

1 **Title:**

2 **A neural correlate of individual odor preference in *Drosophila***

3

4 **Authors:**

5 Matthew A. Churkin^{1,2,*}, Danylo O. Lavrentovich^{1,2,*}, Matthew A. Smith^{1,2,10}, Ruixuan
6 Gao^{3,4,5,11}, Edward S. Boyden^{3,4,6,7,8,9}, Benjamin de Bivort^{1,2,†}

7

8 **Affiliations:**

9 ¹Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA

10 ²Center for Brain Science, Harvard University, Cambridge, MA 02138, USA

11 ³McGovern Institute, MIT, Cambridge, MA 02139, USA

12 ⁴MIT Media Lab, MIT, Cambridge, MA 02139, USA

13 ⁵Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA

14 ⁶Department of Biological Engineering, MIT, Cambridge, MA 02142, USA

15 ⁷Koch Institute, Department of Biology, MIT, Cambridge, MA 02139, USA

16 ⁸Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA

17 ⁹Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA

18 ¹⁰Present address: Department of Entomology, University of Wisconsin-Madison, Madison
19 WI, 53706, USA

20 ¹¹Present address: Department of Biological Sciences/Chemistry, University of Illinois
21 Chicago, Chicago, IL 60607, USA

22 *These authors contributed equally

23 †Lead Contact: debivort@oeb.harvard.edu

24 **Abstract**

25 Behavior varies even among genetically identical animals raised in the same environment.
26 However, little is known about the circuit or anatomical origins of this individuality. Here, we
27 demonstrate a neural correlate of *Drosophila* odor preference behavior in the olfactory sensory
28 periphery. Namely, idiosyncratic calcium responses in projection neuron (PN) dendrites and
29 densities of the presynaptic protein Bruchpilot in olfactory receptor neuron (ORN) axon
30 terminals correlate with individual preferences in a choice between two aversive odorants. The
31 ORN-PN synapse appears to be a locus of individuality where microscale variation gives rise to
32 idiosyncratic behavior. Simulating microscale stochasticity in ORN-PN synapses of a 3,062
33 neuron model of the antennal lobe recapitulates patterns of variation in PN calcium responses
34 matching experiments. Conversely, stochasticity in other compartments of this circuit does not
35 recapitulate those patterns. Our results demonstrate how physiological and microscale structural
36 circuit variations can give rise to individual behavior, even when genetics and environment are
37 held constant.

38

39 **Keywords:** individuality, neural circuits, sensory processing, olfaction, behavioral preference,
40 variation, *Drosophila*, antennal lobe, calcium imaging, expansion imaging

41 **Introduction**

42 Individuality is a fundamental aspect of behavior that is observed even among genetically-
43 identical animals reared in similar environments. We are specifically interested in individuality
44 that is evident as idiosyncratic differences in behavior that persist for much of an animal's
45 lifespan. Such variability is observed across species including round worms (Stern et al., 2017),
46 aphids (Schuett et al., 2011), fish (Laskowski et al., 2022), mice (Freund et al., 2013), and people
47 (Johnson et al., 2010). Small, genetically tractable model species, such as *Drosophila*, are
48 particularly promising for discovering the genetic and neural circuit basis of individual behavior
49 variation. Flies exhibit individuality in many behaviors (Werkhoven et al., 2021), and the
50 mechanistic origins of this variation has been studied for phototactic preference (Kain et al.,
51 2012), temperature preference (Kain et al., 2015), locomotor handedness (Ayroles et al., 2015;
52 Buchanan et al., 2015; de Bivort et al., 2022), object-fixated walking (Linneweber et al., 2020),
53 and odor preference (Honegger et al., 2019). Generally, the neural substrates of individuality are
54 poorly understood, though in a small number of instances nanoscale circuit correlates of
55 individual behavioral biases have been identified (Lillvis et al., 2022; Linneweber et al., 2020;
56 Skutt-Kakaria et al., 2019). We hypothesize that as sensory cues are encoded and transformed to
57 produce motor outputs, their representation in the nervous system becomes increasingly
58 idiosyncratic and predictive of individual behavioral responses. An alternative hypothesis is that
59 neural representations are the same across individuals and individuality emerges through
60 biomechanical differences and interactions with the environment. We seek to determine if “loci
61 of individuality” – sites at which this idiosyncrasy emerges – exist, and if so, where in the
62 sensorimotor cascade.

