

1 Non-neural factors influencing BOLD response magnitudes within
2 individual subjects

3 Jan W. Kurzawski¹, Omer Faruk Gulban^{2,3}, Keith Jamison⁴, Jonathan Winawer^{1*}, Kendrick
4 Kay^{5*}

5

6 ¹Department of Psychology, New York University, New York, NY, 10003, USA

7 ²Cognitive Neuroscience Department, Faculty of Psychology and Neuroscience, Maastricht
8 University, 62229, The Netherlands

9 ³Brain Innovation, Maastricht, 62229, The Netherlands

10 ⁴Department of Radiology, Weill Cornell Medicine, New York, NY, 10021, USA

11 ⁵Center for Magnetic Resonance Research, Department of Radiology, University of
12 Minnesota, Minneapolis, MN, 55455, USA

13

14 *Co-senior author

15

16 **Corresponding Author:** Jan W. Kurzawski, Department of Psychology, 6 Washington Place,
17 New York University, NY, 10003 (jan.kurzawski@nyu.edu)

18

19 **Keywords:** BOLD signal, fMRI, vasculature, horizontal meridian, vertical meridian.

20

21 **Number of pages:** 23

22

23 **Number of figures:** 8

24

25 **Number of words for: abstract | introduction | discussion:** 217/250 | 700/650 | 1703/1500

26

27 **Conflict of interest:** The authors declare no competing financial interests.

28

29 **Acknowledgments:** This research was funded by the US National Eye Institute R01-
30 EY027964, R01-MH111417 and R01-EY027401 to JW. Collection of the NSD dataset was
31 supported by NSF CRCNS grants IIS-1822683 (to KK) and NSF IIS-1822929.

32

33

34

35

36

37

38

39

40

41 Abstract

42 To what extent is the size of the blood-oxygen-level-dependent (BOLD) response influenced
43 by factors other than neural activity? In a re-analysis of three neuroimaging datasets (male
44 and female human participants), we find large systematic inhomogeneities in the BOLD
45 response magnitude in primary visual cortex (V1): stimulus-evoked BOLD responses,
46 expressed in units of percent signal change, are up to 50% larger along the representation of
47 the horizontal meridian than the vertical meridian. To assess whether this surprising effect
48 can be interpreted as differences in local neural activity, we quantified several factors that
49 potentially contribute to the size of the BOLD response. We find relationships between
50 BOLD response magnitude and cortical thickness, curvature, depth and macrovasculature.
51 These relationships are consistently found across subjects and datasets and suggest that
52 variation in BOLD response magnitudes across cortical locations reflects, in part, differences
53 in anatomy and vascularization. To compensate for these factors, we implement a
54 regression-based correction method and show that after correction, BOLD responses
55 become more homogeneous across V1. The correction reduces the horizontal/vertical
56 difference by about half, indicating that some of the difference is likely not due to neural
57 activity differences. We conclude that interpretation of variation in BOLD response
58 magnitude across cortical locations should consider the influence of the potential
59 confounding factors of thickness, curvature, depth and vascularization.

60 Significance statement

61 The magnitude of the BOLD signal is often used as a surrogate of neural activity, but the
62 exact factors that contribute to its strength have not been studied on a voxel-wise level.
63 Here, we examined several anatomical and measurement-related factors to assess their
64 relationship with BOLD signal magnitude. We find that BOLD magnitude correlates with
65 cortical anatomy, depth and macrovasculature. To remove the contribution of these factors,
66 we propose a simple, data-driven correction method that can be used in any functional
67 magnetic resonance imaging (fMRI) experiment. After accounting for the confounding
68 factors, BOLD magnitude becomes more spatially homogenous. Our correction method
69 improves the ability to make more accurate inferences about local neural activity from fMRI
70 data.

71 Introduction

72 The blood-oxygen-level-dependent (BOLD) signal measured by fMRI is an important tool for
73 non-invasive study of the human nervous system. However, the neural mechanisms
74 underlying BOLD remain an active area of investigation (Herman et al., 2017). One clear
75 conclusion is that the BOLD signal is strongly influenced by neural activity (Arthurs et al.,
76 2000; Heeger et al., 2000; Attwell and Iadecola, 2002; Heeger and Ress, 2002; Logothetis,
77 2002; Lee et al., 2010; Siero et al., 2014). For a given location in the brain, and within a
78 constrained paradigm (e.g., viewing different images and measuring the response that they
79 elicit in visual cortex), the BOLD signal magnitude appears to be lawfully related to basic
80 measures of neural activity. For example, as stimulus contrast increases, neural firing rates

81 and BOLD magnitude increase in proportion (Heeger et al., 2000). Similarly, increase in
82 coherence of stimulus motion boosts BOLD magnitude and firing rates in V5/MT (Britten et
83 al., 1993; Rees et al., 2000). When comparing different experimental paradigms or different
84 brain locations, however, it is less clear how to interpret differences in the magnitude of the
85 BOLD signal. For example, seeing a stimulus and expecting a stimulus can both elicit robust
86 BOLD signals in V1, but the underlying neural activity is very different in the two paradigms
87 (Sirotin and Das, 2009; Herman et al., 2017). It is also the case that similar BOLD signal
88 magnitudes in two locations may be linked to very different underlying neural activity.
89 These two limitations are reviewed by (Logothetis, 2008).

90
91 There are several reasons to believe that BOLD signal magnitudes, even within a fixed
92 experimental paradigm, are influenced by factors that are not directly related to neural
93 activity. The BOLD response, quantified in terms of percent signal change, can be especially
94 high in voxels containing large veins (Menon et al., 1993; Kim et al., 1994; Hoogenraad et al.,
95 1999; Kay et al., 2019) or unusually low, delayed, and/or displaced in voxels near cerebral
96 sinuses (Winawer et al., 2010; Jamison et al., 2017). The choice of MRI sequence, field
97 strength (van der Zwaag et al., 2009), and sequence parameters like echo time (Gorno-
98 Tempini et al., 2002) can also affect BOLD signal magnitude, and these effects may vary
99 across the brain (Herman et al., 2017). Indeed, it has been reported that BOLD may vary
100 across the cortex up to 40% simply due to different orientation of vasculature relative to the
101 direction of the static magnetic field (Gagnon et al., 2015a; Gagnon et al., 2016; Viessmann
102 et al., 2019). Furthermore, recent high-resolution fMRI studies have shown that BOLD signal
103 magnitude clearly depends on cortical depth. It is highest in the superficial depths which are
104 positioned near large pial veins and decreases with depth (Polimeni et al., 2010; Koopmans
105 et al., 2011; Zimmermann et al., 2011; Yu et al., 2014; Fracasso et al., 2016a; Fracasso et al.,
106 2016b; Dumoulin, 2017; Dumoulin et al., 2018; Kay et al., 2019; Self et al., 2019; van Dijk et
107 al., 2020).

108
109 In this paper, we study variations in BOLD signal magnitude within a fixed paradigm,
110 focusing our efforts on primary visual cortex (V1). We believe that by focusing on a single
111 brain region in well-controlled visual paradigms, we are in the best position to derive sound
112 interpretations of differences in BOLD signal magnitudes across the cortex. In three distinct
113 datasets, we demonstrate large differences between the meridian locations: the BOLD
114 magnitude in V1 is up to 50% higher along the representation of the horizontal meridian
115 than along the representation of the vertical meridian. We then investigate the potential
116 basis of these inhomogeneities by analyzing factors that are in principle distinct from neural
117 activity. As non-neural factors we consider cortical curvature, cortical thickness, cortical
118 depth, presence of macrovasculature (as indexed by bias-corrected EPI intensity), angle with
119 respect to B_0 magnetic field and radiofrequency (RF) coil bias. We motivate the selection of
120 these factors in the Methods. We find that several of these factors are systematically
121 related to observed variation in BOLD magnitudes across V1. To remove their influence, we
122 propose a simple correction method and show that the correction increases BOLD signal
123 homogeneity across V1, reducing the difference in response across the horizontal and
124 vertical meridians by about half.

125
126

127 Methods

128 Datasets

129

130 We used three publicly available visual fMRI datasets: the Human Connectome Project (HCP)
131 7T Retinotopy Dataset (Benson et al., 2018), the Natural Scenes Dataset (NSD) (Allen et al.,
132 2021), and the Temporal Decomposition Method (TDM) Dataset (Kay et al., 2020). All data
133 were acquired on 7T MR scanners using gradient-echo pulse sequences (technical details
134 provided in Table 1). The datasets varied in stimulus properties and experimental design.
135 HCP stimuli consisted of rings, wedges, and bars in a retinotopic mapping experiment; NSD
136 stimuli consisted of natural scene images; and TDM stimuli consisted of high-contrast rings
137 presented at different eccentricities. Experimental details are shown in **Figure 1**. The
138 analyses performed in this paper start with pre-processed data from each dataset.
139

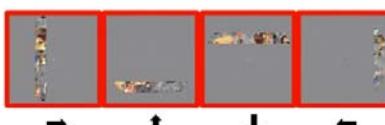
Temporal Decomposition Method Dataset (TDM)

- 5 subjects (2 males and 3 females)
- $0.8 \times 0.8 \times 0.8 \text{ mm}^3$
- Rings varying in eccentricity
- 9 runs per subject
- TR = 2.2 s
- 3.5 s ON / 0.5 s OFF
- Maximum eccentricity = 5.5 degrees

Natural Scenes Dataset (NSD)

- 8 subjects (2 males and 6 females)
- $1.8 \times 1.8 \times 1.8 \text{ mm}^3$
- Natural scene images
- 360-480 runs per subject
- TR = 1.6 s
- 3 s ON / 1 s OFF
- Maximum eccentricity = 4.2 degrees

Human Connectome Project (HCP)



- 181 subjects (72 males and 109 females)
- $1.6 \times 1.6 \times 1.6 \text{ mm}^3$
- Textures viewed through spatial apertures
- 6 runs per subject
- TR = 1 s
- Continuous design
- Maximum eccentricity = 8 degrees

140

141 **Figure 1 – Datasets used in this study.** Stimulus images for each of the datasets are shown. For TDM, stimuli
142 consisted of 6 rings varying in eccentricity. For NSD, stimuli consisted of natural scene images. For HCP, the
143 experiment consisted of several retinotopic mapping runs that included expanding and contracting rings,
144 rotating wedges, and moving bars filled with a colorful object-based texture. Additional acquisition details are
145 provided in Table 1.

