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Summary

 Positive selection is the driving force underpinning local adaptation, and 

leaves footprints of selective sweeps at the underlying major genes. 

Quantifying the timing of selection and revealing the genetic bases of 

adaptation in plants species occurring in steep and varying environmental 

gradients is crucial to predict a species’ ability colonize new niches.

 We use whole genome sequence data from six populations across three 

different habitats of the wild tomato species Solanum chilense to infer the 

past demographic history and search for genes under strong positive 

selection. We then correlate current and past climatic projections with the 

demographic history, allele frequencies, the age of selection events, and 

distribution shifts.

 We find evidence for several selective sweeps targeting regulatory 

networks involved in root hair development in low altitude, and response 

to photoperiod and vernalization in high altitude populations. These 

sweeps occur in a concerted fashion in a given regulatory gene network 

at particular periods of substantial climatic change.

 We decipher the genetic bases and the timing of local adaptation during 

plant colonization of semi-arid habitats using a unique combination of 

genome scans for selection and modelling of past climatic data.
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Introduction

Adaptation  to  abiotic  conditions  often  occurs  by  means  of  positive  selection.  In

heterogeneous environments, however, plants may be strongly influenced by locally

variable selection. This can lead to divergence of populations at key loci (Savolainen

et al., 2013; Tiffin & Ross-Ibarra, 2014), and results in trade-offs where native alleles

show  a  fitness  advantage  relative  to  foreign  alleles  (antagonistic  pleiotropy)

culminating in local adaptation (Kawecki & Ebert, 2004). Positive selection underlies

as well plant adaptation when colonizing new habitats (Savolainen et al., 2013; Tiffin

&  Ross-Ibarra,  2014),  and/or  when  the  environment  changes  in  time  at  a  given

location  (Polechová  et al.,  2009). With recent technological advances, it  becomes

possible to obtain genomes of many individuals across different populations to reveal

the genetic bases underpinning adaptation to abiotic stress and/or gradient of stress.

This can be achieved by genome scans for genes exhibiting signatures of (positive)

selection in genome-wide polymorphism data, correlation between allele frequencies

and environmental variables (e.g. RDA analysis),  and/or genome-wide association

studies with relevant phenotypes (review in e.g. (Savolainen et al., 2013; Josephs et

al., 2017; Fagny & Austerlitz, 2021). Revealing  the genetic bases of adaptation is not

only important from an evolutionary biology perspective, but also to predict a species’

ability to colonize new niches as well as for applications to agriculture, whereby crops

could be improved for stress tolerance using key adaptation genes found in related

wild species.

Phenotypic traits of tolerance to abiotic stresses, such as drought, salt, cold,

involve a set of complex and intertwined physiological, molecular, biochemical, and

hormonal mechanisms and signals  (Tardieu & Tuberosa, 2010), and therefore  are

complex (polygenic) traits encoded by many genes involving several gene networks

or pathways. There has been a growing interest in the evolution of such polygenic

traits recently, with several theoretical predictions emerging regarding the speed and
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genetic architecture of adaptation to either 1) the local optimum of a newly colonized

habitat  (Chevin  et  al.,  2010),  or  2)  the moving environmental  optimum,  that  is  a

changing  environment  in  time  at  a  given  location  (Polechová  et  al.,  2009;

Matuszewski  et al., 2014; Jain & Stephan, 2017a). Under large enough population

sizes and strong shift in the environmental optimum, both models predict that more

significant steps of adaptation occur first at sites with strong selective coefficients,

possibly generating selective sweeps (Chevin et al., 2010; Matuszewski et al., 2014;

Jain & Stephan, 2017a). The so-called (hard) selective sweeps are polymorphism

patterns (footprints) in the genome due to the rapid (tens to hundreds of generations)

fixation of advantageous alleles and the associated hitchhiking effect (Smith & Haigh,

1974; Kim & Stephan, 2002). In other words, the theory of selective sweeps is not

incompatible  with  that  of  polygenic  selection  (Barghi  et  al.,  2020),  and  different

number  of  major  genes  exhibiting  selective  sweep  signatures  are  expected  to

underlie fast and strong adaptation of complex (polygenic) traits. The number and

identity of these genes depends on the distribution of selection coefficients among

the multiple genes involved in  the traits,  the efficiency of  selection (a function of

effective population size and recombination rate), the architecture of the traits, place

of genes in gene networks/pathways, and gene pleiotropy (Jain & Stephan, 2017b;

Barghi et al., 2020). Hard selective sweeps represent indeed one possible but more

easily observable outcome of strong positive selection when considering that genes

act in complex networks (polygenic quantitative traits) determining adaptation to new

environmental  conditions,  for  example abiotic  stress.  We focus here on detecting

genes that have been under strong positive selection in the past and which underlie

plant adaptation to new habitats or to changing environmental conditions in the wild

relative tomato species Solanum chilense.

Solanum  chilense is  an  outcrossing  species  found  in  southern  Peru  and

northern Chile in mesic to very arid habitats  (Nakazato  et al.,  2010). Its ancestral

range is likely in marginal desert habitat of the coast and mid-altitude ‘pre-cordillera’
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region (800 - 2000 m altitude) of southern Peru. S. chilense colonized independently

two  different  southern,  but  arid,  isolated  regions  around  the  Atacama  desert  at

different time periods (Fig. 1a)  (Böndel  et al.,  2015; Stam  et al.,  2019b): an early

divergence  (older  than  50,000  years  ago  [ya])  with  the  colonization  of  coastal

habitats (in Lomas formations),  and a more recent  lineage divergence (less than

25,000 ya) restricted to highland altitudes (above 2,400m) of the Andean plateau.