63

64 Olfaction in the fruit fly *Drosophila melanogaster* is an amenable sensory system for identifying
65 loci of individuality, as 1) individual odor preferences can be recorded readily, 2) neural
66 representations of odors can be measured via calcium imaging, 3) the circuit elements of the
67 pathway are well-established, and 4) a deep genetic toolkit enables mechanism-probing
68 experiments. The neuroanatomy of the olfactory system, from the antenna through its first
69 central-brain processing neuropil, the antennal lobe (AL), is broadly stereotyped across
70 individuals (Couto et al., 2005; Grabe et al., 2015; Wilson et al., 2004). The AL features ~50
71 anatomically identifiable microcircuits called glomeruli (Figure 1A). Each glomerulus represents
72 an odor-coding channel and receives axon inputs from olfactory receptor neurons (ORNs)
73 expressing the same olfactory receptor gene (de Bruyne et al., 2001). Uniglomerular projection
74 neurons (PNs) carry odor information from each glomerulus deeper into the brain (Jeanne and
75 Wilson, 2015). AL-intrinsic local neurons (LNs) project among glomeruli (Chou et al., 2010)
76 and modulate odor representations (Wilson and Laurent, 2005). Glomerular organization is a key
77 stereotype of the AL; using glomeruli as landmarks, one can identify comparable ORN axons
78 and PNs across individuals.

79

80 Individual flies differ in their PN calcium responses to identical odor stimuli, as well as their
81 odor-vs-odor preference choices (Honegger et al., 2019). Several possible determinants of
82 individual odor preference can already be hypothesized for the fly olfactory circuit (Rihani and
83 Sachse, 2022). The extent of preference variability depends on dopamine and serotonergic
84 modulation (Honegger et al., 2019). Neuromodulation clearly plays a role in the regulation of
85 behavioral individuality (Maloney, 2021), but its effects vary by modulator and behavior (de
86 Bivort et al., 2022; Kain et al., 2012). With respect to wiring variation, the number of ORNs and
87 PNs innervating a given glomerulus varies within hemispheres (Tobin et al., 2017) and across
88 individuals (Grabe et al., 2016; Schlegel et al., 2020), as does the glomerulus-innervation pattern
89 of individual LNs (Chou et al., 2010). Subpopulations of LNs and PNs express variable serotonin
90 receptors (Sizemore and Dacks, 2016), so the effects of neuromodulation and wiring may
91 interact to influence individuality. Little is known about possible molecular or nanoscale
92 correlates of individual behavioral bias. Thus, individual odor preference could have its origins
93 in many potential mechanisms, ranging from circuit wiring to modulation to neuronal intrinsic
94 properties.

95
96 Outside the olfactory system, there are a few examples in which microscale circuit variation
97 predicts individual behavioral preference. Wiring asymmetry in an individual fly's dorsal cluster
98 neurons is predictive of the straightness of its object-oriented walking behavior (Linneweber et
99 al., 2020), and left-right asymmetry in the density of presynaptic sites of protocerebral bridge to
100 lateral accessory lobe-projecting neurons predicts an individual fly's idiosyncratic turning bias
101 (Skutt-Kakaria et al., 2019). The number of synaptic connections from the pC2l to pIP10 neurons
102 correlates with male song rate during courtship (Lillvis et al., 2022), and the presence of ectopic
103 branches in neurons of the T2 hemilineage predicts delayed spontaneous flight initiation (Mellert
104 et al., 2016).

