. Similarly, for each
725 trajectory, we calculated the age contribution as the sum attribution of the integrated gradients of
726 the input at the age embedding layer.

727

728

729 References

730 Alkhushaym, Nasser, Abdulaali R. Almutairi, Abdulhamid Althagafi, Saad B. Fallatah, Mok Oh, Jennifer
731 R. Martin, Hani M. Babiker, Ali McBride, and Ivo Abraham. 2020. “Exposure to Proton Pump
732 Inhibitors and Risk of Pancreatic Cancer: A Meta-Analysis.” *Expert Opinion on Drug Safety* 19 (3):
733 327–34.

734 Amundadottir, Laufey, Peter Kraft, Rachael Z. Stolzenberg-Solomon, Charles S. Fuchs, Gloria M.
735 Petersen, Alan A. Arslan, H. Bas Bueno-de-Mesquita, et al. 2009. “Genome-Wide Association Study
736 Identifies Variants in the ABO Locus Associated with Susceptibility to Pancreatic Cancer.” *Nature
737 Genetics* 41 (9): 986–90.

738 Appelbaum, Limor, Alexandra Berg, Jose Pablo Cambronero, Thurston Hou Yeen Dang, Charles Chuan
739 Jin, Lori Zhang, Steven Kundrot, et al. 2021. “Development of a Pancreatic Cancer Prediction Model
740 Using a Multinational Medical Records Database.” *ASCO GI Symposium*, January.
741 https://doi.org/10.1200/JCO.2021.39.3_suppl.394.

742 Appelbaum, Limor, José P. Cambronero, Jennifer P. Stevens, Steven Horng, Karla Pollick, George Silva,
743 Sébastien Haneuse, et al. 2021. “Development and Validation of a Pancreatic Cancer Risk Model for
744 the General Population Using Electronic Health Records: An Observational Study.” *European
745 Journal of Cancer* 143 (January): 19–30.

746 Blackford, Amanda L., Marcia Irene Canto, Alison P. Klein, Ralph H. Hruban, and Michael Goggins.
747 2020. “Recent Trends in the Incidence and Survival of Stage 1A Pancreatic Cancer: A Surveillance,
748 Epidemiology, and End Results Analysis.” *Journal of the National Cancer Institute* 112 (11): 1162–
749 69.

750 Chen, Qinyu, Daniel R. Cherry, Vinit Nalawade, Edmund M. Qiao, Abhishek Kumar, Andrew M. Lowy,
751 Daniel R. Simpson, and James D. Murphy. 2021. “Clinical Data Prediction Model to Identify
752 Patients With Early-Stage Pancreatic Cancer.” *JCO Clinical Cancer Informatics* 5 (March): 279–87.

753 Cho, Kyunghyun, Bart van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger
754 Schwenk, and Yoshua Bengio. 2014. “Learning Phrase Representations Using RNN Encoder–
755 Decoder for Statistical Machine Translation.” *arXiv [cs.CL]*. arXiv. <http://arxiv.org/abs/1406.1078>.

756 Dietterich, Thomas G. 2002. “Machine Learning for Sequential Data: A Review.” In *Structural,
757 Syntactic, and Statistical Pattern Recognition*, 15–30. Springer Berlin Heidelberg.

758 Esteva, Andre, Brett Kuprel, Roberto A. Novoa, Justin Ko, Susan M. Swetter, Helen M. Blau, and
759 Sebastian Thrun. 2017. “Dermatologist-Level Classification of Skin Cancer with Deep Neural
760 Networks.” *Nature* 542 (7639): 115–18.

761 Gehring, Jonas, Michael Auli, David Grangier, Denis Yarats, and Yann N. Dauphin. 2017.
762 “Convolutional Sequence to Sequence Learning.” In *Proceedings of the 34th International
763 Conference on Machine Learning*, edited by Doina Precup and Yee Whye Teh, 70:1243–52.
764 Proceedings of Machine Learning Research. PMLR.

765 Hu, Jessica X., Marie Helleberg, Anders B. Jensen, Søren Brunak, and Jens Lundgren. 2019. “A Large-
766 Cohort, Longitudinal Study Determines Precancer Disease Routes across Different Cancer Types.”
767 *Cancer Research* 79 (4): 864–72.

768 Hyland, Stephanie L., Martin Faltys, Matthias Hüser, Xinrui Lyu, Thomas Gumbsch, Cristóbal Esteban,
769 Christian Bock, et al. 2020. “Early Prediction of Circulatory Failure in the Intensive Care Unit Using
770 Machine Learning.” *Nature Medicine* 26 (3): 364–73.

771 Jensen, Anders Boeck, Pope L. Moseley, Tudor I. Oprea, Sabrina Gade Ellesøe, Robert Eriksson,
772 Henriette Schmock, Peter Bjødstrup Jensen, Lars Juhl Jensen, and Søren Brunak. 2014. “Temporal
773 Disease Trajectories Condensed from Population-Wide Registry Data Covering 6.2 Million
774 Patients.” *Nature Communications* 5 (June): 4022.

775 Kenner, Barbara, Suresh T. Chari, David Kelsen, David S. Klimstra, Stephen J. Pandol, Michael
776 Rosenthal, Anil K. Rustgi, et al. 2021. “Artificial Intelligence and Early Detection of Pancreatic
777 Cancer: 2020 Summative Review.” *Pancreas* 50 (3): 251–79.

778 Kim, Jihye, Chen Yuan, Ana Babic, Ying Bao, Clary B. Clish, Michael N. Pollak, Laufey T.
779 Amundadottir, et al. 2020. "Genetic and Circulating Biomarker Data Improve Risk Prediction for
780 Pancreatic Cancer in the General Population." *Cancer Epidemiology, Biomarkers & Prevention: A
781 Publication of the American Association for Cancer Research, Cosponsored by the American Society
782 of Preventive Oncology* 29 (5): 999–1008.

783 Klein, Alison P. 2021. "Pancreatic Cancer Epidemiology: Understanding the Role of Lifestyle and
784 Inherited Risk Factors." *Nature Reviews. Gastroenterology & Hepatology*, May.
785 <https://doi.org/10.1038/s41575-021-00457-x>.

786 Klein, Alison P., Sara Lindström, Julie B. Mendelsohn, Emily Steplowski, Alan A. Arslan, H. Bas Bueno-
787 de-Mesquita, Charles S. Fuchs, et al. 2013. "An Absolute Risk Model to Identify Individuals at
788 Elevated Risk for Pancreatic Cancer in the General Population." *PloS One* 8 (9): e72311.

789 Klein, Alison P., Brian M. Wolpin, Harvey A. Risch, Rachael Z. Stolzenberg-Solomon, Evelina Mocci,
790 Mingfeng Zhang, Federico Canzian, et al. 2018. "Genome-Wide Meta-Analysis Identifies Five New
791 Susceptibility Loci for Pancreatic Cancer." *Nature Communications* 9 (1): 556.

792 Konečný, Jakub, H. Brendan McMahan, Felix X. Yu, Peter Richtárik, Ananda Theertha Suresh, and Dave
793 Bacon. 2016. "Federated Learning: Strategies for Improving Communication Efficiency." *arXiv
794 /cs.LG/*. arXiv. <http://arxiv.org/abs/1610.05492>.

795 LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton. 2015. "Deep Learning." *Nature* 521 (7553): 436–44.

796 Li, Donghui, Eric J. Duell, Kai Yu, Harvey A. Risch, Sara H. Olson, Charles Kooperberg, Brian M.
797 Wolpin, et al. 2012. "Pathway Analysis of Genome-Wide Association Study Data Highlights
798 Pancreatic Development Genes as Susceptibility Factors for Pancreatic Cancer." *Carcinogenesis* 33
799 (7): 1384–90.

800 Lin, Ray S., Susan D. Horn, John F. Hurdle, and Alexander S. Goldfarb-Rumyantzev. 2008. "Single and
801 Multiple Time-Point Prediction Models in Kidney Transplant Outcomes." *Journal of Biomedical
802 Informatics* 41 (6): 944–52.

803 Li, Xiaodong, Peng Gao, Chao-Jung Huang, Shiying Hao, Xuefeng B. Ling, Yongxia Han, Yaqi Zhang,
804 et al. 2020. "A Deep-Learning Based Prediction of Pancreatic Adenocarcinoma with Electronic
805 Health Records from the State of Maine." *International Journal of Medical and Health Sciences* 14
806 (11): 358–65.

807 Li, Yikuan, Shishir Rao, José Roberto Ayala Solares, Abdelaali Hassaine, Rema Ramakrishnan, Dexter
808 Canoy, Yajie Zhu, Kazem Rahimi, and Gholamreza Salimi-Khorshidi. 2020. "BEHRT: Transformer
809 for Electronic Health Records." *Scientific Reports* 10 (1): 7155.

810 Malhotra, Ananya, Bernard Rachet, Audrey Bonaventure, Stephen P. Pereira, and Laura M. Woods. 2021.
811 "Can We Screen for Pancreatic Cancer? Identifying a Sub-Population of Patients at High Risk of
812 Subsequent Diagnosis Using Machine Learning Techniques Applied to Primary Care Data." *PloS
813 One* 16 (6): e0251876.

814 McGuigan, Andrew, Paul Kelly, Richard C. Turkington, Claire Jones, Helen G. Coleman, and R. Stephen
815 McCain. 2018. "Pancreatic Cancer: A Review of Clinical Diagnosis, Epidemiology, Treatment and
816 Outcomes." *World Journal of Gastroenterology: WJG* 24 (43): 4846–61.

817 Mikolov, Tomas, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. "Efficient Estimation of Word
818 Representations in Vector Space." *arXiv /cs.CL/*. arXiv. <http://arxiv.org/abs/1301.3781>.

819 Muhammad, Wazir, Gregory R. Hart, Bradley Nartowt, James J. Farrell, Kimberly Johung, Ying Liang,
820 and Jun Deng. 2019. "Pancreatic Cancer Prediction Through an Artificial Neural Network."
821 *Frontiers in Artificial Intelligence* 2 (May): 2.

822 Nielsen, Annelaura B., Hans-Christian Thorsen-Meyer, Kirstine Belling, Anna P. Nielsen, Cecilia E.
823 Thomas, Piotr J. Chmura, Mette Lademann, et al. 2019. "Survival Prediction in Intensive-Care Units
824 Based on Aggregation of Long-Term Disease History and Acute Physiology: A Retrospective Study
825 of the Danish National Patient Registry and Electronic Patient Records." *The Lancet. Digital Health*
826 1 (2): e78–89.

827 Pandharipande, Pari V., Curtis Heberle, Emily C. Dowling, Chung Yin Kong, Angela Tramontano,
828 Katherine E. Perzan, William Brugge, and Chin Hur. 2016. "Targeted Screening of Individuals at

829 High Risk for Pancreatic Cancer: Results of a Simulation Model.” *Radiology* 278 (1): 306.

830 Pereira, Stephen P., Lucy Oldfield, Alexander Ney, Phil A. Hart, Margaret G. Keane, Stephen J. Pandol, Debiao Li, et al. 2020. “Early Detection of Pancreatic Cancer.” *The Lancet. Gastroenterology & Hepatology* 5 (7): 698–710.

833 Petersen, Gloria M., Laufey Amundadottir, Charles S. Fuchs, Peter Kraft, Rachael Z. Stolzenberg-Solomon, Kevin B. Jacobs, Alan A. Arslan, et al. 2010. “A Genome-Wide Association Study Identifies Pancreatic Cancer Susceptibility Loci on Chromosomes 13q22.1, 1q32.1 and 5p15.33.” *Nature Genetics* 42 (3): 224–28.

837 Rahib, Lola, Benjamin D. Smith, Rhonda Aizenberg, Allison B. Rosenzweig, Julie M. Fleshman, and Lynn M. Matisian. 2014. “Projecting Cancer Incidence and Deaths to 2030: The Unexpected Burden of Thyroid, Liver, and Pancreas Cancers in the United States.” *Cancer Research* 74 (11): 2913–21.

841 Sasaki, Yutaka. 2007. “The Truth Oh the F--Measure.” *Manchester: School of Computer Science, University of Manchester*.

843 Schmidt, Morten, Lars Pedersen, and Henrik Toft Sørensen. 2014. “The Danish Civil Registration System as a Tool in Epidemiology.” *European Journal of Epidemiology* 29 (8): 541–49.

845 Schmidt, Morten, Sigrun Alba Johannesdottir Schmidt, Jakob Lynge Sandegaard, Vera Ehrenstein, Lars Pedersen, and Henrik Toft Sørensen. 2015. “The Danish National Patient Registry: A Review of Content, Data Quality, and Research Potential.” *Clinical Epidemiology* 7 (November): 449–90.

