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Abstract16

Spatial transcriptomics enables spatially resolved gene expression measurements at near17

single-cell resolution. There is a pressing need for computational tools to enable the de-18

tection of genes that are differentially expressed (DE) within specific cell types across19

tissue context. We show that current approaches cannot learn cell type-specific DE due to20

changes in cell type composition across space and the fact that measurement units often21

detect transcripts from more than one cell type. Here, we introduce a statistical method,22

Cell type-Specific Inference of Differential Expression (C-SIDE), that identifies cell type-23

specific patterns of differential gene expression while accounting for localization of other cell24

types. We model spatial transcriptomics gene expression as an additive mixture across cell25

types of general log-linear cell type-specific expression functions. This approach provides26

a unified framework for defining and identifying gene expression changes in a wide-range27

of relevant contexts: changes due to pathology, anatomical regions, physical proximity28

to specific cell types, and cellular microenvironment. Furthermore, our approach enables29

statistical inference across multiple samples and replicates when such data is available.30

We demonstrate, through simulations and validation experiments on Slide-seq and MER-31

FISH datasets, that our approach accurately identifies cell type-specific differential gene32

expression and provides valid uncertainty quantification. Lastly, we apply our method to33

characterize spatially-localized tissue changes in the context of disease. In an Alzheimer’s34

mouse model Slide-seq dataset, we identify plaque-dependent patterns of cellular immune35

activity. We also find a putative interaction between tumor cells and myeloid immune cells36

in a Slide-seq tumor dataset. We make our C-SIDE method publicly available as part of37

the open source R package https://github.com/dmcable/spacexr.38

Introduction39

Spatial transcriptomics technologies profile gene expression in parallel across hundreds or thousands40

of genes across spatial measurement units, or pixels [1–9]. These technologies have the potential to41

associate gene expression with cellular context such as spatial position, proximity to pathology, or42
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cell-to-cell interactions. Studying gene expression changes, termed differential expression (DE), within43

tissue context has the potential to provide insight into principles of organization of complex tissues44

and disorganization in disease and pathology [1, 10–13].45

Current methods for addressing differential expression in spatial transcriptomics fall into two cate-46

gories: nonparametric and parametric methods. Nonparametric differential expression methods [14–17]47

do not use constrained hypotheses about gene expression patterns, but rather fit general smooth spatial48

patterns of gene expression. Some of these approaches do not take cell types into account [14,15], while49

others operate on individual cell types [17]. Discovering non-parametric differential gene expression50

can be advantageous in order to generate diverse exploratory hypotheses. However, if covariates are51

available, for example predefined anatomical regions, parametric approaches increase statistical power52

substantially and provide directly interpretable parameter estimates. Specific differential expression53

problems have been addressed with ad-hoc solutions such as detecting gene expression dependent on54

cell-to-cell colocalization [18] or anatomical regions [10, 19], but no general parametric framework is55

currently available. In contrast, general parametric frameworks have been widely applied across bulk56

and single-cell RNA-sequencing (scRNA-seq) to test for differences in gene expression across cell type,57

disease state, and developmental state, among other problems [20–22]. Furthermore, although multi-58

sample, multi-replicate differential expression methods exist for bulk and single-cell RNA-seq [20–22],59

no statistical framework accounting for technical and biological variation [23] across samples and repli-60

cates has been established for the spatial setting.61

An important challenge unaddressed by current spatial transcriptomics DE methods is accounting62

for observations generated from cell type mixtures. In particular, sequencing-based, RNA-capture63

spatial transcriptomics technologies, such as Visium [7], DBiT-seq [6], GeoMx [8], and Slide-seq [1,2],64

can capture multiple cell types on individual measurement pixels. The presence of cell type mixtures65

complicates the estimation of cell type-specific differential expression (i.e. DE within a cell type of66

interest) because different cell types have different gene expression profiles, independent of spatial67

location [24,25]. Although imaging-based spatial transcriptomics technologies, such as MERFISH [3],68

seqFISH [5], ExSeq [9], and STARmap [4], have the potential to achieve single cell resolution, these69

technologies may encounter mixing or contamination across cell types due to diffusion or imperfect70

cellular segmentation [26]. Several methods [24, 27, 28] have been developed to identify cell type71

proportions in spatial transcriptomics datasets. However, at present no method accounts for cell type72

proportions in differential expression analysis. Here, we demonstrate how not accounting for cell type73

proportions leads to biased estimates of differential gene expression due to confounding caused by cell74

type proportion changes or contamination from other cell types.75

In this work we introduce Cell type-Specific Inference of Differential Expression (C-SIDE), a general76

parametric statistical method that estimates cell type-specific differential expression in the context of77

cell type mixtures. The first step is to estimate cell type proportions on each pixel using a cell type-78

annotated single-cell RNA-seq (scRNA-seq) reference [24]. Next, we fit a parametric model, using79

predefined covariates such as spatial location or cellular microenvironment, that accounts for cell type80

differences to obtain cell type-specific differential expression estimates and corresponding standard81

errors. The model accounts for sampling noise, gene-specific overdispersion, multiple hypothesis test-82

ing, and platform effects between the scRNA-seq reference and the spatial data. Furthermore, when83

multiple experimental samples are available, the C-SIDE model permits statistical inference across84

multiple samples and/or replicates to achieve more stable estimates of population-level differential85

gene expression.86

Using simulated and real spatial transcriptomics data, we show C-SIDE accurately estimates cell87

type-specific differential expression while controlling for changes in cell type proportions and contam-88

ination from other cell types. We also demonstrate how cell type mixture modelling increases power,89

especially when single cell type measurements are rare. Furthermore, on Slide-seq and MERFISH90

datasets, we demonstrate how C-SIDE’s general parametric framework enables testing differential91

gene expression for diverse hypotheses including spatial position or anatomical regions [29], cell-to-cell92

interactions, cellular environment, or proximity to pathology. By associating gene expression changes93

with particular cell types, we use C-SIDE to systematically link gene expression changes to cellular94
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context in pathological tissues such as Alzheimer’s disease and cancer.95

Results96

Cell type-Specific Inference of Differential Expression learns cell type-specific97

differential gene expression in the context of spatial transcriptomics cell type98

mixtures99

Here, we develop Cell type-Specific Inference of Differential Expression (C-SIDE), a statistical method
for determining differential expression (DE) in spatial transcriptomics datasets (Figure 1a). C-SIDE
inputs one or more experimental samples of spatial transcriptomics data, consisting of Yi,j,g as the
observed RNA counts for pixel i, gene j, and experimental sample g. We then assume Poisson sampling
so that,

Yi,j,g | λi,j,g ∼ Poisson(Ni,gλi,j,g), (1)

with λi,j,g the expected count and Ni,g the total transcript count (e.g. total UMIs) for pixel i on
experimental sample g. Accounting for platform effects and other sources of technical and natural
variability, we assume λi,j,g is a mixture of K cell type expression profiles, defined by,

log(λi,j,g) = log

(
K∑
k=1

βi,k,gµi,k,j,g

)
+ γj,g + εi,j,g, (2)

with µi,k,j,g the cell type-specific expected gene expression rate for pixel i, gene j, experimental sample100

g, and cell type k; βi,k,g the proportion of cell type k contained in pixel i for experimental sample g;101

γj,g a gene-specific random effect that accounts for platform variability; and εi,j,g a random effect to102

account for gene-specific overdispersion.103

To account for cell type-specific differential expression, we model across pixel locations the log of
the cell type-specific profiles µi,k,j,g as a linear combination of L covariates used to explain differential
expression. Specifically, we assume that,

log(µi,k,j,g) = α0,k,j,g +
L∑
`=1

xi,`,gα`,k,j,g. (3)

Here, α0,k,j,g represents the intercept term for gene j and cell type k in sample g, and xı,`,g represents104

the `’th covariate, evaluated at pixel i in sample g. Similarly as in linear and generalized linear105

models [30], x, also called the design matrix, represents predefined covariate(s) that explain differential106

expression, and the corresponding coefficient(s) α`,k,j,g each represent the DE effect size of covariate `107

for gene j in cell type k for sample g.108

With this general framework we can describe any type of differential expression that can be pa-109

rameterized with a log-linear model. Examples include (Figure 1b):110

1. Differential expression between multiple regions. In this case, the tissue is manually segmented111

into multiple regions (e.g. nodular and anterior cerebellum, Figure 3). Design matrix x contains112

discrete categorical indicator variables representing membership in 2 or greater regions.113

2. Differential expression due to cellular environment or state (special case of (1)). Pixels are114

discretely classified into local environments based on the surrounding cells (e.g. stages in the115

testes Slide-seq dataset, Figure 4).116

3. Differential expression as a function of distance to a specific anatomical feature. In this case,117

x is defined as the spatial position or distance to some feature (e.g. distance to midline in the118

hypothalamus MERFISH dataset, Figure 4).119
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4. Cell-to-cell interactions. In this case, we define a cell-to-cell interaction as differential expression120

within one cell type (A) due to co-localization with a second cell type (B) (e.g. immune cell121

density in cancer, Figure 5). For this problem, x is the continuous density of cell type B.122

5. Proximity to pathology. Similar to (4), except covariate x represents density of a pathological123

feature (e.g. Alzheimer’s Aβ plaque, Figure 4), rather than cell type density.124

6. General spatial patterns (termed nonparametric). In this case, we define design matrix x to125

be smooth basis functions [31], where linear combinations of these basis functions represent the126

overall smooth gene expression function and can accommodate any smooth spatial pattern.127

To estimate this complex model with a computationally tractable algorithm, we note that the gene128

expression variability across cell types is large enough that, in the first step, we can assume µi,k,j,g129

does not vary with i and g and estimate β using a previously published algorithm [24]. Here, some130

pixels are identified as single cell types while others as mixtures of multiple cell types. Fixing the131

β estimates, we next use maximum likelihood estimation to estimate the cell type-specific DE coef-132

ficients α with corresponding standard errors, allowing for false discovery rate-controlled hypotheses133

testing (see Methods for details). Lastly, C-SIDE performs statistical inference across multiple repli-134

cates and/or samples, accounting for biological and technical variation across replicates, to estimate135

consensus population-level differential expression (Methods, Supplementary Figure 1).136

Because ground truth cell type-specific DE is unknown in spatial transcriptomics data, we first137

benchmarked C-SIDE’s performance on a simulated spatial transcriptomics dataset in which gene138

expression varied across two regions. Considering the challenging situation where two cell types, termed139

cell type A and cell type B, are colocalized on pixels within a tissue, we simulated, using a single-nucleus140

RNA-seq cerebellum dataset, spatial transcriptomics mixture pixels with known proportions of single141

cells from two cell types known to spatially colocalize [32] (Methods, Figure 2a). Across two spatially-142

defined regions, we varied both the true cell type-specific gene expression of cell types A and B as well143

as the average cell type proportions of cell types A and B (Figure 2a, Supplementary Figure 2). We144

compared C-SIDE against three alternative methods (see Methods for details): Bulk, bulk differential145

expression (ignoring cell type); Single, single cell differential expression that approximates each cell146

type mixture as a single cell type; and Decompose, a method that decomposes mixtures into single147

cell types prior to computing differential expression. By varying cell type frequencies between the148

two regions without introducing differential expression, we observed that C-SIDE correctly attributes149

gene expression differences across regions to differences in cell type proportions rather than spatial150

differential expression (Figure 2b, Supplementary Figure 2); in contrast, the Bulk method incorrectly151

predicts spatial differential expression since it does not control for differences of cell type proportions152

across regions.153

Next, we simulated cell type-specific differential expression (DE) by varying the differential expres-154

sion in cell type A while keeping cell type B constant across regions. Background DE in cell type A155

contaminated estimates of differential expression in cell type B for all three alternatives models Bulk,156

Decompose, and Single (Figure 2c, Supplementary Figure 2). In contrast, C-SIDE’s joint model of cell157

type mixtures and cell type-specific differential expression correctly identified differential expression in158

cell type A, but not cell type B. Next, we verified that, under the null hypothesis of zero differential159

expression, C-SIDE’s false positive rate was accurately controlled, standard errors were accurately esti-160

mated, and confidence intervals contained the ground truth DE (Figure 2d, Supplementary Figure 2).161

Finally, when nonzero differential expression was simulated, C-SIDE achieved unbiased estimation of162

cell type-specific differential expression (Figure 2e). We also found that the power of C-SIDE depends163

on gene expression level, number of cells, and differential expression magnitude (Supplementary Figure164

2). Thus, our simulations validate C-SIDE’s ability to accurately estimate and test for cell type-specific165

differential expression in the cases of asymmetric cell type proportions and contamination from other166

cell types.167
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C-SIDE accurately identifies cell type-specific differential expression in spa-168

tial transcriptomics data169

To validate C-SIDE’s ability to discover cell type-specific differential expression on spatial transcrip-170

tomics data, we collected Slide-seqV2 data [2] (including one replicate sourced from a prior study [24])171

for three cerebellum replicates. We identified a spatial map of cell types (Figure 3a), previously shown172

to correspond to known cerebellum spatial architecture [24]. We used discrete localization in the ante-173

rior lobule or nodulus regions (Figure 3b), a known axis of spatial gene expression variation within the174

cerebellum [32], as a covariate and estimated cell type-specific DE across regions using C-SIDE (Fig-175

ure 3c, Supplementary Figure 3, Supplementary Table 1). As experimental validation, we performed176

hybridization chain reaction (HCR) on four genes identified to be differentially expressed in specific177

cell types, and we observed high correspondence between C-SIDE’s estimates of cell type-specific dif-178

ferential expression and DE measurements from HCR data (Figure 3d, R2 = 0.89). For example, we179

examined Aldoc and Plcb4, two genes expressed in both Purkinje and Bergmann cell types, which are180

known to spatially colocalize in the cerebellum and appear as mixtures on Slide-seq pixels [24]. C-181

SIDE determined that both Aldoc (log2-fold-change = −4.24, p < 10−8) and Plcb4 (log2-fold-change182

= 1.93, p < 10−8) were differentially expressed in the Purkinje cell type, but not the Bergmann cell183

type. Similarly, HCR images of Aldoc and Plcb4 showed substantial differential expression within184

Purkinje cells across the nodulus and anterior lobule, whereas expression within Bergmann cells was185

relatively even across regions (Figure 3d–e). We conclude that C-SIDE can successfully identify cell186

type-specific spatial differential expression in spatial transcriptomics tissues, even when multiple cell187

types are spatially colocalized.188

C-SIDE solves a diverse array of differential gene expression problems in189

spatial transcriptomics190

We next explored the effect of discrete cellular microenvironments on cell type-specific DE in the191

mouse testes Slide-seq dataset [12]. C-SIDE’s testes principal cell type assignments (Figure 4a) revealed192

tubular structures corresponding to cross-sectional sampling of seminiferous tubules. Individual tubules193

have distinct stages of spermatogonia development, grouped into four classes of stages I–III, IV–VI,194

VII–VIII, and IX–XII, which were determined from the prior testes Slide-seq study using tubule-195

level gene expression clustering [12] (Figure 4b). Given that each tubule stage represents a distinct196

microenvironment along the testes developmental trajectory, we applied C-SIDE to identify genes197

that were differentially expressed, for each cell type, across tubule stages (Supplementary Table 2).198

Furthermore, C-SIDE identified genes expressed in a single tubule stage within a single cell type (Figure199

4c) which are known drivers of cellular development across stages [12]. For instance, the gene Tnp1200

was identified by C-SIDE as upregulated in the IX–XII stage within the elongating spermatid (ES)201

cell type, in agreement with the known biological role of Tnp1 in nuclear remodeling of elongating202

spermatids at the late tubule stage [33] (Supplementary Figure 4). After identifying stage-specific genes203

within each cell type, we additionally found that a majority of C-SIDE-identified stage-specific genes204

followed cyclic patterns across stages, consistent with previously-characterized cyclic gene regulation205

in what is referred to as the seminiferous epithelial cycle [34] (Supplementary Figure 4).206

Next, we evaluated C-SIDE’s ability to identify DE for cell types that primarily appear as mixtures207

with other cell types, particularly the spermatocyte (SPC) cell type. According to C-SIDE cell type208

assignments, SPC frequently co-mixes with the ES and round spermatid (RS) cell types, consistent209

with the known colocalization of spermatocytes with spermatids from previous histological studies [35]210

(Supplementary Figure 4). Due to C-SIDE’s ability to learn DE from cell type mixtures, C-SIDE211

obtained increased power for identifying differentially expressed genes compared to a DE method that212

only uses single cell type pixels (see Supplementary Methods for details, Supplementary Figure 4),213

especially for spermatocyte cell type (217 significant SPC DE genes discovered by C-SIDE vs. 1 DE214

gene for the single cell method). In order to validate C-SIDE’s determination that Prss40 (log2-215

fold-change = 1.72, p = 8 · 10−5) and Snx3 (log2-fold-change = 1.17, p < 10−8) were differentially216
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expressed, between stage I–III and stage IX–XII, specifically in the SPC cell type, we compared the217

average gene expression for three categories of testes pixels: pixels containing spermatid cell types,218

but not SPC (called S+, SPC-); pixels containing both spermatid and SPC cell types (S+, SPC+);219

and pixels containing SPC but not spermatids (S-, SPC+) (Figure 4d). For both genes, differential220

expression across stages was not observed in (S+, SPC-) pixels, indicating that the spermatid cell221

types do not exhibit DE. However, (S+, SPC+) pixels are significantly differentially expressed across222

stages, enabling C-SIDE to infer DE specifically in the SPC cell type. On the other hand, (S-, SPC+)223

pixels, which include SPC single cells, are not significantly differentially expressed across regions, due224

to their low sample size. Therefore, C-SIDE’s ability to handle cell type mixtures uniquely enables225

the discovery of differential expression, even in cell types that only appear as mixtures with other cell226

types.227

C-SIDE identifies spatial gene expression changes in imaging-based technologies228

Next, we demonstrated the utility of C-SIDE on an imaging-based spatial transcriptomics dataset229

(i.e. MERFISH) which achieves closer to single-cell resolution compared to capture-based spatial230

transcriptomics technologies (e.g. Slide-seq, Visium), which contain frequent cell type mixtures [24].231

To do so, we applied C-SIDE to a MERFISH dataset collected in the mouse hypothalamus. During232

development, hypothalamic progenitors create radial projections out from the hypothalamic midline,233

which are used as scaffolds for the migration of differentiating daughter cells [36]. Thus, we investigated234

radial distance to the hypothalamus midline as a predictor of differential expression in hypothalamus235

cell types. First, we assigned cell types and found them to be consistent with the prior MERFISH236

hypothalamus study [11] (Figure 4e). Although C-SIDE mostly assigned single cell types to MERFISH237

pixels, a non-negligible proportion (12.6% double cell type pixels out of n = 3790 total single and double238

cell type pixels) of pixels were assigned as mixtures of more than one cell type. Next, we computed239

midline distance as a covariate for C-SIDE (Figure 4f), and we next detected genes in hypothalamus240

excitatory, inhibitory, and mature oligodendrocyte cell types whose expression depended either linearly241

or quadratically on distance from the midline (Figure 4g, Supplementary Table 3–4). For instance,242

Slc18a2 (Figure 4h), identified by C-SIDE as differentially upregulated within inhibitory neurons near243

the midline (log2-fold-change = 6.14, p < 10−8), is required for dopaminergic function in certain244

inhibitory neuronal subtypes [37], which are known to localize near the hypothalamus midline [11].245

C-SIDE enables discovery of Aβ plaque-dependent cell type-specific differential expres-246

sion in Alzheimer’s disease247

We next explored the use of pathological staining, in particular Aβ plaques, as a continuous covariate248

for cell type-specific gene expression changes. To do so, we performed Slide-seqV2 on the hippocampal249

region of a genetic mouse model of amyloidosis in Alzheimer’s disease (AD) [38] (J20, n= 4 slices,250