105
106 In this work, we sought to identify loci of individuality by measuring odor preferences and
107 neural responses to odors in the same individuals and determining the extent to which the latter
108 predicted the former. We found that idiosyncratic calcium responses in PNs were correlated with
109 individual preferences in a choice between two aversive odorants. Examining a molecular
110 component presynaptic to PNs, we found that the density of the scaffolding protein Bruchpilot
111 also predicts odor preference. To unify these results and connect wiring variation to circuit
112 outputs and behavior, we simulated developmental variation in a 3,062-neuron spiking model of
113 the antennal lobe. Simulated stochasticity in the ORN-PN synapse recapitulated our empirical
114 findings. Thus, we identified the ORN-PN synapse as a likely locus of individuality in fly odor
115 preference, demonstrating that behaviorally-relevant variation in neural circuits can be found in
116 the sensory periphery at the nanoscale.

117

118 **Results**

119 *Individual flies encode odors idiosyncratically*

120 Focusing on behavioral variation within a genotype, we used isogenic animals expressing the
121 fluorescent calcium reporter GCamp6m (Chen et al., 2013) in either of the two most peripheral
122 neural subpopulations of the *Drosophila* olfactory circuit, ORNs or PNs (Figure 1E). We
123 performed head-fixed 2-photon calcium imaging after measuring odor preference in an
124 untethered assay (Honegger et al., 2019) (Figure 1B-D, Figure 1 – figure supplement 1A).
125 Individual odor preferences are stable over timescales longer than this experiment (Figure 1 –
126 figure supplement 1B-E).

127
128 We measured volumetric calcium responses in the antennal lobe (AL), where ORNs synapse
129 onto PNs in ~50 discrete microcircuits called glomeruli (Figure 1A) (Couto et al., 2005; Grabe et
130 al., 2015). Flies were stimulated with a panel of 12 odors plus air (Figure 1D, Figure 1 – figure
131 supplement 2) and *k*-means clustering was used to automatically segment the voxels of 5
132 glomeruli from the resulting 4-D calcium image stacks (Figure 1E, Figure 1 – figure supplement
133 5, Materials and Methods) (Couto et al., 2005). Both ORN and PN odor responses were roughly
134 stereotyped across individuals (Figure 1G,H), but also idiosyncratic (Honegger et al., 2019).
135 Responses in PNs appeared to be more idiosyncratic than ORNs (Figure 1J); a logistic linear
136 classifier decoding fly identity from glomerular responses was more accurate when trained on
137 PN than ORN responses (Figure 1 – figure supplement 6A). While the responses of single ORNs
138 are known to vary more than those of single PNs (Wilson, 2013), our recordings capture the total
139 response of all ORNs or PNs in a glomerulus. This might explain our observation that ORNs
140 exhibited less idiosyncrasy than PNs. PN responses were more variable within flies, as measured
141 across the left and right hemisphere ALs, compared to ORN responses (Figure 1 – figure
142 supplement 6C; $p < 2 \times 10^{-5}$, Mann-Whitney *U* test), suggesting that odor representations become
143 more divergent farther from the sensory periphery.

144
145 *PN, but not ORN, responses predict odor-vs-odor preference*
146 Next we analyzed the relationship of idiosyncratic coding to odor preference, by asking in which
147 neurons (if any) did calcium responses predict individual preferences of flies choosing between
148 two aversive monomolecular odors: 3-octanol (OCT) and 4-methylcyclohexanol (MCH).
149 Because we could potentially predict preference (a single value) using numerous glomerular-
150 odor predictors, and had a limited number of observations (dozens), we used dimensionality
151 reduction to hold down the number of comparisons we made. We computed the principal
152 components (PCs) of the glomerulus-odor responses (in either ORNs or PNs) across individuals
153 (Figure 1G-I; Figure 1 – figure supplement 3, Figure 1 – figure supplement 8) and fit linear
154 models to predict the behavior of individual flies from their values on the odor response PCs. No
155 PCs of ORN neural activity could linearly predict OCT-MCH preference beyond the level of
156 shuffled controls ($n = 35$ flies) (Figure 1K,L). The best ORN PC model only predicted odor-vs-
157 odor behavior with a nominal R^2 of 0.031. In contrast, PC 2 of PN activity was a statistically
158 significant predictor of odor preference, accounting for 15% of preference variance in a training
159 set of 47 flies ($p = 0.0063$; Figure 2 – figure supplement 1C) and 31% of preference variance on

160 test data of flies ($p = 0.0069$; Figure 2 – figure supplement 1D). These p-values remain
161 significant at $\alpha = 0.05$ following a Bonferroni correction for 5 comparisons. Combined train/test
162 statistics ($R^2 = 0.20$; $p = 0.0001$) are presented in Figure 1K,M. Thus, idiosyncratic PN calcium
163 predicts odor vs. odor preference.

