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Abstract:

Pancreatic cancer is an aggressive disease that typically presents late with poor patient outcomes.
There is a pronounced medical need for early detection of pancreatic cancer, which can be
addressed by identifying high-risk populations. Here we apply artificial intelligence (AI) methods
to a dataset of more than 6 million patient records with 24,000 pancreatic cancer cases in the
Danish National Patient Registry (Denmark) and, for comparison, a dataset of one million records
with 4,000 pancreatic cancer cases in the Mass General Brigham Healthcare System (Boston, US).
In contrast to existing methods that do not use temporal information, we explicitly train machine
learning models on the time sequence of diseases in patient clinical histories and test the ability to
predict cancer occurrence in time intervals of 3 to 60 months after risk assessment. We extract
from the Al machine an estimate of the contribution to prediction of individual disease features.
For cancer occurrence within 36 months, the performance of the best model (AUROC=0.88),
trained and tested on disease trajectories in the Danish dataset, substantially exceeds that of a
model without time information, even when disease events within a 3 month window before cancer
diagnosis are excluded from training (AUROC[3m]=0.84). Independent training and testing on the
Boston dataset reaches comparable performance (AUROC=0.87, AUROC[3m]=0.80), while
cross-application of the Danish deep learning model on the Boston dataset has lower accuracy
(AUROC=0.78, AUROC[3m]=0.70), indicating a requirement of independent training in health
systems with different coding practices. These results raise the state-of-the-art level of
performance of cancer risk prediction on real-world data sets and provide support for the design
of future screening trials for high-risk patients, e.g., to serial imaging or blood-based biomarkers
to facilitate earlier cancer detection. Al on real-world clinical records has the potential to shift
focus from treatment of late-stage to early-stage cancer, benefiting patients by improving lifespan
and quality of life.
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Introduction

[[ Clinical need for early detection ]]

Pancreatic cancer is a leading cause of cancer-related deaths worldwide with increasing incidence
(Rahib et al. 2014). Early diagnosis of pancreatic cancer is a key challenge, as the disease is
typically detected at a late stage. Approximately 80% of pancreatic cancer patients are diagnosed
with locally advanced or distant metastatic disease, when long-term survival is extremely
uncommon (2-9% of patients at 5-years) (McGuigan et al. 2018). However, patients who present
with early-stage disease can be cured by a combination of surgery, chemotherapy and radiotherapy.
Indeed, more than 80% of patients with stage [A pancreatic ductal adenocarcinoma (PDAC)
achieve 5-year overall survival [National Cancer Institute, USA, (Blackford et al. 2020)]. Thus, a
better understanding of the risk factors for pancreatic cancer and detection at early stages has great
potential to improve patient survival and reduce overall mortality from this aggressive malignancy.

[[ Known risk factors of limited use ]]

The incidence rate of pancreatic cancer is substantially lower compared with other high mortality
cancers, such as lung, breast and colorectal cancer. Thus, age-based population screening is
difficult due to poor positive predictive values for potential screening tests and large numbers of
futile evaluations for patients with false-positive results. Moreover, few high-penetrance risk
factors are known for pancreatic cancer impeding early diagnosis of this disease. Risk of pancreatic
cancer has been assessed for many years based on family history, behavioral and clinical risk
factors and, more recently, circulating biomarkers and genetic predisposition (Amundadottir et al.
2009; Petersen et al. 2010; D. Li et al. 2012; Wolpin et al. 2014; Klein et al. 2018; Kim et al. 2020).
Currently, some patients with familial risk due to family history or inherited genetic mutation or
cystic lesions of the pancreas undergo serial pancreas-directed imaging to detect early pancreatic
cancers, but these patients account for less than 20% of those who develop pancreatic cancer. To
address the challenge of early detection of pancreatic cancer in the general population (Pereira et
al. 2020; Singhi et al. 2019), we aim to predict the risk of pancreatic cancer from real-world
longitudinal clinical records and identify high-risk patients, which will facilitate the design of
screening trials for early detection. Development of realistic risk prediction methods requires
access to high-quality clinical records and a choice of appropriate machine learning methods, in
particular deep learning techniques that work on large and noisy sequential datasets (Dietterich
2002; LeCun, Bengio, and Hinton 2015).

[[ Earlier clinical ML work ]]

We build on earlier work in the field of risk assessment based on clinical data and disease
trajectories using machine learning technology (Nielsen et al. 2019; Thorsen-Meyer et al. 2020).
Al methods have been applied to a number of clinical decision support problems (Shickel et al.
2018), such as choosing optimal time intervals for actions in intensive care units (Hyland et al.
2020), assessing cancer risk from images (Esteva et al. 2017; Yala et al. 2019; Yamada et al. 2019),
predicting the risk of potentially acute disease progression, such as in kidney injury (Tomasev et
al. 2019) and the likelihood of a next diagnosis based on past EHR sequences, in analogy to natural
language processing (Y. Li et al. 2020).
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98 [[ Earlier ML work on PDAC risk ]]

99  For risk assessment of pancreatic cancer, recently machine learning predictive models using
100  patient records have been built using health interview survey data (Muhammad et al. 2019),
101  general practitioners' health records controlled against patients with other cancer types (Malhotra
102 et al. 2021), real-world hospital system data (Appelbaum, Cambronero, et al. 2021; X. Li et al.
103 2020), and from an electronic health record (EHR) database provided by TriNetX, LLC. (Chen et
104  al. 2021; Appelbaum, Berg, et al. 2021). While demonstrating the information value of health
105  records for cancer risk, these previous studies used only the occurrence of disease codes, not the
106  time sequence of disease states in a patient trajectory - in analogy to the ‘bag-of-words’ models in
107  natural language processing that ignore the actual sequence of words. Previous studies had used
108  the Danish health registries to generate population-wide disease trajectories, but in a non-
109  predictive manner (Hu et al. 2019; Jensen et al. 2014).

110  [[ Advance here - better data and better ML]]

111 Here we exploit the power of advanced machine learning (ML) technology by focusing on the time
112 sequence of clinical events and by predicting the risk of cancer occurrence over a multi-year time
113 interval. This investigation was initially carried out using the Danish National Patient Registry
114  (DNPR) and data which covers 41 years (1977 to 2018) of clinical records for 8.6 million patients,
115  of which about 40,000 had a diagnosis of pancreatic cancer (Schmidt et al. 2015; Siggaard et al.
116  2020). To maximize predictive information extraction from these records we tested a range of ML
117  methods. These methods range from regression methods and machine learning without time
118  dependence to time series methods such as Gated Recurrent Units (GRU) and Transformer,
119  adapting Al methods that have been very successful in natural language processing and analysis
120 of other time series data (Cho et al. 2014; Tealab 2018; Vaswani et al. 2017).

121  [[ Advance - prediction time intervals ]]

122 The likely action resulting from a personalized positive prediction of cancer risk ideally should
123 take into account the probability of the disease occurring within a shorter or longer time frame.
124 For this reason, we designed the prediction method to predict not only whether cancer is likely to
125  occur, but also to provide risk assessment in incremental time intervals following the assessment,
126 ~ where time of assessment is defined as the day on which the risk prediction is performed based on
127  the history of clinical records of the particular patient. We also analyzed which diagnoses in a
128  patient's history of disease codes are most informative of cancer risk - not as isolated factors but
129  always in the context of the person’s complete history of disease codes. Finally, we propose a
130  practical scenario for broadly-based screening trials, taking into consideration typically available
131  real-world data, the accuracy of prediction on such data, the scope of a screening trial, the cost and
132 success rate of clinical screening methods and the overall potential benefit of early treatment
133 (Supplementary Text, Figure S5).


https://doi.org/10.1101/2021.06.27.449937
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.27.449937; this version posted April 5, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

5
Learning
Population Diagnoses Clinical diagnosis trajectories Machine learning Minimize prediction error
° .= ’
pEER e .
— m§ [ N VR U S— '6-‘\0(‘
5 3 e Qe Qe Q) x 66‘
% g | —0—0——0 = X
¢ oo T c
— = ) — — = .2
P ; E
————0—0—0—0— X 2
: . @ g
: X3
80% 0+ ° .
f—eo—eo o —o o 36 12 36 60
Time Time after assessment
(months)
[l Train [lDev []Test @ Diagnosis A Pancreatic cancer X Death [T Error
diagnosis
Prediction
Error-minimized neural network Risk assessment
Patients for High risk s cr“nl:lar:
assessment Threshold 3N cresnng
cama e x f— — - — e
". Low risk
e - ‘l\__\ o Nk
Time after assessment
=g Predicted cancer diagnosis
time window
Machine learning architecture
Embedding Encoding Predicting and minimizing
Time of error
@ Diagnosis assessment | !
A Pancreatic cancer — 11—
1 Cancer o—i BAG-OF-WORDS nil 1
0 No cancer E_o — 02
o | MLP | 0.7 ¥
= S 3 6 12 36 60 =
T—o ® o ——— A > 0 —»E
Diagnosis K17 F32. M6 s GRU 0.4 g
Date 0321/01 [04/22/03 07/21/08 1/12/06 06 &
0.5 [JError
[ Age 58 7 58 TRANSFORMER S o
36 12 36 60
Time after assessment
(months)
i Estimated risk

C

Time points and intervals

O Diagnosis
A Pancreatic cancer as.ls'igs‘se"?efnt o
ey Prediction intervals

{ ]
L |
—

é 6 12 36 60 Data exclusion intervals

A 2
.

- 12 months 6 months 3 months
Time to cancer

diagnosis

134



https://doi.org/10.1101/2021.06.27.449937
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.27.449937; this version posted April 5, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

6
135 Figure 1. Training and prediction of pancreatic cancer risk from disease trajectories.
136 (A) Learning: The general machine learning workflow starts with partitioning the data into
137 training set (Train), development set (Dev) and test set (Test). The trajectories for training
138 input are generated by sampling continuous subsequences of diagnoses for each patient’s
139 diagnosis history, each starting with the first record but with different end points. The
140 training and development sets are used for training machine learning models to fit a risk
141 score function (prediction) to a step function (observation) that represents the occurrence
142 of a pancreatic cancer diagnosis, by minimizing the prediction error over all instances.
143 Prediction: A model’s ability to generalize is evaluated using the withheld ‘test’ set. The
144 prediction model, depending on the prediction threshold selected from among possible
145 operational points, discriminates between patients at higher and lower risk of pancreatic
146 cancer. The risk model can guide the development of clinical screening initiatives. (B) The
147 model trained with real-world clinical data has three steps: embedding, encoding and
148 prediction. The embedding machine transforms categorical disease codes and time stamps
149 of these disease codes into a latent space. The encoding machine extracts information from
150 a disease history and summarizes each sequence in a characteristic fingerprint (vertical
151 vector). The prediction machine then uses the fingerprint to generate predictions for cancer
152 occurrence within different time intervals after the time of assessment (3, 6, 12, 36, 60
153 months). The model parameters are trained by minimizing the difference between the
154 predicted and the actually observed cancer occurrence. (C) Terminology for time points
155 and intervals. The end point of a disease trajectory is the time of assessment. From the time
156 of assessment, cancer risk is assessed within 3, 6, 12, 36 and 60 months. To test the
157 influence of close-to-cancer ICD codes on the prediction of cancer occurrence, exclusion
158 intervals are used to remove diagnoses in the last 3, 6 and 12 months before cancer
159 diagnosis.
160
161

162
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163 Results
164 Datasets
165
166 [| Dataset of disease trajectories: Denmark ||
167

168  We used data from the DNPR, where all inpatient admissions to Danish hospitals have been
169  recorded since 1977, and outpatients and emergency visits have been included since 1994.
170  Demographic information was obtained by linkage to the Central Person Registry, which is
171  possible via the personal identification number introduced in 1968, that identifies any Danish
172 citizen uniquely over the entire lifespan (Schmidt, Pedersen, and Serensen 2014). DNPR covers
173 approximately 8.6 million patients with 229 million hospital diagnoses, with on average 26.7
174  diagnosis codes per patient. For training we used trajectories of ICD (International Classification
175  of Diseases) codes with explicit time stamps for each hospital contact comprising diagnoses down
176  to the three-character category in the ICD hierarchy. We used data from January 1977 to April
177 2018 and filtered out patients with discontinuous or very short trajectories (<5 events in total),
178  ending up with 6.2 million patients (Figure S1A). The case cohort includes 23,985 pancreatic
179  cancer (PC) cases with cancer occurring at a median age of 70 years (mean age of 65+11 years
180  [men] and 67+12 years [women]) (Figure 2, Table S1).

181

182  [| Dataset of disease trajectories: Boston, US |]

183

184  For external validation, we used clinical records from the Mass General Brigham (MGB) hospital
185  system in the US via their Research Patient Data Registry (RPDR), a centralized, access-controlled
186  clinical data warehouse for use in research. As in the Danish dataset, we also used explicit
187  longitudinal records from MGB, i.e., trajectories of ICD codes with explicit time stamps. We used
188  data from 1982 to 2020 and filtered out patients with less than six months of contact or less than
189  five recorded diagnosis codes (Figure S1b). The selected dataset (Figure 2) has 1.0 million
190  patients with 3,904 pancreatic cancer patients (Methods). The median length of disease trajectories
191  is 13 years and the median number of disease codes per patient is 168; the latter is much higher
192 than in the Danish dataset (Figure 2C). The median age of pancreatic cancer diagnosis is 60 years,
193  lower than in the Danish dataset (Figure 2C). These statistics might reflect the differences between
194  the health care systems in the two locations, such as referral, billing and documentation practices.
195

196

197  Model architecture

198 [[ Network architecture/layers ]]

199  The machine learning model for predicting cancer risk from disease trajectories consists of four
200  parts: (1) input data for each event in a trajectory (disease code and time stamps), (2) embedding
201  the event features onto real number vectors, (3) encoding the trajectories in a lower-dimensional
202 latent space, and (4) predicting time-dependent cancer risk. (1) Input: In order to best exploit the
203  longitudinality of the EHR data and provide an opportunity to discover early indicators of cancer
204  risk, all contiguous subsequences of diagnoses from a patient’s history were sampled, starting with
205  the earliest record and increasing gaps between the end of the trajectory and cancer occurrence for
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206  positive cases (Methods). The partial trajectories provide information in support of prediction for
207  different time spans between risk assessment and cancer occurrence, rather than just binary
208  prediction that cancer will occur at any time after assessment. (2) Embedding: Each item in a
209 disease trajectory is an event denoted with one of the >2,000 ICD disease codes. To extract
210  informative features from such high-dimensional input, the ML process is designed to embed the
211  categorical input vectors into a continuous, lower-dimensional space. Temporal information, i.e.
212 diagnosis dates and age at diagnosis are also embedded (see Methods). The mapping of the input
213 to the embedding layer is trained together with other parts of the model. (3) Encoding: The
214 longitudinal nature of the disease trajectories allows us to construct time-sequence models using
215  sequential neural networks, such as gated recurrent units (GRU) models (Cho et al. 2014). We also
216  used the Transformer model (Vaswani et al. 2017) which uses an attention mechanism and
217  therefore can capture time information and complex interdependencies. For comparison, we also
218  tested a bag-of-words (i.e., bag-of-disease-codes) approach that ignores the time and order of
219  disease events by pooling the elements of the event vectors. (4) Predicting: The embedding and
220  encoding network layers map each disease trajectory onto a characteristic fingerprint vector in a
221  low-dimensional latent space. This vector is then used as input to a feedforward network to
222 estimate the risk of cancer within distinct prediction intervals ending a few months or several years
223 after the end of a trajectory (the time of risk assessment).