Methods). C-SIDE identified spatial maps of cell types (Figure 4i) which were consistent with past251

characterizations of hippocampus cellular localization [24]. We collected paired Aβ plaque staining252

images (Anti-Human Aβ Mouse IgG antibody, Methods) to quantify the Aβ plaque density to use253

as a covariate for C-SIDE (Figure 4j, Supplementary Figure 5). We then used C-SIDE to identify254

genes whose expression depended in a cell type-specific manner on Aβ plaque density (Figure 4k,255

Supplementary Table 5). For instance, we found that Gfap was enriched in astrocytes colocalizing256

with Aβ plaque (Figure 4l, Supplementary Figure 5, log2-fold-change = 1.35, p < 10−8), a result257

corroborated by studies that have established the role of Gfap in attenuating the proliferation of Aβ258

plaques [39]. C-SIDE additionally discovered upregulation in astrocytes of the C4b complement gene259

(log2-fold-change = .85, p = 1 · 10−4), which is involved in plaque-associated synaptic pruning in260

Alzheimer’s disease [40–42]. Moreover, several cathepsin proteases including Ctsb (log2-fold-change =261

1.65, p < 10−8), Ctsd (log2-fold-change = 1.30, p < 10−8) Ctsl (log2-fold-change = 1.96, p = 4 ·10−6),262

and Ctsz (log2-fold-change = 1.11, p = 3 · 10−4) were determined to be differentially upregulated263

in microglia around plaque, consistent with prior evidence that cathepsins are involved with amyloid264
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degradation in Alzheimer’s disease [43] (Supplementary Figure 5). In microglia, we also identified265

known homeostatic microglia markers [44–46] including P2ry12 (log2-fold-change = −1.33, p < 10−8)266

and Cx3cr1 (log2-fold-change = −0.68, p = 3 ·10−4) as downregulated in the presence of plaque. Apoe,267

which is known to have Aβ plaque-dependent upregulation within microglia [47], was also detected268

as significant (log2-fold-change = 1.58, p < 10−8), although it did not pass default C-SIDE gene269

filters (Methods) due to its four-fold higher expression in astrocytes than microglia. Finally, the270

anti-inflammatory gene Grn was determined by C-SIDE to be upregulated in microglia near plaque271

(log2-fold-change = 0.79, p = 6 · 10−4), consistent with prior knowledge [48].272

C-SIDE discovers tumor-immune signaling in a mouse tumor model273

Finally, we applied C-SIDE to identify genes with cell type-specific spatial differential expression in274

a Slide-seq dataset of a KrasG12D/+ Trp53-/- (KP) mouse tumor model [49, 50], where we analyzed a275

single metastatic lung adenocarcinoma tumor deposit in the liver. We first used C-SIDE to generate276

a spatial map of cell types and found several cell types within the tumor, including both tumor277

cells and myeloid cells (Figure 5a). Next, we ran C-SIDE nonparametrically to discover arbitrary278

smooth gene expression patterns (see Supplementary Methods for details, Supplementary Table 6). For279

gene expression within the tumor cell type, this procedure identified three categories of genes: genes280

with variable expression purely due to sampling noise rather than biology, genes exhibiting biological281

variation partially explained by the spatial C-SIDE model, and genes exhibiting biological variation282

not explained by the spatial model (Figure 5b, Supplementary Figure 6). We then hierarchically283

clustered the C-SIDE fitted spatial patterns of significant differentially expressed genes within the284

tumor cell type into seven clusters with distinct spatial patterns (Figure 5c, Supplementary Figure285

6). We tested each cluster for gene set enrichment (see Supplementary Methods for details), and we286

identified the Myc targets gene set as enriched in cluster 5 (7 out of 12 genes, p = 2 · 10−4, two-287

sided binomial test, Supplementary Table 7, 1 significant gene set out of 50 tested), a cluster with a288

spatial pattern of overexpression at the tumor boundary (Figure 5d). High expression of Myc target289

genes is potentially indicative of an increased rate of proliferation [51] at the boundary, which has290

been previously proposed as a correlate of tumor severity [52]. For example, the Myc target found291

to have the most differential upregulation at the tumor boundary, Kpnb1 (Supplementary Figure 6,292

p = 1 · 10−5), has been previously been identified as an oncogene that drives cell proliferation and293

suppresses apoptosis [53,54].294

Given the substantial variation in tumor cell spatial expression patterns, we next tested if such295

variability could be explained by cell-to-cell interactions with immune cells, which have been shown to296

influence tumor cell behavior in prior studies [55–57]. Using myeloid cell type density as the C-SIDE297

covariate (Figure 5e), C-SIDE identified genes with immune cell density-dependent cell type-specific298

differential expression (Figure 5f, Supplementary Table 8), including several genes that were also299

discovered by our nonparametric procedure (Supplementary Figure 6). One of the genes with the300

largest effects, Ccl2 (log2-fold-change = 1.74, p < 10−8), is a chemotactic signaling molecule known301

to attract myeloid cells [58, 59]. Furthermore, we tested C-SIDE’s DE gene estimates for aggregate302

effects across gene sets and found that the epithelial-mesenchymal transition (EMT) pathway was303

significantly upregulated on average near immune cells (Figure 5f, Supplementary Figure 6, p = 0.0011,304

permutation test (see Methods), 1 significant gene set out of 50 tested, Supplementary Table 7). C-305

SIDE additionally identified Nfkb1 as upregulated in tumor cells in immune-rich regions (log2-fold-306

change = 1.10, p = 1 · 10−5), a gene that has been previously implicated in positively regulating the307

EMT pathway of tumor cells [60,61]. Moreover, the majority of tumor cells exhibiting a mesenchymal308

phenotype were located in immune-rich regions (Figure 5g). Furthermore, morphological analysis and309

annotation of an hematoxylin and eosin (H&E) stained adjacent section of the tumor demonstrated a310

clear increase in the number of spindle-shaped tumor cells relative to polygonal-shaped tumor cells in311

the immune rich-areas (Figure 5h). The collective morphological and gene expression changes suggest312

a role for the immune microenvironment in influencing the epithelial-mesenchymal transition in this313

tumor model [62]. Therefore, both exploratory nonparametric C-SIDE and more targeted immune314

7

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 22, 2022. ; https://doi.org/10.1101/2021.12.26.474183doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.26.474183
http://creativecommons.org/licenses/by-nc-nd/4.0/


cell-dependent DE reveal biologically-relevant signatures of differential gene expression.315

Discussion316

Elucidating spatial sources of differential gene expression is a critical challenge for understanding bio-317

logical mechanisms and disease with spatial transcriptomics. Here we introduced C-SIDE, a statistical318

method to detect cell type-specific DE in spatial transcriptomics datasets. C-SIDE takes as input319

one or more biologically-relevant covariates, such as spatial position or cell type colocalization, and320

identifies genes, for each cell type, that significantly change their expression as a function of these321

covariates. Tested on simulated spatial transcriptomics data, C-SIDE obtained unbiased estimation of322

cell type-specific differential gene expression with a calibrated false positive rate, while other methods323

were biased from changes in cell type proportion or contamination from other cell types. In the cerebel-324

lum, we additionally used HCR experiments to validate C-SIDE’s ability to identify cell type-specific325

DE across regions. We further applied C-SIDE to a detect differential expression depending on tubular326

microenvironment in the testes, midline distance in the MERFISH hypothalamus, and Aβ plaque den-327

sity in the Alzheimer’s model hippocampus. Finally, we applied both nonparametric and parametric328

C-SIDE procedures in a mouse tumor model to discover an increase in tumor cells undergoing EMT329

transition in immune-rich regions.330

Several studies have established the importance of accounting for cell type mixtures in assigning331

cell types in spatial transcriptomics data [24,27,28]. However, it remains a challenge to incorporate cell332

type proportions into models of cell type-specific spatial differential gene expression. C-SIDE enables333

such cell type-specific DE discovery by creating a statistical model of cell type-specific differential gene334

expression in the presence of cell type mixtures. In this study, we demonstrated how other potential335

solutions, such as bulk DE, approximation as single cell types, and decomposition into single cell types336

can be confounded by cell type proportion changes and contamination from other cell types. C-SIDE337

solves these issues by controlling for cell type proportions and jointly considering differential expression338

within each cell type. Even in imaging-based spatial transcriptomics methods such as MERFISH that339

mostly contain single cell type pixels, we detected some pixels with cell type mixtures, indicating340

potential diffusion or imperfect cell segmentation [26]. To control for cell type proportions in DE341

analysis, C-SIDE can estimate cell types directly or import cell type proportions from any cell type342

mixture identification method [24,27,28].343

C-SIDE provides a unified framework for detecting biologically-relevant differential expression in344

spatial transcriptomics tissues along diverse array of axes including spatial distance, proximity to345

pathology, cellular microenvironment, and cell-to-cell interactions. In settings without prior biological346

hypotheses, C-SIDE may be run nonparametrically to discover general cell type-specific spatial gene347

expression patterns. When using problem-specific knowledge to generate biologically-relevant DE348

predictors, parametric C-SIDE efficiently detects DE genes along the parametric hypothesis axes. C-349

SIDE can also be used to test among multiple models of differential expression, such as the linear and350

quadratic models applied to the hypothalamus dataset. C-SIDE can also utilize multiple covariates in351

a joint model of gene expression, such as spatial position and cell type colocalization, although more352

complicated models require more data to fit accurately. Beyond individual samples, C-SIDE can also353

perform differential expression statistical inference at the population level across multiple replicates354

or biological samples, including modeling biological and technical variability in complex multi-sample,355

multi-replicate experiments. Multi-replicate experiments, though more costly, produce more robust356

DE estimates by reducing spurious discoveries of DE on single replicates.357

One challenge for C-SIDE is obtaining sufficient DE detection statistical power, which we observed358

can be hindered by low gene expression counts, small pixel number, or rare cell types. An advan-359

tage of C-SIDE is that it increases its statistical power by including cell type mixture pixels in its360

model. Ongoing technical improvements in spatial transcriptomics technologies [2] such as increased361

gene expression counts, higher spatial resolution, and increased pixel number, have the potential to362

dramatically increase the discovery rate of C-SIDE. Another limitation of C-SIDE is the requirement363
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of an annotated single-cell reference for reference-based identification of cell types in the cell type364

assignment step. Although single-cell atlases are increasingly available for biological tissues, they may365

contain missing cell types or substantial platform effects [24], and certain spatial transcriptomics tissues366

may lack a corresponding single-cell reference.367

We envision C-SIDE to be particularly powerful in the context of bridging cell type-specific gene368

expression changes in pathology. Here, we demonstrate this in two contexts: one, wherein we leverage369

histological features (Aβ plaques) as a covariate, and two, wherein we nominate tumor-immune inter-370

actions as a covariate. In the first, prior Alzheimer’s disease (AD) studies have discovered candidate371

genes for disease-relevance through GWAS [63], bulk RNA and protein differences between AD and372

control samples [64], and single cell expression differences of disease associated cellular subtypes [41].373

Here, with C-SIDE, we identify many genes previously identified by these methods including Gfap374

in astrocytes [39] and Apoe in microglia [47]; furthermore, we take known disease-level associations375

a step further towards mechanistic understanding by directly associating spatial plaque localization376

with cell type-specific differential expression. For example, prior studies have established an associ-377

ation between complement pathway activation in plaque-dense areas with synaptic pruning [40] and378

neuronal degeneration [41] leading to cognitive decline. Using C-SIDE we provide evidence for the379

upregulation of complement protein C4b specifically within plaque-localized astrocytes [65]. Thus,380

amyloid plaques may trigger a cytokine-dependent signaling cascade that stimulates the expression of381

complement genes in astrocytes, as supported by prior studies [42]. In contrast to C4b upregulation,382

homeostatic microglia marker P2ry12, discovered by C-SIDE to be negatively plaque-associated within383

microglia, has been shown to be downregulated in microglia in Alzheimer’s disease (AD), a phenomena384

associated with neuronal cell loss [44]. P2ry12 is involved in early stage nucleotide-dependent acti-385

vation of microglia and is downregulated in later stages of activated microglia [46]. We hypothesize386

that plaque-dense areas in AD trigger microglia activation which downregulates homeostatic microglia387

genes such as P2ry12. Lastly, the granulin gene (Grn), discovered by C-SIDE as upregulated in mi-388

croglia near plaques, is an anti-inflammatory gene that attenuates microglia activation [66]. It has389

been shown to be upregulated in plaque-localized microglia in AD [48] and to potentially have a role in390

reducing plaque deposition and cognitive pathological effects in AD [67] and other pathological protein391

aggregates [68].392

Second, C-SIDE has the potential to elucidate tissue interactions driving system-level behavior in393

complex tissues. For example, recent studies have characterized cell-to-cell interactions of immune394

cells influencing the behavior of tumor cells [55–57]. Consistent with these studies, on a Slide-seq395

dataset of a mouse tumor model, C-SIDE identified several genes whose expression within tumor cells396

was upregulated near myeloid immune cells. We postulate that the tumor cells and myeloid cells397

are involved in a synergistic feedback loop, driven by cell-to-cell signaling. For example, Ccl2, found398

by C-SIDE to be upregulated in immune-adjacent tumor cells, is known to chemotactically recruit399

myeloid cells and to induce pro-tumorigenic behavior, including growth, angiogenesis, and metastasis,400

in myeloid cells [58, 59]. Another synergistic immune-tumor interaction identified by C-SIDE is the401

myeloid-associated upregulation of the epithelial-mesenchymal transition (EMT) pathway, known to402

be involved in tumor development and metastasis [62]. Although C-SIDE established an association403

between immune cell colocalization and mesenchymal-like tumor cell state, conclusive establishment of404

mechanism of causation requires future experimentation. Among other hypotheses, it is plausible that405

myeloid cells induce tumor cells to undergo the EMT transition, potentially through the NF-κB (also406

identified as upregulated by C-SIDE) signaling pathway, as supported by other studies [55–57, 62].407

Future work is necessary to characterize this phenomena across a broader cohort of samples and to408

establish specific molecular mechanisms. Overall, these results highlight the power of combining the C-409

SIDE framework with pathological measurements to understand cell type-specific responses to disease410

and injury. We envision C-SIDE as a powerful framework for the systematic study of the impacts of411

spatial and environmental context on cellular gene expression in spatial transcriptomics data.412
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Methods413

C-SIDE model414

Here, we describe Cell type-Specific Inference of Differential Expression (C-SIDE), a statistical method415

for identifying differential expression (DE) in spatial transcriptomics data. Please first refer to the416

overall definition of the C-SIDE model in equations (1), (2), and (3). Prior to fitting C-SIDE, the417

design matrix x is predefined to contain covariates, variables on which gene expression is hypothesized418

to depend such as spatial position or cellular microenvironment. Recall that xi,`,g represents the419

`’th covariate, evaluated at pixel i in experimental sample g. For each covariate x·,`,g, there is a420

corresponding coefficient α`,k,j,g, representing a gene expression change across pixels per unit change421

of x·,`,g within cell type k of experimental sample g. Next, recall from (2) random effects γj,g and422

εi,j,g, which we assume both follow normal distributions with mean 0 and standard deviations σγ,g423

and σε,j,g, respectively. We designed the overdispersion magnitude, σε,j,g to depend on gene j because424

we found evidence that the overdispersion depends on gene j (Supplementary Figure 7), and modeling425

gene-specific overdispersion is necessary for controlling the false-positive rate of C-SIDE.426

Due to our finding that genes can exhibit DE in some but not all cell types (see e.g. Figure 3c),427

C-SIDE generally does not assume that genes share DE patterns across cell types, allowing for the428

discovery of cell type-specific DE. We also developed an option where DE can be assumed to be shared429

across cell types (Supplementary Methods). We note that C-SIDE can be thought of as a modification430

of the generalized linear model (GLM) [30] in which each cell type follows a cell type-specific log-linear431

model before an additive mixture of all cell types is observed. See Fitting the C-SIDE model and432

Hypothesis testing for C-SIDE model fitting and hypothesis testing, respectively.433

Parameterization of the design matrix434

For specific construction of design matrix x for each dataset, see Cell type estimation and construction435

of covariates. Recall the specific examples of design matrix x presented in Figure 1b. In general, we436

note that x can take on the following numerical forms:437

1. Indicator variable. In this case, xi,`,g is always either 0 or 1. This represents differential expression438

due to membership within a certain spatially-defined pixel set of interest. The coefficient αk,j,g439

is interpreted as the log-ratio of gene expression between the two sets for cell type k and gene j440

in experimental sample g.441

2. Continuous variable. In this case, xi,`,g can take on continuous values representing, for example,442

distance from some feature or density of some element. The coefficient α`,k,j,g is interpreted443

as the log-fold-change of gene expression per unit change in xi,`,g for cell type k and gene j in444

sample g.445

3. Multiple categories. In this case, we use x to encode membership to finitely many L ≥ 2 sets.446

For each 1 ≤ ` ≤ L, we define xi,`,g to be an indicator variable representing membership in set447

` for sample g. To achieve identifiability, the intercept is removed. The coefficient α`,k,j,g is448

interpreted as the average gene expression in set ` for cell type k and gene j. Cell type-specific449

differential expression is determined by detecting changes in α`,k,j,g across ` within cell type k450

and sample g.451

4. Nonparametric. In this case, we use x to represent L smooth basis functions, where linear452

combinations of these basis functions represent the overall smooth gene expression function. By453

default, we use thin plate spline basis functions, calculated using the mgcv package [31].454

In all cases, we normalize each xi,`,g to range between 0 and 1. The problem is equivalent under linear455

transformations of x, but this normalization helps with computational performance. The intercept456

term, when used, is represented in x as a column of 1’s.457
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Fitting the C-SIDE model458

C-SIDE estimates the parameters of (1), (2), and (3) via maximum likelihood estimation. First, we459

note that all parameters and parameter relationships in the model are independent across samples, so460

we fit the model independently for each sample. We will return to the issue of population inference461

across multiple samples in Statistical inference on multiple samples/replicates. Next, the parameters462

of βi,k and γj are estimated by the RCTD algorithm as previously described [24]. We note that C-463

SIDE can also optionally import cell type proportions from external cell type proportion identification464

methods [27,28]. Here, some pixels are identified as single cell types while others as mixtures of multiple465

cell types. We can accurately estimate cell type proportions and platform effects without being aware466

of differential spatial gene expression because differential spatial gene expression is smaller than gene467

expression differences across cell types. After determining cell type proportions, C-SIDE estimates468

gene-specific overdispersion magnitude σε,j,g for each gene by maximum likelihood estimation (see469

Supplementary Methods for details). Finally, C-SIDE estimates the DE coefficients α by maximum470

likelihood estimation. For the final key step of estimating α, we use plugin estimates (denoted by ˆ)471

of β, γ, and σε. After we substitute (3) into (1) and (2), we obtain:472

Yi,j,g | εi,j,g ∼ Poisson

{
Ni,g exp

[
log

(
K∑
k=1

β̂i,k,g exp

(
α0,k,j,g +

L∑
`=1

xi,`,gα`,k,j,g

))
+ γ̂j,g + εi,j,g

]}
(4)

εi,j,g ∼ Normal(0, σ̂2
ε,j,g), (5)

We provide an algorithm for computing the maximum likelihood estimator of α, presented in the473

Supplementary Methods. Our likelihood optimization algorithm is a second-order, trust-region based474

optimization (see Supplementary Methods for details). In brief, we iteratively solve quadratic approx-475

imations of the log-likelihood, adaptively constraining the maximum parameter change at each step.476

Critically, the likelihood is independent for each gene j (and sample g), so separate genes are run in477

parallel in which case there are K × (L+ 1) α parameters per gene and sample.478

Hypothesis testing479

In addition to estimating the vector αj,g (dimensions L + 1 by K) for gene j and sample g, we480

can compute standard errors around αj,g. By asymptotic normality (see Supplementary Methods for481

details), we have approximately that (setting n to be the total number of pixels),482

√
n(α̂j,g − αj,g) ∼ Normal(0, I−1

αj,g
), (6)

where Iαj,g
is the Fisher information of model (4), which is computed in the Supplementary Methods.483

