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Summary

¢ Positive selection is the driving force underpinning local adaptation, and
leaves footprints of selective sweeps at the underlying major genes.
Quantifying the timing of selection and revealing the genetic bases of
adaptation in plants species occurring in steep and varying environmental

gradients is crucial to predict a species’ ability colonize new niches.

¢ We use whole genome sequence data from six populations across three
different habitats of the wild tomato species Solanum chilense to infer the
past demographic history and search for genes under strong positive
selection. We then correlate current and past climatic projections with the
demographic history, allele frequencies, the age of selection events, and

distribution shifts.

¢ We find evidence for several selective sweeps targeting regulatory
networks involved in root hair development in low altitude, and response
to photoperiod and vernalization in high altitude populations. These
sweeps occur in a concerted fashion in a given regulatory gene network

at particular periods of substantial climatic change.

e We decipher the genetic bases and the timing of local adaptation during
plant colonization of semi-arid habitats using a unique combination of

genome scans for selection and modelling of past climatic data.
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Introduction

Adaptation to abiotic conditions often occurs by means of positive selection. In
heterogeneous environments, however, plants may be strongly influenced by locally
variable selection. This can lead to divergence of populations at key loci (Savolainen
et al., 2013; Tiffin & Ross-Ibarra, 2014), and results in trade-offs where native alleles
show a fitness advantage relative to foreign alleles (antagonistic pleiotropy)
culminating in local adaptation (Kawecki & Ebert, 2004). Positive selection underlies
as well plant adaptation when colonizing new habitats (Savolainen et al., 2013; Tiffin
& Ross-lbarra, 2014), and/or when the environment changes in time at a given
location (Polechova et al., 2009). With recent technological advances, it becomes
possible to obtain genomes of many individuals across different populations to reveal
the genetic bases underpinning adaptation to abiotic stress and/or gradient of stress.
This can be achieved by genome scans for genes exhibiting signatures of (positive)
selection in genome-wide polymorphism data, correlation between allele frequencies
and environmental variables (e.g. RDA analysis), and/or genome-wide association
studies with relevant phenotypes (review in e.g. (Savolainen et al., 2013; Josephs et
al., 2017; Fagny & Austerlitz, 2021). Revealing the genetic bases of adaptation is not
only important from an evolutionary biology perspective, but also to predict a species’
ability to colonize new niches as well as for applications to agriculture, whereby crops
could be improved for stress tolerance using key adaptation genes found in related

wild species.

Phenotypic traits of tolerance to abiotic stresses, such as drought, salt, cold,
involve a set of complex and intertwined physiological, molecular, biochemical, and
hormonal mechanisms and signals (Tardieu & Tuberosa, 2010), and therefore are
complex (polygenic) traits encoded by many genes involving several gene networks
or pathways. There has been a growing interest in the evolution of such polygenic

traits recently, with several theoretical predictions emerging regarding the speed and
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genetic architecture of adaptation to either 1) the local optimum of a newly colonized
habitat (Chevin et al., 2010), or 2) the moving environmental optimum, that is a
changing environment in time at a given location (Polechova et al., 2009;
Matuszewski et al., 2014; Jain & Stephan, 2017a). Under large enough population
sizes and strong shift in the environmental optimum, both models predict that more
significant steps of adaptation occur first at sites with strong selective coefficients,
possibly generating selective sweeps (Chevin et al., 2010; Matuszewski et al., 2014;
Jain & Stephan, 2017a). The so-called (hard) selective sweeps are polymorphism
patterns (footprints) in the genome due to the rapid (tens to hundreds of generations)
fixation of advantageous alleles and the associated hitchhiking effect (Smith & Haigh,
1974; Kim & Stephan, 2002). In other words, the theory of selective sweeps is not
incompatible with that of polygenic selection (Barghi et al., 2020), and different
number of major genes exhibiting selective sweep sighatures are expected to
underlie fast and strong adaptation of complex (polygenic) traits. The number and
identity of these genes depends on the distribution of selection coefficients among
the multiple genes involved in the traits, the efficiency of selection (a function of
effective population size and recombination rate), the architecture of the traits, place
of genes in gene networks/pathways, and gene pleiotropy (Jain & Stephan, 2017b;
Barghi et al., 2020). Hard selective sweeps represent indeed one possible but more
easily observable outcome of strong positive selection when considering that genes
act in complex networks (polygenic quantitative traits) determining adaptation to new
environmental conditions, for example abiotic stress. We focus here on detecting
genes that have been under strong positive selection in the past and which underlie
plant adaptation to new habitats or to changing environmental conditions in the wild

relative tomato species Solanum chilense.

Solanum chilense is an outcrossing species found in southern Peru and
northern Chile in mesic to very arid habitats (Nakazato et al., 2010). Its ancestral