Signatures of natural  selection (positive or  balancing) at genes involved in stress

adaptation were found when scanning few candidate genes for  biotic  and abiotic

stress response (Xia et al., 2010; Fischer et al., 2011; Böndel et al., 2015; Nosenko

et al., 2016; Böndel et al., 2018; Stam et al., 2019b). In the present study, we obtain

full genome sequence data for 30 diploid and highly heterozygous plants from six

populations representing the three main habitats of the species (Fig. 1a, defined in

Böndel et al. 2015): the central group (area of origin at low to high altitude, denoted

as group C), south-coastal (SC) group, and south-highland (SH) group. The south-

highland  group  strongly  differs  from  the  central  group  for  its  current  climatic

conditions  (higher  daily  and  annual  temperature  ranges,  summer  potential

evapotranspiration  and  solar  radiation),  while  the  south-coastal  appears  as  only

marginally  different  from  the  environment  prevailing  in  the  central  group  (higher

minimum temperature in summer and winter, and frequent fog episodes) (Fig. 1b).

Our aims are first  to infer accurately the past demographic history of the species

colonization and to reconstruct recent dynamics of the species’ distribution range in

response to climatic history. Second, we conduct genome scans for selective sweeps

and assign functions and gene network topology to these candidate genes. Third, we

link  climatic  and  genetic  data  at  candidate  genes  using  a  genotype-environment

association  analysis to  highlight  the  relevance  of  key  gene  regulatory  networks

(pathways) for adaptation. We finally discuss the history of adaptation in S. chilense

and future empirical studies needed to test our results.
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Materials and Methods

Sample collection, sequencing and bioinformatics

Plants  were  grown  from  individual  seeds  obtained  from  the  Tomato  Genetics

Resource Center  (TGRC, University  of  California,  Davis,  USA).  We sampled five

diploid  plants  from  accessions  C_LA1963,  C_LA3111,  C_LA2931,  SH_LA4330,

SC_LA2932,  SC_LA4107 representing the three main geographic groups (C,  SC,

SH,  Fig.  1a;  Table  S1).  Plants  were  grown  in  standard  glasshouse  conditions.

Genomic  DNA was  extracted  using  the  DNA extraction  kit  from  Quiagen  and

sequenced on an Illumina HiSeq 2500 with standard library size of 300 bp (Eurofins

Genomics,  Germany).  The  30  S.  chilense whole-genome  sequencing  data  are

available on ENA in BioProject PRJEB47577.

We  performed  quality  control  of  the  raw  reads  and  trimmed  calls  with

insufficient quality or adapter contamination. The clean reads were mapped to the

Solanum pennellii reference genome (Bolger et al., 2014) available from Solanaceae

Genomics Network using the Burrows-Wheeler Alignment tool (v0.7.16) with default

settings (Li & Durbin, 2009) and sorted with Samtools (v1.5) (Wysoker et al., 2009).

The raw alignments were then processed to add read groups, mark duplicates and fix

mates.  Variant  calling  was  performed  using  the  HaplotypeCaller  tool  of  GATK

(McKenna et al., 2010) (Auwera et al. 2013) with default parameters for each sample.

Individual genomic variant files were then combined into a variant matrix with the

GenotypeGVCFs tool and annotated based on the gene annotation of the S. pennellii

reference (details in the Supplementary SI text 1).

Population genetics analyses and inference of demographic history

For  all  population  genetics  analyses,  we  used  S.  pennellii population  LA716 as

outgroup. We built  a maximum likelihood (ML) phylogenetic tree and performed a
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principal component analysis (PCA) and the inference of population structure with

ADMIXTURE  (Alexander  et  al.,  2009).  Population  genetics  statistics  namely

nucleotide  diversity  (π),  Tajima’s  D  and  FST for  each  population  (or  pairs  of

populations), were calculated with ANGSD v0.937  (Korneliussen  et al., 2014) over

100 kb sliding non-overlapping windows. The linkage disequilibrium (LD) levels were

calculated per population as the genotype correlation coefficient (r2) between two loci

using VCFtools (Danecek et al., 2011) with a maximum distance of 1,000 kb.

The  demographic  inference  was  conducted  using  the  Multiple  Sequentially

Markovian Coalescent method (MSMC2) with phased VCF files and 40 hidden states

(Malaspinas  et al., 2016).  The cross-coalescence analysis was performed for each

pairwise  comparison  of  genomes  between  pairs  of  populations  to  estimate  the

population separation history and the migration rate with MSMC-IM  (Wang  et al.,

2020). Phasing were generated  with SHAPEIT v2 under the linkage disequilibrium

mode (Delaneau et al., 2012). We assumed generation time of 5 years (uncertainty

interval  3-7)  and  a  mutation  rate  per  generation  of  1×10−8 (uncertainty  interval

5.1×10−9 – 2.5×10−8,  based on  Roselius  et al.,  2005), accounting for ambiguity in

these estimates.

Modelling present and past species distribution

We reconstructed and visualized the environmental space occupied by  S. chilense

extracting  the  environmental  conditions  at  the  current  occurrence  points  and

summarize them by PCA (Fig. 1b) (Legendre & Legendre, 2012). The environmental

data include  63 climatic  layers  obtained from three public  databases WorldClim2

(Fick & Hijmans, 2017), ENVIREM  (Title & Bemmels, 2018), and the Consultative

Group on International  Agricultural  Research (CGIAR)  (Trabucco & Zomer,  2018)

(Dataset S5). The PCA was performed by the prcomp function in R (R Core Team,

2020).
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We then performed an ensemble modelling framework  (Araujo & New, 2007)

using the BIOMOD package  (Thuiller  et al., 2009, 2014) in R, including all known

localities covering the entire geographic range of  S. chilense using eight modelling

algorithms, five cross-validation replicates, and ten pseudo-absence sampling sets,

therefore completing a total of 400 models. Consensus niche models were obtained

using a TSS-weighted average method to account for the predictive power of each

fitted model. Models with low predictive power (TSS < 0.7) were discarded. All fitted

suitability models were then projected to infer the distribution of suitable habitats of S.

chilense under  current  climatic  conditions  and  during  the  Last  Glacial  Maximum

(LGM; ~21 Kya).

