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21 Abstract

42  To what extent is the size of the blood-oxygen-level-dependent (BOLD) response influenced
43 by factors other than neural activity? In a re-analysis of three neuroimaging datasets (male
44  and female human participants), we find large systematic inhomogeneities in the BOLD
45  response magnitude in primary visual cortex (V1): stimulus-evoked BOLD responses,
46  expressed in units of percent signal change, are up to 50% larger along the representation of
47  the horizontal meridian than the vertical meridian. To assess whether this surprising effect
48 can be interpreted as differences in local neural activity, we quantified several factors that
49  potentially contribute to the size of the BOLD response. We find relationships between
50 BOLD response magnitude and cortical thickness, curvature, depth and macrovasculature.
51 These relationships are consistently found across subjects and datasets and suggest that
52  variation in BOLD response magnitudes across cortical locations reflects, in part, differences
53 in anatomy and vascularization. To compensate for these factors, we implement a
54  regression-based correction method and show that after correction, BOLD responses
55  become more homogeneous across V1. The correction reduces the horizontal/vertical
56  difference by about half, indicating that some of the difference is likely not due to neural
57 activity differences. We conclude that interpretation of variation in BOLD response
58 magnitude across cortical locations should consider the influence of the potential
59  confounding factors of thickness, curvature, depth and vascularization.

60 Significance statement

61 The magnitude of the BOLD signal is often used as a surrogate of neural activity, but the
62  exact factors that contribute to its strength have not been studied on a voxel-wise level.
63 Here, we examined several anatomical and measurement-related factors to assess their
64  relationship with BOLD signal magnitude. We find that BOLD magnitude correlates with
65  cortical anatomy, depth and macrovasculature. To remove the contribution of these factors,
66 we propose a simple, data-driven correction method that can be used in any functional
67 magnetic resonance imaging (fMRI) experiment. After accounting for the confounding
68  factors, BOLD magnitude becomes more spatially homogenous. Our correction method
69  improves the ability to make more accurate inferences about local neural activity from fMRI
70  data.

71 Introduction

72  The blood-oxygen-level-dependent (BOLD) signal measured by fMRI is an important tool for
73  non-invasive study of the human nervous system. However, the neural mechanisms
74  underlying BOLD remain an active area of investigation (Herman et al., 2017). One clear
75  conclusion is that the BOLD signal is strongly influenced by neural activity (Arthurs et al.,
76  2000; Heeger et al., 2000; Attwell and ladecola, 2002; Heeger and Ress, 2002; Logothetis,
77  2002; Lee et al., 2010; Siero et al., 2014). For a given location in the brain, and within a
78  constrained paradigm (e.g., viewing different images and measuring the response that they
79  elicit in visual cortex), the BOLD signal magnitude appears to be lawfully related to basic
80 measures of neural activity. For example, as stimulus contrast increases, neural firing rates
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81 and BOLD magnitude increase in proportion (Heeger et al., 2000). Similarly, increase in
82  coherence of stimulus motion boosts BOLD magnitude and firing rates in V5/MT (Britten et
83  al., 1993; Rees et al., 2000). When comparing different experimental paradigms or different
84  brain locations, however, it is less clear how to interpret differences in the magnitude of the
85  BOLD signal. For example, seeing a stimulus and expecting a stimulus can both elicit robust
86  BOLD signals in V1, but the underlying neural activity is very different in the two paradigms
87  (Sirotin and Das, 2009; Herman et al., 2017). It is also the case that similar BOLD signal
88  magnitudes in two locations may be linked to very different underlying neural activity.
89  These two limitations are reviewed by (Logothetis, 2008).
20
91 There are several reasons to believe that BOLD signal magnitudes, even within a fixed
92  experimental paradigm, are influenced by factors that are not directly related to neural
93  activity. The BOLD response, quantified in terms of percent signal change, can be especially
94  high in voxels containing large veins (Menon et al., 1993; Kim et al., 1994; Hoogenraad et al.,
95  1999; Kay et al., 2019) or unusually low, delayed, and/or displaced in voxels near cerebral
96 sinuses (Winawer et al.,, 2010; Jamison et al., 2017). The choice of MRI sequence, field
97  strength (van der Zwaag et al., 2009), and sequence parameters like echo time (Gorno-
98 Tempini et al., 2002) can also affect BOLD signal magnitude, and these effects may vary
99  across the brain {(Herman et al., 2017). Indeed, it has been reported that BOLD may vary
100  across the cortex up to 40% simply due to different orientation of vasculature relative to the
101  direction of the static magnetic field (Gagnon et al., 2015a; Gagnon et al., 2016; Viessmann
102 et al., 2019). Furthermore, recent high-resolution fMRI studies have shown that BOLD signal
103  magnitude clearly depends on cortical depth. It is highest in the superficial depths which are
104  positioned near large pial veins and decreases with depth (Polimeni et al., 2010; Koopmans
105 et al., 2011; Zimmermann et al., 2011; Yu et al., 2014; Fracasso et al., 2016a; Fracasso et al.,
106  2016b; Dumoulin, 2017; Dumoulin et al., 2018; Kay et al., 2019; Self et al., 2019; van Dijk et
107  al., 2020).
108
109 In this paper, we study variations in BOLD signal magnitude within a fixed paradigm,
110  focusing our efforts on primary visual cortex (V1). We believe that by focusing on a single
111  brain region in well-controlled visual paradigms, we are in the best position to derive sound
112  interpretations of differences in BOLD signal magnitudes across the cortex. In three distinct
113  datasets, we demonstrate large differences between the meridian locations: the BOLD
114  magnitude in V1 is up to 50% higher along the representation of the horizontal meridian
115  than along the representation of the vertical meridian. We then investigate the potential
116  basis of these inhomogeneities by analyzing factors that are in principle distinct from neural
117  activity. As non-neural factors we consider cortical curvature, cortical thickness, cortical
118  depth, presence of macrovasculature (as indexed by bias-corrected EPI intensity), angle with
119  respect to Bp magnetic field and radiofrequency (RF) coil bias. We motivate the selection of
120 these factors in the Methods. We find that several of these factors are systematically
121  related to observed variation in BOLD magnitudes across V1. To remove their influence, we
122 propose a simple correction method and show that the correction increases BOLD signal
123 homogeneity across V1, reducing the difference in response across the horizontal and
124  vertical meridians by about half.
125
126
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127 Methods