range is likely in marginal desert habitat of the coast and mid-altitude ‘pre-cordillera’
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region (800 - 2000 m altitude) of southern Peru. S. chilense colonized independently
two different southern, but arid, isolated regions around the Atacama desert at
different time periods (Fig. 1a) (Bondel et al., 2015; Stam et al., 2019b): an early
divergence (older than 50,000 years ago [ya]) with the colonization of coastal
habitats (in Lomas formations), and a more recent lineage divergence (less than
25,000 ya) restricted to highland altitudes (above 2,400m) of the Andean plateau.
Signatures of natural selection (positive or balancing) at genes involved in stress
adaptation were found when scanning few candidate genes for biotic and abiotic
stress response (Xia et al., 2010; Fischer et al., 2011; Bondel et al., 2015; Nosenko
et al., 2016; Bondel et al., 2018; Stam et al., 2019b). In the present study, we obtain
full genome sequence data for 30 diploid and highly heterozygous plants from six
populations representing the three main habitats of the species (Fig. 1a, defined in
Bondel et al. 2015): the central group (area of origin at low to high altitude, denoted
as group C), south-coastal (SC) group, and south-highland (SH) group. The south-
highland group strongly differs from the central group for its current climatic
conditions (higher daily and annual temperature ranges, summer potential
evapotranspiration and solar radiation), while the south-coastal appears as only
marginally different from the environment prevailing in the central group (higher
minimum temperature in summer and winter, and frequent fog episodes) (Fig. 1b).
Our aims are first to infer accurately the past demographic history of the species
colonization and to reconstruct recent dynamics of the species’ distribution range in
response to climatic history. Second, we conduct genome scans for selective sweeps
and assign functions and gene network topology to these candidate genes. Third, we
link climatic and genetic data at candidate genes using a genotype-environment
association analysis to highlight the relevance of key gene regulatory networks
(pathways) for adaptation. We finally discuss the history of adaptation in S. chilense

and future empirical studies needed to test our results.
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Materials and Methods
Sample collection, sequencing and bioinformatics

Plants were grown from individual seeds obtained from the Tomato Genetics
Resource Center (TGRC, University of California, Davis, USA). We sampled five
diploid plants from accessions C_LA1963, C LA3111, C LA2931, SH_LA4330,
SC_LA2932, SC_LA4107 representing the three main geographic groups (C, SC,
SH, Fig. la; Table S1). Plants were grown in standard glasshouse conditions.
Genomic DNA was extracted using the DNA extraction kit from Quiagen and
sequenced on an lllumina HiSeq 2500 with standard library size of 300 bp (Eurofins
Genomics, Germany). The 30 S. chilense whole-genome sequencing data are

available on ENA in BioProject PRJEB47577.

We performed quality control of the raw reads and trimmed calls with
insufficient quality or adapter contamination. The clean reads were mapped to the
Solanum pennellii reference genome (Bolger et al., 2014) available from Solanaceae
Genomics Network using the Burrows-Wheeler Alignment tool (v0.7.16) with default
settings (Li & Durbin, 2009) and sorted with Samtools (v1.5) (Wysoker et al., 2009).
The raw alignments were then processed to add read groups, mark duplicates and fix
mates. Variant calling was performed using the HaplotypeCaller tool of GATK
(McKenna et al., 2010) (Auwera et al. 2013) with default parameters for each sample.
Individual genomic variant files were then combined into a variant matrix with the
GenotypeGVCFs tool and annotated based on the gene annotation of the S. pennellii

reference (details in the Supplementary Sl text 1).

Population genetics analyses and inference of demographic history

For all population genetics analyses, we used S. pennellii population LA716 as

outgroup. We built a maximum likelihood (ML) phylogenetic tree and performed a
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principal component analysis (PCA) and the inference of population structure with
ADMIXTURE (Alexander et al., 2009). Population genetics statistics namely
nucleotide diversity (1), Tajima's D and Fsr for each population (or pairs of
populations), were calculated with ANGSD v0.937 (Korneliussen et al., 2014) over
100 kb sliding non-overlapping windows. The linkage disequilibrium (LD) levels were
calculated per population as the genotype correlation coefficient (r?) between two loci

using VCFtools (Danecek et al., 2011) with a maximum distance of 1,000 kb.

The demographic inference was conducted using the Multiple Sequentially
Markovian Coalescent method (MSMC2) with phased VCF files and 40 hidden states
(Malaspinas et al., 2016). The cross-coalescence analysis was performed for each
pairwise comparison of genomes between pairs of populations to estimate the
population separation history and the migration rate with MSMC-IM (Wang et al.,
2020). Phasing were generated with SHAPEIT v2 under the linkage disequilibrium
mode (Delaneau et al., 2012). We assumed generation time of 5 years (uncertainty
interval 3-7) and a mutation rate per generation of 1x107® (uncertainty interval
5.1x107° — 2.5x107%, based on Roselius et al., 2005), accounting for ambiguity in

these estimates.

Modelling present and past species distribution

We reconstructed and visualized the environmental space occupied by S. chilense
extracting the environmental conditions at the current occurrence points and
summarize them by PCA (Fig. 1b) (Legendre & Legendre, 2012). The environmental
data include 63 climatic layers obtained from three public databases WorldClim2
(Fick & Hijmans, 2017), ENVIREM (Title & Bemmels, 2018), and the Consultative
Group on International Agricultural Research (CGIAR) (Trabucco & Zomer, 2018)
(Dataset S5). The PCA was performed by the prcomp function in R (R Core Team,

2020).
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We then performed an ensemble modelling framework (Araujo & New, 2007)
using the BIOMOD package (Thuiller et al., 2009, 2014) in R, including all known
localities covering the entire geographic range of S. chilense using eight modelling
algorithms, five cross-validation replicates, and ten pseudo-absence sampling sets,
therefore completing a total of 400 models. Consensus niche models were obtained
using a TSS-weighted average method to account for the predictive power of each
fitted model. Models with low predictive power (TSS < 0.7) were discarded. All fitted
suitability models were then projected to infer the distribution of suitable habitats of S.
chilense under current climatic conditions and during the Last Glacial Maximum

(LGM; ~21 Kya).

