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Abstract 41 

To what extent is the size of the blood-oxygen-level-dependent (BOLD) response influenced 42 

by factors other than neural activity? In a re-analysis of three neuroimaging datasets (male 43 

and female human participants), we find large systematic inhomogeneities in the BOLD 44 

response magnitude in primary visual cortex (V1): stimulus-evoked BOLD responses, 45 

expressed in units of percent signal change, are up to 50% larger along the representation of 46 

the horizontal meridian than the vertical meridian. To assess whether this surprising effect 47 

can be interpreted as differences in local neural activity, we quantified several factors that 48 

potentially contribute to the size of the BOLD response. We find relationships between 49 

BOLD response magnitude and cortical thickness, curvature, depth and macrovasculature. 50 

These relationships are consistently found across subjects and datasets and suggest that 51 

variation in BOLD response magnitudes across cortical locations reflects, in part, differences 52 

in anatomy and vascularization. To compensate for these factors, we implement a 53 

regression-based correction method and show that after correction, BOLD responses 54 

become more homogeneous across V1. The correction reduces the horizontal/vertical 55 

difference by about half, indicating that some of the difference is likely not due to neural 56 

activity differences. We conclude that interpretation of variation in BOLD response 57 

magnitude across cortical locations should consider the influence of the potential 58 

confounding factors of thickness, curvature, depth and vascularization. 59 

Significance statement 60 

The magnitude of the BOLD signal is often used as a surrogate of neural activity, but the 61 

exact factors that contribute to its strength have not been studied on a voxel-wise level. 62 

Here, we examined several anatomical and measurement-related factors to assess their 63 

relationship with BOLD signal magnitude. We find that BOLD magnitude correlates with 64 

cortical anatomy, depth and macrovasculature. To remove the contribution of these factors, 65 

we propose a simple, data-driven correction method that can be used in any functional 66 

magnetic resonance imaging (fMRI) experiment. After accounting for the confounding 67 

factors, BOLD magnitude becomes more spatially homogenous. Our correction method 68 

improves the ability to make more accurate inferences about local neural activity from fMRI 69 

data. 70 

Introduction 71 

The blood-oxygen-level-dependent (BOLD) signal measured by fMRI is an important tool for 72 

non-invasive study of the human nervous system. However, the neural mechanisms 73 

underlying BOLD remain an active area of investigation (Herman et al., 2017). One clear 74 

conclusion is that the BOLD signal is strongly influenced by neural activity (Arthurs et al., 75 

2000; Heeger et al., 2000; Attwell and Iadecola, 2002; Heeger and Ress, 2002; Logothetis, 76 

2002; Lee et al., 2010; Siero et al., 2014). For a given location in the brain, and within a 77 

constrained paradigm (e.g., viewing different images and measuring the response that they 78 

elicit in visual cortex), the BOLD signal magnitude appears to be lawfully related to basic 79 

measures of neural activity. For example, as stimulus contrast increases, neural firing rates 80 
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and BOLD magnitude increase in proportion (Heeger et al., 2000). Similarly, increase in 81 

coherence of stimulus motion boosts BOLD magnitude and firing rates in V5/MT (Britten et 82 

al., 1993; Rees et al., 2000). When comparing different experimental paradigms or different 83 

brain locations, however, it is less clear how to interpret differences in the magnitude of the 84 

BOLD signal. For example, seeing a stimulus and expecting a stimulus can both elicit robust 85 

BOLD signals in V1, but the underlying neural activity is very different in the two paradigms 86 

(Sirotin and Das, 2009; Herman et al., 2017). It is also the case that similar BOLD signal 87 

magnitudes in two locations may be linked to very different underlying neural activity. 88 

These two limitations are reviewed by (Logothetis, 2008). 89 

 90 

There are several reasons to believe that BOLD signal magnitudes, even within a fixed 91 

experimental paradigm, are influenced by factors that are not directly related to neural 92 

activity. The BOLD response, quantified in terms of percent signal change, can be especially 93 

high in voxels containing large veins (Menon et al., 1993; Kim et al., 1994; Hoogenraad et al., 94 

1999; Kay et al., 2019) or unusually low, delayed, and/or displaced in voxels near cerebral 95 

sinuses (Winawer et al., 2010; Jamison et al., 2017). The choice of MRI sequence, field 96 

strength (van der Zwaag et al., 2009), and sequence parameters like echo time (Gorno-97 

Tempini et al., 2002) can also affect BOLD signal magnitude, and these effects may vary 98 

across the brain (Herman et al., 2017). Indeed, it has been reported that BOLD may vary 99 

across the cortex up to 40% simply due to different orientation of vasculature relative to the 100 

direction of the static magnetic field (Gagnon et al., 2015a; Gagnon et al., 2016; Viessmann 101 

et al., 2019). Furthermore, recent high-resolution fMRI studies have shown that BOLD signal 102 

magnitude clearly depends on cortical depth. It is highest in the superficial depths which are 103 

positioned near large pial veins and decreases with depth (Polimeni et al., 2010; Koopmans 104 

et al., 2011; Zimmermann et al., 2011; Yu et al., 2014; Fracasso et al., 2016a; Fracasso et al., 105 

