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Abstract

Tissue-resident macrophages are essential to protect from pathogen
invasion and maintain organ homeostasis. The ability of thymic macrophages
to engulf apoptotic thymocytes is well appreciated, but little is known about
their ontogeny, maintenance, and diversity. Here, we characterized the
surface phenotype and transcriptional profile of these cells and defined their
expression signature. Thymic macrophages were most closely related to
spleen red pulp macrophages and Kupffer cells and shared the expression of
the transcription factor SpiC with these cells. Single-cell RNA sequencing
showed that the macrophages in the adult thymus are composed of two
populations distinguished by the expression of Timd4 and Cx3cr1.
Remarkably, Timd4* cells were located in the cortex, while Cx3cr1*
macrophages were restricted to the medulla and the cortico-medullary
junction. Using shield chimeras, transplantation of embryonic thymuses, and
genetic fate mapping, we found that the two populations have distinct origins.
Timd4* thymic macrophages are of embryonic origin, while Cx3cr1*
macrophages are derived from adult hematopoietic stem cells. Aging has a
profound effect on the macrophages in the thymus. Timd4* cells underwent
gradual attrition, while Cx3cr1* cells slowly accumulated with age and, in older
mice, were the dominant macrophage population in the thymus. Altogether,

our work defines the phenotype, origin, and diversity of thymic macrophages.
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Introduction

Tissue-resident macrophages are present in every organ and maintain
local homeostasis through diverse functions ranging from protection against
pathogens to tissue repair (Wynn et al., 2013). To perform their roles
efficiently, macrophages acquire specialized phenotypes depending on the
tissue microenvironment, and as a consequence, multiple subtypes exist,
frequently within the same organ. For example, the spleen harbors red pulp
macrophages specialized in red blood cell phagocytosis, marginal zone
macrophages and metallophilic macrophages that are the first defense
against blood-borne pathogens, T cell zone macrophages that silently dispose
of apoptotic immune cells, and tingible-body macrophages that engulf less fit
B cells in the germinal center (Baratin et al,, 2017) (A-Gonzalez & Castrillo,
2018; Bellomo et al., 2018). Thus, tissue-resident macrophages represent a
fascinating developmental system that allows enormous plasticity.

The last decade has seen a paradigm shift in our understanding of the
development of tissue-resident macrophages. Contrary to the long-held belief
that all macrophages derive from circulating monocytes (van Furth & Cohn,
1968), multiple studies have shown that many of them are long-lived cells with
an embryonic origin that can maintain themselves in the tissues (reviewed in
(Ginhoux & Guilliams, 2016)). Three waves of distinct progenitors settle the
tissues and contribute in various degrees to the resident macrophages in
each organ. The first wave consists of the yolk sac (YS)-derived primitive
macrophages that enter all tissues and establish the earliest macrophage
populations (Perdiguero & Geissmann, 2015) (Mass et al., 2016). In all organs,

except for the brain and, partially, the epidermis, primitive macrophages are
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replaced by the next wave consisting of fetal monocytes (Ginhoux et al., 2010)
(Hoeffel et al.,, 2012) (Hoeffel et al., 2015) (Goldmann et al., 2016). The third
wave comes from hematopoietic stem cells (HSCs)-derived monocytes that
contribute to various degrees to the macrophage pool in different tissues. For
example, these cells contribute little to the microglia in the brain, Langerhans
cells in the epidermis, and alveolar macrophages in the lungs but substantially
to most other organs (Hashimoto et al., 2013) (Epelman et al., 2014) (Sheng et
al.,, 2015) (Liu et al., 2019). Moreover, the kinetics and timing of HSC-derived
monocyte infiltration vary in different parts of the body. For some
macrophage populations, such as the arterial macrophages and subcapsular
lymph node macrophages, monocytes replace embryonic macrophages soon
after birth and self-maintain after that with little contribution from circulating
cells (Ensan et al,, 2015) (Mondor et al,, 2019). Others, such as heart
macrophages, osteoclasts, and pancreatic islets macrophages, are
progressively replaced at a low rate (Epelman et al., 2014) (Molawi et al., 2014)
(Heidt et al.,, 2014) (Calderon etal., 2015) (Jacome-Galarza et al., 2019) (Yahara
etal, 2020). A third group, such as the macrophages in the dermis and most
of the gut macrophages, are constantly replaced by blood monocytes with
relatively fast kinetics (Tamoutounour et al., 2013) (Bain et al., 2014). These
conclusions have been extended to many different macrophage populations
such as Kupffer cells, liver capsular macrophages, red pulp macrophages,
testicular macrophages, large and small peritoneal macrophages, and T zone
macrophages in the lymph nodes (Baratin et al., 2017) (Hashimoto et al,, 2013)
(Epelman et al., 2014) (Liu et al,, 2019) (Sierro et al,, 2017) (Mossadegh-Keller et

al, 2017) (Lokka et al., 2020) (Wang et al., 2021) (Bain et al,, 2016).
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The recent revitalization in macrophage research has yet to reach thymic
macrophages. Although their prodigious phagocytic ability is well appreciated
(Surh & Sprent, 1994), little is known about the origin, diversity, and
maintenance of these cells. This gap in our knowledge is, partly, due to the
lack of a consensus about the surface phenotype of thymic macrophages.
Various groups have used different markers to identify these cells, such as
F4/80 and Mac-3 (LAMP-2) (Surh & Sprent, 1994), or CD4 and CD11b (Esashi
etal., 2003), or Mac-2 (galectin 3), F4/80 and ED-1 (CD68) (Liu et al., 2013).
Most commonly, researchers employ F4/80 and CD11b (Guerri et al.,, 2013)
(Lopes et al,, 2018) (Kim et al,, 2010) (Tacke et al., 2015). However, none of
these markers is macrophage-specific: F4/80 is also expressed on
eosinophils and monocytes (Gautier et al., 2012) (Ingersoll et al., 2010), while
CD11b is present on most myeloid cells. The lack of a clear phenotypic
definition of thymic macrophages has translated into the absence of models
that target genes specifically in this population. For example, although
macrophages in various organs have been successfully targeted with Lyz2¢",
Csf1rcr, or Cx3cr1¢e, very few studies have used these models in the thymus
(Tacke etal,, 2015) (Wang et al., 2019) (Chan et al., 2020).

Only a handful of studies have explored the origin of thymic macrophages.
Several reports have indicated that these cells could be derived from T cell
progenitors in the thymus based on an improved single cell in vitro culture and
in vivo transplantation experiments (Wada et al., 2008) (Bell & Bhandoola,
2008). However, these conclusions have been questioned based on fate-
mapping experiments using //7r°" that found very limited contribution of

lymphoid progenitors to thymic macrophages in vivo in unperturbed mice
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(Schlenner et al,, 2010). Most recently, Tacke et al. used parabiosis to rule out
circulating monocytes as a major source of thymic macrophages (Tacke et al.,
2015). The same study also performed fate-mapping experiments to show
that most thymic macrophages descend from Flt3* HSC-derived progenitors.
However, the contribution of earlier waves of hematopoiesis has not been
explored.

Here, we aimed to bring our knowledge of thymic macrophages on par with
other tissue-resident macrophages. We started by clearly defining thymic
macrophages according to the guidelines set by the Immunological Genome
Consortium (IMMGEN) (Gautier et al., 2012) and characterized their surface
phenotype and transcriptional signature. Using single-cell RNA sequencing
(scRNA-Seq), we identified two populations of thymic macrophages with
distinct localization. We explored the origin of these cells through genetic fate
mapping, shield chimeras, and embryonic thymus transplantation and
documented that different waves of progenitors give rise to the two
populations of thymic macrophages. Altogether our work fills an important gap
in our understanding of resident thymic macrophages and provides the

framework for future functional characterization of these cells.

Results:

CD64, F4/80, and MerTK identify the macrophages in the thymus

To unambiguously and comprehensively identify macrophages in the
thymus, we evaluated several of the prototypical macrophage markers —
MerTK, CD64, and F4/80 (Gautier et al., 2012). A population that was stained

with all three markers (Figure 1A). As staining with MerTK and F4/80 was
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relatively dim even when the brightest fluorochromes (e.g., PE) were used
and could not be resolved fully from the isotype control (Figure 1 — figure
supplement 1), we chose to use CD64 vs. forward scatter (FSC) as the first
step in our gating strategy (Figure 1B). Among CD64*FSC" cells,
F4/80*CD11b'° macrophages could be distinguished from F4/80'°CD11b*
monocytes.

The CD64*F4/80*MerTK*CD11b°FSC" cells had typical macrophage
morphology with abundant cytoplasm (Figure 1C). These cells did not
express lineage markers characteristic of T cells (CD3¢), B cells (CD19),
eosinophils (Siglec F), NK cells (NK1.1), neutrophils (Gr1), or plasmacytoid
dendritic cells (Siglec H) (Figure 1D). However, they expressed phagocytic
receptors such as TIM4, CD51, and Axl (Figure 1E). Immunofluorescent
staining with CD64, MerTK, and TIM4 in the thymic cortex confirmed the
presence of large cells positive for all three macrophage markers (Figure 1 —
figure supplement 2).

Importantly, MerTK* cells could not be labeled by intravenously injected
CD45 antibody (Figure 1F), proving that they reside in the parenchyma of the
organs and not in the blood vessels. Based on the above data, we will refer to
CD64'F4/80*MerTK*CD11b'°FSC" cells as thymic macrophages. The smaller
CD64*'F4/80'°CD11b*FSCM population did not express MerTK but most of
them expressed Ly6C, and we classified them as thymic monocytes.

Thymic macrophages expressed CD11¢c, MHC2, and SIRPa making them
partially overlap with CD11c*MHC2" classical dendritic cells (cDCs), thus
making problematic the unambiguous identification of thymic cDCs based only

on these two markers (Figure 1 — figure supplement 3). Proper identification of
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172 ¢cDC in the thymus requires the exclusion of macrophages based on CD64 or
173  MerTK staining. Otherwise, the cDCs, particularly the SIRPa* cDC2 subset,
174  would be contaminated with macrophages that account for ~25% of cDC2
175  (Figure 1 — figure supplement 4).

176 Thymic macrophages were ~0.1% of all the cells in the thymus of young
177  adult mice and numbered ~4x10° on average per mouse (Figure 1G). We did
178  not find statistically significant differences in their percentages between 4 and
179 11 weeks of age. Still, there was a significant decline in their numbers with

180 age, consistent with the beginning of thymic involution (Figure 1H).
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182 Figure 1. Thymic macrophages (ThyMacs) can be identified by the

183 expression of CD64, MerTK, and F4/80. A Flow cytometric analysis of
184  enzymatically digested thymus tissue with macrophage markers CD64,
185 MerTK, F4/80, and CD11b. B Gating strategy for identifying thymic

186 macrophages: CD64*FSC" are first gated; the F4/80*CD11b'" cells among
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them are the thymic macrophages (ThyMacs), while F4/80°CD11b* are the
thymic monocytes (ThyMonos). C Pappenheim (Hemacolor Rapid staining
kit) staining of sorted ThyMacs. D Lack of expression of lineage markers
associated with other cell types on ThyMacs. E The expression on ThyMacs
of three receptors for phosphatidylserine that participate in the phagocytosis
of apoptotic cells. F Labeling of ThyMacs with intravenously injected anti-
CD45-PE antibody or PBS. The labeling of blood leucocytes is shown for
comparison. G Average numbers and percentages of ThyMacs in 4-11 weeks
old mice, n=82. H Comparison of the numbers and percentages of ThyMacs
in mice of different ages, n=82. All flow cytometry plots are representative of
at least 3 independent repeats. The numbers in the flow cytometry plots are
the percent of cells in the respective gates. Data in G and H represent
meanzSEM. Statistical significance in H was determined with one-way

ANOVA.

Transcriptional signature of thymic macrophages

To further understand the identity and functions of the thymic
macrophages, we analyzed the RNA sequencing data from the IMMGEN'’s
Open Source Mononuclear Phagocyte profiling. We first examined the
expression of the core signature macrophage genes (Gautier et al., 2012) and
found that they were enriched in thymic macrophages but not in Sirpa* or
Xcr1* thymic cDCs (Figure 2A). On the contrary, cDC core signature genes
were abundantly expressed in both thymic cDC subsets but not in thymic

macrophages. Thus, although thymic macrophages and cDCs share the
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thymic microenvironment and expression of CD11c and MHC2, they have
distinct transcriptional profiles.