Genome-wide selection scans and statistical power

We identified selective sweeps using biallelic SNPs by SweeD (Pavlidis et al., 2013)
and OmegaPlus (Alachiotis et al., 2012). The CLR statistics in SweeD were
calculated with default parameters with 10 kb intervals. OmegaPlus statistics (w)
were computed at 10 kb intervals. We specified a minimum window of 10 kb and a
maximum window of 100 kb to be used for computing LD values between SNPs,
respectively. Outlier CLR and w statistics indicative of a selective sweep are defined
by comparison to the genome-wide distribution values. To reduce false-positive
outliers derived from demographic processes, the cut-off values of the CLR and w
statistics to determine outlier windows were defined by coalescent simulations of the
inferred demographic history. The maximum value of each statistic was extracted
from each simulated dataset, and we thus obtained a distribution of 10,000 maximum
values for each statistic. The 95th percentile of this maximum distribution was
specified as the thresholds to identify outlier windows. We used the coalescent
simulator SCRM (Staab et al., 2015) to generate 10,000 neutral datasets of 10 Mb
based on the demographic history of each population and assuming a varying

recombination rate every 100 kb within each 10 Mb simulated block (recombination
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rate varied between 0.1*6@ and 10*6). Using the genomic coordinates, we then
extracted only the overlap regions between the two methods, which are regarded as
high confident selective sweep regions. As independent confirmation of the sweep
regions, we used McSwan (Tournebize et al., 2019) to detect sweeps and estimate

their age. McSwan was run with the same parameters as SweeD.

To evaluate the sensitivity of our sweeps detection pipeline, we simulated
1,000 selective sweeps assuming five N. scaled selection coefficients from nearly
neutral to strong selection (2N.s=0.1, 1, 10, 100 and 1000) for each of the six
populations under the inferred demographic model, with five different sweep ages (8,
14, 29, 50, 71 thousand ya). We used the function generate pseudoobs based on
MSMS simulator implemented in the McSwan R package (Ewing & Hermisson, 2010;
Tournebize et al., 2019). We then ran SweeD, OmegaPlus and McSwan on all
simulated data sets using the same parameters and thresholds defined above to
quantify the percentage of sweeps detected per population (and age of the detected

sweeps).
GO enrichment analysis and gene networks

Due to the lack of a complete gene function annotation database, we performed a
BLASTX against the NCBI database of non-redundant proteins (nr) screened for
green plants (e-value cutoff was 10°) and used Blast2GO to assign GO terms for
each gene identified in the genome scan analysis (Conesa et al., 2005; Conesa &
Gotz, 2008) as well as performed a blast to the A. thaliana dataset TAIR10
separately to remove redundant terms (Berardini et al., 2015). The false discovery
rates (FDR) were calculated to estimate the extent to which genes were enriched in
given GO categories (significance cutoff of P-values < 0.05). For each of the genes
enriched in specific biological processes, we retrieved the interacting gene
neighbours using GeneMANIA (Warde-Farley et al., 2010). We generated aggregate

interaction networks in GeneMANIA, based on physical interactions, predicted and


https://doi.org/10.1101/2021.09.24.461657
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.24.461657; this version posted July 13, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

co-expression. Finally, we performed hierarchical clustering and manually optimized

the weighted value cutoff for displaying the gene network.
Redundancy analysis (RDA)

We tested for genotype-environment association (GEA) using RDA (Capblancq &
Forester, 2021) using the rda function from the vegan package implemented in R
(Oksanen et al., 2015), modelling genotypes as a function of the same climatic
predictor variables used for the niche reconstruction analyses, and producing
constrained axes and representative predictors. Multi-collinearity between
representative predictors was assessed using the variance inflation factor (VIF) and
since all predictor variables showed VIF < 20 none were excluded. This may still
cause some collinearity, but it is beneficial to find more connections between
genotypes and environments. The significance of RDA constrained axes was
assessed using the anova.cca function and significant axes were then used to
identify candidate loci (P < 0.001). Candidate loci were identified using 2.5 standard
deviation as cut-off (two-tailed p-value = 0.012). In order to measure the rate of false-
positive associations due to the demographic history, we also performed the same
RDA analysis using 1) a set of 1,000 randomly chosen SNPs from non-sweep
regions, and 2) polymorphism data from the neutral simulations used to calibrate the

SweeD and OmegaPlus thresholds.
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Results
Past colonization events and climatic variations in Solanum chilense

We sequence whole genomes of 30 heterozygous plants from S. chilense from six
populations (C_LA3111, C_LA1963, C_LA2931, SC_LA2932, SC_LA4107,
SH_LA4330) (Fig. 1a; Table S1) and used the reference genome assembly of S.
pennellii. All 30 S. chilense individuals show high-quality sequence and mapping
scores with more than 97% of mapping paired reads, individual genome coverage
ranging between 16 to 24 reads per base, and >70% genome coverage per sample
(Dataset S1). After SNP calling and stringent filtering, a total of 34,109,217 SNPs are
identified across all 30 samples (Table S2) for a genome size estimated
approximately to 914Mb (Stam et al., 2019a). Phylogenetic analysis, principal
component analysis (PCA) and population genetics statistics (Fig. 1c, S1, S2; Table
S3, S4) support the population structure into three genetic groups, confirming the
results in (Bondel et al., 2015): a central group (C_LA1963, C_LA3111, C_LA2931),
the south-highland group (SH_LA4330), and the south-coast group (SC_LA2932 and
SC_LA4107). The two south-coast populations constitute independent groups (best
K=4; Fig. 1d, Slb-d). Only the individuals of the population C_LA2931 (the
southernmost of the central group) display small admixed ancestry coefficients (<
5%) with the south-highland group (SH_LA4330, Fig. 1d). There is no significant
correlation between genetic (pairwise Nei's distance) and geographical distance

(Pearson test, r = 0.35, P = 0.20; Fig. Sle).