2016b; Dumoulin, 2017; Dumoulin et al., 2018; Kay et al., 2019; Self et al., 2019; van Dijk et 106 

al., 2020).  107 

 108 

In this paper, we study variations in BOLD signal magnitude within a fixed paradigm, 109 

focusing our efforts on primary visual cortex (V1). We believe that by focusing on a single 110 

brain region in well-controlled visual paradigms, we are in the best position to derive sound 111 

interpretations of differences in BOLD signal magnitudes across the cortex. In three distinct 112 

datasets, we demonstrate large differences between the meridian locations: the BOLD 113 

magnitude in V1 is up to 50% higher along the representation of the horizontal meridian 114 

than along the representation of the vertical meridian. We then investigate the potential 115 

basis of these inhomogeneities by analyzing factors that are in principle distinct from neural 116 

activity. As non-neural factors we consider cortical curvature, cortical thickness, cortical 117 

depth, presence of macrovasculature (as indexed by bias-corrected EPI intensity), angle with 118 

respect to B0 magnetic field and radiofrequency (RF) coil bias. We motivate the selection of 119 

these factors in the Methods. We find that several of these factors are systematically 120 

related to observed variation in BOLD magnitudes across V1. To remove their influence, we 121 

propose a simple correction method and show that the correction increases BOLD signal 122 

homogeneity across V1, reducing the difference in response across the horizontal and 123 

vertical meridians by about half. 124 

 125 

 126 
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Methods 127 

Datasets 128 

 129 

We used three publicly available visual fMRI datasets: the Human Connectome Project (HCP) 130 

7T Retinotopy Dataset (Benson et al., 2018), the Natural Scenes Dataset (NSD) (Allen et al., 131 

2021), and the Temporal Decomposition Method (TDM) Dataset (Kay et al., 2020). All data 132 

were acquired on 7T MR scanners using gradient-echo pulse sequences (technical details 133 

provided in Table 1). The datasets varied in stimulus properties and experimental design. 134 

HCP stimuli consisted of rings, wedges, and bars in a retinotopic mapping experiment; NSD 135 

stimuli consisted of natural scene images; and TDM stimuli consisted of high-contrast rings 136 

presented at different eccentricities. Experimental details are shown in Figure 1. The 137 

analyses performed in this paper start with pre-processed data from each dataset.  138 

 139 

 140 
Figure 1 – Datasets used in this study. Stimulus images for each of the datasets are shown. For TDM, stimuli 141 

consisted of 6 rings varying in eccentricity. For NSD, stimuli consisted of natural scene images. For HCP, the 142 

experiment consisted of several retinotopic mapping runs that included expanding and contracting rings, 143 

rotating wedges, and moving bars filled with a colorful object-based texture. Additional acquisition details are 144 

provided in Table 1.  145 

Dataset TDM NSD HCP 

Field strength  7T 7T 7T 

TR 2200 ms 1600 ms 1000 ms 

TE 22.4 ms 22.0 ms 22.2 ms 

Flip angle 80 62 45 

Number of slices 84 84 85 

Matrix size 200 × 162 120 × 120 130 × 130 

Field of view 160 mm × 129.6 mm 216 mm × 216 mm 208 mm × 208 mm 
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Nominal spatial 

resolution 

0.8 mm 1.8 mm 1.6 mm 

Multiband factor 2 3 5 

iPAT factor 3 2 2 

Partial Fourier 6/8 7/8 7/8 

Table 1 – Details on the fMRI pulse sequence used in each of the datasets. Each column describes different 146 

dataset. 147 

Extracting BOLD magnitude 148 

 149 

From each dataset, we extracted a measure of BOLD signal magnitude at each cortical 150 

surface vertex. For TDM, we started with the pre-processed fMRI time-series data provided 151 

with the dataset and analyzed the data with a GLM. Specifically, we convolved a canonical 152 

HRF with stimulus onsets to create a regressor for each experimental condition, and then 153 

used these regressors with GLMdenoise (Kay et al., 2013b) to estimate a beta weight for 154 

each condition. We computed the maximum beta weight across all conditions for each voxel 155 

as the measure of BOLD signal magnitude. These results are defined at six different depths 156 

(equidistant from 10% to 90% of the cortical thickness) in each subject’s native surface 157 

space. (Depth assignment was achieved by a spatial interpolation of each fMRI volume at 158 

the locations of the six depth-dependent cortical surfaces; see Kay et al. (2020) for details.) 159 

For NSD, we took the ‘meanbeta’ values (1 mm data preparation, beta version 2) provided 160 

with the dataset; these values indicate the average BOLD percent signal change observed 161 

across all stimulus trials and all scan sessions. We then mapped these values to the 3 depth 162 

surfaces provided in NSD (positioned at 25%, 50%, and 75% of the cortical thickness). The 163 

HCP dataset was previously analyzed (Benson et al., 2018) with a population receptive field 164 

(pRF) model (Dumoulin and Wandell, 2008) implemented in analyzePRF (Kay et al., 2013a). 165 

The model includes a gain parameter that describes the amplitude of the BOLD response of 166 

a given voxel (or vertex) to the object-based texture (covering the entire pRF) for a single 167 

repetition time (TR = 1 s). We quantified BOLD in terms of percent signal change (%BOLD) by 168 

dividing the gain parameter by mean signal intensity and multiplying by 100. The results are 169 

prepared in FreeSurfer’s fsaverage space. 170 

 171 

Visual field mapping 172 

 173 

We used retinotopic mapping to divide the primary visual cortex into a set of regions. For 174 

HCP, we used polar angle and eccentricity estimates available from the data release. For the 175 

TDM and NSD datasets, we mapped Benson’s polar angle and eccentricity atlas using 176 

neuropythy software (Benson and Winawer, 2018). We use the following convention for all 177 

3 datasets: the upper vertical meridian corresponds to 0 deg, the horizontal meridian 178 

corresponds to 90 deg, and the lower vertical meridian corresponds to 180 deg. Note that 179 

the polar angle estimates are rescaled for the correlation and linear regression analysis (see 180 

next section). We used Benson’s definition of the extent of visual areas V1, V2, and V3 for all 181 

3 datasets (Benson et al., 2014). 182 

 183 

 184 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 5, 2022. ; https://doi.org/10.1101/2021.12.26.474185doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.26.474185
http://creativecommons.org/licenses/by-nd/4.0/