128 Datasets

129

130  We used three publicly available visual fMRI datasets: the Human Connectome Project (HCP)
131 7T Retinotopy Dataset (Benson et al., 2018), the Natural Scenes Dataset {(NSD) (Allen et al.,
132  2021), and the Temporal Decomposition Method (TDM) Dataset (Kay et al., 2020). All data
133 were acquired on 7T MR scanners using gradient-echo pulse sequences (technical details
134  provided in Table 1). The datasets varied in stimulus properties and experimental design.
135  HCP stimuli consisted of rings, wedges, and bars in a retinotopic mapping experiment; NSD
136  stimuli consisted of natural scene images; and TDM stimuli consisted of high-contrast rings
137 presented at different eccentricities. Experimental details are shown in Figure 1. The
138  analyses performed in this paper start with pre-processed data from each dataset.

139

Temporal Decomposition Method Dataset (TDM)

5 subjects (2 males and 3 females)
0.8 x 0.8 x0.8 mm?

Rings varying in eccentricity

9 runs per subject

TR=2.25%

3.550N /0.5s OFF

Maximum eccentricity = 5.5 degrees

s s = s = s

8 subjects (2 males and 6 females)
1.8x1.8x1.8mm?

Natural scene images

360-480 runs per subject

TR=165s

35ON/1sOFF

Maximum eccentricity = 4.2 degrees

181 subjects (72 males and 109 females)
1.6x1.6x1.6 mm?
*  Textures viewed through spatial apertures
= 6 runs per subject
+ TR=1s
= Continuous design
*  Maximum eccentricity = 8 degrees

140
141  Figure 1 — Datasets used in this study. Stimulus images for each of the datasets are shown. For TDM, stimuli

142 consisted of 6 rings varying in eccentricity. For NSD, stimuli consisted of natural scene images. For HCP, the
143 experiment consisted of several retinotopic mapping runs that included expanding and contracting rings,
144 rotating wedges, and moving bars filled with a colorful object-based texture. Additional acquisition details are
145 provided in Table 1.

Dataset TDM NSD HCP

Field strength 7T 7T 7T

TR 2200 ms 1600 ms 1000 ms

TE 22.4 ms 22.0ms 22.2 ms

Flip angle 80 62 45

Number of slices 84 84 85

Matrix size 200 x 162 120x 120 130 x 130

Field of view 160 mm X 129.6 mm 216 mm X 216 mm 208 mm X 208 mm
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146
147

148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184

Nominal spatial 0.8 mm 1.8 mm 1.6 mm
resolution

Multiband factor 2 3 5

iPAT factor 3 2 2
Partial Fourier 6/8 7/8 7/8

Table 1 — Details on the fMRI pulse sequence used in each of the datasets. Each column describes different
dataset.

Extracting BOLD magnitude

From each dataset, we extracted a measure of BOLD signal magnitude at each cortical
surface vertex. For TDM, we started with the pre-processed fMRI time-series data provided
with the dataset and analyzed the data with a GLM. Specifically, we convolved a canonical
HRF with stimulus onsets to create a regressor for each experimental condition, and then
used these regressors with GLMdenoise (Kay et al., 2013b) to estimate a beta weight for
each condition. We computed the maximum beta weight across all conditions for each voxel
as the measure of BOLD signal magnitude. These results are defined at six different depths
(equidistant from 10% to 90% of the cortical thickness) in each subject’s native surface
space. (Depth assignment was achieved by a spatial interpolation of each fMRI volume at
the locations of the six depth-dependent cortical surfaces; see Kay et al. (2020) for details.)
For NSD, we took the ‘meanbeta’ values (1 mm data preparation, beta version 2) provided
with the dataset; these values indicate the average BOLD percent signal change observed
across all stimulus trials and all scan sessions. We then mapped these values to the 3 depth
surfaces provided in NSD (positioned at 25%, 50%, and 75% of the cortical thickness). The
HCP dataset was previously analyzed (Benson et al., 2018) with a population receptive field
(pRF) model (Dumoulin and Wandell, 2008) implemented in analyzePRF (Kay et al., 2013a).
The model includes a gain parameter that describes the amplitude of the BOLD response of
a given voxel (or vertex) to the object-based texture (covering the entire pRF) for a single
repetition time (TR = 1 s). We quantified BOLD in terms of percent signal change (%BOLD) by
dividing the gain parameter by mean signal intensity and multiplying by 100. The results are
prepared in FreeSurfer’s fsaverage space.