224  [[ Prediction of occurrence within a time interval ]]

225  For each of the disease trajectories ending at time #,, a 5-dimensional risk score is calculated, where
226  each dimension represents the risk of cancer occurrence within a particular prediction window
227  after t,, e.g., 6-12 months or 12-36 months (Lin et al. 2008; Yala et al. 2021). The risk score is
228  constrained to monotonically increase with time as the risk of cancer occurrence naturally
229  increases over time, for a given disease trajectory. If and when the risk score exceeds a prediction
230  threshold, cancer diagnosis is predicted to have occurred (Figure 1). In this way, the model uses a
231  time sequence of disease codes for one person as input and predicts a cancer diagnosis to occur
232 within 3, 6, 12, 36, 60, 120 months after the time #, of risk assessment; or not to occur at all in 120
233  months.

234  [[ Scanning hyperparameters for each model type ]]

235  To comprehensively test the performance of different types of ML models, we first conducted an
236  extensive search over hyperparameters and selected the best set of hyperparameters for each
237  model, and then selected the best model type. The model types included transformer, GRU, a
238  multilayer perceptron and bag-of-words. Each model was tested on specific hyperparameter
239  configurations (Table S2). To avoid overfitting and to test generalizability of model predictions,
240  we partitioned patient records randomly into 80%/10%/10% training/development/test sets. We
241  conducted training only on the training set and used the development set to examine the
242  performance for different hyperparameter settings, which guides model selection. Subsequently,
243 the performance of the selected models was evaluated on the fully withheld test set and reported
244  as an estimate of performance in prospective applications in health care settings with similar
245  availability of longitudinal records.
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Characteristics of Danish and Boston MGB dataset
General cohort information Danish dataset Boston MGB dataset
Dataset timeline 1977-2018 1982-2021
Total N patients 8,110,706 1,015,978
Male (%) 4,030,504 (49.7%) 414,728 (40.8%)
Female (%) 4,080,202 (50.3%) 601,224 (59.2%)
Median N disease codes per patient 22 168
Median length of trajectory in years 230 13.0
PC cohort information
Total N patients 23,985 3,904
Male (%) 11,880 (49.5%) 1,866 (47.8%)
Female (%) 12,105 (50.5%) 2,038 (52.2%)
Median N disease codes per patient 18 99
Median length of trajectory in years 17.0 7.0
Median age at PC diagnosis 70.0 60.0
N disease codes 3 months pre-PC 95,358 109,280
N disease codes 6 months pre-PC 27,131 65,966
N disease codes 12 months pre-PC 38,109 96,114
N disease codes >12 months pre-PC 480,830 737,522

Abbreviations: PC: pancreatic cancer.
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247 Figure 2. Danish (DK) and Boston (MGB) patient registries used for machine
248 learning of cancer risk. The Danish DNPR database (DK) of clinical records covers over
249 8 million people for up to 41 years. The Boston MGB (RPDR) database covers only 1
250 million people with long term data, but has a higher density of disease codes per time
251 interval (Figure S4). (A) The incidence of pancreatic cancer peaks past the age of 50 years
252 in both datasets. (B,C) The machine learning process has to cope with very different
253 distributions of disease trajectories in terms of length of trajectories and density of the
254 number of disease codes. The Danish (DK) dataset has a longer median length of disease
255 trajectories, but lower median number of disease codes per patient compared to the MGB
256 dataset. (D,E) An intuitive indication of the association of individual disease codes with
257 subsequent diagnosis of pancreatic cancer is given by the relative incidence of known risk
258 factors in cancer vs. non-cancer patients in the DK (D) and MGB (E) datasets, counting
259 whether a disease code occurred at least once in a patient’s history and excluding events
260 at or after cancer diagnosis.
261

262  Evaluation of model performance

263 [[ Picking a best model - DK ]]

264  We evaluated the different models using the precision-recall curve (PRC) and then report
265 performance numbers at the operating point on the receiver-operating curve (ROC) that
266  maximizes the F1 score (Figure 3), which strikes a balance between precision (positive predictive
267  value) and recall (sensitivity). In the final performance evaluation of different types of ML models
268  on the test set, the models which explicitly use and encode the time sequence of disease codes, i.e.,
269  GRU and Transformer, ranked highest (Figure 3A-C, Table S3). For the prediction of cancer
270  incidence within 3 years of the assessment date (the date of risk prediction), the Transformer model
271  had the best performance (AUROC=0.879 [0.877-0.880]), followed by GRU (AUROC=0.852
272 [0.850-0.854]). The bag-of-words model that ignores the time information along disease
273  trajectories performed significantly less well (AUROC=0.807 [0.805-0.809]). At the chosen
274  operating point that maximizes the F1 score (Methods), the model has a precision of 18.1% (17.1-
275  19.9), arecall of 12.3% (11.7-12.9) and a specificity of 99.88% (99.87-99.90). In order to gain a
276  better intuition regarding the impact of applying the model in a real case scenario, we also report
277  the odds ratio (OR) of cancer patients in the high-risk group for the deep learning models. The OR
278  is defined as the odds of getting pancreatic cancer for a high risk patient divided by the odds of
279  getting pancreatic cancer for a low risk patient (Table S6). The odds ratio for the Transformer
280  model is 47.5 for 20% recall and 159.0 for 10% recall.

281

282  [| Comparison with previous models |]

283

284  Earlier work also developed ML methods on real-world data clinical records and predicted
285  pancreatic cancer risk (Appelbaum, Cambronero, et al. 2021; Appelbaum, Berg, et al. 2021; Chen
286  etal. 2021; X. Li et al. 2020). These previous studies had encouraging results, but neither used the
287  time sequence of disease histories nor memory or attention mechanisms in the neural network to
288  extract time-sequential longitudinal features. For comparison we implemented analogous
289  approaches, a bag-of-words model and a multilayer perceptron (MLP) model. We evaluated the
290  non-time-sequential models on the DNPR dataset, and the performance for predicting cancer
291  occurrence within 36 months was AUROC=0.807 (0.805-0.809) for the bag-of-words model and
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292 0.845 (0.843-0.847) for the MLP model. Compared to the time-sequential models, e.g.,
293  Transformer, which has an odds ratio of 159.0 at 10% recall, the bag-of-words/MLP models have
294  amuch lower odds ratio of 4.0/21.0, respectively, also at 10% recall. In other words, when taking
295  time series into account, the odds ratio increases by nearly a factor of 40 (Table S3).

296 [[ Prediction for prediction time intervals ]]

297  Itisalso of clinical interest to consider risk of cancer over different time intervals. The ML models
298 in this work yield risk scores for pancreatic cancer occurrence within 3, 6, 12, 36 and 60 months
299  of the date of risk assessment. As expected, it is more challenging to predict cancer occurrence
300  within longer rather than shorter time intervals (Figure 4A&C). Indeed, prediction performance
301  for the best model decreases from an AUROC of 0.908 (0.906-0.911) for cancer occurrence within
302 12 months to an AUROC of 0.879 (0.877-0.880) for occurrence within 3 years (Figure 3D-E).
303  For each ML model and each prediction interval, we picked the operational points that maximize
304  the F1 score, which is the harmonic mean of recall and precision (Sasaki 2007).

305 [[ Performance with data exclusion ]]

306  Disease codes within a short time before diagnosis of pancreatic cancer are most probably directly
307  predictive such that even without any machine learning, well-trained clinicians would include
308  pancreatic cancer in their differential diagnosis. Even more so, disease codes just prior to
309  pancreatic cancer occurrence are either semantically similar to it or encompass it (e.g., neoplasm
310  of the digestive tract). To infer earlier detection, we therefore separately trained the models
311  excluding from the input diseases diagnoses in the last 3 or 6 months prior to the diagnosis of
312 pancreatic cancer (Figure 1C). As expected, e.g. when training with data exclusion, the
313 performance decreased to AUROC of 0.862 (0.857-0.866) for 3 months exclusion and a AUROC
314 0f0.834 (0.830-0.838) for 6 months exclusion - both for prediction of cancer occurence within 12
315  months (Table S3A).

316 [[ Information contribution as a function of time gap between of assessment
317 and cancer occurrence ]]

318  The exclusion of trajectories ending very close to pancreatic cancer removes the influence of
319  disease codes that represent symptoms of pancreatic cancer or are otherwise easily attributable to
320  pancreatic cancer. However, data exclusion of such late events alone does not quantify the
321  influence of longer term risk factors on prediction. In an attempt to estimate the performance of
322 the model when possible peri-diagnostic codes are excluded, we report the recall rate of prediction
323  as a function of the time-to-cancer, defined as the time between the end of disease trajectory and
324 the occurrence of cancer (Figure 4A, C). As expected, recall levels decrease with time-to-cancer,
325  from 8% for cancer occurring about 1 year after assessment to a recall of 4% for cancer occurring
326  about 3 years after assessment - for both the models trained with and without 3 months data
327  exclusion. This suggests that the model not only learns from symptoms very close to pancreatic
328  cancer but also from longer disease history, albeit at lower accuracy.

329 [[Performance by cross-application of a trained model to a different dataset]]

330  Inorder to assess the predictive performance of the model in other health care systems, we applied
331  the best machine learning model trained on the Danish DNPR to disease trajectories of patients in


https://doi.org/10.1101/2021.06.27.449937
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.27.449937; this version posted April 5, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

12

332 the Boston MGB dataset, without any adaptation except for mapping the ICD codes from one
333 system to the other. Prediction performance for cancer occurrence within 3 years declined
334  significantly from an AUROC of 0.879 (0.877-0.880), for a Denmark-trained transformer model
335  applied to Danish DNPR patient data (test set), to an AUROC of 0.776 (0.773-0.778), for the same
336 model applied to Boston MGB patient data (Figure 3H). Cross-application required mapping the
337 ICD codes used in Denmark (ICD-10 and ICD-8 codes from The Danish Medical Classification
338  System; Sundhedsvasenets Klassifikations System (SKS)) to the ICD-10-CM and ICD-9-CM codes
339  used in the Boston MGB system. The most striking difference between the two systems is the
340  shorter and more dense disease history in the Boston MGB trajectories compared to the Danish
341  ones (Figure 2B-C). These differences plausibly contribute to the lower performance when cross-
342  applying the machine learning model trained in one health system to another. We conclude that
343  independent training is indicated to achieve good performance in a very different dataset.

344

345 [[ Model performance by independent training on a different dataset ]]

346  Motivated by the decrease in performance when testing the Denmark-derived model on the Boston
347  MGB dataset, we trained and evaluated the model on the Boston MGB dataset from scratch. For
348  the independently trained model, the performance is much higher than in cross-application, with a
349  test-set AUROC of 0.869 (0.867-0.870) for cancer occurring within 36 months. At the operating
350  point maximizing F1 score, the model has a precision of 19.4% (19.1%-19.7%), a recall of 31.0%
351 (30.4%-31.5%) and a specificity of 99.51% (99.50%-99.52%). At 20% recall, the odds ratio for
352 the high risk group for independent training is 112 compared to 7.6 for cross-application. Similar
353  to the models trained independently on the Danish DNPR, the GRU and transformer models
354  performed much better than the model without temporal information (bag-of-words).