Given this result, we can compute standard errors, confidence intervals, and hypothesis tests. As a484

consequence of (6), the standard error of α`,k,j,g, denoted s`,k,j,g, is
√

(I−1
αj,g )`,k/n.485

First, we consider the case where we are interested in a single parameter, α`,k,j,g, for ` and g fixed486

and for each cell type k and gene j; for example, α`,k,j,g could represent the log-fold-change between487

two discrete regions. In this case, for each gene j, we compute the z-statistic, z`,k,j,g =
α`,k,j,g

s`,k,j,g
.488

Using a two-tailed z-test, we compute a p−value for the null hypothesis that α`,k,j,g = 0 as p`,k,j,g =489

2 ∗ F (−|z`,k,j,g|), where F is the distribution function of the standard Normal distribution. Finally,490

q-values are calculated across all genes within a cell type in order to control the false discovery rate491

using the Benjamini-Hochberg procedure [69]. We used a false discovery rate (FDR) of .01 (0.1 for492

nonparametric case) and a fold-change cutoff of 1.5 (N/A for nonparametric case). Additionally, for493

each cell type, genes were pre-filtered so that the expression within the cell type of interest had a total494

expression of at least 15 unique molecular identifiers (UMIs) over all pixels and at least 50% as large495

mean normalized expression as the expression within each other cell type.496
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For the multi-region case, we instead test for differences of pairs of parameters representing the497

average expression within each region. As a result, p−values are scaled up due to multiple hypothesis498

testing. We select genes which have significant differences between at least one pair of regions. For499

other cases in which we are interested in multiple parameters, for example the nonparametric case, we500

test each parameter individually and scale p-values due to multiple hypothesis testing.501

Statistical inference on multiple samples/replicates502

C-SIDE can be run on either one or multiple biological replicates and/or samples. In the case of503

multiple replicates, we recall αg and sg are the differential expression and standard error for replicate504

g, where 1 ≤ g ≤ G, and G > 1 is the total number of replicates. We now consider testing for505

differential expression across all replicates for covariate `, cell type k, and gene j. In this case, we506

assume that additional biological or technical variation across samples exists, such that each unknown507

αg is normally distributed around a population-level differential expression A, with standard deviation508

τ :509

α`,k,j,g
i.i.d.∼ Normal(A`,k,j , τ

2
`,k,j). (7)

Under this assumption, and using (6) for the distribution of the observed single-sample estimates α̂,510

we derive the following feasible generalized least squares estimator of A (see Supplementary Methods511

for details),512

Â`,k,j :=

∑G
g=1(α̂`,k,j,g)/(τ̂

2
`,k,j + s2

`,k,j,g)∑G
g=1 1/(τ̂2

`,k,j + s2
`,k,j,g)

. (8)

Here, α̂ and s are obtained from C-SIDE estimates on individual samples (see (6)), whereas τ̂2 repre-513

sents the estimated variance across samples (Supplementary Figure 7). Please see the Supplementary514

Methods for additional details such as the method of moments procedure [70] for estimating τ̂2
`,k,j and515

the standard errors of A. Intuitively, our estimate of the population-level differential expression is a516

variance-weighted sum over the DE estimates of individual replicates, and we note that our multiple-517

replicate approach is similar to widely used meta-analysis methods [70, 71]. As we have obtained518

estimates and standard errors of A, these are subsequently used in hypothesis testing for the hypoth-519

esis that A`,k,j = 0 in a manner identical to what is described above in Hypothesis testing for the520

single replicate case. We also derived a version of this estimator for the case where there are multiple521

biological samples and multiple replicates within each sample (Supplementary Methods).522

Collection and preprocessing of scRNA-seq, spatial transcriptomics, amyloid523

beta imaging, and HCR data524

We collected four Alzheimer’s Slide-seq mouse hippocampus sections [38] using the Slide-seqV2 pro-525

tocol [2] (see Supplementary Methods for details) on a female 8.8 month old J20 Alzheimer’s mouse526

model [38]. We used three total Slide-seq mouse cerebellum sections, two collected using the Slide-527

seqV2 protocol, and one section used from a previous study [24]. Recall that data from multiple sections528

is integrated as described in Multiple replicates. The Slide-seq mouse testes and mouse cancer datasets529

were used from recent previous studies [12, 49]. In particular, the tumor dataset represented a single530

KrasG12D/+ Trp53-/- (KP) mouse metastatic lung adenocarcinoma tumor deposit in the liver [50]. The531

MERFISH hypothalamus dataset was obtained from a publicly available study [11]. To identify cell532

types on these datasets, we utilized publicly available single-cell RNA-seq datasets for the testes [72],533

hypothalamus [11], cerebellum [32], cancer [49], and Alzheimer’s hippocampus datasets [73]. All these534

scRNA-seq datasets have previously been annotated by cell type.535

Slide-seq data was preprocessed using the Slide-seq tools pipeline [2]. For all spatial transcriptomics536

datasets, the region of interest (ROI) was cropped prior to running C-SIDE, and spatial transcriptomic537
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spots were filtered to have a minimum of 100 UMIs. We used prior anatomical knowledge to crop the538

ROI from an image of the total UMI counts per pixel across space, which in many cases allows539

one to observe overall anatomical features. For example, in Slide-seq Alzheimer’s hippocampus, the540

somatosensory cortex was cropped out prior to analysis.541

For the Alzheimer’s dataset, in order to test for differential expression with respect to amyloid542

plaques, we collected fluorescent images of DAPI and amyloid beta (Aβ), using IBL America Amyloid543

Beta (N) (82E1) Aβ Anti-Human Mouse IgG MoAb on sections adjacent to the Slide-seq data. We544

co-registered the DAPI image to the adjacent Slide-seq total UMI image using the ManualAlignImages545

function from the STutility R package [74]. To calculate plaque density, plaque images were convolved546

with an exponentially-decaying isotropic filter, using a threshold at the 0.9 quantile, and normalized547

to be between 0 and 1. For each Slide-seq section, plaque density was defined as the average between548

the plaque densities on the two adjacent amyloid sections.549

For in situ RNA hybridization validation of cerebellum DE results, we collected hybridization chain550

reaction (HCR) data on genes Aldoc, Kcnd2, Mybpc1, Plcb4, and Tmem132c (Supplementary Table551

9) using a previously developed protocol [75]. We simultaneously collected cell type marker genes552

of Bergmann (Gdf10 ), granule (Gabra6 ), and Purkinje (Calb1 ) cell types, markers that were sourced553

from a prior cerebellum study [32]. Data from Kcnd2 was removed due to the HCR fluorescent channel554

failing to localize RNA molecules, but rather reflecting tissue autofluorescence. ROIs of nodular and555

anterior regions were cropped, and background, defined as median signal, was subtracted. For this556

data, DE was calculated as the log-fold-change, across ROIs, of average gene signal over the pixels557

within the ROI containing cell type markers of a particular cell type. Pixels containing marker genes of558

multiple cell types were removed. C-SIDE single-sample standard errors in Figure 3d were calculated559

by modeling single-sample variance as the sum of the variance across samples and variance representing560

uncertainty around the population mean.561

Cell type proportion estimation and construction of covariates562

For each dataset, we constructed at least one covariate, an axis along which to test for DE. All563

covariates were scaled linearly to have minimum 0 and maximum 1. For the cerebellum dataset, the564

covariate was defined as an indicator variable representing membership within the nodular region (as565

opposed to the anterior region). The nodular and anterior ROIs were annotated manually from the566

total UMI image, and all other regions were removed. For the testes dataset, the covariate was a567

discrete variable representing the cellular microenvironment of tubule stage, labels that were obtained568

from tubule-level gene expression clustering from the previous Slide-seq testes study [12]. In that study569

and here, tubules are categorized into 4 main stages according to tubule sub-stage groups of stage I–III,570

IV–VI, VII–VIII, and IX–XII. For the cancer dataset, the covariate was chosen to be the density of571

the myeloid cell type. Cell type density was calculated by convolving the cell type locations, weighted572

by UMI number, with an exponential filter. For this dataset, we also ran C-SIDE nonparametrically.573

For the Alzheimer’s hippocampus dataset, the covariate was chosen to be the plaque density, defined574

in Section Collection and preprocessing. For the MERFISH hypothalamus dataset, the covariate was575

defined as distance to the midline, and we also considered quadratic functions of midline distance by576

adding squared distance as an covariate. For the quadratic MERFISH C-SIDE model, we conducted577

hypothesis testing on the quadratic coefficient. To estimate platform effects and cell type proportions,578

RCTD was run on full mode for the testes dataset, and was run on doublet mode for all other datasets579

with default parameters [24].580

Validation with simulated gene expression dataset581

We created a ground truth DE simulation to test C-SIDE on the challenging situation of mixtures582

between two cell type layers. We tested C-SIDE on a dataset of cell type mixtures simulated from583

the cerebellum single-nucleus RNA-seq dataset, which was also used as the reference for cell type584

mapping. We restricted to Purkinje and Bergmann cell types, which are known to spatially colocalize.585
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In order to simulate a cell type mixture of cell types A (Purkinje) and B (Bergmann), we randomly586

chose a cell from each cell type, and sampled a predefined number of UMIs from each cell (total587

1, 000). We defined two discrete spatial regions (Figure 1a), populated with A/B cell type mixtures.588

We varied the mean cell type proportion difference across the two regions and also simulated the case589

of cell type proportions evenly distributed across the two regions. Cell type-specific spatial differential590

gene expression also was simulated across the two regions. To simulate cell type-specific differential591

expression in the gene expression step of the simulation, we multiplicatively scaled the expected gene592

counts within each cell of each cell type. An indicator variable for the two spatial bins was used as the593

C-SIDE covariate.594

Additional computational analysis595

For confidence intervals on data points or groups of data points (Figure 4d, Figure 4g), we used the596

predicted variance of data points from C-SIDE (see Supplementary Methods for details). Likewise, for597

such analysis we used predicted counts from C-SIDE at each pixel (Supplementary Methods). For the598

testes dataset, a cell type was considered to be present on a bead if the proportion of that cell type599

was at least 0.25 (Figure 4d). Additionally, cell type and stage-specific marker genes were defined as600

genes that had a fold-change of at least 1.5 within the cell type of interest compared to each other cell601

type. We also required significant cell type-specific differential expression between the stage of interest602

with all other stages (fold-change of at least 1.5, significance at the level of 0.001, Monte Carlo test on603

Z-scores). Cyclic genes were defined as genes whose minimum expression within a cell type occurred604

two tubule stages away from its maximum expression, up to log-space error of up to 0.25.605

For nonparametric C-SIDE on the tumor dataset, we used hierarchical Ward clustering to cluster606

quantile-normalized spatial gene expression patterns into 7 clusters. For gene set testing on the tumor607

dataset, we tested the 50 hallmark gene sets from the MSigDB database [76] for aggregate effects608

in C-SIDE differential expression estimates for the tumor cell type. For the nonparametric case, we609

used a binomial test with multiple hypothesis correction to test for enrichment of any of the 7 spatial610

clusters of C-SIDE-identified significant genes in any of the 50 gene sets. For the parametric case, we611

used a permutation test on the average value of C-SIDE Z scores for a gene set. That is, we modified612

an existing gene set enrichment procedure [77] by filtering for genes with a fold-change of at least 1.5613

and using a two-sided permutation test rather than assuming normality. In both cases, we filtered614

to gene sets with at least 5 genes and we used Benjamini-Hochberg procedure across all gene sets to615

control the false discovery rate at 0.05. The proportion of variance not due to sampling noise (Figure616

5b) was calculated by considering the difference between observed variance on normalized counts and617

the expected variance due to Poisson sampling noise.618

We considered and tested several simple alternative methods to C-SIDE, which represent general619

classes of approaches. First, we considered a two-sample Z-test on single cells (defined as pixels with620

cell type proportion at least 0.9). Additionally, we tested Bulk differential expression, which estimated621

differential expression as the log-ratio of average normalized gene expression across two regions. The622

Single method of differential expression rounded cell type mixtures to the nearest single cell type and623

computed the log-ratio of gene expression of cells in that cell type. Finally, the Decompose method624

of differential expression used a previously-developed method to compute expected gene expression625

counts for each cell type [24], followed by computing the ratio of cell type-specific gene expression in626

each region.627

Implementation details628

C-SIDE is publicly available as part of the R package https://github.com/dmcable/spacexr. The629

quadratic program that arises in the C-SIDE optimization algorithm is solved using the quadprog630

package in R [78]. Prior to conducting analysis on C-SIDE output, all ribosomal proteins and mi-631

tochondrial genes were filtered out. Additional parameters used for running C-SIDE are shown in632

Supplementary Table 10. C-SIDE was tested on a Macintosh laptop computer with a 2.4 GHz Intel633

14

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 22, 2022. ; https://doi.org/10.1101/2021.12.26.474183doi: bioRxiv preprint 

https://github.com/dmcable/spacexr
https://doi.org/10.1101/2021.12.26.474183
http://creativecommons.org/licenses/by-nc-nd/4.0/


Core i9 processor and 32GB of memory (we recommend at least 4GB of memory to run C-SIDE). For634

example, we timed C-SIDE with four cores on one of the Slide-seq cerebellum replicates, containing635

2, 776 pixels across two regions, 5 cell types, and 4, 812 genes. Under these conditions, C-SIDE ran in636

13 minutes and 47 seconds (excluding the cell type assignment step in which computational efficiency637

has been described previously [24]).638
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Figure 1: Cell type-Specific Inference of Differential Expression learns cell type-specific differential841

expression from spatial transcriptomics data.842

(a) Schematic of the C-SIDE Method. Top: C-SIDE inputs: a spatial transcriptomics dataset with843

observed gene expression (potentially containing cell type mixtures) and a covariate for differential844

expression. Middle: C-SIDE first assigns cell types to the spatial transcriptomics dataset, and845

covariates are defined. Bottom: C-SIDE estimates cell type-specific gene expression along the846

covariate axes.847

(b) Example covariates for explaining differential expression with C-SIDE. Top: Segmentation into848

multiple regions, continuous distance from some feature, or general smooth patterns (nonparamet-849

ric). Bottom: density of interaction with another cell type or pathological feature or a discrete850

covariate representing the cellular microenvironment.851
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fit_df <- exp(fit_df)
norm_df <- sweep(fit_df, 1, apply(fit_df,1,max),'/')
plot_df <- reshape2::melt(norm_df)
colnames(plot_df) <- c('gene', 'region_id', 'expr')
plot_df$region <- ((plot_df$region_id - 1) %% n_regions)+ 1
plot_df$cell_type <- cur_cell_types[floor((plot_df$region_id - 1) / n_regions) + 1]
cur_range = c(0,1)
p <- ggplot(plot_df, aes(region_id, gene, fill = expr)) + geom_tile() +

scale_fill_gradientn(colors = pals::brewer.blues(20)[2:20],name = "Normalized estimated expression", labels = c(0,1),breaks = c(0.001,1)) + theme_classic() + ylab('Gene')+ ggplot2::scale_size_identity() + coord_fixed()
p
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region <- 4
info_1 <- readRDS(file.path(datadir, 'info_1.rds'))
gene_list <- rownames(info_1)[info_1$first_region == region]
final_gene_list <- gene_list
fit_df <- cbind(gene_fits$all_vals[final_gene_list,,1], gene_fits$all_vals[final_gene_list,,2], gene_fits$all_vals[final_gene_list,,3])
fit_df <- exp(fit_df)
norm_df <- sweep(fit_df, 1, apply(fit_df,1,max),'/')
plot_df <- reshape2::melt(norm_df)
colnames(plot_df) <- c('gene', 'region_id', 'expr')
plot_df$region <- ((plot_df$region_id - 1) %% n_regions)+ 1
plot_df$cell_type <- cur_cell_types[floor((plot_df$region_id - 1) / n_regions) + 1]
cur_range = c(0,1)
p <- ggplot(plot_df, aes(region_id, gene, fill = expr)) + geom_tile() +

scale_fill_gradientn(colors = pals::brewer.blues(20)[2:20],name = "Normalized Expression", labels = c(0,1),breaks = c(0,1))
p
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hclust (*, "ward.D")
d
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N_CLUST <- 7
sub_grp <- cutree(hc1, k = N_CLUST)
if(F) {

make_de_plots_predictions(myRCTDde, resultsdir, test_mode = 'direct')
write_de_summary(myRCTDde, resultsdir)

}

Calculate cluster spatial profiles

p <- list()
resultsdir_par <- paste0('../../../DEGLAM/results/ResultsTumor','/')
myRCTDpar = readRDS(paste0(resultsdir_par,'myRCTDde.rds'))
res_genes <- myRCTDpar@de_results$res_gene_list$CAF
over_genes <- tolower(rownames(res_genes[res_genes$log_fc > 0,]))
under_genes <- tolower(rownames(res_genes[res_genes$log_fc < 0,]))
R2_vals <- numeric(N_CLUST)
other_ct <- c('CAF', 'LSEC', 'hepatocyte 2','vascular smooth mc')
R2_vals_mat <- matrix(0, 8, length(other_ct))
colnames(R2_vals_mat) <- other_ct
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Run DEGLAM on cell type proportion simulation

de_ground_truth <- c( 1, 1) #c(1, 1.5) # by Purkinje, Bergmann
de_gene <- Astn2
de_gt_vals <- 2: 8 #cell type proportions

6

ggarrange(p1,p2, nrow=2)
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Difference of mean cell type proportion across regions

Es
tim

at
ed

 c
el

l t
yp

e 
A 

D
E

Method
Bulk

Decompose

C-SIDE

Single

Difference of mean cell type proportion across regions

Es
tim

at
ed

 c
el

l t
yp

e 
B 

D
E

Method
Bulk

Decompose

C-SIDE

Single

Run DEGLAM on null and non-null DE case

gene_list <- rownames(myRCTD@spatialRNA @counts)
N_genes <- 15
for (non_null in c(T,F)) {

9

a)

d)

b) c)

}
de_vals <- (((1:length(cur_gene_list)) - 1)/(length(cur_gene_list) - 1))*2-1
if(non_null) {

e_all <- readRDS(file.path(resultsdir, 'non_null_mean/e_all.rds'))
s_all <- readRDS(file.path(resultsdir, 'non_null_mean/s_all.rds'))

} else {
e_all <- readRDS(file.path(resultsdir, 'null_mean/e_all.rds'))
s_all <- readRDS(file.path(resultsdir, 'null_mean/s_all.rds'))

}
se <- apply(e_all[,2,], 2,sd)/sqrt(REPLICATES)
results <- colMeans(e_all[,2,])
plot_df <- data.frame(cur_gene_list[1:length(results)], results, se, de_vals)
colnames(plot_df) <- c('gene', 'mean', 'se', 'de')
plot_df[,2:4] <- plot_df[,2:4]*log(exp(1),2) # scale to log 2
if(! non_null) {

p <- ggplot(plot_df) + geom_point(aes(x=gene, y = mean)) + geom_errorbar(aes(x=gene,ymin = mean-1.96*se, ymax = mean + 1.96*se))
p

} else {
# + ggrepel::geom_label_repel(aes(label = gene),nudge_x = 0.15,na.rm = TRUE)
p <- ggplot(plot_df,aes(x=de, y = mean)) + geom_point() + geom_errorbar(aes(ymin = mean-1.96*se, ymax = mean + 1.96*se), width = 0.05) + geom_line(aes(x = de, y = de)) + theme_classic() + xlab('True cell type A DE') + ylab('Estimated cell type A DE')
p

}
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Plot null DE results

REPLICATES <- 500
non_null <- F
set.seed(123)
cur_gene_list <- sample(high_genes,N_genes)
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Figure 2: C-SIDE provides unbiased estimates of cell type-specific differential expression in simu-852

lated data.853

All: C-SIDE was tested on a dataset of simulated mixtures of single cells from a single-nucleus854

RNA-seq cerebellum dataset. Differential expression (DE) axes represent DE in log2-space of region 1855

w.r.t. region 0.856

(a) Pixels are grouped into two regions, and genes are simulated with ground truth DE across regions.857