As we confirm that S. chilense independently colonized the coastal and
highland southern habitats from a lowland area located north of the central group
region (Bondel et al., 2015; Stam et al., 2019b), we further refine our estimates of the
historical changes in effective population size (N., Fig. 2a, S3), divergence and
potential post-divergence gene flow (Fig. S4), and finally construct a consensus

demographic model (Fig. 2b; Dataset S2; see Fig. S3 accounting for mutation rate
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and generation time uncertainties). These estimates are compared in Fig. 2b with the
reconstructed past climatic variation highlighting five marine isotope stages (MIS)
climatic periods (Lisiecki & Raymo, 2005; Ritter et al., 2019). The two south-coast
populations found in Lomas habitats (SC_LA2932 and SC_LA4107) show early
divergence consistent with the admixture analysis (during the Last Inter-Glacial
period, MIS5) likely from the lowland area of the central group (C_LA1963). The
colonization of the highland likely occurred later, first in the central group region
(C_LA3111, C_LA2931) between the last interglacial and Last Glacial Maximum
(LGM) periods (ca. 75-130 kya, MIS3-4) and then with further colonization of
southern highlands (from 30 kya, MIS1-2, SH_LA4330). All populations show a
moderate effective size reduction matching with the estimated time of the LGM
characterized as a cold and dry period and supported by a contraction of the suitable
habitats to a narrow strip in lower altitudes, and a subsequent expansion thereafter
(Fig. 2a,c). Indeed, the local habitat at the current location of C_LA2931 and
SH_LA4330 was likely unsuitable for the establishment of southern highland
populations until 15 kya (after the LGM, ie. during MIS1-2; Fig. 2c). The lower
genetic diversity of the south populations (and estimated Ne) is thus due to a mild
colonization bottleneck during the southward expansion (Fig. 2a,c, Fig. S2; Table
S3). Both south-coast populations show consistent signals of long-term history of
colonization, subsequent isolation with negligible gene flow, and possible local

specialization to sparsely suitable Lomas habitats along the coast (Fig. 2b,c, S3).

The divergence between the central group populations (during MIS3-4) occurs
in parallel to the colonization of the coastal habitat (Fig. 2b, S4), but before the
colonization of the south-highland (SH_LA4330). Moreover, strong post-divergence
gene-flow and low differentiation are found in the central group, especially among the
pairs C_LA1963-C_LA3111 and C_LA3111-C LA2931 (Fig. S2c, S4), consistent with
their geographical and/or environmental proximity (Fig. la,b) and the range

contraction during the LGM (MIS2 in Fig. 2). The colonization of high-altitude regions
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in the central group is thus accompanied by high levels of gene flow despite these
populations ranging across a large altitudinal gradient (2500m of altitude difference
between C_LA1963 and C_LA3111 or C_LA2931). The divergence history results in
the south-coast and south-highland populations to be fairly isolated from one another
(as separated by the Atacama desert) leading to the suggestion of an incipient
speciation process (Fig. 2b, S4) (Raduski & Igi¢, 2021). In contrast to the study of
Bondel et al.,, (2015), our smaller number of populations and the independent
divergence histories of the two southern groups, does not allow us to find a

significant signature of isolation by distance.

Selective sweeps underpin local adaptation

In total, we find 2,921 candidate sweep regions with SweeD (mean size 212,858 bp
+/- 3,938) and 13,106 with OmegaPlus (mean size 59,618 bp +/- 521) across all six
populations (Table 1), yielding a total of 520 overlapping regions (mean size 41,082
bp +/- 1,618). Although we calculate SweeD and OmegaPlus statistics by 10kb
interval, we found in fact that the estimated sweeps in SweeD are larger than
Omegaplus. Therefore, in most cases sweep regions identified from SweeD overlap
with multiple sweep regions identified from OmegaPlus. These regions contain 799
protein-coding candidate genes assumed to be under positive selection (Fig. S5;
Dataset S3). In SC_LA4107, we find 61 candidate genes and about 100 candidate
genes are detected in each of the other four populations (Table 1). The largest
number of candidate genes (354) is found in SH_LA4330 (Table 1), likely because
the population has been established recently (Fig. 2a,b), and its habitat is ostensible

different from the rest of the species range (Fig. 1b).

We present here two arguments supporting the fact that our cutoff values are
well designed on the basis of the population demography to reasonably discriminate

between demography and selection signhals (as shown in Huber et al., 2014). First,
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comparison of genome-wide genetic diversity statistics (1t and Tajima's D) between
the observed data and the neutral simulations show that our demographic scenario
captures well the genomic diversity patterns in all populations (Fig. S2). Second, we
estimate by simulations the accuracy (statistical power) to detect sweeps under our
demographic model and a range of selection coefficients and sweep ages. The
accuracy is found to be between 0 - 9.3% for nearly neutral to weak selection
coefficients (2 Ne s = 0.1 - 1), 1.1 - 90.5% for strong selection (2 N. s = 10 - 100), and
64.7 - 93.8% for very strong selection (2 N. s = 1000) across populations and for
each method (Figure S6). SH_LA4330 exhibits even relatively high statistical power
compared to the other populations (Figure S6). Furthermore, the detection power
increases for intermediate sweep ages (14-50 thousand ya; Figure S6). This
demonstrates that our defined thresholds for sweep detection are conservative and
allow minimizing the rate of false positives, at the small cost of not detecting all
selective sweeps, especially if the selection coefficients are too small and the sweep
are too recent or too old (Figure S6). Further, only a few candidate genes are shared
among different populations, with the central and south-highland populations sharing
a small number of candidate genes, while almost none are shared between the two
south-coastal populations (Fig. S5c). This lack of common candidate genes among
populations is likely due to 1) the high effective population sizes (Fig. 2a) generating
new variants across many genes which are then differentially picked up by selection
across different populations, 2) the relatively old inter-population divergence and
timing of local adaptation, and 3) the marked environmental differences between the

central and the two southern regions promoting sweeps in different pathways.