848 Shickel, Benjamin, Patrick James Tighe, Azra Bihorac, and Parisa Rashidi. 2018. “Deep EHR: A Survey of Recent Advances in Deep Learning Techniques for Electronic Health Record (EHR) Analysis.” *IEEE Journal of Biomedical and Health Informatics* 22 (5): 1589–1604.

851 Siggaard, Troels, Roc Reguant, Isabella F. Jørgensen, Amalie D. Haue, Mette Lademann, Alejandro Aguayo-Orozco, Jessica X. Hjaltelin, Anders Boeck Jensen, Karina Banasik, and Søren Brunak. 2020. “Disease Trajectory Browser for Exploring Temporal, Population-Wide Disease Progression Patterns in 7.2 Million Danish Patients.” *Nature Communications* 11 (1): 4952.

855 Singhi, Aatur D., Eugene J. Koay, Suresh T. Chari, and Anirban Maitra. 2019. “Early Detection of Pancreatic Cancer: Opportunities and Challenges.” *Gastroenterology* 156 (7): 2024–40.

857 Sundararajan, Mukund, Ankur Taly, and Qiqi Yan. 2017. “Axiomatic Attribution for Deep Networks.” *arXiv [cs.LG]*. arXiv. <http://arxiv.org/abs/1703.01365>.

859 Tealab, Ahmed. 2018. “Time Series Forecasting Using Artificial Neural Networks Methodologies: A Systematic Review.” *Future Computing and Informatics Journal* 3 (2): 334–40.

861 Thorsen-Meyer, Hans-Christian, Annelaura B. Nielsen, Anna P. Nielsen, Benjamin Skov Kaas-Hansen, Palle Toft, Jens Schierbeck, Thomas Strøm, et al. 2020. “Dynamic and Explainable Machine Learning Prediction of Mortality in Patients in the Intensive Care Unit: A Retrospective Study of High-Frequency Data in Electronic Patient Records.” *The Lancet. Digital Health* 2 (4): e179–91.

865 Thygesen, Sandra K., Christian F. Christiansen, Steffen Christensen, Timothy L. Lash, and Henrik T. Sørensen. 2011. “The Predictive Value of ICD-10 Diagnostic Coding Used to Assess Charlson Comorbidity Index Conditions in the Population-Based Danish National Registry of Patients.” *BMC Medical Research Methodology* 11 (May): 83.

869 Tomašev, Nenad, Xavier Glorot, Jack W. Rae, Michal Zielinski, Harry Askham, Andre Saraiva, Anne Mottram, et al. 2019. “A Clinically Applicable Approach to Continuous Prediction of Future Acute Kidney Injury.” *Nature* 572 (7767): 116–19.

872 Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. “Attention Is All You Need.” *arXiv [cs.CL]*. arXiv. <http://arxiv.org/abs/1706.03762>.

875 Wolpin, Brian M., Cosmeri Rizzato, Peter Kraft, Charles Kooperberg, Gloria M. Petersen, Zhaoming Wang, Alan A. Arslan, et al. 2014. “Genome-Wide Association Study Identifies Multiple Susceptibility Loci for Pancreatic Cancer.” *Nature Genetics* 46 (9): 994–1000.

878 Yala, Adam, Constance Lehman, Tal Schuster, Tally Portnoi, and Regina Barzilay. 2019. “A Deep Learning Mammography-Based Model for Improved Breast Cancer Risk Prediction.” *Radiology* 292

880 (1): 60–66.
881 Yala, Adam, Peter G. Mikhael, Fredrik Strand, Gigin Lin, Kevin Smith, Yung-Liang Wan, Leslie Lamb,
882 Kevin Hughes, Constance Lehman, and Regina Barzilay. 2021. “Toward Robust Mammography-
883 Based Models for Breast Cancer Risk.” *Science Translational Medicine* 13 (578).
884 <https://doi.org/10.1126/scitranslmed.aba4373>.
885 Yamada, Masayoshi, Yutaka Saito, Hitoshi Imaoka, Masahiro Saiko, Shigemi Yamada, Hiroko Kondo,
886 Hiroyuki Takamaru, et al. 2019. “Development of a Real-Time Endoscopic Image Diagnosis
887 Support System Using Deep Learning Technology in Colonoscopy.” *Scientific Reports* 9 (1): 14465.
888 Yuan, Chen, Ana Babic, Natalia Khalaf, Jonathan A. Nowak, Lauren K. Brais, Douglas A. Rubinson,
889 Kimmie Ng, et al. 2020. “Diabetes, Weight Change, and Pancreatic Cancer Risk.” *JAMA Oncology* 6
890 (10): e202948.

891
892

893
894

895 **Acknowledgements**

896 We thank Adam Yala for expert advice and contributions to methods and software, Regina
897 Barzilay for discussions and guidance, Barbara Kenner for advice, and Julia Sidenius and Inna
898 Chen for advice on clinical matters and known risk factor diseases. We thank Shawn Murphy and
899 Henry Chueh and the Mass General Brigham Health Care Research Patient Data Registry group
900 for facilitating use of their database.

901 **Funding:** DP, JXH, ADH and SB acknowledge support from the Novo Nordisk Foundation
902 (grants NNF17OC0027594 and NNF14CC0001). BMW acknowledges support from the Hale
903 Family Center for Pancreatic Cancer Research, Lustgarten Foundation Dedicated Laboratory
904 program, Stand Up to Cancer, NIH grant U01 CA210171, NIH grant P50 CA127003, Pancreatic
905 Cancer Action Network, Noble Effort Fund, Wexler Family Fund, Promises for Purple, and Bob
906 Parsons Fund. MHR acknowledges support from the Hale Family Center for Pancreatic Cancer
907 Research, Lustgarten Foundation Dedicated Laboratory program, and NIH grant U01 CA210171.
908 We thank Stand Up to Cancer, the Lustgarten Foundation and their donors for financial and
909 community support.

910 **Author contributions:** DP, BY, JH, AH, SB, CS conceptualization. DP, BY, JH, SB, CS
911 methodology. DP, BY software. DP, BY, JH validation. DP, BY investigation. PC, RU, GA and
912 AC resources. DP, BY, JH, RU, GA, AC data curation. DP, BY, JH, CS original draft. ALL
913 writing review and editing. EA, LB project administration. DM, AR, PK, BW, MR, SB, CS
914 supervision.

915 **Competing Interests:** S.B. has ownership in Intomics A/S, Hoba Therapeutics Aps, Novo Nordisk
916 A/S, Lundbeck A/S and managing board memberships in Proscion A/S and Intomics A/S. B.M.W.
917 notes grant funding from Celgene and Eli Lilly; consulting fees from BioLineRx, Celgene, and
918 GRAIL. A.R. is a co-founder and equity holder of Celsius Therapeutics, an equity holder in
919 Immunitas, and was an SAB member of ThermoFisher Scientific, Syros Pharmaceuticals, Neogene
920 Therapeutics and Asimov until July 31, 2020. From August 1, 2020, A.R. is an employee of
921 Genentech.

922 **Data and material availability:** The software can be made available upon request to
923 cancerriskprediction@gmail.com. The Danish National Patient Registry (DNPR) can only be
924 accessed by researchers authorized by the Danish health authorities. Similarly, Mass General
925 Brigham (MGB) dataset is part of the Research Patient Data Registry (RPDR) and it is only
926 accessible by internal researchers with institutional review board (IRB) approval. All approvals
927 are stated in the manuscript.

928

929

930

931

932

933

934 **Supplementary Materials**

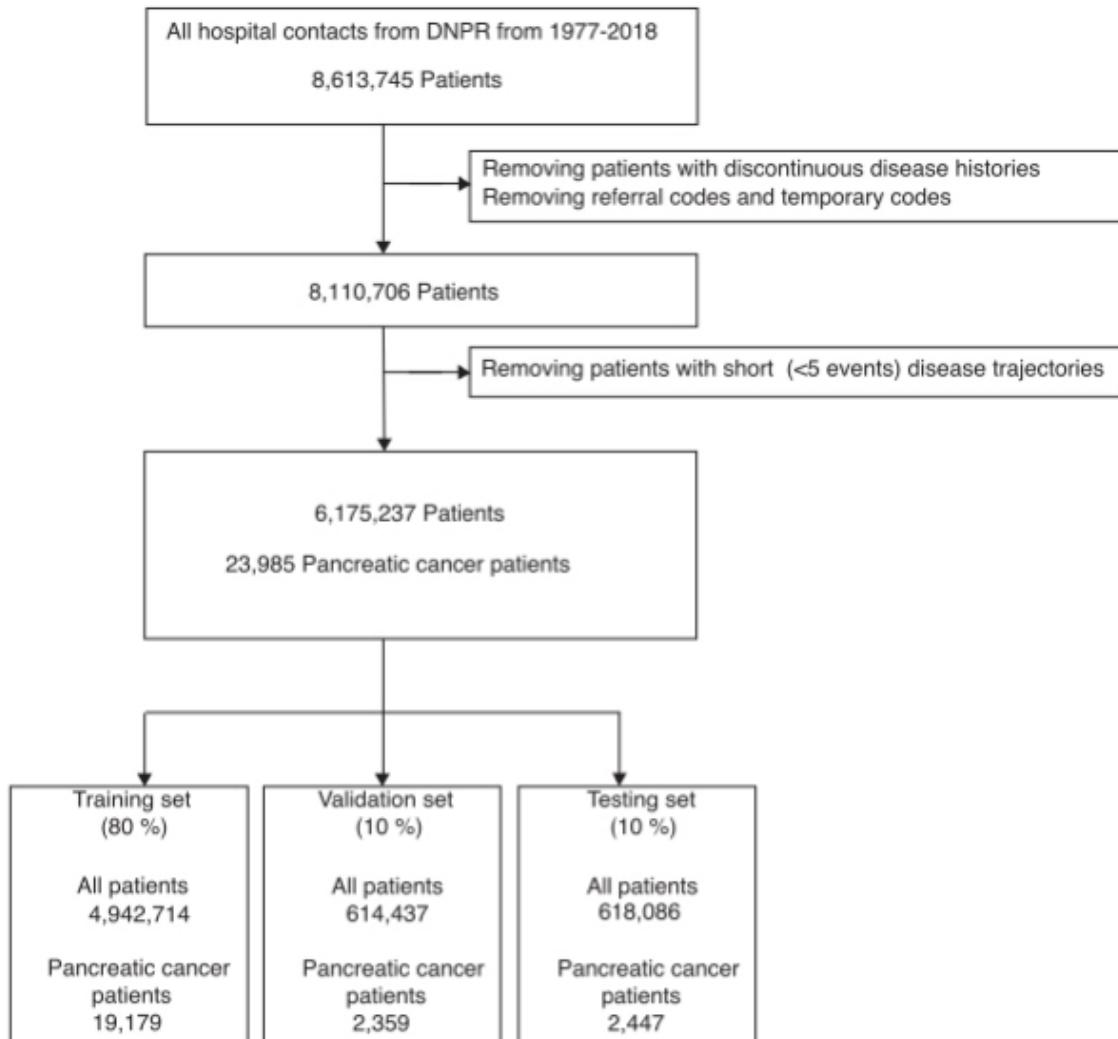
935 **Figure S1. Preprocessing and filtering of the DK and MGB disease trajectory**
936 **datasets.**

937
938 Filtering of the Danish (DK) and Boston MGB patient registries prior to training: in the Danish
939 dataset, patient status codes were used to remove discontinuous disease histories such as patients
940 living in Greenland, patients with alterations in their patient ID or patients who lack a stable
941 residence in Denmark. We also removed referral and temporary diagnosis codes which are not the
942 final diagnosis codes and can be misleading to use for training. Patients with short trajectories (<5
943 diagnosis codes) were removed. The final set of patients were split into Training (80 %), Validation
944 (10%) and Testing set (10%).

945
946 For the Boston MGB dataset, the first step was an extra layer of patient ID de-identification, which
947 was done by adding a unique random small time shift per patient. Similar to the Danish dataset
948 filtering, short trajectories (<5 diagnosis codes) were removed and patients split into Training (80
949 %), Validation (10%) and Test set (10%).