We then compared the gene expression profile of thymic macrophages to
that of other well-characterized macrophage populations from the IMMGEN
database. Because of the abundance of samples, we limited our comparison
to only nine types of tissue-resident macrophages under steady-state
conditions — splenic red pulp macrophages, Kupffer cells, broncho-alveolar
lavage macrophages, large peritoneal cavity macrophages, white adipose
tissue macrophages, aorta macrophages, central nervous system microglia,
and spinal cord microglia. Principal component analysis revealed that thymic
macrophages were most closely related to splenic red pulp macrophages and
Kupffer cells (Figure 2B).

To better identify the unique functions of thymic macrophages, we looked
for differentially expressed genes in these cells compared to other tissue-
resident macrophages. We set three criteria: 1) high expression in thymic
macrophages (>500); 2) >5-fold higher expression than the average value in
the nine populations of non-thymic macrophages; 3) expression in thymic
macrophages is higher than any non-thymic macrophage samples. A total of
44 genes met these criteria, and we consider them to constitute the
transcriptional signature of thymic macrophages (Figure 2C). These included
several degradation enzymes and their inhibitors (Cst7, Mmp2, Mmp14,
Dnase113, Serpina3g, Acp5), non-classical MHC molecules (H2-M2, H2-Q6,
H2-Q7), metabolic enzymes (Chst2, Ass1, Kynu, Cp, Dgat2, Sorl1, Lap3),
molecules involved in innate immunity (/fit2, 1118bp, Mefv, Lgals3bp) and

extracellular signaling molecules and their receptors (Pdgfa, Cxcl16, ll2rg,

10
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Gpr157). We also looked for transcription factors (TFs) highly expressed in
thymic macrophages and could potentially regulate critical gene networks in
these cells. A total of 25 TFs were highly expressed in thymic macrophages
(>250) and were at least 2-fold higher as compared to the non-thymic
macrophages (Table 1). Among them were several TFs involved in type |
interferon (IFN-I) signaling (Stat1, Stat2, Irf7, and /rf8) and lipid metabolism
(Nr1h3, Pparg, Srebf1, and Rxra) (Figure 2D). Notably, Runx3, which is
essential for the development and function of cytotoxic T lymphocytes
(Taniuchi et al,, 2002), innate lymphoid cells (Ebihara et al,, 2015), and
Langerhans cells (Fainaru et al., 2004), was highly expressed in thymic
macrophages. Spic, which has well-documented roles in the development of
red pulp macrophages in the spleen and bone marrow macrophages
(Kohyama et al., 2008) (Haldar et al.,, 2014), was also highly expressed in
thymic macrophages, further strengthening the argument for the similarity
between thymus, spleen, and liver macrophages. To confirm the expression
of Spic in thymic macrophages, we analyzed the thymus of Spic®" mice
(Haldar et al., 2014). We found that all Spic®""* cells were macrophages
(Figure 2 — figure supplement 1), making them the most specific thymic
macrophage reporter strain compared with Lyz2¢FP, MAFIA (Csf1r°FF),
Cd11cYfP, and Cx3cr1¢FP mice (Figure 2 — figure supplement 2). However,
only ~80% of thymic macrophages were Spic®* suggesting heterogeneity
within the cells (Figure 2 — figure supplement 3).

Several dominant pathways emerged when we grouped the 500 most
highly expressed genes in thymic macrophages according to gene ontology

(GO) terms (Figure 2E). Notably, five of the ten most highly enriched GO

11
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pathways concerned antigen presentation of both exogenous and
endogenous antigens. These data complement our flow cytometry findings of
expression of MHC2 and suggest that thymic macrophages could be potent
antigen-presenting cells and might play a role in negative selection or agonist
selection of thymocytes. Two other highly enriched GO pathways were
involved in lysosomal biogenesis and functions, highlighting the high capacity
of these cells to degrade phagocytosed material. Thus, our transcriptional
analysis has revealed that thymic macrophages are bona fide macrophages
that bear significant similarity to spleen and liver macrophages and are
specialized in lysosomal degradation of phagocytosed material and antigen

presentation.
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275  (bottom) in ThyMacs and two populations of thymic cDCs (ThyDCs) — Xcr1*
276  ThyDCs and Sirpa* ThyDCs. B Principal components analysis of ThyMacs
277  and nine other populations of tissue-resident macrophages in duplicates. C
278  Highly expressed (>500) genes enriched (>5-fold) in ThyMacs (4 samples)
279  compared to nine other tissue-resident macrophage populations (two samples

280 each). The genes in red are >10-fold up-regulated in thymic macrophages. D

13


https://doi.org/10.1101/2021.11.04.467238
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.04.467238; this version posted November 13, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

perpetuity. It is made available under aCC-BY 4.0 International license.

Comparison of the geometric mean expression of transcription factors in
thymic macrophages (4 samples) and the nine other macrophage populations
(2 samples each). Transcription factors with expression >250 and fold
change >2 are marked with red dots. E Top 10 GO pathways in ThyMacs

based on the 500 most highly expressed genes in these cells.

Thymic macrophages can present antigens to T cells and clear
apoptotic cells

Next, we investigated the biological functions of thymic macrophages. Our
findings that these cells express MHC2 and many other genes involved in
antigen presentations prompted us to test if they can efficiently activate T
cells. We pulsed sorted thymic macrophages with chicken ovalbumin (Ova)
and cultured them with naive OT2 cells labeled with CFSE. The positive
control, thymic DCs, efficiently induced OT2 cell proliferation, while peritoneal
macrophages were very inefficient (Figure 3A and B), similar to other tissue-
resident macrophages (Baratin et al., 2017). Surprisingly, thymic macrophages
induced proliferation in a considerable proportion (~30%) of OT2 cells as
calculated by FlowJo’s Proliferation Modeling module. Thus, thymic
macrophages are able antigen-presenting cells, although not as good as DCs.

To confirm the ability of thymic macrophages to clear apoptotic cells, we
did in vitro engulfment assay. Thymocytes were induced to undergo apoptosis
by Dexamethasone treatment and labeled with pHrodo Red dye. pHrodo Red
is weakly fluorescent at neutral pH, but its fluorescence increases significantly
at low pH, for example, in lysosomes. Thus, engulfed apoptotic cells can be

clearly identified by their strong red fluorescence. We incubated the pHrodo
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Red-labeled apoptotic thymocytes for 2 hours with sorted thymic or peritoneal
cavity macrophages and detected the extent of efferocytosis by fluorescent
microscopy. Thymic macrophages were avid phagocytes, and we could
record many instances of efferocytosis at this time point (Figure 3C and D).
However, peritoneal macrophages were able to phagocytose even more
apoptotic cells.

To determine if thymic macrophages are the major phagocytes in the
thymus in vivo, we evaluated their participation in the phagocytosis of
apoptotic cells in the thymus by TUNEL staining. Most TUNEL" cells could be
found clearly inside or closely associated with MerTK* and TIM4~ cells in the
thymus (Figure 3E and F). On average, ~85% of all TUNEL" cells were within
5 uym of MerTK* cells, confirming that thymic macrophages are the dominant
phagocytic population in the thymus (Figure 3G). The degree of co-
localization between TUNEL* cells and TIM4* cells was slightly lower, ~75%
on average, possibly reflecting the absence of TIM4 expression on a small

proportion of thymic macrophages (Figure 1E).
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Figure 3. Thymic macrophages can present antigens to T cells and

phagocytose apoptotic cells. A Naive OT2 T cells were labeled with CFSE
and cultured with purified thymic dendritic cells (ThyDCs), thymic
macrophages (ThyMacs), or peritoneal cavity macrophages (PC Macs) in the
presence or absence of chicken ovalbumin (Ova). Three days later, the CFSE
dilution was assessed by flow cytometry. B Quantification of the cell division
in naive OT2 cells by using the Cell Proliferation module in FlowJo that
calculates the percent of cells from the initial population that has undergone
division. C Example immunofluorescent images of ThyMacs or PC Macs
phagocytosis apoptotic thymocytes. The macrophages were labeled with
eFluor 450, while the apoptotic thymocytes — with pHrodo Red. An intense
red signal within the macrophages indicates phagocytosed thymocytes. D

Quantification of the percentage of macrophages that have engulfed at least
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one thymocyte (phagocytic index). E Example images showing co-localization
of TUNEL™ apoptotic cells and MerTK* ThyMacs in thymic sections. F
Example images showing co-localization of TUNEL™ apoptotic cells and TIM4*
ThyMacs in thymic sections. Scale bars in E and F are 50 ym. G Frequencies
of the co-localization of TUNEL* signal with MerTK* and TIM4* cells. Flow
cytometry plots in A are representative of two independent experiments. All
immunofluorescent images are representative of at least 3 independent
repeats. Data in B, D, and G represent meantSEM. Each symbol in B and G

is an individual mouse. Each symbol in D is a field of view.

Expression of Timd4 and Cx3cr1 can distinguish two populations of
thymic macrophages

Our phenotypic characterization showed clear signs of heterogeneity within
thymic macrophages, including the presence of TIM4* and TIM4- cells (Figure
1E) and Cx3cr1¢fP* and Cx3cr167- cells (Figure 2 — figure supplement). To
determine the degree of thymic macrophage heterogeneity, we performed
single-cell RNA sequencing (scRNA-Seq) of sorted Csf1r¢"* and Cd11¢cY""*
thymic cells. Csf1ris required for the survival of most macrophages and is
considered their definitive marker (Witmer-Pack et al., 1993) (Sasmono et al.,
2003), while Cd11c""P is expressed in many myeloid cells, including
macrophages (Hume, 2011). Both reporters identified an overlapping set of
cells (Figure 4 — figure supplement 1). At least 7 clusters could be identified
and assigned to different cell types by specific marker expression (Figure 4A
and B), including macrophages, B cells, pDCs, contaminating thymocytes,

and multiple cDC clusters. Two clusters expressed the
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macrophage/monocytes-specific transcription factor Mafb and high levels of
Fcgr1 (CD64), Mertk, and Adgre1 (F4/80), indicating that they are
macrophages (Figure 4 — figure supplement 2). An additional cluster
expressed Mafb together with Fcgr1 and Adgre 1 but not Mertk, fitting the
description of monocytes. There was no expression of Mafb outside these
three clusters confirming that our flow cytometry gating had identified all
macrophages in the thymus. Once we zoomed onto Mafb-expressing cells,
we could distinguish three separate populations: 1) monocytes that expressed
high levels of Ly6c2 and ltgam (CD11b) but did not express Mertk; 2) Timd4*
(encoding TIM4) macrophages that also expressed high levels of Spic and
Slc40a1, but low levels of Cx3cr1; 3) Cx3cr1* macrophages that expressed
low levels of Timd4, Spic, and Sic40a1 (Figure 4C and D). Both
macrophages and monocytes expressed Fcgr1 (CD64). Thus, these data
indicate that thymic macrophages consist of two populations with distinct
expression profiles.

We confirmed the results from scRNA-Seq by flow cytometry. We could
identify discrete TIM4*Cx3cr1¢"- and TIM4-Cx3cr1¢"* macrophages (Figure
4E). There was even a TIM4*Cx3cr1¢"* intermediate population that could
not be distinguished in the scRNA-Seq dataset, likely because of the lack of
statistical power. To determine the localization of the two distinct macrophage
populations, we stained thymic sections from Cx3cr1¢" mice with an antibody
to MerTK. The Cx3cr1¢- MerTK* cells correspond to Timd4* macrophages,
while the Cx3cr16FP*MerTK* cells would be the Cx3cr1¢* macrophages.
Strikingly, the two macrophage populations showed distinct localization in

young mice. Timd4* macrophages were located in the cortex, while the
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Cx3cr16FP* macrophages resided in the medulla and the cortico-medullary
junction (Figure 4F). The result was confirmed with direct staining for TIM4
that showed intense signal in the cortex, particularly in the deep cortex, and
absence of staining in the medulla (Figure 4 figure supplement 3). However,
the medulla still featured many CD64" macrophages.

