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One reason the mammalian visual system is viewed as hierarchical, such that
successive stages of processing contain ever higher-level information, is be-
cause of functional correspondences with deep convolutional neural networks
(DCNNs). However, these correspondences between brain and model activ-
ity involve shared, not task-relevant, variance. We propose a stricter test of
correspondence: If a DCNN layer corresponds to a brain region, then replac-
ing model activity with brain activity should successfully drive the DCNN’s
object recognition decision. Using this approach on three datasets, we found
all regions along the ventral visual stream best corresponded with later model
layers, indicating all stages of processing contained higher-level information
about object category. Time course analyses suggest long-range recurrent con-

nections transmit object class information from late to early visual areas.
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Main Text

Despite some shortcomings (/, 2), deep convolutional neural networks (DCNNs) have emerged
as the best candidate models for the mammalian visual system. These models take photo-
graphic stimuli as input and, after traversing multiple layers consisting of millions of connec-
tion weights, output a class or category label. Weights are trained on large datasets consisting
of natural images and corresponding labels.

The deep learning revolution in neuroscience began when layers of DCNNs were related
to regions along the ventral visual stream in an early-to-early and late-to-late pattern of corre-
spondence between brain regions and model layers (3-5, fig. 1A). This correspondence sup-
ported the view that the ventral stream is a hierarchy in which ever more complex features and
higher-level information are encoded as one moves from early visual areas like V1 or V4 to
inferotemporal (IT) cortex (6—S8).

However, these correspondences between brain and model activity were based on total
shared variance as opposed to task-relevant variance (fig. 1B). Much of cortex-wide neural
variance does not relate to the task of interest (9) and may co-vary with but not drive behaviour.
Correspondences established by correlation alone do not necessitate that model layers and brain
regions play the same functional role in the overall computation.

We propose a stronger test for evaluating how brain-like a model is. If, as is frequently
claimed (3-5), a specific layer in a DCNN corresponds to a brain region, then it should be
possible to substitute the activations on that layer with the corresponding brain activity and
drive the DCNN to an appropriate output (cf. 10-12, fig 1C). For example, if we take V4
activity from a monkey viewing an image of a car and interface that brain activity with an
intermediate DCNN layer hypothesised to correspond to V4, then the DCNN should respond

“car” absent any image input. How well the DCNN performs when directly interfaced (through
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a simple linear mapping (see SI materials & methods), with the brain provides a strong test of
how well the interfaced brain region corresponds to that layer of the DCNN.

We interfaced a pretrained DCNN (/3) with data from two human brain imaging studies
(14, 15) and a Macaque monkey study (/6). All three studies involved viewing complex images.
For a chosen model layer and brain region, we calculated a linear mapping from brain to model
activity by presenting the same images to the model for which we had neural recordings (fig.
1C). This simple linear mapping is a translation between brain and model activity. We evaluated
the quality of this translation by considering held-out images and brain data that were not used
in calculating the linear mapping (SI materials & methods).

Strikingly, for the two fMRI studies (figs 2A, 2B), the DCNN was most accurate at clas-
sifying novel images when brain activity across regions (both early and late along the ventral
stream) was interfaced with later model layers. In contrast to previous analyses that focused
on total variance, we did not find the early-to-early and late-to-late pattern of correspondence.
Even primary visual cortex, V1, best drove the DCNN when interfaced with an advanced layer.
For comparison, classifiers commonly used to decode information from fMRI data through mul-
tivariate pattern analaysis (MVPA) were at chance levels (fig. S2), which highlights the useful
constraints captured in the pretrained DCNN. After training on a million naturalistic images,
the DCNN developed representations that paralleled those of the ventral stream, which made
decoding object class possible by way of a linear mapping from brain activity to an advanced
DCNN layer.

The interpretation is that all brain regions contain advanced object recognition information,
which conflicts with strict hierarchical views of the ventral visual stream.