950
951

952 **Figure S1A - Denmark (DK) DNPR**



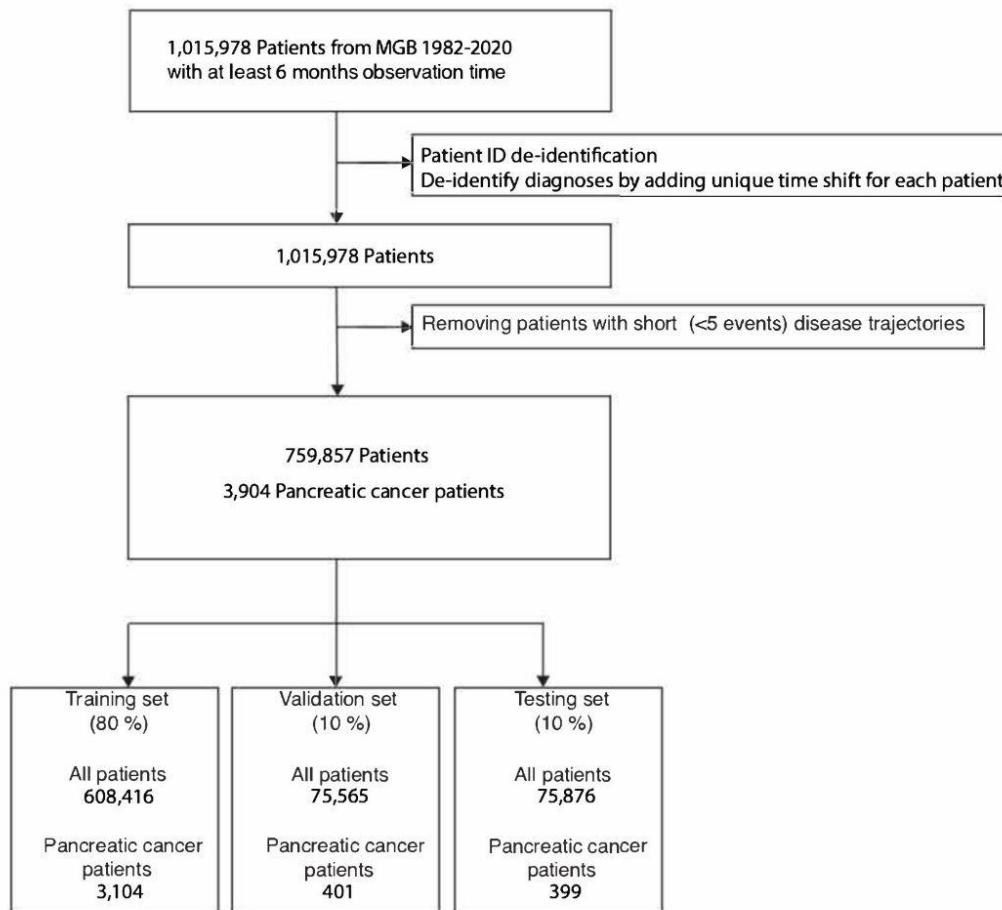
953

954

955

956 **Figure S1B - Boston MGB (RPDR)**

957



958

959

960

961

962

963

964

965

966

967

968

969

970

971 **Table S1. Description of the patient cohorts used in this study (DK).**

972

Population Metadata (n=8,110,706 persons)

Gender	Male	Female
Total Count	4,030,504 (49.69%)	4,080,202 (50.31%)
Alive	2,754,152 (33.96%)	2,827,021 (34.86%)
Dead	1,276,352 (15.74%)	1,253,181 (15.45%)
After continuity and length filtering	2,938,248 (36.23%)	3,239,989 (39.95%)
Age at last record (0-10)	216,329 (2.67%)	204,774 (2.52%)
Age at last record (10-20)	332,326 (4.10%)	314,445 (3.88%)
Age at last record (20-30)	322,802 (3.98%)	298,219 (3.68%)
Age at last record (30-40)	283,200 (3.49%)	305,470 (3.77%)
Age at last record (40-50)	323,811 (3.99%)	380,730 (4.69%)
Age at last record (50-60)	368,686 (4.55%)	419,100 (5.17%)
Age at last record (60-70)	373,220 (4.60%)	402,625 (4.96%)
Age at last record (70-80)	394,789 (4.87%)	408,890 (5.04%)
Age at last record (80-90)	258,193 (3.18%)	342,174 (4.22%)
Age at last record (90-100)	63,470 (0.78%)	156,154 (1.93%)
Age at last record (100-110)	1,422 (0.02%)	7,391 (0.09%)
Age at last record (110-120)		7 (0.00%)

974

Pancreatic Cancer Patients (n=23,985)		
	Male	Female
Total Count	11,880 (49.53%)	12,105 50.47%
Age at pancreatic cancer diagnosis (0-10)	1 (0.00%)	1 (0.00%)
Age at pancreatic cancer diagnosis (10-20)	1 (0.00%)	7 (0.03%)
Age at pancreatic cancer diagnosis (20-30)	11 (0.05%)	11 (0.05%)
Age at pancreatic cancer diagnosis (30-40)	92 (0.38%)	93 (0.39%)
Age at pancreatic cancer diagnosis (40-50)	474 (1.98%)	417 (1.74%)
Age at pancreatic cancer diagnosis (50-60)	1,626 (6.78%)	1,304 (5.44%)
Age at pancreatic cancer diagnosis (60-70)	3,585 (14.95%)	2,950 (12.30%)
Age at pancreatic cancer diagnosis (70-80)	4,017 (16.75%)	4,076 (16.99%)
Age at pancreatic cancer diagnosis (80-90)	1,925 (8.03%)	2,751 (11.47%)
Age at pancreatic cancer diagnosis (90-100)	148 (0.62%)	490 (2.04%)
Age at pancreatic cancer diagnosis (100-110)		5 (0.02%)

975

976

977

978 **Table S2. Hyperparameter search for machine learning models.**

979

980 To comprehensively test different types of neural networks and the corresponding
981 hyperparameters, we conducted a large parameter search for each of the network types. The
982 different types of models include simple feed-forward models (LR, MLP) and more complex
983 models that can take the sequential information of disease ordering into consideration (RNN, GRU
984 and Transformer). The hyperparameters of the best performing model are in **bold**.
985

	Type of ML model			
Hyper-parameters	Bag of words	MLP	GRU	Transformer
Dropout	0	0,0.1	0,0.1	0, 0.1
Weight decay	0.001	0,0.001	0,0.001	0, 0.001
Only prior knowledge diseases	False, True	False	False	False, True
Dimension of hidden layer	-	32, 128, 256	32, 64, 128, 256	32, 256
Number of hidden layers	-	1, 2	1, 2, 4	1, 2, 4
Age input	None	None	None, positional embedding	None, positional embedding
Time input	None	None	None, positional embedding	None, positional embedding
Number of Heads	-	-	-	8, 16, 32

986

987 **Table S3. Performance of exclusion experiments.**

988
989 A summary of performance of different models trained with different data exclusion intervals for
990 different prediction intervals. In order to estimate the uncertainty of the performance metrics, 95%
991 confidence interval (CI) were computed using 200 resamples (bootstrapping with replacement);
992 these time intervals may be slightly too narrow due to the estimated small number of trajectories
993 from a single patient in a particular sample, but provide a reasonable guide. Specificity, precision,
994 and recall are for the F1-optimal operational point.

995

Table S3A. Performance summary DNPR (AUROC)

Model	Prediction Interval (months) →	0 - 3		0 - 6		0 - 12		0 - 36		0 - 60	
		Exclusion Interval (months)									
Bag-of-words	0	0.794 (0.791-0.797)		0.800 (0.797-0.803)		0.807 (0.805-0.809)		0.807 (0.805-0.809)		0.799 (0.797-0.800)	
	3	-		0.815 (0.808-0.821)		0.823 (0.819-0.826)		0.812 (0.810-0.814)		0.798 (0.796-0.800)	
	6	-		-		0.826 (0.821-0.830)		0.810 (0.807-0.812)		0.794 (0.792-0.797)	
MLP	0	0.876 (0.873-0.879)		0.871 (0.869-0.873)		0.864 (0.861-0.866)		0.845 (0.843-0.847)		0.832 (0.830-0.834)	
	3	-		0.836 (0.830-0.841)		0.832 (0.828-0.836)		0.838 (0.836-0.840)		0.828 (0.827-0.830)	
	6	-		-		0.838 (0.833-0.842)		0.830 (0.828-0.833)		0.824 (0.822-0.825)	
GRU	0	0.917 (0.914-0.919)		0.903 (0.900-0.905)		0.883 (0.881-0.885)		0.852 (0.850-0.854)		0.836 (0.834-0.837)	
	3	-		0.859 (0.854-0.866)		0.852 (0.848-0.855)		0.832 (0.830-0.835)		0.820 (0.818-0.822)	
	6	-		-		0.848 (0.844-0.852)		0.827 (0.824-0.829)		0.815 (0.812-0.816)	
Transformer	0	0.934 (0.932-0.937)		0.923 (0.920-0.925)		0.908 (0.906-0.911)		0.879 (0.877-0.880)		0.861 (0.860-0.863)	
	3	-		0.866 (0.860-0.870)		0.862 (0.857-0.866)		0.843 (0.841-0.844)		0.830 (0.828-0.831)	
	6	-		-		0.834 (0.830-0.838)		0.829 (0.827-0.832)		0.817 (0.816-0.819)	
Transformer - Known risk factors	0	-		-		-		0.827 (0.825-0.830)		0.816 (0.814-0.818)	
	0	0.850 (0.847-0.852)		0.850 (0.847-0.852)		0.850 (0.848-0.851)		0.838 (0.837-0.840)		0.832 (0.831-0.833)	

996

Table S3B. Performance summary DNPR (specificity/precision/recall)