Each region contains pixels containing mixtures of various proportions between cell type A and858

cell type B. The difference in average cell type proportion across regions is varied across simulation859

conditions.860

(b) Mean estimated cell type B Astn2 DE (differential expression) across two regions as a function of861

the difference in mean cell type proportion across regions. Astn2 is simulated with ground truth 0862

spatial DE, and an average of (n = 100) estimates is shown, along with standard errors. Black line863

represents ground truth 0 DE (cell type B). Four methods are shown: Bulk, Decompose, Single,864

and C-SIDE (see Methods for details).865

(c) Same as (b) for Nrxn3 cell type B differential gene expression as a function of DE in cell type A,866

where Nrxn3 is simulated to have DE within cell type A but no DE in cell type B.867

(d) For each significance level, C-SIDE’s false positive rate (FPR), along with ground truth identity868

line (s.e. shown, n = 1500, 15 genes, 100 replicates per gene).869

(e) C-SIDE mean estimated cell type A differential expression vs. true cell type A differential expres-870

sion (average over n = 500 replicates, s.e. shown). Ground truth identity line is shown, and one871

gene is used for the simulation per DE condition (out of 15 total genes).872
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ct_names <- names(max_ct)[max_ct == cell_type]
names(max_ct)[which(max_ct == cell_type)] <- ct_names[order(-ct_plot_df[ct_names,'Z'])]

}
plot_df$gene <- factor(plot_df$gene, levels = names(max_ct))
plot_df$max_ct <- factor(max_ct[plot_df$gene], levels = c('Granule','Purkinje','Bergmann'))
jitter_obj <- position_jitter(width = 0.2, height = 0, seed = 123)
v_line_list <- 2:length(names(max_ct)) - 0.5
plot_df$mean <- plot_df$mean * log(exp(1),2) #convert to log 2
for(cell_type in cell_types) {

cur_df <- plot_df[plot_df$cell_type == cell_type,]
plot_df[plot_df$cell_type == cell_type, 'sig'] <- cur_df$gene %in% gene_final_all[[cell_type]]

}
p <- ggplot(plot_df) + geom_point(aes(x = (gene), y = pmin(Z,15), color = cell_type, size = abs(mean), alpha = sig), position = jitter_obj) +

geom_hline(yintercept=0) + theme_classic()+geom_vline(xintercept=v_line_list, linetype = 'dotted') + facet_grid(. ~ max_ct, scales = "free_x", space = "free_x") + ylab('Cell type-specific Z-score') + xlab('Gene')+ labs(color = "Cell Type", size = "Estimated DE Magnitude")+ theme(axis.text.x = element_text(size=10,angle=30,hjust = 1)) + ggplot2::scale_color_manual("Cell Type",values = my_pal_curr, breaks = c('Astrocytes','Bergmann','Granule','Purkinje','Oligodendrocytes'), labels = c('Astrocytes','Bergmann','Granule','Purkinje','Oligo')) + scale_alpha_manual("", labels = c('Not significant', 'Significant'), values = c(0.5,1))
p
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Plot HCR validation vs RCTDE estimated DE

hcr_estimates <- -c(2.990715, 0.3143165,0.8323186, 0.152781,-1.114702,-0.4867042)
genes <- c('Aldoc', 'Aldoc', 'Mybpc1','Tmem132c','Plcb4', 'Plcb4')
cell_types <- c('Purkinje','Bergmann', 'Bergmann','Granule', 'Purkinje', 'Bergmann')
datadir <- '../../../RCTD/data/SpatialRNA/CerebellumReplicates/JointResults'
de_p <- read.csv(file.path(datadir,

'Purkinje_cell_type_genes.csv'))
rownames(de_p) <- de_p$X
de_b <- read.csv(file.path(datadir,

'Bergmann_cell_type_genes.csv'))
rownames(de_b) <- de_b$X
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N_CLUST <- 7
sub_grp <- cutree(hc1, k = N_CLUST)
if(F) {

make_de_plots_predictions(myRCTDde, resultsdir, test_mode = 'direct')
write_de_summary(myRCTDde, resultsdir)

}

Calculate cluster spatial profiles

p <- list()
resultsdir_par <- paste0('../../../DEGLAM/results/ResultsTumor','/')
myRCTDpar = readRDS(paste0(resultsdir_par,'myRCTDde.rds'))
res_genes <- myRCTDpar@de_results$res_gene_list$CAF
over_genes <- tolower(rownames(res_genes[res_genes$log_fc > 0,]))
under_genes <- tolower(rownames(res_genes[res_genes$log_fc < 0,]))
R2_vals <- numeric(N_CLUST)
other_ct <- c('CAF', 'LSEC', 'hepatocyte 2','vascular smooth mc')
R2_vals_mat <- matrix(0, 8, length(other_ct))
colnames(R2_vals_mat) <- other_ct

2

Visualize cerebellum regions

id <- '08'
puck_no <- paste0('190926_', id)
datadir <- paste0('/Users/dcable/Documents/MIT/Research/Rafalab/Projects/slideseq/Cell Demixing/ContentStructure/RCTD/data/SpatialRNA/CerebellumReplicates/Puck_', '190926_11')
resultsdir <- paste0('/Users/dcable/Documents/MIT/Research/Rafalab/Projects/slideseq/Cell Demixing/ContentStructure/RCTD/data/SpatialRNA/CerebellumReplicates/Puck_', puck_no)
myRCTD<- readRDS(file.path(datadir,'myRCTD_cer_reps.rds'))
load(file.path(datadir,"regions.RData"))
nodular = substr(nodular_08, start=1,stop=nchar(nodular_08)-3)
anterior = substr(anterior_08, start=1,stop=nchar(anterior_08)-3)
explanatory.variable <- c(rep(0,length(nodular_08)), rep(1,length(anterior_08)))#FILL IN
names(explanatory.variable) <- c(nodular_08, anterior_08)
puck <- readRDS(file.path(resultsdir, 'puckCropped.rds'))
region_no <- rep(0, length(names(puck@nUMI)))
names(region_no) <- names(puck@nUMI)
region_no[anterior] <- 1
region_no[nodular] <- 2

p1 <- plot_class(puck, names(region_no), factor(region_no)) + ggplot2::scale_shape_identity() + ggplot2::theme_classic() + ggplot2::scale_size_identity() + coord_fixed() + theme(legend.position="top")+ guides(colour = guide_legend(override.aes = list(size=2)))+ ggplot2::scale_color_manual("Region",values = c('grey','#009E73','#D55E00'), breaks = c(0,1,2), labels = c('Outside ROI','Anterior','Nodulus'))+
scale_x_continuous(breaks = c(1000,3000,5000), limits = c(900,5600)) + scale_y_continuous(breaks = c(1000,3000,5000), limits = c(1000,4900))+ geom_segment(aes(x = 1300, y = 1700, xend = 1684.6, yend = 1700), color = "black")+ theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(), axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())

p1
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1

my_pal = pals::kelly(n_levels+1)[2:(n_levels+1)]
names(my_pal) = iv$cell_type_info[[2]]
my_pal_curr <- my_pal
my_pal_curr["Oligodendrocytes"] <- "#CC79A7"
my_pal_curr["MLI1"] <- "#E69F00"
my_pal_curr["Astrocytes"] <- "#56B4E9"
my_pal_curr["Granule"] <- "#009E73"
my_pal_curr["MLI2"] <- "#F0E442"
my_pal_curr["Bergmann"] <- "#0072B2"
my_pal_curr["Purkinje"] <- "#D55E00"
my_pal_curr["Golgi"] <- "#000000"
my_pal_curr["Endothelial"] <- my_pal["Oligodendrocytes"]
my_pal_curr["Ependymal"] <- my_pal["Purkinje"]
my_pal_curr["Lugaro"] <- my_pal["MLI2"]
pres = unique(as.integer(my_table$class))
pres = pres[order(pres)]
p1 <- ggplot2::ggplot(my_table, ggplot2::aes(x=x, y=y)) + ggplot2::geom_point(ggplot2::aes(size = .1, shape=19,color=class)) + ggplot2::scale_color_manual("",values = my_pal_curr[pres], breaks = c('Astrocytes','Bergmann','Granule','Purkinje','MLI2','Oligodendrocytes','MLI1'), labels = c('Astrocytes','Bergmann','Granule','Purkinje','MLI2','Oligo','MLI1'))+ ggplot2::scale_shape_identity() + ggplot2::theme_classic() + ggplot2::scale_size_identity() + coord_fixed() + theme(legend.position="top")+ guides(colour = guide_legend(override.aes = list(size=2)))+

scale_x_continuous(breaks = c(1000,3000,5000), limits = c(900,5600)) + scale_y_continuous(breaks = c(1000,3000,5000), limits = c(1000,4900))+ geom_segment(aes(x = 1300, y = 1700, xend = 1684.6, yend = 1700), color = "black")+ theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(), axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())
ggarrange(p1)

Astrocytes

Bergmann

Granule

Purkinje

MLI2

Oligo

MLI1

2

a)

d)

b)

e)

c)

geom_hline(yintercept=0, linetype='dashed') + geom_vline(xintercept=0, linetype='dashed') + theme_classic() +
geom_errorbar(aes(ymin = means - 1.96*sds_tot, ymax = means+1.96*sds_tot)) + xlab('Measured cell type-specific DE using HCR') + ylab('Estimated cell type-specific DE using RCTDE') + geom_label_repel(aes(label = genes),nudge_x = 0.15,na.rm = TRUE, show.legend = FALSE)+ ggplot2::scale_color_manual("Cell Type",values = my_pal_curr[c('Bergmann','Granule','Purkinje')], breaks = c('Bergmann','Granule','Purkinje'), labels = c('Bergmann','Granule','Purkinje'))

#geom_text(aes(label = genes), nudge_y = -0.1, show.legend = FALSE)
p

Aldoc

Aldoc

Mybpc1

Tmem132c

Plcb4

Plcb4

−4

−2

0

2

−4 −2 0 2
Measured cell type−specific DE using HCR

Es
tim

at
ed

 c
el

l t
yp

e−
sp

ec
ifi

c 
D

E 
us

in
g 

R
C

TD
E

Cell Type
Bergmann

Granule

Purkinje

6

geom_hline(yintercept=0, linetype='dashed') + geom_vline(xintercept=0, linetype='dashed') + theme_classic() +
geom_errorbar(aes(ymin = means - 1.96*sds_tot, ymax = means+1.96*sds_tot)) + xlab('Measured cell type-specific DE using HCR') + ylab('Estimated cell type-specific DE using RCTDE') + geom_label_repel(aes(label = genes),nudge_x = 0.15,na.rm = TRUE, show.legend = FALSE)+ ggplot2::scale_color_manual("Cell Type",values = my_pal_curr[c('Bergmann','Granule','Purkinje')], breaks = c('Bergmann','Granule','Purkinje'), labels = c('Bergmann','Granule','Purkinje'))

#geom_text(aes(label = genes), nudge_y = -0.1, show.legend = FALSE)
p

Aldoc

Aldoc

Mybpc1

Tmem132c

Plcb4

Plcb4

−4

−2

0

2

−4 −2 0 2
Measured cell type−specific DE using HCR

Es
tim

at
ed

 c
el

l t
yp

e−
sp

ec
ifi

c 
D

E 
us

in
g 

R
C

TD
E

Cell Type
Bergmann

Granule

Purkinje

6

Example Covariate(s)

Two regions

Region

Region

Discrete regions

Position

Continuous distance

Proximity
to     cell type 

Cell-to-cell interaction

Proximity
to     pathology 

Proximity to pathology Cellular microenvironment

Micro-
environment

Smooth spatial pattern

Fitted
Expression

e.g. Figures 2-3 e.g. Figure 4

e.g. Figure 4

e.g. Figure 5

e.g. Figure 5 e.g. Figure 4

Region Outside ROI Anterior Nodulus

Merge samples and test for population-level DE

datadir_list <- c('../../../RCTD/data/SpatialRNA/CerebellumReplicates/Puck_190926_08', '../../../RCTD/data/SpatialRNA/CerebellumReplicates/Puck_190926_09',
'../../../RCTD/data/SpatialRNA/CerebellumReplicates/Puck_190926_11')

cell_types <- c('Astrocytes','Bergmann','Granule','Purkinje','Oligodendrocytes')
cell_types_present <- c('Astrocytes','Bergmann','Granule','Purkinje','MLI1','MLI2','Oligodendrocytes')
resultsdir <- '../../../RCTD/data/SpatialRNA/CerebellumReplicates/JointResults/'
RCTDde_list <- lapply(datadir_list, function(x) readRDS(file.path(x, 'myRCTDde.rds')))

myRCTD <- RCTDde_list[[1]]
de_results_list <- lapply(RCTDde_list, function(x) x@de_results)
de_pop <- get_de_pop(cell_type, de_results_list)
plot_results <- F
if(!dir.exists(resultsdir))

dir.create(resultsdir)
de_pop_all <- list()
gene_final_all <- list()
for(cell_type in cell_types) {

res <- one_ct_genes(cell_type, RCTDde_list, de_results_list, resultsdir, cell_types_present, plot_results = plot_results)
de_pop_all[[cell_type]] <- res$de_pop
gene_final_all[[cell_type]] <- res$gene_final

2

my_pal = pals::kelly(n_levels+1)[2:(n_levels+1)]
names(my_pal) = iv$cell_type_info[[2]]
my_pal_curr <- my_pal
my_pal_curr["Oligodendrocytes"] <- "#CC79A7"
my_pal_curr["MLI1"] <- "#E69F00"
my_pal_curr["Astrocytes"] <- "#56B4E9"
my_pal_curr["Granule"] <- "#009E73"
my_pal_curr["MLI2"] <- "#F0E442"
my_pal_curr["Bergmann"] <- "#0072B2"
my_pal_curr["Purkinje"] <- "#D55E00"
my_pal_curr["Golgi"] <- "#000000"
my_pal_curr["Endothelial"] <- my_pal["Oligodendrocytes"]
my_pal_curr["Ependymal"] <- my_pal["Purkinje"]
my_pal_curr["Lugaro"] <- my_pal["MLI2"]
pres = unique(as.integer(my_table$class))
pres = pres[order(pres)]
p1 <- ggplot2::ggplot(my_table, ggplot2::aes(x=x, y=y)) + ggplot2::geom_point(ggplot2::aes(size = .1, shape=19,color=class)) + ggplot2::scale_color_manual("",values = my_pal_curr[pres], breaks = c('Astrocytes','Bergmann','Granule','Purkinje','MLI2','Oligodendrocytes','MLI1'), labels = c('Astrocytes','Bergmann','Granule','Purkinje','MLI2','Oligo','MLI1'))+ ggplot2::scale_shape_identity() + ggplot2::theme_classic() + ggplot2::scale_size_identity() + coord_fixed() + theme(legend.position="top")+ guides(colour = guide_legend(override.aes = list(size=2)))+

scale_x_continuous(breaks = c(1000,3000,5000), limits = c(900,5600)) + scale_y_continuous(breaks = c(1000,3000,5000), limits = c(1000,4900))+ geom_segment(aes(x = 1300, y = 1700, xend = 1684.6, yend = 1700), color = "black")+ theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(), axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())
ggarrange(p1)
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Figure 3: C-SIDE’s estimated cell type-specific differential expression is validated by HCR-FISH.873

(a) C-SIDE’s spatial map of cell type assignments in the cerebellum Slide-seq dataset. Out of 19 cell874

types, the seven most common appear in the legend. Reproduced from [24]. Three total replicates875

were used to fit C-SIDE.876

(b) Covariate used for C-SIDE, representing the anterior lobule region (green) and nodulus (red).877

Schematic refers to the C-SIDE problem type outlined in Figure 1b.878

(c) C-SIDE Z-score for testing for DE for each gene and for each cell type. Genes are grouped by cell879

type with maximum estimated DE, and estimated DE magnitude appears as size of the points.880

Bold genes appear below in HCR validation.881

(d) Scatterplot of C-SIDE DE estimates vs. HCR measurements for cell type-specific log2 differential882

expression. Positive values indicate gene expression enrichment in the anterior region. Error bars883

represent C-SIDE confidence intervals for predicted DE on a new biological replicate. A dotted884

identity line is shown, and cell types are colored.885

(e) HCR images of Aldoc continuous gene expression. Only pixels with high cell type marker measure-886

ments for Purkinje (left) and Bergmann (right) are shown. Regions of interest (ROIs) of nodulus887

and anterior regions are outlined in green and red, respectively.888

All scale bars 250 microns.889
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#p3 <- ggplot2::ggplot(obs_df,mapping = ggplot2::aes(bin,mean)) + ggplot2::geom_point() + ggplot2::theme_classic() +
# ggplot2::geom_line(ggplot2::aes(bin,pred)) + ggplot2::ggtitle(my_title) + ggplot2::geom_errorbar(aes(ymin = lb, ymax = ub))
results_df[,c('Y','pred','se')] <- results_df[,c('Y','pred','se')]*500 # convert to counts per 500
results_df$region <- (results_df$region - 1)/(NR - 1)

cur_gene_list <- c('Syt2','Ano3','Etv1','Man1a','Htr2c')
#results_df[results_df$gene %in% cur_gene_list,]
p3 <- ggplot2::ggplot(results_df[results_df$gene %in% cur_gene_list,],mapping = ggplot2::aes(x=region,y=log(Y,2), color = gene, linetype = model)) + ggplot2::geom_point() + ggplot2::theme_classic() +

ggplot2::geom_line(ggplot2::aes(region,log(pred,2))) + ggplot2::geom_errorbar(aes(ymin = log(Y - 1.96*se,2), ymax = log(Y + 1.96*se,2)), width = 0.05) + facet_wrap(cell_type ~.) + xlab('Distance from midline') + ylab('Log gene expression') + labs(linetype = 'Model') + scale_color_manual("Gene", breaks = cur_gene_list, labels = cur_gene_list, values = unname(my_pal_curr[c(1,4,6,7,9)]))
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7

plot_df <- plot_df[plot_df$gene[-grep("mt-",plot_df$gene)],]
plot_df['Apoe',] <- c('Apoe','Microglia_Macrophages', 1.095368, 16, TRUE, 'Apoe*') # add in Apoe
plot_df$mean <- as.numeric(plot_df$mean)
plot_df$y <- as.numeric(plot_df$y)
p <- ggplot(plot_df, aes(x=mean*log(exp(1),2), y = y, color = ct, alpha = sig)) + geom_point() + theme_classic() +

geom_vline(xintercept = 0.4*log(exp(1),2), linetype = 'dotted') + geom_vline(xintercept = -0.4*log(exp(1),2), linetype = 'dotted') +
geom_label_repel(aes(label = label),nudge_x = 0.1,na.rm = TRUE, show.legend = F, max.overlaps = 20, label.padding = 0.1) + labs(color = 'Cell Type') + xlab('Estimated cell type-specific DE by RCTDE') + ylab('RCTDE p-value') + scale_y_continuous(lim = c(0,16.01), breaks = c(0,5,10,15),labels = c("10^0", "10^(-5)", "10^(-10)","10^(-15)") ) + ggplot2::scale_color_manual("Cell type",values = my_pal_curr[c('Astrocyte','CA1','CA3','Microglia_Macrophages')], breaks = c('Astrocyte','CA1','CA3','Microglia_Macrophages'), labels = c('Astrocyte','CA1','CA3','Microglia/Macrophages')) + scale_alpha_manual("", labels = c('Not significant', 'Significant'), values = c(0.2,1))
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Make spatial gene plots

myRCTD <- RCTDde_list[[3]]
X2 <- myRCTD@internal_vars_de$X2
gene_fits <- myRCTD@de_results$gene_fits
all_barc <- myRCTD@internal_vars_de$all_barc
my_beta <- myRCTD@internal_vars_de$my_beta
puck <- myRCTD@spatialRNA
for(j in c(1,2)) {

if(j == 1) {
cell_type <- 'Astrocyte'
gene = 'Gfap'