Genome-wide selection scans and statistical power

We identified selective sweeps using biallelic SNPs by SweeD (Pavlidis et al., 2013)

and  OmegaPlus  (Alachiotis  et  al.,  2012).  The  CLR  statistics  in  SweeD  were

calculated with  default  parameters with  10 kb intervals.  OmegaPlus statistics  (ω)

were computed at 10 kb intervals. We specified a minimum window of 10 kb and a

maximum window of 100 kb to be used for computing LD values between SNPs,

respectively. Outlier CLR and ω statistics indicative of a selective sweep are defined

by  comparison  to  the  genome-wide  distribution  values.  To  reduce  false-positive

outliers derived from demographic processes, the cut-off values of the CLR and ω

statistics to determine outlier windows were defined by coalescent simulations of the

inferred demographic history.  The maximum value of  each statistic was extracted

from each simulated dataset, and we thus obtained a distribution of 10,000 maximum

values  for  each  statistic.  The  95th  percentile  of  this maximum  distribution was

specified  as  the  thresholds to  identify  outlier  windows.  We  used  the  coalescent

simulator SCRM (Staab et al., 2015) to generate 10,000 neutral  datasets of 10 Mb

based  on  the  demographic  history  of  each  population  and  assuming  a  varying

recombination rate every 100 kb within each 10 Mb simulated block (recombination
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rate  varied  between  0.1*θ  and  10*θ).  Using  the  genomic  coordinates,  we  then

extracted only the overlap regions between the two methods, which are regarded as

high confident selective sweep regions. As independent confirmation of the sweep

regions, we used McSwan (Tournebize et al., 2019) to detect sweeps and estimate

their age. McSwan was run with the same parameters as SweeD.

To  evaluate  the  sensitivity  of  our  sweeps  detection  pipeline,  we  simulated

1,000 selective sweeps assuming five  Ne scaled selection coefficients from nearly

neutral  to  strong  selection  (2Nes=0.1,  1,  10,  100  and  1000)  for  each  of  the  six

populations under the inferred demographic model, with five different sweep ages (8,

14, 29, 50, 71 thousand ya). We used the function  generate_pseudoobs  based on

MSMS simulator implemented in the McSwan R package (Ewing & Hermisson, 2010;

Tournebize  et  al.,  2019).  We  then  ran  SweeD,  OmegaPlus  and  McSwan  on  all

simulated data sets using the same parameters and thresholds defined above to

quantify the percentage of sweeps detected per population (and age of the detected

sweeps).

GO enrichment analysis and gene networks

Due to the lack of a complete gene function annotation database,  we performed a

BLASTX against  the NCBI  database of  non-redundant  proteins  (nr)  screened for

green plants (e-value cutoff was 10-6) and used Blast2GO to assign GO terms for

each gene identified in the genome scan analysis  (Conesa  et al., 2005; Conesa &

Götz,  2008) as  well  as  performed  a  blast  to  the  A.  thaliana dataset  TAIR10

separately to remove redundant terms  (Berardini  et al., 2015). The false discovery

rates (FDR) were calculated to estimate the extent to which genes were enriched in

given GO categories (significance cutoff of P-values < 0.05). For each of the genes

enriched  in  specific  biological  processes,  we  retrieved  the  interacting  gene

neighbours using GeneMANIA (Warde-Farley et al., 2010). We generated aggregate

interaction networks in GeneMANIA, based on physical interactions, predicted and
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co-expression. Finally, we performed hierarchical clustering and manually optimized

the weighted value cutoff for displaying the gene network.

Redundancy analysis (RDA)

We tested for  genotype-environment  association  (GEA) using  RDA  (Capblancq &

Forester,  2021) using the  rda function from the vegan package implemented in R

(Oksanen  et  al.,  2015),  modelling  genotypes  as  a  function  of  the  same  climatic

predictor  variables  used  for  the  niche  reconstruction  analyses,  and  producing

constrained  axes  and  representative  predictors.  Multi-collinearity  between

representative predictors was assessed using the variance inflation factor (VIF) and

since all  predictor variables showed VIF < 20 none were excluded. This may still

cause  some  collinearity,  but  it  is  beneficial  to  find  more  connections  between

genotypes  and  environments.  The  significance  of  RDA  constrained  axes  was

assessed  using  the  anova.cca function  and  significant  axes  were  then  used  to

identify candidate loci (P < 0.001). Candidate loci were identified using 2.5 standard

deviation as cut-off (two-tailed p-value = 0.012). In order to measure the rate of false-

positive associations due to the demographic history, we also performed the same

RDA analysis  using  1)  a  set  of  1,000  randomly  chosen  SNPs  from  non-sweep

regions, and 2) polymorphism data from the neutral simulations used to calibrate the

SweeD and OmegaPlus thresholds.
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Results

Past colonization events and climatic variations in Solanum chilense

We sequence whole genomes of 30 heterozygous plants from S. chilense from six

populations  (C_LA3111,  C_LA1963,  C_LA2931,  SC_LA2932,  SC_LA4107,

SH_LA4330) (Fig.  1a; Table S1) and used the reference genome assembly of  S.

pennellii. All  30  S.  chilense individuals  show high-quality  sequence and mapping

scores with more than 97% of mapping paired reads, individual genome coverage

ranging between 16 to 24 reads per base, and >70% genome coverage per sample

(Dataset S1). After SNP calling and stringent filtering, a total of 34,109,217 SNPs are

identified  across  all  30  samples  (Table  S2)  for  a  genome  size  estimated

approximately  to  914Mb  (Stam  et  al.,  2019a).  Phylogenetic  analysis,  principal

component analysis (PCA) and population genetics statistics (Fig. 1c, S1, S2; Table

S3, S4) support the population structure into three genetic groups, confirming the

results in (Böndel et al., 2015): a central group (C_LA1963, C_LA3111, C_LA2931),

the south-highland group (SH_LA4330), and the south-coast group (SC_LA2932 and

SC_LA4107). The two south-coast populations constitute independent groups (best

K=4;  Fig.  1d,  S1b-d).  Only  the  individuals  of  the  population  C_LA2931  (the

southernmost of the central  group) display small admixed ancestry coefficients (<

5%) with the south-highland group (SH_LA4330,  Fig.  1d).  There is  no significant

correlation  between  genetic  (pairwise  Nei’s  distance)  and  geographical  distance

(Pearson test, r = 0.35, P = 0.20; Fig. S1e). 