355
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357 Figure 3. Performance of the machine learning (ML) models in predicting pancreatic
358 cancer occurrence. Performance of different ML models for prediction of cancer
359 occurrence within 36 months for the Danish DNPR (DK) dataset (A,B,C) and Boston Mass
360 General Brigham (MGB) dataset (D,E,F). (A,D) Precision-recall curves (PRC): precision
361 (true positives as a fraction of predicted positives) against recall (true positives as a fraction
362 of observed positives) for different models, at different prediction thresholds along the
363 curve. One way to choose an operational point (F1 point) is to balance precision and recall
364 by optimizing the F1 score (red point; Methods). (B,E) Confusion matrix for each model,
365 at the F1 point, with the fraction of true positives, true negatives, false positives and false
366 negatives, normalized by column. (C,F) Receiver operating characteristic curves (ROC):
367 true positive rate TPR (recall, sensitivity) against false positive rate FPR (false negatives
368 as a fraction of observed negatives = (1-specificity)), at different prediction thresholds
369 along the curve. A random prediction has very low precision for all values of recall
370 (horizontal dotted line in A and D; AUPRC=incidence=0.004) and equal TPR and FPR
371 (diagonal line in C and F; AUROC=0.5). The Transformer is the best performing model
372 for 36-month prediction of cancer occurrence for nearly all operational points (A,C,D,F).
373 Odds ratios are defined as the odds of getting pancreatic cancer for a high risk patient
374 divided by the odds of getting pancreatic cancer for a low risk patient (G-K). Odds ratios
375 for the different ML models for (G) the Danish models applied to the Danish dataset, (H)
376 the Danish models applied to the Boston dataset and (I) the Boston models applied to the
377 Boston dataset. (J-K) The odds ratios decrease at higher data exclusion intervals and
378 higher recall thresholds. (J) Odds ratios for the Danish GRU model, trained with data
379 exclusion intervals, applied to the Danish dataset. (K) Odds ratios for the Boston GRU
380 model, trained with data exclusion intervals, applied to the Boston dataset. (L) Prediction
381 performance (by AUROC) was significantly lower when using only 23 known risk factors,
382 rather than 2000 disease codes (no data exclusion).
383

384 Predictive Features

385 [[ Interpretation: contribution of known risk factors ]]

386  Although the principal criterion for the potential impact of screening trials is robust predictive
387  performance, it is of interest to interpret the features of any predictive method: which diagnoses
388  are most informative of cancer risk and at what time point? We used two methods for the
389  identification of factors that contribute most to positive prediction. One method uses prior
390  knowledge and limits the input for training and testing to disease types, which have been reported
391  to be indicative of the likely occurrence of pancreatic cancer (Yuan et al. 2020; Klein 2021). The
392 result is that these 23 known risk factors are moderately predictive of cancer but are much less
393  informative compared to the more than 2,000 available diseases (Table S4, Figure 3L). The
394  relationship between age, number of disease codes and pancreatic cancer occurrence is also
395  consistent with the fact that increasing age has been reported as a major risk factor of pancreatic
396  cancer (Figure 2A, S6).

397 [[ Interpretation: contributing factors by gradient method ]]

398 A second, explicitly computational method infers the contribution of a particular input variable to
399  the prediction by the machine learning engine using the integrated gradients (IG) algorithm
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400  (Sundararajan, Taly, and Yan 2017) (Figure 4B,D). The IG contribution was calculated separately
401  for different times to cancer diagnosis, in particular at 0-6 months, 6-12 months, 12-24 months and
402  24-36 months after assessment, for all patients developing cancer. The aim was to explore how
403  diseases contribute differently to the risk of pancreatic cancer, depending on how close to
404  pancreatic cancer they occurred. There is a tendency for diseases, which in normal clinical practice
405  are known to indicate the potential presence of pancreatic cancer, to have a higher contribution to
406  prediction for trajectories that end closer to cancer diagnosis. On the other hand, putative early risk
407  factors plausibly have a higher IG score for the trajectories that end many months before cancer
408  diagnosis. As an additional check, we computed the contribution for the model trained also with 3
409  months data exclusion.

410

411 [[ Interpretation: contributing early factors ]]

412 The top contributing features extracted from the trajectories with time to cancer diagnosis in 0-6
413  months - such as unspecified jaundice, diseases of biliary tract, abdominal-pelvic pain, weight loss
414  and neoplasms of digestive organs - may be symptoms of or otherwise closely related to pancreatic
415  cancer (Table S5). It is also of interest to identify early risk factors for pancreatic cancer. For
416  trajectories with longer time between assessment and cancer diagnosis, other disease codes - such
417  as type 2 diabetes and insulin-independent diabetes - make an increasingly large contribution,
418  consistent with epidemiological studies (Yuan et al. 2020; Klein et al. 2013; Kim et al. 2020) and
419  the observed disease distribution in the DNPR dataset (Figure 4, S3). Other factors, such as
420  cholelithiasis (gallstones) and reflux disease, are perhaps of interest in terms of potential
421  mechanistic hypotheses, such as inflammation of the pancreas prior to cancer as a result of
422  cholelithiasis or a hypothetical link between medication by proton pump inhibitors such as
423  omeprazole in reflux disease and the effect of increased levels of gastrin on the state of the pancreas
424  (Alkhushaym et al. 2020).

425  [[ Interpretation for 3 month exclusion interval]]

426  Overall the contribution of the diseases calculated for the model trained with 3 months data
427  exclusion is similar to the one calculated for the model without data exclusion. The main difference
428  is in the order of the disease contribution, as the diseases that more frequently are diagnosed as a
429  consequence of subclinical pancreatic cancer - which are not included in the training of the 3
430  months data exclusion model - have lower contribution than the longer term risk factors. The
431  interpretation of individual risk factors from the ML feature list as causative may be subject to
432  misinterpretation as their contribution here is only evaluated in the context of complete disease
433 histories. However, our main goal in this report is to achieve robust predictive power from disease
434 trajectories, rather than mechanistic interpretations.

435

436

437
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439 Figure 4. Predictive capacity and feature contributions of disease trajectories

440 (A-B) Distribution of recall (sensitivity) values at the F1 operational point as a function of
441 time-to-cancer (time between the end of a disease trajectory and cancer diagnosis). The
442 recall values drop significantly with time-to-cancer. (A) For models trained on all data. (B)
443 For models trained with 3 months data exclusion. (C-D) Top 10 features that contribute to
444 the cancer prediction in time-to-cancer intervals of 0-6, 6-12, 12-24 and 24-36 months. The
445 features are sorted by the contribution score (Supplementary Tables S5). We used an
446 integrated gradient (IG) method to calculate the contribution score for each input feature
447 for each trajectory, then summed over all trajectories with cancer diagnosis within the
448 indicated time interval. All data in the figure for the Danish DNPR dataset, 36 months
449 prediction interval.

450

451 Discussion

452  [[ Advances in this work ]]

453  Here we present a new framework for applying deep learning methods using comprehensive
454  datasets of disease trajectories to predict cancer risk. Our study was designed to make explicit use
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455  of'the time sequence of disease events; and, to assess the ability to predict cancer risk for increasing
456  intervals between the time of assessment (the end of the disease trajectory) and cancer occurrence.
457  Earlier work has demonstrated the potential of applying Al methods to assess pancreatic cancer
458  risk but did not exploit the information in the temporal sequence of diseases (Appelbaum,
459  Cambronero, et al. 2021; Chen et al. 2021). Our results indicate that using the time ordering in
460  disease histories as input significantly improves the predictive power of Al methods in anticipating
461  pancreatic cancer occurrence.

462 [[ Comparison of performance in a different healthcare system ]]

463 A single, globally robust model that predicts cancer risk for patients in different countries and
464  different healthcare systems remains elusive. Cross-application of the Danish model to the Boston
465 MGB database had significantly lower performance (Fig. 3H), in spite of common use of ICD
466  disease codes. One of the reasons for this mismatch could be the differences in clinical practice,
467  such as frequency of reporting disease codes in the clinical records, the typical threshold for
468  seeking medical attention, potential influence of billing constraints on what is recorded, as well as
469  referral practice to the local Boston MGB hospitals from other locations, in contrast to the more
470  uniform and comprehensive national nature of the Danish DNPR disease registry. However, the
471 Al methods used are sufficiently robust to achieve a similarly high level of performance in the
472  Boston MGB system when independently trained. With significant differences in healthcare
473  systems, independent model training in different geographical locations may be necessary to
474  achieve desired model performance.

475 [[ Clinical trials and application in clinical practice ]]

476  Successful implementation of early diagnosis and treatment of pancreatic cancer in clinical
477  practice will likely require three essential steps: identification of high-risk patients, detection of
478  early cancer or precancerous states by detailed screening of high-risk patients, and effective
479  treatment after early detection (Singhi et al. 2019; Kenner et al. 2021). The overall impact in
480  clinical practice depends on the success rates in each of these stages. This work only addresses the
481  first stage. With a reasonably accurate method for predicting cancer risk one can direct appropriate
482  high-risk patients into clinical screening trials. A sufficiently enriched pool of high-risk patients
483  would make detailed screening tests more affordable, as such tests are likely to be prohibitively
484  expensive at a population level and enhance the positive predictive value of such tests.

485

486  Although the level of performance reported here exceeds that of previous prediction models,

487  implementation in clinical practice requires additional considerations. A careful choice of

488  operational point is required, which is not necessarily the one maximizing F1, which balances
489  precision and recall and was used above as a point of reference. The criteria for initiating clinical
490  screening trials should take into account the cost / benefit balance of screening and intervention
491  (Pandharipande et al. 2016) (example estimate in Results S1) as well as the expectations and

492  concerns of patients enrolled in a trial and of those identified as high risk and offered advanced
493  clinical test. The specific design of such trials will require close collaboration between data

494  scientists and practicing clinicians to determine appropriate evaluation and follow-up once high-
495  risk patients are identified by risk assessment tools. Nevertheless, the current late-stage

496  presentation of about 80% of pancreatic cancer patients with incurable disease suggests that

497  innovative approaches will be required to improve patient outcomes for this highly lethal

498  malignancy.
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499

500  For example, based on the prediction accuracy reported here, one can realistically design clinical
501  screening trials, with software applied to health records of, e.g., 1 million patients, followed by
502  identification of those at highest risk and recruitment into a clinical trial with detailed screening
503  tests for, e.g., 200 high-risk patients. Implementation requires choosing an operational point
504  along the PRC curve with an achievable high positive predictive value, which is important to
505  reduce false positives and therefore minimize unnecessary effort and anxiety. Exploiting the
506 trade-off between precision and recall, one can in this scenario accept lower recall as a clinical
507  trial with limited enrollment cannot in any case detect cancer in a large number of patients. The
508 particular advantage of this ‘predict-select-screen’ process is that computational screening of a
509  large population in the first step is inexpensive while the costly second step of sophisticated
510  clinical screening and therapeutic intervention programs is limited to a much smaller number of
511  patients, those at highest risk.

512

513 [[ Challenges for future improvements ]]

514  We expect further increases in prediction accuracy with the availability of data beyond disease
515  codes, such as prescriptions, laboratory values, observations in clinical notes, diagnosis and
516  treatment records from general practitioners (Malhotra et al. 2021) and abdominal imaging
517  (computed tomography, magnetic resonance imaging), as well as inherited genetic profiles. To
518 achieve a globally useful set of prediction rules, access to large data sets of disease histories
519  aggregated nationally or internationally will be extremely valuable. An ideal scenario for a multi-
520  institutional collaboration would be to employ federated learning across a number of different
521  healthcare systems (Konec¢ny et al. 2016). Federated learning obviates the need for sharing primary
522  data and only requires permission to run logically identical computer codes at each location and
523  then share and aggregate results.

524

525 [[ Impact on patients ]]

526  Prediction performance at the level shown here may be sufficient for the design of real world
527  clinical screening trials, in which high-risk patients are assigned to high specificity screening tests
528 and, if cancer is detected, offered early treatment. Al on real-world clinical records has the
529  potential to produce a scalable workflow for early detection of pancreatic cancer in the community,
530  to shift focus from treatment of late- to early-stage cancer, improve the quality of life of patients,
531  and increase the benefit/cost ratio of cancer care.

532

533
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534 Methods

535 Processing of the population-level dataset

536 [[Danish DNPR dataset]]

537  The first part of the project was conducted using a dataset of disease histories from the Danish
538  National Patient Registry (DNPR), covering all 229 million hospital diagnoses of 8.6 million
539  patients between 1977-2018. This includes inpatient contacts since 1977 and outpatient and
540  emergency department contacts since 1995, but not data from the general practitioners' records
541  (Schmidt et al. 2015). DNPR access was approved by the Danish Health Data Authority (FSEID-
542 00003092 and FSEID-00004491.) Each entry of the database includes data on the start and end
543  date of an admission or visit, as well as diagnosis codes. The diagnoses are coded according to the
544  International Classification of Diseases (ICD-8 until 1994 and ICD-10 since then). The accuracy
545  of cancer diagnosis disease codes, as examined by the Danish Health and Medicines Authority,
546  has been reported to be 98% accurate (89.4% correct identification for inpatients and 99.9% for
547  outpatients) (Thygesen et al. 2011). For cancer diagnoses specifically, the reference evaluation
548  was based on detailed comparisons between randomly sampled discharges from five different
549  hospitals and review of a total of 950 samples (Schmidt et al. 2015). We used both the ICD-8 code
550 157 and ICD-10 code C25, malignant neoplasm of pancreas, to define pancreatic cancer (PC)
551  cases.

552 The most up-to-date ICD classification system has a hierarchical structure, from the most general
553  level, e.g., C: Neoplasms, to the most specific four-character subcategories e.g. C25.1: Malignant
554  neoplasm of body of pancreas. DNPR contains ICD-10 codes for disease administration after 1994
555 and ICD-8 codes for the remaining period of the registry. The Danish version of the ICD-10 is
556  more detailed than the international ICD-10 but less detailed than the clinical modification of the
557 ICD-10 (ICD-10-CM). In this study, we used the three-character category ICD codes (n=2,997) in
558  constructing the predictive models and defined “pancreatic cancer (PC) patients” as patients with
559  at least one code under C25: Malignant neoplasm of pancreas. For the diagnosis codes in the
560 DNPR, we removed disease codes labelled as ‘temporary’ or ‘referral’ (8.3% removed, Figure
561  S1), as these can be misinterpreted when mixed with the main diagnoses and are not valuable for
562  the purposes of this study.

563  Danish citizens have since 1968 been assigned a unique lifetime Central Person Registration (CPR)
564  Number, which is useful for linking to person-specific demographic data. Using these we retrieved
565  patient status as to whether patients are active or inactive in the CPR system as well as information
566  related to residence status. We applied a demographic continuity filter. For example, we excluded
567  from consideration residents of Greenland, patients who lack a stable place of residence in
568  Denmark, as these would potentially have discontinuous disease trajectories. By observation time
569  we mean active use of the healthcare system.

570 At this point, the dataset comprised a total of 8,110,706 patients, of which 23,601 had the ICD-10
571  pancreatic cancer code C25 and 14,720 had the ICD-8 pancreatic cancer code /57. We used both
572 ICD-10 and ICD-8 independently, without semantic mapping, while retaining the pancreatic
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573  cancer occurrence label, assuming that machine learning is able to combine information from both.
574  Subsequently, we removed patients that have too few diagnoses (<5 events). The number of
575  positive patients used for training after applying the length filter are 23,985 (82% ICD-10 and 18%
576  ICD-8). Coincidentally, this resulted in a more strict filtering for ICD-8 events which were used
577  only in 1977-1994. The final dataset was then randomly split into training (80%), development
578  (10%) and test (10%) data, with the condition that all trajectories from a patient were only included
579 in one split group (train/dev/test), to avoid any information leakage between training and
580  development/test datasets.