To better understand the differences between the two populations of thymic
macrophages, we looked for differentially expressed genes. We included the
thymic monocytes in the comparison, as these cells clustered the closest to
macrophages. Timd4" macrophages expressed the highest levels of the
transcription factors Spic, Maf, and Nr1h3; the receptors for apoptotic cells
Axl, Mertk, and Timd4; and many Slc transporters such as Sic40a1, Sic1a3,
Slco2b1, Sic11a1, and Sic7a7 (Figure 4G and Table 2). Cx3cr1*
macrophages expressed high levels of the transcription factor Runx3; a
distinct set of phosphatidylserine receptors such as Stab1, Anxab, and Anxa3,;
many degradative enzymes such as Mmp2, Mmp14, Dnase113, Acp5, Lyz2,
Ctsz, Ctss, Ctsd, Ctsl; cytokines such as Pdgfa, Cxcl16, and Ccl12; and
molecules involved in MHC1 antigen presentation such as B2m, H2-M2, H2-
K1, H2-Q7. Thymic monocytes were characterized by differential expression
of the typical monocyte genes Ly6c2, Ccr2, and S100a4, and genes involved

in MHC2 antigen presentation such as Ciita, H2-DMb1, H2-Ab1, and Cd74.
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Figure 4: Two populations of macrophages with distinct localization
exist in the thymus. A Identification of the clusters from the scRNA-Seq data
based on lineage-specific markers. B Expression of lineage-specific markers
in different clusters. C UMAP clusters from A with high expression of the
transcription factor Mafb fall into three groups: monocytes, Timd4*
macrophages, and Cx3cr1* macrophages. D Expression of the indicated
genes in the three Mafb-positive clusters. E A flow cytometry plot of Cx3cr1¢fP
and TIM4 expression in ThyMacs. The plot is representative of >10 individual

experiments. The numbers inside the plot are the percentages of the cell
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417  populations in the respective gates. F Immunofluorescent staining of the

418 thymus of Cx3cr1¢ " mouse stained with MerTK (a marker for alll

419 macrophages) and Keratin 5 (a marker for medulla). The scale bar is 150 ym.
420 Areas in the cortex, medulla, and the cortico-medullary junction (CMJ)

421 represented by the dashed boxes are enlarged to the right to show the co-
422  localization of Cx3cr11¢fF and MerTK signal in CMJ and medulla, but not in
423  the cortex. The scale bars in the images to the right are 20 ym. The images
424  are representative of three individual mice. G Differentially expressed genes
425 among Timd4* thymic macrophages, Cx3cr1* thymic macrophages, and

426  thymic monocytes. The negative logio p-values for the genes expressed in
427  each cluster were calculated as described in the Materials and Methods, and
428 the top 50 differentially expressed genes were plotted in the figure. Ten of

429 these genes are listed on the left.

430
431 Yolk-sac progenitors contribute to embryonic thymic macrophages
432 The ontogeny of thymic macrophages has been examined by only one

433  study since the realization that many tissue-resident macrophages are

434  descendants of embryonic progenitors (Tacke et al., 2015). Based on F/t3¢®
435 fate-mapping, the authors concluded that most adult thymic macrophages
436  derive from HSCs. To determine if yolk-sac (YS) progenitors contribute to
437  embryonic thymic macrophages, we used Cx3cr1¢ER fate mapping (Yona et
438 al, 2013). Injection of 4-OHT at E9.5 in ROSA26-5--6FP mouse mated with a
439  Cx3cr1¢ER male permanently tags YS progenitors and their descendants
440  with GFP (Figure 5A). Indeed, E19.5 microglia that are exclusively derived

441  from YS progenitors were labeled to a high degree (Figure 5B). After adjusting
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for incomplete labeling based on the microglia, we found that at E15.5 >50%
of thymic macrophages were fate mapped, i. e. from YS origin (Figure 5C).
However, GFP* thymic macrophages decreased to just ~11% at E19.5,
suggesting that YS progenitors establish the embryonic thymic macrophage

pool but are quickly replaced by subsequent wave(s) of macrophages.

Differential contribution of adult bone marrow-derived monocytes to
the two thymic macrophage populations

To investigate the possibility that thymic macrophages arise from adult
bone marrow-derived monocytes, we devised two complementary
experiments. First, we evaluated the contribution of circulating adult
monocytes to thymic macrophages without the confounding effect of radiation
damage on the thymus. We created shield chimeras by subjecting CD45.2
mice to a lethal dose of irradiation while protecting their upper body and the
thymus with a 5 cm lead shield, followed by reconstitution with CD45.1 bone
marrow (Figure 5D). We analyzed Timd4* and Cx3cr1* thymic macrophages
separately after 6 weeks because we suspected they might have different
origins. As CX3CR1 protein expression was low on thymic macrophages
(Figure 5B), we defined the Cx3cr1*Timd4~ population as TIM4-. The donor-
derived monocytes in the blood were, on average, 57%, but less than 2% of
TIM4* thymic macrophages were CD45.1* (Figure 5E and F), suggesting very
limited contribution of adult circulating monocytes to the TIM4* macrophage
pool. The percentage of HSC-derived TIM4~ macrophages (on average 23%)
was intermediate between the monocytes and TIM4* macrophages, pointing

out that a sizeable part of TIM4~ cells was derived from adult HSCs.
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We also transplanted E15.5 thymuses from Spic®* CD45.2 embryos
under the kidney capsule of adult CD45.1 mice and analyzed them six weeks
later (Figure 5G). By that time, >99% of thymocytes in the transplanted
thymus were derived from CD45.1* host HSCs, indicating successful
replacement by HSC-derived progenitors (Figure 5 — figure supplement 1).
TIM4- thymic macrophages were derived entirely from host HSCs, just like
thymocytes. In contrast, most TIM4™* cells (on average 70%) were donor-
derived (Figure 5H and I). Moreover, only CD45.2* TIM4* macrophages
expressed Spic® " (Figure 5 — figure supplement 2). As expected, thymic
macrophages in the endogenous thymus were all CD45.1*. The results from
our transplantation experiments show that the progenitors of most TIM4~*
thymic macrophages are of embryonic origin, while TIM4~ cells are derived
from adult monocytes. Altogether our results suggest that the two populations
of thymic macrophages have different origins. TIM4* cells are derived from
embryonic precursors and can survive long-term without much contribution
from adult HSC and monocytes. In contrast, TIM4~ thymic macrophages rely

mostly on adult HSCs for their generation and replacement.
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485 Figure 5. Yolk sac (YS), non-YS-derived embryonic progenitors, and

486 adult hematopoietic stem cells sequentially contribute to the thymic

487 macrophage pool. A Scheme of the YS-progenitor labeling experiments.
488  E9.5 pregnant ROSA26-5--GFP mice mated with Cx3cr1¢ER males were

489 injected with 4-hydroxytamoxifen (4-OHT) and sacrificed at E15.5 or E19.5. B
490 Representative flow cytometry plots of the Cx3cr16FP expression in microglia
491 (CD45*CD11b* cells in the brain) and ThyMacs of the pups at E19.5. C

492  Frequencies of GFP* ThyMacs at E15.5 and E19.5 adjusted to the degree of
493 labeling of microglia. D Scheme of the shield chimera experiments. Congenic
494  CD45.2 mice were lethally irradiated with their upper body protected by a 5

495  cm thick lead shield and then injected with CD45.1* bone marrow. E
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496 Representative flow cytometric analysis of CD115*CD11b* blood monocytes,
497  TIM4* and TIM4- thymic macrophages for donor-derived (CD45.1%) and host-
498 derived (CD45.2%) cells. Non-chimeric CD45.1 and CD45.2 samples serve as
499  controls for the gating. F Frequencies of donor-derived blood monocytes,
500 TIM4* and TIM4- ThyMacs. G Scheme of the thymus transplantation

501 experiments. Embryonic thymuses from E15.5 Spic®"* CD45.2* mice were
502 transplanted under the kidney capsule of CD45.1*" mice and analyzed six
503 weeks later. H Representative flow cytometry plots of donor (CD45.2%) vs.
504 host (CD45.1%) derived TIM4* and TIM4~ ThyMacs in the transplanted thymus.
505 The host thymus (endogenous thymus) serves as a negative control. |

506 Frequencies of CD45.2* (donor-derived) cells among TIM4* and TIM4~

507 ThyMacs in the transplanted and endogenous thymuses of the mice. Data in
508 C, F, and | are meantzSEM with two litters, seven, and five mice per group,
509 respectively. The numbers in the flow cytometry plots are the percent of cells

510 in the respective gates. Each symbol in the graphs is an individual mouse or

511 embryo.

512

513 Thymic macrophages can proliferate in situ

514 TIM4* macrophages can persist for many weeks in the thymus without

515 constant replacement from blood monocytes, suggesting they can divide in
516 situ. Staining for the proliferation marker Ki67 revealed that ~4% of all thymic
517 macrophages expressed this marker compared to an isotype control (Figure
518 6A and B). To prove that thymic macrophages are proliferative, we tested the
519 incorporation of the nucleotide analog 5-Ethynyl-2’-deoxyuridine (EdU).

520  Short-term EdU labeling experiments unexpectedly revealed that thymic
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macrophages become EdU™* with faster kinetics than thymocytes (Figure 6 —
figure supplement 1). The most likely explanation for this puzzling result is
that some of the thymic macrophages have engulfed apoptotic thymocytes
that have recently divided and incorporated EdU. Thus, EdU could have
accumulated in these macrophages through phagocytosis, not cell division.
To circumvent this caveat, we designed a pulse-chase experiment (Figure
6C). Mice were injected daily with EAU for 21 days so that all cells that
proliferated in that period would incorporate the label. Most thymocytes and
thymic macrophages became EdU™ at d. 21 (Figure 6D). After 21 more days
of “chase period”, only ~0.2% of thymocytes had retained the EdU label,
consistent with the existence of a tiny population of long-term resident
thymocytes consisting mainly of regulatory T cells and NKT cells[54] (Figure
6D and E). However, ~5% of the thymic macrophages were EdU*, suggesting
they divided during the labeling period. We also sorted thymic macrophages
and subjected them to cell cycle analysis. Although almost all thymic
macrophages were in GO/G1 phase, a small population of ~3% was in the
G2/M phase of the cell cycle (Figure 6F and G). Surprisingly, most Mki67*
thymic macrophages belonged to the Cx3cr1* subset, and only a few of the
Timd4* cells were positive (Figure 6H). We confirmed this result from the
scRNA-Seq analysis experimentally. The expression of Ki-67 was significantly
higher in TIM4- than in TIM4* thymic macrophages (Fig. 6G), suggesting that
the former is the more proliferative subset. Collectively, four independent
approaches documented that a small proportion (3-5%) of thymic

macrophages are actively dividing under homeostatic conditions within the
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thymus. The majority of the dividing cells were from the adult HSC-derived

Cx3cr1* subset. Timd4* macrophages were primarily quiescent.
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Figure 6. Thymic macrophages exhibit a low degree of proliferation.
A Example flow cytometry plots of Ki67 staining of thymic macrophages
(ThyMacs). B Frequency of Ki67* thymic macrophages. C Scheme of EdU
pulse/chase experiment: mice were injected daily with 1 mg EdU i.p for 21
days and rested for 21 more days. D Example flow cytometry plots of EdU

staining of thymocytes (upper row) and ThyMacs (lower row). E Frequencies
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554  of EdU* cells among thymocytes (top graph) and ThyMacs (bottom graph). F
555 Example flow cytometry plot of cell cycle analysis of FACS sorted ThyMacs. G
556  Frequencies of ThyMacs in different stages of the cell cycle. H UMAP plot of
557  Mki67 expression in Mafb-positive clusters from the scRNA-Seq data

558 described in Figure 4. | Comparison of Ki67 protein expression in TIM4* and
559  TIM4- thymic macrophages. The expression is measured as the difference of
560 the geometric mean fluorescent intensities of the Ki67 antibody staining and
561 isotype control (AgMFI). The numbers in the flow cytometry plots are the

562  percent of cells in the respective gates. Data are meantSEM from three mice
563 (B and G) or 5 mice (l), or 6-7 individual mice (E). Each dot is an individual

564 mouse. Statistical significance in (I) was determined by unpaired Student’s t-

565 test.