Visual field mapping

We used retinotopic mapping to divide the primary visual cortex into a set of regions. For
HCP, we used polar angle and eccentricity estimates available from the data release. For the
TDM and NSD datasets, we mapped Benson’s polar angle and eccentricity atlas using
neuropythy software (Benson and Winawer, 2018). We use the following convention for all
3 datasets: the upper vertical meridian corresponds to O deg, the horizontal meridian
corresponds to 90 deg, and the lower vertical meridian corresponds to 180 deg. Note that
the polar angle estimates are rescaled for the correlation and linear regression analysis {see
next section). We used Benson’s definition of the extent of visual areas V1, V2, and V3 for all
3 datasets {(Benson et al., 2014).
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185  Quantification of non-neural factors

186

187 In the TDM and NSD datasets, we quantified several factors that might be related to
188  variation in the magnitude of the BOLD signal across cortical locations. We focused on
189 factors that can be easily extracted from either functional or anatomical data that are
190 typically acquired in an fMRI experiment. For the purposes of the present study, we
191  consider only within-subject factors rather than across-subject factors, with the goal of
192  removing non-neural influences on the variation of BOLD magnitudes across voxels. We
193  note that there are several other factors that influence variation of overall BOLD magnitude
194  across subjects like caffeine use (Liu et al., 2004), vascular age (Tsvetanov et al., 2021), and
195  heart rate (Chang et al., 2009). Below, we describe each of the within-subject factors that
196  we considered in the present study.

197

198  Curvature was obtained from FreeSurfer outputs {Dale et al., 1999; Fischl and Dale, 2000),
199 and refers to the geometry of the folding pattern of the cortical surface. Negative values
200  correspond to gyri while positive values correspond to sulci. Curvature is quantified as 1/r,
201  where ris the radius of an inscribed circle measured in mm.

202

203 Thickness was also obtained from FreeSurfer outputs. It is measured in mm and corresponds
204  to the distance between the outermost (close to cerebrospinal fluid) and innermost (close
205  to white matter) boundaries of gray matter. Curvature and thickness are well known to vary
206  across visual cortex. Their relationship with %BOLD remains unknown and has not been
207  investigated in detail, especially on a voxel-by-voxel basis. We include these factors in our
208 analysis to assess whether these anatomical factors have systematic relationships with
209  BOLD magnitude.

210

211 Mean bias-corrected EPI was calculated as the mean signal intensity in the fMRI data divided
212 by the estimated RF coil bias (details below). The units range from approximately 0 to 2, and
213  indicate percentages (e.g., 0.5 means 50% of the strength of typical signal intensities). Mean
214  bias-corrected EPI values can be viewed as high spatial frequency changes in signal intensity
215  across space. We include this factor in the analysis as mean bias-corrected EPI was
216  previously found to be a good predictor for venous effects (Kay et al., 2019). Proximity to
217  veins often results in increased BOLD magnitude.

218

219  Depth was estimated by generating 6 cortical surfaces (for TDM) or 3 cortical surfaces (for
220 NSD) equally spaced between 10% and 90% (for TDM) or 25% and 75% (for NSD) of the
221  distance from the pial surface to the boundary between gray and white matter. These
222  surfaces are numbered from 1 to n, where 1 is outermost and n is innermost. We include
223  depth as a factor as it is well known that BOLD magnitude is highest in superficial depths
224  and decreases towards the white matter (Polimeni et al., 2010).

225

226  Angle with respect to Bg was calculated by considering the angle (theta) between the pial
227  surface normal and the direction of the By static magnetic field as estimated from NIFTI
228  header information. Angle was quantified in degrees and was normalized as abs(theta—90)
229  such that a final value of 0 deg indicates that the cortical surface is parallel to the magnetic
230 field and a final value of 90 deg indicates that the cortical surface is perpendicular to the
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231  magnetic field. We include angle with respect to By in the analysis because previous reports
232 showed that the BOLD magnitude varies with Byangle (Gagnon et al., 2015b).

233

234 RF coil bias was taken to be the result of fitting a 3D polynomial to the mean signal intensity
235  in the fMRI data. The values are in raw scanner units and represent low spatial frequency
236  changes in the intensity of voxels. This estimation method has been used previously (Kay et
237  al.,, 2019). We include RF coil bias as a control in our analysis. In theory, there should not be
238  a systematic relationship between RF coil bias and BOLD magnitude, as we express BOLD
239  magnitudes at each voxel in terms of percent signal change (as is typically done in the field),
240 and percent signal change is sensitive to an overall scale factor on the signal.

241

242 In sum, all of these factors are known to vary across the cortical surface of V1. The exact
243 biophysical mechanisms that might explain their impact on %BOLD are in some cases
244  unknown (e.g., curvature). In other cases, we expect that some factors should not bear
245  systematic relationships to %BOLD (e.g., RF coil bias). In general, the work here is intended
246  to be a first step towards understanding the influence of potential non-neural contributions
247  tovariations in %BOLD across individual voxels within a given subject.

248

249  Quantification of neural factors

250

251  Polar angle was obtained from Benson’s atlas (Benson et al., 2014), representing the visual
252  field angle to which each cortical location is optimally tuned. For the purposes of our
253  analyses, we normalize polar angle such that O deg corresponds to the horizontal meridian
254  and 90 deg corresponds to the upper and lower vertical meridians. We include polar angle
255  as a positive control: we expect that polar angle should bear a systematic relationship with
256  BOLD magnitude, as this is the original observation that motivated the present study.

257

258  Definition of regions of interest

259

260  Using the visual field mapping results, we defined regions of interest (ROIs) corresponding
261  to the representation of the horizontal and vertical meridians within V1. The ROIs were
262  defined by limiting the eccentricity to the maximum stimulus eccentricity used in each
263  dataset and limiting the angle to a specific range (e.g., to create a V1 ROI for the upper
264  vertical meridian with a width of 20 deg, we created a mask where polar angle estimates
265  were higher than 0 and lower than 20).