To rule out any alternative explanation based on the indirect nature of fMRI recordings, we
considered a third study consisting of direct multi-unit recording of spiking neurons implanted

in the ventral visual stream of Macaque monkeys (/6). These monkeys were shown images that
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did not readily align with the pretrained DCNN’s class labels, so we evaluated neural translation
performance by comparing the outputs of the DCNN when its input was a study image vs. when
a DCNN layer was driven by brain data elicited by the same image. For the distance measure,
KL divergence, lower values imply a better translation between brain and model activity. As in
the fMRI studies, both relatively early regions (i.e., V4) and late regions (i.e., IT) best translated
to later DCNN layers (fig 2C).

Across three diverse studies, we found a remarkably consistent pattern that strongly diverged
from previous analyses — both early and late regions along the ventral visual stream best cor-
responded (i.e., translated) to late model layers. It is not that previous analyses were poorly
conducted (see fig S1 for a successful reanalysis of data (/6) finding the early-to-early and late-
to-late canonical pattern). Rather, our novel analyses focused on task-relevant analysis, i.e.,
variance that can drive behaviour, provided a different view of the system than standard analy-
ses focused on shared variance. Integrating these two views suggests a non-hierarchical account
of object recognition marked by long-range recurrence transmitting higher-level information to
the earliest visual areas.

One way to reconcile the existing literature based on shared variance with our analyses
based on task-relevant variance is to propose that long-range connections from IT transmit
higher-level information to early visual areas. Even if most variance in lower-level visual areas
is attributable to stimulus-driven, bottom-up activity, the majority of task-relevant information
could be attributable to signals originating from IT (fig. 3).

This view predicts specific patterns of Granger causality between early and late areas along
the ventral visual stream. Do past values of one time series predict future values of the other?
In terms of total spiking activity, lower-level areas should first cause activity in higher-level
areas during the initial feed-forward pass in which stimulus-driven activity propagates along

the ventral visual stream. Later in processing, the causality should become reciprocal as top-
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down connections from IT affect firing rates in lower-level areas, such as V4 (fig 3, bottom
row). In contrast, Granger causality for task-relevant information should first be established
from IT to V4 (i.e., the top-down signal) and only later in processing should recurrent activity
lead to causality from V4 to IT (fig. 3, top row). In this fashion, all areas are effectively “late”
after long-range recurrent connections transmit information from IT to early visual areas along
the ventral stream though most variance for these areas would be dominated by lower-level
(bottom-up) stimulus information.

We tested these predictions using the monkey multi-unit spiking data (/6) that has the tem-
poral resolution to support the analyses. Images were presented one after the other, each visible
for 100ms, with a 100ms period between stimuli. Figure 4A shows the mean firing rates (10
ms bins) with activity in V4 increasing shortly before IT, consistent with stimulus-related ac-
tivity first occurring in V4. Figure 4B revisits our previous analyses (fig. 2C) but with spike
counts binned into 10ms intervals rather than aggregated over the entire trial. Even with only
10ms of recordings, neural translation from V4 and IT to an advanced DCNN network layer
minimises KL divergence between model outputs arising from image input vs. when driven by
brain activity.

Turning to the key Granger causality analyses, we evaluated whether early ventral stream
regions become more like late-ventral stream regions over time due to recurrence (fig. 3). As
processing unfolded, we found mutual causality between lower-level (V4) and higher-level (IT)
areas for analyses conducted over spike counts (fig. 4C) and for analyses on the KL divergence
times series that assessed the ability of brain regions to drive DCNN response (fig. 4D).

Critically, the specific predictions of the long-range recurrence hypothesis were supported
with V4 first driving IT (V4 — IT) for the analysis of spike counts but IT first driving V4
(V4 < IT) for the task-relevant information analysis using the KL divergence time series (see

SI for details). These results are consistent with stimulus-driven bottom-up activity proceed-
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ing from V4 to IT on an initial feed forward pass through the ventral stream with actionable
information about object recognition first arising in IT. Then, recurrent connections from IT
to V4 make task-relevant information available to V4. As this loop is completed and cycles,
both areas mutually influence one another with the impact of bottom-up stimulus information
maintained throughout the process.