164

165 We conducted a follow-up analysis to contextualize the finding of calcium PCs predicting odor
166 preference with an R^2 of ~ 0.2 . This value is lower than 1.0 due to at least two factors: 1) any
167 non-linearity in the relationship between calcium responses and behavior, and 2) sampling error
168 in, and temporal instability of, behavior and calcium responses over the duration of the
169 experiment. A lower bound on the latter can be estimated from the repeatability of behavioral
170 measures over time (Figure 1 – figure supplement 1B-E). We performed a statistical analysis to
171 roughly estimate model performance if there were no sampling error or drift in the measurement
172 of behavior and calcium responses (Figure 1 – figure supplement 9; Materials and Methods).
173 This analysis suggests that the measured correlation between calcium and behavior (R^2_{latent})
174 would be 0.46 in the absence of sampling error and temporal instability, but the uncertainty in
175 this estimate is high (90% CI: 0.06-0.90).

176

177 We additionally assessed the extent to which idiosyncratic calcium responses in ORNs or PNs
178 could predict preference between air and a single aversive odor (OCT). We found a suggestive
179 correlate: PC 1 of ORN calcium responses explained 23% of preference variance ($n = 30$ flies, p
180 = 0.0099, Figure 1 – figure supplement 10B), but this association was dominated by a single
181 outlier (R^2 of 0.078, $p = 0.14$ with the outlier removed).

182

183 We next sought a biological understanding of the models associating calcium responses with
184 odor preference. The loadings of the ORN and PN PCs indicate that variation across individuals
185 was correlated at the level of glomeruli much more strongly than odorant (Figure 1H; Figure 1 –
186 figure supplements 3, 8). This suggests that stochastic variation in the olfactory circuit results in
187 individual-level fluctuations in the responses of glomeruli-specific rather than odor-specific
188 responses. In the odor-vs-odor preference model, the loadings of PC2 of PN calcium responses
189 contrast the responses of the DM2 and DC2 glomeruli with opposing weights (Figure 2A),
190 suggesting that the activation of DM2 relative to DC2 predicts the likelihood of a fly preferring
191 OCT to MCH. Indeed, a linear model constructed from the average DM2 minus average DC2 PN
192 response (Figure 2B) showed a statistically significant correlation with preference for OCT
193 versus MCH ($R^2 = 0.12$; $p = 0.0035$; Figure 2C). The model slope coefficient was negative
194 (Table 1), indicating that greater activation of DM2 vs DC2 correlates with preference for MCH.
195 With respect to odor-vs-odor behavior, we conclude that the relative responses of DM2 vs DC2
196 in PNs compactly predict an individual's preference.

197

198 Odor experience has been shown to modulate subsequent AL responses (Golovin and Broadie,
199 2016; Iyengar et al., 2010; Sachse et al., 2007). This raises the possibility that our models were

200 actually predicting individual flies' past odor experiences (i.e., the specific pattern of odor
201 stimulation flies received in the behavioral assay) rather than their preferences. To address this,
202 we imposed the specific odor experiences of previously tracked flies (in the odor-vs-odor assay)
203 on naive "yoked" control flies (Figure 2D) and measured PN odor responses of the yoked flies.
204 Applying the PN PC 2 model to the yoked calcium responses did not predict flies' odor
205 experience ($R^2 = 0.019$, $p = 0.49$; Figure 2E). This is consistent with PN calcium responses
206 predicting odor preference rather than odor experience.