266

267 Modelling variation in BOLD signal magnitude

268

269  To account for non-neural contribution to %BOLD, we used a multiple regression model. The
270  modeled data (Y) consisted of the %BOLD value observed at each surface vertex in visual
271  areas V1-V3. Although this study focuses on BOLD homogeneity in V1, we include %BOLD in
272 V1-V3. This is because we are attempting to establish relationships that might generalize
273 across different cortical regions. Furthermore, if we were to include only vertices in V1, we
274 would be at high risk of removing genuine neural activity differences (e.g. those that may
275  exist between the horizontal and vertical meridians) that correlate with the non-neural
276  factors.
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277

278  The variables used to model the data included thickness, curvature, depth and mean bias-
279  corrected EPI intensity. (Only these four factors showed evidence of being substantially
280 related to BOLD magnitude; see Results.) The variables were standardized (z-scored) and,
281  together with a constant term, were included as predictors in the design matrix (X).
282  Ordinary least-squares estimates for beta weights were obtained in the following linear
283  model:

284

285 Y=XB+n (Eq. 1)

286

287  whereY is the %BOLD magnitude at each vertex, X is the 5-column design matrix, 8 is a set
288  of beta weights (5 per vertex), and n is a set of residuals.

289

290  Major cortical sulci

291

292  In several figures we show outlines of major cortical sulci. These include the calcarine sulcus
293  (CALC), parieto-occipital sulcus (POS), intraparietal sulcus (IPS), occipitotemporal sulcus
294  (OTS), and superior temporal sulcus (STS). These sulci were manually labelled on the
295  fsaverage surface and then mapped to each individual’s native surface.

296

297 Data and code availability

298

299 The datasets used in this paper are freely available online: NSD
300 (http://naturalscenesdataset.org), HCP (https://osf.io/bw9ec/), and TDM
301  (https://osf.io/j2wsc/). Code that reproduces the main figures in this paper is available at
302  https://github.com/jk619/meridianbias/. Associated data files are available at
303  https://osf.io/2ncax/.

304 Results

305 Stronger BOLD responses along the V1 horizontal meridian

306

307 We examined BOLD response magnitudes in three freely available datasets: the Natural
308 Scenes Dataset (NSD; Allen et al., 2021), the data used for the Temporal Decomposition
309 Method (TDM; Kay et al., 2020), and the Human Connectome Project 7T Retinotopy Dataset
310 (HCP; Benson et al., 2018). Each dataset contains BOLD responses to different types of visual
311 stimulation (see Methods). We defined one region of interest (ROI) for the horizontal
312  meridian (HM) and one for the vertical meridian (VM) (Figure 2A-B). These ROIs represent a
313  wedge-shaped region in the visual field centered at the horizontal meridian with a width of
314 40 deg (horizontal) and two wedges abutting the vertical meridian each with a width of 20
315  deg (vertical).

316

317 In each of the three datasets, we compared BOLD magnitudes expressed in percent signal
318 change (%BOLD) observed for the VM with BOLD magnitudes observed for the HM (Figure
319  2C-E). In each dataset, we find higher %BOLD in the HM ROIs compared to the VM ROIs. We
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320 summarize this difference with an asymmetry ratio: (HM-VM)/mean(HM,VM). All datasets
321 show strong asymmetry, with an asymmetry ratio of ~30%. Positive values for the
322  asymmetry ratio indicate greater response for the horizontal meridian. (Note that if the
323  asymmetry is expressed as a percentage of the smaller vertical meridian response, the
324  increase reflected in the larger horizontal meridian response is up to ~50%.)

325

Polar angle

B Horizontal Meridian (HM)
B Vertical Meridian (VM)

180 deg 20°
D E
TDM (n=5) . NSD (n=8) os HCP (n=181)
Asymmetry ratio (%) =
4 0.4
HM - VM 100
— |

Qs 003 ((HM+VM))
o o) 2
o m
&2 0.2

1]
HM VM

326
327

328  Figure 2 — BOLD magnitude is higher at the horizontal meridian in V1. A) Polar angle map of group-average
329 HCP subject (999999) with V1 boundary outlined in dotted black lines. B) Horizontal and vertical regions of
330 interest (ROIs) are indicated in gray and magenta, respectively. White text indicates major brain sulci (see
331 Methods). C-E) Mean BOLD magnitude for horizontal and vertical ROIs in the three datasets. Error bars
332  indicate standard error across subjects.

333  One possibility is that the horizontal and vertical V1 BOLD responses are in fact similar, but
334  the vertical ROIs appear to have lower signal due to mixing with signal from V2. V2 and V1
335 border along the vertical meridian representation, and blurring might occur either in
336 acquisition or in pre-processing and analysis. To further our understanding of the V1
337 response asymmetries, we re-computed asymmetry ratios using smaller wedges at many
338 locations (Figure 3A). Note that, because we use smaller wedges, the asymmetry at the
339 cardinal meridians is different from Figure 2. While the asymmetry is strongest at the
340 cardinal meridians, some horizontal/vertical asymmetry is found at least 30 deg away from
341  the meridians in all three datasets (Figure 3B). This argues against the explanation that the
342  asymmetry is caused by spillover from V2.

343

344
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346  Figure 3 — BOLD asymmetries generalize to off-cardinal locations. To further understand V1 BOLD asymmetry,
347 we manipulated the location of the wedge ROIs in 5-deg increments. A) The upper row shows the visual field
348 location of wedge ROIs and the lower row shows the corresponding cortical locations (flattened left
349 hemisphere). For clarity, we show only every other set of ROIs. B) Asymmetry ratio as a function of angular
350 distance from the cardinal meridians. Error bars indicate standard error across subjects.