} else {

5

all_barc <- myRCTD@internal_vars_de$all_barc
my_beta <- myRCTD@internal_vars_de$my_beta
puck <- myRCTD@spatialRNA

cell_type <- "Inhibitory"
gene = 'Slc18a2'
barcodes_sing <- names(which(my_beta[all_barc,cell_type] > 0.999))
MULT = 500
density_thresh <- 0.5
barc_plot <- intersect(barcodes_sing,colnames(puck@counts)[puck@nUMI >= 200])
Y_plot <- MULT*puck@counts[gene,]/puck@nUMI
ge_thresh <- 10
my_class <- rep(0,length(barc_plot)); names(my_class) <- barc_plot
my_class[(X2[barc_plot,2] <= density_thresh) & (Y_plot[barc_plot] <= ge_thresh)] <- 2
my_class[(X2[barc_plot,2] <= density_thresh) & (Y_plot[barc_plot] > ge_thresh)] <- 4
my_class[(X2[barc_plot,2] > density_thresh) & (Y_plot[barc_plot] <= ge_thresh)] <- 1
my_class[(X2[barc_plot,2] > density_thresh) & (Y_plot[barc_plot] > ge_thresh)] <- 3
p3 <- plot_class(puck, barc_plot[order(my_class[barc_plot])], factor(my_class)) + ggtitle(gene)
suppressMessages(p3 <- p3 + scale_color_manual(values=c("#CCE2EF","#F6DECC","#0072B2","#D55E00"))+ ggplot2::scale_shape_identity() + ggplot2::theme_classic() + ggplot2::scale_size_identity() + coord_fixed() + theme(legend.position="top")+ guides(colour = guide_legend(override.aes = list(size=2)))+ geom_segment(aes(x = 1934.6, y = -4000, xend = 2184.6, yend = -4000), color = "black") + theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(), axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank()))
p3
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#ggarrange(p1,p2, nrow = 2)

6

#p <- ggplot(results_df, aes(x = category, y = log(pmax(500*Y, 500*10^(-4.5)),2), color = region)) + geom_point(position
# geom_errorbar(aes(ymin = log(pmax(500*(Y - 1.96*se),500*10^(-4.5)),2), ymax = log(500*(Y + 1.96*se),2)), width = 0.2,
# theme_classic() + ylab( Log average expression ) + xlab( Cell types present ) + theme(axis.text.x = element_text(angle=15,hjus

p<- ggplot (results_df, aes ( x = category, y = log ( pmax( 500*Y, 500*10 (̂ - 4.5 )), 2), color = region)) + geom_point
geom_errorbar ( aes ( ymin = log ( pmax( 500* (Y - 1.96 *se), 500*10 (̂ - 4.5 )), 2), ymax = log ( 500* (Y + 1.96 *se), 2)),
theme_classic () + ylab ( Log average expression ) + xlab ( Cell types present ) + scale_color_manual ( "Stage"

p_df <- cbind (results_df, Raw data )
p_df_ 2 <- cbind (results_df, RCTDE model )
p_df_ 2$Y <- p_df_ 2$pred
colnames (p_df_ 2)[ 11] <- model
colnames (p_df)[ 11] <- model
plot_df <- rbind (p_df, p_df_ 2)
p<- ggplot (plot_df, aes ( x = category, y = log ( pmax( 500*Y, 500*10 (̂ - 4.5 )), 2), color = region, shape = model,

geom_errorbar ( data = plot_df[plot_df $model == Raw data ,], aes ( ymin = log ( pmax( 500* (Y - 1.96 *se), 500*
theme_classic () + ylab ( Log average expression ) + xlab ( Cell types present ) + scale_color_manual ( "Stage"
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Plot correlation across cell types

cell_type_ 1 <- 2 ; cell_type_ 2 <- 4
cell_type_ 1 <- 1 ; cell_type_ 2 <- 4
cell_type_ 1 <- 1 ; cell_type_ 2 <- 2
cor_res <- cor_ct_patterns (cell_type_ 1, cell_type_ 2, myRCTDde, cell_types_present, X2, , cur_cell_types)
hist (cor_res $res_n)

9

#p <- ggplot(results_df, aes(x = category, y = log(pmax(500*Y, 500*10^(-4.5)),2), color = region)) + geom_point(position
# geom_errorbar(aes(ymin = log(pmax(500*(Y - 1.96*se),500*10^(-4.5)),2), ymax = log(500*(Y + 1.96*se),2)), width = 0.2,
# theme_classic() + ylab( Log average expression ) + xlab( Cell types present ) + theme(axis.text.x = element_text(angle=15,hjus

p<- ggplot (results_df, aes ( x = category, y = log ( pmax( 500*Y, 500*10 (̂ - 4.5 )), 2), color = region)) + geom_point
geom_errorbar ( aes ( ymin = log ( pmax( 500* (Y - 1.96 *se), 500*10 (̂ - 4.5 )), 2), ymax = log ( 500* (Y + 1.96 *se), 2)),
theme_classic () + ylab ( Log average expression ) + xlab ( Cell types present ) + scale_color_manual ( "Stage"

p_df <- cbind (results_df, Raw data )
p_df_ 2 <- cbind (results_df, RCTDE model )
p_df_ 2$Y <- p_df_ 2$pred
colnames (p_df_ 2)[ 11] <- model
colnames (p_df)[ 11] <- model
plot_df <- rbind (p_df, p_df_ 2)
p<- ggplot (plot_df, aes ( x = category, y = log ( pmax( 500*Y, 500*10 (̂ - 4.5 )), 2), color = region, shape = model,

geom_errorbar ( data = plot_df[plot_df $model == Raw data ,], aes ( ymin = log ( pmax( 500* (Y - 1.96 *se), 500*
theme_classic () + ylab ( Log average expression ) + xlab ( Cell types present ) + scale_color_manual ( "Stage"
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Plot correlation across cell types

cell_type_ 1 <- 2 ; cell_type_ 2 <- 4
cell_type_ 1 <- 1 ; cell_type_ 2 <- 4
cell_type_ 1 <- 1 ; cell_type_ 2 <- 2
cor_res <- cor_ct_patterns (cell_type_ 1, cell_type_ 2, myRCTDde, cell_types_present, X2, , cur_cell_types)
hist (cor_res $res_n)
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fit_df <- exp(fit_df)
norm_df <- sweep(fit_df, 1, apply(fit_df,1,max),'/')
plot_df <- reshape2::melt(norm_df)
colnames(plot_df) <- c('gene', 'region_id', 'expr')
plot_df$region <- ((plot_df$region_id - 1) %% n_regions)+ 1
plot_df$cell_type <- cur_cell_types[floor((plot_df$region_id - 1) / n_regions) + 1]
cur_range = c(0,1)
p <- ggplot(plot_df, aes(region_id, gene, fill = expr)) + geom_tile() +

scale_fill_gradientn(colors = pals::brewer.blues(20)[2:20],name = "Normalized estimated expression", labels = c(0,1),breaks = c(0.001,1)) + theme_classic() + ylab('Gene')+ ggplot2::scale_size_identity() + coord_fixed()
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region <- 4
info_1 <- readRDS(file.path(datadir, 'info_1.rds'))
gene_list <- rownames(info_1)[info_1$first_region == region]
final_gene_list <- gene_list
fit_df <- cbind(gene_fits$all_vals[final_gene_list,,1], gene_fits$all_vals[final_gene_list,,2], gene_fits$all_vals[final_gene_list,,3])
fit_df <- exp(fit_df)
norm_df <- sweep(fit_df, 1, apply(fit_df,1,max),'/')
plot_df <- reshape2::melt(norm_df)
colnames(plot_df) <- c('gene', 'region_id', 'expr')
plot_df$region <- ((plot_df$region_id - 1) %% n_regions)+ 1
plot_df$cell_type <- cur_cell_types[floor((plot_df$region_id - 1) / n_regions) + 1]
cur_range = c(0,1)
p <- ggplot(plot_df, aes(region_id, gene, fill = expr)) + geom_tile() +

scale_fill_gradientn(colors = pals::brewer.blues(20)[2:20],name = "Normalized Expression", labels = c(0,1),breaks = c(0,1))
p
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Cluster Dendrogram

hclust (*, "ward.D")
d

Height

N_CLUST <- 7
sub_grp <- cutree(hc1, k = N_CLUST)
if(F) {

make_de_plots_predictions(myRCTDde, resultsdir, test_mode = 'direct')
write_de_summary(myRCTDde, resultsdir)

}

Calculate cluster spatial profiles

p <- list()
resultsdir_par <- paste0('../../../DEGLAM/results/ResultsTumor','/')
myRCTDpar = readRDS(paste0(resultsdir_par,'myRCTDde.rds'))
res_genes <- myRCTDpar@de_results$res_gene_list$CAF
over_genes <- tolower(rownames(res_genes[res_genes$log_fc > 0,]))
under_genes <- tolower(rownames(res_genes[res_genes$log_fc < 0,]))
R2_vals <- numeric(N_CLUST)
other_ct <- c('CAF', 'LSEC', 'hepatocyte 2','vascular smooth mc')
R2_vals_mat <- matrix(0, 8, length(other_ct))
colnames(R2_vals_mat) <- other_ct
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fit_df <- exp(fit_df)
norm_df <- sweep(fit_df, 1, apply(fit_df,1,max),'/')
plot_df <- reshape2::melt(norm_df)
colnames(plot_df) <- c('gene', 'region_id', 'expr')
plot_df$region <- ((plot_df$region_id - 1) %% n_regions)+ 1
plot_df$cell_type <- cur_cell_types[floor((plot_df$region_id - 1) / n_regions) + 1]
cur_range = c(0,1)
p <- ggplot(plot_df, aes(region_id, gene, fill = expr)) + geom_tile() +

scale_fill_gradientn(colors = pals::brewer.blues(20)[2:20],name = "Normalized estimated expression", labels = c(0,1),breaks = c(0.001,1)) + theme_classic() + ylab('Gene')+ ggplot2::scale_size_identity() + coord_fixed()
p
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region <- 4
info_1 <- readRDS(file.path(datadir, 'info_1.rds'))
gene_list <- rownames(info_1)[info_1$first_region == region]
final_gene_list <- gene_list
fit_df <- cbind(gene_fits$all_vals[final_gene_list,,1], gene_fits$all_vals[final_gene_list,,2], gene_fits$all_vals[final_gene_list,,3])
fit_df <- exp(fit_df)
norm_df <- sweep(fit_df, 1, apply(fit_df,1,max),'/')
plot_df <- reshape2::melt(norm_df)
colnames(plot_df) <- c('gene', 'region_id', 'expr')
plot_df$region <- ((plot_df$region_id - 1) %% n_regions)+ 1
plot_df$cell_type <- cur_cell_types[floor((plot_df$region_id - 1) / n_regions) + 1]
cur_range = c(0,1)
p <- ggplot(plot_df, aes(region_id, gene, fill = expr)) + geom_tile() +

scale_fill_gradientn(colors = pals::brewer.blues(20)[2:20],name = "Normalized Expression", labels = c(0,1),breaks = c(0,1))
p
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hclust (*, "ward.D")
d

Height

N_CLUST <- 7
sub_grp <- cutree(hc1, k = N_CLUST)
if(F) {

make_de_plots_predictions(myRCTDde, resultsdir, test_mode = 'direct')
write_de_summary(myRCTDde, resultsdir)

}

Calculate cluster spatial profiles

p <- list()
resultsdir_par <- paste0('../../../DEGLAM/results/ResultsTumor','/')
myRCTDpar = readRDS(paste0(resultsdir_par,'myRCTDde.rds'))
res_genes <- myRCTDpar@de_results$res_gene_list$CAF
over_genes <- tolower(rownames(res_genes[res_genes$log_fc > 0,]))
under_genes <- tolower(rownames(res_genes[res_genes$log_fc < 0,]))
R2_vals <- numeric(N_CLUST)
other_ct <- c('CAF', 'LSEC', 'hepatocyte 2','vascular smooth mc')
R2_vals_mat <- matrix(0, 8, length(other_ct))
colnames(R2_vals_mat) <- other_ct

2

fit_df
<-

exp(fit_df)
norm_df

<-
sweep(fit_df,

1,
apply(fit_df,1,max),'/')

plot_df
<-

reshape2::melt(norm_df)
colnames(plot_df)

<-
c('gene',

'region_id',
'expr')

plot_df$region
<-

((plot_df$region_id
-

1)
%%

n_regions)+
1

plot_df$cell_type
<-

cur_cell_types[floor((plot_df$region_id
-

1)
/

n_regions)
+

1]
cur_range

=
c(0,1)

p
<-

ggplot(plot_df,
aes(region_id,

gene,
fill

=
expr))

+
geom_tile()

+
scale_fill_gradientn(colors

=
pals::brewer.blues(20)[2:20],name

=
"Normalized

estimated
expression",

labels
=

c(0,1),breaks
=

c(0.001,1))
+

theme_classic()
+

ylab('Gene')+
ggplot2::scale_size_identity()

+
coord_fixed()

p
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region
<-

4
info_1

<-
readRDS(file.path(datadir,

'info_1.rds'))
gene_list

<-
rownames(info_1)[info_1$first_region

==
region]

final_gene_list
<-

gene_list
fit_df

<-
cbind(gene_fits$all_vals[final_gene_list,,1],

gene_fits$all_vals[final_gene_list,,2],
gene_fits$all_vals[final_gene_list,,3])

fit_df
<-

exp(fit_df)
norm_df

<-
sweep(fit_df,

1,
apply(fit_df,1,max),'/')

plot_df
<-

reshape2::melt(norm_df)
colnames(plot_df)

<-
c('gene',

'region_id',
'expr')

plot_df$region
<-

((plot_df$region_id
-

1)
%%

n_regions)+
1

plot_df$cell_type
<-

cur_cell_types[floor((plot_df$region_id
-

1)
/

n_regions)
+

1]
cur_range

=
c(0,1)

p
<-

ggplot(plot_df,
aes(region_id,

gene,
fill

=
expr))

+
geom_tile()

+
scale_fill_gradientn(colors

=
pals::brewer.blues(20)[2:20],name

=
"Normalized

Expression",
labels

=
c(0,1),breaks

=
c(0,1))

p
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plot_df <- plot_df[plot_df$gene[-grep("mt-",plot_df$gene)],]
plot_df['Apoe',] <- c('Apoe','Microglia_Macrophages', 1.095368, 16, TRUE, 'Apoe*') # add in Apoe
plot_df$mean <- as.numeric(plot_df$mean)
plot_df$y <- as.numeric(plot_df$y)
p <- ggplot(plot_df, aes(x=mean*log(exp(1),2), y = y, color = ct, alpha = sig)) + geom_point() + theme_classic() +

geom_vline(xintercept = 0.4*log(exp(1),2), linetype = 'dotted') + geom_vline(xintercept = -0.4*log(exp(1),2), linetype = 'dotted') +
geom_label_repel(aes(label = label),nudge_x = 0.1,na.rm = TRUE, show.legend = F, max.overlaps = 20, label.padding = 0.1) + labs(color = 'Cell Type') + xlab('Estimated cell type-specific DE by RCTDE') + ylab('RCTDE p-value') + scale_y_continuous(lim = c(0,16.01), breaks = c(0,5,10,15),labels = c("10^0", "10^(-5)", "10^(-10)","10^(-15)") ) + ggplot2::scale_color_manual("Cell type",values = my_pal_curr[c('Astrocyte','CA1','CA3','Microglia_Macrophages')], breaks = c('Astrocyte','CA1','CA3','Microglia_Macrophages'), labels = c('Astrocyte','CA1','CA3','Microglia/Macrophages')) + scale_alpha_manual("", labels = c('Not significant', 'Significant'), values = c(0.2,1))
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Make spatial gene plots

myRCTD <- RCTDde_list[[3]]
X2 <- myRCTD@internal_vars_de$X2
gene_fits <- myRCTD@de_results$gene_fits
all_barc <- myRCTD@internal_vars_de$all_barc
my_beta <- myRCTD@internal_vars_de$my_beta
puck <- myRCTD@spatialRNA
for(j in c(1,2)) {

if(j == 1) {
cell_type <- 'Astrocyte'
gene = 'Gfap'

} else {

5

plot_df <- plot_df[plot_df$gene[-grep("mt-",plot_df$gene)],]
plot_df['Apoe',] <- c('Apoe','Microglia_Macrophages', 1.095368, 16, TRUE, 'Apoe*') # add in Apoe
plot_df$mean <- as.numeric(plot_df$mean)
plot_df$y <- as.numeric(plot_df$y)
p <- ggplot(plot_df, aes(x=mean*log(exp(1),2), y = y, color = ct, alpha = sig)) + geom_point() + theme_classic() +

geom_vline(xintercept = 0.4*log(exp(1),2), linetype = 'dotted') + geom_vline(xintercept = -0.4*log(exp(1),2), linetype = 'dotted') +
geom_label_repel(aes(label = label),nudge_x = 0.1,na.rm = TRUE, show.legend = F, max.overlaps = 20, label.padding = 0.1) + labs(color = 'Cell Type') + xlab('Estimated cell type-specific DE by RCTDE') + ylab('RCTDE p-value') + scale_y_continuous(lim = c(0,16.01), breaks = c(0,5,10,15),labels = c("10^0", "10^(-5)", "10^(-10)","10^(-15)") ) + ggplot2::scale_color_manual("Cell type",values = my_pal_curr[c('Astrocyte','CA1','CA3','Microglia_Macrophages')], breaks = c('Astrocyte','CA1','CA3','Microglia_Macrophages'), labels = c('Astrocyte','CA1','CA3','Microglia/Macrophages')) + scale_alpha_manual("", labels = c('Not significant', 'Significant'), values = c(0.2,1))
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Make spatial gene plots

myRCTD <- RCTDde_list[[3]]
X2 <- myRCTD@internal_vars_de$X2
gene_fits <- myRCTD@de_results$gene_fits
all_barc <- myRCTD@internal_vars_de$all_barc
my_beta <- myRCTD@internal_vars_de$my_beta
puck <- myRCTD@spatialRNA
for(j in c(1,2)) {

if(j == 1) {
cell_type <- 'Astrocyte'
gene = 'Gfap'

} else {
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Figure 4: C-SIDE discovers cell type-specific differential expression in a diverse set of problems on890

testes, Alzheimer’s hippocampus, and hypothalamus datasets.891

All panels: results of C-SIDE on the Slide-seqV2 testes (left column), MERFISH hypothalamus892

(middle column), and Slide-seqV2 Alzheimer’s hippocampus (right column). Schematics in b,f,j refer-893

ence C-SIDE problem types (Figure 1b).894

(a) C-SIDE’s spatial map of cell type assignments in testes. All cell types are shown, and the most895

common cell types appear in the legend.896

(b) Covariate used for C-SIDE in testes: four discrete tubule stages.897

(c) Cell type and tubule stage-specific genes identified by C-SIDE. C-SIDE estimated expression is898

standardized between 0 and 1 for each gene. Columns represent C-SIDE estimates for each cell899

type and tubule stage.900

(d) Log2 average expression (in counts per 500 (CP500)) of pixels grouped based on tubule stage and901

presence or absence of spermatid (S) cell types (defined as elongating spermatid (ES) or round902

spermatid (RS)) and/or spermatocyte (SPC) cell type. Circles represent raw data averages while903

triangles represent C-SIDE predictions, and error bars around circular points represent ± 1.96 s.d.904

(Supplementary methods). Genes Prss40 and Snx3 are shown on left and right, respectively.905

(e) Same as (a) for hypothalamus.906

(f) Covariate used for C-SIDE in hypothalamus: continuous distance from midline.907

(g) Log2 average expression (in counts per 500 (CP500)) of genes identified to be significantly differen-908

tially expressed by C-SIDE for each of the excitatory, inhibitory, and mature oligodendrocyte cell909

types. Single cell type pixels are binned according to distance from midline, and points represent910

raw data averages while lines represents C-SIDE predictions and error bars around points represent911

± 1.96 s.d. (Supplementary methods).912

(h) Spatial visualization of Slc18a2, whose expression within inhibitory neurons was identified by C-913

SIDE to depend on midline distance. Red/blue represents inhibitory neurons close/far to midline,914

respectively. Bold points inhibitory neurons expressing Slc18a2 at a level of at least 10 counts per915

500.916

(i) Same as (a) for Alzheimer’s hippocampus, where four total replicates were used to fit C-SIDE.917