 6

Quantification of non-neural factors 185 

 186 

In the TDM and NSD datasets, we quantified several factors that might be related to 187 

variation in the magnitude of the BOLD signal across cortical locations. We focused on 188 

factors that can be easily extracted from either functional or anatomical data that are 189 

typically acquired in an fMRI experiment. For the purposes of the present study, we 190 

consider only within-subject factors rather than across-subject factors, with the goal of 191 

removing non-neural influences on the variation of BOLD magnitudes across voxels. We 192 

note that there are several other factors that influence variation of overall BOLD magnitude 193 

across subjects like caffeine use (Liu et al., 2004), vascular age (Tsvetanov et al., 2021), and 194 

heart rate (Chang et al., 2009). Below, we describe each of the within-subject factors that 195 

we considered in the present study. 196 

 197 

Curvature was obtained from FreeSurfer outputs (Dale et al., 1999; Fischl and Dale, 2000), 198 

and refers to the geometry of the folding pattern of the cortical surface. Negative values 199 

correspond to gyri while positive values correspond to sulci. Curvature is quantified as 1/r, 200 

where r is the radius of an inscribed circle measured in mm.  201 

 202 

Thickness was also obtained from FreeSurfer outputs. It is measured in mm and corresponds 203 

to the distance between the outermost (close to cerebrospinal fluid) and innermost (close 204 

to white matter) boundaries of gray matter. Curvature and thickness are well known to vary 205 

across visual cortex. Their relationship with %BOLD remains unknown and has not been 206 

investigated in detail, especially on a voxel-by-voxel basis. We include these factors in our 207 

analysis to assess whether these anatomical factors have systematic relationships with 208 

BOLD magnitude.   209 

 210 

Mean bias-corrected EPI was calculated as the mean signal intensity in the fMRI data divided 211 

by the estimated RF coil bias (details below). The units range from approximately 0 to 2, and 212 

indicate percentages (e.g., 0.5 means 50% of the strength of typical signal intensities). Mean 213 

bias-corrected EPI values can be viewed as high spatial frequency changes in signal intensity 214 

across space. We include this factor in the analysis as mean bias-corrected EPI was 215 

previously found to be a good predictor for venous effects (Kay et al., 2019). Proximity to 216 

veins often results in increased BOLD magnitude. 217 

 218 

Depth was estimated by generating 6 cortical surfaces (for TDM) or 3 cortical surfaces (for 219 

NSD) equally spaced between 10% and 90% (for TDM) or 25% and 75% (for NSD) of the 220 

distance from the pial surface to the boundary between gray and white matter. These 221 

surfaces are numbered from 1 to n, where 1 is outermost and n is innermost. We include 222 

depth as a factor as it is well known that BOLD magnitude is highest in superficial depths 223 

and decreases towards the white matter (Polimeni et al., 2010). 224 

 225 

Angle with respect to B0 was calculated by considering the angle (theta) between the pial 226 

surface normal and the direction of the B0 static magnetic field as estimated from NIFTI 227 

header information. Angle was quantified in degrees and was normalized as abs(theta–90) 228 

such that a final value of 0 deg indicates that the cortical surface is parallel to the magnetic 229 

field and a final value of 90 deg indicates that the cortical surface is perpendicular to the 230 
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magnetic field. We include angle with respect to B0 in the analysis because previous reports 231 

showed that the BOLD magnitude varies with B0 angle (Gagnon et al., 2015b).  232 

 233 

RF coil bias was taken to be the result of fitting a 3D polynomial to the mean signal intensity 234 

in the fMRI data. The values are in raw scanner units and represent low spatial frequency 235 

changes in the intensity of voxels. This estimation method has been used previously (Kay et 236 

al., 2019). We include RF coil bias as a control in our analysis. In theory, there should not be 237 

a systematic relationship between RF coil bias and BOLD magnitude, as we express BOLD 238 

magnitudes at each voxel in terms of percent signal change (as is typically done in the field), 239 

and percent signal change is sensitive to an overall scale factor on the signal. 240 

 241 

In sum, all of these factors are known to vary across the cortical surface of V1. The exact 242 

biophysical mechanisms that might explain their impact on %BOLD are in some cases 243 

unknown (e.g., curvature). In other cases, we expect that some factors should not bear 244 

systematic relationships to %BOLD (e.g., RF coil bias). In general, the work here is intended 245 

to be a first step towards understanding the influence of potential non-neural contributions 246 

to variations in %BOLD across individual voxels within a given subject. 247 

 248 

Quantification of neural factors 249 

 250 

Polar angle was obtained from Benson’s atlas (Benson et al., 2014), representing the visual 251 

field angle to which each cortical location is optimally tuned. For the purposes of our 252 

analyses, we normalize polar angle such that 0 deg corresponds to the horizontal meridian 253 

and 90 deg corresponds to the upper and lower vertical meridians. We include polar angle 254 

as a positive control: we expect that polar angle should bear a systematic relationship with 255 

BOLD magnitude, as this is the original observation that motivated the present study. 256 

 257 

Definition of regions of interest 258 

 259 

Using the visual field mapping results, we defined regions of interest (ROIs) corresponding 260 

to the representation of the horizontal and vertical meridians within V1. The ROIs were 261 

defined by limiting the eccentricity to the maximum stimulus eccentricity used in each 262 

dataset and limiting the angle to a specific range (e.g., to create a V1 ROI for the upper 263 

vertical meridian with a width of 20 deg, we created a mask where polar angle estimates 264 

were higher than 0 and lower than 20). 265 

 266 

Modelling variation in BOLD signal magnitude 267 

 268 

To account for non-neural contribution to %BOLD, we used a multiple regression model. The 269 

modeled data (Y) consisted of the %BOLD value observed at each surface vertex in visual 270 

areas V1–V3. Although this study focuses on BOLD homogeneity in V1, we include %BOLD in 271 