351  HM/VM asymmetry persists at inner cortical depths

352

353 The BOLD signal is strongly influenced by properties of the brain’s vasculature. Uneven
354  venous contributions across the brain can cause variation in BOLD magnitude (Menon et al.,
355  1993; Kim et al., 1994; Hoogenraad et al., 1999; Kay et al., 2019). One possibility is that the
356  meridian asymmetries we observe arise from non-uniformities in the vascular network. To
357 investigate this possibility, we took advantage of the sub-millimeter resolution of the TDM
358 dataset and examined HM/VM asymmetry as a function of depth. Because macroscopic
359 venous effects are larger in the superficial cortex due to large pial veins (Duvernoy et al.,
360 1981; Turner, 2002; Polimeni et al., 2010; Kay et al., 2019), by sampling BOLD responses
361 from deeper depths, we minimize contributions from pial veins. We find that the HM/VM
362 asymmetry is larger at the superficial depths, suggesting that part of the asymmetry may be
363 due to differential properties in macroscopic vasculature (Figure 4). This depth effect is
364  systematic: every subject shows higher asymmetry at the superficial depth than the middle
365 depth. Nonetheless, there remains a substantial horizontal/vertical asymmetry at all depths
366  (Figure 4), suggesting that macroscopic vessels near the pial surface are not the entire
367 explanation. At the innermost depth sampled, which is least influenced by pial vessels, the
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368 HM/VM asymmetry is 26% (average across subjects) and is positive in each of the 5 subjects.
369 The middle depths appear to have the least asymmetry. This could be due to a difference in
370 neural responses at intermediate depths, which generally correspond to input-related
371  cortical layers.

100
G
— G2
80+ —S3
— 54
S5
60 ' mean

Asymetry ratio (%)
B
o

10% 90%
Cortical depth

372 superficial -> deep
373
374  Figure 4 — BOLD asymmetry in V1 persists at inner depths. We exploit the high-resolution TDM dataset to
375 discriminate V1 BOLD responses across depth and estimate response asymmetries as a function of depth
376 (asymmetry is calculated in the same way as in Figure 3). The presence of asymmetry at the innermost depth
377 suggests that response asymmetries exist even with minimal contribution of large pial veins.

378  Assessing and modeling non-neural contributions to BOLD signal magnitude

379

380 In addition to vascular effects, other factors unrelated to neural activity evoked by the
381 experimental manipulation may influence variation in %BOLD across the cortical surface.
382 These additional factors are often neglected in fMRI analysis pipelines. Although some of
383  the factors are known to vary across the cortex, their influence on the BOLD signal is poorly
384  understood. Here, we attempt to understand how these factors may be related to BOLD
385  magnitude variations. To the best of our knowledge, we are unaware of any previous study
386 that has examined this issue in detail, especially at the level of individual voxels (or vertices)
387  within individual subjects.

388

389  We first identified a list of possible confounding factors (beyond cortical depth, which we
390 have already introduced) based on consideration of basic anatomical properties of the brain
391 and the nature of fMRI measurement. These factors are cortical curvature, cortical
392  thickness, RF coil bias, mean bias-corrected EPI signal intensity, and angle with respect to Bo.
393  Each of these factors can be interpreted as spatial maps, with a value at each vertex on the
394  cortical surface mesh. The five maps can be obtained from standard anatomical scans (T1-
395  weighted) or from the fMRI measurements themselves without additional MRI experiments
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396 (see Methods for details). Example surface visualizations of these maps together with
397  %BOLD are shown in Figure 5. We hypothesize that inhomogeneities in some of these maps
398  might explain some of the observed inhomogeneity in %$BOLD across V1.
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401 Figure 5 — Variation in anatomical and acquisition factors across cortex. Each sphere shows data mapped on
402 the left hemisphere for subject S1 in the NSD dataset. Below each surface map is a histogram of the plotted
403 values. White outlines indicate major cortical sulci. %BOLD represents the average response to the natural
404 scene stimuli used in the NSD dataset. Some of the spatial variability in %BOLD might be due to variability in
405  the depicted non-neural factors.

406

407  To understand the potential relationships amongst these five identified factors and %BOLD,
408  we first performed voxel-wise correlation analyses. For these analyses, we used the TDM
409 dataset, as its high spatial resolution facilitates the identification of vascular effects (Kay et
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410 al.,, 2019). We examined data from V1-V3 where neural activity magnitudes can be
411  expected to be relatively homogeneous (although biases were reported before; Liu et al.,
412 2006) given the simple contrast patterns used. In Figure 6A, we show pairwise correlations
413  across these five quantities, as well as retinotopic polar angle preference (rescaled between
414 0 and 90; see Methods) and cortical depth. We find that %BOLD correlates substantially
415  with four factors: curvature (r = 0.26), thickness {r = —0.17), mean bias-corrected EPI
416  intensity (r = =0.25), and depth (r = -0.27). We do not find a strong correlation between
417  %BOLD and polar angle. Although results from Figure 2C—E, Figure 3C and Figure 4 suggest a
418 strong negative correlation, the previous analysis included data only from V1. Here we
419  analyze vertices from V1-V3 where this relationship becomes weaker (r = —0.05). Overall, we
420  can summarize as follows: %BOLD extracted from V1-V3 tends to be higher at locations that
421  correspond to sulci, in thinner parts of the cortex, in voxels with lower mean bias-corrected
422  EPIintensities, and at more superficial depths.

423

424  Examination of correlations amongst factors yields additional insights (Figure 6A). The
425  strongest correlation that we find is between curvature and thickness (r = —0.28), indicating
426  thatsulci tend to be thin. Curvature is correlated with mean bias-corrected EPI (r = 0.16) and
427  with polar angle (r = —0.19), and thickness is correlated with polar angle (r = 0.15). Our
428 interpretation of these effects is that venous effects tend be stronger in gyri (consistent with
429  previous findings in Kay et al., 2019), and that the correlations related to polar angle simply
430 reflect the tendency for horizontal meridian representations to fall on sulci (e.g. the
431  calcarine sulcus). Overall, these complex relationships suggest that making sense of non-
432  neural influences on %BOLD requires a broad perspective that considers multiple factors.
433
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436 Figure 6 — Modeling variations in BOLD signal magnitude. A) Correlation (Pearson’s r) between a variety of
437 factors and %BOLD extracted from V1-V3 from the TDM dataset. Main plot shows results from data
438 concatenated across all subjects, while inset plots show results from individual-subject data. P-values indicate
439 significance of one sample t-test across subjects; *p < 0.05; **p < 0.01; ***p < 0.001. B) Regression model for
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440 %BOLD. Based on the results of panel A, we selected curvature, thickness, depth and mean bias-corrected EPI
441 as the main non-neural factors that confound %BOLD. These four factors were then used in a multiple linear

442 regression model to predict %BOLD (top). The amount of variance explained by the model is shown in the
443  inset.