As  we  confirm  that  S.  chilense independently  colonized  the  coastal  and

highland southern habitats from a lowland area located north of the central group

region (Böndel et al., 2015; Stam et al., 2019b), we further refine our estimates of the

historical  changes  in  effective  population  size  (Ne,  Fig.  2a,  S3),  divergence  and

potential  post-divergence  gene  flow (Fig.  S4),  and  finally  construct  a  consensus

demographic model (Fig. 2b; Dataset S2; see Fig. S3 accounting for mutation rate
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and generation time uncertainties). These estimates are compared in Fig. 2b with the

reconstructed past  climatic  variation highlighting five marine isotope stages (MIS)

climatic periods  (Lisiecki & Raymo, 2005; Ritter  et al., 2019). The two south-coast

populations  found  in  Lomas  habitats  (SC_LA2932  and  SC_LA4107)  show  early

divergence  consistent  with  the  admixture  analysis  (during  the  Last  Inter-Glacial

period,  MIS5) likely  from the lowland area of  the central  group (C_LA1963).  The

colonization  of  the highland likely  occurred later,  first  in  the  central  group region

(C_LA3111,  C_LA2931)  between  the  last  interglacial  and  Last  Glacial  Maximum

(LGM)  periods  (ca.  75-130  kya,  MIS3-4)  and  then  with  further  colonization  of

southern  highlands  (from  30  kya,  MIS1-2,  SH_LA4330).  All  populations  show  a

moderate  effective  size  reduction  matching  with  the  estimated  time  of  the  LGM

characterized as a cold and dry period and supported by a contraction of the suitable

habitats to a narrow strip in lower altitudes, and a subsequent expansion thereafter

(Fig.  2a,c).  Indeed,  the  local  habitat  at  the  current  location  of  C_LA2931  and

SH_LA4330  was  likely  unsuitable  for  the  establishment  of  southern  highland

populations  until  15  kya  (after  the  LGM,  i.e. during  MIS1-2;  Fig.  2c).  The  lower

genetic diversity of the south populations (and estimated  Ne) is thus due to a mild

colonization bottleneck during the southward expansion (Fig.  2a,c,  Fig.  S2;  Table

S3).  Both south-coast  populations show consistent  signals  of  long-term history of

colonization,  subsequent  isolation  with  negligible  gene  flow,  and  possible  local

specialization to sparsely suitable Lomas habitats along the coast (Fig. 2b,c, S3).

The divergence between the central group populations (during MIS3-4) occurs

in  parallel  to  the colonization of  the coastal  habitat  (Fig.  2b,  S4),  but  before the

colonization of the south-highland (SH_LA4330). Moreover, strong post-divergence

gene-flow and low differentiation are found in the central group, especially among the

pairs C_LA1963-C_LA3111 and C_LA3111-C_LA2931 (Fig. S2c, S4), consistent with

their  geographical  and/or  environmental  proximity  (Fig.  1a,b)  and  the  range

contraction during the LGM (MIS2 in Fig. 2). The colonization of high-altitude regions
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in the central group is thus accompanied by high levels of gene flow despite these

populations ranging across a large altitudinal gradient (2500m of altitude difference

between C_LA1963 and C_LA3111 or C_LA2931). The divergence history results in

the south-coast and south-highland populations to be fairly isolated from one another

(as  separated  by  the  Atacama desert)  leading  to  the  suggestion  of  an  incipient

speciation process (Fig. 2b, S4)  (Raduski & Igić, 2021). In contrast to the study of

Böndel  et  al.,  (2015),  our  smaller  number  of  populations  and  the  independent

divergence  histories  of  the  two  southern  groups,  does  not  allow  us  to  find  a

significant signature of isolation by distance. 

Selective sweeps underpin local adaptation

In total, we find 2,921 candidate sweep regions with SweeD (mean size 212,858 bp

+/- 3,938) and 13,106 with OmegaPlus (mean size 59,618 bp +/- 521) across all six

populations (Table 1), yielding a total of 520 overlapping regions (mean size 41,082

bp  +/-  1,618).  Although  we  calculate  SweeD  and  OmegaPlus  statistics  by  10kb

interval,  we  found  in  fact  that  the  estimated  sweeps  in  SweeD  are  larger  than

Omegaplus. Therefore, in most cases sweep regions identified from SweeD overlap

with multiple sweep regions identified from OmegaPlus. These regions contain 799

protein-coding candidate  genes assumed to be under  positive  selection  (Fig.  S5;

Dataset S3). In SC_LA4107, we find 61 candidate genes and about 100 candidate

genes  are  detected in  each of  the  other  four  populations  (Table  1).  The largest

number of candidate genes (354) is found in SH_LA4330 (Table 1), likely because

the population has been established recently (Fig. 2a,b), and its habitat is ostensible

different from the rest of the species range (Fig. 1b). 

We present here two arguments supporting the fact that our cutoff values are

well designed on the basis of the population demography to reasonably discriminate

between demography and selection signals (as shown in  Huber  et al., 2014). First,
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comparison of genome-wide genetic diversity statistics (π and Tajima's D) between

the observed data and the neutral simulations show that our demographic scenario

captures well the genomic diversity patterns in all populations (Fig. S2). Second, we

estimate by simulations the accuracy (statistical power) to detect sweeps under our

demographic  model  and  a  range  of  selection  coefficients  and  sweep  ages.  The

accuracy  is  found  to  be  between 0  -  9.3% for  nearly  neutral  to  weak  selection

coefficients (2 Ne s = 0.1 - 1), 1.1 - 90.5% for strong selection (2 Ne s = 10 - 100), and

64.7 - 93.8% for very strong selection (2 Ne s  = 1000) across populations and for

each method (Figure S6). SH_LA4330 exhibits even relatively high statistical power

compared to the other populations (Figure S6).  Furthermore,  the detection power

increases  for  intermediate  sweep  ages  (14-50  thousand  ya;  Figure  S6).  This

demonstrates that our defined thresholds for sweep detection are conservative and

allow minimizing the rate of  false positives,  at  the small  cost  of  not  detecting  all

selective sweeps, especially if the selection coefficients are too small and the sweep

are too recent or too old (Figure S6). Further, only a few candidate genes are shared

among different populations, with the central and south-highland populations sharing

a small number of candidate genes, while almost none are shared between the two

south-coastal populations (Fig. S5c). This lack of common candidate genes among

populations is likely due to 1) the high effective population sizes (Fig. 2a) generating

new variants across many genes which are then differentially picked up by selection

across  different  populations,  2)  the  relatively  old  inter-population  divergence  and

timing of local adaptation, and 3) the marked environmental differences between the

central and the two southern regions promoting  sweeps in different pathways.