V1–V3. This is because we are attempting to establish relationships that might generalize 272 

across different cortical regions. Furthermore, if we were to include only vertices in V1, we 273 

would be at high risk of removing genuine neural activity differences (e.g. those that may 274 

exist between the horizontal and vertical meridians) that correlate with the non-neural 275 

factors. 276 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 5, 2022. ; https://doi.org/10.1101/2021.12.26.474185doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.26.474185
http://creativecommons.org/licenses/by-nd/4.0/


 8

 277 

The variables used to model the data included thickness, curvature, depth and mean bias-278 

corrected EPI intensity. (Only these four factors showed evidence of being substantially 279 

related to BOLD magnitude; see Results.) The variables were standardized (z-scored) and, 280 

together with a constant term, were included as predictors in the design matrix (X). 281 

Ordinary least-squares estimates for beta weights were obtained in the following linear 282 

model: 283 

 284 

� � �β � �   (Eq. 1) 285 

 286 

where � is the %BOLD magnitude at each vertex, � is the 5-column design matrix, � is a set 287 

of beta weights (5 per vertex), and n is a set of residuals. 288 

 289 

Major cortical sulci 290 

 291 

In several figures we show outlines of major cortical sulci. These include the calcarine sulcus 292 

(CALC), parieto-occipital sulcus (POS), intraparietal sulcus (IPS), occipitotemporal sulcus 293 

(OTS), and superior temporal sulcus (STS). These sulci were manually labelled on the 294 

fsaverage surface and then mapped to each individual’s native surface.  295 

 296 

Data and code availability 297 

 298 

The datasets used in this paper are freely available online: NSD 299 

(http://naturalscenesdataset.org), HCP (https://osf.io/bw9ec/), and TDM 300 

(https://osf.io/j2wsc/). Code that reproduces the main figures in this paper is available at 301 

https://github.com/jk619/meridianbias/. Associated data files are available at 302 

https://osf.io/2nc4x/. 303 

Results 304 

Stronger BOLD responses along the V1 horizontal meridian 305 

  306 

We examined BOLD response magnitudes in three freely available datasets: the Natural 307 

Scenes Dataset (NSD; Allen et al., 2021), the data used for the Temporal Decomposition 308 

Method (TDM; Kay et al., 2020), and the Human Connectome Project 7T Retinotopy Dataset 309 

(HCP; Benson et al., 2018). Each dataset contains BOLD responses to different types of visual 310 

stimulation (see Methods). We defined one region of interest (ROI) for the horizontal 311 

meridian (HM) and one for the vertical meridian (VM) (Figure 2A–B). These ROIs represent a 312 

wedge-shaped region in the visual field centered at the horizontal meridian with a width of 313 

40 deg (horizontal) and two wedges abutting the vertical meridian each with a width of 20 314 

deg (vertical). 315 

 316 

In each of the three datasets, we compared BOLD magnitudes expressed in percent signal 317 

change (%BOLD) observed for the VM with BOLD magnitudes observed for the HM (Figure 318 

2C–E). In each dataset, we find higher %BOLD in the HM ROIs compared to the VM ROIs. We 319 
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summarize this difference with an asymmetry ratio: (HM–VM)/mean(HM,VM). All datasets 320 

show strong asymmetry, with an asymmetry ratio of ~30%. Positive values for the 321 

asymmetry ratio indicate greater response for the horizontal meridian. (Note that if the 322 

asymmetry is expressed as a percentage of the smaller vertical meridian response, the 323 

increase reflected in the larger horizontal meridian response is up to ~50%.)   324 

 325 

 326 
 327 

Figure 2 – BOLD magnitude is higher at the horizontal meridian in V1. A) Polar angle map of group-average 328 

HCP subject (999999) with V1 boundary outlined in dotted black lines. B) Horizontal and vertical regions of 329 

interest (ROIs) are indicated in gray and magenta, respectively. White text indicates major brain sulci (see 330 

Methods). C-E) Mean BOLD magnitude for horizontal and vertical ROIs in the three datasets. Error bars 331 

indicate standard error across subjects. 332 

One possibility is that the horizontal and vertical V1 BOLD responses are in fact similar, but 333 

the vertical ROIs appear to have lower signal due to mixing with signal from V2. V2 and V1 334 

border along the vertical meridian representation, and blurring might occur either in 335 

acquisition or in pre-processing and analysis. To further our understanding of the V1 336 

response asymmetries, we re-computed asymmetry ratios using smaller wedges at many 337 

locations (Figure 3A). Note that, because we use smaller wedges, the asymmetry at the 338 

cardinal meridians is different from Figure 2. While the asymmetry is strongest at the 339 

cardinal meridians, some horizontal/vertical asymmetry is found at least 30 deg away from 340 

the meridians in all three datasets (Figure 3B). This argues against the explanation that the 341 

asymmetry is caused by spillover from V2.  342 

 343 

 344 
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 345 
Figure 3 – BOLD asymmetries generalize to off-cardinal locations. To further understand V1 BOLD asymmetry, 346 

we manipulated the location of the wedge ROIs in 5-deg increments. A) The upper row shows the visual field 347 

location of wedge ROIs and the lower row shows the corresponding cortical locations (flattened left 348 

hemisphere). For clarity, we show only every other set of ROIs. B) Asymmetry ratio as a function of angular 349 

distance from the cardinal meridians. Error bars indicate standard error across subjects. 350 

HM/VM asymmetry persists at inner cortical depths 351 

  352 

The BOLD signal is strongly influenced by properties of the brain’s vasculature. Uneven 353 

venous contributions across the brain can cause variation in BOLD magnitude (Menon et al., 354 

1993; Kim et al., 1994; Hoogenraad et al., 1999; Kay et al., 2019). One possibility is that the 355 

meridian asymmetries we observe arise from non-uniformities in the vascular network. To 356 

investigate this possibility, we took advantage of the sub-millimeter resolution of the TDM 357 

dataset and examined HM/VM asymmetry as a function of depth. Because macroscopic 358 

venous effects are larger in the superficial cortex due to large pial veins (Duvernoy et al., 359 