Dataset	TDM	NSD	HCP
Field strength	7T	7T	7T
TR	2200 ms	1600 ms	1000 ms
TE	22.4 ms	22.0 ms	22.2 ms
Flip angle	80	62	45
Number of slices	84	84	85
Matrix size	200×162	120×120	130×130
Field of view	$160 \text{ mm} \times 129.6 \text{ mm}$	$216 \text{ mm} \times 216 \text{ mm}$	$208 \text{ mm} \times 208 \text{ mm}$

Nominal spatial resolution	0.8 mm	1.8 mm	1.6 mm
Multiband factor	2	3	5
iPAT factor	3	2	2
Partial Fourier	6/8	7/8	7/8

146 **Table 1 – Details on the fMRI pulse sequence used in each of the datasets.** Each column describes different
147 dataset.

148 **Extracting BOLD magnitude**

149

150 From each dataset, we extracted a measure of BOLD signal magnitude at each cortical
151 surface vertex. For TDM, we started with the pre-processed fMRI time-series data provided
152 with the dataset and analyzed the data with a GLM. Specifically, we convolved a canonical
153 HRF with stimulus onsets to create a regressor for each experimental condition, and then
154 used these regressors with GLMdenoise (Kay et al., 2013b) to estimate a beta weight for
155 each condition. We computed the maximum beta weight across all conditions for each voxel
156 as the measure of BOLD signal magnitude. These results are defined at six different depths
157 (equidistant from 10% to 90% of the cortical thickness) in each subject's native surface
158 space. (Depth assignment was achieved by a spatial interpolation of each fMRI volume at
159 the locations of the six depth-dependent cortical surfaces; see Kay et al. (2020) for details.)
160 For NSD, we took the 'meanbeta' values (1 mm data preparation, beta version 2) provided
161 with the dataset; these values indicate the average BOLD percent signal change observed
162 across all stimulus trials and all scan sessions. We then mapped these values to the 3 depth
163 surfaces provided in NSD (positioned at 25%, 50%, and 75% of the cortical thickness). The
164 HCP dataset was previously analyzed (Benson et al., 2018) with a population receptive field
165 (pRF) model (Dumoulin and Wandell, 2008) implemented in analyzePRF (Kay et al., 2013a).
166 The model includes a gain parameter that describes the amplitude of the BOLD response of
167 a given voxel (or vertex) to the object-based texture (covering the entire pRF) for a single
168 repetition time (TR = 1 s). We quantified BOLD in terms of percent signal change (%BOLD) by
169 dividing the gain parameter by mean signal intensity and multiplying by 100. The results are
170 prepared in FreeSurfer's fsaverage space.

171

172 **Visual field mapping**

173

174 We used retinotopic mapping to divide the primary visual cortex into a set of regions. For
175 HCP, we used polar angle and eccentricity estimates available from the data release. For the
176 TDM and NSD datasets, we mapped Benson's polar angle and eccentricity atlas using
177 neuropathy software (Benson and Winawer, 2018). We use the following convention for all
178 3 datasets: the upper vertical meridian corresponds to 0 deg, the horizontal meridian
179 corresponds to 90 deg, and the lower vertical meridian corresponds to 180 deg. Note that
180 the polar angle estimates are rescaled for the correlation and linear regression analysis (see
181 next section). We used Benson's definition of the extent of visual areas V1, V2, and V3 for all
182 3 datasets (Benson et al., 2014).

183

184

185 **Quantification of non-neural factors**

186

187 In the TDM and NSD datasets, we quantified several factors that might be related to
188 variation in the magnitude of the BOLD signal across cortical locations. We focused on
189 factors that can be easily extracted from either functional or anatomical data that are
190 typically acquired in an fMRI experiment. For the purposes of the present study, we
191 consider only within-subject factors rather than across-subject factors, with the goal of
192 removing non-neural influences on the variation of BOLD magnitudes across voxels. We
193 note that there are several other factors that influence variation of overall BOLD magnitude
194 across subjects like caffeine use (Liu et al., 2004), vascular age (Tsvetanov et al., 2021), and
195 heart rate (Chang et al., 2009). Below, we describe each of the within-subject factors that
196 we considered in the present study.

197

198 *Curvature* was obtained from FreeSurfer outputs (Dale et al., 1999; Fischl and Dale, 2000),
199 and refers to the geometry of the folding pattern of the cortical surface. Negative values
200 correspond to gyri while positive values correspond to sulci. Curvature is quantified as $1/r$,
201 where r is the radius of an inscribed circle measured in mm.

202

203 *Thickness* was also obtained from FreeSurfer outputs. It is measured in mm and corresponds
204 to the distance between the outermost (close to cerebrospinal fluid) and innermost (close
205 to white matter) boundaries of gray matter. Curvature and thickness are well known to vary
206 across visual cortex. Their relationship with %BOLD remains unknown and has not been
207 investigated in detail, especially on a voxel-by-voxel basis. We include these factors in our
208 analysis to assess whether these anatomical factors have systematic relationships with
209 BOLD magnitude.

210

211 *Mean bias-corrected EPI* was calculated as the mean signal intensity in the fMRI data divided
212 by the estimated RF coil bias (details below). The units range from approximately 0 to 2, and
213 indicate percentages (e.g., 0.5 means 50% of the strength of typical signal intensities). Mean
214 bias-corrected EPI values can be viewed as high spatial frequency changes in signal intensity
215 across space. We include this factor in the analysis as mean bias-corrected EPI was
216 previously found to be a good predictor for venous effects (Kay et al., 2019). Proximity to
217 veins often results in increased BOLD magnitude.

218

219 *Depth* was estimated by generating 6 cortical surfaces (for TDM) or 3 cortical surfaces (for
220 NSD) equally spaced between 10% and 90% (for TDM) or 25% and 75% (for NSD) of the
221 distance from the pial surface to the boundary between gray and white matter. These
222 surfaces are numbered from 1 to n , where 1 is outermost and n is innermost. We include
223 depth as a factor as it is well known that BOLD magnitude is highest in superficial depths
224 and decreases towards the white matter (Polimeni et al., 2010).

225

226 *Angle with respect to B_0* was calculated by considering the angle (θ) between the pial
227 surface normal and the direction of the B_0 static magnetic field as estimated from NIFTI
228 header information. Angle was quantified in degrees and was normalized as $\text{abs}(\theta - 90)$
229 such that a final value of 0 deg indicates that the cortical surface is parallel to the magnetic
230 field and a final value of 90 deg indicates that the cortical surface is perpendicular to the

231 magnetic field. We include angle with respect to B_0 in the analysis because previous reports
232 showed that the BOLD magnitude varies with B_0 angle (Gagnon et al., 2015b).

233

234 *RF coil bias* was taken to be the result of fitting a 3D polynomial to the mean signal intensity
235 in the fMRI data. The values are in raw scanner units and represent low spatial frequency
236 changes in the intensity of voxels. This estimation method has been used previously (Kay et
237 al., 2019). We include RF coil bias as a control in our analysis. In theory, there should not be
238 a systematic relationship between RF coil bias and BOLD magnitude, as we express BOLD
239 magnitudes at each voxel in terms of percent signal change (as is typically done in the field),
240 and percent signal change is sensitive to an overall scale factor on the signal.

241

242 In sum, all of these factors are known to vary across the cortical surface of V1. The exact
243 biophysical mechanisms that might explain their impact on %BOLD are in some cases
244 unknown (e.g., curvature). In other cases, we expect that some factors should not bear
245 systematic relationships to %BOLD (e.g., RF coil bias). In general, the work here is intended
246 to be a first step towards understanding the influence of potential non-neural contributions
247 to variations in %BOLD across individual voxels within a given subject.

248

249 **Quantification of neural factors**

250

251 *Polar angle* was obtained from Benson's atlas (Benson et al., 2014), representing the visual
252 field angle to which each cortical location is optimally tuned. For the purposes of our
253 analyses, we normalize polar angle such that 0 deg corresponds to the horizontal meridian
254 and 90 deg corresponds to the upper and lower vertical meridians. We include polar angle
255 as a positive control: we expect that polar angle should bear a systematic relationship with
256 BOLD magnitude, as this is the original observation that motivated the present study.

257

258 **Definition of regions of interest**

259

260 Using the visual field mapping results, we defined regions of interest (ROIs) corresponding
261 to the representation of the horizontal and vertical meridians within V1. The ROIs were
262 defined by limiting the eccentricity to the maximum stimulus eccentricity used in each
263 dataset and limiting the angle to a specific range (e.g., to create a V1 ROI for the upper
264 vertical meridian with a width of 20 deg, we created a mask where polar angle estimates
265 were higher than 0 and lower than 20).

266

267 **Modelling variation in BOLD signal magnitude**

268

269 To account for non-neural contribution to %BOLD, we used a multiple regression model. The
270 modeled data (Y) consisted of the %BOLD value observed at each surface vertex in visual
271 areas V1–V3. Although this study focuses on BOLD homogeneity in V1, we include %BOLD in
272 V1–V3. This is because we are attempting to establish relationships that might generalize
273 across different cortical regions. Furthermore, if we were to include only vertices in V1, we
274 would be at high risk of removing genuine neural activity differences (e.g. those that may
275 exist between the horizontal and vertical meridians) that correlate with the non-neural
276 factors.

277
278 The variables used to model the data included thickness, curvature, depth and mean bias-
279 corrected EPI intensity. (Only these four factors showed evidence of being substantially
280 related to BOLD magnitude; see Results.) The variables were standardized (z-scored) and,
281 together with a constant term, were included as predictors in the design matrix (X).
282 Ordinary least-squares estimates for beta weights were obtained in the following linear
283 model:

284

285
$$Y = X\beta + n \quad (\text{Eq. 1})$$

286

287 where Y is the %BOLD magnitude at each vertex, X is the 5-column design matrix, β is a set
288 of beta weights (5 per vertex), and n is a set of residuals.