207
208 (Mazor and Laurent, 2005) found that PN response transients, rather than fixed points, contain
209 more odor identity information. We therefore asked at which times during odor presentation an
210 individual's neural responses could best predict odor preference. Applying our calcium-to-
211 behavior models (PN PC2-odor-vs-odor, as well as ORN PC1-odor-vs-air, PN PC1-odor-vs-air)
212 to the time-varying calcium signals, we found that in all cases, behavior prediction rose during
213 odor delivery (Figure 2 – figure supplement 2). In ORNs, the predictive accuracy remained high
214 after odor offset, whereas in PNs it declined. The times during which calcium responses
215 predicted individual behavior generally aligned to the times during which a linear classifier could
216 decode odor identity from neuronal responses (Figure 2 – figure supplement 2D), suggesting that
217 idiosyncrasies in odor encoding predict individual preferences.

218
219 *Variation in a presynaptic scaffolding protein predicts odor preference*
220 We next investigated how structural variation in the nervous system might relate to idiosyncratic
221 behavior. Because PN, but not ORN, calcium responses predicted odor-vs-odor preference, we
222 hypothesized that a circuit element between ORNs to PNs could confer onto PNs behaviorally-
223 relevant physiological idiosyncrasies absent in ORNs. We therefore imaged presynaptic T-bar
224 density in ORNs using transgenic mStrawberry-tagged Brp-Short, immunohistochemistry and
225 confocal microscopy (Mosca and Luo, 2014) after measuring individual preference for OCT
226 versus MCH (Figure 3A). Brp-Short density was quantified as total fluorescence intensity /
227 glomerulus volume for 4 of the 5 focus glomeruli (Figure 3B, Figure 3 – figure supplement 1A-
228 F; DL5 was not readily segmentable in our confocal samples). We chose this metric as we found
229 it could be used to predict individual behavioral biases in a previous study (Skutt-Kakaria et al.,
230 2019). This measure was consistent across hemispheres (Figure 3 – figure supplement 1C), while
231 also showing variation among individuals, like calcium responses.

232
233 To relate presynaptic structural variation and behavior, we used the same analytical approach as
234 we had for calcium responses. PCs 1 and 2 of Brp-Short density had notable similarities to those
235 of the calcium responses: PC 1 was positive across glomeruli and PC 2 exhibited a sign contrast
236 between DC2 loadings and all other glomerulus loadings (Figure 3 – figure supplement 1G). As
237 in the PN calcium response models, PC 2 of Brp-Short density was the best predictor of odor-vs-
238 odor preferences in training data (Figure 3D-E, Figure 3 – figure supplement 1I, $R^2 = 0.22$, $n =$
239 22 flies, $p = 0.028$) and for test data (Figure 3 – figure supplement 1J, $R^2 = 0.078$, $n = 31$ flies, p

240 = 0.13; statistics from combined train and test data: $R^2 = 0.088$, $n = 53$ flies, $p = 0.031$; Figure
241 3F; median R^2_{latent} 0.15, 90% CI 0.00-0.74). To better understand the microstructural basis of our
242 Brp-Short density metric, we performed paired behavior and expansion microscopy (Asano et
243 al., 2018; Gao et al., 2019) in flies expressing Brp-Short specifically in DC2-projecting ORNs
244 (Supplementary Video 3). Expansion yielded a ~4-fold increase in linear resolution, allowing
245 imaging of individual Brp-Short puncta (Figure 3 – figure supplement 1K). While the sample
246 size ($n = 8$) of this imaging pipeline was insufficient for a formal statistical analysis, the trend
247 between Brp-Short density in DC2 (measured as individual puncta / glomerular volume) and
248 odor-vs-odor preference was more consistent with a positive correlation than other metrics, such
249 as median puncta volume (Figure 3 – figure supplement L,M).

250

251 The best presynaptic density models are less predictive of behavior than the best calcium
252 response models ($R^2 = 0.088$ vs $R^2 = 0.22$; $R^2_{latent} = 0.15$ and 0.46, respectively; Figure 2 – figure
253 supplement 1C,D vs Figure 3 – figure supplement 1I,J), suggesting that presynaptic density
254 variation is not the full explanation of calcium response variability. Nevertheless, differences in
255 presynaptic inputs to PNs may contribute to variation in the calcium dynamics of those neurons,
256 in turn giving rise to individual preferences for OCT versus MCH.