An overview of population genetics statistics shows that our candidate regions

exhibit  typical characteristics (lower nucleotide diversity, higher LD, more negative

Tajima’s  D  and  higher  pairwise  FST values)  of  positively  selected  regions  when

compared to the genome-wide  statistics  (see SI  Text  2;  Fig.  S6;  Table  S3,  S4).

Furthermore, we find an overlap between our candidate genes under selective sweep
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and genes exhibiting signals of positive selection in previous studies in  S. chilense

which are based on few chosen genes,  different  plants, different populations and

different sample sizes than ours. Among our candidate genes, we indeed find three

genes (JERF3,  TPP and  CT189)  involved in abiotic stress tolerance such as salt,

drought  or  cold  (Böndel  et  al.,  2015) as  well  as  three NLRs (nucleotide  binding

leucine  rich  repeat,  SOLCI006592800,  SOLCI001535800,  SOLCI005342400)

possibly linked to resistance to pathogens (Stam et al., 2019b). We also find that two

of the seven most up-regulated genes under cold conditions in a transcriptomic study

of S. chilense (Nosenko et al., 2016) do appear in our selection scan in high altitude

populations: CBF3 (Solyc03g026270) in C_LA2931, and CBF1 (Solyc03g026280) in

SH_LA4330.  These  results  indicate  that  our  genome-wide  selective  sweep  scan

generalizes the previous selection studies in S. chilense and supports the functional

relevance of our candidate genes.

Gene regulatory networks underlying local adaptation in S. chilense

A Gene Ontology  (GO)  enrichment  analysis  of  the  799  candidate  genes  reveals

common  GO  categories  in  all  populations  for  basic  cell  metabolism,  immune

response, specific organ development,  and response to external stimuli  (Fig. S7).

Most  interesting,  are  four  GO  categories  restricted  to  populations  with  distinct

habitats: (i) root hair cell differentiation functions are enriched in 15 candidate genes,

only in the three coastal populations (C_LA1963, SC_LA2932 and SC_LA4107); (ii)

response to circadian rhythm, photoperiodicity and flowering time are enriched in 12

candidate genes in two high-altitude (C_LA3111 and SH_LA4330) and a south-coast

(SC_LA2932) populations; (iii) vernalization response is enriched in eight candidate

genes in the three high-altitude populations (C_LA2931, C_LA3111, SH_LA4330),

and (iv) protein lipidation is enriched in seven candidate genes in the south-highland

population (SH_LA4330). Based on the wealth of available data in cultivated tomato,
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S. pennellii and A. thaliana, we further study the gene regulatory networks to which

the candidate genes belong.

For  adaptation  to  high-altitude  conditions,  15  candidate  genes  are

interconnected in a flowering gene network, which is itself subdivided into two sub-

networks related to flowering, photoperiod and vernalization control pathways (Fig.

3a; Dataset S4). Photoperiod responsive genes can sense changes in sunlight and

affect the circadian rhythm to regulate plant flowering  (Johansson & Staiger, 2015;

Song et al., 2015), while vernalization genes regulate the flowering and germination

through long-term low temperature  (Guo  et  al.,  2018;  Xu & Chong,  2018;  Iida  &

Mähönen, 2020). These two sub-networks are connected through several key genes,

some  of  which  appear  as  candidate  genes  entailing  local  adaptation  in  our

populations: FL FLOWERING LOCUS C (FLC or AGL25), FLOWERING LOCUS T

(FT) and AGAMOUS-LIKE genes (AGL) (Fig. 3a,b). These key genes are essential

regulators acting on the flowering regulation pathway  (Michaels & Amasino, 1999;

Sheldon  et  al.,  2000;  Turck  et  al.,  2008;  Putterill  &  Varkonyi-Gasic,  2016).

Remarkably,  some  candidate  genes  in  the  recently  diverged  south-highland

population  (SH_LA4330)  aggregate  into  an  independent  network  involved  in

circadian  rhythm  regulation,  connected  to  the  photoperiod  network  by  JUMONJI

DOMAIN CONTAINING 5 (JMJD5) also a candidate gene in C_LA3111 (Fig. 3a). In

the central-highland population (C_LA3111),  several  other candidate genes of  the

photoperiod network also regulate circadian rhythm and flowering time. The three

high-altitude populations (C_LA3111, C_LA2931, and SH_LA4330) have candidate

genes of the AGAMOUS-LIKE (AGL) gene family in the vernalization network (Fig.

3a). We also note that the network of protein lipidation genes appears to be related to

the synthesis of fatty acids in the south-highland population (Fig. 3d; Dataset S4). We

speculate here that  this latter  adaptation may be related to adaptation to lowest-

temperature stress of SH_LA4330 (Dataset S5) (Maksimov et al., 2017; Jiang et al.,

2018). Adaptation to high altitude involves the regulation of the flowering, including
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photoperiod  and  vernalization  pathways,  but  through  different  genes  in  different

populations, while cold stress and its consequence (adaptation in lipidation pathway)

may be relevant for adaptation to the highest altitudes (SH_LA4330).