444  Correcting BOLD signal magnitude for non-neural factors

445

446  We now explore whether we can develop a statistical model to compensate for the
447  influence of non-neural factors on %BOLD. We operate under the assumption that any
448  observed correlation between the factors and %BOLD is incidental and does not reflect
449  genuine neural activity variation. Our model is a multiple regression model (Figure 6B, top)
450 that uses the main factors of curvature, thickness, depth and mean bias-corrected EPI
451 intensity as continuous variables and attempts to determine a weighted sum of these
452  factors that optimally accounts for variations in %BOLD across cortical locations (see
453  Methods for details).

454

455  Fitting the model, we find a strong positive contribution of curvature and negative
456  contributions of thickness, mean bias-corrected EPI intensity and depth (Figure 6B, bottom),
457  consistent with the earlier voxel-wise correlation analyses. Estimated beta weights are fairly
458  consistent across subjects, and the model on average across subjects explains 26% of the
459  variance in %BOLD. A multiple regression model using all 6 factors (adding RF coil bias and
460 angle with respect to Bp) resulted in only minimally larger explained variance, 27% vs. 26%,
461  consistent with the earlier correlation analyses indicating that RF coil bias and angle with
462  respect to By bear little or no relationship with %BOLD.

463

464  To better understand the relationship between the identified non-neural factors and
465  %BOLD, we construct a 2D histogram relating the model fit (BOLD prediction based on non-
466  neural factors obtained by multiplying the design matrix and estimated beta weights) and
467  %BOLD (Figure 7A). This reveals a clear nonlinear relationship. To accommodate this
468 nonlinearity, we fit a nonlinear function relating the linear model fit and %BOLD (blue line in
469  Figure 7A). Finally, we remove the contribution of non-neural factors by dividing %BOLD
470 observed at each cortical location by the fit of the nonlinear model. We divide %BOLD by
471  the model fit rather than subtracting the model fit, as we believe that the influence of non-
472  neural factors on %BOLD might impose a type of ‘gain’ field on fMRI responses observed in a
473  given experiment. For example, if there is an excess of macrovasculature in a voxel, we
474  would expect the overall amplitude of the BOLD response from the voxel to be scaled. Note
475  that our method of rescaling BOLD magnitudes does not change the pattern of responses
476  across different experimental conditions within a voxel (while a subtractive approach
477  would). For example, if the response to condition A is 25% higher than the response to
478  condition B, this will continue to be the case after rescaling.

479
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481  Figure 7 — Correction of V1 BOLD inhomogeneity. A) Removal of non-neural factors. First, linear combinations
482 of non-neural factors are used to predict %BOLD within V1-V3 using the TDM dataset. The model is fit on data
483 concatenated from all 5 TDM subjects. The model is augmented with a nonlinear power-law function (blue
484 line), which is controlled by a gain parameter (p(1)), an exponent parameter (p(2)), and a constant term (p(3)).
485 B) Each voxel’s BOLD responses are divided by the model fit, yielding the corrected %BOLD. C) BOLD signal
486 magnitude within V1 before and after the correction (TDM dataset, subject S3, most superficial depth).
487 Asterisk indicates the fovea and dashed lines indicate the boundary between V1 and V2. After correction,
488 some vertices with very high BOLD are eliminated (see white arrows). Within each plot, the color range
489 extends from O to the maximum. Each map has an associated histogram that shows all values extracted from

490  vi.

491  The result of the proposed correction procedure is shown in Figure 7B. We see that after
492  the correction procedure, the distribution of BOLD response becomes flatter, indicating the
493  efficacy of the procedure. (Note that what is important is the shape of the distribution of
494  the values, not necessarily the magnitudes of the values.) Increased homogeneity of BOLD
495  magnitude is also visible on the cortical surface (Figure 7C).

496

497  To understand whether our method generalizes across datasets, we used the same
498 procedure and performed correction on the NSD dataset. We summarize the effect of the
499  correction by showing the correlations between %BOLD and non-neural factors before and
500 after the correction (Figure 8A). The pattern of results before correction (Figure 8A, top) is
501 consistent across the TDM and NSD datasets, except for the reduced correlation with bias-
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502  corrected EPI in NSD (see Discussion). Importantly, correlations after the correction are
503  substantially reduced, indicating the efficacy of the method.

504  To check whether accounting for non-neural factors increases the homogeneity of BOLD, we
505 quantified the variation of BOLD magnitudes across V1 before and after the correction.
506  Variation was quantified using the semi-interquartile range divided by the median (SIR).
507 Intuitively, if the spread of BOLD magnitudes is small (i.e., %BOLD is relatively
508 homogeneous), SIR will be low, whereas if the spread of BOLD magnitudes is large (i.e.,
509 %BOLD is relatively homogeneous), SIR will be high. We find that across subjects, the SIR
510 decreases from 0.42 before correction to 0.34 after correction for TDM and decreases from
511 0.48 to 0.42 for NSD.