566

567 Cx3cr1* cells give rise to Timd4* cells during embryonic development
568 To determine if the two populations of thymic macrophages are related, we

569 first analyzed the kinetics of their appearance during embryonic development.
570 At the earliest time point (E14.5), all thymic macrophages were Cx3cr1*, and
571 only ~20% were also TIM4* (Figure 7A and B). The proportion of TIM4* cells
572 increased at E17.5, and TIM4*Cx3cr1- cells started to appear. In the neonatal
573  period, almost all macrophages were TIM4*, and very few remained TIM4-.
574  The proportion of TIM4~ cells increased in 6 weeks old mice, but TIM4*

575 macrophages remained the dominant population. These kinetics (Figure 7C)
576  are consistent with Timd4* macrophages developing from Cx3cr1* cells

577  before birth. Another plausible scenario is that distinct progenitors give rise to

578 different thymic macrophage populations (e.g., YS-progenitors give rise to
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579  Cx3cr1*Timd4~ and HSC-derived progenitors develop into Timd4*

580 macrophages). To test the latter hypothesis, we revisited the fate mapping of
581 YS progenitors (Figure 5A). Although a larger part (~60% at E15.5) of fate-
582 mapped cells were Cx3cr1*TIM4- cells (Figure 7D), a substantial proportion
583 (~40% at E15.5) of fate-mapped TIM4* macrophages could clearly be

584 identified at both E15.5 and E19.5, suggesting that YS progenitors can give
585 rise to both Cx3cr1* and Timd4* cells. Thus, the simplest explanation for our
586 findings is that Timd4* cells develop from Cx3cr1* cells during embryonic

587 development. This transition is complete in the first week after birth as there
588  were essentially no Cx3cr1*TIM4- thymic macrophages remaining at d.7

589 (Figure 7A and B). To formally demonstrate that Cx3cr7* macrophages can
590 give rise to Timd4* cells during embryonic development, we injected 4-OHT in
591 E15.5 pregnant females carrying Cx3cr1¢ER X ROSA26-S--6FF fetuses (Fig.
592  7E). At this time almost all thymic macrophages are Cx3cr1* (Fig. 7A). Just
593  before birth, at E19.5, we could identify a sizeable population of

594 TIM4*CX3CR1- among fate-mapped cells, suggesting that they originate from

595  Cx3cr1* progenitors (Fig. 7F and G).
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Figure 7. Timd4* thymic macrophages are derived from Cx3cr1* cells
during embryonic development. A Example flow cytometry plots for the
expression of Cx3cr16FP and TIM4 on thymic macrophages at different times
during embryonic development (E14.5, E17.5), immediately after birth, at 7
days, and 6 weeks of age. B Frequencies of Timd4*Cx3cr1- (Timd4 single-
positive or Timd4SP), Timd4*Cx3cr1*(double-positive or DP), and
Cx3cr1*Timd4 (Cx3cr1 single-positive or Cx3cr1SP) thymic macrophages at
the indicated time points. C Kinetics of the changes in different subpopulations
of thymic macrophages from E14.5 to 6 weeks. D Frequencies at E15.5 and
E19.5 of GFP-labeled cells among TIM4* or TIM4- cells in Cx3cr1¢eER X
ROSA26-5--6GFF embryos treated with 4-OHT at E9.5. E Scheme of the fate-

mapping experiments showing the relationship between Cx3cr1* and Timd4*
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thymic macrophages during embryonic development. E15.5 pregnant
ROSA26-5--6FP mice mated with Cx3cr1¢ER males were injected with 4-
hydroxytamoxifen (4-OHT) and sacrificed at E19.5. F Representative flow
cytometry staining for TIM4 and CX3CR1 in fate-mapped GFP* thymic
macrophages at E19.5. The panel to the right is the isotype control for
CX3CR1-PE staining. G Frequencies of TIM4*CX3CR1~ cells among fate-
mapped GFP* macrophages. Data are from at least two independent

experiments for each panel. Each symbol is an individual mouse or embryo.

Cx3cr1* thymic macrophages slowly accumulate with age at the
expense of Timd4* cells

To understand the dynamics of the two resident thymic macrophage
populations with age, we induced recombination in Cx3cr1¢R X ROSA26-5t
GFP mice during the neonatal period (Figure 8A) or at 6 weeks of age (Figure
8C) and compared the proportion of GFP* cells 3 and 42 days after labeling.
The extent of labeling of TIM4* thymic macrophages did not change within
these 6 weeks, no matter whether the mice were treated with Tamoxifen in
the first week after birth or at 6 weeks (Figure 8B and D), suggesting an
absence of a significant influx from unlabeled cells (e.g., monocytes). In
contrast, the proportion of labeled TIM4- thymic macrophages decreased
significantly 6 weeks after Tamoxifen injection in neonatal and adult mice,
suggesting that this population was diluted by unlabeled cells. To further
substantiate these findings, we examined older WT mice and found out that
the proportions of TIM4~ thymic macrophages increased with age, and in mice

>8 months old, they accounted for ~70% of all macrophages in the organ
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(Figure 8E). As these changes in the proportions of the thymic macrophage

subpopulations occurred at the background of thymic involution, we wanted to

know if the accumulation of TIM4- cells was only relative or also in absolute

cell numbers. In contrast to TIM4* thymic macrophages that reached peak

numbers at an early age and then declined significantly, TIM4~ cells tended to

increase their numbers in older mice (Figure 8F). Thus, we conclude that,

after birth, the numbers of TIM4* macrophages follow the kinetics of the

thymus size — increase in young and decrease in old mice, and they are not

replaced by other cells. In contrast, since the first week of life, Cx3cr1* cells

are recruited to the thymus, accumulate with age, and in old mice, form the

predominant phagocytic population in the organ.

A Neonatal fate mapping
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‘ | |
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Figure 8. Timd4* thymic macrophages are progressively lost, while

Cx3cr1* cells slowly accumulate with age. A Scheme of the neonatal fate
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mapping: A nursing dam was injected twice with Tamoxifen (Tam) or vehicle
(Veh) in the first week after giving birth to Cx3cr1¢fR X ROSA26-SL-CFF pups.
The mice were sacrificed three or 42 days after the last injection, and the
degree of labeling of TIM4* and TIM4~ thymic macrophages was examined by
flow cytometry. B Frequencies of GFP* TIM4* or TIM4~ thymic macrophages
from neonatally fate-mapped mice after 3 and 42 days. Vehicle-injected
nursing dam litters (Veh) served as a control for non-specific labeling. C
Scheme of the adult fate mapping: Six weeks old Cx3cr1¢¢ER X ROSA26-SL-
GFP mice were injected twice with Tamoxifen (Tam) or vehicle (Veh). The
mice were sacrificed three or 42 days after the last injection, and the degree
of labeling of TIM4* and TIM4~ thymic macrophages was examined by flow
cytometry. D Frequencies of GFP* TIM4* or TIM4~ thymic macrophages from
adult fate-mapped mice after 3 and 42 days. E Frequencies of TIM4~ thymic
macrophages at different ages. F Changes in the numbers of TIM4- and
TIM4* thymic macrophages with age. The data are meantSEM from 2
independent experiments (B) or at least 3 individual mice per time point (D,
E, and F). Each symbol is an individual mouse. Statistical significance in the
difference between Tamoxifen-treated samples at different time points was
determined with unpaired Student’s t-test (B and D). One-way ANOVA was
used to assess the significance of the change in TIM4* and TIM4~ ThyMacs

percentages and numbers with age (E and F).

Discussion
Here, we have described the phenotype, transcriptional profile, localization,

diversity, ontogeny, and maintenance of macrophages in the thymus. These
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cells express the typical macrophage markers CD64, MerTK, and F4/80 and
are transcriptionally most similar to splenic red pulp macrophages and liver
Kupffer cells. However, they have a unique expression profile dominated by
genes involved in antigen presentation and lysosomal degradation. We found
that thymic macrophages consist of two populations with distinct localization.
Timd4* macrophages occupied the cortex, while Cx3cr1* cells were located in
the medulla and the cortico-medullary junction. While YS-derived
macrophages dominated the early stages of thymus development, they were
quickly replaced by non-YS embryonic progenitors that gave rise to the
Timd4* thymic macrophages that persisted into adulthood and formed the
main macrophage population in young mice. Cx3cr1* macrophages slowly
accumulated after birth and became the most abundant population in old
mice.

Altogether our data depict thymic macrophages as typical tissue-resident
macrophages originating from multiple hematopoietic waves, surviving long-
term, and expressing the core macrophage-specific genes. They are most
similar transcriptionally to splenic red pulp macrophages and Kupffer cells,
which is not surprising considering that they all specialize in efferocytosis and
have efficient lysosomal degradation machinery. These three populations
also shared expression of the transcription factor Spic that is induced by
heme released following red blood cells phagocytosis (Haldar et al., 2014).
However, the thymus is not known as a place for erythrocyte degradation.
Thus, the mechanism for Spic up-regulation in thymic macrophages is

unclear.
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The unique features of thymic macrophages include high expression of
genes involved in the IFN-I pathway, antigen presentation, and lysosomal
degradation. The up-regulation of IFN-I-stimulated genes such as Stat1,
Stat2, Irf7, and Irf8 can be explained by the constitutive secretion of IFN-I by
thymic epithelial cells (Lienenklaus et al., 2009) (Otero et al.,, 2013). The
purpose of IFN-I expression in the thymus in the absence of a viral infection is
unclear. Still, one possibility is that it mediates negative selection to IFN-
dependent genes as part of central tolerance.

Thymic macrophages highly express molecules involved in antigen
presentation, including MHC1 and MHC2, although the latter is expressed at
lower levels than in cDCs, and are functionally competent to induce T cell
activation. Thus, they have the potential to present antigens for both negative
selection and agonist selection. These two activities have traditionally been
assigned solely to cDCs (Breed et al., 2017). However, recent evidence
suggests that negative selection is most efficient when the cell that presents
the antigen to an auto-reactive thymocyte is also the one that phagocytoses it
(Kurd et al,, 2019). So, macrophages’ participation in thymocyte selection
needs to be re-evaluated.

The extraordinary ability of thymic macrophages to engulf and degrade
apoptotic thymocytes has been appreciated for a long time (Surh & Sprent,
1994), and our RNA-Seq data provides additional supporting evidence for this
function by highlighting the up-regulation of pathways involved in lysosomal
degradation. Moreover, we recently showed that the pentose phosphate
pathway has a central role in buffering the efferocytosis-associated oxidative

stress in thymic macrophages (Tsai et al.,, 2022). An interesting topic for future
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research would be understanding how the metabolites derived from apoptotic
cells are returned to the microenvironment to support the proliferation of
immature thymocytes. A SolLute Carrier (Sic) genes-based program has been
described in vitro (Morioka et al., 2018), but its relevance to tissue-resident
macrophages remains to be determined. Altogether, our study demonstrates
that thymic macrophages are a unique subset of tissue-resident macrophages
and support the idea that resident macrophage phenotype is determined by
the combination of ontogeny, microenvironment, and other factors (Bleriot et
al,, 2020).

Together with the study by Tacke et al., our work builds the following model
for thymic macrophage origin (Tacke et al., 2015): Thymic macrophages
develop in three distinct waves: YS-derived progenitors dominate the early
stages of thymus development but are replaced before birth by a second
wave of YS-independent embryonic progenitors that forms the bulk of thymic
macrophages after birth and can self-maintain into adulthood. With age, there
is a slow and steady influx of Timd4 Cx3cr1* macrophage precursors that
occupy the medulla and cortico-medullary junction, becoming the major
phagocytic population in the thymus of older mice (>8 months). The second
wave of YS-independent macrophages is most likely the progeny of
embryonic HSCs based on FIt3°" fate mapping that showed that >80% of
thymic macrophages in adult mice are descendants of HSCs (Tacke et al.,
2015). Whether HSC-independent fetal liver monocytes contribute to thymic
macrophages and to what extent awaits the creation of models that can
specifically target this population of progenitors. Recruitment of circulating

monocytes to the resident macrophage pool in the thymus has been ruled out
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previously by parabiosis and Ccr2~~ mice (Tacke et al.,, 2015). Our shield
chimera experiments have arrived at similar conclusions. However, the
relatively short duration of these experiments and their focus on the bulk
thymic macrophages have prevented the recognition of the gradual
accumulation of Timd4- macrophages. Once we zoomed in on this minor cell
population in young mice, the fate mapping clearly showed an influx of
unlabeled progenitors. Whether the progenitors of Timd4- macrophages are
monocytes remains to be formally demonstrated. However, monocytes have
been singled out as the source of all macrophage populations exhibiting
replacement in adults examined to date (Molawi et al., 2014; Goldmann et al,,
2016) (Jacome-Galarza et al., 2019) (Tamoutounour et al., 2013) (Bain et al,,
2014) (Bain et al,, 2016). An alternative possibility involves thymocyte
progenitors that, under certain circumstances, have been shown to
differentiate into macrophages and granulocytes in the thymus (Wada et al.,
2008) (Bell & Bhandoola, 2008). However, if this occurs in unmanipulated mice
at a steady state remains unclear.