1981; Turner, 2002; Polimeni et al., 2010; Kay et al., 2019), by sampling BOLD responses 360 

from deeper depths, we minimize contributions from pial veins. We find that the HM/VM 361 

asymmetry is larger at the superficial depths, suggesting that part of the asymmetry may be 362 

due to differential properties in macroscopic vasculature (Figure 4). This depth effect is 363 

systematic: every subject shows higher asymmetry at the superficial depth than the middle 364 

depth. Nonetheless, there remains a substantial horizontal/vertical asymmetry at all depths 365 

(Figure 4), suggesting that macroscopic vessels near the pial surface are not the entire 366 

explanation. At the innermost depth sampled, which is least influenced by pial vessels, the 367 
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HM/VM asymmetry is 26% (average across subjects) and is positive in each of the 5 subjects. 368 

The middle depths appear to have the least asymmetry. This could be due to a difference in 369 

neural responses at intermediate depths, which generally correspond to input-related 370 

cortical layers.  371 

 372 
  373 

Figure 4 – BOLD asymmetry in V1 persists at inner depths. We exploit the high-resolution TDM dataset to 374 

discriminate V1 BOLD responses across depth and estimate response asymmetries as a function of depth 375 

(asymmetry is calculated in the same way as in Figure 3). The presence of asymmetry at the innermost depth 376 

suggests that response asymmetries exist even with minimal contribution of large pial veins.  377 

Assessing and modeling non-neural contributions to BOLD signal magnitude 378 

  379 

In addition to vascular effects, other factors unrelated to neural activity evoked by the 380 

experimental manipulation may influence variation in %BOLD across the cortical surface. 381 

These additional factors are often neglected in fMRI analysis pipelines. Although some of 382 

the factors are known to vary across the cortex, their influence on the BOLD signal is poorly 383 

understood. Here, we attempt to understand how these factors may be related to BOLD 384 

magnitude variations. To the best of our knowledge, we are unaware of any previous study 385 

that has examined this issue in detail, especially at the level of individual voxels (or vertices) 386 

within individual subjects.  387 

 388 

We first identified a list of possible confounding factors (beyond cortical depth, which we 389 

have already introduced) based on consideration of basic anatomical properties of the brain 390 

and the nature of fMRI measurement. These factors are cortical curvature, cortical 391 

thickness, RF coil bias, mean bias-corrected EPI signal intensity, and angle with respect to B0. 392 

Each of these factors can be interpreted as spatial maps, with a value at each vertex on the 393 

cortical surface mesh. The five maps can be obtained from standard anatomical scans (T1-394 

weighted) or from the fMRI measurements themselves without additional MRI experiments 395 
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(see Methods for details). Example surface visualizations of these maps together with 396 

%BOLD are shown in Figure 5. We hypothesize that inhomogeneities in some of these maps 397 

might explain some of the observed inhomogeneity in %BOLD across V1. 398 

 399 
 400 

Figure 5 – Variation in anatomical and acquisition factors across cortex. Each sphere shows data mapped on 401 

the left hemisphere for subject S1 in the NSD dataset. Below each surface map is a histogram of the plotted 402 

values. White outlines indicate major cortical sulci. %BOLD represents the average response to the natural 403 

scene stimuli used in the NSD dataset. Some of the spatial variability in %BOLD might be due to variability in 404 

the depicted non-neural factors. 405 

 406 

To understand the potential relationships amongst these five identified factors and %BOLD, 407 

we first performed voxel-wise correlation analyses. For these analyses, we used the TDM 408 

dataset, as its high spatial resolution facilitates the identification of vascular effects (Kay et 409 
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al., 2019). We examined data from V1–V3 where neural activity magnitudes can be 410 

expected to be relatively homogeneous (although biases were reported before;  Liu et al., 411 

2006) given the simple contrast patterns used. In Figure 6A, we show pairwise correlations 412 

across these five quantities, as well as retinotopic polar angle preference (rescaled between 413 

0 and 90; see Methods) and cortical depth. We find that %BOLD correlates substantially 414 

with four factors: curvature (r = 0.26), thickness (r = –0.17), mean bias-corrected EPI 415 

intensity (r = –0.25), and depth (r = –0.27). We do not find a strong correlation between 416 

%BOLD and polar angle. Although results from Figure 2C–E, Figure 3C and Figure 4 suggest a 417 

strong negative correlation, the previous analysis included data only from V1. Here we 418 

analyze vertices from V1-V3 where this relationship becomes weaker (r = –0.05). Overall, we 419 

can summarize as follows: %BOLD extracted from V1–V3 tends to be higher at locations that 420 

correspond to sulci, in thinner parts of the cortex, in voxels with lower mean bias-corrected 421 

EPI intensities, and at more superficial depths.  422 

 423 

Examination of correlations amongst factors yields additional insights (Figure 6A). The 424 

strongest correlation that we find is between curvature and thickness (r = –0.28), indicating 425 

that sulci tend to be thin. Curvature is correlated with mean bias-corrected EPI (r = 0.16) and 426 

with polar angle (r = –0.19), and thickness is correlated with polar angle (r = 0.15). Our 427 

interpretation of these effects is that venous effects tend be stronger in gyri (consistent with 428 

previous findings in Kay et al., 2019), and that the correlations related to polar angle simply 429 

reflect the tendency for horizontal meridian representations to fall on sulci (e.g. the 430 

calcarine sulcus). Overall, these complex relationships suggest that making sense of non-431 

neural influences on %BOLD requires a broad perspective that considers multiple factors. 432 