Computational models can help infer the function of brain regions by linking model and
brain activity. Mulitlayer models, such as DCNNs, are particularly promising in this regard
because their layers can be systematically mapped to brain regions. Indeed, the deep learning
revolution in neuroscience began with analyses suggesting an early-to-early, late-to-late pattern
of correspondence between DCNN layers and brain regions along the ventral visual stream
during object recognition tasks (3-5).

However, as we have argued, correspondences based on total shared variance should be
treated with caution. To complement these approaches, we presented a test focused on task-
relevant variance that directly interfaced neural recordings with a DCNN model. If a brain
region corresponds functionally to a model layer, then brain activity substituted for model ac-
tivity at that layer should drive the model to the same output as when an image stimulus is
presented. Of course, models and brains speak different languages, so a translation between
brain and model activity must first be learned, which in our case was accomplished by a linear
transformation. Once the translation function is learned, novel brain data and images can be
used to evaluate possible brain-model correspondences.

Our approach, which focuses on task relevant variance within the overall computation, as
opposed to local shared variance (fig. 1) uncovered a pattern of correspondences that dramati-
cally differed from the existing literature. We found that all brain regions, from the earliest to the
latest of visual areas along the ventral stream, best corresponded to later model layers. These re-

sults indicate that neural recordings in all regions contain higher-level information about object
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category even when most variance in a region is attributable to lower-level stimulus properties
(fig. 3).

To resolve this discrepancy between our analyses focused on task-relevant variance and
those based on shared variance, we evaluated the hypothesis that long-range recurrence be-
tween higher-level brain regions, such as IT, influenced activity in lower-level areas like V4.
Analysing both firing rates of cells and information-level analyses using our brain-model inter-
face approach, we found evidence that recurrent activity renders all areas functionally “late” as
processing unfolds, even when total variance in some early visual regions is largely driven by
bottom-up stimulus information. In this way, we integrate previous findings with our own and
highlight how our method can be used to test hypotheses about information flow in the brain.

Our approach, which considers task-relevant variance, may help resolve conflicting inter-
pretations on the function of brain regions. For example, the fusiform face area (FFA) responds
selectively for faces, but its wider functional role in object recognition has been the subject of
extensive debate (/7). Here, we show that interfacing FFA into late model layers drives object
recognition comparably to the lateral occipital complex (fig. 2B) on non-face natural images.
We suspect that the function of a region will only be fully understood by considering task-
relevant variance across several tasks in light of activity in connected brain regions. The tight
interface we champion between computational models and brain activity should prove useful in
evaluating theoretical accounts of how the brain solves tasks over time.

Computational models that perform the tasks end-to-end, from stimulus to behaviour, should
be particularly useful. In essence, translating between brain regions to layers of such models can
make clear what role a brain region plays within the overall computation. In the case of object
recognition, our results suggested that recurrent models may be best positioned to explain how
the nature of information within brain regions changes as the computation unfolds.

This conclusion is in line with a growing body of modelling work in neuroscience that af-
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firms the value of recurrent computation (/8—20). Unlike the aforementioned work, we suggest
that long-distance recurrent connections that link disparate layers should be considered (cf. 21).
We suspect such models will be necessary to capture time course data and the duality found in
some brain regions, namely how most variance in a brain region can be attributable to lower-
level stimulus properties while co-mingled with important higher-level, task-relevant signals.

As deep learning accounts in neuroscience are extended to other domains, such as audi-
tion (22), and language processing (23), the lessons learned here may apply. Our brain-model
interface approach can help evaluate whether the brain processes signals across domains in an
analogous fashion. By minding the distinction between shared and task-relevant variance, the
role brain regions play within the overall computation may more readily come into focus.