We observed interesting dynamics of the Cx3cr1* macrophages in the
thymus. Thymic macrophage progenitors are initially Cx3cr1* during the
embryonic period but gradually down-regulate this chemokine receptor and
up-regulate Timd4 so that by day 7 after birth, there are almost no
Cx3cr1*Timd4~ cells remaining. Cx3cr1*Timd4~ macrophages start to
increase after the neonatal stage, but these cells come from an entirely
different source — adult hematopoietic cell-derived progenitors, and slowly
accumulate in the medulla with time so that by 6-8 months, they are the

majority of the resident macrophages in that tissue. Both YS-derived primitive
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macrophages and fetal liver monocytes express Cx3cr1 (Hoeffel et al., 2012)
(Mass et al.,, 2016). However, the tissue-resident macrophages in some organs
(e.g., Kupffer cells, alveolar macrophages, red pulp macrophages,
Langerhans cells) lose Cx3cr1 expression similar to thymic macrophages,
while the macrophages in the intestines, aorta, kidney, dermis, lymph node T
cell zone, and microglia do not (Yona et al., 2013) (Tamoutounour et al., 2013)
(Ensan et al,, 2015) (Baratin et al,, 2017). Similar processes may occur in other
tissues where the embryonic macrophages transition to a Cx3cr1- phenotype
and are slowly replaced by monocyte-derived cells with age. However,
detailed time-course analyses of Cx3cr1 expression starting before birth and
extending to very old (1 year) mice coupled with lineage tracing would be
necessary to document if this transition takes place.

The spatial segregation of the two macrophage populations in the thymus
implies that they might have distinct functions. Timd4* cells are restricted to
the cortex and are particularly abundant in the deeper cortex, close to the
medulla. Both positive and negative selection of thymocytes occur there, so
we speculate that Timd4* macrophages might be specialized in efferocytosis
of CD4*CD8" (double-positive) thymocytes that cannot interact with cortical
thymic epithelial cells and die by neglect or are auto-reactive and undergo
clonal deletion in the cortex (Stritesky et al,, 2013). On the other hand,
Cx3cr1* macrophages accumulate in the medulla — the thymic region
specialized in negative selection to tissue-restricted antigens (TRA). They
might contribute to the process in several ways: 1) by carrying TRAs from
blood and peripheral organs. A similar process has been described for cDC2

(SIRPa*™ DCs) (Bonasio et al., 2006; Baba et al., 2009). In fact, Cx3cr7* thymic
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797  macrophages could have contributed to this role because they were not

798  distinguished from cDC2 in this study. 2) By capturing TRAs from Aire*

799  medullary thymic epithelial cells and presenting them to auto-reactive

800 thymocytes as shown for DCs (Gallegos & Bevan, 2004) (Koble & Kyewski,

801 2009) (Voboril et al., 2020). 3) By phagocytosing apoptotic TRA-specific

802 medullary thymocytes, a process we have observed before (Kurd et al., 2019).
803 The exact involvement of thymic macrophages in the selection events in the
804 thymus remains to be determined.

805 The accumulation of the Cx3cr1* cells in older mice has clear implications
806 for thymus aging. One key feature of thymus involution is the accumulation of
807  extracellular matrix produced by fibroblasts and the emergence of white

808 adipocytes (Dixit, 2012). A well-recognized driver of fibrosis is TGFp1 (Budi et
809 al. 2021) that is induced by efferocytosis in macrophages (Huynh et al., 2002).
810 Tgfb1 was highly expressed in thymic macrophages. However, its expression
811 was the highest in the Timd4* subset (Figure 4 — figure supplement 4). This
812  expression pattern casts some doubt that this molecule is the primary driver of
813  extracellular matrix accumulation during thymic involution because Timd4*
814 macrophages peak in young mice (Fig. 8F). At that time, there is minimal

815  extracellular matrix in the cortex where these cells reside. In addition, during
816 thymic involution, the number of these cells declines significantly. The clear
817  correlation between the accumulation of Cx3cr1* thymic macrophages and
818 thymic involution suggests that some factor(s) produced exclusively by these
819 cells would be more relevant. For example, Cx3cr1* thymic macrophages are
820 the predominant producer of the growth factor PDGFa (Figure 4G) that is

821 required for the maintenance of adipocyte stem cells and can stimulate tissue
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fibrosis (Rivera-Gonzalez et al., 2016) (Olson & Soriano, 2009). The gradual
accumulation of Cx3cr1* macrophages could increase the availability PDGFa
in the aging thymus stimulating extracellular matrix production and
differentiation of precursors into adipocytes. This model predicts that limiting
the influx of Cx3cr1™ macrophage precursors could delay thymus involution.

Recent work described a novel phagocytic and antigen-presenting cell type
in the thymus called monocyte-derived DCs (Voboril et al., 2020). The
phenotype of these cells overlaps with the CD64*F4/80°CD11b* cells in our
study. However, we favor the classification of these cells as monocytes based
on their expression of Mafb, CD64, and Ly6C and lack of expression of the
defining DC transcription factor Zbtb46 (Figure 4B and D) (Satpathy et al.,
2012). As monocytes can differentiate into cDC2, particularly in the context of
inflammation (Guilliams et al., 2018), the precise identity and the relationship of
this population to thymic cDC2 remain to be established.

In the past several years, scRNA-Seq has come to the forefront of
biologists’ efforts to disentangle the cellular diversity of tissues. Several
comprehensive studies have included samples from mouse or human thymus
(Han et al., 2018) (Tabula et al., 2018) (Tabula, 2020). However, too few thymic
macrophages were sampled in these studies to give meaningful clustering
results. Efforts specifically targeting the thymus have provided considerably
more information (Kernfeld et al.,, 2018) (Park et al., 2020), but macrophage
diversity was still not recognized. Characterization of rare populations such as
thymic macrophages (~0.1% of all cells in the thymus) requires optimized
enzymatic digestion procedures and enrichment strategies, as has already

been demonstrated for thymic epithelial cells (Bornstein et al., 2018) (Bautista
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etal,, 2021). Our scRNA-Seq dataset provides a rich resource for the
unbiased characterization of myeloid cells in the thymus and will greatly aid in
the understanding of the myeloid landscape of the thymus.

In summary, our work comprehensively characterizes macrophages in the

thymus and paves the way for the exploration of their functions.

Materials and methods

Mice

C57BL/6Narl (CD45.2) mice were purchased from the National Laboratory
Animal Center, Taipei, Taiwan (NLAC stock# RMRC11005). MAFIA
(MAcrophage Fas-Induced Apoptosis, Jackson Labs stock# 005070) (Burnett
etal.,, 2004), Cx3cr1¢FF (Jackson Labs stock# 005582) (Jung et al., 2000),
Spic®FF (Jackson Labs stock# 025673) (Haldar et al., 2014), Cx3cr1¢reER
(Jackson Labs stock# 020940) (Yona et al., 2013), and B6.SJL-Ptprca
Pepcb/BoyJ (CD45.1, Jackson Labs stock# 002014) mice were purchased
from the Jackson Laboratories. Cd71¢cY"" (Jackson Labs stock# 008829)
(Lindquist et al., 2004) and Lyz2¢" (Faust et al., 2000) mice have been
described. Mice ubiquitously expressing GFP from the ROSA26 locus were
generated by breeding Pdgfra®™ (Jackson Labs stock# 013148) (Roesch et al.,
2008) and ROSA26-5-4s6reen (glso known as ROSA26-S5-6FF or Ai6, Jackson
Labs stock# 007906) mice (Madisen et al., 2009) (both from the Jackson
Laboratories). A mouse from this cross was identified, in which the STOP
cassette was deleted in the germline. It was designated ROSA26¢ and
subsequently bred to C57BL/6 mice. All mice were used at 4-10 weeks of age

unless otherwise specified. Mice were bred and maintained under specific
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pathogen-free conditions at the animal facility of National Yang Ming Chiao
Tung University (NYCU). All experimental procedures were approved by the

Institutional Animal Care and Use Committee (IACUC) of NYCU.

Treatment with 5-Ethynyl-2’-deoxyuridine (EdU)

Mice were i.p. injected with 1 mg EdU (Carbosynth) dissolved in PBS daily
for 21 days and then rested for 21 more days. Cells from the thymus were
harvested on day 21 or 42. In some experiments, the mice were sacrificed 2

hours after the first EAU injection.

Shield chimera generation

WT (CD45.2) mice were anesthetized by i.p. injection of 120 ug/g body
weight Ketamine hydrochloride (Toronto Research Chemicals) and 12 pg/g
body weight Xylazine hydrochloride (Sigma). Anesthetized mice were taped
to a 5 cm thick lead block so that the lead block covered the head and the
chest down to the bottom of the rib cage. Then, they were irradiated with a
lethal dose (1000 rad) from a '3’Cs source (Minishot Il, AXR) so that only their
abdomen and hind legs were exposed. After recovery from anesthesia, the
mice were transfused i.v. with 107 bone marrow cells from a congenic
(CD45.1) donor. Then, they were given Trimerin (0.5 mg/mL Sulfadiazine +
0.1 mg/mL Trimethoprim, China Chemical and Pharmaceutical Co., Tainan,
Taiwan) in the drinking water for the first two weeks after the irradiation and

analyzed after six weeks.

Cell isolation from thymus, blood, and peritoneal cavity
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Thymocytes were obtained by mechanical disruption of the thymus with a
syringe plunger. For myeloid cell isolation, mouse thymuses were cut into
small pieces and digested with 0.2 mg/mL DNase | (Roche) and 0.2 mg/mL
collagenase P (Roche) in complete DMEM for 20 min at 37°C with frequent
agitation. In some experiments, thymic myeloid cells were enriched by 57%
Percoll PLUS (GE Healthcare) discontinuous gradient centrifugation at 4°C,
1800 rpm, for 20 min without brake. Cells at the interface were collected and
washed with PBS to remove residual silica particles. Then the cells were
resuspended in PBS with 0.5% BSA (HM Biological), filtered through a 70 ym

filter, and kept on ice.

Blood was isolated by cardiac puncture of sacrificed mice and immediately
diluted with PBS. After centrifugation, the cell suspensions were treated with
ammonium chloride-potassium lysis buffer for 3 min on ice once or twice.
Peritoneal cavity cells were obtained by lavage with 5 mL PBS + 2 mM EDTA
(Merck). Following gentle massage, the cavity was opened with an abdominal

incision, and lavage fluid was collected.

Flow cytometry

Single-cell suspensions (0.5 — 2X10° cells) from thymus, blood, or
peritoneal cavity were blocked with supernatant from 2.4G2 hybridoma (a kind
gift by Dr. Fang Liao, Academia Sinica, Taipei, Taiwan) and stained with
fluorochrome- or biotin-labeled antibodies for 20 min on ice in PBS + 0.5%
BSA + 2 mM EDTA + 0.1% NaNs (FACS buffer). The following antibodies

were used: CD11b (clone M1/70), MHC2 (M5/114.15.2), CD11c (N418),
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922  F4/80 (BM8), CD115 (AFS98), SIRPa (P84), CD45 (30-F11), NK1.1 (PK136),
923 TIM4 (RMT4-54), Gr-1 (RB6-8C5), CD64 (X54-5/7.1), Siglec H (551), Ly6C
924 (HK1.4), CD3¢ (145-2C11), CD8a (53-6.7), CD19 (6D5), B220 (RA3-6B2),
925 CD4 (GK1.5), CD51 (RMV-7), CD45.1 (A20), CD45.2 (104), CX3CR1

926 (SA011F11), and EpCAM (G8.8) from BioLegend; Axl (MAXL8DS), MerTK
927 (DS5MMER), and Ki67 (SolA15) were from eBioscience; Siglec F (E50-2440),
928 CD90.2 (30-H12), and CD11c (HL3) were from BD Biosciences. Cells were
929 washed, and if necessary, incubated for 20 more min with fluorochrome-

930 labeled Streptavidin: Streptavidin-AF647 (Jackson Immunoresearch) or

931  Streptavidin-APC/cy7, Streptavidin-BV421, Streptavidin-BV605 (BioLegend).
932  After the last wash, the cells were resuspended in FACS buffer containing
933 DAPI (BioLegend), Propidium lodide (Sigma), or DRAQ7 (BioLegend) and
934  analyzed immediately on an LSR Fortessa flow cytometer running Diva 8

935 software (BD Biosciences). Typically, 500,000 cells were collected from

936 thymus samples. Data were analyzed using FlowJo software (TreeStar).