Regarding adaptation to coastal conditions, we find 11 candidate genes related

to root development and cellular homeostasis functions clustered in a single network

(Fig. 3c; Dataset S4). We speculate that the drought and water shortage typical of

the coastal conditions (Dataset S5) would promote the differentiation and extension

of  plant  roots  (Xiong  et  al.,  2013;  Li  et  al.,  2017).  The cell  WALL ASSOCIATED

LINASE 4 (WAK4), a candidate gene identified SC_LA4107, acts as a linker of signal

from the cell wall to the plasma membrane and thus serve a vital role in lateral root

development (He et al., 1999; Lally et al., 2001). In addition to root development, we

also find genes involved in cell homeostasis (Fig. 3c; Dataset S4), which would be

critical for the coastal drought and salinity conditions to maintain the stability of the

intracellular environment in the coastal habitats (Forni et al., 2017; Zhao et al., 2020).

Candidate genes show genotype-environment associations

Our candidate loci are hypothesized to be responsible for adaptation to local climatic

conditions, so we test for genotype-environment association (GEA) using redundancy

analysis (RDA). We perform first a “present day” RDA using 144,713 SNPs from all

candidate regions and 63 climatic variables representing current (present) conditions

for temperature, precipitation, solar radiation, and wind (Dataset S5). We find that the

two-first RDA axes are significant  (ANOVA’s P < 0.001) and  retain most (38% and

21%) of the putative adaptive genetic variance identified in the genome scans in all

populations (Fig. 4a). Tables S6 and S7 summarize outlier SNPs in different RDA

models and their correlation with climatic variables. In concordance with the PCAs of

both climatic and genomic variation (Fig. 1b,c), the two main RDA axes cluster the

individuals into three groups corresponding to the main geographical regions (central,
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south-highland,  and  south-coastal)  supporting  that  those  axes  synthesize  the

principal  selective  pressures  for  local  spatial  adaptation  along  with  the  species

distribution (Fig. 4a; Table S7). RDA1 represents the differentiation of the two south-

coast populations in correlation with higher precipitation of the coldest quarter (Bio19)

and annual  variation  of  solar  radiation (CV_R) and RDA2 summarizes a climatic

gradient  differentiating  the  south-highland  population  mainly  driven  by  annual

potential  evapotranspiration  (annualPET)  and  temperature  annual  range  (Bio7)

(Table S7).

Further RDA analyses based on gene variants of the GO categories circadian

rhythm-photoperiodism, vernalization, root-hair differentiation, and protein lipidation

highlight  combinations  of  climatic  variables  and  genetic  variants  related  to  local

spatial adaptation (Fig. S8a,c,e,g). These analyses show that the two main RDA axes

explain 40% of the variation. Climatic variables representing temperature variability

through the year such as temperature seasonality (Bio4) and temperature annual

range (Bio7) are consistently correlated with adaptive variation of the south-highland

population (Fig. 4a, S8). A total of 68 SNPs within candidate genes of the population

SH_LA4330 are strongly associated with these two variables (Bio4, Bio7) in three of

the  RDA  based  on  the  GO  categories  (circadian  rhythm-photoperiodism,

vernalization, and protein lipidation; Dataset S6). The RDA based on the root-hair

differentiation  GO category  exhibits  a  strong  differentiation  between  lowland  and

highland  populations  based  on  atmosphere  water  vapour  availability  variables

(ann_Vmin,  ann_AET;  Fig.  S8e).  Note  that  the  RDA testing  for  false  positives

implemented  on  1,000  random  SNPs  from  non-sweep  regions  and  neutral

simulations  produced  no  significant  RDA axes  and  correlations  with  any  climatic

variable.

To assess the occurrence of selection in  S. chilense  as a response to past

climatic changes, we implement an “LGM” RDA using 37 climate variables projected
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to the Last Glacial Maximum conditions (Fig. 4b, S8b,d,f,h; Dataset S5). This LGM

RDA analysis aims to uncover additional genomic variation selected in response to

temporal climatic changes and underlying the niche expansion towards the south-

highland region (Fig. 1b). The LGM RDA analyses capture a smaller proportion of the

genetic variability in the first two constrained axes (30%) compared to that using the

current climatic variables. About 30% outlier SNPs are identified in genomic regions

correlated with past climatic variables and not with the current variables (Table S6,

S7). For example, the central populations C_LA3111 and C_LA2931 are separated in

the past  RDA of  vernalization  genes using LGM climatic  variables  indicating  that

warmer climate after LGM may drive gene flow among central populations as seen in

the current RDA (Fig. 2b, S4, S8c,d). The past RDA of LGM climatic variables unveils

that  high-altitude populations,  especially  SH_LA4330,  have SNPs correlating  with

temperature (i.e. annual mean minimum temperature; ann_mTmin, and temperature

annual range; Bio7) whereas coastal populations SNPs do correlate with precipitation

and potential  evapotranspiration  of  the  coldest  and driest  seasons (Fig.  4b).  We

advise caution in interpreting the LGM RDA results as these are based on climatic

values from locations that likely had little or no population occurrence in the past,

especially  those in  highland areas (but  only  mild  bottlenecks  could suggest  local

persistence,  Fig.  2a,c).  We  suggest  that  this  analysis  is  nevertheless  useful  for

identifying  alleles  that  arose in  response to  sudden changes in  adaptive  climatic

optima during glacial-interglacial transitions, especially in the highland populations. 

Age of selective sweeps and timing of selection

We finally estimate the age of 112 selective sweep regions, that is the time since the

fixation  of  the  selected  alleles,  that  overlap  between the  three  positive  selection

detection  methods  (McSwan,  SweeD  and  OmegaPlus,  Table  1).  These  regions

contain 175 genes and exhibit a mean sweep age of ca. 28,000 years. The ages of
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sweeps range from as early as 65 kya up to 2.5 kya (Table 1, Fig. 5). The highland

populations  exhibit  more recent  sweeps (2.5  -  35  kya)  than those at  the coastal

populations, consistent with the recent (re)colonization of higher altitudes (Fig. 5).