 433 

 434 
 435 

Figure 6 – Modeling variations in BOLD signal magnitude. A) Correlation (Pearson’s r) between a variety of 436 

factors and %BOLD extracted from V1–V3 from the TDM dataset. Main plot shows results from data 437 

concatenated across all subjects, while inset plots show results from individual-subject data. P-values indicate 438 

significance of one sample t-test across subjects; *p < 0.05; **p < 0.01; ***p < 0.001. B) Regression model for 439 
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%BOLD. Based on the results of panel A, we selected curvature, thickness, depth and mean bias-corrected EPI 440 

as the main non-neural factors that confound %BOLD. These four factors were then used in a multiple linear 441 

regression model to predict %BOLD (top). The amount of variance explained by the model is shown in the 442 

inset. 443 

Correcting BOLD signal magnitude for non-neural factors 444 

 445 

We now explore whether we can develop a statistical model to compensate for the 446 

influence of non-neural factors on %BOLD. We operate under the assumption that any 447 

observed correlation between the factors and %BOLD is incidental and does not reflect 448 

genuine neural activity variation. Our model is a multiple regression model (Figure 6B, top) 449 

that uses the main factors of curvature, thickness, depth and mean bias-corrected EPI 450 

intensity as continuous variables and attempts to determine a weighted sum of these 451 

factors that optimally accounts for variations in %BOLD across cortical locations (see 452 

Methods for details).  453 

 454 

Fitting the model, we find a strong positive contribution of curvature and negative 455 

contributions of thickness, mean bias-corrected EPI intensity and depth (Figure 6B, bottom), 456 

consistent with the earlier voxel-wise correlation analyses. Estimated beta weights are fairly 457 

consistent across subjects, and the model on average across subjects explains 26% of the 458 

variance in %BOLD. A multiple regression model using all 6 factors (adding RF coil bias and 459 

angle with respect to B0) resulted in only minimally larger explained variance, 27% vs. 26%, 460 

consistent with the earlier correlation analyses indicating that RF coil bias and angle with 461 

respect to B0 bear little or no relationship with %BOLD. 462 

 463 

To better understand the relationship between the identified non-neural factors and 464 

%BOLD, we construct a 2D histogram relating the model fit (BOLD prediction based on non-465 

neural factors obtained by multiplying the design matrix and estimated beta weights) and 466 

%BOLD (Figure 7A). This reveals a clear nonlinear relationship. To accommodate this 467 

nonlinearity, we fit a nonlinear function relating the linear model fit and %BOLD (blue line in 468 

Figure 7A). Finally, we remove the contribution of non-neural factors by dividing %BOLD 469 

observed at each cortical location by the fit of the nonlinear model. We divide %BOLD by 470 

the model fit rather than subtracting the model fit, as we believe that the influence of non-471 

neural factors on %BOLD might impose a type of ‘gain’ field on fMRI responses observed in a 472 

given experiment. For example, if there is an excess of macrovasculature in a voxel, we 473 

would expect the overall amplitude of the BOLD response from the voxel to be scaled. Note 474 

that our method of rescaling BOLD magnitudes does not change the pattern of responses 475 

across different experimental conditions within a voxel (while a subtractive approach 476 

would). For example, if the response to condition A is 25% higher than the response to 477 

condition B, this will continue to be the case after rescaling.  478 

 479 
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 480 
Figure 7 – Correction of V1 BOLD inhomogeneity. A) Removal of non-neural factors. First, linear combinations 481 

of non-neural factors are used to predict %BOLD within V1–V3 using the TDM dataset. The model is fit on data 482 

concatenated from all 5 TDM subjects. The model is augmented with a nonlinear power-law function (blue 483 

line), which is controlled by a gain parameter (p(1)), an exponent parameter (p(2)), and a constant term (p(3)). 484 

B) Each voxel’s BOLD responses are divided by the model fit, yielding the corrected %BOLD. C) BOLD signal 485 

magnitude within V1 before and after the correction (TDM dataset, subject S3, most superficial depth). 486 

Asterisk indicates the fovea and dashed lines indicate the boundary between V1 and V2. After correction, 487 

some vertices with very high BOLD are eliminated (see white arrows). Within each plot, the color range 488 

extends from 0 to the maximum. Each map has an associated histogram that shows all values extracted from 489 

V1.  490 

The result of the proposed correction procedure is shown in Figure 7B. We see that after 491 

the correction procedure, the distribution of BOLD response becomes flatter, indicating the 492 

efficacy of the procedure. (Note that what is important is the shape of the distribution of 493 

the values, not necessarily the magnitudes of the values.) Increased homogeneity of BOLD 494 

magnitude is also visible on the cortical surface (Figure 7C). 495 

 496 

To understand whether our method generalizes across datasets, we used the same 497 

procedure and performed correction on the NSD dataset. We summarize the effect of the 498 

correction by showing the correlations between %BOLD and non-neural factors before and 499 

after the correction (Figure 8A). The pattern of results before correction (Figure 8A, top) is 500 

consistent across the TDM and NSD datasets, except for the reduced correlation with bias-501 
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corrected EPI in NSD (see Discussion). Importantly, correlations after the correction are 502 

substantially reduced, indicating the efficacy of the method. 503 

To check whether accounting for non-neural factors increases the homogeneity of BOLD, we 504 

quantified the variation of BOLD magnitudes across V1 before and after the correction. 505 

Variation was quantified using the semi-interquartile range divided by the median (SIR). 506 

Intuitively, if the spread of BOLD magnitudes is small (i.e., %BOLD is relatively 507 

homogeneous), SIR will be low, whereas if the spread of BOLD magnitudes is large (i.e., 508 

%BOLD is relatively homogeneous), SIR will be high. We find that across subjects, the SIR 509 

decreases from 0.42 before correction to 0.34 after correction for TDM and decreases from 510 

0.48 to 0.42 for NSD.  511 

 512 

We now return to the experimental effect that motivated this study, namely, BOLD 513 

response asymmetries across the horizontal and vertical meridians in V1. We quantify the 514 

asymmetry before and after correction (Figure 8B). We find that after accounting for the 515 

non-neural factors, the asymmetry drops for TDM from 49.2% to 25.1% and from 40% to 516 