An overview of population genetics statistics shows that our candidate regions
exhibit typical characteristics (lower nucleotide diversity, higher LD, more negative
Tajima’s D and higher pairwise Fsr values) of positively selected regions when
compared to the genome-wide statistics (see S| Text 2; Fig. S6; Table S3, S4).

Furthermore, we find an overlap between our candidate genes under selective sweep
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and genes exhibiting signals of positive selection in previous studies in S. chilense
which are based on few chosen genes, different plants, different populations and
different sample sizes than ours. Among our candidate genes, we indeed find three
genes (JERF3, TPP and CT189) involved in abiotic stress tolerance such as salt,
drought or cold (Bondel et al., 2015) as well as three NLRs (nucleotide binding
leucine rich repeat, SOLCI006592800, SOLCI001535800, SOLCI005342400)
possibly linked to resistance to pathogens (Stam et al., 2019b). We also find that two
of the seven most up-regulated genes under cold conditions in a transcriptomic study
of S. chilense (Nosenko et al., 2016) do appear in our selection scan in high altitude
populations: CBF3 (Solyc03g026270) in C_LA2931, and CBF1 (Solyc03g026280) in
SH_LA4330. These results indicate that our genome-wide selective sweep scan
generalizes the previous selection studies in S. chilense and supports the functional

relevance of our candidate genes.

Gene regulatory networks underlying local adaptation in S. chilense

A Gene Ontology (GO) enrichment analysis of the 799 candidate genes reveals
common GO categories in all populations for basic cell metabolism, immune
response, specific organ development, and response to external stimuli (Fig. S7).
Most interesting, are four GO categories restricted to populations with distinct
habitats: (i) root hair cell differentiation functions are enriched in 15 candidate genes,
only in the three coastal populations (C_LA1963, SC LA2932 and SC_LA4107); (ii)
response to circadian rhythm, photoperiodicity and flowering time are enriched in 12
candidate genes in two high-altitude (C_LA3111 and SH_LA4330) and a south-coast
(SC_LA2932) populations; (iii) vernalization response is enriched in eight candidate
genes in the three high-altitude populations (C_LA2931, C_LA3111, SH_LA4330),
and (iv) protein lipidation is enriched in seven candidate genes in the south-highland

population (SH_LA4330). Based on the wealth of available data in cultivated tomato,
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S. pennellii and A. thaliana, we further study the gene regulatory networks to which

the candidate genes belong.

For adaptation to high-altitude conditions, 15 candidate genes are
interconnected in a flowering gene network, which is itself subdivided into two sub-
networks related to flowering, photoperiod and vernalization control pathways (Fig.
3a; Dataset S4). Photoperiod responsive genes can sense changes in sunlight and
affect the circadian rhythm to regulate plant flowering (Johansson & Staiger, 2015;
Song et al., 2015), while vernalization genes regulate the flowering and germination
through long-term low temperature (Guo et al., 2018; Xu & Chong, 2018; lida &
Mahonen, 2020). These two sub-networks are connected through several key genes,
some of which appear as candidate genes entailing local adaptation in our
populations: FL FLOWERING LOCUS C (FLC or AGL25), FLOWERING LOCUS T
(FT) and AGAMOUS-LIKE genes (AGL) (Fig. 3a,b). These key genes are essential
regulators acting on the flowering regulation pathway (Michaels & Amasino, 1999;
Sheldon et al., 2000; Turck et al, 2008; Putterill & Varkonyi-Gasic, 2016).
Remarkably, some candidate genes in the recently diverged south-highland
population (SH_LA4330) aggregate into an independent network involved in
circadian rhythm regulation, connected to the photoperiod network by JUMONJI
DOMAIN CONTAINING 5 (JMJD5) also a candidate gene in C_LA3111 (Fig. 3a). In
the central-highland population (C_LA3111), several other candidate genes of the
photoperiod network also regulate circadian rhythm and flowering time. The three
high-altitude populations (C_LA3111, C_LA2931, and SH_LA4330) have candidate
genes of the AGAMOUS-LIKE (AGL) gene family in the vernalization network (Fig.
3a). We also note that the network of protein lipidation genes appears to be related to
the synthesis of fatty acids in the south-highland population (Fig. 3d; Dataset S4). We
speculate here that this latter adaptation may be related to adaptation to lowest-
temperature stress of SH_LA4330 (Dataset S5) (Maksimov et al., 2017; Jiang et al.,

2018). Adaptation to high altitude involves the regulation of the flowering, including
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photoperiod and vernalization pathways, but through different genes in different
populations, while cold stress and its consequence (adaptation in lipidation pathway)

may be relevant for adaptation to the highest altitudes (SH_LA4330).