289

290 Major cortical sulci

291

292 In several figures we show outlines of major cortical sulci. These include the calcarine sulcus
293 (CALC), parieto-occipital sulcus (POS), intraparietal sulcus (IPS), occipitotemporal sulcus
294 (OTS), and superior temporal sulcus (STS). These sulci were manually labelled on the
295 fsaverage surface and then mapped to each individual's native surface.

296

297 Data and code availability

298

299 The datasets used in this paper are freely available online: NSD
300 (<http://naturalscenesdataset.org>), HCP (<https://osf.io/bw9ec/>), and TDM
301 (<https://osf.io/j2wsc/>). Code that reproduces the main figures in this paper is available at
302 <https://github.com/jk619/meridianbias/>. Associated data files are available at
303 <https://osf.io/2nc4x/>.

304 Results

305 Stronger BOLD responses along the V1 horizontal meridian

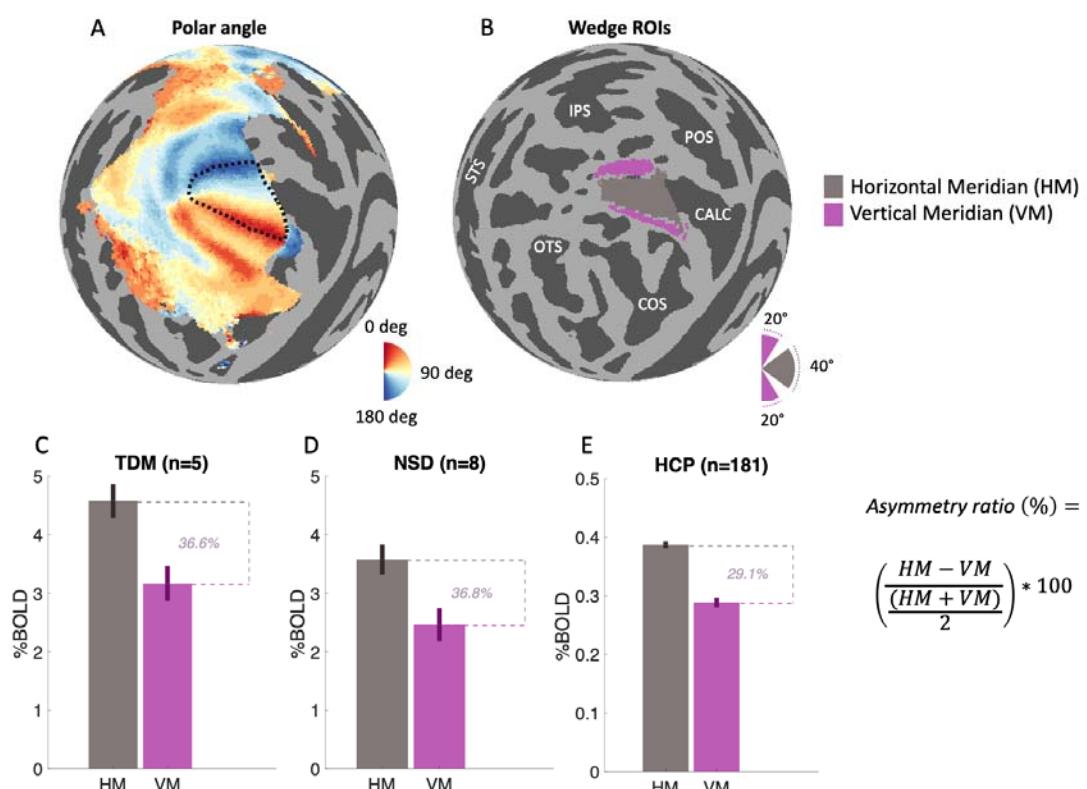
306

307 We examined BOLD response magnitudes in three freely available datasets: the Natural
308 Scenes Dataset (NSD; Allen et al., 2021), the data used for the Temporal Decomposition
309 Method (TDM; Kay et al., 2020), and the Human Connectome Project 7T Retinotopy Dataset
310 (HCP; Benson et al., 2018). Each dataset contains BOLD responses to different types of visual
311 stimulation (see Methods). We defined one region of interest (ROI) for the horizontal
312 meridian (HM) and one for the vertical meridian (VM) (**Figure 2A–B**). These ROIs represent a
313 wedge-shaped region in the visual field centered at the horizontal meridian with a width of 20
314 deg (horizontal) and two wedges abutting the vertical meridian each with a width of 20
315 deg (vertical).

316

317 In each of the three datasets, we compared BOLD magnitudes expressed in percent signal
318 change (%BOLD) observed for the VM with BOLD magnitudes observed for the HM (**Figure**
319 **2C–E**). In each dataset, we find higher %BOLD in the HM ROIs compared to the VM ROIs. We

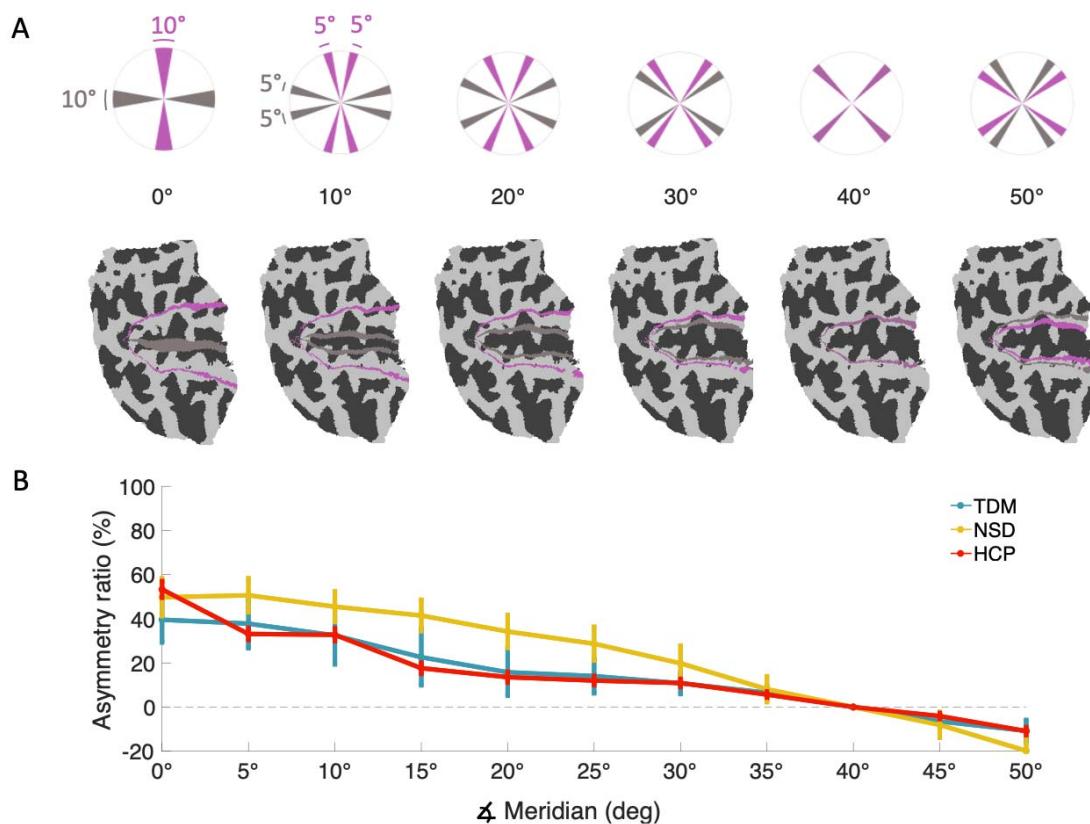
320 summarize this difference with an asymmetry ratio: $(HM - VM) / \text{mean}(HM, VM)$. All datasets
321 show strong asymmetry, with an asymmetry ratio of ~30%. Positive values for the
322 asymmetry ratio indicate greater response for the horizontal meridian. (Note that if the
323 asymmetry is expressed as a percentage of the smaller vertical meridian response, the
324 increase reflected in the larger horizontal meridian response is up to ~50%).
325



326
327
328 **Figure 2 – BOLD magnitude is higher at the horizontal meridian in V1.** **A)** Polar angle map of group-average
329 HCP subject (999999) with V1 boundary outlined in dotted black lines. **B)** Horizontal and vertical regions of
330 interest (ROIs) are indicated in gray and magenta, respectively. White text indicates major brain sulci (see
331 Methods). **C-E)** Mean BOLD magnitude for horizontal and vertical ROIs in the three datasets. Error bars
332 indicate standard error across subjects.

333 One possibility is that the horizontal and vertical V1 BOLD responses are in fact similar, but
334 the vertical ROIs appear to have lower signal due to mixing with signal from V2. V2 and V1
335 border along the vertical meridian representation, and blurring might occur either in
336 acquisition or in pre-processing and analysis. To further our understanding of the V1
337 response asymmetries, we re-computed asymmetry ratios using smaller wedges at many
338 locations (**Figure 3A**). Note that, because we use smaller wedges, the asymmetry at the
339 cardinal meridians is different from **Figure 2**. While the asymmetry is strongest at the
340 cardinal meridians, some horizontal/vertical asymmetry is found at least 30 deg away from
341 the meridians in all three datasets (**Figure 3B**). This argues against the explanation that the
342 asymmetry is caused by spillover from V2.

343
344



345

346

347

348

349

350

Figure 3 – BOLD asymmetries generalize to off-cardinal locations. To further understand V1 BOLD asymmetry, we manipulated the location of the wedge ROIs in 5-deg increments. **A)** The upper row shows the visual field location of wedge ROIs and the lower row shows the corresponding cortical locations (flattened left hemisphere). For clarity, we show only every other set of ROIs. **B)** Asymmetry ratio as a function of angular distance from the cardinal meridians. Error bars indicate standard error across subjects.