581 [[Boston MGB dataset]]

582  The MGB dataset is from the Mass General Brigham Research Patient Data Registry (RPDR),
583  including data items from the Dana-Farber/ Brigham and Women’s Cancer Center, and contains
584  ICD-9-CM and ICD-10-CM codes for disease administration, both are more detailed modifications
585  tothe ICD-9/10 international version. Data access for the study was granted under the Institutional
586  Review Board (IRB) Protocol 2019P000993 (Computational Approaches to Identifying High-Risk
587  Pancreatic Cancer Populations: High Risk Cohorts Through Real World Data). Analogously to
588 DNPR, we used the three-character category ICD codes for identifying pancreatic cancer,
589  respectively C25 for ICD-10 and /57 for ICD-9. The end date was similarly defined as the date of
590  death for the patients, the date of the last hospital visit, or, if the patient on file is still alive, the
591  end date used to select from the MGB dataset (2020), whichever is earlier.

592

593  Training

594

595  The following processing steps were carried out identically for DNPR and MGC datasets. For each
596  patient, whether or not they ever had pancreatic cancer, the data was augmented by using all
597  continuous partial trajectories of (minimal length >=5 diagnoses) from the beginning of their
598 disease history and ending at different time points, which we call the time of assessment. For
599  cancer patients, we used only trajectories that end before cancer diagnoses, i.e. ta<tcancer<tgcath. We
600 used a step function annotation indicating cancer occurrence at different time points (3, 6, 12,
601 36, 60, 120 months) after the end of each partial trajectory. For the positive (‘PC’) cases this
602  provides the opportunity to learn from disease histories with a significant time gap between the
603  time of assessment and the time of cancer occurrence. For example, for a patient, who had
604  pancreatitis a month or two just before the cancer diagnosis, it is of interest to learn which earlier
605  disease codes might have been predictive of cancer occurrence going back at least several months
606  or perhaps years. The latter is also explored by separately re-training of the ML model excluding
607  data from the last three or six months before cancer diagnosis.

608  For patients without a pancreatic cancer diagnosis we only include trajectories that end earlier
609 than 2 years before the end of their disease records (due to death or the freeze date of the DNPR
610  data used here). This avoids the uncertainty of cases in which undiagnosed cancer might have
611  existed before the end of the records. The datasets were sampled in small batches for efficient
612  computation, as is customary in ML. Due to the small number of cases of pancreatic cancer
613  compared to controls, we used balanced sampling from the trajectories of the patients in the
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614  training set such that each batch has an approximately equal number of positive (cancer) and
615  negative (non-cancer) trajectories.

616

617

618 Model development

619 A desired model for such diagnosis trajectories consists of three parts: embedding of the
620  categorical disease features, encoding time sequence information, and assessing the risk of cancer.
621  We embed the discrete and high-dimensional disease vectors in a continuous and low-dimensional
622  latent space (Mikolov et al. 2013; Gehring et al. 2017). Such embedding is data-driven and trained
623  together with other parts of the model. For ML models not using embedding, each categorical
624  disease was represented in numeric form as a one-hot encoded vector. The longitudinal records of
625  diagnoses allowed us to construct time-sequence models with sequential neural networks. After
626  embedding, each sequence of diagnoses, was encoded into a feature vector using different types
627  of sequential layers (recurrent neural network, RNN, and gated recurrent units, GRU), attention
628 layers (transformer), or simple pooling layers (bag-of-words model and multilayer perceptron
629  model [MLP]). The encoding layer also included age inputs, which has been demonstrated to have
630  a strong association with pancreatic cancer incidence (Klein 2021). Finally, the embedding and
631 encoding layers were connected to a fully-connected feedforward network (FF) to make
632  predictions of future cancer occurrence following a given disease history (the bag-of-words model
633  only uses a single linear layer).

634

635  The model output consists of a risk score that monotonically increases for each time interval in the
636  follow-up period after risk assessment. As cancer by definition occurs before cancer diagnosis, the
637  risk score at a time point ¢ is interpreted as quantifying the risk of cancer occurrence between #,,
638  the end of the disease trajectory (the time of assessment), and time ¢ = ¢, + 3, 6, 12, 36, 60, 120
639  months. For a given prediction threshold, scores that exceed such threshold at time ¢ are considered
640  to indicate cancer occurrence prior to £. We currently do not distinguish between different stages
641  of cancer, neither in training from cancer diagnoses nor in the prediction of cancer occurrence.
642

643  The model parameters were trained by minimizing the prediction error quantified as the difference
644  between the observed cancer diagnosis in the form of a step function (0 before the occurrence of
645  cancer, 1 from the time of cancer diagnosis) and the predicted risk score in terms of a positive
646  function that monotonically increases from 0, using a cross-entropy loss function, with the sum
647  over the five time points, and L2 regularization on the parameters (Figure 1A).
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649  where t € {3,6,12,36,60,120} months; N = 6 for non-cancer patient and N < 6 for cancer
650 patients where we only use the time points before the cancer diagnosis; i =
651 1,2,3,..., Nsamples; O is the set of model parameters; A, is the regularization strength; p is the
652  model prediction; x; are the input disease trajectories, y; , = 1for cancer occurrence and y;, = 0
653  for no cancer within t-month time window.

654


https://doi.org/10.1101/2021.06.27.449937
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.27.449937; this version posted April 5, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

22

655  The transformer model, unlike the recurrent models, does not process the input as a sequence of
656  time steps but rather uses an attention mechanism to enhance the embedding vectors correlated
657  with the outcome. In order to enable the transformer to digest temporal information such as the
658  order of the exact dates of the diseases inside the sequence, we used positional embedding to
659  encode the temporal information into vectors which were then used as weights for each disease
660  token. Here we adapted the positional embedding from (Vaswani et al. 2017) using the values
661  taken by cosine waveforms at 128 frequencies observed at different times. The times used to
662  extract the wave values were the age at which each diagnosis was administered and the time
663  difference between each diagnosis. In this way the model is enabled to distinguish between the
664  same disease assigned at different times as well as two different disease diagnoses far and close in
665  time. The parameters in the embedding machine, which addresses the issue of data representation
666  suitable for input into a deep learning network, were trained together with the encoding and
667  prediction parts of the model with back propagation (Figure 2).

668

669 To comprehensively test different types of neural networks and the corresponding
670  hyperparameters, we conducted a large parameter search for each of the network types (Table S2).
671  The different types of models include simple feed-forward models (LR, MLP) and more complex
672  models that can take the sequential information of disease ordering into consideration (GRU and
673  Transformer). See supplementary table with comparison metrics across different models (Table
674  S3). In order to estimate the uncertainty of the performances, the 95% confidence interval was
675  constructed using 200 resamples of bootstrapping with replacement.

676

677  Evaluation

678

679  The evaluation was carried out separately for each prediction interval of 0-3, 0-6, 0-12, 0-36, and
680  0-60 months. For example, consider the prediction score for a particular trajectory at the end of
681  the 3 year prediction interval (Fig.1C). If the score is above the threshold, one has a correct positive
682  prediction, if cancer has occurred at any time within 3 years; and a false positive prediction, if
683  cancer has not occurred within 3 years. If the score is below the threshold, one has a false negative
684  prediction if cancer has occurred at any time within 3 years; and a true negative prediction, if
685  cancer has not occurred within 3 years. As both training and evaluation make use of multiple
686  trajectories per patient, with different end-of-trajectory points, the performance numbers are
687  computed over trajectories.

688

689  The odds ratio (OR) was calculated as the odds of getting pancreatic cancer when classified at high
690  risk divided by the odds of getting pancreatic cancer when classified at low risk, after picking a

691  specific recall level.
_ TP/FP

R =FNJTN

693  where TP = True Positives, FP = False Positives, FN = False Negatives, TN = True negatives.
694  For the 0-36 months prediction interval, the observation is diagnosis of pancreatic cancer within
695 36 months of assessment, yes/no; and the prediction is high risk / low risk at a given operational
696  threshold (e.g., by choosing a specific level of recall).

697

698

692
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699 Cross-application

700  Few adaptations were necessary in order to test the model trained on the Danish DNPR data on
701  the Boston MGB dataset. In particular, the ICD-9-CM codes were first converted to ICD-10-CM
702  codes using the mapping available on the National Center for Health Statistic (NHCS,
703  www.cdc.gov/nchs) and then, once truncated at the three-characters level, were matched to the
704  respective ICD-10 codes from the DNPR. In this way we created a joint ‘vocabulary’ where disease
705  codes from the MGB dataset were mapped to the same embedded representation of the matching
706  disease code in DNPR-trained models. In spite of overall semantic agreement of the internationally
707  standardized ICD codes (50,656 out of 53,552 can be matched), the translation from one coding
708  system to the other caused missing values in the input. Indeed, some ICD-9-CM codes (n=969)
709  could not be matched to a single ICD-10-CM code and some ICD-10-CM codes (n=1,927) had no
710  match with the ICD-10 codes in DNPR. We compared the performance results from cross-
711  application to those of the independently trained models by evaluating them against the same test
712 data (subset of Boston MGB data).

713

714 Interpreting clinically relevant features

715  In order to find the features that are strongly associated with pancreatic cancer, we have used an
716  attribution method for neural networks called integrated gradients (Sundararajan, Taly, and Yan
717  2017). This method calculates the contribution of input features, called attribution, cumulating the
718  gradients calculated along all the points in the path from the input to the baseline. We chose the
719  output of interest to be the 36-month prediction. Positive and negative attribution scores
720  (contribution to prediction) indicate positive correlation with pancreatic cancer patients and non-
721  pancreatic-cancer patients, respectively. Since the gradient cannot be calculated with respect to the
722 indices used as input of the embedding layer, the input used for the attribution was the output of
723 the embedding layer. Then, the attribution at the token level was obtained summing up over each
724  embedding dimension and summing across all the patient trajectories. Similarly, for each
725  trajectory, we calculated the age contribution as the sum attribution of the integrated gradients of
726  the input at the age embedding layer.

727

728
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952  Figure S1A - Denmark (DK) DNPR
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956 Figure S1B - Boston MGB (RPDR)
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Gender

Male

Female

Total Count

4,030,504 (49.69%)

4,080,202 (50.31%)

Alive 2,754,152 (33.96%) 2,827,021 (34.86% )
Dead 1,276,352 (15.74%) 1,253,181 (15.45%)
After continuity and length filtering 2,938,248 (36.23%) 3,239,989 (39.95%)
Age at last record (0-10) 216,329 (2.67%) 204,774 (2.52%)

Age at last record (10-20)

332,326 (4.10%)

314,445 (3.88%)

Age at last record (20-30)

322,802 (3.98%)

298,219 (3.68%)

Age at last record (30-40)

283,200 (3.49%)

305,470 (3.77%)

Age at last record (40-50)

323,811 (3.99%)

380,730 (4.69%)

Age at last record (50-60)

368,686 (4.55%)

419,100 (5.17%)

Age at last record (60-70)

373,220 (4.60%)

402,625 (4.96%)

Age at last record (70-80)

394,789 (4.87%)

408,890 (5.04%)

Age at last record (80-90)

258,193 (3.18%)

342,174 (4.22%)

Age at last record (90-100)

63,470 (0.78%)

156,154 (1.93%)

Age at last record (100-110)

1,422 (0.02%)

7,391 (0.09%)

Age at last record (110-120)

7 (0.00%)
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Pancreatic Cancer Patients (n=23,985)

Male

Female

Total Count

11,880 (49.53%)

12,105 50.47%

Age at pancreatic cancer diagnosis (0-10)

1 (0.00%)

1 (0.00% )

Age at pancreatic cancer diagnosis (10-20)

1 (0.00%)

7 (0.03%)

Age at pancreatic cancer diagnosis (20-30)

11 (0.05%)

11 (0.05%)

Age at pancreatic cancer diagnosis (30-40)

92 (0.38%)

93 (0.39%)

Age at pancreatic cancer diagnosis (40-50)

474 (1.98%)

417 (1.74%)

Age at pancreatic cancer diagnosis (50-60)

1,626 (6.78%)

1,304 (5.44%)

Age at pancreatic cancer diagnosis (60-70)

3,585 (14.95%)

2,950 (12.30%)

Age at pancreatic cancer diagnosis (70-80)

4,017 (16.75%)

4,076 (16.99%)

Age at pancreatic cancer diagnosis (80-90)

1,925 (8.03%)

2,751 (11.47%)

Age at pancreatic cancer diagnosis (90-100)

148 (0.62%)

490 (2.04%)

Age at pancreatic cancer diagnosis (100-110)

5 (0.02%)
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Table S2. Hyperparameter search for machine learning models.

To comprehensively test different types of neural networks and the corresponding
hyperparameters, we conducted a large parameter search for each of the network types. The
different types of models include simple feed-forward models (LR, MLP) and more complex
models that can take the sequential information of disease ordering into consideration (RNN, GRU

and Transformer). The hyperparameters of the best performing model are in bold.
Type of ML model
Hyper-parameters Bag of words MLP GRU Transformer
Dropout 0 0,0.1 0,0.1 0,0.1
Weight decay 0.001 0,0.001 0,0.001 0, 0.001
Only prior knowledge False, True False False False, True
diseases
Dimension of hidden - 32, 128, 256 32, 64, 128, 256 32,256
layer
Number of hidden - 1,2 1,2,4 1,2,4
layers
Age input None None None, positional None, positional
embedding embedding
Time input None None None, positional None, positional
embedding embedding
Number of Heads - - - 8,16, 32
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Table S3. Performance of exclusion experiments.