The  south-coastal  populations  exhibit  older  and  large  distributions  of  sweep age

consistent with older events of colonization (2.5 - 65 kya). Regarding the key gene

networks  of  relevance  for  local  adaptation  highlighted  above  (root  hair,  protein

lipidation, vernalization and photoperiod), each of them exhibits a narrow range of

sweep age values across several populations (Fig. 5). The averages of sweep ages

observed (Table 1) are perfectly in line with the estimates obtained from the sweep

simulations  under  our  demographic  model  (Table  S5),  demonstrating  that  our

statistical power is adequate to estimate sweep ages under the demographic model

and that old sweeps in the highland populations cannot be recovered (even if they

occurred) in contrast to the coastal populations.

Discussion

 Our study is the first to attempt to dissect in plants the complex selective processes

and  their  genetic  bases  involved  during  and after  the  colonization  of  new highly

stressful hyper-arid environments around the Atacama desert.

Taking  our  demographic  and  selection  results  altogether,  we  formulate  the

following  scenario  for  the  highland  colonization.  During  the  past  colder  climate

phases (LGM-MIS2 at 30-15kya), the suitable areas of the species likely decreased

at high altitude (Fig. 2c). We speculate that the populations were already established

at high altitude before the LGM (MIS 3-5; Fig. 2) likely in the northern part of the

range (from the location of C_LA3111 up to that of C_LA2931), before a contraction

of  the  species  range  occurred  towards  lower  altitudes  during  the  LGM,  and  the

subsequent  colonization  of  new southern locations  concluded ~15kya (post-LGM,

SH_LA4330). The highland populations (C_LA3111, C_LA2931, SH_LA4330) show
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adaptation by a burst,  i.e. over a short time, of numerous selective sweeps across

several gene networks (Fig. 5) but also show older selective events pre-dating the

LGM (MIS3-4). Interestingly, the population SH_LA4330 exhibits selective sweeps in

the vernalization and photoperiod which pre-date its establishment. These selective

events  likely  occurred  in  the  northern  part  of  the  range  (C_LA3111,  C_LA2931)

during MIS2-4 acting as pre-adaptation requisite for colonizing the more divergent

and extreme environments of the south-highlands (SH_LA4330; Fig. 1b). 

The S. chilense lineage likely originates from coastal up to ‘pre-cordillera’ (800 -

2000  m altitude) habitats  in  southern  Peru,  explaining  the  early  divergence  and

southward  colonization  process,  accompanied  by  habitat  fragmentation  and

contraction,  which  yields  two highly  isolated  populations  on the coast  (Fig.  2b,c;

SC_LA2932 and SC_LA 4107). The coastal colonization process seems to involve

fewer sweeps than the adaptation to higher altitudes, for example a burst of selective

sweeps in genes related to root anatomical traits during the LGM-MIS2 period (Fig.

5). We speculate here that these sweeps are due to temporal adaptation to changes

in the habitat after colonization. However, some of the adaptive genomic signals in

the  coastal  populations  could  be  blurred  due  to  the  older  divergence  time  and

stronger  drift  (due  to  habitat  fragmentation  along  the  coast),  or  be

incomplete/partial/soft  sweeps (with  small  selection  coefficients)  which we do not

detect (e.g. Garud et al., 2021).

We find between 60 and 350 selective sweeps per population, but contrary to

our naïve expectations and previous findings in the literature, sweeps show a large

distribution  of  ages,  especially  in  the  south-coastal  populations.  We suggest  that

several sweeps do occur concomitantly in a given gene pathway/network at a given

time period, either to promote adaptation to a new habitat or in response to a moving

environmental  optimum  (our  climatic  periods,  temporal  adaptation)  as  predicted

under the polygenic model of adaptation (Polechová et al., 2009; Chevin et al., 2010;
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Matuszewski  et al., 2014; Jain & Stephan, 2017a).  Selective sweeps at genes with

large selection coefficients can be observed because the populations of S. chilense

exhibit large effective sizes (Fig. 2; Böndel et al., 2015), especially when compared to

the small above ground abundance (census size) reported in these semi-arid habitats

(Tellier et al., 2011). S. chilense is outcrossing and exhibits persistent seed banking.

Both factors contribute to generate large effective population sizes by 1) decreasing

linkage disequilibrium and the effect  of  linked selection,  2)  buffering the negative

impact  of colonization bottlenecks,  and 3) enhance the recovery post-colonization

(Fig. 2;  Tellier  et al., 2011; Živković & Tellier, 2018).  Therefore, the detection of old

sweeps dating up to 65 kya for the coastal populations and up to 35 kya for the

highland populations (pre-dating the recent post-LGM colonization; Fig. 2) is made

possible and stretching beyond the theoretical limit of 0.1Ne computed without the

effect of seed banking (Kim & Stephan, 2002).

As a word of caution, we focus on four main GO categories,  which can be

reliably  associated  with  physiological  traits  likely  underlying  adaptation:  root  hair

differentiation,  vernalization,  photoperiod,  and  protein  lipidation.  Pinpointing  the

regulatory or non-coding SNPs under selection was not possible with our sample

sizes and functional information on many candidate genes in Figure 5 and S6 is still

lacking to provide a complete picture.  We indeed should not assume that all genes

in the outlier windows are under selection, and therefore we designed a strategy in

several steps to reduce the amount of potentially hitch-hiking genes. First, we reduce

the set of candidate genes to only those in the overlapping regions of the outlier

windows identified with different  methods (SweeD and OmegaPlus,  which rely on

different summary statistics). Second, this subset was then reduced to set of genes

that  enriched  biological  functions  showing  physiological  meaning  based  on  the

ecology of the populations (albeit  avoiding the caveat described in  Pavlidis  et al.,

2012). Third, we use the genotype-environment association analysis to focus only on

a subset of outlier genes for demography and which correlate with key current and
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past climatic variables. We verified that the variants in the selected genes show the

expected  distributions  (hallmarks  of  selective  sweeps)  in  population  genetics

statistics  compared to  genome wide patterns.  We acknowledge  the limitations  of

genomic scans for selection in non-model species for which a recombination map is

lacking  and  small  sample  size  limit  our  ability  to  zoom  in  the  sweep  regions.

Therefore,  it  is  likely  that  our  approach  despite  being  conservative  may  have

generated  some  false  positives  and  missed  some  genes  under  selection.