351

HM/VM asymmetry persists at inner cortical depths

352

353

354

355

356

357

358

359

360

361

362

363

364

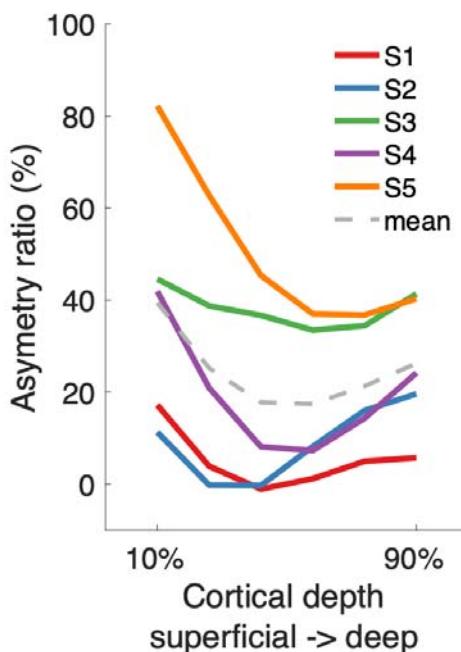
365

366

367

The BOLD signal is strongly influenced by properties of the brain's vasculature. Uneven venous contributions across the brain can cause variation in BOLD magnitude (Menon et al., 1993; Kim et al., 1994; Hoogenraad et al., 1999; Kay et al., 2019). One possibility is that the meridian asymmetries we observe arise from non-uniformities in the vascular network. To investigate this possibility, we took advantage of the sub-millimeter resolution of the TDM dataset and examined HM/VM asymmetry as a function of depth. Because macroscopic venous effects are larger in the superficial cortex due to large pial veins (Duvernoy et al., 1981; Turner, 2002; Polimeni et al., 2010; Kay et al., 2019), by sampling BOLD responses from deeper depths, we minimize contributions from pial veins. We find that the HM/VM asymmetry is larger at the superficial depths, suggesting that part of the asymmetry may be due to differential properties in macroscopic vasculature (**Figure 4**). This depth effect is systematic: every subject shows higher asymmetry at the superficial depth than the middle depth. Nonetheless, there remains a substantial horizontal/vertical asymmetry at all depths (**Figure 4**), suggesting that macroscopic vessels near the pial surface are not the entire explanation. At the innermost depth sampled, which is least influenced by pial vessels, the

368 HM/VM asymmetry is 26% (average across subjects) and is positive in each of the 5 subjects.
369 The middle depths appear to have the least asymmetry. This could be due to a difference in
370 neural responses at intermediate depths, which generally correspond to input-related
371 cortical layers.



372
373
374 **Figure 4 – BOLD asymmetry in V1 persists at inner depths.** We exploit the high-resolution TDM dataset to
375 discriminate V1 BOLD responses across depth and estimate response asymmetries as a function of depth
376 (asymmetry is calculated in the same way as in **Figure 3**). The presence of asymmetry at the innermost depth
377 suggests that response asymmetries exist even with minimal contribution of large pial veins.

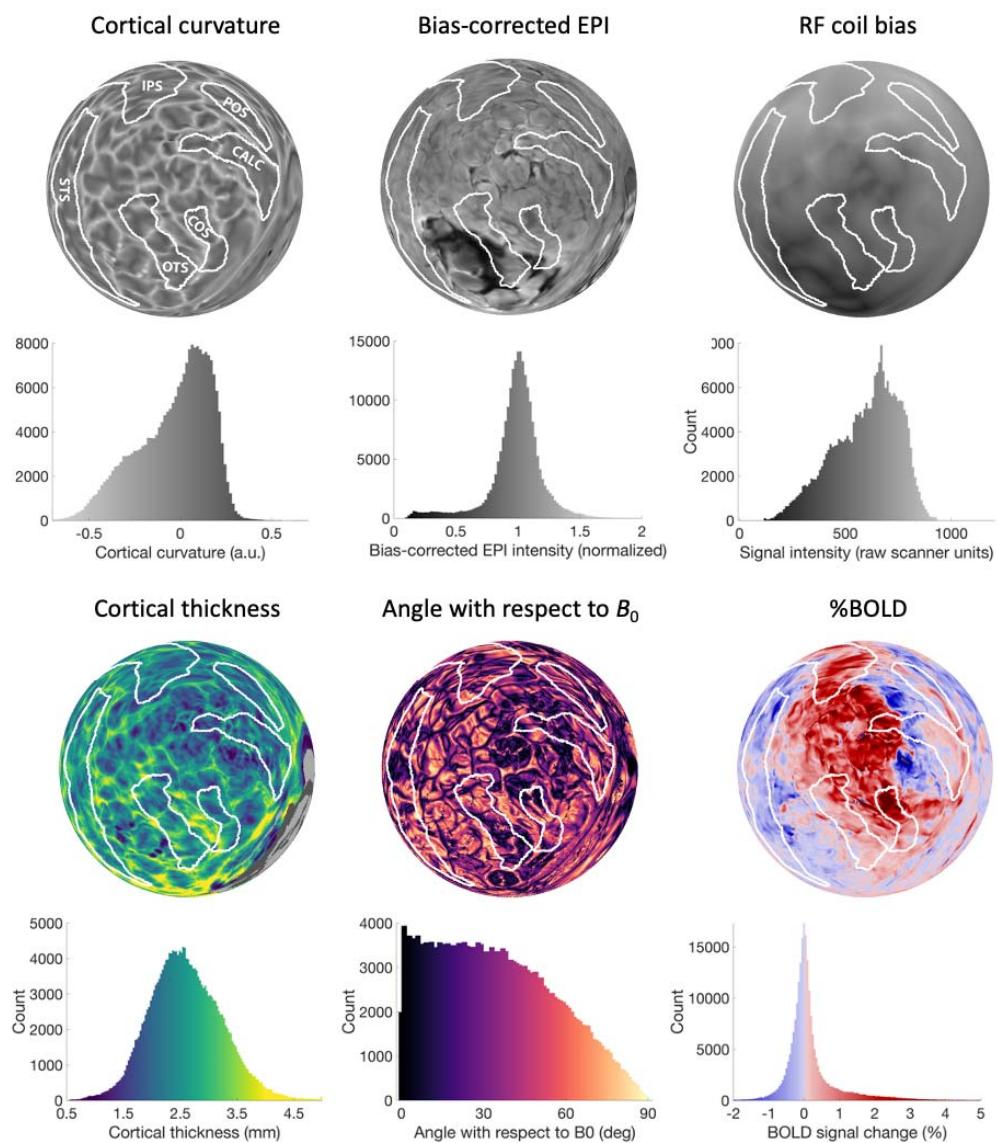
378 **Assessing and modeling non-neural contributions to BOLD signal magnitude**

379

380 In addition to vascular effects, other factors unrelated to neural activity evoked by the
381 experimental manipulation may influence variation in %BOLD across the cortical surface.
382 These additional factors are often neglected in fMRI analysis pipelines. Although some of
383 the factors are known to vary across the cortex, their influence on the BOLD signal is poorly
384 understood. Here, we attempt to understand how these factors may be related to BOLD
385 magnitude variations. To the best of our knowledge, we are unaware of any previous study
386 that has examined this issue in detail, especially at the level of individual voxels (or vertices)
387 within individual subjects.

388
389 We first identified a list of possible confounding factors (beyond cortical depth, which we
390 have already introduced) based on consideration of basic anatomical properties of the brain
391 and the nature of fMRI measurement. These factors are cortical curvature, cortical
392 thickness, RF coil bias, mean bias-corrected EPI signal intensity, and angle with respect to B_0 .
393 Each of these factors can be interpreted as spatial maps, with a value at each vertex on the
394 cortical surface mesh. The five maps can be obtained from standard anatomical scans (T1-
395 weighted) or from the fMRI measurements themselves without additional MRI experiments

396 (see Methods for details). Example surface visualizations of these maps together with
397 %BOLD are shown in **Figure 5**. We hypothesize that inhomogeneities in some of these maps
398 might explain some of the observed inhomogeneity in %BOLD across V1.

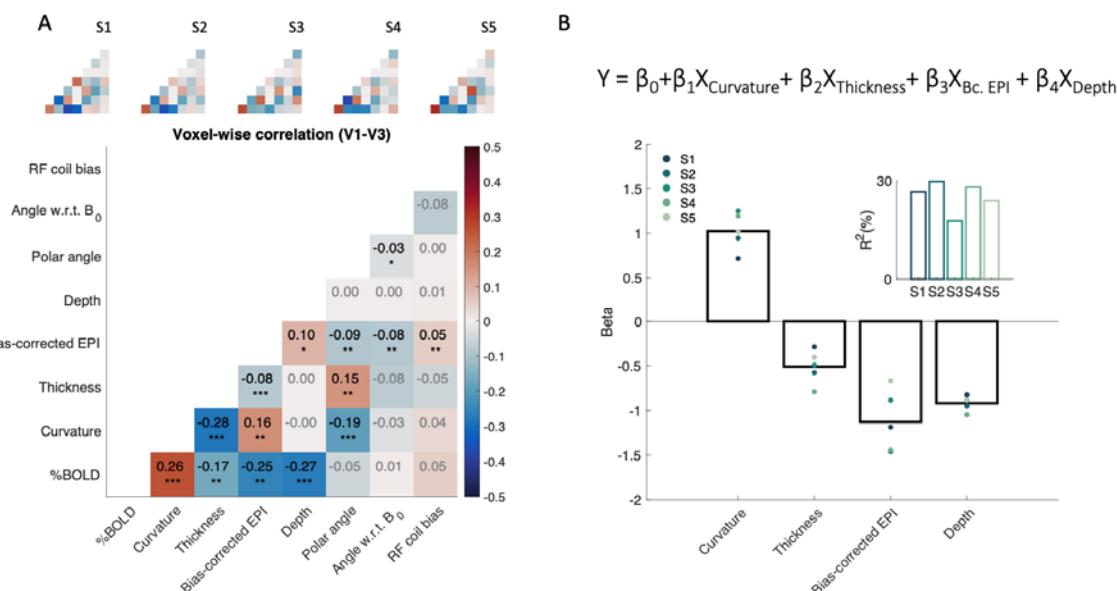


399
400
401 **Figure 5 – Variation in anatomical and acquisition factors across cortex.** Each sphere shows data mapped on
402 the left hemisphere for subject S1 in the NSD dataset. Below each surface map is a histogram of the plotted
403 values. White outlines indicate major cortical sulci. %BOLD represents the average response to the natural
404 scene stimuli used in the NSD dataset. Some of the spatial variability in %BOLD might be due to variability in
405 the depicted non-neural factors.