Model	Exclusion Interval (months)	Prediction Interval (months) →	0 - 3		0 - 6		0 - 12		0 - 36		0 - 60	
			Metric									
Bag-of-words	0	specificity	98.64% (96.31%-98.83%)		98.07% (95.42%-98.85%)		98.18% (97.50%-98.80%)		95.55% (94.86%-98.01%)		95.06% (94.09%-95.75%)	
	0	precision	0.3% (0.3%-0.4%)		0.4% (0.4%-0.5%)		0.6% (0.6%-0.7%)		0.9% (0.8%-0.9%)		1.0% (0.9%-1.0%)	
	0	recall	5.4% (4.6%-13.4%)		8.0% (4.9%-17.5%)		7.7% (5.3%-9.9%)		16.6% (8.1%-18.6%)		16.5% (14.6%-19.2%)	
	3	specificity	-		99.91% (99.80%-99.91%)		99.72% (99.15%-99.80%)		97.04% (94.91%-99.70%)		94.82% (93.27%-97.03%)	
	3	precision	-		0.2% (0.1%-0.3%)		0.4% (0.3%-0.5%)		0.6% (0.5%-0.9%)		0.7% (0.7%-0.7%)	
	3	recall	-		1.0% (0.7%-2.1%)		2.0% (1.4%-4.9%)		11.7% (1.8%-19.4%)		17.2% (10.2%-22.2%)	
	6	specificity	-		-		99.73% (99.19%-99.74%)		99.71% (97.11%-99.72%)		96.72% (93.37%-97.43%)	
	6	precision	-		-		0.2% (0.2%-0.3%)		0.7% (0.5%-0.8%)		0.6% (0.6%-0.7%)	
	6	recall	-		-		2.1% (1.7%-5.2%)		1.7% (1.6%-11.6%)		10.8% (8.5%-20.7%)	
	12	specificity	-		-		-		-		-	
	12	precision	-		-		-		-		-	
	12	recall	-		-		-		-		-	
MLP	0	specificity	99.74% (99.68%-99.82%)		99.73% (99.66%-99.82%)		99.79% (99.66%-99.82%)		99.69% (99.53%-99.74%)		99.54% (99.43%-99.61%)	
	0	precision	2.7% (2.4%-3.0%)		3.4% (3.0%-3.9%)		4.3% (3.6%-4.7%)		4.8% (4.1%-5.3%)		4.5% (4.2%-4.9%)	
	0	recall	9.0% (6.9%-11.1%)		9.1% (7.0%-11.1%)		7.3% (6.6%-9.8%)		7.3% (6.5%-9.4%)		7.9% (7.1%-9.0%)	
	3	specificity	-		99.85% (99.72%-99.87%)		99.83% (99.71%-99.84%)		99.75% (99.50%-99.76%)		99.43% (99.39%-99.56%)	
	3	precision	-		0.5% (0.4%-0.6%)		1.0% (0.9%-1.2%)		2.0% (1.5%-2.1%)		1.8% (1.7%-2.0%)	
	3	recall	-		3.5% (2.8%-5.4%)		3.3% (2.9%-4.8%)		3.7% (3.4%-5.9%)		5.1% (4.3%-5.6%)	
	6	specificity	-		-		99.80% (99.80%-99.82%)		99.64% (99.62%-99.92%)		99.61% (99.59%-99.64%)	
	6	precision	-		-		0.3% (0.3%-0.4%)		1.0% (0.9%-1.9%)		1.3% (1.2%-1.4%)	
	6	recall	-		-		2.0% (1.5%-2.4%)		3.1% (1.3%-3.5%)		2.8% (2.6%-3.1%)	
	12	specificity	-		-		-		-		-	
	12	precision	-		-		-		-		-	
	12	recall	-		-		-		-		-	
GRU	0	specificity	99.95% (99.93%-99.95%)		99.92% (99.89%-99.94%)		99.89% (99.87%-99.91%)		99.82% (99.77%-99.87%)		99.76% (99.74%-99.81%)	
	0	precision	15.1% (13.1%-15.9%)		14.0% (11.7%-15.9%)		13.1% (12.0%-14.6%)		11.6% (10.2%-13.5%)		10.4% (9.8%-11.5%)	
	0	recall	12.7% (11.9%-14.0%)		12.6% (11.4%-14.7%)		12.6% (11.4%-13.5%)		10.8% (9.5%-12.0%)		10.0% (9.1%-10.5%)	
	3	specificity	-		99.97% (99.93%-99.97%)		99.94% (99.91%-99.95%)		99.86% (99.83%-99.89%)		99.84% (99.79%-99.86%)	
	3	precision	-		2.8% (2.2%-3.4%)		5.2% (4.1%-6.0%)		5.5% (4.9%-6.2%)		5.8% (5.0%-6.3%)	
	3	recall	-		4.9% (4.2%-7.1%)		6.1% (5.3%-7.6%)		6.0% (5.1%-6.7%)		5.1% (4.7%-5.7%)	
	6	specificity	-		-		99.93% (99.85%-99.96%)		99.88% (99.85%-99.93%)		99.84% (99.78%-99.85%)	
	6	precision	-		-		1.7% (1.3%-2.2%)		4.3% (3.5%-5.5%)		4.3% (3.7%-4.7%)	
	6	recall	-		-		3.8% (2.8%-5.6%)		4.4% (3.5%-5.3%)		4.2% (3.9%-4.8%)	
	12	specificity	-		-		-		99.67% (99.58%-99.89%)		99.79% (99.47%-99.84%)	
	12	precision	-		-		-		1.1% (0.8%-1.3%)		1.7% (1.2%-1.9%)	
	12	recall	-		-		-		4.4% (2.0%-5.1%)		2.6% (2.2%-4.6%)	
Transformer	0	specificity	99.95% (99.92%-99.96%)		99.93% (99.91%-99.94%)		99.92% (99.90%-99.93%)		99.88% (99.87%-99.90%)		99.87% (99.83%-99.88%)	
	0	precision	18.6% (15.6%-22.5%)		18.8% (16.9%-19.7%)		19.4% (17.8%-21.6%)		18.1% (17.1%-19.9%)		18.0% (15.2%-18.9%)	
	0	recall	16.5% (14.4%-19.4%)		17.0% (16.1%-18.5%)		15.6% (14.7%-16.5%)		12.3% (11.7%-12.9%)		10.2% (9.8%-11.2%)	
	3	specificity	-		99.92% (99.91%-99.98%)		99.92% (99.92%-99.93%)		99.87% (99.66%-99.91%)		99.63% (99.56%-99.64%)	
	3	precision	-		1.7% (1.4%-3.0%)		4.3% (3.8%-4.8%)		5.4% (4.9%-6.6%)		2.7% (2.5%-2.9%)	
	3	recall	-		5.9% (4.2%-7.2%)		6.5% (6.0%-7.2%)		5.2% (4.5%-5.6%)		5.3% (5.0%-6.0%)	
	6	specificity	-		-		99.41% (98.21%-99.42%)		99.51% (99.47%-99.52%)		99.34% (95.82%-99.38%)	
	6	precision	-		-		0.2% (0.1%-0.2%)		0.7% (0.7%-0.8%)		0.8% (0.7%-0.9%)	
	6	recall	-		-		3.4% (2.7%-8.4%)		3.2% (2.9%-3.5%)		3.2% (3.0%-16.0%)	
	12	specificity	-		-		-		99.44% (99.43%-99.45%)		99.41% (94.87%-99.42%)	
	12	precision	-		-		-		0.5% (0.4%-0.5%)		0.6% (0.5%-0.7%)	
	12	recall	-		-		-		3.1% (2.8%-3.5%)		2.7% (2.5%-18.3%)	
Transformer - Known risk factors	0	specificity	99.96% (99.92%-99.97%)		99.92% (99.91%-99.93%)		99.91% (99.91%-99.92%)		99.87% (99.76%-99.88%)		99.79% (99.73%-99.88%)	
	0	precision	11.6% (7.4%-12.7%)		9.2% (8.6%-10.0%)		10.3% (9.7%-10.8%)		3.6% (2.8%-3.9%)		2.8% (2.4%-4.0%)	
	0	recall	6.9% (6.3%-9.7%)		9.2% (8.5%-9.7%)		8.3% (7.9%-8.7%)		2.5% (2.3%-3.2%)		2.4% (1.9%-2.8%)	

997

998

999

1000

Table S3C. Performance summary DNPR model validated on RPDR (AUROC).

Model	Prediction Interval (months) →	0 - 3		0 - 6		0 - 12		0 - 36		0 - 60	
		Exclusion Interval (months)									
GRU (cross evaluation)	0	0.830 (0.828-0.832)		0.816 (0.814-0.818)		0.793 (0.791-0.795)		0.766 (0.765-0.768)		0.747 (0.746-0.749)	
	3	-		0.763 (0.759-0.767)		0.721 (0.717-0.724)		0.702 (0.700-0.705)		0.682 (0.680-0.684)	
	6	-		-		0.663 (0.659-0.667)		0.677 (0.674-0.679)		0.653 (0.650-0.655)	
Transformer (cross evaluation)	0	0.845 (0.841-0.848)		0.832 (0.829-0.835)		0.815 (0.813-0.818)		0.776 (0.773-0.778)		0.764 (0.761-0.766)	
	3	-		0.702 (0.696-0.707)		0.697 (0.694-0.700)		0.702 (0.699-0.705)		0.697 (0.694-0.700)	
	6	-		-		0.710 (0.706-0.715)		0.715 (0.712-0.718)		0.700 (0.698-0.702)	

1001

Table S3D. Performance summary DNPR model validated on RPDR (specificity/precision/recall).

Model	Prediction Interval (months) →	0 - 3		0 - 6		0 - 12		0 - 36		0 - 60	
		Exclusion Interval	Metric								
GRU (cross evaluation)	0	specificity	96.88% (96.88%-96.89%)	96.88% (96.87%-96.89%)	96.73% (96.72%-96.75%)	96.16% (95.54%-96.21%)	95.54% (95.51%-95.59%)				
	0	precision	1.8% (1.7%-1.8%)	2.0% (2.0%-2.0%)	2.1% (2.1%-2.1%)	2.3% (2.3%-2.3%)	2.4% (2.3%-2.4%)				
	0	recall	29.8% (29.3%-30.4%)	28.2% (27.8%-28.6%)	26.2% (25.8%-26.5%)	24.3% (23.8%-27.8%)	24.9% (24.3%-25.2%)				
	3	specificity	-	98.81% (98.80%-98.81%)	99.06% (98.81%-99.06%)	99.20% (99.07%-99.20%)	99.07% (98.42%-99.08%)				
	3	precision	-	1.1% (1.1%-1.2%)	1.7% (1.6%-1.7%)	2.7% (2.6%-2.9%)	2.8% (2.5%-2.9%)				
	3	recall	-	17.2% (16.6%-17.9%)	12.1% (11.4%-14.9%)	8.8% (8.4%-9.9%)	8.3% (8.0%-12.5%)				
	6	specificity	-	-	99.70% (99.63%-99.74%)	99.23% (99.22%-99.28%)	99.22% (99.15%-99.23%)				
	6	precision	-	-	1.1% (1.0%-1.2%)	1.7% (1.7%-1.8%)	1.9% (1.8%-2.0%)				
	6	recall	-	-	4.4% (3.9%-5.2%)	6.2% (5.9%-6.6%)	5.2% (5.0%-5.6%)				
Transformer (cross evaluation)	0	specificity	92.33% (92.30%-92.36%)	92.34% (92.32%-92.37%)	92.35% (91.79%-92.38%)	92.32% (92.22%-92.62%)	92.28% (91.52%-92.47%)				
	0	precision	0.8% (0.8%-0.8%)	1.1% (1.1%-1.1%)	1.4% (1.4%-1.4%)	1.7% (1.6%-1.7%)	1.8% (1.7%-1.8%)				
	0	recall	52.0% (50.9%-52.8%)	47.1% (46.3%-47.9%)	42.8% (41.8%-45.6%)	33.5% (32.6%-34.2%)	31.6% (30.8%-34.4%)				
	3	specificity	-	99.33% (99.30%-99.74%)	99.31% (99.29%-99.33%)	99.31% (99.29%-99.33%)	99.20% (99.18%-99.21%)				
	3	precision	-	0.3% (0.2%-0.3%)	0.6% (0.6%-0.7%)	1.1% (1.1%-1.2%)	1.6% (1.5%-1.7%)				
	3	recall	-	2.4% (1.0%-2.8%)	2.7% (2.4%-3.0%)	2.5% (2.3%-2.7%)	3.5% (3.3%-3.6%)				
	6	specificity	-	-	95.97% (91.39%-96.07%)	97.31% (91.00%-97.32%)	89.27% (89.24%-90.66%)				
	6	precision	-	-	0.3% (0.3%-0.4%)	0.9% (0.8%-0.9%)	0.9% (0.8%-0.9%)				
	6	recall	-	-	13.1% (12.5%-27.4%)	8.4% (8.1%-25.9%)	26.5% (23.4%-27.1%)				

1002

Table S3E. Performance summary RPDR (AUROC)

Model	Prediction Interval (months) →	0 - 3		0 - 6		0 - 12		0 - 36		0 - 60	
		Exclusion Interval (months)									
Bad-of-words	0	0.835 (0.832-0.837)		0.829 (0.827-0.831)		0.818 (0.816-0.820)		0.800 (0.798-0.801)		0.775 (0.773-0.777)	
MLP	0	0.925 (0.923-0.927)		0.914 (0.912-0.916)		0.897 (0.895-0.899)		0.867 (0.866-0.869)		0.839 (0.837-0.841)	
GRU	0	0.940 (0.939-0.941)		0.927 (0.925-0.929)		0.898 (0.896-0.900)		0.876 (0.874-0.878)		0.853 (0.851-0.854)	
	3	-		0.848 (0.844-0.853)		0.830 (0.827-0.833)		0.808 (0.805-0.810)		0.785 (0.783-0.787)	
	6	-		-		0.777 (0.772-0.782)		0.771 (0.768-0.773)		0.745 (0.743-0.748)	
	12	-		-		-		0.733 (0.729-0.736)		0.715 (0.712-0.718)	
Transformer	0	0.942 (0.940-0.943)		0.928 (0.926-0.929)		0.907 (0.905-0.908)		0.869 (0.867-0.870)		0.847 (0.846-0.849)	
	3	-		0.819 (0.813-0.825)		0.809 (0.805-0.813)		0.802 (0.799-0.805)		0.781 (0.779-0.784)	
	6	-		-		0.806 (0.800-0.810)		0.788 (0.785-0.790)		0.768 (0.766-0.771)	
	12	-		-		-		0.786 (0.783-0.789)		0.756 (0.753-0.760)	

1003

Table S3F. Performance summary RPDR (specificity/precision/recall)