Regarding adaptation to coastal conditions, we find 11 candidate genes related
to root development and cellular homeostasis functions clustered in a single network
(Fig. 3c; Dataset S4). We speculate that the drought and water shortage typical of
the coastal conditions (Dataset S5) would promote the differentiation and extension
of plant roots (Xiong et al., 2013; Li et al., 2017). The cell WALL ASSOCIATED
LINASE 4 (WAK4), a candidate gene identified SC_LA4107, acts as a linker of signal
from the cell wall to the plasma membrane and thus serve a vital role in lateral root
development (He et al., 1999; Lally et al., 2001). In addition to root development, we
also find genes involved in cell homeostasis (Fig. 3c; Dataset S4), which would be
critical for the coastal drought and salinity conditions to maintain the stability of the

intracellular environment in the coastal habitats (Forni et al., 2017; Zhao et al., 2020).

Candidate genes show genotype-environment associations

Our candidate loci are hypothesized to be responsible for adaptation to local climatic
conditions, so we test for genotype-environment association (GEA) using redundancy
analysis (RDA). We perform first a “present day” RDA using 144,713 SNPs from all
candidate regions and 63 climatic variables representing current (present) conditions
for temperature, precipitation, solar radiation, and wind (Dataset S5). We find that the
two-first RDA axes are significant (ANOVA’s P < 0.001) and retain most (38% and
21%) of the putative adaptive genetic variance identified in the genome scans in all
populations (Fig. 4a). Tables S6 and S7 summarize outlier SNPs in different RDA
models and their correlation with climatic variables. In concordance with the PCAs of
both climatic and genomic variation (Fig. 1b,c), the two main RDA axes cluster the

individuals into three groups corresponding to the main geographical regions (central,
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south-highland, and south-coastal) supporting that those axes synthesize the
principal selective pressures for local spatial adaptation along with the species
distribution (Fig. 4a; Table S7). RDAL represents the differentiation of the two south-
coast populations in correlation with higher precipitation of the coldest quarter (Bio19)
and annual variation of solar radiation (CV_R) and RDA2 summarizes a climatic
gradient differentiating the south-highland population mainly driven by annual
potential evapotranspiration (annualPET) and temperature annual range (Bio7)

(Table S7).

Further RDA analyses based on gene variants of the GO categories circadian
rhythm-photoperiodism, vernalization, root-hair differentiation, and protein lipidation
highlight combinations of climatic variables and genetic variants related to local
spatial adaptation (Fig. S8a,c,e,g). These analyses show that the two main RDA axes
explain 40% of the variation. Climatic variables representing temperature variability
through the year such as temperature seasonality (Bio4) and temperature annual
range (Bio7) are consistently correlated with adaptive variation of the south-highland
population (Fig. 4a, S8). A total of 68 SNPs within candidate genes of the population
SH_LA4330 are strongly associated with these two variables (Bio4, Bio7) in three of
the RDA based on the GO categories (circadian rhythm-photoperiodism,
vernalization, and protein lipidation; Dataset S6). The RDA based on the root-hair
differentiation GO category exhibits a strong differentiation between lowland and
highland populations based on atmosphere water vapour availability variables
(ann_Vmin, ann_AET, Fig. S8e). Note that the RDA testing for false positives
implemented on 1,000 random SNPs from non-sweep regions and neutral
simulations produced no significant RDA axes and correlations with any climatic

variable.

To assess the occurrence of selection in S. chilense as a response to past

climatic changes, we implement an “LGM” RDA using 37 climate variables projected
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to the Last Glacial Maximum conditions (Fig. 4b, S8b,d,f,h; Dataset S5). This LGM
RDA analysis aims to uncover additional genomic variation selected in response to
temporal climatic changes and underlying the niche expansion towards the south-
highland region (Fig. 1b). The LGM RDA analyses capture a smaller proportion of the
genetic variability in the first two constrained axes (30%) compared to that using the
current climatic variables. About 30% outlier SNPs are identified in genomic regions
correlated with past climatic variables and not with the current variables (Table S6,
S7). For example, the central populations C_LA3111 and C_LA2931 are separated in
the past RDA of vernalization genes using LGM climatic variables indicating that
warmer climate after LGM may drive gene flow among central populations as seen in
the current RDA (Fig. 2b, S4, S8c,d). The past RDA of LGM climatic variables unveils
that high-altitude populations, especially SH LA4330, have SNPs correlating with
temperature (i.e. annual mean minimum temperature; ann_mTmin, and temperature
annual range; Bio7) whereas coastal populations SNPs do correlate with precipitation
and potential evapotranspiration of the coldest and driest seasons (Fig. 4b). We
advise caution in interpreting the LGM RDA results as these are based on climatic
values from locations that likely had little or no population occurrence in the past,
especially those in highland areas (but only mild bottlenecks could suggest local
persistence, Fig. 2a,c). We suggest that this analysis is nevertheless useful for
identifying alleles that arose in response to sudden changes in adaptive climatic

optima during glacial-interglacial transitions, especially in the highland populations.