Furthermore,  we  focus  here  on  selective  sweeps  resulting  from  strong  positive

selection  as  we  cannot  assess  in  our  data  the  occurrence  of  weaker  positive

(polygenic)  selection  or  signatures  of  soft  or  incomplete  sweeps  which would  be

favoured by the presence of seed banking  (Živković & Tellier,  2018). Yet,  we are

confident  that  our  candidate  genes  under  selection  are  functionally  relevant,  as

demonstrated by the overlap with previous studies (Böndel et al., 2015; Nosenko et

al., 2016; Stam et al., 2019b).

We note also the possible bias in our results due to the use of accessions

maintained and multiplied at TGRC (UC Davis, USA). Indeed accession multiplication

in  the  glasshouse  may  change  allele  frequencies  (SFS)  and  bias  some  of  our

demographic and selection inference. We provide in Figure S10 a summary of the

previous data from (Böndel  et al., 2015) containing the accessions of this study, in

which we find that the maintenance at TGRC does reduce the number of rare alleles

(and thus Tajima’s D), but only for accessions multiplied more than twice. As the

accessions used here have been multiplied only once or twice, we consider that the

bias may likely be minor on our inference. Nevertheless, our selection scans are not

exhaustive and future work requires larger sample sizes as well as original material

from  S.  chilense populations  from  the  field  to  reveal  the  extent  of  positive  and

balancing selection in this species. To demonstrate whether the genes under positive

selection  contribute  to  local  adaptation,  further  experimental  work  in  situ and  in

common garden is needed.
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Supplementary information

Available as a single pdf with additional figures, tables and fully detailed methods.
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Figures

Figure 1. Geographic distribution and population structure of  Solanum chilense.  (a)

Map with distribution of all S. chilense populations by the TGRC, the six S. chilense

populations in this study (black circles), the four population groups (circles colours)

and the two reconstructed southward colonization events, first to the south-coast and

second to the south-highland (black arrows). (b) Principal components analysis of 63

current climatic variables from all  S. chilense populations (Dataset S5). Population

structure using SNP data based on (c) PCA and (d) Admixture analysis (optimal K

value is 4; Fig S1b). 
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Figure 2.  Demographic  history  and species  distribution  model  of  S.  chilense for

current and Last Glacial Maximum (LGM) climate conditions (a) The estimation of

historical  patterns  of  effective  population  size  (Ne)  for  10  pairwise  genome

comparisons per population using the MSMC model.  (b)  Interpreted demographic

scenario for the six samples populations of S. chilense including likely estimations of

effective population size, divergence times and gene-flow. The width of the boxes

represents  the  relative  effective  population  size,  arrows  represent  the  migration

between  population  pairs.  Grey  background  boxes  indicate  five  Marine  isotope

stages (MIS) climatic periods.  (c)  Overlay of  the reconstruction of  the distribution

model for  S. chilense using current climatic variables (red) and LGM past climatic

variables (blue). Darker color of the gradient indicates higher suitable habitat for a

given climatic period. 
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Figure  3.  Interaction  genetic  networks  of  candidate  genes.  (a)  The  network  of

flowering  regulation  involved  two  sub-networks,  photoperiod  and  vernalization

pathways,  for  regulation  of  flowering.  (b)  The  schematic  diagram  of  flowering

regulation  involved  photoperiod  and  vernalization  is  adapted  from  (Xu  &  Chong,
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2018). “┤“indicates repressive effects on gene expression; “→“indicates promotive

effects  on  gene  expression. (c)  The  network  of  root  development  and  cell

homeostasis.  (d)  The  networks  of  protein  lipidation.  Connections  represent  gene

interactions based on physical interactions, informatics predictions and co-expression

analyses. Connection thickness is proportional to weighted value of the connected

genes.  The black lines connected two sub-networks,  genes under  selection were

connected by  solid  lines and other  genes were connected by dashed line.  Node

colors correspond to genes were detected the different populations in genome scans.

Gray circles, not detected in genome scan, but present in S. chilense; gray squares:

not present in S. chilense.
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Figure  4.  Redundancy  analysis  (RDA)  ordination  bi-plots  between  the  climatic

variables,  populations and the genetic  variants in  all  candidate sweeps.  (a)  RDA

using  current  climatic  variables.  (b)  RDA using  LGM  climatic  variables.  Arrows

indicated the direction and magnitude of variables correlated with the populations.

The abbreviations of climatic variables are shown in Dataset S5.
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Figure 5.  Distribution  of  estimated age of  112 selective  sweeps highlighting  five

marine  isotope  stages  (MIS)  periods  of  climatic  variation and  sweeps  containing

genes  within  the  four  Gene  Ontology  categories  related  with  local  adaptation  in

Solanum chilense.  The points represent mean age and lines the 95% confidence

intervals. Generation time=5; µ=10-8.
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Tables

Table 1. The summary of genome scans and estimation of sweep age.

Population
Genome Scans Sweeps age

NSweeD NOmegaPlus Noverlaps1 Ngenes1 NMcSwan Noverlaps2 Ngenes2 Agemean (kyr)

C_LA1963 385 2,474 98b 86 267 16 14 38 ± 16

C_LA2931 517 2,268 109 125 355 24 28 20 ± 10

SC_LA2932 374 1,717 46 101 302 15 29 36 ± 15

C_LA3111 663 2,307 105 107 377 22 22 23 ± 11

SC_LA4107 203 2,047 37 61 194 11 13 34 ± 10

SH_LA4330 779 2,293 125 354 438 36 71 17 ± 8

NSweeD, number of outlier regions from SweeD; NOmegaPlus, number of outlier regions from OmegaPlus; 

Noverlaps1, number of overlapping regions between SweeD and OmegaPlus; Ngenes1, number of candidate 

genes in overlaps1, and all candidate genes show in Dataset S3; NMcSwan, number of outlier regions from

McSwan; Noverlaps2, number of overlapping regions between McSwan and overlaps1; Ngenes2, number of 

genes in overlaps2; Agemean, mean age ± standard deviation of overlaps2.
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