(j) Covariate used for C-SIDE in Alzheimer’s hippocampus: continuous density of beta-amyloid (Aβ)918

plaque.919

(k) Volcano plot of C-SIDE differential expression results in log2-space, with positive values corre-920

sponding to plaque-upregulated genes. Color represents cell type, and a subset of significant genes921

are labeled. Dotted lines represents 1.5x fold-change cutoff used for C-SIDE. (*): Apoe didn’t pass922

default C-SIDE gene filters(Methods) because 4x higher expression in astrocytes than microglia.923

(l) Spatial visualization of Gfap, whose expression within astrocytes was identified by C-SIDE to924

depend on plaque density. Red/blue represents the astrocytes in high/low plaque density areas,925

respectively. Bold points represent astrocytes expressing Gfap at a level of at least 1 count per926

500.927

All scale bars 250 microns.928
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Figure 5: C-SIDE enables the discovery of differentially expressed pathways in a KrasG12D/+
929

Trp53-/- (KP) mouse model.930

All panels: C-SIDE was run on multiple cell types, but plots represent C-SIDE results on the tumor931

cell type.Nonparametric C-SIDE results are shown in panels b–d, while parametric C-SIDE results are932

shown in panels e–h.933

(a) C-SIDE’s spatial map of cell type assignments. Out of 14 cell types, the five most common appear934

in the legend.935

(b) Scatter plot of C-SIDE R2 and overdispersion (defined as proportion of variance not due to sam-936

pling noise) for nonparametric C-SIDE results on the tumor cell type. Identity line is shown,937

representing the maximum possible variance that could be explained by any model.938

(c) Dendrogram of hierarchical clustering of (n = 162 significant genes) C-SIDE’s fitted smooth spa-939

tial patterns at the resolution of 7 clusters. Each spatial plot represents the average fitted gene940

expression patterns over the genes in each cluster.941

(d) Moving average plot of C-SIDE fitted gene expression (normalized to expression at center) as a942

function of distance from the center of the tumor for 12 genes in the Myc targets pathway identified943

to be significantly spatially differentially expressed by C-SIDE.944

(e) Covariate used for parametric C-SIDE: continuous density of myeloid cell types in the tumor.945

Schematic refers to C-SIDE problem type (Figure 1b).946

(f) Volcano plot of C-SIDE log2 differential expression results on the tumor cell type with positive947

values representing upregulation in the presence of myeloid immune cells. A subset of significant948

genes are labeled, and dotted lines represent 1.5x fold-change cutoff.949

(g) Spatial plot of total expression in tumor cells of the 9 differentially expressed epithelial-mesenchymal950

transition (EMT) genes identified by C-SIDE in (f). Red represents the tumor cells in high myeloid951

density areas, whereas blue represents tumor cells in regions of low myeloid density. Bold points952

represent tumor cells expressing these EMT genes at a level of at least 2.5 counts per 500.953

(h) Hematoxylin and eosin (H&E) image of adjacent section of the tumor. Left: mesenchymal (green),954

necrosis (red), and epithelial (blue) annotated tumor regions, with dotted boxes representing ep-955

ithelial and mesenchymal areas of focus for the other two panels. Middle/right: enlarged images956

of epithelial (middle) or mesenchymal (right) regions. Red arrows point to example tumor cells957

with epithelial (middle) or mesenchymal (right) morphology.958

All scale bars 250 microns, except for (h) middle/right, which has 50 micron scale bars.959
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Supplementary Methods960

Introduction and model definition961

We now revisit our Cell type-Specific Inference of Differential Expression (C-SIDE) model at an in-962

creased level of detail. Recall the following definition of the C-SIDE model, where for each pixel963

i = 1, . . . , I in the spatial transcriptomics dataset, we denote the observed gene expression counts as964

Yi,j,g for each gene j = 1, . . . , J and experimental sample g = 1, . . . , G:965

Yi,j,g | λi,j,g ∼ Poisson(Ni,gλi,j,g) (9)

log(λi,j,g) = log

(
K∑
k=1

βi,k,gµi,k,j,g

)
+ γj,g + εi,j,g,

with Ni,g the total transcript count or number of unique molecular identifies (UMIs) for pixel i and966

sample g, K the number of cell types present in our dataset, µk,j,g the mean gene expression profile for967

cell type k and gene j and sample g, βi,k,g the proportion of the contribution of cell type k to pixel i968

in sample g, γj,g a gene-specific platform random effect, and εi,j,g a random effect to account for other969

technical and biological sources of variation. We assume γj,g and εi,j,g both follow normal distributions970

with mean 0 and standard deviation σγ,g and σε,j,g, respectively. Lastly, µi,k,j,g represents the average971

gene expression of gene j in cell type k at pixel location i in sample g. We model µi,k,j,g, for each gene972

j, each cell type k, and each sample g as depending log-linearly on several covariates, x:973

log(µi,k,j,g) = α2,0,k,j,g +

L1∑
`=1

x1,i,`,gα1,`,j,g +

L2∑
`=1

x2,i,`,gα2,`,k,j,g. (10)

More specifically, we split our covariates into two sets (of sizes L1 and L2). The first set, x1,i,`,g, share974

coefficients across cell types, while the second set, x2,i,`,g, has a different coefficient for each cell type.975

This notation is different from the presentation of C-SIDE in the main methods section, in which x1976

was not present and no coefficients were shared across cell types. In practice, we do not typically977

assume that differential expression is shared across cell types (that is, x1,i,`,g is not used), but x1 is978

included here as an optional feature. We have x·,i,`,g representing the `’th covariate, evaluated at979

pixel i in sample g. In all cases, x is pre-determined to contain variables on which gene expression is980

hypothesized to depend.981

For each covariate x, there is a corresponding coefficient α. More precisely, α1,`,j,g represents a982

gene expression change per unit change of x1,i,`,g for gene j in sample g. Note that this coefficient is983

the same across all cell types. On the other hand, α2,`,k,j,g represents a gene expression change per984

unit change of x2,i,`,g specific to cell type k in sample g. Finally, α2,0,k,j,g represents the intercept985

term for gene j and cell type k in sample g. For ease of notation, we will sometimes use α1,`,k,j,g986

to equal α1,`,j,g for all k. Moreover, we will use α to refer to the joint vector of both α1 and α2.987

The parameters α are estimated by C-SIDE by maximum likelihood. C-SIDE also obtains standard988

errors for each coefficient α. These standard errors are subsequently used for confidence intervals and989

hypothesis testing.990

Maximum Likelihood Estimation991

C-SIDE estimates the parameters of (9) via maximum likelihood estimation. First, we note that all992

parameters in the model are independent across samples. As such, we fit the model independently993

for each sample, and we now drop the subscript of sample g for notational convenience. We will994

return to the issue of integrating results across multiple samples in Multiple replicates. First, the995

parameters βi,k and γj are estimated by the RCTD algorithm as previously described [24]. We can996

accurately estimate cell type proportions and platform effects without being aware of differential spatial997

32

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 22, 2022. ; https://doi.org/10.1101/2021.12.26.474183doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.26.474183
http://creativecommons.org/licenses/by-nc-nd/4.0/


gene expression because differential spatial gene expression is smaller than gene expression differences998

across cell types. After identifying cell types, C-SIDE estimates gene-specific overdispersion σε,j for999

each gene by maximum likelihood estimation (see Fitting the overdispersion parameter). Finally, C-1000

SIDE estimates the parameters α1,`,j and α2,`,k,j by maximum likelihood estimation. For the final key1001

step of estimating α, we use plugin estimates (denoted by ˆ) of βi,k, γj , and σε. After we substitute1002

(10) into (9), we obtain:1003

Yi,j | εi,j ∼ Poisson

Ni exp

log
 K∑

k=1

β̂i,k exp

α2,0,k,j +

L1∑
`=1

x1,i,`α1,`,j +

L2∑
`=1

x2,i,`α2,`,k,j

+ γ̂j + εi,j

 (11)

εi,j ∼ Normal(0, σ̂2
ε,j), (12)

Now, we provide an algorithm for computing the maximum likelihood estimator of α. Our likelihood1004

optimization algorithm is a second-order, trust-region based optimization. In brief, we iteratively1005

solve quadratic approximations of the log-likelihood, adaptively constraining the maximum parameter1006

change at each step. Critically, the likelihood is independent for each gene, so separate genes can be1007

run in parallel.1008

Now, we consider the computation of the maximum likelihood estimator (MLE) of α for the likeli-1009

hood L(α) of observing Yi for 1 ≤ i ≤ I, using the assumption that measurements on separate pixels1010

are independent. We define the predicted counts at pixel i as λ̄i(α), where,1011

log(λ̄i(α)) := log

(
Ni

K∑
k=1

β̂i,kµi,k

)
+ γ̂. (13)

From now on, we will drop the constant term γ̂, as it can be equivalently factored into the µ intercept1012

term. Next, we can use (9) to compute the likelihood of the C-SIDE model,1013

L(α) =

I∑
i=1

logP (Yi | λ̄i(α)) =

I∑
i=1

logQYi(λ̄i(α)), (14)

where we have introduced the function Q to represent the probability, under our Poisson-log-normal1014

sampling model, of observing Yi counts given predicted counts λi(α),1015

Q`(λ) ≡
∫ ∞
−∞

pσε(z)e−λe
z (ezλ)`

`!
dz, (15)

where pσε
is the normal distribution pdf with standard deviation σε. To optimize our likelihood, we1016

develop a second-order trust-region optimization method [79], in which sequential quadratic approx-1017

imations are optimized within a trust region, whose size is determined adaptively. To do so, we first1018

initialize α as α0, which is set to 0 for intercept terms, and −5 for non-intercept terms. Additionally,1019

we initialize the trust-region width, δ, as δ0 = 0.1. At step n + 1 of the algorithm, with previous1020

parameters αn and δn, we make the following quadratic Taylor approximation, L̃n to L,1021

−L(α) ≈ −L̃n := −L(αn) + b(αn)T (α− αn) +
1

2
(α− αn)TA(αn)(α− αn), (16)

where b and A represent the gradient and Hessian of−L, respectively, which are computed below. Next,1022

we define α∗n as the solution to the following optimization problem of this quadratic approximation1023

over the trust region:1024

min
α

b(αn)T (α− αn) +
1

2
(α− αn)TA(αn)(α− αn)

s.t. |αj − αn,j | ≤ δn for 1 ≤ j ≤ length(α)
(17)
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This quadratic program is solved using the quadprog package in R [78]. Next, we define αn+1 as:1025

αn+1 :=

{
α∗n, L(α∗n)− L(αn) ≥ γ(L̃n(α∗n)− L̃n(αn))

αn, L(α∗n)− L(αn) < γ(L̃n(α∗n)− L̃n(αn)),
(18)

where γ = 0.1. Additionally, the trust region is updated as:1026

δn+1 :=

{
βsuccδn, L(α∗n)− L(αn) ≥ γ(L̃n(α∗n)− L̃n(αn))

βfailδn, L(α∗n)− L(αn) < γ(L̃n(α∗n)− L̃n(αn)),
(19)

where βsucc = 1.1 and βfail = 0.5, which, along with γ, were chosen by a combination of using standard1027

parameter choices [79] and ensuring efficient and stable convergence to local minima. Intuitively, the1028

quadratic approximation L̃n will only be accurate within a local region, and the trust region is intended1029

to empirically approximate that region. In order to test whether our local approximation is accurate,1030

we check whether the predicted gain in log-likelihood, L̃n(α∗n) − L̃n(αn), is close to the true gain in1031

log-likelihood, L(α∗n)−L(αn), within a factor of γ. If the local approximation is indeed accurate, the1032

algorithm takes a step, and the trust region is allowed to grow. If not, the algorithm stays put, and the1033

trust region shrinks. This prevents the algorithm from diverging due to poor quadratic approximations.1034

This procedure is repeated until convergence (see Stopping conditions and convergence).1035

Gradient and Hessian1036

In this section, we will derive an expression for the gradient and hessian of −L(α). First, we can1037

calculate the gradient as,1038

b(α) = −∇L(α) = −
I∑
i=1

∇ logQYi
(λ̄i(α))

= −
I∑
i=1

Q′Yi
(λ̄i(α))

QYi
(λ̄i(α))

∇λ̄i(α).

(20)

Additionally, we have the Hessian,1039

A(α) = Hess(−L(α)) = −
I∑
i=1

∇
(
Q′Yi

(λ̄i(α))

QYi
(λ̄i(α))

)
(∇λ̄i(α))T −

I∑
i=1

(
Q′Yi

(λ̄i(α))

QYi
(λ̄i(α))

)
∇2λ̄i(α)

= −
I∑
i=1

(
Q′′Yi

(λ̄i(α))

QYi
(λ̄i(α))

−
(
Q′Yi

(λ̄i(α))

QYi
(λ̄i(α))

)2)
(∇λ̄i(α))(∇λ̄i(α))T

−
I∑
i=1

(
Q′Yi

(λ̄i(α))

QYi
(λ̄i(α))

)
∇2λ̄i(α).

(21)

We recall the procedure for computing Q and its derivatives as previously described [24]. What remains1040

is to calculate explicit expressions for λ̄ and its derivatives, which we do now. From (10) and (15), we1041

recall the definition of λ̄i(α):1042

λ̄i(α) = Ni

K∑
k=1

β̂i,k exp

(
L2∑
`=1

x2,i,`α2,`,k +

L1∑
`=1

x1,i,`α1,`

)
. (22)
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Next, we calculate the gradient of λ̄ with respect to α1 and α2 separately:1043

∇α1
λ̄i(α) = Ni

K∑
k=1

β̂i,k exp

(
L2∑
`=1

x2,i,`α2,`,k +

L1∑
`=1

x1,i,`α1,`

)
x1,i = λ̄i(α)x1,i,

∇
α

(k)
2
λ̄i(α) = Niβ̂i,k exp

(
L2∑
`=1

x2,i,`α2,`,k +

L1∑
`=1

x1,i,`α1,`

)
x2,i = λ̄

(k)
i (α)x2,i,

(23)

where we have defined λ̄
(k)
i (α) = Niβ̂i,k exp

(∑L2

`=1 x2,i,`α2,`,k +
∑L1

`=1 x1,i,`α1,`

)
. Next, we can com-1044

pute the second derivatives:1045

∇α1
∇α1

λ̄i(α) = λ̄i(α)x1,ix
T
1,i, ∇

α
(k)
2
∇α1

λ̄i(α) = λ̄
(k)
i (α)x1,ix

T
2,i, (24)

∇
α

(k)
2
∇
α

(k′)
2

= λ̄
(k)
i (α)x2,ix

T
2,iI[k = k′]. (25)

Finally, notice that all the above expressions, including λ̄i and λ̄
(k)
i across all pixels i, can be computed1046

efficiently using matrix multiplications. Lastly, the Fisher information is computed as a scaled version1047

of the Hessian (see Justification of consistency and asymptotic normality).1048

Stopping conditions and convergence1049

The algorithm stops when one of two conditions are satisfied: δn < ε1 or L̃n(α∗n)− L̃n(αn) < ε2 for 61050

consecutive iterations. Default choices are ε1 = .001 and ε2 = .00001. Assume that the algorithm stops1051

after n−1 iterations and arrives at solution αn. Convergence is defined by considering the distance of αn1052

to the optimal solution of L̃n, which is the maximum step size of the next step of the algorithm. Since1053

L̃n is a quadratic function, its maximum can be calculated as α∗ := αn−A(αn)−1b(αn). Consequently,1054

αn − α∗ = A(αn)−1b(αn). For each parameter 1 ≤ i ≤ length(α), we define that parameter i has1055

converged if |αn,i−α∗i | ≤ ε3, where ε3 = .01. Intuitively, for all parameters i such that |αn,i−α∗i | ≤ ε3,1056

these parameters will change by at most ε3 in the next step of the algorithm. Note that it is possible1057

for some parameters to converge while others do not. In the most common scenario, consider a case1058

in which one cell type has very low gene expression in the gene of interest. In this case, it is possible1059

that the parameter controlling the expression of this gene will diverge to −∞. As such, this parameter1060

doesn’t have a practical effect on the model, but it should not prevent the other parameters (of cell1061

types with higher expression) from converging. For each cell type, we filter out genes that did not1062

converge for downstream analysis. In the multi-region case, for each cell type, we test for differential1063

expression among the subset of regions that have converged.1064

Fitting the overdispersion parameter1065

Here, we describe the procedure for fitting the gene-dependent overdispersion parameter σε,j . This is1066

necessary because we found evidence that the overdispersion depends on gene j, and modeling gene-1067

specific overdispersion is necessary for controlling the false-positive rate of C-SIDE. In order to fit1068

a gene-dependent overdispersion parameter, we fit C-SIDE with initial overdispersion parameter σε,1069

which is obtained from the cell type identification step. Next, we use the fitted parameters α and1070

calculate the log-likelihood of C-SIDE for each possible choice of σ (out of a discrete set ranging from1071

0.1 to 2). Because the log-normal distribution has a mean of eσ
2/2, the C-SIDE predicted expression1072

values λ̄ are scaled by e−σ
2/2 to maintain a consistent mean across different values of σ. In practice,1073

this decision substantially increases the rate of convergence. After computing log-likelihood values for1074

each σ, the best σ is chosen, and the parameters of C-SIDE are re-fit. This procedure is repeated until1075

convergence at σ = σε,j .1076
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Predicted mean and variance of individual data pixel counts1077

After α is estimated, we can compute the predicted mean and variance of Yi, given xi, according to1078

the C-SIDE model. These predictions are used to check whether the observed behavior of data points1079

agrees with the predictions of the C-SIDE model. Rewriting (9),1080

Yi | α ∼ Poisson

{
Lognormal(λ̄i(α), σ2

ε,j)

}
. (26)

Using properties of the lognormal distribution, we can calculate the mean counts,1081

E[Yi | α] = λ̄i(α)eσ
2
ε,j/2, (27)

as well as the variance of the counts, using the law of total variance,1082

Var[Yi | α] = E[Var[Yi | α, εi]] + Varεi [E[Yi | α, εi]]

= λ̄i(α)eσ
2
ε,j/2 + λ̄i(α)2eσ

2
ε,j/2(eσ

2
ε,j/2 − 1),

(28)

where the first part used the equivalence of the mean and variance of the Poisson distribution, and the1083

second part used the variance of the lognormal distribution.1084

Multiple replicates1085

In order to extend the hypothesis testing framework to the case of multiple replicates, we now recall1086

αg and sg to be the differential expression and standard error for replicate g, where 1 ≤ g ≤ G, and1087

G > 1 is the total number of replicates. We will consider testing for differential expression for fixed1088

covariate `, cell type k, and gene j. In this case, as later derived in (53), the observed estimate α̂·,`,k,j,g,1089

conditional on α, follows a univariate normal distribution with standard deviation s·,`,k,j,g:1090

α̂·,`,k,j,g | α ∼ Normal(α·,`,k,j,g, s·,`,k,j,g). (29)

We further assume that additional biological and/or technical variation across samples exists, such1091

that each αg is normally distributed around a population-level differential expression A, with standard1092

deviation τ :1093

α·,`,k,j,g ∼i.i.d. Normal(A·,`,k,j , τ
2
·,`,k,j) (30)

We estimate τ using the method of moments (second moment) on the observed estimate α̂, obtained1094

independently from each sample:1095

E[V(α̂·,`,k,j,1, α̂·,`,k,j,2, . . . , α̂·,`,k,j,G)] =

E[V((α̂·,`,k,j,1 − α·,`,k,j,1) + α·,`,k,j,1, (α̂·,`,k,j,2 − α·,`,k,j,2) + α·,`,k,j,2, . . . ,

(α̂·,`,k,j,G − α·,`,k,j,G) + α·,`,k,j,G)]

= E[V((α̂·,`,k,j,1 − α·,`,k,j,1), (α̂·,`,k,j,2 − α·,`,k,j,2), . . . , (α̂·,`,k,j,G − α·,`,k,j,G))]

+ E[V(α·,`,k,j,1, α·,`,k,j,2, . . . , α·,`,k,j,G)]
(31)

Here, the second step utilizes the independence of α̂−α and α. Additionally, we use the finite sample1096

variance function V to denote V(x1, x2, . . . , xG) = 1
G−1

∑G
g=1(xg− x̄)2, which is an unbiased estimator1097

of the variance of x if xg is an i.i.d. random variable. Consequently, the second term above equals1098