A summary of performance of different models trained with different data exclusion intervals for
different prediction intervals. In order to estimate the uncertainty of the performance metrics, 95%
confidence interval (CI) were computed using 200 resamples (bootstrapping with replacement);
these time intervals may be slightly too narrow due to the estimated small number of trajectories
from a single patient in a particular sample, but provide a reasonable guide. Specificity, precision,
and recall are for the F1-optimal operational point.
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Table S3A. Performance summary DNPR (AUROC)

Model Prediction Interval (months) » 0-3 0-6 0-12 0-36 0-60
Exclusion Interval (months)

Bag-of-words 0 0.794 (0.791-0.797)  0.800 (0.797-0.803)  0.807 (0.805-0.809) | 0.807 (0.805-0.809)  0.799 (0.797-0.800)
3 - 0.815 (0.808-0.821)  0.823 (0.819-0.826)  0.812 (0.810-0.814)  0.798 (0.796-0.800)

6 - = 0.826 (0.821-0.830) | 0.810 (0.807-0.812)  0.794 (0.792-0.797)

MLP 0 0.876(0.873-0.879)  0.871(0.869-0.873)  0.864 (0.861-0.866)  0.845 (0.843-0.847)  0.832 (0.830-0.834)
3 - 0.836 (0.830-0.841)  0.832 (0.828-0.836)  0.838 (0.836-0.840)  0.828 (0.827-0.830)

6 - - 0.838 (0.833-0.842) | 0.830 (0.828-0.833)  0.824 (0.822-0.825)

GRU ' 0 0917 (0.914-0.919)  0.903 (0.900-0.905)  0.883 (0.881-0.885)  0.852 (0.850-0.854)  0.836 (0.834-0.837)
‘ 3 - 0.859 (0.854-0.866)  0.852 (0.848-0.855)  0.832 (0.830-0.835)  0.820 (0.818-0.822)

6 - - 0.848 (0.844-0.852) | 0.827 (0.824-0.829)  0.815 (0.812-0.816)

2|- - - 0.814 (0.811-0.817)  0.803 (0.801-0.805)

0 0.934(0.932-0.937)  0.923 (0.920-0.925)  0.908 (0.906-0.911)  0.879 (0.877-0.880)  0.861 (0.860-0.863)

3 - 0.866 (0.860-0.870)  0.862 (0.857-0.866)  0.843 (0.841-0.844)  0.830 (0.828-0.831)

6 - - 0.834 (0.830-0.838) | 0.829 (0.827-0.832)  0.817 (0.816-0.819)

12 - - - 0.827 (0.825-0.830)  0.816 (0.814-0.818)

Transformer - Known risk factors ' 0 0.850 (0.847-0.852)  0.850 (0.847-0.852)  0.850 (0.848-0.851)  0.838 (0.837-0.840)  0.832 (0.831-0.833)

Transformer

996

Table S3B. Performance summary DNPR (specificity/precision/recall)

Model Prediction Interval (months): = 0-3 0-6 0-12 0-36 0-60
Exclusion Interval (months) Metric
Bag-of-words 0 | specificity 98.64% (96.31%-98.83%) 98.07% (95.42%-98.85%) 98.18% (97.50%-98.80%) 95.55% (94.86%-98.01%) 95.06% (94.09%-95.75%)
0 | precision 0.3% (0.3%-0.4%) 0.4% (0.4%-0.5%) 0.6% (0.6%-0.7%) 0.9% (0.8%-0.9%) 1.0% (0.9%-1.0%)
0 recall 5.4% (4.6%-13.4%) 8.0% (4.9%-17.5%) 7.7% (5.3%-9.9%) 16.6% (8.1%-18.6%) 16.5% (14.6%-19.2%)
3 | specificity - 99.91% (99.80%-99.91%) 99.72% (99.15%-99.80%) 97.04% (94.91%-99.70%) 94.82% (93.27%-97.03%)
3 precision - 0.2% (0.1%-0.3%) 0.4% (0.3%-0.5%) 0.6% (0.6%-0.9%) 0.7% (0.7%-0.7%)
3 recall - 1.0% (0.7%-2.1%) 2.0% (1.4%-4.9%) 11.7% (1.8%-19.4%) 17.2% (10.2%-22.2%)
6 | specificity - - 99.73% (99.19%-99.74%) 99.71% (97.11%-99.72%) 96.72% (93.37%-97.43%)
6 | precision - - 0.2% (0.2%-0.3%) 0.7% (0.5%-0.8%) 0.6% (0.6%-0.7%)
6  recall - - 2.1% (1.7%-5.2%) 1.7% (1.6%-11.6%) 10.8% (8.5%-20.7%)
MLP 0 | specificity 99.74% (99.68%-99.82%) 99.73% (99.66%-99.82%) 99.79% (99.66%-99.82%) 99.69% (99.53%-99.74%) 99.54% (99.43%-99.61%)
0 | precision 2.7% (2.4%-3.0%) 3.4% (3.0%-3.9%) 4.3% (3.6%-4.7%) 4.8% (4.1%-5.3%) 4.5% (4.2%-4.9%)
0 recall 9.0% (6.9%-11.1%) 9.1% (7.0%-11.1%) 7.3% (6.6%-9.8%) 7.3% (6.5%-9.4%) 7.9% (7.1%-9.0%)
3 | specificity - 99.85% (99.72%-099.87%) 99.83% (99.71%-09.84%) 99.75% (99.50%-99.76%) 99.43% (99.39%-99.56%)
3 precision - 0.5% (0.4%-0.6%) 1.0% (0.9%-1.2%) 2.0% (1.5%-2.1%) 1.8% (1.7%-2.0%)
3 | recall - 3.5% (2.8%-5.4%) 3.3% (2.9%-4.8%) 3.7% (3.4%-5.9%) 5.1% (4.3%-5.6%)
6 | specificity - - 99.80% (99.80%-99.82%)  99.64% (99.62%-99.92%) 99.61% (99.59%-99.64%)
6 | precision - - 0.3% (0.3%-0.4%) 1.0% (0.9%-1.9%) 1.3% (1.2%-1.4%)
6  recal - - 2.0% (1.5%-2.4%) 3.1% (1.3%-3.5%) 2.8% (2.6%-3.1%)
GRU 0 | specificity 99.95% (99.93%-99.95%) 99.92% (99.89%-99.94%) 99.89% (99.87%-99.91%) 99.82% (99.77%-99.87%) 99.76% (99.74%-99.81%)
0 | precision 15.1% (13.1%-15.9%)  14.0% (11.7%-15.9%)  13.1% (12.0%-14.6%)  11.6% (102%-13.5%)  10.4% (9.8%-11.5%)
0 recall 127% (11.9%-14.0%)  12.6% (11.4%-14.7%)  12.6% (11.4%-135%)  10.8% (9.5%-12.0%) 10.0% (9.1%-10.5%)
3 | specificity - 99.97% (99.93%-09.97%) 99.94% (99.91%-99.95%) 99.86% (99.83%-99.89%) 99.84% (99.79%-99.86%)
3 precision - 2.8% (2.2%-3.4%) 5.2% (4.1%-6.0%) 5.5% (4.9%-6.2%) 5.8% (5.0%-6.3%)
3 recall - 4.9% (4.2%-7.1%) 6.1% (5.3%-7.6%) 6.0% (5.1%-6.7%) 5.1% (4.7%-5.7%)
6 | specificity - - 99.93% (99.85%-99.96%) 99.88% (99.85%-99.93%) 99.84% (99.78%-99.85%)
6 | precision - - 1.7% (1.3%-2.2%) 4.3% (3.5%-5.5%) 4.3% (3.7%-4.7%)
6 | recall - - 3.8% (2.8%-5.6%) 4.4% (3.5%-5.3%) 4.2% (3.9%-4.8%)
12 | specificity - - - 99.67% (99.58%-99.89%) 99.79% (99.47%-99.84%)
12 | precision - - - 1.1% (0.9%-1.3%) 1.7% (1.2%-1.9%)
12 | recall - - - 4.4% (2.0%-5.1%) 2.6% (2.2%-4.6%)
Transformer 0 | specificity 99.95% (99.929%-99.96%) 99.93% (99.91%-99.94%) 99.92% (99.90%-099.93%) 99.88% (99.87%-99.90%) 99.87% (99.83%-99.88%)
0 precision 18.6% (15.6%-22.5%)  18.8% (16.9%-19.7%)  19.4% (17.8%-21.6%)  18.1% (17.1%-19.9%)  18.0% (15.2%-18.9%)
0 recall 16.5% (14.4%-19.4%)  17.0% (16.1%-18.5%)  15.6% (14.7%-165%)  12.3% (11.7%-12.9%)  10.2% (9.8%-11.2%)
3 | specificity - 99.92% (99.91%-99.98%) 99.92% (99.92%-9.93%) 99.87% (99.86%-09.91%) 99.63% (39.56%-99.64%)
3 | precision - 1.7% (1.4%-3.0%) 4.3% (3.8%-4.8%) 5.4% (4.9%-6.6%) 2.7% (2.5%-2.9%)
3 | recall - 5.9% (2.4%-7.2%) 6.5% (6.0%-7.2%) 5.2% (4.5%-5.6%) 5.3% (5.0%-6.0%)
6  specificity - - 99.41% (98.219%-99.42%) 99.51% (99.47%-99.52%) 99.34% (95.82%-99.38%)
6 | precision - - 0.2% (0.1%-0.2%) 0.7% (0.7%-0.8%) 0.8% (0.7%-0.9%)
6 recall - - 3.4% (2.7%-8.4%) 3.2% (2.9%-3.5%) 3.2% (3.0%-16.0%)
12 | specificity - - - 99.44% (99.43%-99.45%) 99.41% (94.87%-99.42%)
12 | precision - - - 0.5% (0.4%-0.5%) 0.6% (0.5%-0.7%)
12 | recall - - - 3.1% (2.8%-3.5%) 2.7% (2.5%-18.3%)
Transformer - Known risk factors 0 | specificity 99.96% (99.92%-99.97%) | 99.92% (99.91%-99.93%) 99.91% (99.91%-99.92%) 99.87% (99.76%-99.88%) 99.79% (99.73%-99.88%)
0 | precision 11.6% (7.4%-12.7%) 9.2% (8.6%-10.0%) 10.3% (9.7%-10.8%) 3.6% (2.6%-3.9%) 2.8% (2.4%-4.0%)
997 0 recall 6.9% (6.3%-9.7%) 9.2% (8.5%-9.7%) 8.3% (7.9%-8.7%) 2.5% (2.3%-3.2%) 2.4% (1.9%-2.8%)
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Table S3C. Performance summary DNPR model validated on RPDR (AUROC).

Prediction Interval (i

ths) —

Exclusion Interval (months)

0-6

0-12
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GRU (cross evaluation)

Transformer (cross evaluation)

GRU (cross evaluation)

Transformer (cross evaluation)

Model

Table S3D. Performance summary DNPR model validated on RPDR (specificity/precision/recall).

0
3
6
0
3
6

0.830 (0.828-0.832)

0.845 (0.841-0.848)
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Exclusion Interval ( Metric
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specificity
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precision

specificity
precision

specificity

precision

specificity

precision
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Interval (i
Interval (i h
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Table S3E

ths) > 0-3

96.88% (96.88%-96.89%) 96.88% (96.87%-96.89%)

1.8% (1.7%-1.8%)
29.8% (29.3%-30.4%)

92.33% (92.30%-92.36%)

0.8% (0.8%-0.8%)
52.0% (50.9%-52.8%)

0-6

0.816 (0.814-0.818)
0.763 (0.759-0.767)

0.832 (0.829-0.835)
0.702 (0.696-0.707)

2.0% (2.0%-2.0%)
28.2% (27.8%-28.6%)

98.81% (98.80%-98.81%)

1.1% (1.1%-1.2%)
17.2% (16.6%-17.9%)

1.1% (1.1%-1.1%)
47.1% (46.3%-47.9%)

99.33% (99.30%-99.74%)

0.3% (0.2%-0.3%)
2.4% (1.0%-2.8%)

0-12

92.34% (92.32%-92.37%)

0.793 (0.791-0.795)
0.721 (0.717-0.724)
0.663 (0.659-0.667)
0.815 (0.813-0.818)
0.697 (0.694-0.700)
0.710 (0.706-0.715)

0-12

2.1% (2.1%-2.1%)
26.2% (25.8%-26.5%)

1.7% (1.6%-1.7%)
12.1% (11.4%-14.9%)

99.70% (99.63%-99.74%)

1.1% (1.0%-1.2%)
4.4% (3.9%-5.2%)

1.4% (1.4%-1.4%)
42.8% (41.8%-45.6%)

0.6% (0.6%-0.7%)
2.7% (2.4%-3.0%)

95.97% (91.39%-96.07 %)

0.3% (0.3%-0.4%)
13.1% (12.5%-27.4%)

. Performance summary RPDR (AUROC)

96.73% (96.72%-96.75%)

99.06% (98.81%-99.06%)

92.35% (91.79%-92.38%)

99.31% (99.29%-99.33%)

0.766 (0.765-0.768)
0.702 (0.700-0.705)
0.677 (0.674-0.679)
0.776 (0.773-0.778)
0.702 (0.699-0.705)
0.715 (0.712-0.718)

0-36

96.16% (95.54%-96.21%)

2.3% (2.3%-2.3%)

24.3% (23.8%-27.8%)
99.20% (99.07%-99.20%)

2.7% (2.6%-2.9%)
8.8% (8.4%-9.9%)

99.23% (99.22%-99.28%)

1.7% (1.7%-1.8%)
6.2% (5.9%-6.6%)

92.32% (92.22%-92.62%)

1.7% (1.6%-1.7%)

33.5% (32.6%-34.2%)
99.31% (99.29%-99.33%)

1.1% (1.1%-1.2%)
2.5% (2.3%-2.7%)

97.31% (91.00%-97.32%)

0.9% (0.8%-0.9%)
8.4% (8.1%-25.9%)

0.747 (0.746-0.749)
0.682 (0.680-0.684)
0.653 (0.650-0.655)
0.764 (0.761-0.766)
0.697 (0.694-0.700)
0.700 (0.698-0.702)

2.4% (2.3%-2.4%)
24.9% (24.3%-25.2%)