406
407 To understand the potential relationships amongst these five identified factors and %BOLD,
408 we first performed voxel-wise correlation analyses. For these analyses, we used the TDM
409 dataset, as its high spatial resolution facilitates the identification of vascular effects (Kay et

410 al., 2019). We examined data from V1–V3 where neural activity magnitudes can be
 411 expected to be relatively homogeneous (although biases were reported before; Liu et al.,
 412 2006) given the simple contrast patterns used. In **Figure 6A**, we show pairwise correlations
 413 across these five quantities, as well as retinotopic polar angle preference (rescaled between
 414 0 and 90; see Methods) and cortical depth. We find that %BOLD correlates substantially
 415 with four factors: curvature ($r = 0.26$), thickness ($r = -0.17$), mean bias-corrected EPI
 416 intensity ($r = -0.25$), and depth ($r = -0.27$). We do not find a strong correlation between
 417 %BOLD and polar angle. Although results from **Figure 2C–E**, **Figure 3C** and **Figure 4** suggest a
 418 strong negative correlation, the previous analysis included data only from V1. Here we
 419 analyze vertices from V1–V3 where this relationship becomes weaker ($r = -0.05$). Overall, we
 420 can summarize as follows: %BOLD extracted from V1–V3 tends to be higher at locations that
 421 correspond to sulci, in thinner parts of the cortex, in voxels with lower mean bias-corrected
 422 EPI intensities, and at more superficial depths.
 423

424 Examination of correlations amongst factors yields additional insights (**Figure 6A**). The
 425 strongest correlation that we find is between curvature and thickness ($r = -0.28$), indicating
 426 that sulci tend to be thin. Curvature is correlated with mean bias-corrected EPI ($r = 0.16$) and
 427 with polar angle ($r = -0.19$), and thickness is correlated with polar angle ($r = 0.15$). Our
 428 interpretation of these effects is that venous effects tend to be stronger in gyri (consistent with
 429 previous findings in Kay et al., 2019), and that the correlations related to polar angle simply
 430 reflect the tendency for horizontal meridian representations to fall on sulci (e.g. the
 431 calcarine sulcus). Overall, these complex relationships suggest that making sense of non-
 432 neural influences on %BOLD requires a broad perspective that considers multiple factors.
 433



434
 435
 436 **Figure 6 – Modeling variations in BOLD signal magnitude.** **A)** Correlation (Pearson's r) between a variety of
 437 factors and %BOLD extracted from V1–V3 from the TDM dataset. Main plot shows results from data
 438 concatenated across all subjects, while inset plots show results from individual-subject data. P-values indicate
 439 significance of one sample t -test across subjects; * $p < 0.05$; ** $p < 0.01$; *** $p < 0.001$. **B)** Regression model for

440 %BOLD. Based on the results of panel A, we selected curvature, thickness, depth and mean bias-corrected EPI
441 as the main non-neural factors that confound %BOLD. These four factors were then used in a multiple linear
442 regression model to predict %BOLD (top). The amount of variance explained by the model is shown in the
443 inset.

444 **Correcting BOLD signal magnitude for non-neural factors**

445

446 We now explore whether we can develop a statistical model to compensate for the
447 influence of non-neural factors on %BOLD. We operate under the assumption that any
448 observed correlation between the factors and %BOLD is incidental and does not reflect
449 genuine neural activity variation. Our model is a multiple regression model (**Figure 6B, top**)
450 that uses the main factors of curvature, thickness, depth and mean bias-corrected EPI
451 intensity as continuous variables and attempts to determine a weighted sum of these
452 factors that optimally accounts for variations in %BOLD across cortical locations (see
453 Methods for details).

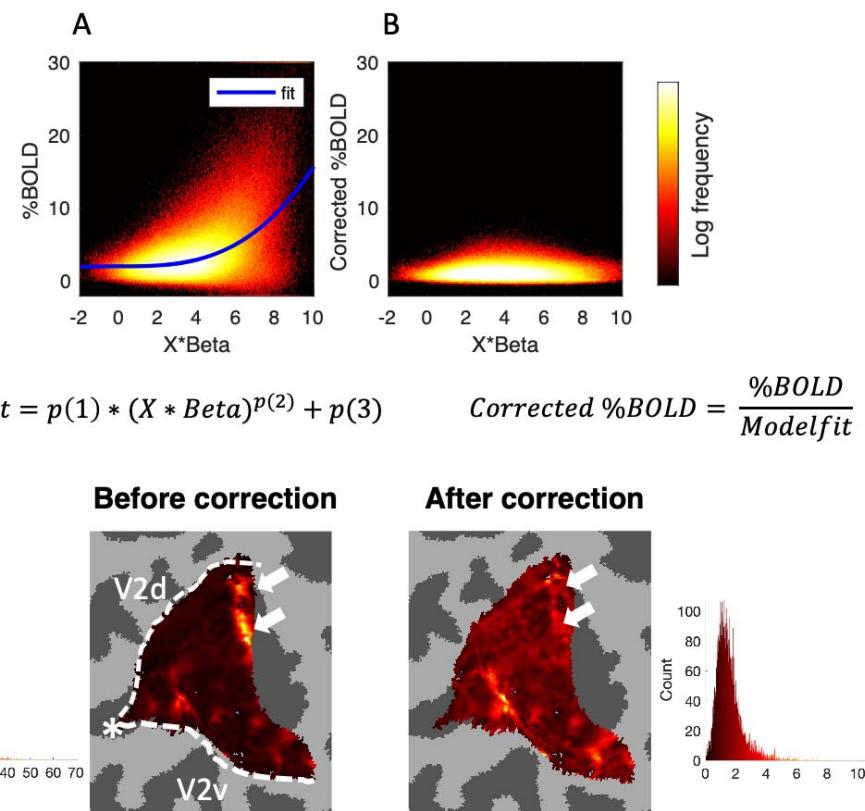
454

455 Fitting the model, we find a strong positive contribution of curvature and negative
456 contributions of thickness, mean bias-corrected EPI intensity and depth (**Figure 6B, bottom**),
457 consistent with the earlier voxel-wise correlation analyses. Estimated beta weights are fairly
458 consistent across subjects, and the model on average across subjects explains 26% of the
459 variance in %BOLD. A multiple regression model using all 6 factors (adding RF coil bias and
460 angle with respect to B_0) resulted in only minimally larger explained variance, 27% vs. 26%,
461 consistent with the earlier correlation analyses indicating that RF coil bias and angle with
462 respect to B_0 bear little or no relationship with %BOLD.

463

464 To better understand the relationship between the identified non-neural factors and
465 %BOLD, we construct a 2D histogram relating the model fit (BOLD prediction based on non-
466 neural factors obtained by multiplying the design matrix and estimated beta weights) and
467 %BOLD (**Figure 7A**). This reveals a clear nonlinear relationship. To accommodate this
468 nonlinearity, we fit a nonlinear function relating the linear model fit and %BOLD (blue line in
469 **Figure 7A**). Finally, we remove the contribution of non-neural factors by dividing %BOLD
470 observed at each cortical location by the fit of the nonlinear model. We divide %BOLD by
471 the model fit rather than subtracting the model fit, as we believe that the influence of non-
472 neural factors on %BOLD might impose a type of 'gain' field on fMRI responses observed in a
473 given experiment. For example, if there is an excess of macrovasculature in a voxel, we
474 would expect the overall amplitude of the BOLD response from the voxel to be scaled. Note
475 that our method of rescaling BOLD magnitudes does not change the pattern of responses
476 across different experimental conditions within a voxel (while a subtractive approach
477 would). For example, if the response to condition A is 25% higher than the response to
478 condition B, this will continue to be the case after rescaling.

479



480

481

Figure 7 – Correction of V1 BOLD inhomogeneity. **A)** Removal of non-neural factors. First, linear combinations of non-neural factors are used to predict %BOLD within V1–V3 using the TDM dataset. The model is fit on data concatenated from all 5 TDM subjects. The model is augmented with a nonlinear power-law function (blue line), which is controlled by a gain parameter ($p(1)$), an exponent parameter ($p(2)$), and a constant term ($p(3)$). **B)** Each voxel's BOLD responses are divided by the model fit, yielding the corrected %BOLD. **C)** BOLD signal magnitude within V1 before and after the correction (TDM dataset, subject S3, most superficial depth). Asterisk indicates the fovea and dashed lines indicate the boundary between V1 and V2. After correction, some vertices with very high BOLD are eliminated (see white arrows). Within each plot, the color range extends from 0 to the maximum. Each map has an associated histogram that shows all values extracted from V1.

491

The result of the proposed correction procedure is shown in **Figure 7B**. We see that after the correction procedure, the distribution of BOLD response becomes flatter, indicating the efficacy of the procedure. (Note that what is important is the shape of the distribution of the values, not necessarily the magnitudes of the values.) Increased homogeneity of BOLD magnitude is also visible on the cortical surface (**Figure 7C**).