Model	Prediction Interval (months) : →	Exclusion Interval Metric				
		0 - 3	0 - 6	0 - 12	0 - 36	0 - 60
Bag-of-words	0 specificity	99.56% (99.55%-99.72%)	99.56% (99.55%-99.62%)	99.57% (99.56%-99.59%)	99.55% (99.54%-99.57%)	99.54% (99.47%-99.56%)
	0 precision	2.9% (2.7%-3.4%)	3.9% (3.8%-4.1%)	5.9% (5.7%-6.0%)	8.3% (8.1%-8.6%)	8.7% (8.1%-9.0%)
	0 recall	6.7% (5.0%-7.0%)	7.8% (7.1%-8.1%)	9.8% (9.3%-10.1%)	10.7% (10.3%-11.0%)	9.8% (9.6%-10.5%)
MLP	0 specificity	99.75% (99.69%-99.75%)	99.75% (99.70%-99.76%)	99.69% (99.68%-99.69%)	99.55% (99.54%-99.62%)	99.54% (99.52%-99.54%)
	0 precision	18.0% (16.7%-18.3%)	20.1% (18.7%-20.5%)	19.5% (19.1%-19.8%)	18.3% (18.1%-19.5%)	18.5% (18.1%-18.7%)
	0 recall	29.2% (28.7%-32.5%)	27.0% (26.6%-29.9%)	27.7% (27.2%-28.1%)	26.8% (24.7%-27.2%)	23.8% (23.5%-24.3%)
GRU	0 specificity	99.84% (99.84%-99.84%)	99.84% (99.80%-99.85%)	99.78% (99.77%-99.82%)	99.66% (99.64%-99.68%)	99.64% (99.58%-99.66%)
	0 precision	28.0% (27.5%-28.6%)	30.5% (27.6%-31.1%)	26.5% (25.8%-29.3%)	22.0% (21.3%-22.6%)	21.6% (20.2%-22.4%)
	0 recall	33.0% (32.3%-33.5%)	30.1% (29.5%-33.2%)	29.4% (26.6%-30.1%)	25.4% (24.7%-26.0%)	22.9% (22.1%-24.6%)
	3 specificity	-	99.81% (99.80%-99.91%)	99.80% (99.78%-99.81%)	99.48% (99.48%-99.49%)	99.48% (99.48%-99.49%)
	3 precision	-	8.2% (7.8%-10.4%)	9.8% (9.1%-10.1%)	10.1% (9.9%-10.4%)	10.5% (10.3%-10.6%)
	3 recall	-	21.3% (13.8%-22.1%)	15.8% (15.2%-17.0%)	22.1% (21.7%-22.5%)	18.1% (17.7%-18.4%)
	6 specificity	-	-	99.81% (99.78%-99.84%)	99.64% (99.63%-99.64%)	99.63% (99.62%-99.64%)
	6 precision	-	-	5.1% (4.8%-5.5%)	8.1% (7.8%-8.3%)	8.3% (8.1%-8.6%)
	6 recall	-	-	12.6% (11.2%-14.0%)	14.8% (14.4%-15.2%)	11.5% (11.1%-11.9%)
	12 specificity	-	-	-	99.72% (99.54%-99.75%)	99.54% (99.46%-99.58%)
	12 precision	-	-	-	5.1% (4.3%-5.5%)	4.8% (4.5%-5.1%)
	12 recall	-	-	-	8.9% (8.1%-12.1%)	9.2% (8.5%-10.3%)
Transformer	0 specificity	99.79% (99.78%-99.83%)	99.65% (99.65%-99.65%)	99.65% (99.63%-99.66%)	99.51% (99.50%-99.52%)	99.50% (99.48%-99.52%)
	0 precision	22.9% (22.5%-24.9%)	21.0% (20.6%-21.3%)	21.7% (21.3%-22.1%)	19.4% (19.1%-19.7%)	19.7% (19.2%-20.0%)
	0 recall	32.9% (29.0%-33.5%)	39.9% (39.4%-40.3%)	35.3% (34.7%-36.4%)	31.0% (30.4%-31.5%)	27.6% (27.2%-28.3%)
	3 specificity	-	99.23% (98.35%-99.30%)	98.38% (98.16%-99.25%)	99.42% (99.39%-99.44%)	99.40% (99.29%-99.43%)
	3 precision	-	1.1% (1.0%-1.2%)	1.9% (1.8%-2.2%)	6.6% (6.4%-6.9%)	6.9% (6.5%-7.2%)
	3 recall	-	10.1% (9.2%-20.0%)	17.3% (8.8%-19.5%)	12.7% (12.1%-13.2%)	11.6% (11.1%-13.0%)
	6 specificity	-	-	99.25% (99.21%-99.27%)	99.22% (99.19%-99.26%)	99.23% (99.19%-99.26%)
	6 precision	-	-	1.9% (1.8%-2.0%)	4.0% (3.8%-4.2%)	4.4% (4.2%-4.5%)
	6 recall	-	-	12.2% (11.1%-12.9%)	11.1% (10.5%-11.6%)	10.0% (9.5%-10.5%)
	12 specificity	-	-	-	97.95% (97.66%-99.01%)	99.00% (98.76%-99.02%)
	12 precision	-	-	-	1.9% (1.8%-2.1%)	2.8% (2.6%-2.9%)
	12 recall	-	-	-	16.5% (9.0%-18.7%)	9.3% (8.8%-10.6%)

1004
1005
1006

1007 **Table S4. Known risk factor disease codes.**

1008

1009 A subset of 23 diseases that have been considered as risk factors for pancreatic cancer (Yuan et
1010 al. 2020; Klein 2021) were chosen for the “known risk factor” analysis. Indeed, most of these are
1011 flagged by the IG feature extraction method to make a significant contribution to the ML
1012 prediction of cancer occurrence (**Figure 4**). These risk factors were used to train a separate time-
1013 series model ‘Transformer - known risk factors’ for comparison to the model trained on all ICD
1014 codes (Figure 3).

1015

ICD codes	Diseases
C18	Malignant neoplasm of colon
C34	Malignant neoplasm of bronchus and lung
C50	Malignant neoplasm of breast.
C61	Malignant neoplasm of prostate
E10, E11	Type I/II diabetes mellitus
E66	Obesity
E78	High Cholesterol
E84	Cystic fibrosis
F32	Depression
I10	Hypertension
I82	Venous embolism and thrombosis
K05	Periodontal disease
K21	GERD
K27	Peptic Ulcer Disease
K50, K51, K52	Inflammatory bowel disease
K85	Acute Pancreatitis
K86	Chronic Pancreatitis
R17	Jaundice
R63	Weight loss
Z92	Personal history of medical treatment

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

Table S5. Disease attribution without and with 3 months data exclusion

1031

1032 In order to discover the top diseases that contribute to our model's risk prediction, we calculated
1033 the contribution score for all input features using integrated gradients (IG), an attribution method
1034 for neural networks. The IG contribution score (arbitrary units) was calculated for trajectories
1035 with cancer occurrence in the time windows 0-6 months, 6-12 months, 12-24 months and 24-36
1036 months both without data exclusion (**A**) and with 3 months data exclusion (**B**).
1037

Diseases contribution at different time to cancer (DNPR)

Cancer in 0-6 months	Cancer in 6-12 months	Cancer in 12-24 months	Cancer in 24-36 months
Unspecified jaundice (284.1181)	Other diseases of biliary tract (31.8526)	Medical observation and evaluation for suspected diseases and conditions (36.4821)	Medical observation and evaluation for suspected diseases and conditions (27.8223)
Medical observation and evaluation for suspected diseases and conditions (211.639)	Unspecified jaundice (25.1092)	Other diseases of biliary tract (35.7892)	Other diseases of pancreas (17.3262)
Other diseases of biliary tract (177.8008)	Medical observation and evaluation for suspected diseases and conditions (23.8492)	Other diseases of pancreas (15.4172)	Other diseases of biliary tract (13.0355)
Abdominal and pelvic pain (112.6088)	Other diseases of pancreas (18.1017)	Abdominal and pelvic pain (12.03)	Non-insulin-dependent diabetes mellitus (10.1258)
Malignant neoplasm of other and unspecified parts of biliary tract (97.1554)	Malignant neoplasm of other and unspecified parts of biliary tract (11.5094)	Non-insulin-dependent diabetes mellitus (11.523)	Unspecified jaundice (8.5648)
Other diseases of pancreas (82.8027)	Abdominal and pelvic pain (11.0715)	Malignant neoplasm of other and unspecified parts of biliary tract (7.8586)	Abdominal and pelvic pain (7.1503)
Secondary malignant neoplasm of respiratory and digestive organs (68.4903)	Secondary malignant neoplasm of respiratory and digestive organs (10.2011)	Unspecified jaundice (7.7704)	Malignant neoplasm of other and unspecified parts of biliary tract (4.2577)
Symptoms and signs concerning food and fluid intake (34.5983)	Non-insulin-dependent diabetes mellitus (7.0361)	Other functional intestinal disorders (6.7108)	Gastritis and duodenitis (4.0241)
Non-insulin-dependent diabetes mellitus (34.5022)	Malignant neoplasm without specification of site (4.6507)	Diseases of pancreas (5.5495)	Insulin-dependent diabetes mellitus (3.8811)
Other anaemias (20.8205)	Other anaemias (4.361)	Secondary malignant neoplasm of respiratory and digestive organs (5.5292)	Other anaemias (3.304)
Diseases of pancreas (20.4819)	Diseases of pancreas (4.2567)	Other anaemias (5.2112)	Cholelithiasis (2.7231)
Other functional intestinal disorders (19.5875)	Other diseases of gallbladder and biliary (2.95)	Disorders of sphingolipid metabolism and other lipid storage disorders (4.4317)	Other functional intestinal disorders (2.7213)
Acute pancreatitis (19.4046)	Malignant neoplasm of gallbladder and bile ducts (2.7041)	Acute pancreatitis (3.8305)	Benign neoplasm of colon, rectum, anus and anal canal (2.6348)
Dyspepsia (18.3121)	Insulin-dependent diabetes mellitus (2.6747)	Gastritis and duodenitis (3.5942)	Symptoms and signs concerning food and fluid intake (2.6321)
Gastritis and duodenitis (16.0617)	Gastric ulcer (2.3941)	Malignant neoplasm without specification of site (3.5324)	Acute pancreatitis (2.2948)
Mental and behavioural disorders due to use of tobacco (15.348)	Gastritis and duodenitis (2.3597)	Cholelithiasis (3.155)	Diabetes mellitus (1.9263)
Cholelithiasis (14.4581)	Benign neoplasm of colon, rectum, anus and anal canal (2.3327)	Diabetes mellitus (3.116)	Diseases of pancreas (1.6795)
Other special examinations and investigations of persons without complaint or reported diagnosis (14.3472)	Diabetes mellitus (2.3278)	Ascites (2.5611)	Gastric ulcer (1.6373)
Other diseases of gallbladder and biliary (13.8268)	Malignant neoplasm of prostate (2.3072)	Malignant neoplasm of bronchus and lung (2.4712)	Unspecified diabetes mellitus (1.6134)
Malignant neoplasm of gallbladder and bile ducts (13.389)	Peptic ulcer, site unspecified (2.2885)	Phlebitis and thrombophlebitis (2.4429)	Pleural effusion, not elsewhere classified (1.5121)
Neoplasm of unspecified nature of digestive organs (13.0823)	Phlebitis and thrombophlebitis (2.2621)	Neoplasm of unspecified nature of digestive organs (2.4347)	Secondary malignant neoplasm of respiratory and digestive organs (1.4997)
Other diseases of stomach and duodenum (12.0664)	Other symptoms and signs involving the digestive system and abdomen (2.1142)	Symptoms and signs concerning food and fluid intake (2.3337)	Phlebitis and thrombophlebitis (1.4223)
Secondary malignant neoplasm of respiratory and digestive systems (12.0028)	Acute pancreatitis (2.0593)	Gastro-oesophageal reflux disease (2.3041)	Dyspepsia (1.3269)
Malignant neoplasm of liver and intrahepatic bile ducts (11.7698)	Symptoms referable to abdomen and lower gastro-intestinal tract (1.9455)	Benign neoplasm of colon, rectum, anus and anal canal (2.2023)	Other endocrine disorders (1.1847)
Insulin-dependent diabetes mellitus (10.9021)	Other functional intestinal disorders (1.8659)	Insulin-dependent diabetes mellitus (2.1415)	Diverticular disease of intestine (1.0687)
Malignant neoplasm of small intestine (10.7767)	Cholelithiasis (1.6317)	Benign neoplasm of other and ill-defined parts of digestive system (2.0262)	Disorders of sphingolipid metabolism and other lipid storage disorders (1.0467)

Ascites (10.7206)	Gastro-oesophageal reflux disease (1.4633)	Aortic aneurysm and dissection (1.9501)	Peptic ulcer, site unspecified (0.9385)
Neoplasm of uncertain or unknown behaviour of oral cavity and digestive organs (10.3875)	Dyspepsia (1.4628)	Other diseases of gallbladder and biliary (1.8843)	Symptoms referable to abdomen and lower gastro-intestinal tract (0.8921)
Gastro-oesophageal reflux disease (10.0672)	Aortic aneurysm and dissection (1.3979)	Dyspepsia (1.7424)	Other diseases of liver (0.8888)
Phlebitis and thrombophlebitis (9.2468)	Benign neoplasm of other and ill-defined parts of digestive system (1.323)	Other diseases of stomach and duodenum (1.5775)	Ulcer of duodenum (0.8)
Malignant neoplasm without specification of site (9.0041)	Symptoms and signs concerning food and fluid intake (1.2979)	Other septicaemia (1.3414)	Malignant neoplasm of prostate (0.7647)