18% for NSD. We thus suggest that some of the observed differences in BOLD response 517 

magnitudes are due to non-neural factors. 518 

 519 

 520 

 521 
 522 

Figure 8 – The effect of BOLD inhomogeneity correction. A) Voxel-wise correlation between the various 523 

factors and %BOLD before and after correction. After correction, correlations are reduced, indicating that the 524 

corrected data are less influenced by the non-neural factors. B) Dependence of %BOLD on polar angle in V1 525 

before and after the correction for TDM dataset and NSD datasets. The asymmetry drops by about half. 526 

In the results demonstrated in this paper, the correction method reduces inhomogeneities 527 

between the horizontal and vertical meridians. But more generally, it is possible that in 528 

other datasets, the method may reveal activity differences that are masked by non-neural 529 

factors. For example, voxel A might have a lower neural response than voxel B, but voxel A 530 

might reside close to a large vein which would tend to increase %BOLD. In conventional 531 

fMRI analyses, both voxels might show similar BOLD magnitude, even though the underlying 532 
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neural activity is different. The methods proposed in this paper can be viewed as an attempt 533 

to obtain better estimates of underlying neural activity. 534 

Discussion 535 

In this paper, we used three publicly available datasets to assess the degree of homogeneity 536 

of BOLD signal magnitude in primary visual cortex. We found that stimulus-evoked BOLD 537 

responses, expressed as percent signal change, are up to 50% stronger along the horizontal 538 

meridian than the vertical meridian. To investigate whether these magnitude differences 539 

can be attributed to differences in local neural activity, we systematically evaluated the 540 

potential contribution of several non-neural factors to the observed effect. We found that 541 

BOLD signal magnitude correlates with curvature, thickness, depth and macrovasculature 542 

(as indexed by bias-corrected EPI intensities). Using a regression-based correction 543 

procedure, we were able to increase the homogeneity of BOLD signal magnitude and found 544 

that the meridian differences were reduced by half.  545 

 546 

Spatial variations in BOLD magnitude 547 

 548 

This study tackles the issue of the neural basis of variation in BOLD signal magnitude. 549 

Specifically, we address variation in BOLD across cortical locations for a fixed experimental 550 

manipulation, as opposed to variation in BOLD across experimental manipulations for a 551 

fixed cortical location. The latter has been heavily studied (Heeger et al., 2000; Logothetis et 552 

al., 2001; Heeger and Ress, 2002; Logothetis and Wandell, 2004; Mishra et al., 2021), 553 

whereas the former has not yet been systematically studied to the best of our knowledge. If 554 

there are indeed non-neural factors that influence BOLD signal variation, taking this into 555 

account is critical when interpreting differences in fMRI responses across brain regions.  556 

 557 

We acknowledge that a challenge in understanding the neural basis of the BOLD signal is 558 

that directly comparable ground-truth measurements of neural activity are typically not 559 

available. Moreover, the BOLD signal only indirectly measures the neural response, and its 560 

magnitude likely depends on many aspects of neural activity. Increased BOLD signal might 561 

be a consequence of more neurons firing, more spikes per neuron, changes in neural 562 

correlation, changes in subthreshold activity, and/or changes in what kinds of neurons are 563 

most active. Our approach currently does not try to distinguish amongst these causes. 564 

 565 

In our analyses, we relied on the working assumption that the experimental paradigms of 566 

the three datasets (combined with suitable averaging and analysis procedures) are expected 567 

to generate relatively homogeneous patterns of neural activity in early visual cortex. Of 568 

course, this may not be exactly the case.  569 

 570 

Non-neural factors that affect BOLD magnitude 571 

 572 

Mean bias-corrected EPI. Mean bias-corrected EPI is a convenient marker for macrovascular 573 

contributions to the fMRI signal (Kay et al., 2019). Vertices contaminated by venous effects 574 

show lower intensity values in mean EPI images and often result in high %BOLD magnitude. 575 
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In the TDM dataset, we found this to be the case and were able to remove, to some extent, 576 

venous effects using the described correction method. We did not, however, find a strong 577 

relationship between mean bias-corrected EPI and %BOLD magnitude in the NSD dataset. 578 

We suggest that the reason for this apparent discrepancy is that effective discovery of 579 

venous contributions requires high-resolution data where voxel size approaches the scale of 580 

1 mm or better. Another important issue to consider is the cerebral sinuses. The sinuses are 581 

the largest veins that drain blood from the brain and they exert major effects at certain 582 

specific cortical locations. Complicating matters is the fact that the sinuses also produce low 583 

EPI intensity, but instead of boosting BOLD magnitude they seem to reduce it, resulting in 584 

low %BOLD (Winawer et al., 2010; Jamison et al., 2017). In the present study, we do not 585 

attempt to isolate or analyze the effects of the cerebral sinuses, though preliminary analyses 586 

indicate that the sinuses do not provide a simple explanation of the horizontal/vertical 587 

asymmetry (data not shown). 588 

 589 

Cortical anatomy. We find that curvature and thickness correlate with BOLD signal 590 

magnitude (see Figure 6A). It is known that many anatomical properties vary with thickness 591 

and with curvature (Jiang et al., 2021): (i) total neuron count is higher in gyri than it is in 592 

sulci (Hilgetag and Barbas, 2005), (ii) gyri tend to be thicker than sulci (Welker, 1990; 593 