496

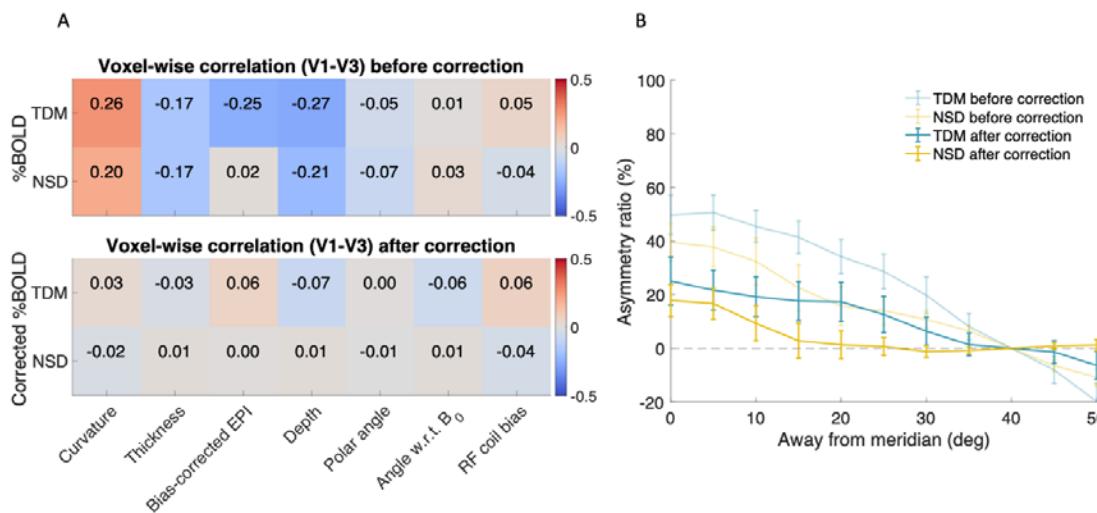
To understand whether our method generalizes across datasets, we used the same procedure and performed correction on the NSD dataset. We summarize the effect of the correction by showing the correlations between %BOLD and non-neural factors before and after the correction (**Figure 8A**). The pattern of results before correction (**Figure 8A, top**) is consistent across the TDM and NSD datasets, except for the reduced correlation with bias-

502 corrected EPI in NSD (see Discussion). Importantly, correlations after the correction are
503 substantially reduced, indicating the efficacy of the method.

504 To check whether accounting for non-neural factors increases the homogeneity of BOLD, we
505 quantified the variation of BOLD magnitudes across V1 before and after the correction.
506 Variation was quantified using the semi-interquartile range divided by the median (SIR).
507 Intuitively, if the spread of BOLD magnitudes is small (i.e., %BOLD is relatively
508 homogeneous), SIR will be low, whereas if the spread of BOLD magnitudes is large (i.e.,
509 %BOLD is relatively heterogeneous), SIR will be high. We find that across subjects, the SIR
510 decreases from 0.42 before correction to 0.34 after correction for TDM and decreases from
511 0.48 to 0.42 for NSD.

512
513 We now return to the experimental effect that motivated this study, namely, BOLD
514 response asymmetries across the horizontal and vertical meridians in V1. We quantify the
515 asymmetry before and after correction (Figure 8B). We find that after accounting for the
516 non-neural factors, the asymmetry drops for TDM from 49.2% to 25.1% and from 40% to
517 18% for NSD. We thus suggest that some of the observed differences in BOLD response
518 magnitudes are due to non-neural factors.

519
520



521
522

523 **Figure 8 – The effect of BOLD inhomogeneity correction.** A) Voxel-wise correlation between the various
524 factors and %BOLD before and after correction. After correction, correlations are reduced, indicating that the
525 corrected data are less influenced by the non-neural factors. B) Dependence of %BOLD on polar angle in V1
526 before and after the correction for TDM dataset and NSD datasets. The asymmetry drops by about half.

527 In the results demonstrated in this paper, the correction method reduces inhomogeneities
528 between the horizontal and vertical meridians. But more generally, it is possible that in
529 other datasets, the method may reveal activity differences that are masked by non-neural
530 factors. For example, voxel A might have a lower neural response than voxel B, but voxel A
531 might reside close to a large vein which would tend to increase %BOLD. In conventional
532 fMRI analyses, both voxels might show similar BOLD magnitude, even though the underlying

533 neural activity is different. The methods proposed in this paper can be viewed as an attempt
534 to obtain better estimates of underlying neural activity.

535 Discussion

536 In this paper, we used three publicly available datasets to assess the degree of homogeneity
537 of BOLD signal magnitude in primary visual cortex. We found that stimulus-evoked BOLD
538 responses, expressed as percent signal change, are up to 50% stronger along the horizontal
539 meridian than the vertical meridian. To investigate whether these magnitude differences
540 can be attributed to differences in local neural activity, we systematically evaluated the
541 potential contribution of several non-neural factors to the observed effect. We found that
542 BOLD signal magnitude correlates with curvature, thickness, depth and macrovasculature
543 (as indexed by bias-corrected EPI intensities). Using a regression-based correction
544 procedure, we were able to increase the homogeneity of BOLD signal magnitude and found
545 that the meridian differences were reduced by half.

546 547 Spatial variations in BOLD magnitude

548 This study tackles the issue of the neural basis of variation in BOLD signal magnitude.
549 Specifically, we address variation in BOLD across cortical locations for a fixed experimental
550 manipulation, as opposed to variation in BOLD across experimental manipulations for a
551 fixed cortical location. The latter has been heavily studied (Heeger et al., 2000; Logothetis et
552 al., 2001; Heeger and Ress, 2002; Logothetis and Wandell, 2004; Mishra et al., 2021),
553 whereas the former has not yet been systematically studied to the best of our knowledge. If
554 there are indeed non-neural factors that influence BOLD signal variation, taking this into
555 account is critical when interpreting differences in fMRI responses across brain regions.

556 We acknowledge that a challenge in understanding the neural basis of the BOLD signal is
557 that directly comparable ground-truth measurements of neural activity are typically not
558 available. Moreover, the BOLD signal only indirectly measures the neural response, and its
559 magnitude likely depends on many aspects of neural activity. Increased BOLD signal might
560 be a consequence of more neurons firing, more spikes per neuron, changes in neural
561 correlation, changes in subthreshold activity, and/or changes in what kinds of neurons are
562 most active. Our approach currently does not try to distinguish amongst these causes.

563 564 565 In our analyses, we relied on the working assumption that the experimental paradigms of
566 the three datasets (combined with suitable averaging and analysis procedures) are expected
567 to generate relatively homogeneous patterns of neural activity in early visual cortex. Of
568 course, this may not be exactly the case.

569 570 571 Non-neural factors that affect BOLD magnitude

572 573 574 *Mean bias-corrected EPI.* Mean bias-corrected EPI is a convenient marker for macrovascular
575 contributions to the fMRI signal (Kay et al., 2019). Vertices contaminated by venous effects
show lower intensity values in mean EPI images and often result in high %BOLD magnitude.

576 In the TDM dataset, we found this to be the case and were able to remove, to some extent,
577 venous effects using the described correction method. We did not, however, find a strong
578 relationship between mean bias-corrected EPI and %BOLD magnitude in the NSD dataset.
579 We suggest that the reason for this apparent discrepancy is that effective discovery of
580 venous contributions requires high-resolution data where voxel size approaches the scale of
581 1 mm or better. Another important issue to consider is the cerebral sinuses. The sinuses are
582 the largest veins that drain blood from the brain and they exert major effects at certain
583 specific cortical locations. Complicating matters is the fact that the sinuses also produce low
584 EPI intensity, but instead of boosting BOLD magnitude they seem to reduce it, resulting in
585 low %BOLD (Winawer et al., 2010; Jamison et al., 2017). In the present study, we do not
586 attempt to isolate or analyze the effects of the cerebral sinuses, though preliminary analyses
587 indicate that the sinuses do not provide a simple explanation of the horizontal/vertical
588 asymmetry (data not shown).

589
590 *Cortical anatomy.* We find that curvature and thickness correlate with BOLD signal
591 magnitude (see **Figure 6A**). It is known that many anatomical properties vary with thickness
592 and with curvature (Jiang et al., 2021): (i) total neuron count is higher in gyri than it is in
593 sulci (Hilgetag and Barbas, 2005), (ii) gyri tend to be thicker than sulci (Welker, 1990;
594 Hilgetag and Barbas, 2005), (iii) venous effects (resulting in higher BOLD signal amplitude)
595 are more prominent in gyri than they are in sulci (Kay et al., 2019); and (iv) there may even
596 be intrinsic causal relationships between curvature and thickness during anatomical
597 development (Hilgetag and Barbas, 2005). However, the exact anatomical and biophysical
598 mechanisms that might link curvature and thickness to BOLD signal magnitudes are largely
599 unknown, to our knowledge. This is an important issue for future research. Here, we
600 operate under the working assumption that correlations between the BOLD signal and
601 curvature or thickness reflect incidental factors unrelated to local neural activity. We
602 therefore assume that a correction which removes their influence from the BOLD signal is
603 desirable.

604
605 *Orientation of pial veins.* It has been reported that regions where the cortical surface is
606 oriented perpendicular to the main magnetic field produce lower BOLD signal than regions
607 where the surface is oriented parallel (Gagnon et al., 2015a; Fracasso et al., 2018). The
608 proposed explanation is that this effect is caused by the orientation of pial veins, which lie
609 parallel to the cortical surface. Our analyses did not replicate this result and indicated little
610 relationship between BOLD magnitude and angle with respect to B_0 (see **Figure 6A**). One
611 possible explanation could be related to our pre-processing approach, in which fMRI signals
612 are sampled specifically in the gray matter and away from the pial veins that reside on top
613 of the gray matter. This may have dampened effects related to the pial veins. Nonetheless,
614 the prior literature would have predicted some B_0 effect even at inner cortical depths
615 (Viessmann et al., 2019). Alternatively, it is possible that the orientation effects depend in
616 some way on pulse sequence parameters, or the specific brain area being studied. A
617 detailed examination of different datasets would be necessary to resolve these
618 discrepancies.