937

938 For intracellular staining, after surface antibody staining, the cells were
939 labeled with Zombie Aqua (BioLegend) for 30 min in ice. Then, the cells were
940 fixed with 2% paraformaldehyde (Electron Microscope Sciences) in PBS for
941 20 min on ice, permeabilized with either 0.5% Triton-X 100 (Sigma) for 20 min
942  onice, or with Foxp3 staining kit (eBioscience) according to the protocol

943  provided by the manufacturer, and stained with antibodies for intracellular
944  markers for 40-60 min on ice.

945
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For cell cycle analysis, 1-5x10° sorted thymic macrophages were fixed with
70% ethanol for 2 h on ice. The cells were spun down at 1800 rpm for 20 min
at 4°C, washed with PBS, and stained with 1 ug/ml DAPI (BioLegend) for 30

min at room temperature in the dark.

For EdU staining, after surface marker and Zombie Aqua staining, cells
were fixed with 2% paraformaldehyde in PBS for 20 min on ice and
permeabilized with 0.5% Triton X-100 in PBS at room temperature for 20 min.
EdU was detected by adding an equal volume of 2X Click reaction buffer
consisting of 200 mM Tris, 200 mM ascorbic acid (Acros), 8 mM CuSOa4
(Acros), 8 uM Cy5-azide (Lumiprobe) to the permeabilized cells resuspended
in 0.5% Triton X-100 in PBS and incubation at room temperature for 30 min.
Cells were washed twice with 0.5% Triton X-100 in PBS and analyzed on a

flow cytometer.

Cell sorting

The sorting of thymic macrophages was done following the IMMGEN
guidelines. Briefly, the thymuses of 3 male C57BL/6Narl mice were harvested
in ice-cold staining buffer containing phenol red-free DMEM (Gibco) with 10
mM HEPES (Sigma), 0.1% NaN3s, and 2% FBS (Gibco). Single-cell
suspensions were prepared as described in the Flow cytometry section.
Percoll PLUS was used to enrich mononuclear cells. The cells were
resuspended at 108/mL in staining buffer and labeled with appropriate
antibodies for 15 min in ice. To sort thymic macrophages, the cells were first

labeled with biotinylated antibodies to lineage markers (Lin) — CD3, CD8, Gr1,
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B220. After washing, the cells were stained with antibodies to CD11b, F4/80,
CD45, CD64, and Streptavidin-APC/cy7 for 15 min in ice. For sorting thymus
XCR1* and SIRPa" cDCs, antibodies to XCR1, SIRPa, CD11c, MHC2, CD64,
and F4/80 were used. For sorting peritoneal cavity macrophages, antibodies
to ICAM2 and F4/80 were used. Immediately before sorting, the dead cells
were excluded with DRAQY or Pl. For RNA Sequencing experiments, the
cells were double-sorted on FACS Melody, or Aria cell sorters (BD
Biosciences) and 1000 cells were directly deposited in TCL buffer (Qiagen),
frozen in dry ice and sent to IMMGEN for RNA sequencing. Four biological
replicates were prepared. For cytospin and cell cycle analysis, 1-5x10° cells

sorted on FACS Melody were collected in staining buffer.

Cytospin

Sorted cells were mounted on Superfrost PLUS slides (Thermo Scientific)
using a Cytospin centrifuge (Cytospin 3, Shandon) for 5 min at 500 rpm. Cells
were fixed with 2% paraformaldehyde for 10 min at room temperature and
stained with the Hemacolor Rapid Staining Kit (Merck Millipore). Images were
collected on BX61 upright microscope (Olympus) using 100X objective with
immersion oil and captured with a CCD camera. Images were then analyzed

and processed with Imaged (NIH) and Adobe Photoshop 5.5 (Adobe).

In vitro phagocytosis assay
107 Thymocytes were cultured in cDMEM in the presence of 1 uM of

dexamethasone (Sigma) in a 3.5-cm culture dish at 37°C in 5% CO- incubator

for 8 hours. Apoptosis levels were assessed by PI (Biolegend) and Annexin V-
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FITC (Biolegend) staining. Typically, more than 80% of cells were Annexin V*.
The dexamethasone-treated thymocytes were stained with 1 ug/mL pHrodo
Red, SE (ThermoFisher) in PBS for 30 min at room temperature. The cells
were washed two times with cDMEM and resuspended at 2x10° cells/mL.
4x10* sorted peritoneal and thymic macrophages were stained with 5 uM

eFluor 450 (Thermo Fisher) in PBS for 10 min at 37°C, washed two times with

cDMEM and cultured in 96-well flat-bottom culture plate (Nunc) in 100 pL

cDMEM at 37°C in 5% CO:2 incubator. After 3 hours of attachment, the non-

adherent cells were removed, and 200 pL (4x10°) apoptotic thymocytes were

added to the macrophages. The cells were incubated at 37°C in 5% CO-

incubator for 2 hours. Fluorescent images were captured with AxioObserver 7
(Carl Zeiss) wide-field microscope equipped with Plan Apochromat 40x
NA=1.0 objective (Zeiss) and AxioCam 702 monochrome camera (Zeiss)
controlled by Zen 2.3 Blue (Zeiss) software. Image analysis was performed
with Imaris 8.0.2 (Bitplane). Phagocytosis was scored by investigators blinded

to the samples’ identities.

In vitro antigen presentation assay

3x10* sorted thymic CD64-MHCII*CD11c* dendritic cells, thymic, or
peritoneal macrophages were cultured in 96-well round-bottom culture plate in
100 yL cDMEM at 37°C in 5% CO incubator for 3 hours to attach.
Splenocytes from OT2 mice were stained with biotinylated antibodies to
CD8a, CD11b, CD11c, B220, and MHCII (all from BioLegend), washed, and
labeled with anti-biotin Microbeads (Miltenyi) plus CD44 microbeads (Miltenyi)

in cRPMI. The cells were separated on MACS LS columns (Miltenyi)
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according to the manufacturer’s instructions. Enriched cells (naive CD4 T

cells) were stained with 10 yM CFSE (Sigma) for 5 min in PBS at 37°C and

cocultured with the sorted thymic MHCII*CD11c* dendritic cells, thymic, or
peritoneal macrophages, in the presence or absence of 0.5 mg/mL OVA
protein (Sigma) in cRPMI at 37°C in 5% CO incubator for 72 hours. The cells
were collected and stained with antibodies to TCR3 and CD4 (from
BioLegend) for flow cytometry analyses of CFSE dilution. The data were

analyzed with FlowJo’s Proliferation Modelling module (BD Biosciences).

RNA sequencing analysis

RNA sequencing was done at IMMGEN using Smart-seq2 protocol (Picelli
etal, 2013) (Picelli et al, 2014) on a NextSeq500 sequencer (lllumina).
Following sequencing, raw reads were aligned with STAR to the mouse
genome assembly mm10 and assigned to specific genes using the
GENCODE vM12 annotation. Gene expression was normalized by DESeq2
(Love etal., 2014) and visualized by Morpheus

(https://software.broadinstitute.org/morpheus). The principal component

analysis was done by plotPCA() function of R package “DESeq2. Gene
expression of mouse transcription factors (Schmeier et al,, 2017) was
visualized in MultiplotStudio of GenePattern (Reich et al.,, 2006). GO
enrichment was calculated and visualized in R by using clusterProfiler (Yu et

al, 2012).

Timed pregnancies and embryonic thymus analysis
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To set up timed pregnancies, each male mouse (Cx3cr1CreER/CreER
Cx3cr16FP/6FP or C57BL/6) and female mouse (ROSA26-SL-GFPLSL-GFP o
C57BL/6) were housed together in the same cage for one night and separated
on the next day, which we defined as embryonic day 0.5 (E0.5). Female mice
were assumed to be pregnant if their weight gain was over 2 g at E8.5 (Heyne
etal, 2015). Thymuses from E14.5 and E17.5 embryos, neonatal, 1-weeks-
old pups, and adult mice (older than 6-weeks-old) were harvested,
mechanically dissociated with plastic sticks in 1.5-mL centrifuge tubes, and
enzymatically digested with 0.2 mg/mL DNase | and 0.2 mg/mL collagenase P
in complete DMEM for 20 min at 37°C with frequent agitation. The cells were
resuspended in PBS with 0.5% BSA, filtered through a 70 um filter, kept on
ice, and used flow cytometric analysis as described in the Flow Cytometry

section.

Genetic fate mapping — E9.5, neonatal and adult

For genetic fate mapping, timed pregnancies of Cx3cr1¢eER/CreER male and
ROSA26-SL-GFPLSL-GFP female mice were set up as described. To label the
Cx3cr1* erythromyeloid progenitors derived from embryonic yolk sac (Mass et
al,, 2016), 4-hydroxytamoxifen (4-OHT from Sigma) was administered i.p. to
pregnant females on E9.5 at a dose of 75 ug/g (body weight). To improve the
survival of embryos and reduce the risk of abortions, Progesterone (Sigma)
was co-injected at a dose of 37.5 ug/g (body weight) (Iturri et al., 2017). To
label the Cx3cr1* thymic macrophages in Cx3cr1¢¢ER X ROSA26-55-GFP
neonates and adult mice, Tamoxifen (TAM from Sigma) was injected i.p. at a

dose of 2 mg/mouse to lactating dams on postnatal day 3 and 4 (P3 and P4)
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or to adult mice for 2 consecutive days. Thymuses were harvested and

analyzed 3 days or 6 weeks after the last injection by flow cytometry.

scRNA-Seq - sorting, library generation, and sequencing

scRNA-Seq was performed at the Genomics Center for Clinical and
Biotechnological Applications of NCFB (NYCU, Taipei, Taiwan). Briefly, the
thymuses of one female MAFIA and 2 male Cd77¢"" mice were harvested
and enzymatically digested as described previously. Mononuclear cells were
enriched by 57% Percoll PLUS discontinuous centrifugation, washed to
remove silica particles, and resuspended at 106/mL in PBS with 0.04% BSA.
The cell suspensions were filtered through Falcon 35 pm strainer (Corning)
and stained with viability dye (Pl or DAPI) immediately before sorting. Cell
sorting was performed on a FACS Melody sorter (BD Biosciences) running
FACS Chorus (BD Biosciences) software in purity mode. 3X10°> GFP or YFP
positive cells under the live/singlet gating were collected into 5 ml round
bottom tubes pre-coated with 0.04% BSA in PBS. Sorted cells were washed
and resuspended in 300 uL PBS with 0.04% BSA and then filtered again into
1.5-mL DNA LoBind tubes (Eppendorf) through a 35 uym strainer. The viability
of the cells was evaluated by Countess Il (Invitrogen) and Trypan Blue
(ThermoFisher), and samples with cell viability rates higher than 85% were
used for encapsulation and library preparation. Single-cell encapsulation and
library preparation were performed using Single Cell 3' v3/v3.1 Gene
Expression solution (10x Genomics). All the libraries were processed
according to the manufacturer’s instruction and sequenced on NovaSeq 6000

(Mlumina) platform at the NHRI (Zhubei, Taiwan). Post-processing and quality
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control were performed by the NYCU Genome Center using the CellRanger
package (v. 3.0.2, 10x Genomics). Reads were aligned to mm10 reference
assembly. Primary assessment with CellRanger reported 9,973 cell-barcodes
with 11,385 median unique molecular identifiers (UMIs, transcripts) per cell
and 3,076 median genes per cell sequenced to 71.0% sequencing saturation
with 94,260 mean reads per cell for MAFIA mouse sample; 9,801 cell-
barcodes with 13,467 median UMIs per cell and 3,211 median genes per cell
sequenced to 74.9% sequencing saturation with 119,820 mean reads per cell
for the first Cd11cYFP mouse sample; 12,938 cell-barcodes with 14,439
median UMIs per cell and 3,199 median genes per cell sequenced to 71.4%
sequencing saturation with 108,585 mean reads per cell for the second

Cd11cYFP mouse sample.