1039

Other symptoms and signs involving the digestive system and abdomen (8.4031)	Malignant neoplasm of trachea, bronchus and lung (1.261)	Diverticular disease of intestine (1.331)	Atherosclerosis (0.7631)
Essential (primary) hypertension (7.7946)	Other endocrine disorders (1.0863)	Symptoms referable to abdomen and lower gastro-intestinal tract (1.2453)	Aortic aneurysm and dissection (0.7502)
Other diseases of liver (7.6617)	Cholelithiasis (1.0755)	Other endocrine disorders (1.136)	Other septicaemia (0.7314)
Malignant neoplasm of other and ill-defined sites (6.6387)	Diverticular disease of intestine (1.0489)	Malignant neoplasm of small intestine (1.086)	Mental and behavioural disorders due to use of tobacco (0.7186)
Benign neoplasm of other and ill-defined parts of digestive system (6.301)	Malignant neoplasm of stomach (1.0209)	Essential (primary) hypertension (1.0785)	Mental and behavioural disorders due to use of alcohol (0.7092)
Duodenal ulcer (6.2843)	Mental and behavioural disorders due to use of tobacco (1.0116)	Other symptoms and signs involving the digestive system and abdomen (1.007)	Essential (primary) hypertension (0.6654)
Gastric ulcer (5.9376)	Diverticula of intestine (1.0026)	Cerebral infarction (0.9899)	Nausea and vomiting (0.6648)
Benign neoplasm of colon, rectum, anus and anal canal (5.7036)	249 (0.9609)	Unspecified diabetes mellitus (0.8776)	249 (0.6552)
Symptoms referable to abdomen and lower gastro-intestinal tract (5.4632)	Observation, without need for further medical care (0.9154)	Malignant neoplasm of prostate (0.8612)	Gastro-oesophageal reflux disease (0.643)
Malignant neoplasm of bronchus and lung (4.7082)	Other diseases of liver (0.9113)	Observation, without need for further medical care (0.8388)	Other diseases of stomach and duodenum (0.6189)
Pleural effusion, not elsewhere classified (4.4347)	Essential (primary) hypertension (0.7949)	Volume depletion (0.8175)	Cerebral infarction (0.5482)
Cholelithiasis (4.3489)	Malignant neoplasm of bronchus and lung (0.7484)	Mental and behavioural disorders due to use of alcohol (0.7736)	Duodenal ulcer (0.5434)
Diabetes mellitus (4.2116)	Ascites (0.6991)	Other disorders of muscle (0.7549)	Depressive episode (0.5408)
Unspecified diabetes mellitus (4.1554)	Other septicaemia (0.6771)	Duodenal ulcer (0.744)	Malignant neoplasm of colon (0.5238)
Malignant neoplasm of prostate (4.0276)	Disorders of sphingolipid metabolism and other lipid storage disorders (0.6247)	Other diseases of liver (0.7323)	Observation, without need for further medical care (0.5187)
Secondary and unspecified malignant neoplasm of lymph nodes (3.9627)	Malaise and fatigue (0.6033)	Secondary and unspecified malignant neoplasm of lymph nodes (0.7088)	Malignant neoplasm of small intestine (0.5159)
Diverticular disease of intestine (3.7586)	Secondary and unspecified malignant neoplasm of lymph nodes (0.591)	Malignant neoplasm of gallbladder and bile ducts (0.6838)	Cholelithiasis (0.4915)
Secondary malignant neoplasm of other sites (3.6277)	Duodenal ulcer (0.5639)	Gastric ulcer (0.6811)	Phlebitis and thrombophlebitis (0.4822)
Nausea and vomiting (3.3564)	Gastritis and duodenitis (0.5465)	Secondary malignant neoplasm of other sites (0.6706)	Other symptoms and signs involving the digestive system and abdomen (0.4805)

1040

1041

1042

1043

1044

1045

1046

1047

Diseases contribution at different time to cancer (DNPR)

Cancer in 0-6 months	Cancer in 6-12 months	Cancer in 12-24 months	Cancer in 24-36 months
Other diseases of biliary tract (32.3335)	Other diseases of biliary tract (25.4905)	Other diseases of biliary tract (26.2387)	Non-insulin-dependent diabetes mellitus (11.9299)
Unspecified jaundice (14.3137)	Other diseases of pancreas (11.5739)	Non-insulin-dependent diabetes mellitus (17.4123)	Other diseases of biliary tract (11.2389)
Other diseases of pancreas (13.5165)	Unspecified jaundice (10.1354)	Medical observation and evaluation for suspected diseases and conditions (13.7912)	Other diseases of pancreas (8.8495)
Non-insulin-dependent diabetes mellitus (9.1564)	Non-insulin-dependent diabetes mellitus (8.7353)	Other diseases of pancreas (11.5773)	Medical observation and evaluation for suspected diseases and conditions (8.5102)
Diseases of pancreas (8.8114)	Medical observation and evaluation for suspected diseases and conditions (7.5375)	Abdominal and pelvic pain (4.8105)	Unspecified jaundice (4.2823)
Abdominal and pelvic pain (8.1039)	Diseases of pancreas (5.4421)	Diseases of pancreas (4.2698)	Benign neoplasm of colon, rectum, anus and anal canal (3.2988)
Acute pancreatitis (5.7806)	Abdominal and pelvic pain (3.3334)	Acute pancreatitis (3.2563)	Abdominal and pelvic pain (3.1899)
Malignant neoplasm of stomach (4.6699)	Malignant neoplasm of bronchus and lung (2.2486)	Unspecified jaundice (2.9892)	Gastritis and duodenitis (2.8434)
Medical observation and evaluation for suspected diseases and conditions (3.6176)	Benign neoplasm of colon, rectum, anus and anal canal (2.1298)	Benign neoplasm of colon, rectum, anus and anal canal (2.7481)	Gingivitis and periodontal diseases (2.7876)
Other anaemias (3.1611)	Diabetes mellitus (1.9986)	Other anaemias (2.5468)	Malignant neoplasm of bronchus and lung (2.4107)
Diabetes mellitus (2.5442)	Abnormal involuntary movements (1.6557)	Gastro-oesophageal reflux disease (2.2908)	Gastro-oesophageal reflux disease (1.9136)
Gastro-oesophageal reflux disease (2.4501)	Other anaemias (1.6202)	Disorders of sphingolipid metabolism and other lipid storage disorders (2.0459)	Acute pancreatitis (1.7894)
Dyspepsia (2.1679)	Other symptoms and signs involving the digestive system and abdomen (1.5917)	Malignant neoplasm of bronchus and lung (1.9628)	Malignant neoplasm of other and unspecified parts of biliary tract (1.6697)
Bacterial pneumonia, not elsewhere classified (2.0704)	Gastritis and duodenitis (1.5842)	Diabetes mellitus (1.8423)	Other anaemias (1.5393)
Malignant neoplasm of bronchus and lung (1.6351)	Cholelithiasis (1.4921)	Enlarged lymph nodes (1.7293)	Diabetes mellitus (1.2959)
Cholelithiasis (1.5319)	Gastro-oesophageal reflux disease (1.4884)	Other intervertebral disc disorders (1.6947)	Angina pectoris (1.2408)
Benign neoplasm of colon, rectum, anus and anal canal (1.3892)	Secondary malignant neoplasm of respiratory and digestive organs (1.4277)	Bacterial pneumonia, not elsewhere classified (1.5436)	Dyspepsia (1.0569)
Dislocation, sprain and strain of joints and ligaments of head (1.3044)	Mental and behavioural disorders due to use of tobacco (1.416)	Gastritis and duodenitis (1.4928)	Malignant neoplasm of stomach (1.0218)
Malignant neoplasm of small intestine (1.2895)	Malignant neoplasm of stomach (1.4045)	Other functional intestinal disorders (1.4278)	Diseases of pancreas (1.0155)
Pneumonia, organism unspecified (1.1685)	Osteoporosis without pathological fracture (1.3343)	Dyspepsia (1.4028)	Mental and behavioural disorders due to use of tobacco (0.9639)
Osteoporosis without pathological fracture (1.1565)	Other diseases of gallbladder and biliary (1.2574)	Delirium, not induced by alcohol and other psychoactive substances (1.1866)	Delirium, not induced by alcohol and other psychoactive substances (0.9083)
Other symptoms and signs involving the digestive system and abdomen (1.1477)	Acute pancreatitis (1.1292)	Hyperparathyroidism and other disorders of parathyroid gland (1.164)	Other intervertebral disc disorders (0.8991)
Malignant neoplasm of other and unspecified parts of biliary tract (1.1396)	Dyspepsia (1.1197)	Insulin-dependent diabetes mellitus (1.1136)	Disorders of pancreatic internal secretion other than diabetes mellitus (0.895)
Malignant neoplasm without specification of site (1.133)	Bacterial pneumonia, not elsewhere classified (1.0645)	Chronic ulcer of skin (1.087)	Dislocation, sprain and strain of joints and ligaments of shoulder girdle (0.8586)

Sequelae of poisoning by drugs, medicaments and biological substances (1.087)	Aortic aneurysm and dissection (1.0609)	Malignant neoplasm of stomach (1.0713)	Bacterial pneumonia, not elsewhere classified (0.8422)
Gastritis and duodenitis (1.0649)	Dislocation, sprain and strain of joints and ligaments of shoulder girdle (0.8825)	Postprocedural respiratory disorders, not elsewhere classified (1.0706)	Open wound of wrist and hand (0.8262)
Umbilical hernia (1.049)	Enlarged lymph nodes (0.7821)	Cholelithiasis (1.0693)	Special screening examination for neoplasms (0.8235)
Malignant neoplasm of cervix uteri (0.9971)	Postprocedural respiratory disorders, not elsewhere classified (0.7585)	Secondary malignant neoplasm of respiratory and digestive organs (0.9917)	Insulin-dependent diabetes mellitus (0.8152)
Noninflammatory disorders of ovary, fallopian tube and broad ligament (0.974)	850 (0.6887)	Benign mammary dysplasia (0.9914)	Paralytic ileus and intestinal obstruction without hernia (0.8109)
1050			
Insulin-dependent diabetes mellitus (0.9269)	Other noninflammatory disorders of vulva and perineum (0.6836)	Gingivitis and periodontal diseases (0.9797)	Observation, without need for further medical care (0.7409)
Secondary malignant neoplasm of respiratory and digestive organs (0.9135)	Chronic ulcer of skin (0.6428)	Other chronic obstructive pulmonary disease (0.9633)	Acute myocardial infarction (0.7025)
Other noninflammatory disorders of vulva and perineum (0.865)	Dislocation, sprain and strain of joint and ligaments of hip (0.6387)	Aortic aneurysm and dissection (0.9152)	Obesity (0.6952)
Mental and behavioural disorders due to use of tobacco (0.8545)	Dislocation, sprain and strain of joints and ligaments of head (0.6196)	Paralytic ileus and intestinal obstruction without hernia (0.8735)	Personal history of malignant neoplasm (0.6901)
850 (0.8509)	Other cerebrovascular diseases (0.6025)	Osteoporosis without pathological fracture (0.8014)	Other diseases of oesophagus (0.6649)
Delirium, not induced by alcohol and other psychoactive substances (0.7508)	Malignant neoplasm without specification of site (0.5877)	Malignant neoplasm of other and unspecified parts of biliary tract (0.8013)	Dislocation, sprain and strain of joints and ligaments at ankle and foot level (0.6579)
Malignant neoplasm of gallbladder and bile ducts (0.7488)	Chronic renal failure (0.5764)	Disorders of globe (0.7984)	Benign neoplasm of urinary organs (0.6276)
Mental and behavioural disorders due to use of alcohol (0.7157)	Malignant neoplasm of other and unspecified parts of biliary tract (0.5745)	850 (0.794)	Dislocation, sprain and strain of joints and ligaments at wrist and hand level (0.6254)
Complications and misadventures in operative therapeutic procedures (0.685)	Acute myocardial infarction (0.5735)	Open wound of wrist and hand (0.7659)	Hypotension (0.6154)
Enlarged lymph nodes (0.6249)	Malignant neoplasm of gallbladder and bile ducts (0.5688)	Neoplasm of unspecified nature of digestive organs (0.7392)	Cerebral infarction (0.6125)
Other diseases of gallbladder and biliary (0.6058)	Gastric ulcer (0.5565)	Other septicaemia (0.717)	Disorders of sphingolipid metabolism and other lipid storage disorders (0.5905)
Phlebitis and thrombophlebitis (0.5884)	Other chronic obstructive pulmonary disease (0.5372)	Symptomatic heart disease (0.7164)	Cutaneous abscess, furuncle and carbuncle (0.5888)
Benign neoplasm of other and ill-defined parts of digestive system (0.5648)	Synovitis and tenosynovitis (0.5352)	Mental and behavioural disorders due to use of tobacco (0.6664)	Transient cerebral ischaemic attacks and related syndromes (0.5777)
Other venous embolism and thromboses (0.5452)	Convulsions, not elsewhere classified (0.519)	Abnormal involuntary movements (0.6605)	Cholelithiasis (0.5719)
Acute myocardial infarction (0.5372)	Other diseases of oesophagus (0.5127)	Diseases of vocal cords and larynx, not elsewhere classified (0.6412)	Aortic aneurysm and dissection (0.5665)
Other surgical follow-up care (0.5349)	Other coagulation defects (0.512)	Other symptoms and signs involving the digestive system and abdomen (0.6085)	Other disorders of bone density and structure (0.5537)
Other noninfective gastroenteritis and colitis (0.5322)	Obesity (0.5105)	Dislocation, sprain and strain of joints and ligaments of head (0.6056)	Unspecified diabetes mellitus (0.5417)
Unspecified acute lower respiratory infection (0.5144)	Disorders of sphingolipid metabolism and other lipid storage disorders (0.4908)	Hypotension (0.5991)	Phlebitis and thrombophlebitis (0.5181)
Other diseases of oesophagus (0.5117)	Heart failure (0.4866)	825 (0.5963)	Synovitis and tenosynovitis (0.502)
Gastro-enteritis and colitis, except ulcerative, of non-infectious origin (0.4643)	Alcoholic liver disease (0.4693)	Atrial fibrillation and flutter (0.5832)	Other diseases of intestine (0.4841)
Malignant neoplasm of connective and other soft tissue (0.4607)	None (0.4646)	Chronic diseases of tonsils and adenoids (0.5745)	Umbilical hernia (0.4795)