Hilgetag and Barbas, 2005), (iii) venous effects (resulting in higher BOLD signal amplitude) 594 

are more prominent in gyri than they are in sulci (Kay et al., 2019); and (iv) there may even 595 

be intrinsic causal relationships between curvature and thickness during anatomical 596 

development (Hilgetag and Barbas, 2005). However, the exact anatomical and biophysical 597 

mechanisms that might link curvature and thickness to BOLD signal magnitudes are largely 598 

unknown, to our knowledge. This is an important issue for future research. Here, we 599 

operate under the working assumption that correlations between the BOLD signal and 600 

curvature or thickness reflect incidental factors unrelated to local neural activity. We 601 

therefore assume that a correction which removes their influence from the BOLD signal is 602 

desirable. 603 

 604 

Orientation of pial veins. It has been reported that regions where the cortical surface is 605 

oriented perpendicular to the main magnetic field produce lower BOLD signal than regions 606 

where the surface is oriented parallel (Gagnon et al., 2015a; Fracasso et al., 2018). The 607 

proposed explanation is that this effect is caused by the orientation of pial veins, which lie 608 

parallel to the cortical surface. Our analyses did not replicate this result and indicated little 609 

relationship between BOLD magnitude and angle with respect to B0 (see Figure 6A). One 610 

possible explanation could be related to our pre-processing approach, in which fMRI signals 611 

are sampled specifically in the gray matter and away from the pial veins that reside on top 612 

of the gray matter. This may have dampened effects related to the pial veins. Nonetheless, 613 

the prior literature would have predicted some B0 effect even at inner cortical depths 614 

(Viessmann et al., 2019). Alternatively, it is possible that the orientation effects depend in 615 

some way on pulse sequence parameters, or the specific brain area being studied. A 616 

detailed examination of different datasets would be necessary to resolve these 617 

discrepancies.  618 

 619 

RF coil effects. Due to cortical folding, gyri tend to be closer to the RF coil than sulci. 620 

Locations that are further from the coil might have lower mean signal intensities and 621 
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therefore lower SNR (Srirangarajan et al., 2021), but this should not affect BOLD magnitudes 622 

expressed in terms of percent signal change. We are not aware of any mechanism that 623 

would alter the percent signal change in brain locations that are further away from the RF 624 

coil. Indeed, we did not find any relationship between RF coil bias and BOLD magnitude (see 625 

Figure 6A). 626 

 627 

 628 

Correction for the impact of non-neural factors 629 

 630 

Our results show that voxel-wise %BOLD is likely contaminated by several non-neural 631 

factors.  632 

To account for these factors, we developed a regression-based correction method. The goal 633 

of this method was to introduce a simple, data-driven approach that can be applied 634 

irrespectively of the specific experiment or brain region that is under consideration. The 635 

underlying premise of the method is that by removing the contribution of non-neural 636 

factors, the resulting measures would constitute a better representation of the underlying 637 

neural activity. After application of the method, we found that %BOLD becomes more 638 

homogenous and correlations between %BOLD and non-neural factors become significantly 639 

reduced. Thus, our results indicate that some variation in %BOLD that might be interpreted 640 

as change in neural activity likely reflects the variation of non-neural factors.  641 

 642 

We believe the results presented in this paper constitute a first step towards developing a 643 

cogent strategy for compensating for non-neural biases in BOLD signal magnitudes. 644 

Suppressing the influence of non-neural factors has potential applications in pre-surgical 645 

planning, where fMRI is routinely used to map motor, speech, and visual areas. The value of 646 

fMRI for presurgical planning is currently limited by the accuracy of localizing neural 647 

responses (Silva et al., 2018a). BOLD-derived maps that are a better representation of 648 

neural activity could lead to more accurate neurosurgical interventions. 649 

 650 

It remains to be seen whether the remaining asymmetry across the horizontal and vertical 651 

meridians in V1 is a result of genuine neural activity differences, or an effect of other non-652 

neural factors that we were unable to quantify in the present study (which might require 653 

additional MRI acquisition measures and/or higher resolution data). It is conceivable that 654 

genuine neural activity differences may exist across the horizontal and vertical meridian 655 

locations in V1. For example, there is greater cortical magnification along the horizontal 656 

than vertical meridian (Silva et al., 2018b; Benson et al., 2021; Himmelberg et al., 2021; 657 

Himmelberg et al., 2022), and it is plausible that this might be accompanied by differences 658 

in the strength of neural responses.  659 

 660 

Although our method is aimed towards more meaningful quantification of the BOLD signal, 661 

it differs conceptually from quantitative BOLD (qBOLD) approaches (He and Yablonskiy, 662 

2007; Yablonskiy et al., 2013; Cherukara et al., 2019). On the one hand, qBOLD attempts to 663 

model the BOLD signal in terms of its underlying metabolic and hemodynamic components 664 

(e.g., blood flow, blood volume, oxygenation extraction), and this in principle may yield 665 

measures more closely related to neural activity. On the other hand, the approach we have 666 

taken in this paper is to apply analytic methods to BOLD data that consider inhomogeneities 667 
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that may exist across the brain, with the goal of better estimating local neural activity. Note 668 

that the two approaches are not mutually exclusive: one might imagine assessing whether 669 

the magnitude of qBOLD measures co-vary with non-neural factors across the brain. 670 

 671 

There are other methods that can be used to suppress the contribution of non-neural 672 

factors to BOLD signal magnitudes. By identifying early and late components of evoked 673 

hemodynamic responses, a temporal decomposition method can be used to estimate BOLD 674 

response components more closely linked to the microvasculature, which presumably more 675 

closely reflect local neural activity (Kay et al., 2020). Another analysis method focuses on 676 

BOLD fluctuations where estimates of slow oscillations (< 0.1 Hz) are used to suppress 677 

vascular-related effects (Kazan et al., 2016). Similarly, some methods use the amplitude of 678 

fluctuations in resting-state data to rescale the BOLD signal (Di et al., 2013; Guidi et al., 679 

2020). Finally, acquisition methods, such as spin-echo pulse sequences, can be used to 680 

suppress unwanted venous effects. Note that all these methods concern effects of the 681 

macrovasculature, but systematic biases in BOLD signal magnitudes may in theory persist 682 

even if BOLD responses were fully restricted to the microvasculature. Further investigation 683 

is necessary to resolve these possibilities.  684 

 685 
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