Age of selective sweeps and timing of selection

We finally estimate the age of 112 selective sweep regions, that is the time since the
fixation of the selected alleles, that overlap between the three positive selection
detection methods (McSwan, SweeD and OmegaPlus, Table 1). These regions

contain 175 genes and exhibit a mean sweep age of ca. 28,000 years. The ages of


https://doi.org/10.1101/2021.09.24.461657
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.24.461657; this version posted July 13, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

sweeps range from as early as 65 kya up to 2.5 kya (Table 1, Fig. 5). The highland
populations exhibit more recent sweeps (2.5 - 35 kya) than those at the coastal
populations, consistent with the recent (re)colonization of higher altitudes (Fig. 5).
The south-coastal populations exhibit older and large distributions of sweep age
consistent with older events of colonization (2.5 - 65 kya). Regarding the key gene
networks of relevance for local adaptation highlighted above (root hair, protein
lipidation, vernalization and photoperiod), each of them exhibits a narrow range of
sweep age values across several populations (Fig. 5). The averages of sweep ages
observed (Table 1) are perfectly in line with the estimates obtained from the sweep
simulations under our demographic model (Table S5), demonstrating that our
statistical power is adequate to estimate sweep ages under the demographic model
and that old sweeps in the highland populations cannot be recovered (even if they

occurred) in contrast to the coastal populations.

Discussion

Our study is the first to attempt to dissect in plants the complex selective processes
and their genetic bases involved during and after the colonization of new highly

stressful hyper-arid environments around the Atacama desert.

Taking our demographic and selection results altogether, we formulate the
following scenario for the highland colonization. During the past colder climate
phases (LGM-MIS2 at 30-15kya), the suitable areas of the species likely decreased
at high altitude (Fig. 2c). We speculate that the populations were already established
at high altitude before the LGM (MIS 3-5; Fig. 2) likely in the northern part of the
range (from the location of C_LA3111 up to that of C_LA2931), before a contraction
of the species range occurred towards lower altitudes during the LGM, and the
subsequent colonization of new southern locations concluded ~15kya (post-LGM,

SH_LA4330). The highland populations (C_LA3111, C_LA2931, SH_LA4330) show
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adaptation by a burst, i.e. over a short time, of numerous selective sweeps across
several gene networks (Fig. 5) but also show older selective events pre-dating the
LGM (MIS3-4). Interestingly, the population SH_LA4330 exhibits selective sweeps in
the vernalization and photoperiod which pre-date its establishment. These selective
events likely occurred in the northern part of the range (C_LA3111, C LA2931)
during MIS2-4 acting as pre-adaptation requisite for colonizing the more divergent

and extreme environments of the south-highlands (SH_LA4330; Fig. 1b).

The S. chilense lineage likely originates from coastal up to ‘pre-cordillera’ (800 -
2000 m altitude) habitats in southern Peru, explaining the early divergence and
southward colonization process, accompanied by habitat fragmentation and
contraction, which yields two highly isolated populations on the coast (Fig. 2b,c;
SC _LA2932 and SC_LA 4107). The coastal colonization process seems to involve
fewer sweeps than the adaptation to higher altitudes, for example a burst of selective
sweeps in genes related to root anatomical traits during the LGM-MIS2 period (Fig.
5). We speculate here that these sweeps are due to temporal adaptation to changes
in the habitat after colonization. However, some of the adaptive genomic signals in
the coastal populations could be blurred due to the older divergence time and
stronger drift (due to habitat fragmentation along the coast), or be
incomplete/partial/soft sweeps (with small selection coefficients) which we do not

detect (e.g. Garud et al., 2021).

We find between 60 and 350 selective sweeps per population, but contrary to
our naive expectations and previous findings in the literature, sweeps show a large
distribution of ages, especially in the south-coastal populations. We suggest that
several sweeps do occur concomitantly in a given gene pathway/network at a given
time period, either to promote adaptation to a new habitat or in response to a moving
environmental optimum (our climatic periods, temporal adaptation) as predicted

under the polygenic model of adaptation (Polechova et al., 2009; Chevin et al., 2010;
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Matuszewski et al., 2014; Jain & Stephan, 2017a). Selective sweeps at genes with
large selection coefficients can be observed because the populations of S. chilense
exhibit large effective sizes (Fig. 2; Bondel et al., 2015), especially when compared to
the small above ground abundance (census size) reported in these semi-arid habitats
(Tellier et al., 2011). S. chilense is outcrossing and exhibits persistent seed banking.
Both factors contribute to generate large effective population sizes by 1) decreasing
linkage disequilibrium and the effect of linked selection, 2) buffering the negative
impact of colonization bottlenecks, and 3) enhance the recovery post-colonization
(Fig. 2; Tellier et al., 2011; Zivkovi¢ & Tellier, 2018). Therefore, the detection of old
sweeps dating up to 65 kya for the coastal populations and up to 35 kya for the
highland populations (pre-dating the recent post-LGM colonization; Fig. 2) is made
possible and stretching beyond the theoretical limit of 0.1N. computed without the

effect of seed banking (Kim & Stephan, 2002).

As a word of caution, we focus on four main GO categories, which can be
reliably associated with physiological traits likely underlying adaptation: root hair
differentiation, vernalization, photoperiod, and protein lipidation. Pinpointing the
regulatory or non-coding SNPs under selection was not possible with our sample
sizes and functional information on many candidate genes in Figure 5 and S6 is still
lacking to provide a complete picture. We indeed should not assume that all genes
in the outlier windows are under selection, and therefore we designed a strategy in
several steps to reduce the amount of potentially hitch-hiking genes. First, we reduce
the set of candidate genes to only those in the overlapping regions of the outlier
windows identified with different methods (SweeD and OmegaPlus, which rely on
different summary statistics). Second, this subset was then reduced to set of genes
that enriched biological functions showing physiological meaning based on the
ecology of the populations (albeit avoiding the caveat described in Pavlidis et al.,
2012). Third, we use the genotype-environment association analysis to focus only on

a subset of outlier genes for demography and which correlate with key current and
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past climatic variables. We verified that the variants in the selected genes show the
expected distributions (hallmarks of selective sweeps) in population genetics
statistics compared to genome wide patterns. We acknowledge the limitations of
genomic scans for selection in non-model species for which a recombination map is
lacking and small sample size limit our ability to zoom in the sweep regions.
Therefore, it is likely that our approach despite being conservative may have
generated some false positives and missed some genes under selection.
Furthermore, we focus here on selective sweeps resulting from strong positive
selection as we cannot assess in our data the occurrence of weaker positive
(polygenic) selection or signatures of soft or incomplete sweeps which would be
favoured by the presence of seed banking (Zivkovi¢ & Tellier, 2018). Yet, we are
confident that our candidate genes under selection are functionally relevant, as
demonstrated by the overlap with previous studies (Bondel et al., 2015; Nosenko et

al., 2016; Stam et al., 2019b).