1051

1052

1053

1054 **Figure S3. Distribution of disease codes as a function of age in the database.**

1055

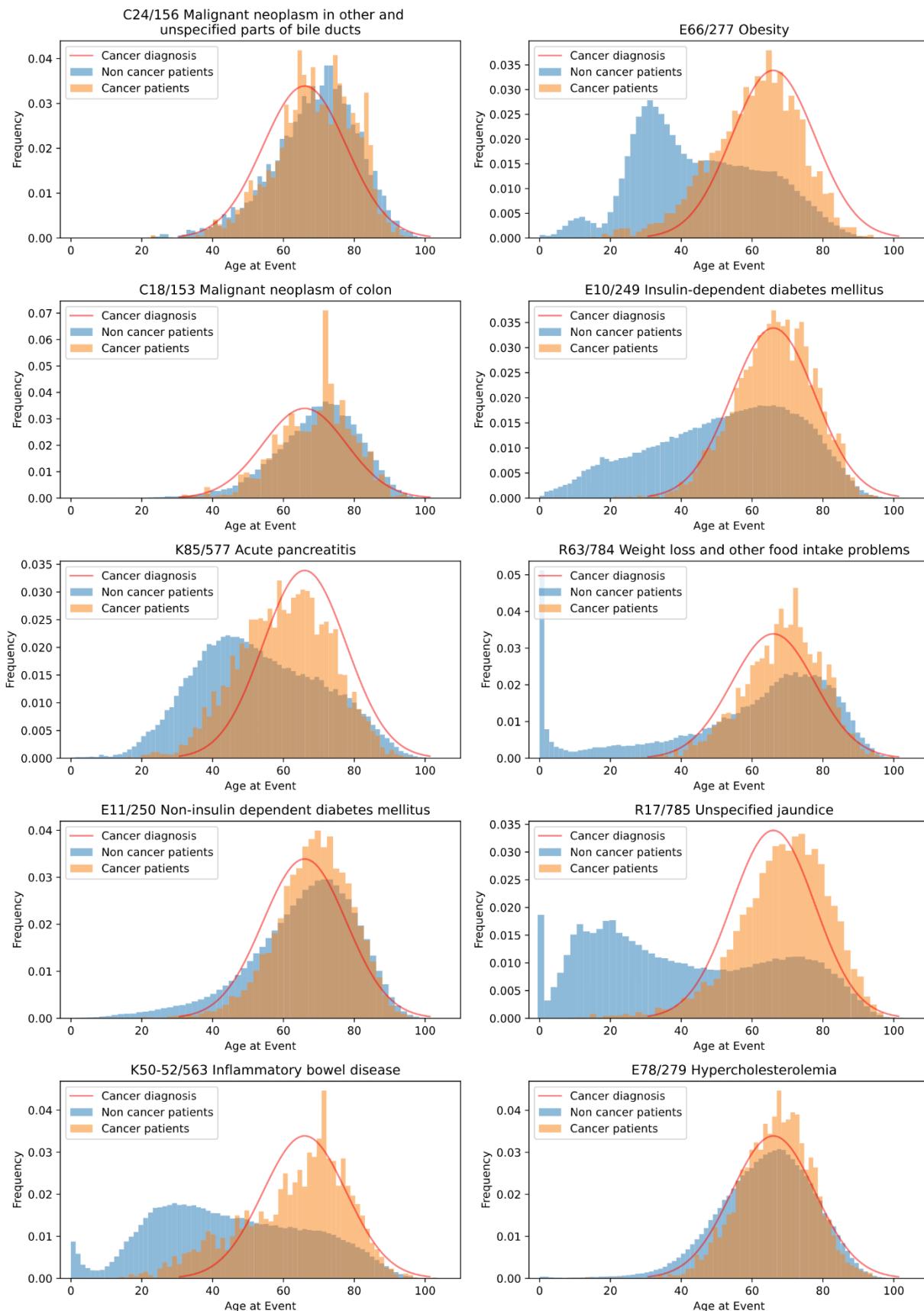
1056 Distribution of disease codes for a representative subset of diseases known to contribute to the risk
1057 of pancreatic cancer, as a fraction of all pancreatic cancer patients (orange) and all non-cancer
1058 patients (blue). The similarity of the distributions for some of these diseases with the distribution
1059 of occurrence of pancreatic cancer (red line, Gaussian fit to cancer diagnosis data) is consistent
1060 with either a direct or indirect contribution to cancer risk - but not taken as evidence in this work.
1061 The disease codes are ICD-10/ICD-8.

1062

1063

1064

Disease distribution



1066 **Figure S4. Distribution of disease codes over years and age in the Danish (DK) and**
1067 **Boston (MGB) datasets.**

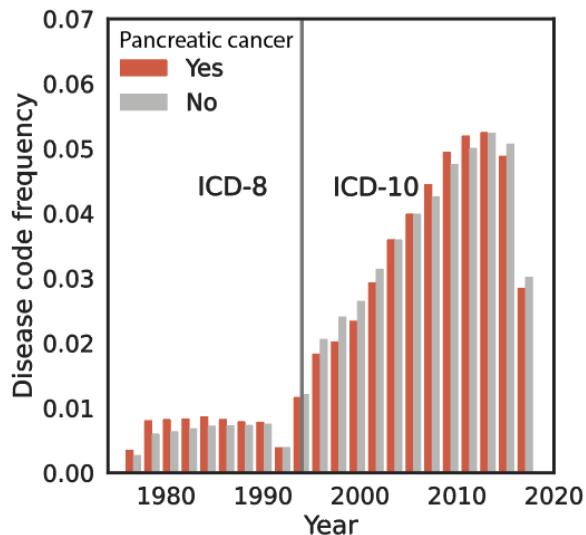
1068
1069 Distribution of disease codes over time and age for the Danish DNPR (A,C) and Boston MGB
1070 datasets (B,D) for the pancreatic cancer ('cancer') and non-pancreatic-cancer ('non-cancer') cases.
1071 The disease code frequency is the total number of disease codes summed over all patients in the
1072 selected groups (cancer vs. non-cancer) divided by the total number of disease codes in the entire
1073 database.

1074 (A) The DNPR dataset has both ICD-8 and ICD-10 disease codes. The transition from ICD-8 to
1075 ICD-10 occurred in 1994, after which the disease code frequency increased significantly over the
1076 years. This increase could be due to alterations in clinical coding practices or due to higher disease
1077 awareness in the population. In this study, we did not perform mapping from ICD-8 to ICD-10
1078 codes. Instead, the model was trained on the non-mapped ICD-8 and ICD-9 codes for it to learn
1079 coding patterns independently of a mapping. (B) Disease distribution over time for the Boston
1080 MGB dataset. The dataset includes both ICD-9 and ICD-10 codes, for which we similarly did not
1081 apply any mapping. (C) Disease distribution over age for the Danish DNPR dataset showing an
1082 interesting increase of disease codes (all diseases) with age for the pancreatic cancer cases. (D)
1083 Disease distribution over age for the Boston MGB dataset.

1084
1085

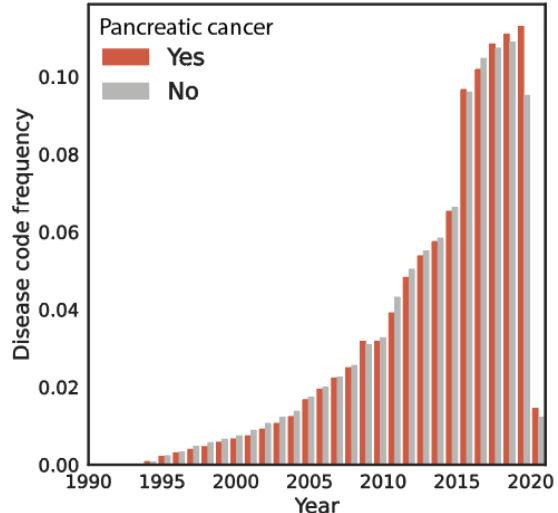
Denmark (DNPR)

A. Disease distribution over time

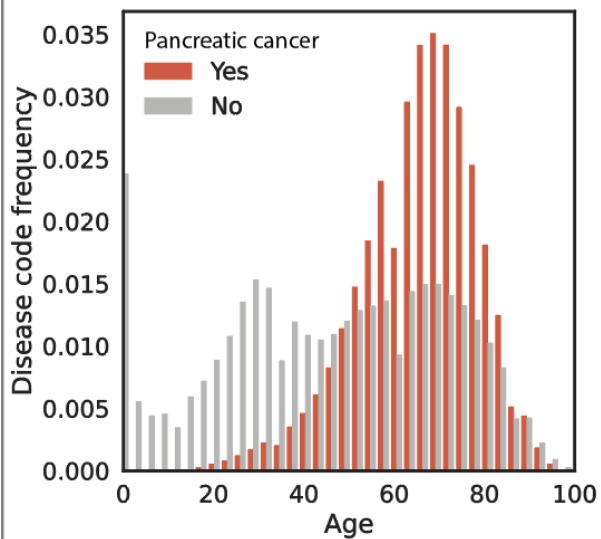


Boston MGB (RPDR)