Analysis of scRNA-Seq

Preprocessing

The Scanpy (Wolf et al., 2018) pipeline was used to read the count matrix.
Three batches of samples (one from GFP~* cells from MAFIA mouse and two
from YFP* cells from Cd17cY " mice) were preprocessed independently and
integrated later. Cells that expressed <200 genes and genes that were
expressed in <3 cells were filtered out. The percentage of mitochondrial
genes was calculated -and cells with >10% mitochondrial genes were
removed. Cells with >7,000 genes or <1,000 genes were also removed. Read
counts were normalized to library size 10,000 and log-transformed with
scanpy.pp.log1p function.

Datasets integration and batch effect correction
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Read count matrices and spliced/unspliced matrices were merged first.
Principal Component Analysis was applied to reduce dimensions to 70.
BBKNN(Polanski et al., 2020) was then used to remove batch effects with the
scanpy.external.pp.bbknn function with default parameters.

Visualization and clustering

UMAP (Mclnnes et al., 2018) provided by scanpy was used to visualize data
with default parameters. K-nearest neighbor and Leiden clustering were
applied sequentially to cluster cells into groups. K-nearest neighbor graph
construction was done by scanpy.pp.neighbors with parameters
n_neighbors=12 and n_pcs=70. Leiden clustering was then performed by
scanpy.tl.leiden with parameter resolution=0.15. To improve UMAP
visualization, scanpy.tl.paga was applied, and we trimmed unnecessary graph
edges by scanpy.tl.paga with threshold=0.018.

Marker genes and statistics

Wilcoxon rank-sum tests were applied to examine differentially expressed
genes. Clusters were selected from the result of Leiden clustering.
Differentially expressed genes of a cluster against other clusters were
identified by scanpy.tl.rank_genes_groups and scanpy.pl.rank_genes_groups.
P-values were collected for each cluster and transformed by negative log1o for
better visualization. The top 50 differentially expressed genes were visualized

in the figure.

Immunofluorescent staining

Dissected thymus lobes from C57BL/6 mice were cleaned of connective

tissue and fixed in 4% paraformaldehyde (Sigma) for 1 h at 4°C, washed in
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PBS, submerged in 10% sucrose, and then in 30% sucrose for 12 h each.
The tissue was then frozen in Tissue-Tek OCT compound (Sakura Fintek) for
cryostat sectioning. 10 or 20 um thick sections were prepared with CryoStar
NX50 (ThermoFisher) on Superfrost PLUS (ThermoScientific) microscope
slides, dried overnight, and stored at -80°C until used. Before staining, the
sections were fixed with acetone (Sigma) at -20°C for 10 min, air-dried, then
blocked with 5% goat serum + 5% donkey serum (both from Jackson
Immunoresearch) in PBS for 2 h and stained with primary antibodies: rat
monoclonal to MerTK (DS5MMER, eBioscience), rat monoclonal to TIM4
(RMT4-54, Bio-X-Cell), rabbit polyclonal to CD64 (Sinobiological), or rabbit
polyclonal to Keratin 5 (BioLegend) overnight at 4°C in a humidified chamber.
After washing in PBS, the sections were labeled with goat anti-rat-Alexa Fluor
647 (Invitrogen) or goat anti-rat Cy3 (Jackson Immunoresearch) and donkey
anti-rabbit Cy3 or donkey anti-rabbit AF647 (both from Jackson
Immunoresearch) secondary antibodies for 2 hours at room temperature,
followed by 5 min staining with DAPI. TUNEL Assay was done with the Click-
iT Plus TUNEL Assay Alexa Fluor 647 kit (Invitrogen) according to the
manufacturer’s recommendations. A positive (pre-incubation with DNase | for
30 min at room temperature) and negative (no TdT enzyme) controls were
always included. The sections were mounted with 0.1% n-propyl gallate
(Sigma) in glycerol (Sigma) and imaged with an AxioObserver 7 (Carl Zeiss)
wide-field microscope equipped with Plan Apochromat 20x NA=0.8 objective
(Zeiss) and AxioCam 702 mono camera (Zeiss) and controlled by Zen 2.3
Blue (Zeiss) software. Image analysis was performed with Imaris 8.0.2

(Bitplane).
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The co-localization scoring for MerTK and TIM4 with TUNEL was done with
Imaris 8.2 (Bitplane). TUNEL" cells were detected with the Spots function,
while MerTK* and TIM4* cells were detected with the Surface function. Spots
that co-localize with Surfaces were identified with the “Find Spots close to
Surface” function of Imaris XT. The threshold for co-localization was set to 5
pum. The results were manually curated so that Spots categorized as “not co-
localized” that were: 1) at the edge of the imaging field were excluded from
consideration; 2) with clear Surface signal around them were re-categorized
as "co-localized". The ratio of co-localized Spots to all Spots was calculated

and presented as the co-localization index.

Thymus transplantation

To obtain E15.5 embryos, Spic® " (CD45.2) homozygous male and
congenic CD45.1 female mice were mated in a cage overnight and separated
on the next day. Pregnant mice were sacrificed 15 days later, the viable
embryos were harvested, and the thymuses were isolated in ice-cold PBS.
C57BL/6 recipients were anesthetized by i.p injection of Ketamine
hydrochloride (120 ug/g, Toronto Research Chemicals) and Xylazine
hydrochloride (12 pg/g, Sigma). The fur on the left flank was removed, and the
left kidney was exposed by cutting the skin, muscle layer, and peritoneum.
The kidney capsule was nicked with a G23 needle, and the fetal thymus was
pushed into the pocket under the kidney capsule with a G23 needle equipped
with a plunger from a spinal needle. After the kidney was re-positioned back

into the peritoneal cavity, the peritoneum was sutured, and the skin was
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stapled with metal clips. Rymadil (Carprofen, 5 ug/g, Zoetis) was given
subcutaneously to ease the wound pain, and Trimerin (Sulfadiazine at 0.5
mg/mL + Trimethoprim at 0.1 mg/mL) were given in the drinking water for the
first two weeks after the surgery. The metal clips were removed from the skin
after the first week, and the transplanted thymus and recipient’s endogenous
thymus were harvested and analyzed six weeks after the kidney

transplantation.

Statistical analysis

Comparison between groups was made with Prism 6 (GraphPad Software).
Comparisons between two groups were carried out with unpaired Student's t-
test. When more than two groups were compared, a one-way ANOVA with

Tukey correction was used. Differences were considered significant if p<0.05.

Data availability
The RNA Sequencing data of thymic macrophages and thymic dendritic
cells are available at NCBI Gene Expression Omnibus (GEO) as part of

GSE122108 and at www.immgen.org. The single cell RNA sequencing data is

deposited at NCBI GEO under accession number GSE185460. The source
data underlying Fig. 1G and H, Fig. 3B, D, and G, Fig. 5C, F, and |, Fig. 6B, E,
G, and |, Fig. 7B, C, D, and G, Fig. 8B, D, E, and F, Fig. 1S4, Fig. 2S1, Fig.
2S2, Fig. 2S3, Fig. 551, and Fig. 5S2 are provided in the Source Data files.
All other data supporting the findings of this study are available within the

article and its figures and tables.
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1220 Abbreviations:
1221 cDC — classical dendritic cell
1222 DC — dendritic cell

1223 EdU — 5-Ethynyl-2’-deoxyuridine

1224 GO - gene ontology

1225 HSC — hematopoietic stem cell
1226 IFN-I — type | Interferon
1227 IMMGEN - Immunological Genome Consortium

1228 scRNA-Seq — single-cell RNA sequencing

1229 TF — transcription factor
1230 ThyMacs — thymic macrophages
1231 TRA — tissue-restricted antigen

1232 YS - yolk sac
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Figure 1 — figure supplement 1: Representative flow cytometry staining of
enzymatically digested thymus single-cell suspension for CD64, MerTK, and

F4/80 and respective isotype controls. The flow cytometry plots are

representative of 5 individual experiments.
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MerTK

1697

1698 Figure 1 — figure supplement 2: Immunofluorescent images of thymic
1699  sections showing co-localization of MerTK and CD64 staining (upper row) and
1700 TIM4 and CD64 staining (lower row) in the thymic cortex. The images are

1701 representative of at least three mice. The scale bar is 50 pm.

1702
Thymic macrophages
1 = antibody
31 == control
c
5 | ]
=}
o 1
0 10° 10°10° O 10° 10° 105 0 _ 10° 10* 10°
1703 CD11¢c-BV711—» MHC2-APC/cy7-3» SIRPa-FITC 3=

1704 Figure 1 — figure supplement 3: Expression of CD11c, MHC2, and SIRPa
1705  on ThyMacs with respective controls. The flow cytometry plots are
1706  representative of 5 individual experiments.
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1709 Figure 1 — figure supplement 4: Example flow cytometry plots showing

1710 that gating on CD11c*MHC2* thymus cells, in addition to DCs, also includes
1711  macrophages, especially among SIRPa™ cells. On the right is a plot of the
1712  frequency of MerTK* cells among CD11c*MHC2*SIRPa " cells. The data are
1713  meantSEM from 5 individual mice. Each dot is an individual mouse. The

1714 numbers in the flow cytometry plots are the percent of cells in the respective

1715 gate.
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1718 Figure 2 — figure supplement 1: Example of the gating strategy to identify

1719  ThyMacs among Spic® P+ cells. On the right is a plot showing the mean+SEM
1720  of the frequencies of ThyMacs among Spic® " cells. Each dot is an individual
1721  mouse. The numbers in the flow cytometry plots are the percent of cells in the
1722  respective gate.
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1724
1725 Figure 2 — figure supplement 2: Representative flow cytometry plots of

1726  the expression of four reporter alleles in ThyMacs (left), frequencies of
1727  GFP/YFP* cells among ThyMacs (middle), and frequencies of ThyMacs
1728 among GFP/YFP™ cells (right). Data in the graphs represent meantSEM.

1729 Each dot is an individual mouse.
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1732 Figure 2 — figure supplement 3: Representative flow cytometry plots of

1733  the expression of Spic®™* in ThyMacs. To the right is a graph showing the
1734 mean+SEM of the frequencies of Spic®"* cells among ThyMacs. Each dot is
1735 anindividual mouse. The numbers in the flow cytometry plots are the percent
1736  of cells in the respective gate.
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UMAP2

Figure 4 — figure supplement 1: UMAP clustering of the scRNA-Seq data
shows that the cells from the three samples (one from GFP* cells in MAFIA

mice and two from YFP* cells in Cd77¢cY " mice) overlap considerably.