τ2
·,`,k,j . Additionally, since α̂ − α is mean 0, we can use the fact that for mean 0 variables y that are1099

coordinate-wise independent, E[V(y1, y2, . . . , yG)] = 1
G

∑G
g=1 Var(yg). Applying this fact to the first1100

term, we obtain,1101
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E[V(α̂·,`,k,j,1, α̂·,`,k,j,2, . . . , α̂·,`,k,j,G)] = E
[

1

G

G∑
g=1

(α̂·,`,k,j,g − α·,`,k,j,g)2

]
+ τ2
·,`,k,j (32)

=
1

G

G∑
g=1

s2
·,`,k,j,g + τ2

·,`,k,j , (33)

where we have used the C-SIDE standard errors s2 to estimate the variance of α̂ − α. Consequently,1102

we obtain the following method of moments estimator of τ2:1103

τ̂2
·,`,k,j := V(α̂·,`,k,j,1, α̂·,`,k,j,2, . . . , α̂·,`,k,j,G)− 1

G

G∑
g=1

s2
·,`,k,j,g (34)

Given the above analysis, the estimator is the unbiased method of moments estimator. Since we know1104

that τ2 is nonnegative, we next modify our estimator to an estimator that dominates the original:1105

τ̂2
·,`,k,j := max

([
V(α̂·,`,k,j,1, α̂·,`,k,j,2, . . . , α̂·,`,k,j,G)− 1

G

G∑
g=1

s2
·,`,k,j,g

]
, 0

)
. (35)

We note that the above method of moments estimator (and our overall approach) is similar to the1106

widely used DerSimonian-Laird method in meta-analysis [70, 71]. After utilizing the estimate of τ2,1107

we can now compute the estimate and standard error of A, as follows. Given equations, (29) and (30),1108

we have that α̂·,`,k,j,g is distributed independently for 1 ≤ g ≤ G as:1109

α̂·,`,k,j,g ∼ Normal(A·,`,k,j , τ
2
·,`,k,j + s2

·,`,k,j,g). (36)

By the Gauss-Markov theorem for Generalized Least Squares, the best (i.e. minimum variance) unbi-1110

ased estimator of A is:1111

Â·,`,k,j :=

∑G
g=1(α̂·,`,k,j,g)/(τ

2
·,`,k,j + s2

·,`,k,j,g)∑G
g=1 1/(τ2

·,`,k,j + s2
·,`,k,j,g)

. (37)

We further plugin our estimate τ̂2 for τ2, which is an approach called feasible generalized least squares:1112

Â·,`,k,j :=

∑G
g=1(α̂·,`,k,j,g)/(τ̂

2
·,`,k,j + s2

·,`,k,j,g)∑G
g=1 1/(τ̂2

·,`,k,j + s2
·,`,k,j,g)

. (38)

Finally, the feasible estimate of variance of this estimator (also by the Gauss-Markov theorem) is:1113

Var(Â·,`,k,j) =
1∑G

g=1 1/(τ̂2
·,`,k,j + s2

·,`,k,j,g)
. (39)

Multiple samples and replicates1114

After developing a hypothesis testing framework for the case of multiple replicates, we now consider the1115

extension of this framework to the more complicated study design of multiple biological samples (M1116

samples) with multiple replicates per sample (Gm replicates per sample). In this case, we now model1117

α for each sample 1 ≤ m ≤M and each replicate 1 ≤ g ≤ Gm as normally distributed, independently1118

for each replicate, with standard deviation τ , as follows,1119

α·,`,k,j,m,g ∼ Normal(A·,`,k,j + δ·,`,k,j,m, τ
2
·,`,k,j), (40)
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where δ represents a sample-specific random effect which is itself normally distributed with standard1120

deviation ∆,1121

δ·,`,k,j,m ∼i.i.d. Normal(0,∆2
·,`,k,j). (41)

Notice that for fixed sample m, conditional on δ, our problem is identical to the multiple replicate1122

case above, given a population-mean of A·,`,k,j +δ·,`,k,j,m. Using this reasoning, we take as an estimate1123

of τ2 the average, across samples, of the estimates of τ2 in (35). As we have utilized the variance1124

within each sample to obtain an estimate of τ , we will next use the variance across samples to estimate1125

∆. We take (38) and (39) as the value and variance (conditional on δ) respectively of the following1126

unbiased estimate E of A·,`,k,j + δ·,`,k,j,m, which represents the differential expression within sample1127

m,1128

E·,`,k,j,m :=

∑Gm

g=1(α̂·,`,k,j,m,g)/(τ̂
2
·,`,k,j + s2

·,`,k,j,m,g)∑Gm

g=1 1/(τ̂2
·,`,k,j + s2

·,`,k,j,m,g)
. (42)

Given that E·,`,k,j,m is an unbiased estimate of A·,`,k,j + δ·,`,k,j,m, we recognize that our problem has1129

been reduced to the original multiple replicates problem (addressed above), where α has been replaced1130

with A+ δ, τ has been replaced with ∆, α̂ has been replaced by E, and s2 has been replaced by what1131

we define as S2, the conditional (on δ) variance of E given in (39),1132

S2
·,`,k,j,m :=

1∑Gm

g=1 1/(τ̂2
·,`,k,j + s2

·,`,k,j,m,g)
. (43)

As a result of this observation, we can apply a similar derivation as that of (35) to obtain the following1133

method of moments estimate of ∆,1134

∆̂2
·,`,k,j := max

([
Var(E·,`,k,j,1, E·,`,k,j,2, . . . , E·,`,k,j,M )− 1

M

M∑
m=1

S2
·,`,k,j,m

]
, 0

)
. (44)

Continuing our parallel to our previous result, we use the feasible Gauss-Markov estimator of A derived1135

in in (38) and (39),1136

Â·,`,k,j :=

∑M
m=1(E·,`,k,j,m)/(∆̂2

·,`,k,j + S2
·,`,k,j,m)∑M

m=1 1/(∆̂2
·,`,k,j + S2

·,`,k,j,m)
. (45)

Moreover, using (39), the feasible estimate of variance of this estimator is,1137

Var(Â·,`,k,j) =
1∑M

m=1 1/(∆̂2
·,`,k,j + S2

·,`,k,j,m)
. (46)

Therefore, we have derived estimators of population-level differential expression in the case of multiple1138

replicates or multiple samples with multiple replicates.1139

Justification of consistency and asymptotic normality of maximum likelihood1140

estimator of α1141

Since each gene and each sample analyzed independently, we drop the notation of gene j and sample1142

g. First, we consider the joint distribution of all the variables in our model: xi, βi, and Yi. We recall1143

that xi and Yi are observed, and we assume that these variables are generated i.i.d. for each pixel1144

(1 ≤ i ≤ n, with n := I):1145

Zi := (xi, βi, Yi)
i.i.d.∼ Pα, (47)
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where Zi represents the joint random variable and Pα(Zi) = Q(xi, βi)Pα(Yi | x, β). Here, Q represents1146

the joint distribution, across pixels, of cell type proportions and covariates, which we assume does1147

not depend on α. As estimation of α does not depend on this term, we will ignore this term. The1148

conditional distribution Pα(Yi | x, β) is precisely the probabilistic model specified by C-SIDE in (9).1149

For this analysis, we treat β as observed and do not consider the uncertainty around the estimation1150

of β, as errors in the estimation of β are expected to be small and independent across pixels.1151

Due to the specification of C-SIDE, assuming that the columns of x are linearly independent,1152

identifiability is satisfied. That is, Pα 6= Pα′ for any other pair of distinct parameters α and α′. It1153

follows from standard asymptotic theory results [80] (using additional regularity conditions including1154

Lipschitz continuity of second derivatives and local convexity of the C-SIDE log-likelihood within a1155

bounded region) that if we let α̂n be the MLE estimator on n pixels, then asymptotic consistency1156

holds:1157

α̂n
a.s.→ α. (48)

In addition to consistency, asymptotic normality holds as n→∞ [80]:1158

√
n(α̂n − α)

d→ N (0, I−1
α ), (49)

where Iα is defined to be the Fisher information, which can be represented as,1159

Iα = −Eα[∇2 logPα(Yi | x, β)]. (50)

In our case, we will use the observed Fisher information Îα to estimate the Fisher information:1160

Îα := − 1

n

n∑
i=1

∇2 logPα(Yi | x, β) =
1

n
A(α), (51)

where A(α), defined in (16), is the Hessian of the C-SIDE log-likelihood function. Substituting the1161

Hessian into the equation (49) above, we conclude that approximately for large n,1162

(α̂n − α) ∼ N (0, A(α)−1). (52)

Next, for a fixed individual cell type k, gene j, sample g, and covariate `, the distribution of1163

α̂·,`,k,j,g follows a univariate normal distribution with standard deviation s·,`,k,j,g. According to (49),1164

if we define s as s·,`,k,j,g =
√

(I−1
αj,g )`,k/n, we conclude that,1165

α̂·,`,k,j,g | α ∼ Normal(α·,`,k,j,g, s·,`,k,j,g). (53)

Thus, we have derived the asymptotic distribution of α̂, allowing us to compute confidence intervals1166

and perform statistical inference.1167
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Supplementary Experimental Methods 

Animal Handling  

All procedures involving animals at the Broad Institute were conducted in accordance with the US 
National Institutes of Health Guide for the Care and Use of Laboratory Animals under protocol number 
0120-09-16.                      

Transcardial Perfusion 

C57BL/6J mice were anesthetized by administration of isoflurane in a gas chamber flowing 3% isoflurane 
for 1 minute. Anesthesia was confirmed by checking for a negative tail pinch response. Animals were 
moved to a dissection tray and anesthesia was prolonged via a nose cone flowing 3% isoflurane for the 
duration of the procedure. Transcardial perfusions were performed with ice cold pH 7.4 HEPES buffer 
containing 110 mM NaCl, 10 mM HEPES, 25 mM glucose, 75 mM sucrose, 7.5 mM MgCl2, and 2.5 mM 
KCl to remove blood from brain and other organs sampled. The appropriate organs were removed and 
frozen for 3 minutes in liquid nitrogen vapor and moved to -80C for long term storage. 

Tissue Handling 

Fresh frozen tissue was warmed to -20 C in a cryostat (Leica CM3050S) for 20 minutes prior to handling. 
Tissue was then mounted onto a cutting block with OCT and sliced at a 5° cutting angle at 10 μm 
thickness. Pucks were then placed on the cutting stage and tissue was maneuvered onto the pucks. The 
tissue was then melted onto the puck by moving the puck off the stage and placing a finger on the 
bottom side of the glass. The puck was then removed from the cryostat and placed into a 1.5 mL 
eppendorf tube. The sample library was then prepared as below. The remaining tissue was re-deposited 
at -80 C and stored for processing at a later date. 
 
Puck preparation and sequencing 
 
Pucks were prepared as described recently using barcoded beads synthesized in-house on an Akta 
Oligopilot 10 according to the updated Slide-seqV2 protocol [2]. Pucks were sequenced using a 
monobase-encoding sequencing-by-ligation approach also described in the updated protocol. We used 
slide-seq tools for alignment and processing of Slide-seq data.  
 
Pucks were generated using one of two separate bead batches with the oligo sequences listed below: 
 
Batch 1: 

5'-
TTT_PC_GCCGGTAATACGACTCACTATAGGGCTACACGACGCTCTTCCGATCTJJJJJJJJTCTTCAGCGTTCCCGAGAJ
JJJJJJTCNNNNNNNNT25 

Batch 2: 
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5'-
TTT_PC_GCCGGTAATACGACTCACTATAGGGCTACACGACGCTCTTCCGATCTJJJJJJJJTCTTCAGCGTTCCCGAGAJ
JJJJJNNNNNNNVVT30 

 

“PC” designates a photocleavable linker; “J” represents bases generated by split-pool barcoding, such 
that every oligo on a given bead has the same J bases; “N” represents bases generated by mixing, so 
every oligo on a given bead has different N bases; and “TX” represents a sequence of X thymidines. “V” 
represents bases which may contain A, C, G but not T. 

 
Slide-seqV2 library preparation 
 
RNA Hybridization: 
Pucks in 1.5 mL tubes were immersed in 200 μL of hybridization buffer (6x SSC with 2 U/μL Lucigen 
NxGen RNAse inhibitor) for 15 minutes at room temperature to allow for binding of the RNA to the 
oligos on the beads. 
 
First Strand Synthesis 
Subsequently, first strand synthesis was performed by incubating the pucks in RT solution for 30 minutes 
at room temperature followed by 1.5 hours at 52 °C. 
  
RT solution: 
115 μL H2O 
40 μL Maxima 5x RT Buffer (Thermofisher, EP0751) 
20 μL 10 mM dNTPs (NEB N0477L) 
5 μL RNase Inhibitor (Lucigen 30281) 
10 μL 50 μM Template Switch Oligo (Qiagen #339414YCO0076714) 
10 μL Maxima H- RTase (Thermofisher, EP0751) 
                                                                                  
Tissue Digestion: 
200 μL of 2x tissue digestion buffer was then added directly to the RT solution and the mixture was 
incubated at 37 °C for 30 minutes. 
 
2x tissue digestion buffer: 
200 mM Tris-Cl pH 8 
400 mM NaCl 
4% SDS 
10 mM EDTA 
32 U/mL Proteinase K (NEB P8107S) 
  
Second Strand Synthesis: 
The solution was then pipetted up and down vigorously to remove beads from the surface, and the glass 
substrate was removed from the tube using forceps and discarded. 200 μL of Wash Buffer was then 
added to the 400 μL of tissue clearing and RT solution mix and the tube was then centrifuged for 2 
minutes at 3000 RCF. The supernatant was then removed from the bead pellet, the beads were 
resuspended in 200 μL of Wash Buffer, and were centrifuged again. This was repeated a total of three 
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times. The supernatant was then removed from the pellet. The beads were then resuspended in 200 μL 
of ExoI mix and incubated at 37 °C for 50 minutes. 
 
Wash Buffer: 
10 mM Tris pH 8.0 
1 mM EDTA 
0.01% Tween-20 
 
ExoI mix: 
170 μL H20 
20 μL ExoI buffer 
10 μL ExoI (NEB M0568) 
 
After ExoI treatment the beads were centrifuged for 2 minutes at 3000 RCF. The supernatant was then 
removed from the bead pellet, the beads were resuspended in 200 μL of Wash Buffer, and were 
centrifuged again. This was repeated a total of three times. The supernatant was then removed from the 
pellet. The pellet was then resuspended in 200 μL of 0.1 N NaOH and incubated for 5 minutes at room 
temperature. To quench the reaction, 200 μL of Wash Buffer was added and beads were centrifuged for 
2 minutes at 3000 RCF. The supernatant was then removed from the bead pellet, the beads were 
resuspended in 200 μL of Wash Buffer, and were centrifuged again. This was repeated a total of three 
times. Second Strand Synthesis was then performed on the beads by incubating the pellet in 200 μL of 
Second Strand Mix at 37 °C for 1 hour. 
 
Second Strand Synthesis mix: 
133 μL H2O 
40 μL Maxima 5x RT Buffer 
20 μL 10 mM dNTPs 
2 μL 1 mM dN-SMRT oligo 
5 μL Klenow Enzyme (NEB M0210) 
  
After Second Strand Synthesis, 200 μL of Wash Buffer was added and the beads were centrifuged for 2 
minutes at 3000 RCF. The supernatant was then removed from the bead pellet, the beads were 
resuspended in 200 μL of Wash Buffer, and were centrifuged again. This was repeated a total of three 
times. 
  
Library Amplification: 
200 μL of water was then added to the bead pellet and the beads were centrifuged for 2 minutes at 
3000 RCF. The supernatant was then removed from the bead pellet and the beads were resuspended in 
50 μL of library PCR mix and moved into a 200 μL PCR strip tube. PCR was then performed as outlined 
below: 
 
Library PCR mix: 
22 μL H2O 
25 μL of Terra Direct PCR mix Buffer (Takara Biosciences 639270) 
1 μL of Terra Polymerase (Takara Biosciences 639270) 
1 μL of 100 μM Truseq PCR primer (IDT) 
1 μL of 100 μM SMART PCR primer (IDT) 
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PCR program: 
95 °C 3 minutes 
 
4 cycles of: 
98 °C 20 seconds 
65 °C 45 seconds 
72 °C 3 minutes 
 
9 cycles of: 
98 °C 20 seconds 
67 °C 20 seconds 
72 °C 3 minutes 
 
Then: 
72 °C 5 minutes 
Hold at 4 °C 

                                                              
PCR cleanup and Nextera Tagmentation: 

Samples were cleaned with Ampure XP (Beckman Coulter A63880) beads in accordance with 
manufacturer’s instructions at a 0.6x bead/sample ratio (30 μL of beads to 50 μL of sample) and 
resuspended in 50 μL of water. The cleanup procedure was repeated, this time resuspending in a final 
volume of 10 μL. 1 μL of the library was quantified on an Agilent Bioanalyzer High sensitivity DNA chip 
(Agilent 5067-4626). Then, 600 pg of cDNA was taken from the PCR product and prepared into Illumina 
sequencing libraries through tagmentation using the Nextera XT kit (Illumina FC-131-1096). 
Tagmentation was performed according to manufacturer's instructions and the library was amplified 
with primers Truseq5 and N700 series barcoded index primers. The PCR program was as follows: 

PCR program: 
72 °C for 3 minutes 
95 °C for 30 seconds 
 
12 cycles of: 
95 °C for 10 seconds 
55 °C for 30 seconds 
72 °C for 30 seconds 

 
72 °C for 5 minutes 
Hold at 4 °C 

                                                          
Samples were cleaned with Ampure XP (Beckman Coulter A63880) beads in accordance with 
manufacturer’s instructions at a 0.6x bead/sample ratio (30 μL of beads to 50 μL of sample) and 
resuspended in 10 μL of water. 1 μL of the library was quantified on an Agilent Bioanalyzer High 
sensitivity DNA chip (Agilent 5067-4626). Finally, the library concentration was normalized to 4 nM for 
sequencing. Samples were sequenced on the Illumina NovaSeq S2 flowcell 100 cycle kit with 12 samples 
per run (6 samples per lane) with the read structure 44 bases Read 1, 8 bases i7 index read, 50 bases 
Read 2. Each puck received approximately 200-400 million reads, corresponding to 3,000-5,000 reads 
per bead.  
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Supplementary Figures1168
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fit_df <- exp(fit_df)
norm_df <- sweep(fit_df, 1, apply(fit_df,1,max),'/')
plot_df <- reshape2::melt(norm_df)
colnames(plot_df) <- c('gene', 'region_id', 'expr')
plot_df$region <- ((plot_df$region_id - 1) %% n_regions)+ 1
plot_df$cell_type <- cur_cell_types[floor((plot_df$region_id - 1) / n_regions) + 1]
cur_range = c(0,1)
p <- ggplot(plot_df, aes(region_id, gene, fill = expr)) + geom_tile() +

scale_fill_gradientn(colors = pals::brewer.blues(20)[2:20],name = "Normalized estimated expression", labels = c(0,1),breaks = c(0.001,1)) + theme_classic() + ylab('Gene')+ ggplot2::scale_size_identity() + coord_fixed()
p
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region <- 4
info_1 <- readRDS(file.path(datadir, 'info_1.rds'))
gene_list <- rownames(info_1)[info_1$first_region == region]
final_gene_list <- gene_list
fit_df <- cbind(gene_fits$all_vals[final_gene_list,,1], gene_fits$all_vals[final_gene_list,,2], gene_fits$all_vals[final_gene_list,,3])
fit_df <- exp(fit_df)
norm_df <- sweep(fit_df, 1, apply(fit_df,1,max),'/')
plot_df <- reshape2::melt(norm_df)
colnames(plot_df) <- c('gene', 'region_id', 'expr')
plot_df$region <- ((plot_df$region_id - 1) %% n_regions)+ 1
plot_df$cell_type <- cur_cell_types[floor((plot_df$region_id - 1) / n_regions) + 1]
cur_range = c(0,1)
p <- ggplot(plot_df, aes(region_id, gene, fill = expr)) + geom_tile() +

scale_fill_gradientn(colors = pals::brewer.blues(20)[2:20],name = "Normalized Expression", labels = c(0,1),breaks = c(0,1))
p
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Supplementary figure 1: C-SIDE can integrate results from multiple samples to form a robust1169

estimate of population-level consensus differentially-expressed genes.1170
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gene_list <- rownames(myRCTD@spatialRNA @counts)
N_genes <- 15
for (non_null in c(T,F)) {
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Plot p-value enrichment

z_all <- e_all / s_all
p_res <- (2*(1 - pnorm(abs(z_all))))
alpha_vals = c(.0025,.005,.01, .02, .03, .05, .1, .2)
enrichment = numeric(length(alpha_vals))
se = numeric(length(alpha_vals))
N_trials <- length(p_res)
for(i in 1:length(alpha_vals)) {

alpha <- alpha_vals[i]
p_curr <- (sum(p_res < alpha) / (N_trials))
enrichment[i] <- p_curr / alpha
se[i] <- sqrt(p_curr*(1-p_curr)/N_trials)/alpha