Our approach may also have practical application in brain machine interfaces (BMI). Recent
BMI developments have emphasised the readout of motor commands, neural processes taking
place close to the periphery. In contrast, by leveraging the constraints provided by a pre-trained
DCNN, we were able to gain traction on the ‘stuff of thought’, categorical and conceptual
information in IT. Because we learned a general translation from brain to model, our approach
applied to BMI would allow distant generalisation. For example, we were able to extrapolate
to novel categories (fig. S3). For example, a translation from brain to model that never trained
on horses, but trained on other categories, can perform zero-shot generalisation when given
brain activity elicited by an image of a horse. The interface has the potential to produce a
domain-general mapping rather than one dependent on specific training data. In the future,
BMI approaches that address general thought without exhaustive training on all key elements

and their combinations may be feasible.
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Figure 1: Deep Convolutional Neural Networks (DCNNs) trained on large naturalistic image
datasets (24) have emerged as leading models of the mammalian ventral visual stream. (A) Typ-
ically, processing in DCNNGs is hierarchical starting with the stimulus and proceeding across
successive layers as higher-level information is extracted, culminating in predicting the class
label (/3). Numerous analyses (3—5) based on shared variance suggest the brain follows related
principles with an early-to-early, late-to-late pattern of correspondence between the ventral vi-
sual stream and DCNN layers. (B) These shared-variance correspondences are evaluated lo-
cally, typically involving one brain region and one model layer, with no recourse to behaviour
(i.e., the object recognition decision). (C) We propose a stronger test of correspondence based
on task-relevant variance. If a model layer and brain region correspond, then model activity
replaced with brain activity should drive the DCNN to an appropriate output (i.e., decision).
The quality of correspondence is evaluated by comparing DCNN performance when driven by
a stimulus image vs. interfaced with brain activity.
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Figure 2: Results from interfacing neural data with a Deep Convolutional Neural Network
(DCNN). Using the method shown in fig. 1C, brain activity is directly inputted to a model
layer to assess correspondence between a brain region and model layer. (A) For this human
fMRI study (15), all brain areas drive DCNN object recognition performance to above chance
levels. Performance is best for all brain areas when interfaced with later model layers. (B)
The same pattern of results is found for a second human fMRI study (/4). (C) In a third study,
KL divergence is used (see main text and SI) to measure the degree of correspondence for
when the DCNN is driven by image input vs. multi-unit recordings from macaque monkeys
(16). For KL divergence, lower values indicate better correspondence. Once again, all regions
best correspond to later network areas. These three analyses indicate that higher-level visual
information is present at all stages along the ventral visual stream.
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Figure 3: Hypothesised interactions between early (V4) and late (IT) regions along the ventral
visual stream as processing unfolds. We hypothesise how stimulus and object-class information
propagates between V4 and IT over time. At ¢, the forward pass reaches IT from V4, with V4
activity reflecting low-level stimulus properties but little information about object class. At ¢y,
object-class information from IT flows back to V4, increasing its task-relevant activity, which
in turn influences IT at £,. Notice that later in processing, V4 reflects object class information,
but most of its activity remains tied to bottom-up stimulus properties. These hypothesised
interactions would reconcile our results (fig. 2) based on task-relevant information with previous
results based on shared variance.
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Figure 4: Analyses of monkey multi-unit recordings (/6) time locked to stimulus presentation
in 10ms time bins. Each visual stimulus was presented for 100ms (shaded green) with 100ms
before the next (shaded grey). (A) Mean normalized spike counts for all electrodes for V4 and
IT. (B) Task-relevant analysis (lower values imply closer correspondence with a late DCNN
layer) show both V4 and IT can appropriately drive DCNN response (fig. 1B), starting around
70ms after stimulus onset. (C) Consistent with our long-range recurrence hypothesis (fig 3),
Granger Causal Modelling indicates that, while V4 first drives IT in terms of raw firing rates
(V4 — IT), (D) IT first drives V4 in terms of task-relevant information (V4 < IT). These
results are consistent with information about object category information (as assessed by inter-
facing with a late layer in a DCNN) first arising in IT and then feeding back to V4. At later time
steps, Granger causality between V4 and I'T becomes reciprocal (V4 <+ I'T") as the loop cycles.
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