UMAP2

o = N w & o

UMAP1
Figure 4 — figure supplement 2: The relative expression of prototypical
macrophage genes Mafb, Fcgr1 (CD64), Mertk, and Adgre1 (F4/80) among

thymic cells sorted as Csf1r¢* and Cd11cYFF+.
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1749

1750 Figure 4 figure supplement 3: Representative immunofluorescent image
1751  of WT thymic frozen section stained for TIM4, CD64, and UEA-1 (a marker for
1752  medulla). CD64 stains all macrophages, while TIM4 — only a subset that is

1753 located in the cortex. The image is representative of 3 mice. The scale bar is

1754 400 pm.
1755
3.0
2.5
2.0
15
- 1.0
0.5
1756 UMAP1 0.0
1757 Figure 4 figure supplement 4: The relative expression of Tgfb7 among

1758  thymic cells from the scRNA-Seq data.
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1760 Figure 5 — figure supplement 1: Representative flow cytometry plots of

1761  donor (CD45.2%) vs. host (CD45.1%) derived thymocytes in the transplanted
1762 thymus. The host thymus (endogenous thymus) serves as a negative control.
1763  To the right is a graph showing the mean+SEM of the frequencies of CD45.2*
1764  (donor-derived) cells among thymocytes in the transplanted and endogenous
1765 thymuses of the mice. Each dot is an individual mouse. The numbers in the

1766  flow cytometry plots are the percent of cells in the respective

1767 gate.
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1769 Figure 5 — figure supplement 2: Comparison of the geometric mean

1770  fluorescent intensities (QMFI1) of Spic® TIM4* and TIM4~ thymic

1771  macrophages of host and donor-origin in the transplanted thymus. The

1772  endogenous thymus serves as background control. Only populations

1773  comprising >5% of thymic macrophages are shown. Each dot is an individual
1774 mouse. The data are presented as mean+SEM.
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1777 Figure 6 — figure supplement 1: Example flow cytometry plots of the EdU

1778  accumulation in thymocytes and thymic macrophages 2 hours after 1 mg EdU
1779 i.p. or vehicle injection. The numbers inside flow plots are the percentage of
1780  EdUT cells from mice injected with EAU. Data are representative of three
1781 independent experiments.
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Table 1: Expression of differentially up-regulated
transcription factors in thymic macrophages

Gene name ThyMacs non-ThyMacs
Irf7 3879.32 300.82
Irf8 3528.27 1474.35
Statl 2403.69 522.04
Dnmt3a 1515.94 647.81
Znxf1 1379.89 635.36
Stat2 1210.35 472.53
Nr1lh3 1182.17 147.05
Srebf1 975.09 399.06
Rxra 760.26 298.55
Trps1 746.36 232.48
Runx3 723.14 9.76
Relb 715.53 293.92
Sp100 696.94 324.47
Zbp1 639.19 69.83
Tfec 588.72 74.66
Spic 573.11 34.36
Nfkbie 569.74 226.76
Ncoa4 550.69 249.15
Rest 548.22 269.22
Meis3 530.8 120.91
Bhlhe40 490.59 99.56
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Parp12 414.11 126.82
Arid5b 374.03 177.08
Creb5 295.14 47.91
Pparg 276.54 33.24

Table 2: Expression of differentially up-regulated transcription factors
in thymic macrophages. Transcription factors that were highly expressed in
thymic macrophages (>250) and up-regulated >2-fold in thymic macrophages
compared to non-thymic macrophages were listed alphabetically, and the
geometric means of 4 replicates of thymic macrophages (ThyMacs) and two
replicates of each of the 9 non-thymic macrophage populations (non-
ThyMacs) were recorded. Non-thymic macrophages are: spleen red pulp
macrophages, Kupffer cells, broncho-alveolar lavage macrophages,
peritoneal cavity macrophages, aorta macrophages, heart macrophages,
white adipose tissue macrophages, central nervous system microglia, spinal

cord macrophages.

Table 2: List of the differentially expressed genes among Timd4+ thymic
macrophages, Cx3cr1+ thymic macrophages, and thymic monocytes

Cx3cr1+ ThyMacs Timd4+ ThyMacs ThyMonos

Gene name adjusted p-value  Gene name adjusted p-value  Gene name adjusted p-value
Ctsz 0 Hpgd 0 Alox5ap 0
Cd63 0 Serpinbba 0 S7100a6 0
Pmepa1 0 Sic40at 0 Ly6c2 0
Zmynd15 0 Cd81 0 Ifi2712a 0
OIfmlI3 0 Vcamit 0 Fau 0
Mmp2 0 Cfp 0 Corota 0
AU020206 1.60E-290 Spic 0 Cecr2 0
Pixnd1 1.59E-285 Trf 0 Rps27 0
Cst7 8.68E-279 Actn1 0 Tmsb10 0
Dnase1I3 2.45E-270 Maf 0 [Ifitm2 7.21E-302
Timp2 2.15E-267 Pld3 0 Fxyd5 6.36E-299
Lgals3bp 8.69E-263 /18 0 Rps19 2.04E-292
Pdgfa 6.87E-255 Mrc1 0 Rpl18 6.50E-291
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Mmp14
Fam46c
Chst2
Cp
Camk1
B2m
Lhipl2
Acps
Lag3
Lyz2
H2-M2
Psap
Gatm
Cpd

C3
Cxcl16
Lgals3
Ube2j1
Plxnc1
Stab1
Cyth1
Spsb1
Bink
Cx3crt
Med10
Nek6
Ptms
Anxab
Gpnmb
Itgb5
Myoba
Runx3
Tmem176a
Ctss
Sh3pxd2b
Rtcb
Fam20c
I12rg
Lpcat2
Kynu
Tnfsf13b
Gpr157
Tgfbr1

2.33E-253
9.99E-235
1.19E-226
5.36E-225
7.12E-225
1.09E-222
4.52E-217
5.90E-216
3.91E-213
1.28E-209
1.22E-199
7.26E-198
1.33E-192
1.50E-192
2.34E-187
8.11E-183
1.57E-182
1.63E-180
9.84E-180
4.07E-176
3.27E-163
3.96E-163
2.35E-162
9.29E-162
5.25E-161
5.28E-160
1.05E-159
1.10E-156
1.21E-154
2.78E-154
1.11E-146
1.81E-146
2.34E-144
4.81E-141
9.38E-141
4.42E-140
1.91E-139
8.84E-138
8.53E-137
8.49E-136
8.77E-136
1.18E-135
7.63E-135

Crip2
Tmem65
Igf1
Epb41i3
Timd4
Blvrb
Clec1b
Cd68
Ax|
Paqr9
Sdc3
Myo9a
Scp2
Selenop
Lrp1
Lap3
Marcks
Glul
Hebp1
Ear2
Apoc1
Kcna2
Myo10
Alp13a2
Slc1a3
Slco2b1
mt-Nd2
Wwp1
Aplp2
Atp8at
P2ry13
Ccdc148
Gmn
Bank1
Mertk
Nrih3
Prnp
Ninj1
Fcna
Csrp1
Rgl1

Lpl
Fam213b

O O O O O o o o o

3.32E-307
3.45E-305
5.59E-305
3.79E-302
2.10E-295
2.08E-294
1.45E-290
2.77TE-279
3.64E-279
3.76E-278
4.53E-276
2.49E-275
3.72E-275
9.05E-269
2.95E-267
6.24E-263
1.11E-258
3.45E-258
2.16E-253
4.22E-248
5.03E-248
3.17E-247
4.70E-245
1.58E-244
1.82E-239
2.15E-238
1.13E-235
2.93E-235
2.42E-234
3.33E-233
1.16E-230
7.18E-229
4.94E-223
1.08E-222

Rpl9
Rps23
Napsa
Ms4a4c
Plac8
Rpl18a
S100a4
Cdb52
Rps14
Ifitm3
Rpl34
Rps27a
Rpl36
Rps16
Rpl24
Rps9
Gpr141
Rpl27a
Rpl17
Rps24
Rps13
Rpi38
H2-DMb1
Rps18
Rpl19
Rpl8
Rpl7a
Gm34084
Rpl13
Rpl11
Rpl35a
Rpsa
Rpl6
Tpt1
Rack1
Rpl23
Rpi26
Rps6
Rps10
lers
Rps3
Rpi27
Rps5

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.04.467238; this version posted November 13, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

1.11E-289
1.28E-289
8.91E-279
8.25E-272
2.10E-270
9.26E-269
4.98E-268
3.67E-267
1.94E-266
3.19E-263
2.02E-261
3.67E-260
1.54E-259
2.55E-258
1.37E-257
6.34E-253
1.21E-246
3.06E-243
8.15E-241
1.46E-240
2.34E-236
1.95E-226
1.02E-223
5.39E-223
3.68E-221
2.01E-219
4 17E-217
5.23E-216
2.08E-215
2.47E-213
2.13E-210
1.62E-209
5.70E-208
2.63E-206
2.14E-203
6.14E-199
7.48E-198
6.64E-197
2.06E-195
1.06E-191
8.23E-185
8.23E-185
8.36E-185
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H2-K1
Basp1
Pla2g7
Fth1
Ggh
Adam19
C3art
Ccl12
Hven1
Anxa3
Tgfbi
Ctsd
Itm2c
Tmem119
Rap2a
Ctsl
ltgab
B4galint1
Fam3c
Tmem173
Ski
Anpep
Gng2
Nceh1
H2-Q7
Rtn1
Sorl1
Glipr1
Gsn
Afdn
Ak2
Nipcr
Scarb2
Creb5
Gsto1
Ncf1
Ppfia4
Chchd10
Gna12
Mvb12b
Rasal3
Scoc
Cfb

1.156E-133
1.23E-133
1.80E-132
4.19E-131
1.85E-126
6.94E-126
7.35E-125
3.37E-123
2.51E-121
8.60E-121
1.88E-120
2.73E-117
5.19E-116
5.62E-116
1.03E-114
4.00E-114
1.83E-113
2.45E-113
1.64E-112
1.54E-111
3.59E-111
5.85E-111
2.37E-110
2.88E-110
4.94E-108
1.28E-106
1.31E-103
1.22E-102
2.00E-102
4.54E-102
1.11E-101

2.21E-98

3.16E-97

5.41E-97

5.56E-97

4.26E-96

4.97E-96

7.77E-96

1.23E-95

1.80E-95

1.45E-94

6.86E-94

6.00E-93

Tcf712
AB124611
Abcc3
Fegrt
Tgm?2
Iltgad
Ptgs1
Laptm4a
Comt
Creg1
Adgre1
Clec12a
Tspan4
Txn1
Ctsb
Mrap
Slc16a9
Abcg3
Pla2g15
C1qc
Agpat3
Hs6st1
Dmpk
Cd38
Tmem26
Sic11at
Cd300a
Sicrar
Cybba
Sipatl1
1118bp
Cdsg6
Vampb
Jup
Blvra
Mgst1
Tbxas1
Hpgds
Tgfbr2
Clec4n
Ms4a7
Sirpa
Fyn

1.26E-222
4.64E-221
3.28E-216
5.79E-216
1.88E-215
5.35E-214
2.94E-213
1.01E-212
1.33E-206
3.24E-205
9.67E-205
6.33E-204
7.80E-203
9.13E-203
9.52E-201
5.65E-197
5.99E-197
3.83E-196
4.22E-196
6.17E-192
1.68E-191
1.95E-191
2.15E-191
1.79E-190
2.02E-189
1.05E-188
1.41E-187
3.28E-187
6.94E-187
7.41E-187
1.48E-186
2.52E-183
3.05E-183
6.69E-182
1.30E-178
6.48E-178
1.47E-177
2.04E-177
2.70E-176
3.52E-175
5.30E-175
3.35E-171
2.84E-168

Rps7
Rps15a
Rps11
Rps4x
Rpip0
Ly6i
S100a11
Atox1
Pim1
Sh3bgri3
Ciita
Eef1at
Rps3a1
Gm2a
Ptprc
Rpl37
Rps25
H3f3a
Btg2
Rpl15
Cnn2
Cdknia
Sifn1
Sem1
Lsp1
Rpl37a
Rpi22
Sirpb1c
Traf1
Emb
Rpi30
Rps15
H2-Ab1
I1b
Rps28
Jarid2
Rps26
Rpi32
Pld4
Cbfa2t3
Rps21
Fgr
Rps8

3.96E-182
6.82E-182
1.97E-180
5.07E-180
3.09E-177
8.17E-176
6.23E-175
1.22E-174
9.56E-174
3.97E-173
7.35E-173
6.09E-172
9.09E-168
6.07E-165
2.05E-163
1.51E-161
3.03E-160
5.92E-159
1.14E-158
1.42E-158
1.09E-156
2.57E-156
4.83E-155
4.08E-154
1.34E-152
1.78E-152
3.64E-152
4.81E-152
6.97E-152
4.22E-151
1.32E-147
1.14E-146
2.84E-145
3.05E-145
4.52E-145
1.82E-143
1.53E-142
4.21E-142
9.07E-142
1.54E-141
4.04E-141
4.04E-141
1.11E-139
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1797
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1799

1800

1801

1802
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Lmna 1.04E-92 Cadmf1 2.20E-167 Cd74 5.34E-138

Table 2: List of the differentially expressed genes among Timd4*
thymic macrophages, Cx3cr1* thymic macrophages, and thymic
monocytes. The top 100 differentially expressed genes among the three

clusters are listed by their negative log1o transformed p-value.
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