We note also the possible bias in our results due to the use of accessions
maintained and multiplied at TGRC (UC Davis, USA). Indeed accession multiplication
in the glasshouse may change allele frequencies (SFS) and bias some of our
demographic and selection inference. We provide in Figure S10 a summary of the
previous data from (Bondel et al., 2015) containing the accessions of this study, in
which we find that the maintenance at TGRC does reduce the number of rare alleles
(and thus Tajima’s D), but only for accessions multiplied more than twice. As the
accessions used here have been multiplied only once or twice, we consider that the
bias may likely be minor on our inference. Nevertheless, our selection scans are not
exhaustive and future work requires larger sample sizes as well as original material
from S. chilense populations from the field to reveal the extent of positive and
balancing selection in this species. To demonstrate whether the genes under positive
selection contribute to local adaptation, further experimental work in situ and in

common garden is needed.
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Figure 1. Geographic distribution and population structure of Solanum chilense. (a)

Map with distribution of all S. chilense populations by the TGRC, the six S. chilense

populations in this study (black circles), the four population groups (circles colours)

and the two reconstructed southward colonization events, first to the south-coast and

second to the south-highland (black arrows). (b) Principal components analysis of 63

current climatic variables from all S. chilense populations (Dataset S5). Population

structure using SNP data based on (c) PCA and (d) Admixture analysis (optimal K

value is 4; Fig S1b).
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comparisons per population using the MSMC model. (b) Interpreted demographic
scenario for the six samples populations of S. chilense including likely estimations of
effective population size, divergence times and gene-flow. The width of the boxes
represents the relative effective population size, arrows represent the migration
between population pairs. Grey background boxes indicate five Marine isotope
stages (MIS) climatic periods. (c) Overlay of the reconstruction of the distribution
model for S. chilense using current climatic variables (red) and LGM past climatic
variables (blue). Darker color of the gradient indicates higher suitable habitat for a

given climatic period.
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Figure 3. Interaction genetic networks of candidate genes. (a) The network of
flowering regulation involved two sub-networks, photoperiod and vernalization
pathways, for regulation of flowering. (b) The schematic diagram of flowering

regulation involved photoperiod and vernalization is adapted from (Xu & Chong,


https://doi.org/10.1101/2021.09.24.461657
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.24.461657; this version posted July 13, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

2018). -| “indicates repressive effects on gene expression; “- “indicates promotive
effects on gene expression. (c) The network of root development and cell
homeostasis. (d) The networks of protein lipidation. Connections represent gene
interactions based on physical interactions, informatics predictions and co-expression
analyses. Connection thickness is proportional to weighted value of the connected
genes. The black lines connected two sub-networks, genes under selection were
connected by solid lines and other genes were connected by dashed line. Node
colors correspond to genes were detected the different populations in genome scans.

Gray circles, not detected in genome scan, but present in S. chilense; gray squares:

not present in S. chilense.
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Figure 4. Redundancy analysis (RDA) ordination bi-plots between the climatic
variables, populations and the genetic variants in all candidate sweeps. (a) RDA
using current climatic variables. (b) RDA using LGM climatic variables. Arrows
indicated the direction and magnitude of variables correlated with the populations.

The abbreviations of climatic variables are shown in Dataset S5.
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Figure 5. Distribution of estimated age of 112 selective sweeps highlighting five
marine isotope stages (MIS) periods of climatic variation and sweeps containing
genes within the four Gene Ontology categories related with local adaptation in
Solanum chilense. The points represent mean age and lines the 95% confidence

intervals. Generation time=5; p=103,
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Tables

Table 1. The summary of genome scans and estimation of sweep age.

Genome Scans Sweeps age
Population
NSweeD NOmegaPlus Noverlapsl Ngenesl NMcSwan Noverlapsz NgenesZ Agemean (kyf)

C_LA1963 385 2,474 ogP 86 267 16 14 38+16
C_LA2931 517 2,268 109 125 355 24 28 2010
SC_LA2932 374 1,717 46 101 302 15 29 3615
C_LA3111 663 2,307 105 107 377 22 22 2311
SC_LA4107 203 2,047 37 61 194 11 13 3410
SH_LA4330 779 2,293 125 354 438 36 71 17 +8

Nsween, NUMber of outlier regions from SweeD; Nomegariis, NUMber of outlier regions from OmegaPlus;
Noveriaps1, NUMber of overlapping regions between SweeD and OmegaPlus; Ngenes1, NUMber of candidate
genes in overlapsl, and all candidate genes show in Dataset S3; Nwueswan, NumMber of outlier regions from
McSwan; Noveriaps2, NumMber of overlapping regions between McSwan and overlapsl; Ngenes2, NumMber of

genes in overlaps2; Agemean, Mean age + standard deviation of overlaps2.
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