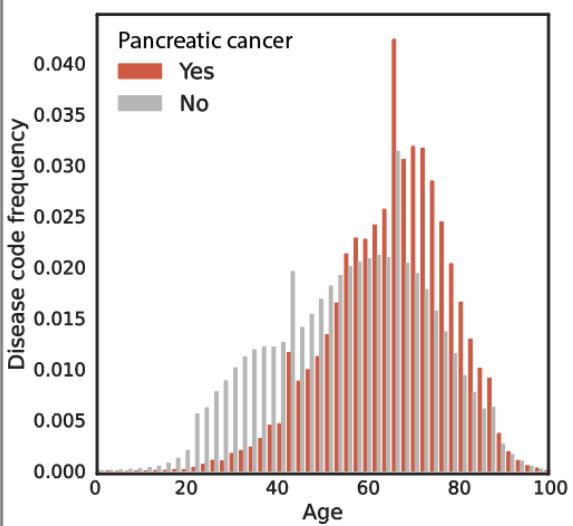
B. Disease distribution over time



C. Disease distribution over age



D. Disease distribution over age

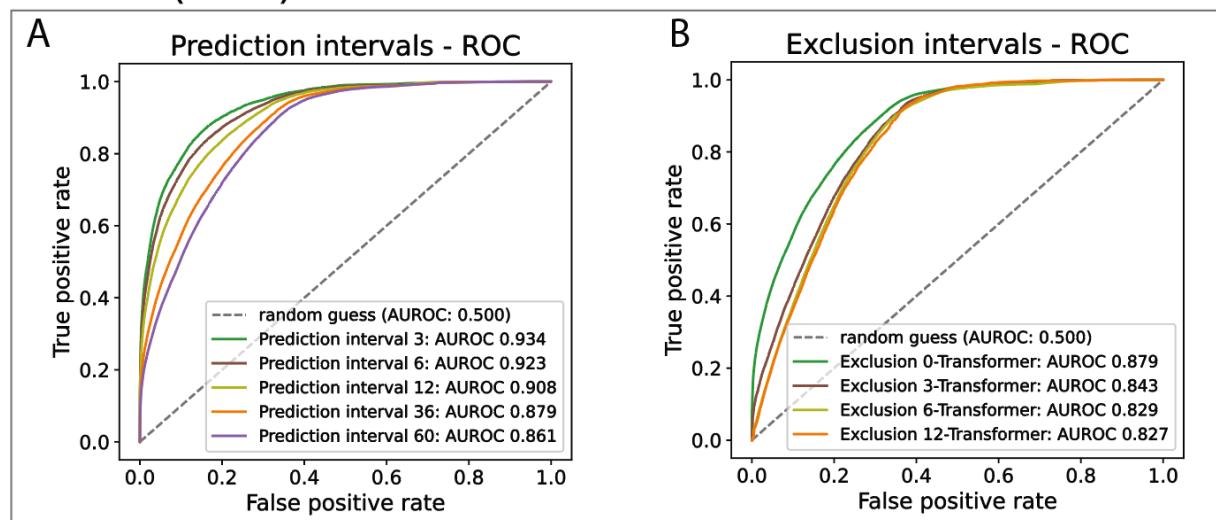


1086
1087
1088
1089
1090
1091
1092

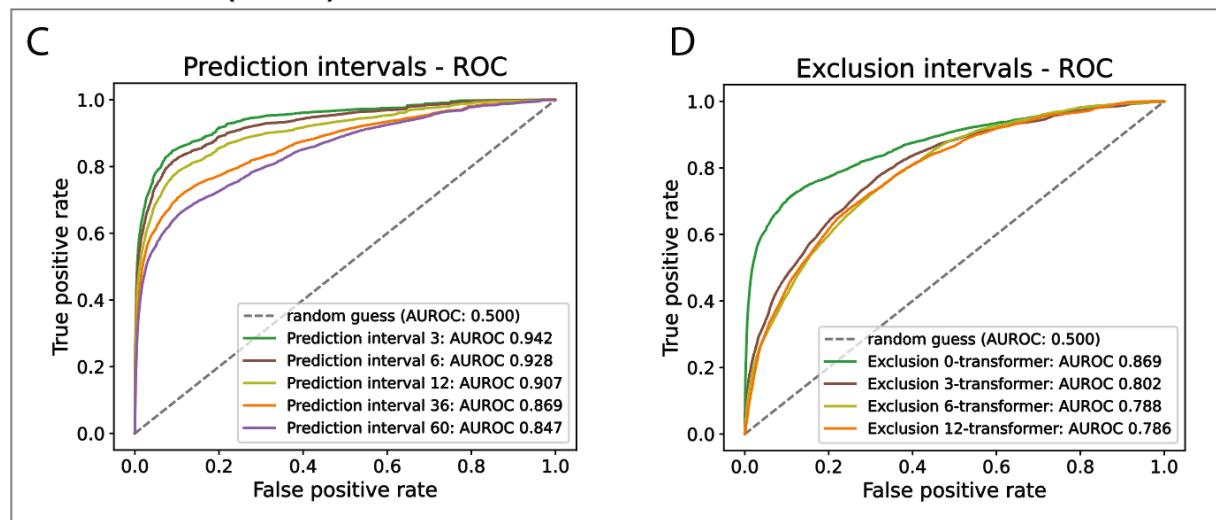
1093 **Figure S5. ROC curves for the transformer model for different prediction and**
1094 **exclusion intervals.**

1095
1096 For the transformer model, ROC curves were analysed across different prediction intervals (3, 6,
1097 12, 36 and 60 months) and exclusion intervals (0, 3, 6 and 12 months). As expected, it is more
1098 challenging to predict cancer occurrence in longer rather than shorter time intervals. We also see
1099 that it becomes more challenging to predict cancer outcomes with higher exclusion intervals.
1100

Denmark (DNPR)



Boston MGB (RPDR)



1101
1102
1103 **(A-B)** The DNPR ROC curves plot true positive rate (TPR) against false positive rate (FPR)
1104 different prediction thresholds, where TPR is the true positives as a fraction of observed positives
1105 (recall) and FPR is the false negatives as a fraction of observed negatives (1-specificity). A random
1106 prediction (diagonal line) would have very low precision for equal TPR and FPR (AUROC=0.5).
1107 Exclusion intervals are assessed in 0, 3, 6 or 12 months months. **(A)** The best-performing
1108 Transformer models are evaluated for different prediction intervals starting at the time of

1109 assessment and ending at time points up to 60 months. The performance of the transformer model
1110 is best for the 0-6 month time interval, but still reasonable up to the 0-60 month prediction interval.
1111 Transformer performance (36-month) compared to the same model trained by (B) excluding from
1112 the input diseases diagnoses in the last 0, 3, 6 or 12 months prior to the diagnosis of pancreatic
1113 cancer. (C-D) The Boston MGB ROC curves for prediction intervals (C) and exclusion intervals
1114 (D).

1115

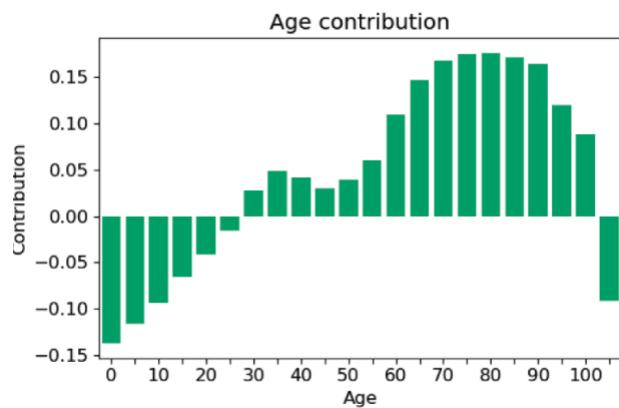
1116

1117

1118 **Figure S6. Age as a contributing factor**

1119 The integrated gradient method was used to extract the contribution (arbitrary units) of patient age
1120 to the prediction at the time of assessment. This confirmed that the positive contribution to risk
1121 rises strongly from age 50. As for the disease contributions, the age contribution was calculated in
1122 relation to the 3 year (after the time of assessment/prediction) cancer risk.

1123



1128 **Result S1: Draft economic considerations for the design of clinical screening trial**

1129

1130 We propose a toy estimate of a practical scenario for a screening trial, taking into account typically
1131 available real-world data, the accuracy of prediction on such data, the estimated cost of a screening
1132 trial, the cost of clinical screening methods and the overall potential benefit of treatment.

1133

1134 The detailed design of a screening program, to be explored in clinical trials, depends on the
1135 organization of a particular health care system. In a ‘walk in’ scenario, in approximate analogy to
1136 colonoscopic screening for colorectal cancer, patients older than, e.g., age 50 would be invited for
1137 assessment of their risk by the prediction tool every 5 years and, if identified as high-risk, offered
1138 extensive clinical testing. In a ‘national system’ scenario, possible in centralized health systems
1139 with location-independent centralized aggregation of electronic health records, risk assessment
1140 could be done on an ongoing basis, possibly for each patient whenever a new disease event occurs.
1141 If a high-risk prediction is triggered, the responsible physician would receive an alert. With this
1142 diversity of scenarios, it is reasonable to propose clinical screening trials in several countries
1143 tailored to their particular health system.

1144

1145 To illustrate the economic benefits of such a screening and to stimulate discussion regarding the
1146 optimization of trial design, we have made a first-order-estimate for a clinical screening trial of
1147 10,000 people using the best model (the transformer model). For simplicity, we have made no
1148 assumptions regarding age distribution. Here is a simple economic model.

1149

1150
$$\text{Net Benefit} = \text{Average benefit for each correctly identified cancer patient} * \text{TP}$$

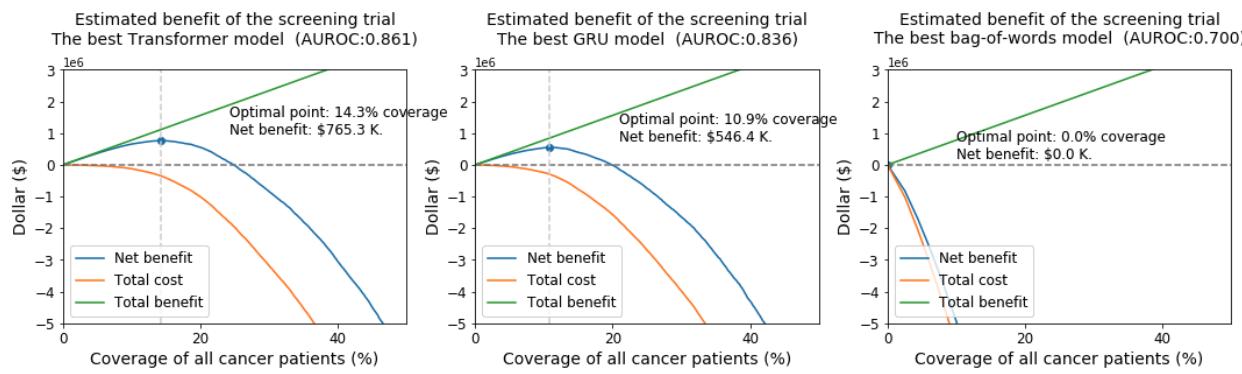
1151
$$- \text{Monitoring expense for each high-risk patient} * \text{P}$$

1152
$$- \text{Basic cost per enrollee} * \text{N}$$

1153

1154 where the screening cohort is $\text{N}=10,000$ and TP is the number of true positives, i.e., the number of
1155 correctly identified high-risk patients, and P is the number of actual positive patients, which we
1156 estimated using cancer incidence of the DNPR dataset. In our cost-benefit estimate, we arbitrarily
1157 set the screening trial cost at \$200 per enrollee, the additional monitoring expense for a patient
1158 predicted at high risk by screening at \$10,000 and the extra cost saved for advanced treatment for
1159 each monitored patient at \$200,000, averaged over those in which cancer is detected (savings in
1160 excess of \$200,000) and those in which it is not detected (no savings).

1161



1162

1163

1164 **Figure S7. An estimate of financial benefits for different models.** We analyzed each
1165 possible operational point and calculated the corresponding cost and benefit, using
1166 ballpark estimates. We plotted the net benefits as a function of coverage of cancer
1167 patients, i.e. recall or sensitivity. Covering more cancer patients plausibly leads to a larger
1168 total benefit, but the total cost also increases. The optimal point is picked for maximal net
1169 benefit.

1170
1171 An optimal decision threshold has to balance the cost of assessment and testing against the
1172 potential financial benefit for reducing treatment cost. Using this simplified model, we estimated
1173 the net benefits of different models with all possible operational points. Such a screening trial for
1174 10,000 people would have \$760,000 net benefit by choosing the balance between true and false
1175 positives such that the net benefit is optimal. This corresponds to a precision of 14.0% and a
1176 specificity of 99.7%. In contrast, a less good model GRU would have \$540K net benefits but a
1177 bag-of-words model (baseline) would have no net benefits for any operational point because of the
1178 low incidence of pancreatic cancer.

1179
1180 The proposed concrete but hypothetical design of a screening trial is intended to guide the debate
1181 and ultimate decisions regarding implementation with clinicians and healthcare professionals.
1182 However, this calculation is based on roughly estimated numbers and does not reflect real-world
1183 cost analysis. Nor does this economic model reflect the non-monetary benefits to patients' quality
1184 of life, which should be the dominant factor in the design of trials and early intervention programs.
1185 In a real-world scenario, clinicians and payers in a particular health system have the opportunity
1186 to optimize the design of such screening trials with realistic cost-benefit parameters, as well as
1187 consideration of communication ethics and the non-financial aspects of patient benefit.

1188
1189 A key challenge for future realistic economic estimates is the mapping between ICD (diagnosis)
1190 codes to CPT (billing) codes that are used for expense calculations and reimbursements. In
1191 addition, in the US, there is substantial geographical variability in reimbursement even for the
1192 same CPT/billing codes.

1193