2.8% (2.5%-2.9%)
8.3% (8.0%-12.5%)

1.9% (1.8%-2.0%)
5.2% (5.0%-5.6%)

1.8% (1.7%-1.8%)
31.6% (30.8%-34.4%)
99.20% (99.18%-99.21
1.6% (1.5%-1.7%)
3.5% (3.3%-3.6%)

0.9% (0.8%-0.9%)
26.5% (23.4%-27.1%)

95.54% (95.51%-95.59%)

99.07% (98.42%-99.08%)

99.22% (99.15%-99.23%)

92.28% (91.52%-92.47%)

%)

89.27% (89.24%-90.66%)

Bad-of-words
MLP
GRU

Transformer

-
N O W O MO W o o o

-

0.835 (0.832-0.837)
0.925 (0.923-0.927)
0.940 (0.939-0.941)

0.942 (0.940-0.943)

0.829 (0.827-0.831)
0.914 (0.912-0.916)
0.927 (0.925-0.929)
0.848 (0.844-0.853)

0.928 (0.926-0.929)
0.819 (0.813-0.825)

0.818 (0.816-0.820)
0.897 (0.895-0.899)
0.898 (0.896-0.900)
0.830 (0.827-0.833)
0.777 (0.772-0.782)
0.907 (0.905-0.908)
0.809 (0.805-0.813)
0.806 (0.800-0.810)

0.800 (0.798-0.801)
0.867 (0.866-0.869)
0.876 (0.874-0.878)
0.808 (0.805-0.810)
0.771 (0.768-0.773)
0.733 (0.729-0.736)
0.869 (0.867-0.870)
0.802 (0.799-0.805)
0.788 (0.785-0.790)
0.786 (0.783-0.789)

0.775 (0.773-0.777)
0.839 (0.837-0.841)
0.853 (0.851-0.854)
0.785 (0.783-0.787)
0.745 (0.743-0.748)
0.715 (0.712-0.718)
0.847 (0.846-0.849)
0.781 (0.779-0.784)
0.768 (0.766-0.771)
0.756 (0.753-0.760)
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Table S3F. Performance summary RPDR (specificity/precision/recall)

1004
1005

1006

Model Prediction Interval (months): » 0-3 0-6 0-12 0-36 0-60
Exclusion Interval | Metric
Bag-of-words 0 . specificity [ 99.56% (99.55%-99.72%) | 99.56% (99.55%-99.62%) . 99.57% (99.56%-99.59%) I 99.55% (99.54%-99.57 %) . 99.54% (99.47%-99.56%)
0 precision 2.9% (2.7%-3.4%) 3.9% (3.8%-4.1%) 5.9% (5.7%-6.0%) 8.3% (8.1%-8.6%) 8.7% (8.1%-9.0%)
0 recall 6.7% (5.0%-7.0%) 7.8% (7.1%-8.1%) 9.8% (9.3%-10.1%) 10.7% (10.3%-11.0%) 9.8% (9.6%-10.5%)
MLP 0 specificity 99.75% (99.69%-99.75%) 99.75% (99.70%-99.76%) 99.69% (99.68%-99.69%) 99.55% (99.54%-99.62%) 99.54% (99.52%-99.54%)
0 precision 18.0% (16.7%-18.3%) 20.1% (18.7%-20.5%) 19.5% (19.1%-19.8%) 18.3% (18.1%-19.5%) 18.5% (18.1%-18.7%)
0 recall 29.2% (28.7%-32.5%) 27.0% (26.6%-29.9%) 27.7% (27.2%-28.1%) 26.8% (24.7%-27.2%) 23.8% (23.5%-24.3%)
GRU 0 specificity 99.84% (99.84%-99.84%) 99.84% (99.80%-99.85%) 99.78% (99.77%-99.82%) 99.66% (99.64%-99.68%) 99.64% (99.58%-99.66%)
0 precision 28.0% (27.5%-28.6%) 30.5% (27.6%-31.1%) 26.5% (25.8%-29.3%) 22.0% (21.3%-22.6%) 21.6% (20.2%-22.4%)
0 recall 33.0% (32.3%-33.5%) 30.1% (29.5%-33.2%) 29.4% (26.6%-30.1%) 25.4% (24.7%-26.0%) 22.9% (22.1%-24.6%)
3 specificity - 99.81% (99.80%-99.91%) 99.80% (99.78%-99.81%) 99.48% (99.48%-99.49%) 99.48% (99.48%-99.49%)
3 precision - 8.2% (7.8%-10.4%) 9.8% (9.1%-10.1%) 10.1% (9.9%-10.4%) 10.5% (10.3%-10.6%)
3 recall - 21.3% (13.8%-22.1%) 15.8% (15.2%-17.0%) 22.1% (21.7%-22.5%) 18.1% (17.7%-18.4%)
6  specificity - - 99.81% (99.78%-99.84%) 99.64% (99.63%-99.64%) 99.63% (99.62%-99.64%)
6 precision - - 5.1% (4.8%-5.5%) 8.1% (7.8%-8.3%) 8.3% (8.1%-8.6%)
6 recall - - 12.6% (11.2%-14.0%) 14.8% (14.4%-15.2%) 11.5% (11.1%-11.9%)
12 specificity - - - 99.72% (99.54%-99.75%) 99.54% (99.46%-99.58%)
12 precision B R - 5.1% (4.3%-5.5%) 4.8% (4.5%-5.1%)
12 recall - - - 8.9% (8.1%-12.1%) 9.2% (8.5%-10.3%)
Transformer 0 specificity 99.79% (99.78%-99.83%) 99.65% (99.65%-99.65%) 99.65% (99.63%-99.66%) 99.51% (99.50%-99.52%) 99.50% (99.48%-99.52%)
0 precision 22.9% (22.5%-24.9%) 21.0% (20.6%-21.3%) 21.7% (21.3%-22.1%) 19.4% (19.1%-19.7%) 19.7% (19.2%-20.0%)
0 recall 32.9% (29.0%-33.5%) 39.9% (39.4%-40.3%) 35.3% (34.7%-36.4%) 31.0% (30.4%-31.5%) 27.6% (27.2%-28.3%)
3 specificity - 99.23% (98.35%-99.30%) 98.38% (98.16%-99.25%) 99.42% (99.39%-99.44%) 99.40% (99.29%-99.43%)
3 precision - 1.1% (1.0%-1.2%) 1.9% (1.8%-2.2%) 6.6% (6.4%-6.9%) 6.9% (6.5%-7.2%)
3 recall - 10.1% (9.2%-20.0%) 17.3% (8.8%-19.5%) 12.7% (12.1%-13.2%) 11.6% (11.1%-13.0%)
6 specificity - - 99.25% (99.21%-99.27%) 99.22% (99.19%-99.26%) 99.23% (99.19%-99.26%)
6 precision - - 1.9% (1.8%-2.0%) 4.0% (3.8%-4.2%) 4.4% (4.2%-4.5%)
6 recall - - 12.2% (11.1%-12.9%) 11.1% (10.5%-11.6%) 10.0% (9.5%-10.5%)
12 specificity - - - 97.95% (97.66%-99.01%) 99.00% (98.76%-99.02%)
12 precision - - - 1.9% (1.8%-2.1%) 2.8% (2.6%-2.9%)
12 recall - - - 16.5% (9.0%-18.7%) 9.3% (8.8%-10.6%)
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A subset of 23 diseases that have been considered as risk factors for pancreatic cancer (Yuan et
al. 2020; Klein 2021) were chosen for the “known risk factor” analysis. Indeed, most of these are

flagged by the IG feature extraction method to make a significant contribution to the ML

prediction of cancer occurrence (Figure 4). These risk factors were used to train a separate time-
series model ‘Transformer - known risk factors’ for comparison to the model trained on all ICD

codes (Figure 3).
ICD codes Diseases
C18 Malignant neoplasm of colon
C34 Malignant neoplasm of bronchusand lung
C50 Malignant neoplasm of breast.
C61 Malignant neoplasm of prostate
E10, E11 Type I/1l diabetes mellitus
E66 Obesity
E78 High Cholestrol
E84 Cystic fibrosis
F32 Depression
110 Hypertension
182 Venous embolism and thrombosis
KOS Periodontal disease
K21 GERD
K27 Peptic Ulcer Disease
K50, K51, K52 |Inflammatory bowel disease
K85 AcutePancreatitis
K86 Chronic Pancreatitis
R17 Jaundice
R63 Weight loss
792 Personal history of medical treatment

Table S5. Disease attribution without and with 3 months data exclusion
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1032 In order to discover the top diseases that contribute to our model’s risk prediction, we calculated
1033 the contribution score for all input features using integrated gradients (IG), an attribution method
1034  for neural networks. The IG contribution score (arbitrary units) was calculated for trajectories
1035  with cancer occurrence in the time windows 0-6 months, 6-12 months, 12-24 months and 24-36
1036  months both without data exclusion (A) and with 3 months data exclusion (B).

1037
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Cancer in 0-6 months

Unspecified jaundice
(284.1181)

Medical observation and evaluation
for suspected diseases and conditions
(211.639)

Other diseases of biliary tract
(177.8008)

Abdominal and pelvic pain
(112.6088)

Malignant neoplasm of other and uns
pecified parts of biliary tract (97.1554)

Other diseases of pancreas
(82.8027)

Secondary malignant neoplasm of res
piratory and digestive organs (68.4903)

Symptoms and signs concerning food
and fluid intake (34.5983)

Non-insulin-dependent diabetes mell
itus (34.5022)

Other anaemias
(20.8205)

Diseases of pancreas

(20.4819)

Other functional intestinal disorde
rs (19.5875)

Acute pancreatitis
(19.4046)

Dyspepsia
(18.3121)

Gastritis and duodenitis
(16.0617)

Mental and behavioural disorders du
e to use of tobacco (15.348)

Cholelithiasis
(14.4581)

Other special examinations and inve
stigations of persons without complaint
or reported diagnosis (14.3472)

Other diseases of gallbladder and b
iliary (13.8268)

Malignant neoplasm of gallbladder a
nd bile ducts (13.389)

Neoplasm of unspecified nature of d
igestive organs (13.0823)

Other diseases of stomach and duode
num (12.0664)

Secondary malignant neoplasm of res
piratory and digestive systems (12.0028)

Malignant neoplasm of liver and int
rahepatic bile ducts (11.7698)

Insulin-dependent diabetes mellitus
(10.9021)

Malignant neoplasm of small intesti
ne (10.7767)

Diseases contribution at different time to cancer (DNPR)

Cancer in 6-12 months

Other diseases of biliary tract
(31.8526)

Unspecified jaundice
(25.1092)

Medical observation and evaluation
for suspected diseases and conditions
(23.8492)

Other diseases of pancreas
(18.1017)

Malignant neoplasm of other and uns
pecified parts of biliary tract (11.5094)

Abdominal and pelvic pain
(11.0715)

Secondary malignant neoplasm of res
piratory and digestive organs
(10.2011)

Non-insulin-dependent diabetes mell
itus (7.0361)

Malignant neoplasm without specific
ation of site (4.6507)

Other anaemias
(4.361)

Diseases of pancreas
(4.2567)

Other diseases of gallbladder and b
iliary (2.95)

Malignant neoplasm of gallbladder a
nd bile ducts (2.7041)

Insulin-dependent diabetes mellitus
(2.6747)

Gastric ulcer

(2.3941)

Gastritis and duodenitis
(2.3597)

Benign neoplasm of colon, rectum, a
nus and anal canal (2.3327)

Diabetes mellitus
(2.3278)

Malignant neoplasm of prostate
(2.3072)

Peptic ulcer, site unspecified
(2.2885)

Phlebitis and thrombophlebitis
(2.2621)

Other symptoms and signs involving
the digestive system and abdomen
(2.1142)

Acute pancreatitis
(2.0593)

Symptoms referable to abdomen and |
ower gastro-intestinal tract (1.9455)

Other functional intestinal disorde
rs (1.8659)
Cholelithiasis

(1.6317)

Cancer in 12-24 months

Medical observation and evaluation
for suspected diseases and conditions
(36.4821)

Other diseases of biliary tract
(35.7892)

Other diseases of pancreas
(15.4172)

Abdominal and pelvic pain
(12.03)

Non-insulin-dependent diabetes mell
itus (11.523)

Malignant neoplasm of other and uns
pecified parts of biliary tract (7.8586)

Unspecified jaundice
(7.7704)

Other functional intestinal disorde
rs (6.7108)

Diseases of pancreas
(5.5495)

Secondary malignant neoplasm of res
piratory and digestive organs (5.5292)

Other anaemias
(5.2112)

Disorders of sphingolipid metabolis
m and other lipid storage disorders
(4.4317)

Acute pancreatitis
(3.8305)

Gastritis and duodenitis
(3.5942)

Malignant neoplasm without specific
ation of site (3.5324)

Cholelithiasis

(3.155)

Diabetes mellitus
(3.116)

Ascites
(2.5611)

Malignant neoplasm of bronchus and
lung (2.4712)

Phlebitis and thrombophlebitis
(2.4429)

Neoplasm of unspecified nature of d
igestive organs (2.4347)

Symptoms and signs concerning food
and fluid intake (2.3337)

Gastro-oesophageal reflux disease
(2.3041)

Benign neoplasm of colon, rectum, a
nus and anal canal (2.2023)

Insulin-dependent diabetes mellitus
(2.1415)

Benign neoplasm of other and ill-de
fined parts of digestive system
(2.0262)

41

Cancer in 24-36 months

Medical observation and evaluation
for suspected diseases and conditions
(27.8223)

Other diseases of pancreas
(17.3262)

Other diseases of biliary tract
(13.0355)

Non-insulin-dependent diabetes mell
itus (10.1258)

Unspecified jaundice

(8.5648)

Abdominal and pelvic pain
(7.1503)

Malignant neoplasm of other and uns
pecified parts of biliary tract (4.2577)

Gastritis and duodenitis
(4.0241)

Insulin-dependent diabetes mellitus
(3.8811)

Other anaemias
(3.304)

Cholelithiasis
(2.7231)