619
620 *RF coil effects.* Due to cortical folding, gyri tend to be closer to the RF coil than sulci.
621 Locations that are further from the coil might have lower mean signal intensities and

622 therefore lower SNR (Srirangarajan et al., 2021), but this should not affect BOLD *magnitudes*
623 expressed in terms of percent signal change. We are not aware of any mechanism that
624 would alter the percent signal change in brain locations that are further away from the RF
625 coil. Indeed, we did not find any relationship between RF coil bias and BOLD magnitude (see
626 **Figure 6A**).
627
628

629 **Correction for the impact of non-neural factors**

630
631 Our results show that voxel-wise %BOLD is likely contaminated by several non-neural
632 factors.

633 To account for these factors, we developed a regression-based correction method. The goal
634 of this method was to introduce a simple, data-driven approach that can be applied
635 irrespectively of the specific experiment or brain region that is under consideration. The
636 underlying premise of the method is that by removing the contribution of non-neural
637 factors, the resulting measures would constitute a better representation of the underlying
638 neural activity. After application of the method, we found that %BOLD becomes more
639 homogenous and correlations between %BOLD and non-neural factors become significantly
640 reduced. Thus, our results indicate that some variation in %BOLD that might be interpreted
641 as change in neural activity likely reflects the variation of non-neural factors.
642

643 We believe the results presented in this paper constitute a first step towards developing a
644 cogent strategy for compensating for non-neural biases in BOLD signal magnitudes.
645 Suppressing the influence of non-neural factors has potential applications in pre-surgical
646 planning, where fMRI is routinely used to map motor, speech, and visual areas. The value of
647 fMRI for presurgical planning is currently limited by the accuracy of localizing neural
648 responses (Silva et al., 2018a). BOLD-derived maps that are a better representation of
649 neural activity could lead to more accurate neurosurgical interventions.
650

651 It remains to be seen whether the remaining asymmetry across the horizontal and vertical
652 meridians in V1 is a result of genuine neural activity differences, or an effect of other non-
653 neural factors that we were unable to quantify in the present study (which might require
654 additional MRI acquisition measures and/or higher resolution data). It is conceivable that
655 genuine neural activity differences may exist across the horizontal and vertical meridian
656 locations in V1. For example, there is greater cortical magnification along the horizontal
657 than vertical meridian (Silva et al., 2018b; Benson et al., 2021; Himmelberg et al., 2021;
658 Himmelberg et al., 2022), and it is plausible that this might be accompanied by differences
659 in the strength of neural responses.
660

661 Although our method is aimed towards more meaningful quantification of the BOLD signal,
662 it differs conceptually from quantitative BOLD (qBOLD) approaches (He and Yablonskiy,
663 2007; Yablonskiy et al., 2013; Cherukara et al., 2019). On the one hand, qBOLD attempts to
664 model the BOLD signal in terms of its underlying metabolic and hemodynamic components
665 (e.g., blood flow, blood volume, oxygenation extraction), and this in principle may yield
666 measures more closely related to neural activity. On the other hand, the approach we have
667 taken in this paper is to apply analytic methods to BOLD data that consider inhomogeneities

668 that may exist across the brain, with the goal of better estimating local neural activity. Note
669 that the two approaches are not mutually exclusive: one might imagine assessing whether
670 the magnitude of qBOLD measures co-vary with non-neural factors across the brain.
671

672 There are other methods that can be used to suppress the contribution of non-neural
673 factors to BOLD signal magnitudes. By identifying early and late components of evoked
674 hemodynamic responses, a temporal decomposition method can be used to estimate BOLD
675 response components more closely linked to the microvasculature, which presumably more
676 closely reflect local neural activity (Kay et al., 2020). Another analysis method focuses on
677 BOLD fluctuations where estimates of slow oscillations (< 0.1 Hz) are used to suppress
678 vascular-related effects (Kazan et al., 2016). Similarly, some methods use the amplitude of
679 fluctuations in resting-state data to rescale the BOLD signal (Di et al., 2013; Guidi et al.,
680 2020). Finally, acquisition methods, such as spin-echo pulse sequences, can be used to
681 suppress unwanted venous effects. Note that all these methods concern effects of the
682 macrovasculature, but systematic biases in BOLD signal magnitudes may in theory persist
683 even if BOLD responses were fully restricted to the microvasculature. Further investigation
684 is necessary to resolve these possibilities.
685

686 Author Contributions

687
688 J.W.K, K.K. and J.W. conceived and designed this study. J.W.K and K.J. performed data
689 analyses, with K.K. and J.W. providing guidance. J.W.K., J.W, O.F.G and K.K. wrote and edited
690 the manuscript.
691
692

693
694 Allen EJ, St-Yves G, Wu Y, Breedlove JL, Prince JS, Dowdle LT, Nau M, Caron B, Pestilli F,
695 Charest I, Hutchinson JB, Naselaris T, Kay K (2021) A massive 7T fMRI dataset to
696 bridge cognitive neuroscience and artificial intelligence. *Nature Neuroscience*.
697 Arthurs OJ, Williams EJ, Carpenter TA, Pickard JD, Boniface SJ (2000) Linear coupling
698 between functional magnetic resonance imaging and evoked potential amplitude in
699 human somatosensory cortex. *Neuroscience* 101:803-806.
700 Attwell D, Iadecola C (2002) The neural basis of functional brain imaging signals. *Trends
701 Neurosci* 25:621-625.
702 Benson NC, Winawer J (2018) Bayesian analysis of retinotopic maps. *Elife* 7.
703 Benson NC, Butt OH, Brainard DH, Aguirre GK (2014) Correction of distortion in flattened
704 representations of the cortical surface allows prediction of V1-V3 functional
705 organization from anatomy. *PLoS Comput Biol* 10:e1003538.
706 Benson NC, Kupers ER, Barbot A, Carrasco M, Winawer J (2021) Cortical magnification in
707 human visual cortex parallels task performance around the visual field. *Elife* 10.
708 Benson NC, Jamison KW, Arcaro MJ, Vu AT, Glasser MF, Coalson TS, Van Essen DC,
709 Yacoub E, Ugurbil K, Winawer J, Kay K (2018) The Human Connectome Project 7
710 Tesla retinotopy dataset: Description and population receptive field analysis. *J Vis*
711 18:23.
712 Britten KH, Shadlen MN, Newsome WT, Movshon JA (1993) Responses of neurons in
713 macaque MT to stochastic motion signals. *Vis Neurosci* 10:1157-1169.

714 Chang C, Cunningham JP, Glover GH (2009) Influence of heart rate on the BOLD signal: the
715 cardiac response function. *Neuroimage* 44:857-869.

716 Cherukara MT, Stone AJ, Chappell MA, Blockley NP (2019) Model-based Bayesian
717 inference of brain oxygenation using quantitative BOLD. *Neuroimage* 202:116106.

718 Dale AM, Fischl B, Sereno MI (1999) Cortical Surface-Based Analysis: I. Segmentation and
719 Surface Reconstruction. *NeuroImage* 9:179-194.

720 Di X, Kannurpatti SS, Rypma B, Biswal BB (2013) Calibrating BOLD fMRI activations with
721 neurovascular and anatomical constraints. *Cereb Cortex* 23:255-263.

722 Dumoulin SO (2017) Layers of Neuroscience. *Neuron* 96:1205-1206.

723 Dumoulin SO, Wandell BA (2008) Population receptive field estimates in human visual
724 cortex. *Neuroimage* 39:647-660.

725 Dumoulin SO, Fracasso A, van der Zwaag W, Siero JCW, Petridou N (2018) Ultra-high field
726 MRI: Advancing systems neuroscience towards mesoscopic human brain function.
727 *Neuroimage* 168:345-357.

728 Duvernoy HM, Delon S, Vannson JL (1981) Cortical blood vessels of the human brain. *Brain*
729 *Res Bull* 7:519-579.

730 Fischl B, Dale AM (2000) Measuring the thickness of the human cerebral cortex from
731 magnetic resonance images. *Proc Natl Acad Sci U S A* 97:11050-11055.

732 Fracasso A, Petridou N, Dumoulin SO (2016a) Systematic variation of population receptive
733 field properties across cortical depth in human visual cortex. *Neuroimage* 139:427-
734 438.

735 Fracasso A, Luijten PR, Dumoulin SO, Petridou N (2018) Laminar imaging of positive and
736 negative BOLD in human visual cortex at 7T. *Neuroimage* 164:100-111.

737 Fracasso A, van Veluw SJ, Visser F, Luijten PR, Spliet W, Zwanenburg JJM, Dumoulin SO,
738 Petridou N (2016b) Lines of Baillarger in vivo and ex vivo: Myelin contrast across
739 lamina at 7T MRI and histology. *Neuroimage* 133:163-175.

740 Gagnon L, Sakadžić S, Lesage F, Pouliot P, Dale AM, Devor A, Buxton RB, Boas DA (2016)
741 Validation and optimization of hypercapnic-calibrated fMRI from oxygen-sensitive
742 two-photon microscopy. *Philos Trans R Soc Lond B Biol Sci* 371.

743 Gagnon L, Sakadžić S, Lesage F, Musacchia JJ, Lefebvre J, Fang Q, Yucel MA, Evans KC,
744 Mandeville ET, Cohen-Adad J, Polimeni JR, Yaseen MA, Lo EH, Greve DN, Buxton
745 RB, Dale AM, Devor A, Boas DA (2015a) Quantifying the microvascular origin of
746 BOLD-fMRI from first principles with two-photon microscopy and an oxygen-sensitive
747 nanoprobe. *J Neurosci* 35:3663-3675.

748 Gagnon L, Sakadžić S, Lesage F, Musacchia JJ, Lefebvre J, Fang Q, Yücel MA, Evans KC,
749 Mandeville ET, Cohen-Adad J, Polimeni JaR, Yaseen MA, Lo EH, Greve DN, Buxton
750 RB, Dale AM, Devor A, Boas DA (2015b) Quantifying the Microvascular Origin of
751 BOLD-fMRI from First Principles with Two-Photon Microscopy and an Oxygen-
752 Sensitive Nanoprobe. *The Journal of Neuroscience* 35:3663.

753 Gorno-Tempini ML, Hutton C, Josephs O, Deichmann R, Price C, Turner R (2002) Echo time
754 dependence of BOLD contrast and susceptibility artifacts. *Neuroimage* 15:136-142.