}
plot_df <- data.frame(alpha_vals, enrichment, se)
p1 <- ggplot(plot_df, aes(x=alpha_vals,y = log(enrichment,2))) + geom_point() + ylim(c(-1.5,1.5)) + theme_classic() + geom_hline(yintercept = 0, linetype = 'dotted') + geom_errorbar(aes(ymin = log(enrichment - 1.96*se,2), ymax = log(enrichment + 1.96*se,2)), width = .005) + xlab('Significance level') + ylab('Log ratio of observed vs expected false positive rate')
p1
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Run power analysis

gene_list <- rownames(myRCTD@spatialRNA@counts)
high_genes <- gene_list[which(cell_type_info[[1]][gene_list, common_cell_types][,1] > 3e-4 & cell_type_info[[1]][gene_list, common_cell_types][,2] > 3e-4)]
high_genes <- high_genes[which(cell_type_info[[1]][high_genes, common_cell_types][,1] < 3e-2 & cell_type_info[[1]][high_genes, common_cell_types][,2] < 3e-2)]

REPLICATES <- 100
DE_CONDITIONS <- 7
de_vals <- (((1:DE_CONDITIONS) - 1)/(DE_CONDITIONS - 1))*2-1
de_ground_truth <- c(1,1)
cur_gene_list <- high_genes
NUM_CELLS <- c(250, 500, 1000)
e_all <- array(0, dim = c(REPLICATES,2,length(cur_gene_list), length(NUM_CELLS), DE_CONDITIONS))
s_all <- array(0, dim = c(REPLICATES,2,length(cur_gene_list), length(NUM_CELLS), DE_CONDITIONS))
dimnames(e_all) <- list(NULL,NULL,high_genes,NULL,NULL)
dimnames(s_all) <- list(NULL,NULL,high_genes,NULL,NULL)
for(k in 1:DE_CONDITIONS) {
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Supplementary figure 2: In simulated data, C-SIDE provides unbiased estimates of cell type-specific1171

differential expression, with calibrated p−values.1172

All: C-SIDE was tested on a dataset of simulated mixtures of single cells from a single-nucleus1173

RNA-seq cerebellum dataset.1174

(a) Mean estimated cell type A Astn2 DE (differential expression) across two regions as a function of1175

the difference in mean cell type proportion across regions. Ground truth 0 spatial DE is simulated,1176

and average of (n = 100) estimates is shown, along with standard errors. Black line represents1177

ground truth 0 DE (cell type B). Four methods are shown: Bulk, Decompose, Single, and C-SIDE1178

(see Methods for details).1179

(b) Same as (b) for Nrxn3 cell type A differential gene expression as a function of DE in cell type A,1180

where Nrxn3 is simulated to have DE within cell type A but no DE in cell type B. Ground truth1181

identity line shown.1182

(c) C-SIDE mean estimated cell type B differential expression as a function of gene (average over1183

n = 500 replicates, with confidence intervals shown). Ground truth line (0 DE) is shown, and each1184

condition used a different gene (out of 15 total genes).1185

(d) Average measured standard error of C-SIDE estimates for each bin of C-SIDE predicted standard1186

error.1187

(e) Statistical power (FPR = 0.01) as a function of gene (y-axis), cell type A DE (x-axis), and number1188

of cells (table number). Genes are sorted by cell type A expression (shown on right in log2 counts1189

per 1).1190
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plot_df <- bind_rows(plot_df_list)
plot_df$label <- plot_df$gene
plot_df$label[!plot_df$sig] <- NA
plot_df$mean <- plot_df$mean * log(exp(1),2) #convert to log scale
p <- ggplot(plot_df, aes(x=mean, y = y, color = ct)) + geom_point() + theme_classic() +

geom_vline(xintercept = 0.4*log(exp(1),2), linetype = 'dotted') + geom_vline(xintercept = -0.4*log(exp(1),2), linetype = 'dotted') +
geom_label_repel(aes(label = label),nudge_x = 0.1,na.rm = TRUE, show.legend = FALSE) + labs(color = 'Cell Type') + xlab('Estimated cell type-specific DE') + ylab('RCTDE p-value') + scale_y_continuous(lim = c(0,16.01), breaks = c(0,5,10,15),labels = c("10^0", "10^(-5)", "10^(-10)","10^(-15)") )

p

Mybpc1

Bmp1

Calb2

Chl1

Dpp6Gls

Igfbp5

Inadl

Maf
Myh10

Ncald

Nrg3

Plk5

Rab3c

Rgs7

Rnf152

Sema7a

Sept6

Snca Syt1

Syt2

Tesc

Tmem132c

Vat1l

Aldoc

Car8

Clstn2

Kcng4

Kctd12

Nefh

Nptn

Pde9a

Plcb4

Rgs8

Slc1a6

10^0

10^(−5)

10^(−10)

10^(−15)

−4 −2 0 2
Estimated cell type−specific DE

R
C

TD
E 

p−
va

lu
e

Cell Type
Bergmann

Granule

Purkinje

Plot cell type-specific expression

my_pal_curr <- list()
my_pal_curr["Oligodendrocytes"] <- "#CC79A7"
my_pal_curr["MLI1"] <- "#E69F00"
my_pal_curr["Astrocytes"] <- "#56B4E9"
my_pal_curr["Granule"] <- "#009E73"
my_pal_curr["MLI2"] <- "#F0E442"
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Supplementary figure 3: Volcano plot of C-SIDE log2 differential expression results for cerebellum1191

Slide-seq across three replicates, with positive values representing enrichment in the anterior region1192

vs. the nodulus. Color represents cell type, and a subset of significant genes are labeled. Dotted lines1193

represents C-SIDE fold-change cutoff at 1.5.1194

46

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 22, 2022. ; https://doi.org/10.1101/2021.12.26.474183doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.26.474183
http://creativecommons.org/licenses/by-nc-nd/4.0/


0

200

400

600

800

ES RS SPC
Cell Type

N
um

be
r o

f s
ig

ni
fic

an
t g

en
es

 d
et

ec
te

d

Method
 C-SIDE

0

2000

4000

6000

1 2 4
cur_cell_types

n_
to

ta
l method

RCTD

Z

6

a)

c)

b)
0

200

400

600

800

ES RS SPC
Cell Type

N
um

be
r o

f s
ig

ni
fic

an
t g

en
es

 d
et

ec
te

d

Method
C-SIDE

0

2000

4000

6000

ES RS SPC
Cell Type

N
um

be
r o

f p
ixe

ls
 u

se
d 

fo
r e

ac
h 

ce
ll 

ty
pe

Method
C-SIDE

4

class
1

2

3

4

Stage
I−III

IV−VI

VII−VIII

IX−XII

Tnp1 7.5

Plot metagene signature

region <- 4
gene_list <- rownames(info_1)[info_1$first_region == region]
cell_type <- '1'; region <- 4
gene_thresh <- 45; gene <- 'Tnp1'
make_ct_region_plot(cur_cell_types, cell_type, region, my_beta, X2, gene_thresh, puck, gene_list, sing_thresh = 0.8) + new_scale_color()+

geom_path(data = cvx_df,aes(x=x,y=y, group = id, color = stage), linetype = 'dashed') + scale_color_manual('Stage', values = c('#E69F00','#CC79A7', '#EFCB00',"#000000"), labels = c('I-III','IV-VI', 'VII-VIII', 'IX-XII'))+ geom_segment(aes(x = 1300, y = 1000, xend = 1684.6, yend = 1000), color = "black")+labs(color='') + theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(), axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())
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Plot metagene signature

region <- 4
gene_list <- rownames(info_1)[info_1$first_region == region]
cell_type <- '1'; region <- 4
gene_thresh <- 45; gene <- 'Tnp1'
make_ct_region_plot(cur_cell_types, cell_type, region, my_beta, X2, gene_thresh, puck, gene_list, sing_thresh = 0.8) + new_scale_color()+

geom_path(data = cvx_df,aes(x=x,y=y, group = id, color = stage), linetype = 'dashed') + scale_color_manual('Stage', values = c('#E69F00','#CC79A7', '#EFCB00',"#000000"), labels = c('I-III','IV-VI', 'VII-VIII', 'IX-XII'))+ geom_segment(aes(x = 1300, y = 1000, xend = 1684.6, yend = 1000), color = "black")+labs(color='') + theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(), axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())
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Aggregate max-cyclic genes

results_mat <- matrix(0,3,9)

for(ct_ind in 1:3) {
Imat_ind <- (ct_ind-1)*4 + (1:4)
sig_gene_list <- rownames(myRCTDde@de_results$res_gene_list[[ct_ind]])
mean_mat <- gene_fits$all_vals[sig_gene_list,,ct_ind]
cyclic <- table(apply(mean_mat, 1, is.cyclic))
percent_cyclic <- cyclic[2] / sum(cyclic)
maxcyclic <- table(apply(mean_mat, 1, is.maxcyclic.thresh))
percent_maxcyclic <- maxcyclic[2] / sum(maxcyclic)
random_chance<- mean(apply(mean_mat, 1, maxcyclic.thresh.prob))
norm_mean_mat <- t(apply(mean_mat, 1, norm_vec))
results_vec <- c(D_thresh, percent_cyclic, 3/4, percent_maxcyclic, random_chance, colMeans(norm_mean_mat))
results_mat[ct_ind, ] <- results_vec

}

12

colnames (results_mat) <- c( D_thresh , cyclic , randomc , cyclicmax , randomm, pos1 , pos2 , pos3
results_mat <- as.data.frame (results_mat)
results_mat $ct_ind <- 1: 3
plot_df <- melt (results_mat[, c( 2: 5, 10)], id = ct_ind )
ggplot (plot_df[plot_df $variable %in% c( cyclicmax , randomm),], aes ( x=factor (ct_ind), y =value, l = factor

geom_bar( stat = identity , position = dodge ) + ylim ( c( 0, 1)) + theme_classic () + ylab ( Cyclic genes as
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Supplementary figure 4: On the Slide-seq testes, C-SIDE achieves increased power in the presence1195

of cell type mixtures to discover tubule stage-specific genes and cyclic genes.1196

(a) Number of significant genes detected, for each cell type, by C-SIDE or the Z-test method.1197

(b) Number of pixels used, for each cell type, to fit the C-SIDE or Z-test model.1198

(c) Spatial plot of Tnp1, a gene identified by C-SIDE to be differentially expressed in stage IX-XII of1199

cell type ES. Red represents the pixels of cell type ES within stage IX-XII, whereas blue represents1200

pixels of another cell type or region. Bold points represent pixels expressing Tnp1 at a level of at1201

least 7.5 counts per 500. Scale bar represents 250 microns.1202

(d) For each cell type, genes identified using C-SIDE results to be cyclic. Panels, indexed by tubule1203

stage, contain cyclic genes whose peak estimated expression is at that stage. Error bars represent1204

confidence intervals.1205

(e) Proportion of genes categorized as cyclic (using C-SIDE fits), compared to proportion that would1206

be categorized as cyclic if tubule stages were shuffled.1207
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a) b)

d)c)

colnames(results) <- c('far','close')
results$p <- results$close / (results$close + results$far)
results$name <- rownames(results)
for(cell_type in rownames(results)){

results[cell_type,'ub'] <- qbeta(0.975,1+results[cell_type,'close'],1+results[cell_type,'far'])
results[cell_type,'lb'] <- qbeta(0.025,1+results[cell_type,'close'],1+results[cell_type,'far'])

}
plot_df <- results[results$far + results$close >= 10,]
ggplot(plot_df, aes(x=name,y=p)) + geom_point() + geom_errorbar(aes(ymin=lb, ymax=ub), width=.2) + theme_classic() + ylim(c(0,1)) + theme(axis.text.x = element_text(angle=15,hjust = 1)) + ylab('Proportion of cells near plaque') + xlab('')

0.00

0.25

0.50

0.75

1.00

Astrocyte CA1 CA3 Denate
Interneuron

Microglia_Macrophages
Oligodendrocyte

Pr
op

or
tio

n 
of

 c
el

ls
 n

ea
r p

la
qu

e

5

−1

0

1

2

0 0.5 1
Plaque density

Lo
g 

av
er

ag
e 

ex
pr

es
si

on

Gene
Ctsd

Gfap

Plot proportion of cells near plaque

cell_types_present <- myRCTD@internal_vars_de$cell_types_present
results <- matrix(0,2,length(cell_types_present))
colnames(results) <- cell_types_present
PLAQUE_THRESH <- 0.5
for(j in 1:length(RCTDde_list)) {

myRCTD <- RCTDde_list[[j]]
X2 <- myRCTD@internal_vars_de$X2
all_barc <- myRCTD@internal_vars_de$all_barc
results_df <- myRCTD@results$results_df
for(i in 1:length(cell_types_present)) {

cell_type <- cell_types_present[i]
results[,i] <- results[,i] + table(X2[all_barc,][results_df[all_barc,]$spot_class == 'singlet' & results_df[all_barc,]$first_type == cell_type,2] > PLAQUE_THRESH)

}
}
results <- data.frame(t(results))
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Supplementary figure 5: On the Slide-seq Alzheimer’s hippocampus, C-SIDE identifies genes whose1208

expression depends on Aβ plaque density.1209

(a) The proportion of cells, for each cell type, that localize in a high plaque density area.1210

(b) Spatial visualization of Ctsd, whose expression within astrocytes was identified by C-SIDE to1211

depend on plaque density. Red represents the astrocytes in high plaque density areas, whereas blue1212

represents astrocytes in regions of low plaque density. Bold points represent astrocytes expressing1213

Ctsd at a level of at least 3 counts per 500. Scale bar is 250 microns.1214

(c) Log average expression of genes Ctsd and Gfap, which were identified to be significantly differ-1215

entially expressed by C-SIDE for microglia/macrophages and astrocyte cell types, respectively.1216

Single cell type pixels are binned according to plaque density, and points represent raw data aver-1217

ages while lines represents C-SIDE predictions and error bars around points represent ± 1.96 s.d.1218

(Supplementary Methods).1219

(d) Antibody stain of Aβ plaque in adjacent hippocampus section. This image is subsequently trans-1220

formed to calculate a covariate for C-SIDE.1221
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Plot EMT Gene Set

gene_sets = GSA.read.gmt ( (datadir, hallmark_genesets.gmt ))
gene_set_names = gene_sets $geneset.names
gene_set_descriptions = gene_sets $geneset.descriptions
gene_sets = gene_sets $genesets
names(gene_sets)=gene_set_names
gene_sets = lapply (gene_sets, tolower)
my_genes <- gene_list_type[ tolower (gene_list_type) %in% gene_sets[[ 30]]]
my_gl <- intersect (my_genes, rownames(res_genes))
plot_df <- data.frame (my_gl, log ( exp( 1), 2) * $mean_val[my_gl, 1], log ( exp( 1), 2) * $I_mat[my_gl,
colnames (plot_df) <- c( gene , mean , sd )
plot_df $gene <- factor (plot_df $gene, levels = plot_df $gene[ order ( - plot_df $mean)])
ggplot (plot_df, aes ( x = gene, y = mean)) + geom_point() + geom_errorbar ( aes ( ymin = mean-1.96 *sd, ymax=mean

geom_hline ( yintercept= 0) + theme_classic () + ylab ( RCTDE estimated l expression ) + xlab ( Gene
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N_CLUST <- 7
sub_grp <- cutree(hc1, k = N_CLUST)
if(F) {

make_de_plots_predictions(myRCTDde, resultsdir, test_mode = 'direct')
write_de_summary(myRCTDde, resultsdir)

}

Calculate cluster spatial profiles

p <- list()
resultsdir_par <- paste0('../../../DEGLAM/results/ResultsTumor','/')
myRCTDpar = readRDS(paste0(resultsdir_par,'myRCTDde.rds'))
res_genes <- myRCTDpar@de_results$res_gene_list$CAF
over_genes <- tolower(rownames(res_genes[res_genes$log_fc > 0,]))
under_genes <- tolower(rownames(res_genes[res_genes$log_fc < 0,]))
R2_vals <- numeric(N_CLUST)
other_ct <- c('CAF', 'LSEC', 'hepatocyte 2','vascular smooth mc')
R2_vals_mat <- matrix(0, 8, length(other_ct))
colnames(R2_vals_mat) <- other_ct
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Check correlation of clusters with cell types

center <- colMeans(myRCTDde@spatialRNA@coords)
distances <- apply(myRCTDde@spatialRNA@coords,1, function(x) .65*sqrt((x[1] - center[1])^2 + (x[2] - center[2])^2))
distances <- distances[CANCER_LOC]
all_mat <- cbind(R2_vals, R2_vals_mat)

6

Kpnb1 �tted expression

Kpnb1 raw expression

51

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 22, 2022. ; https://doi.org/10.1101/2021.12.26.474183doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.26.474183
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplementary figure 6: on the Slide-seq mouse tumor, C-SIDE identifies differentially expressed1222

genes within tumor cells.1223

(a) Histogram, across genes identified to be significantly DE within tumor cells by nonparametric C-1224

SIDE, of adjusted R-squared, which is defined as the proportion of variance, not due to sampling1225

noise, explained by the C-SIDE model.1226

(b) Dendrogram of hierarchical clustering of (n = 162 significant genes) C-SIDE’s fitted smooth spatial1227

patterns.1228

(c) Spatial plot in tumor cells of Kpnb1, a Myc-target gene identified to be differentially expressed1229

by nonparametric C-SIDE. Top shows C-SIDE fitted expression, while bottom shows observed1230

expression in counts per 500. Scale bars are 250 microns.1231

(d) For each cluster of spatially-varying genes, the proportion of genes identified by hypothesis-driven1232

C-SIDE to be over- or under-expressed near myeloid cells. This proportion is plotted alongside1233

the squared correlation of the cluster to the density of myeloid cells.1234

(e) C-SIDE estimated differential expression and 95% confidence intervals of 9 genes from the epithelial-1235

mesenchymal transition (EMT) pathway identified to be significant.1236
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plot_df <- data.frame('rep' = integer(), 'sig_g' = numeric())
for(rep_num in 1:3) {

myRCTD <- RCTDde_list[[rep_num]]
plot_df <- rbind(plot_df, data.frame('rep' = rep_num, 'sig_g' = as.numeric(myRCTD@de_results$gene_fits$sigma_g)/100))

}
plot_df$rep <- factor(plot_df$rep)
p <- ggplot(plot_df, aes(sig_g, fill = rep, color = rep)) + geom_density(alpha = 0.3) + theme_classic() + ylab('Density of genes') + scale_fill_discrete("Replicate") + scale_color_discrete("Replicate") + xlab('Gene specific overdispersion magnitude')
p

4
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Supplementary Figure 7: C-SIDE estimated variance parameters on the Slide-seq cerebellum data.1237

(a) Density plot, over genes, of overdispersion standard deviation, σε, for each of three Slide-seq1238

replicates.1239

(b) Density plot, over genes, of C-SIDE estimated batch effect standard deviation, τ , for each of the1240

Bergmann, granule, and Purkinje cerebellum cell types.1241
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