Other functional intestinal disorde
rs (2.7213)

Benign neoplasm of colon, rectum, a
nus and anal canal (2.6348)

Symptoms and signs concerning food
and fluid intake (2.6321)

Acute pancreatitis
(2.2948)

Diabetes mellitus
(1.9263)

Diseases of pancreas
(1.6795)

Gastric ulcer
(1.6373)

Unspecified diabetes mellitus
(1.6134)

Pleural effusion, not elsewhere cla
ssified (1.5121)

Secondary malignant neoplasm of res
piratory and digestive organs (1.4997)

Phlebitis and thrombophlebitis
(1.4223)

Dyspepsia
(1.3269)

Other endocrine disorders
(1.1847)

Diverticular disease of intestine
(1.0687)

Disorders of sphingolipid metabolis
m and other lipid storage disorders
(1.0467)



https://doi.org/10.1101/2021.06.27.449937
http://creativecommons.org/licenses/by-nc-nd/4.0/

1039

1040
1041
1042
1043
1044
1045
1046
1047

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.27.449937; this version posted April 5, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Ascites
(10.7206)

Neoplasm of uncertain or unknown be
haviour of oral cavity and digestive

Gastro-oesophageal reflux disease
(1.4633)

Dyspepsia
(1.4628)

Aortic aneurysm and dissection
(1.9501)

Other diseases of gallbladder and b
iliary (1.8843)

42

Peptic ulcer, site unspecified
(0.9385)

Symptoms referable to abdomen and |
ower gastro-intestinal tract (0.8921)

organs (10.3875)

Gastro-oesophageal reflux disease Aortic aneurysm and dissection Dyspepsia Other diseases of liver
(10.0672) (1.3979) (1.7424) (0.8888)

Phlebitis and thrombophlebitis Benign neoplasm of other and ill-de Other diseases of stomach and duode Ulcer of duodenum

(9.2468) fined parts of digestive system (1.323) num (1.5775) (0.8)

Malignant neoplasm without specific Symptoms and signs concerning food Other septicaemia Malignant neoplasm of prostate
ation of site (9.0041) and fluid intake (1.2979) (1.3414) (0.7647)

Other symptoms and signs involving Malignant neoplasm of trachea, bron  Diverticular disease of intestine Atherosclerosis

the digestive system and abdomen chus and lung (1.261) (1.331) (0.7631)

(8.4031)

Essential (primary) hypertension
(7.7946)

Other diseases of liver

(7.6617)

Malignant neoplasm of other and ill
-defined sites (6.6387)

Benign neoplasm of other and ill-de
fined parts of digestive system (6.301)

Duodenal ulcer
(6.2843)

Gastric ulcer
(5.9376)

Benign neoplasm of colon, rectum, a
nus and anal canal (5.7036)

Symptoms referable to abdomen and |
ower gastro-intestinal tract (5.4632)

Malignant neoplasm of bronchus and
lung (4.7082)

Pleural effusion, not elsewhere cla
ssified (4.4347)

Cholelithiasis

(4.3489)

Diabetes mellitus
(4.2116)

Unspecified diabetes mellitus
(4.1554)

Malignant neoplasm of prostate
(4.0276)

Secondary and unspecified malignant
neoplasm of lymph nodes (3.9627)

Diverticular disease of intestine

(3.7586)

Secondary malignant neoplasm of oth
er sites (3.6277)

Nausea and vomiting
(3.3564)

Other endocrine disorders
(1.0863)

Cholelithiasis

(1.0755)

Diverticular disease of intestine
(1.0489)

Malignant neoplasm of stomach
(1.0209)

Mental and behavioural disorders du
e to use of tobacco (1.0116)

Diverticula of intestine
(1.0026)

249 (0.9609)

Observation, without need for furth
er medical care (0.9154)

Other diseases of liver
(0.9113)

Essential (primary) hypertension
(0.7949)

Malignant neoplasm of bronchus and
lung (0.7484)

Ascites
(0.6991)

Other septicaemia
(0.6771)

Disorders of sphingolipid metabolis
m and other lipid storage disorders
(0.6247)

Malaise and fatigue
(0.6033)

Secondary and unspecified malignant
neoplasm of lymph nodes (0.591)

Duodenal ulcer
(0.5639)

Gastritis and duodenitis
(0.5465)

Symptoms referable to abdomen and |
ower gastro-intestinal tract (1.2453)

Other endocrine disorders
(1.136)

Malignant neoplasm of small intesti
ne (1.086)

Essential (primary) hypertension
(1.0785)

Other symptoms and signs involving
the digestive system and abdomen
(1.007)

Cerebral infarction
(0.9899)

Unspecified diabetes mellitus
(0.8776)

Malignant neoplasm of prostate
(0.8612)

Observation, without need for furth
er medical care (0.8388)

Volume depletion
(0.8175)

Mental and behavioural disorders du
e to use of alcohol (0.7736)

Other disorders of muscle
(0.7549)

Duodenal ulcer
(0.744)

Other diseases of liver
(0.7323)

Secondary and unspecified malignant
neoplasm of lymph nodes (0.7088)

Malignant neoplasm of gallbladder a
nd bile ducts (0.6838)

Gastric ulcer
(0.6811)

Secondary malignant neoplasm of oth
er sites (0.6706)

Aortic aneurysm and dissection
(0.7502)

Other septicaemia
(0.7314)

Mental and behavioural disorders du
e to use of tobacco (0.7186)

Mental and behavioural disorders du
e to use of alcohol (0.7092)

Essential (primary) hypertension
(0.6654)

Nausea and vomiting
(0.6648)

249 (0.6552)

Gastro-oesophageal reflux disease
(0.643)

Other diseases of stomach and duode
num (0.6189)

Cerebral infarction
(0.5482)

Duodenal ulcer
(0.5434)

Depressive episode
(0.5408)

Malignant neoplasm of colon
(0.5238)

Observation, without need for furth
er medical care (0.5187)

Malignant neoplasm of small intesti
ne (0.5159)

Cholelithiasis
(0.4915)

Phlebitis and thrombophlebitis
(0.4822)

Other symptoms and signs involving
the digestive system and abdomen
(0.4805)
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Cancer in 0-6 months

Other diseases of biliary tract
(32.3335)

Unspecified jaundice
(14.3137)

Other diseases of pancreas
(13.5165)

Non-insulin-dependent diabetes mell
itus (9.1564)

Diseases of pancreas
(8.8114)

Abdominal and pelvic pain
(8.1039)

Acute pancreatitis
(5.7806)

Malignant neoplasm of stomach
(4.6699)

Medical observation and evaluation
for suspected diseases and conditions
(3.6176)

Other anaemias
3.1611)

Diabetes mellitus
(2.5442)

Gastro-oesophageal reflux disease
(2.4501)

Dyspepsia
(2.1679)

Bacterial pneumonia, not elsewhere
classified (2.0704)

Malignant neoplasm of bronchus and
lung (1.6351)

Cholelithiasis
(1.5319)

Benign neoplasm of colon, rectum, a
nus and anal canal (1.3892)

Dislocation, sprain and strain of
oints and ligaments of head (1.3044)

Malignant neoplasm of small intesti
ne (1.2895)

Pneumonia, organism unspecified
(1.1685)

Osteoporosis without pathological f
racture (1.1565)

Other symptoms and signs involving
the digestive system and abdomen
(1.1477)

Malignant neoplasm of other and uns
pecified parts of biliary tract (1.1396)

Malignant neoplasm without specific
ation of site (1.133)

available under aCC-BY-NC-ND 4.0 International license.

Diseases contribution at different time to cancer (DNPR)

Cancer in 6-12 months

Other diseases of biliary tract
(25.4905)

Other diseases of pancreas
(11.5739)

Unspecified jaundice
(10.1354)

Non-insulin-dependent diabetes mell
itus (8.7353)

Medical observation and evaluation
for suspected diseases and
conditions (7.5375)

Diseases of pancreas
(5.4421)

Abdominal and pelvic pain
(3.3334)

Malignant neoplasm of bronchus and
lung (2.2486)

Benign neoplasm of colon, rectum, a
nus and anal canal (2.1298)

Diabetes mellitus
(1.9986)

Abnormal Involuntary movements
(1.6557)

Other anaemias
(1.6202)

Other symptoms and signs involving
the digestive system and abdomen
(1.5917)

Gastritis and duodenitis
(1.5842)

Cholelithiasis
(1.4921)

Gastro-oesophageal reflux disease
(1.4884)

Secondary malignant neoplasm of res
piratory and digestive organs (1.4277)

Mental and behavioural disorders du
e to use of tobacco (1.416)

Malignant neoplasm of stomach
(1.4045)

Osteoporosis without pathological f
racture (1.3343)

Other diseases of gallbladder and b
iliary (1.2574)

Acute pancreatitis
(1.1292)

Dyspepsia
(1.1197)

Bacterial pneumonia, not elsewhere
classified (1.0645)

Cancer in 12-24 months

Other diseases of biliary tract
(26.2387)

Non-insulin-dependent diabetes mell
itus (17.4123)

Medical observation and evaluation
for suspected diseases and
conditions (13.7912)

Other diseases of pancreas
(11.5773)

Abdominal and pelvic pain
(4.8105)

Diseases of pancreas
(4.2698)

Acute pancreatitis
(3.2563)

Unspecified jaundice
(2.9892)

Benign neoplasm of colon, rectum, a
nus and anal canal (2.7481)

Other anaemias
(2.5468)

Gastro-oesophageal reflux disease
(2.2908)

Disorders of sphingolipid metabolis
m and other lipid storage disorders
(2.0459)

Malignant neoplasm of bronchus and
lung (1.9628)

Diabetes mellitus
(1.8423)

Enlarged lymph nodes
(1.7293)

Other intervertebral disc disorders
(1.6947)

Bacterial pneumonia, not elsewhere
classified (1.5436)

Gastritis and duodenitis
(1.4928)

Other functional intestinal disorde
rs (1.4278)

Dyspepsia
(1.4028)

Delirium, not induced by alcohol an
d other psychoactive substances
(1.1866)

Hyperparathyroidism and other disor
ders of parathyroid gland (1.164)

Insulin-dependent diabetes mellitus
(1.1136)

Chronic ulcer of skin
(1.087)
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Cancer in 24-36 months

Non-insulin-dependent diabetes mell
itus (11.9299)

Other diseases of biliary tract
(11.2389)

Other diseases of pancreas
(8.8495)

Medical observation and evaluation
for suspected diseases and
conditions (8.5102)

Unspecified jaundice
(4.2823)

Benign neoplasm of colon, rectum, a
nus and anal canal (3.2988)

Abdominal and pelvic pain
(3.1899)

Gastritis and duodenitis
(2.8434)

Gingivitis and periodontal diseases
(2.7876)

Malignant neoplasm of bronchus and
lung (2.4107)

Gastro-oesophageal reflux disease
(1.9136)

Acute pancreatitis
(1.7894)

Malignant neoplasm of other and uns
pecified parts of biliary tract (1.6697)

Other anaemias
(1.5393)

Diabetes mellitus
(1.2959)

Angina pectoris
(1.2408)

Dyspepsia
(1.0569)

Malignant neoplasm of stomach
(1.0218)

Diseases of pancreas
(1.0155)

Mental and behavioural disorders du
e to use of tobacco (0.9639)

Delirium, not induced by alcohol an
d other psychoactive substances
(0.9083)

Other intervertebral disc disorders
(0.8991)

Disorders of pancreatic internal se
cretion other than diabetes mellitus
(0.895)

Dislocation, sprain and strain of j
oints and ligaments of shoulder girdle
(0.8586)


https://doi.org/10.1101/2021.06.27.449937
http://creativecommons.org/licenses/by-nc-nd/4.0/

1050

1051
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1053

Sequelae of poisoning by drugs, med
icaments and biological substances
(1.087)

Gastritis and duodenitis
(1.0649)

Umbilical hernia
(1.049)

Malignant neoplasm of cervix uteri
(0.9971)

Noninflammatory disorders of ovary,
fallopian tube and broad ligament
(0.974)

Insulin-dependent diabetes mellitus
(0.9269)

Secondary malignant neoplasm of res
piratory and digestive organs (0.9135)

Other noninflammatory disorders of
vulva and perineum (0.865)

Mental and behavioural disorders du
e to use of tobacco (0.8545)

850 (0.8509)

Delirium, not induced by alcohol an
d other psychoactive substances
(0.7508)

Malignant neoplasm of gallbladder a
nd bile ducts (0.7488)

Mental and behavioural disorders du
e to use of alcohol (0.7157)

Complications and misadventures in
operative therapeutic procedures (0.685)

Enlarged lymph nodes
(0.6249)

Other diseases of gallbladder and b
iliary (0.6058)

Phlebitis and thrombophlebitis
(0.5884)

Benign neoplasm of other and ill-de
fined parts of digestive system (0.5648)

Other venous embolism and thrombosi
s (0.5452)

Acute myocardial infarction
(0.5372)

Other surgical follow-up care
(0.5349)

Other noninfective gastroenteritis
and colitis (0.5322)

Unspecified acute lower respiratory
infection (0.5144)

Other diseases of oesophagus
(0.5117)

Gastro-enteritis and colitis, excep
t ulcerative, of non-infectious origin
(0.4643)

Malignant neoplasm of connective an
d other soft tissue (0.4607)
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Aortic aneurysm and dissection
(1.0609)

Dislocation, sprain and strain of
oints and ligaments of shoulder girdle
(0.8825)

Enlarged lymph nodes
(0.7821)

Postprocedural respiratory disorder
s, not elsewhere classified (0.7585)

850 (0.6887)

Other noninflammatory disorders of
vulva and perineumn (0.6836)

Chronic ulcer of skin
(0.6428)

Dislocation, sprain and strain of j
oint and ligaments of hip (0.6387)

Dislocation, sprain and strain of j
oints and ligaments of head (0.6196)

Other cerebrovascular diseases
(0.6025)

Malignant neoplasm without specific
ation of site (0.5877)

Chronic renal failure
(0.5764)

Malignant neoplasm of other and uns
pecified parts of biliary tract (0.5745)