512

513 We now return to the experimental effect that motivated this study, namely, BOLD
514  response asymmetries across the horizontal and vertical meridians in V1. We quantify the
515 asymmetry before and after correction (Figure 8B). We find that after accounting for the
516  non-neural factors, the asymmetry drops for TDM from 49.2% to 25.1% and from 40% to
517 18% for NSD. We thus suggest that some of the observed differences in BOLD response
518 magnitudes are due to non-neural factors.
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523 Figure 8 — The effect of BOLD inhomogeneity correction. A) Voxel-wise correlation between the various
524 factors and %BOLD before and after correction. After correction, correlations are reduced, indicating that the
525 corrected data are less influenced by the non-neural factors. B) Dependence of %BOLD on polar angle in V1
526 before and after the correction for TDM dataset and NSD datasets. The asymmetry drops by about half.

527 In the results demonstrated in this paper, the correction method reduces inhomogeneities
528 between the horizontal and vertical meridians. But more generally, it is possible that in
529 other datasets, the method may reveal activity differences that are masked by non-neural
530 factors. For example, voxel A might have a lower neural response than voxel B, but voxel A
531 might reside close to a large vein which would tend to increase %BOLD. In conventional
532 fMRI analyses, both voxels might show similar BOLD magnitude, even though the underlying
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533  neural activity is different. The methods proposed in this paper can be viewed as an attempt
534  to obtain better estimates of underlying neural activity.

535 Discussion

536 In this paper, we used three publicly available datasets to assess the degree of homogeneity
537  of BOLD signal magnitude in primary visual cortex. We found that stimulus-evoked BOLD
538 responses, expressed as percent signal change, are up to 50% stronger along the horizontal
539  meridian than the vertical meridian. To investigate whether these magnitude differences
540 can be attributed to differences in local neural activity, we systematically evaluated the
541  potential contribution of several non-neural factors to the observed effect. We found that
542  BOLD signal magnitude correlates with curvature, thickness, depth and macrovasculature
543 (as indexed by bias-corrected EPI intensities). Using a regression-based correction
544  procedure, we were able to increase the homogeneity of BOLD signal magnitude and found
545  that the meridian differences were reduced by half.

546

547  Spatial variations in BOLD magnitude

548

549  This study tackles the issue of the neural basis of variation in BOLD signal magnitude.
550 Specifically, we address variation in BOLD across cortical locations for a fixed experimental
551  manipulation, as opposed to variation in BOLD across experimental manipulations for a
552 fixed cortical location. The latter has been heavily studied (Heeger et al., 2000; Logothetis et
553 al, 2001; Heeger and Ress, 2002; Logothetis and Wandell, 2004; Mishra et al., 2021),
554  whereas the former has not yet been systematically studied to the best of our knowledge. If
555  there are indeed non-neural factors that influence BOLD signal variation, taking this into
556  account is critical when interpreting differences in fMRI responses across brain regions.

557

558 We acknowledge that a challenge in understanding the neural basis of the BOLD signal is
559 that directly comparable ground-truth measurements of neural activity are typically not
560 available. Moreover, the BOLD signal only indirectly measures the neural response, and its
561  magnitude likely depends on many aspects of neural activity. Increased BOLD signal might
562 be a consequence of more neurons firing, more spikes per neuron, changes in neural
563  correlation, changes in subthreshold activity, and/or changes in what kinds of neurons are
564  most active. Our approach currently does not try to distinguish amongst these causes.

565

566 In our analyses, we relied on the working assumption that the experimental paradigms of
567  the three datasets (combined with suitable averaging and analysis procedures) are expected
568 to generate relatively homogeneous patterns of neural activity in early visual cortex. Of
569 course, this may not be exactly the case.

570

571 Non-neural factors that affect BOLD magnitude

572

573  Mean bias-corrected EPI. Mean bias-corrected EPI is a convenient marker for macrovascular
574  contributions to the fMRI signal (Kay et al., 2019). Vertices contaminated by venous effects
575  show lower intensity values in mean EPI images and often result in high %BOLD magnitude.
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576 In the TDM dataset, we found this to be the case and were able to remove, to some extent,
577 venous effects using the described correction method. We did not, however, find a strong
578 relationship between mean bias-corrected EPI and %BOLD magnitude in the NSD dataset.
579  We suggest that the reason for this apparent discrepancy is that effective discovery of
580 venous contributions requires high-resolution data where voxel size approaches the scale of
581 1 mm or better. Another important issue to consider is the cerebral sinuses. The sinuses are
582  the largest veins that drain blood from the brain and they exert major effects at certain
583  specific cortical locations. Complicating matters is the fact that the sinuses also produce low
584  EPI intensity, but instead of boosting BOLD magnitude they seem to reduce it, resulting in
585 low %BOLD (Winawer et al., 2010; Jamison et al., 2017). In the present study, we do not
586  attempt to isolate or analyze the effects of the cerebral sinuses, though preliminary analyses
587 indicate that the sinuses do not provide a simple explanation of the horizontal/vertical
588 asymmetry (data not shown).

589

590 Cortical anatomy. We find that curvature and thickness correlate with BOLD signal
591 magnitude (see Figure 6A). It is known that many anatomical properties vary with thickness
592 and with curvature (Jiang et al., 2021): (i) total neuron count is higher in gyri than it is in
593  sulci (Hilgetag and Barbas, 2005), (ii) gyri tend to be thicker than sulci (Welker, 1990;
594  Hilgetag and Barbas, 2005), (iii) venous effects (resulting in higher BOLD signal amplitude)
595  are more prominent in gyri than they are in sulci (Kay et al., 2019); and (iv) there may even
596 be intrinsic causal relationships between curvature and thickness during anatomical
597  development (Hilgetag and Barbas, 2005). However, the exact anatomical and biophysical
598 mechanisms that might link curvature and thickness to BOLD signal magnitudes are largely
599 unknown, to our knowledge. This is an important issue for future research. Here, we
600 operate under the working assumption that correlations between the BOLD signal and
601  curvature or thickness reflect incidental factors unrelated to local neural activity. We
602  therefore assume that a correction which removes their influence from the BOLD signal is
603  desirable.