755 Guidi M, Huber L, Lampe L, Merola A, Ihle K, Moller HE (2020) Cortical laminar resting-state
756 signal fluctuations scale with the hypercapnic blood oxygenation level-dependent
757 response. *Hum Brain Mapp* 41:2014-2027.

758 He X, Yablonskiy DA (2007) Quantitative BOLD: mapping of human cerebral deoxygenated
759 blood volume and oxygen extraction fraction: default state. *Magn Reson Med* 57:115-
760 126.

761 Heeger DJ, Ress D (2002) What does fMRI tell us about neuronal activity? *Nature Reviews*
762 *Neuroscience* 3:142-151.

763 Heeger DJ, Huk AC, Geisler WS, Albrecht DG (2000) Spikes versus BOLD: what does
764 neuroimaging tell us about neuronal activity? *Nat Neurosci* 3:631-633.

765 Herman MC, Cardoso MMB, Lima B, Sirotin YB, Das A (2017) Simultaneously estimating the
766 task-related and stimulus-evoked components of hemodynamic imaging
767 measurements. *Neurophotonics* 4:031223.

768 Hilgetag CC, Barbas H (2005) Developmental mechanics of the primate cerebral cortex.
769 *Anat Embryol (Berl)* 210:411-417.

770 Himmelberg MM, Winawer J, Carrasco M (2022) Linking individual differences in human
771 primary visual cortex to contrast sensitivity around the visual field. *Nature Communications* 13:3309.

772 Himmelberg MM, Kurzawski JW, Benson NC, Pelli DG, Carrasco M, Winawer J (2021)
773 Cross-dataset reproducibility of human retinotopic maps. *Neuroimage* 244:118609.

774 Hoogenraad FG, Hofman MB, Pouwels PJ, Reichenbach JR, Rombouts SA, Haacke EM
775 (1999) Sub-millimeter fMRI at 1.5 Tesla: correlation of high resolution with low
776 resolution measurements. *J Magn Reson Imaging* 9:475-482.

777 Jamison K, Vizioli L, Zhang R, Tao J, Winawer J, Kay K (2017) A tool for automatic
778 identification of cerebral sinuses and corresponding artifacts in fMRI. *Journal of Vision* 17:295-295.

779 Jiang X, Zhang T, Zhang S, Kendrick KM, Liu T (2021) Fundamental functional differences
780 between gyri and sulci: implications for brain function, cognition, and behavior.
781 *Psychoradiology* 1:23-41.

782 Kay K, Jamison KW, Zhang RY, Ugurbil K (2020) A temporal decomposition method for
783 identifying venous effects in task-based fMRI. *Nat Methods* 17:1033-1039.

784 Kay K, Jamison KW, Vizioli L, Zhang R, Margalit E, Ugurbil K (2019) A critical assessment of
785 data quality and venous effects in sub-millimeter fMRI. *Neuroimage* 189:847-869.

786 Kay KN, Winawer J, Mezer A, Wandell BA (2013a) Compressive spatial summation in
787 human visual cortex. *J Neurophysiol* 110:481-494.

788 Kay KN, Rokem A, Winawer J, Dougherty RF, Wandell BA (2013b) GLMdenoise: a fast,
789 automated technique for denoising task-based fMRI data. *Front Neurosci* 7:247.

790 Kazan SM, Mohammadi S, Callaghan MF, Flandin G, Huber L, Leech R, Kennerley A,
791 Windischberger C, Weiskopf N (2016) Vascular autorescaling of fMRI (VasA fMRI)
792 improves sensitivity of population studies: A pilot study. *Neuroimage* 124:794-805.

793 Kim SG, Hendrich K, Hu X, Merkle H, Ugurbil K (1994) Potential pitfalls of functional MRI
794 using conventional gradient-recalled echo techniques. *NMR Biomed* 7:69-74.

795 Koopmans PJ, Barth M, Orzada S, Norris DG (2011) Multi-echo fMRI of the cortical laminae
796 in humans at 7 T. *Neuroimage* 56:1276-1285.

797 Lee JH, Durand R, Grdinaru V, Zhang F, Goshen I, Kim DS, Fenno LE, Ramakrishnan C,
798 Deisseroth K (2010) Global and local fMRI signals driven by neurons defined
799 optogenetically by type and wiring. *Nature* 465:788-792.

800 Liu T, Heeger DJ, Carrasco M (2006) Neural correlates of the visual vertical meridian
801 asymmetry. *J Vis* 6:1294-1306.

802 Liu TT, Behzadi Y, Restom K, Uludag K, Lu K, Buracas GT, Dubowitz DJ, Buxton RB (2004)
803 Caffeine alters the temporal dynamics of the visual BOLD response. *Neuroimage*
804 23:1402-1413.

805 Logothetis NK (2002) The neural basis of the blood-oxygen-level-dependent functional
806 magnetic resonance imaging signal. *Philos Trans R Soc Lond B Biol Sci* 357:1003-
807 1037.

808 Logothetis NK (2008) What we can do and what we cannot do with fMRI. *Nature* 453:869-
809 878.

810 Logothetis NK, Wandell BA (2004) Interpreting the BOLD signal. *Annu Rev Physiol* 66:735-
811 769.

812 Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A (2001) Neurophysiological
813 investigation of the basis of the fMRI signal. *Nature* 412:150-157.

814

815

816 Menon RS, Ogawa S, Tank DW, Ugurbil K (1993) Tesla gradient recalled echo
817 characteristics of photic stimulation-induced signal changes in the human primary
818 visual cortex. *Magn Reson Med* 30:380-386.

819 Mishra A, Hall CN, Howarth C, Freeman RD (2021) Key relationships between non-invasive
820 functional neuroimaging and the underlying neuronal activity. *Philosophical
821 Transactions of the Royal Society B: Biological Sciences* 376:20190622.

822 Polimeni JR, Fischl B, Greve DN, Wald LL (2010) Laminar analysis of 7T BOLD using an
823 imposed spatial activation pattern in human V1. *Neuroimage* 52:1334-1346.

824 Rees G, Friston K, Koch C (2000) A direct quantitative relationship between the functional
825 properties of human and macaque V5. *Nature Neuroscience* 3:716-723.

826 Self MW, van Kerkoerle T, Goebel R, Roelfsema PR (2019) Benchmarking laminar fMRI:
827 Neuronal spiking and synaptic activity during top-down and bottom-up processing in
828 the different layers of cortex. *Neuroimage* 197:806-817.

829 Siero JC, Hermes D, Hoogduin H, Luijten PR, Ramsey NF, Petridou N (2014) BOLD
830 matches neuronal activity at the mm scale: a combined 7T fMRI and ECoG study in
831 human sensorimotor cortex. *Neuroimage* 101:177-184.

832 Silva MA, See AP, Essayed WI, Golby AJ, Tie Y (2018a) Challenges and techniques for
833 presurgical brain mapping with functional MRI. *Neuroimage Clin* 17:794-803.

834 Silva MF, Brascamp JW, Ferreira S, Castelo-Branco M, Dumoulin SO, Harvey BM (2018b)
835 Radial asymmetries in population receptive field size and cortical magnification factor
836 in early visual cortex. *Neuroimage* 167:41-52.

837 Sirotin YB, Das A (2009) Anticipatory haemodynamic signals in sensory cortex not predicted
838 by local neuronal activity. *Nature* 457:475-479.

839 Srirangarajan T, Mortazavi L, Bortolini T, Moll J, Knutson B (2021) Multi-band fMRI
840 compromises detection of mesolimbic reward responses. *NeuroImage* 244:118617.

841 Tsvetanov KA, Henson RNA, Rowe JB (2021) Separating vascular and neuronal effects of
842 age on fMRI BOLD signals. *Philos Trans R Soc Lond B Biol Sci* 376:20190631.

843 Turner R (2002) How much cortex can a vein drain? Downstream dilution of activation-
844 related cerebral blood oxygenation changes. *Neuroimage* 16:1062-1067.

845 van der Zwaag W, Francis S, Head K, Peters A, Gowland P, Morris P, Bowtell R (2009) fMRI
846 at 1.5, 3 and 7 T: characterising BOLD signal changes. *Neuroimage* 47:1425-1434.

847 van Dijk JA, Fracasso A, Petridou N, Dumoulin SO (2020) Linear systems analysis for
848 laminar fMRI: Evaluating BOLD amplitude scaling for luminance contrast
849 manipulations. *Sci Rep* 10:5462.

850 Viessmann O, Scheffler K, Bianciardi M, Wald LL, Polimeni JR (2019) Dependence of
851 resting-state fMRI fluctuation amplitudes on cerebral cortical orientation relative to
852 the direction of B0 and anatomical axes. *Neuroimage* 196:337-350.

853 Welker W (1990) Why Does Cerebral Cortex Fissure and Fold? In: *Cerebral Cortex: Comparative Structure and Evolution of Cerebral Cortex, Part II* (Jones EG, Peters A, eds), pp 3-136. Boston, MA: Springer US.

854 Winawer J, Horiguchi H, Sayres RA, Amano K, Wandell BA (2010) Mapping hV4 and ventral
855 occipital cortex: the venous eclipse. *J Vis* 10:1.

856 Yablonskiy DA, Sukstanskii AL, He X (2013) Blood oxygenation level-dependent (BOLD)-
857 based techniques for the quantification of brain hemodynamic and metabolic
858 properties - theoretical models and experimental approaches. *NMR Biomed* 26:963-
859 986.

860 Yu X, Qian C, Chen DY, Dodd SJ, Koretsky AP (2014) Deciphering laminar-specific neural
861 inputs with line-scanning fMRI. *Nat Methods* 11:55-58.

862 Zimmermann J, Goebel R, De Martino F, van de Moortele PF, Feinberg D, Adriany G,
863 Chaimow D, Shmuel A, Ugurbil K, Yacoub E (2011) Mapping the organization of axis
864 of motion selective features in human area MT using high-field fMRI. *PLoS One*
865 6:e28716.

866

867

868