Acute myocardial infarction
(0.5735)

Malignant neoplasm of gallbladder a
nd bile ducts (0.5688)

Gastric ulcer
(0.5565)

Other chronic obstructive pulmonary
disease (0.5372)

Synovitis and tenosynovitis
(0.5352)

Convulsions, not elsewhere classifi
ed (0.519)

Other diseases of oesophagus
(0.5127)

Other coagulation defects
(0.512)

Obesity
(0.5105)

Disorders of sphingolipid metabolis
m and other lipid storage disorders
(0.4908)

Heart failure
(0.4866)

Alcoholic liver disease
(0.4693)

None (0.4646)

Malignant neoplasm of stomach
(1.0713)

Postprocedural respiratory disorder
s, not elsewhere classified (1.0706)

Cholelithiasis
(1.0693)

Secondary malignant neoplasm of res
piratory and digestive organs (0.9917)

Benign mammary dysplasia
(0.9914)

Gingivitis and periodontal diseases
(0.9797)

Other chronic obstructive pulmonary
disease (0.9633)

Aortic aneurysm and dissection
(0.9152)

Paralytic ileus and intestinal obst
ruction without hernia (0.8735)

Osteoporosis without pathological f
racture (0.8014)

Malignant neoplasm of other and uns
pecified parts of biliary tract (0.8013)

Disorders of globe
(0.7984)

850 (0.794)

Open wound of wrist and hand
(0.7659)

Neoplasm of unspecified nature of d
igestive organs (0.7392)

Other septicaemia
0.717)

Symptomatic heart disease
(0.7164)

Mental and behavioural disorders du
e to use of tobacco (0.6664)

Abnormal involuntary movements
(0.6605)

Diseases of vocal cords and larynx,
not elsewhere classified (0.6412)

Other symptoms and signs involving
the digestive system and abdomen
(0.6085)

Dislocation, sprain and strain of |
oints and ligaments of head (0.6056)

Hypotension
(0.5991)
825 (0.5963)

Atrial fibrillation and flutter
(0.5832)

Chronic diseases of tonsils and ade
noids (0.5745)
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Bacterial pneumonia, not elsewhere
classified (0.8422)

Open wound of wrist and hand
(0.8262)

Special screening examination for n
eoplasms (0.8235)

Insulin-dependent diabetes mellitus
(0.8152)

Paralytic ileus and intestinal obst
ruction without hernia (0.8109)

Observation, without need for furth
er medical care (0.7409)

Acute myocardial infarction
(0.7025)

Obesity
(0.6952)

Personal history of malignant neopl
asm (0.6901)

Other diseases of oesophagus
(0.6649)

Dislocation, sprain and strain of j
oints and ligaments at ankle and foot
level (0.6579)

Benign neoplasm of urinary organs
(0.6276)

Dislocation, sprain and strain of j
oints and ligaments at wrist and hand
level (0.6254)

Hypotension
(0.6154)

Cerebral infarction
(0.6125)

Disorders of sphingolipid metabolis
m and other lipid storage disorders
(0.5905)

Cutaneous abscess, furuncle and car
buncle (0.5888)

Transient cerebral ischaemic attack
s and related syndromes (0.5777)

Cholelithiasis
(0.5719)

Aortic aneurysm and dissection
(0.5665)

Other disorders of bone density and
structure (0.5537)

Unspecified diabetes mellitus
(0.5417)

Phlebitis and thrombophlebitis
(0.5181)

Synovitis and tenosynovitis
(0.502)

Other diseases of intestine
(0.4841)

Umbilical hernia
(0.4795)
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1054  Fiqure S3. Distribution of disease codes as a function of age in the database.

1055

1056  Distribution of disease codes for a representative subset of diseases known to contribute to the risk
1057  of pancreatic cancer, as a fraction of all pancreatic cancer patients (orange) and all non-cancer
1058  patients (blue). The similarity of the distributions for some of these diseases with the distribution
1059  of occurrence of pancreatic cancer (red line, Gaussian fit to cancer diagnosis data) is consistent
1060  with either a direct or indirect contribution to cancer risk - but not taken as evidence in this work.
1061  The disease codes are ICD-10/ICD-8.

1062

1063

1064
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Disease distribution

C24/156 Malignant neoplasm in other and
unspecified parts of bile ducts

E66/277 Obesity

0.04 1

——— Cancer diagnosis
W Non cancer patients
Cancer patients

——— Cancer diagnosis
0 Non cancer patients
Cancer patients

0.03
>
o
c
S
5 0.02 4
2
0.01 41
0.00 -
0 20 40 60 80 20 40 60 80 100
Age at Event Age at Event
C18/153 Malignant neoplasm of colon E10/249 Insulin-dependent diabetes mellitus
0.07 1 —— Cancer diagnosis 0.035{ — Cancer diagnosis
0.06 - W Non cancer patients : W Non cancer patients
: Cancer patients Cancer patients
0.05 A
>
2
o 0.04
3
g
£ 0.03 1
0.02 1
0.01 1
0.00 - T
0 20 40 60 80 60 80 100
Age at Event Age at Event
K85/577 Acute pancreatitis R63/784 Weight loss and other food intake problems
0.035
——— Cancer diagnosis 0.05 1 —— Cancer diagnosis
0.030 1 === Non cancer patients W Non cancer patients
Cancer patients 0.044 © Cancer patients
0.025 A
9 9
S 0.020 4 S 0.03 1
= &
@ 0.015 2
[ &= 0.02 A
0.010
0.01 4
0.005 A
0.000 - 0.00 -
0 20 40 60 80 100 0
Age at Event Age at Event
E11/250 Non-insulin dependent diabetes mellitus R17/785 Unspecified jaundice
0.04 - - - 0.035 = -
. ——— Cancer diagnosis ——— Cancer diagnosis
W Non cancer patients 0.0304 == Non cancer patients
Cancer patients Cancer patients
0.03 0.025 A
9 o
g g 0.020
0.02
g  0.015 -
w w
.010 A
0.01 1 0.010
0.005 A
0.00 - 0.000 -
0 20 40 60 80 40 60 80 100
Age at Event Age at Event
K50-52/563 Inflammatory bowel disease E78/279 Hypercholesterolemia
——— Cancer diagnosis —— Cancer diagnosis
0.04 1 mww Non cancer patients 0.04 1 m=m Non cancer patients
Cancer patients Cancer patients
> 0.03 > 0.03
o o
c c
[ o
& &
S__: 0.02 g 0.02 4
0.01 0.01 4
0.00 - 0.00 -

20 40 60

Age at Event

80 100

Age at Event


https://doi.org/10.1101/2021.06.27.449937
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.27.449937; this version posted April 5, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

47

1066 Fiqure S4. Distribution of disease codes over years and age in the Danish (DK) and
1067 Boston (MGB) datasets.

1068

1069  Distribution of disease codes over time and age for the Danish DNPR (A,C) and Boston MGB
1070  datasets (B,D) for the pancreatic cancer (‘cancer’) and non-pancreatic-cancer (‘non-cancer’) cases.
1071  The disease code frequency is the total number of disease codes summed over all patients in the
1072 selected groups (cancer vs. non-cancer) divided by the total number of disease codes in the entire
1073  database.

1074  (A) The DNPR dataset has both ICD-8 and ICD-10 disease codes. The transition from ICD-8 to
1075  ICD-10 occurred in 1994, after which the disease code frequency increased significantly over the
1076  years. This increase could be due to alterations in clinical coding practices or due to higher disease
1077  awareness in the population. In this study, we did not perform mapping from ICD-8 to ICD-10
1078  codes. Instead, the model was trained on the non-mapped ICD-8 and ICD-9 codes for it to learn
1079  coding patterns independently of a mapping. (B) Disease distribution over time for the Boston
1080  MGB dataset. The dataset includes both ICD-9 and ICD-10 codes, for which we similarly did not
1081  apply any mapping. (C) Disease distribution over age for the Danish DNPR dataset showing an
1082  interesting increase of disease codes (all diseases) with age for the pancreatic cancer cases. (D)
1083  Disease distribution over age for the Boston MGB dataset.
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1085
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Figure S5. ROC curves for the transformer model for different prediction and
exclusion intervals.

For the transformer model, ROC curves were analysed across different prediction intervals (3, 6,
12, 36 and 60 months) and exclusion intervals (0, 3, 6 and 12 months). As expected, it is more

challenging to predict cancer occurrence in longer rather than shorter time intervals. We also see
that it becomes more challenging to predict cancer outcomes with higher exclusion intervals.
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(A-B) The DNPR ROC curves plot true positive rate (TPR) against false positive rate (FPR)
different prediction thresholds, where TPR is the true positives as a fraction of observed positives
(recall) and FPR is the false negatives as a fraction of observed negatives (1-specificity). A random
prediction (diagonal line) would have very low precision for equal TPR and FPR (AUROC=0.5).
Exclusion intervals are assessed in 0, 3, 6 or 12 months months. (A) The best-performing
Transformer models are evaluated for different prediction intervals starting at the time of
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assessment and ending at time points up to 60 months. The performance of the transformer model
is best for the 0-6 month time interval, but still reasonable up to the 0-60 month prediction interval.
Transformer performance (36-month) compared to the same model trained by (B) excluding from
the input diseases diagnoses in the last 0, 3, 6 or 12 months prior to the diagnosis of pancreatic
cancer. (C-D) The Boston MGB ROC curves for prediction intervals (C) and exclusion intervals

(D).

Figure S6. Age as a contributing factor

The integrated gradient method was used to extract the contribution (arbitrary units) of patient age
to the prediction at the time of assessment. This confirmed that the positive contribution to risk
rises strongly from age 50. As for the disease contributions, the age contribution was calculated in
relation to the 3 year (after the time of assessment/prediction) cancer risk.
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1128  Result S1: Draft economic considerations for the design of clinical screening trial

1129

1130  We propose a toy estimate of a practical scenario for a screening trial, taking into account typically
1131  available real-world data, the accuracy of prediction on such data, the estimated cost of a screening
1132 trial, the cost of clinical screening methods and the overall potential benefit of treatment.

1133

1134  The detailed design of a screening program, to be explored in clinical trials, depends on the
1135  organization of a particular health care system. In a ‘walk in’ scenario, in approximate analogy to
1136  colonoscopic screening for colorectal cancer, patients older than, e.g., age 50 would be invited for
1137  assessment of their risk by the prediction tool every 5 years and, if identified as high-risk, offered
1138  extensive clinical testing. In a ‘national system’ scenario, possible in centralized health systems
1139 with location-independent centralized aggregation of electronic health records, risk assessment
1140  could be done on an ongoing basis, possibly for each patient whenever a new disease event occurs.
1141  If a high-risk prediction is triggered, the responsible physician would receive an alert. With this
1142 diversity of scenarios, it is reasonable to propose clinical screening trials in several countries
1143 tailored to their particular health system.

1144

1145  To illustrate the economic benefits of such a screening and to stimulate discussion regarding the
1146  optimization of trial design, we have made a first-order-estimate for a clinical screening trial of
1147 10,000 people using the best model (the transformer model). For simplicity, we have made no

1148  assumptions regarding age distribution. Here is a simple economic model.
1149

1150 Net Benefit = Average benefit for each correctly identified cancer patient * TP
1151 — Monitoring expense for each high-risk patient * P

1152 - Basic cost per enrollee * N

1153

1154  where the screening cohort is N=10,000 and TP is the number of true positives, i.e., the number of
1155  correctly identified high-risk patients, and P is the number of actual positive patients, which we
1156  estimated using cancer incidence of the DNPR dataset. In our cost-benefit estimate, we arbitrarily
1157  set the screening trial cost at $200 per enrollee, the additional monitoring expense for a patient
1158  predicted at high risk by screening at $10,000 and the extra cost saved for advanced treatment for
1159  each monitored patient at $200,000, averaged over those in which cancer is detected (savings in
1160  excess of $200,000) and those in which it is not detected (no savings).

Estimated benefit of the screening trial Estimated benefit of the screening trial Estimated benefit of the screening trial
The best Transformer model (AUROC:0.861) The best GRU model (AUROC:0.836) The best bag-of-words model (AUROC:0.700)
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1164 Figure S7. An estimate of financial benefits for different models. We analyzed each
1165 possible operational point and calculated the corresponding cost and benefit, using
1166  ballpark estimates. We plotted the net benefits as a function of coverage of cancer
1167  patients, i.e. recall or sensitivity. Covering more cancer patients plausibly leads to a larger
1168  total benefit, but the total cost also increases. The optimal point is picked for maximal net
1169  benefit.

1170

1171  An optimal decision threshold has to balance the cost of assessment and testing against the
1172 potential financial benefit for reducing treatment cost. Using this simplified model, we estimated
1173 the net benefits of different models with all possible operational points. Such a screening trial for
1174 10,000 people would have $760,000 net benefit by choosing the balance between true and false
1175  positives such that the net benefit is optimal. This corresponds to a precision of 14.0% and a
1176  specificity of 99.7%. In contrast, a less good model GRU would have $540K net benefits but a
1177  bag-of-words model (baseline) would have no net benefits for any operational point because of the
1178  low incidence of pancreatic cancer.

1179

1180  The proposed concrete but hypothetical design of a screening trial is intended to guide the debate
1181  and ultimate decisions regarding implementation with clinicians and healthcare professionals.
1182  However, this calculation is based on roughly estimated numbers and does not reflect real-world
1183  cost analysis. Nor does this economic model reflect the non-monetary benefits to patients’ quality
1184  of'life, which should be the dominant factor in the design of trials and early intervention programs.
1185 In a real-world scenario, clinicians and payers in a particular health system have the opportunity
1186  to optimize the design of such screening trials with realistic cost-benefit parameters, as well as
1187  consideration of communication ethics and the non-financial aspects of patient benefit.

1188

1189 A key challenge for future realistic economic estimates is the mapping between ICD (diagnosis)
1190  codes to CPT (billing) codes that are used for expense calculations and reimbursements. In
1191  addition, in the US, there is substantial geographical variability in reimbursement even for the
1192 same CPT/billing codes.

1193
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