604

605  Orientation of pial veins. It has been reported that regions where the cortical surface is
606  oriented perpendicular to the main magnetic field produce lower BOLD signal than regions
607 where the surface is oriented parallel (Gagnon et al., 2015a; Fracasso et al., 2018). The
608  proposed explanation is that this effect is caused by the orientation of pial veins, which lie
609 parallel to the cortical surface. Our analyses did not replicate this result and indicated little
610 relationship between BOLD magnitude and angle with respect to B, (see Figure 6A). One
611  possible explanation could be related to our pre-processing approach, in which fMRI signals
612  are sampled specifically in the gray matter and away from the pial veins that reside on top
613  of the gray matter. This may have dampened effects related to the pial veins. Nonetheless,
614  the prior literature would have predicted some By effect even at inner cortical depths
615 (Viessmann et al., 2019). Alternatively, it is possible that the orientation effects depend in
616 some way on pulse sequence parameters, or the specific brain area being studied. A
617 detailed examination of different datasets would be necessary to resolve these
618  discrepancies.

619

620  RF coil effects. Due to cortical folding, gyri tend to be closer to the RF coil than sulci.
621  Locations that are further from the coil might have lower mean signal intensities and
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622  therefore lower SNR (Srirangarajan et al., 2021), but this should not affect BOLD magnitudes
623  expressed in terms of percent signal change. We are not aware of any mechanism that
624  would alter the percent signal change in brain locations that are further away from the RF
625  coil. Indeed, we did not find any relationship between RF coil bias and BOLD magnitude (see
626  Figure 6A).

627

628

629  Correction for the impact of non-neural factors

630

631  Our results show that voxel-wise %BOLD is likely contaminated by several non-neural
632  factors.

633  To account for these factors, we developed a regression-based correction method. The goal
634  of this method was to introduce a simple, data-driven approach that can be applied
635  irrespectively of the specific experiment or brain region that is under consideration. The
636  underlying premise of the method is that by removing the contribution of non-neural
637  factors, the resulting measures would constitute a better representation of the underlying
638  neural activity. After application of the method, we found that %BOLD becomes more
639 homogenous and correlations between %BOLD and non-neural factors become significantly
640 reduced. Thus, our results indicate that some variation in %BOLD that might be interpreted
641  as change in neural activity likely reflects the variation of non-neural factors.

642

643  We believe the results presented in this paper constitute a first step towards developing a
644  cogent strategy for compensating for non-neural biases in BOLD signal magnitudes.
645  Suppressing the influence of non-neural factors has potential applications in pre-surgical
646  planning, where fMRI is routinely used to map motor, speech, and visual areas. The value of
647 fMRI for presurgical planning is currently limited by the accuracy of localizing neural
648 responses (Silva et al., 2018a). BOLD-derived maps that are a better representation of
649  neural activity could lead to more accurate neurosurgical interventions.

650

651 It remains to be seen whether the remaining asymmetry across the horizontal and vertical
652  meridians in V1 is a result of genuine neural activity differences, or an effect of other non-
653  neural factors that we were unable to quantify in the present study (which might require
654  additional MRI acquisition measures and/or higher resolution data). It is conceivable that
655  genuine neural activity differences may exist across the horizontal and vertical meridian
656 locations in V1. For example, there is greater cortical magnification along the horizontal
657  than vertical meridian (Silva et al., 2018b; Benson et al., 2021; Himmelberg et al., 2021;
658 Himmelberg et al., 2022), and it is plausible that this might be accompanied by differences
659 in the strength of neural responses.

660

661  Although our method is aimed towards more meaningful quantification of the BOLD signal,
662 it differs conceptually from quantitative BOLD (qBOLD) approaches (He and Yablonskiy,
663  2007; Yablonskiy et al., 2013; Cherukara et al., 2019). On the one hand, qBOLD attempts to
664  model the BOLD signal in terms of its underlying metabolic and hemodynamic components
665 (e.g., blood flow, blood volume, oxygenation extraction), and this in principle may yield
666  measures more closely related to neural activity. On the other hand, the approach we have
667 taken in this paper is to apply analytic methods to BOLD data that consider inhomogeneities
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668  that may exist across the brain, with the goal of better estimating local neural activity. Note
669 that the two approaches are not mutually exclusive: one might imagine assessing whether
670  the magnitude of gBOLD measures co-vary with non-neural factors across the brain.

671

672  There are other methods that can be used to suppress the contribution of non-neural
673  factors to BOLD signal magnitudes. By identifying early and late components of evoked
674  hemodynamic responses, a temporal decomposition method can be used to estimate BOLD
675 response components more closely linked to the microvasculature, which presumably more
676 closely reflect local neural activity (Kay et al., 2020). Another analysis method focuses on
677 BOLD fluctuations where estimates of slow oscillations (< 0.1 Hz) are used to suppress
678  vascular-related effects (Kazan et al., 2016). Similarly, some methods use the amplitude of
679  fluctuations in resting-state data to rescale the BOLD signal {Di et al., 2013; Guidi et al.,
680  2020). Finally, acquisition methods, such as spin-echo pulse sequences, can be used to
681  suppress unwanted venous effects. Note that all these methods concern effects of the
682  macrovasculature, but systematic biases in BOLD signal magnitudes may in theory persist
683 even if BOLD responses were fully restricted to the microvasculature. Further investigation
684 is necessary to resolve these possibilities.
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