257

258 *Developmental stochasticity in a simulated AL recapitulates empirical PN response variation*
259 Finally, we sought an integrative understanding of how synaptic variation plays out across the
260 olfactory circuit to produce behaviorally-relevant physiological variation. We developed a leaky-
261 integrate-and-fire model of the entire AL, comprising 3,062 spiking neurons and synaptic
262 connectivity taken directly from the *Drosophila* hemibrain connectome (Scheffer et al., 2020).
263 After tuning the model to perform canonical AL computations, we introduced different kinds of
264 stochastic variations to the circuit and determined which (if any) would produce the patterns of
265 idiosyncratic PN response variation observed in our calcium imaging experiments (Figure 4A).
266 This approach assesses potential mechanisms linking developmental variation in synapses to
267 physiological variation that apparently drives behavioral individuality.

268

269 The biophysical properties of neurons in our model (Figure 4B, Table 2) were determined by
270 published electrophysiological studies (See *Voltage model* in Materials and Methods) and were
271 similar to those used in previous fly models (Kakaria and de Bivort, 2017; Pisokas et al., 2020).
272 The polarity of neurons was determined largely by their cell type (ORNs are excitatory, PNs
273 predominantly excitatory, and LNs predominantly inhibitory – explained further in Materials and
274 Methods). The strength of synaptic connections between any pair of AL neurons was given by
275 the hemibrain connectome (Scheffer et al., 2020) (Figure 4C). Odor inputs were simulated by
276 injecting current into ORNs to produce spikes in those neurons at rates that match published
277 ORN-odor recordings (Münch and Galizia, 2016), and the output of the system was recorded as
278 the firing rates of PNs during odor stimulation (Figure 4D). At this point, there remained only
279 four free parameters in our model, the relative sensitivity (postsynaptic current per upstream

280 action potential) of each AL cell type (ORNs, PNs, excitatory LNs and inhibitory LNs). We
281 explored this parameter space manually, and identified a configuration in which AL simulation
282 (Figure 4 – figure supplement 1) recapitulated four canonical properties seen experimentally
283 (Figure 4 – figure supplement 2): 1) typical firing rates at baseline and during odor stimulation
284 (Bhandawat et al., 2007; Dubin and Harris, 1997; Jeanne and Wilson, 2015; Seki et al., 2010), 2)
285 a more uniform distribution of PN firing rates compared to ORN rates (Bhandawat et al., 2007),
286 3) greater separation of PN odor representations compared to ORN representations (Bhandawat
287 et al., 2007), and 4) a sub-linear transfer function between ORNs and PNs (Bhandawat et al.,
288 2007). Thus, our simulated AL appeared to perform the fundamental computations of real ALs,
289 providing a baseline for assessing the effects of idiosyncratic variation.
290

291 We simulated stochastic individuality in the AL circuit in two ways (Figure 4E): 1) glomerular-
292 level variation in PN input-synapse density (reflecting a statistical relationship observed between
293 glomerular volume and synapse density in the hemibrain, Figure 4 – figure supplement 4), and 2)
294 bootstrapping of neuronal compositions within cell types (reflecting variety in developmental
295 program outcomes for ORNs, PNs, etc.). Supplementary Video 4 shows the diverse connectivity
296 matrices attained under these resampling approaches. We simulated odor responses in thousands
297 of ALs made idiosyncratic by these sources of variation, and in each, recorded the firing rates of
298 PNs when stimulated by the 12 odors from our experimental panel (Figure 4F, Figure 4 – figure
299 supplement 1).
300

301 To determine which sources of variation produced patterns of PN coding variation consistent
302 with our empirical measurements, we compared principal components of PN responses from real
303 idiosyncratic flies to those of simulated idiosyncratic ALs. Empirical PN responses are strongly
304 correlated at the level of glomeruli (Figure 4G; Figure 1 – figure supplement 8). As a positive
305 control that the model can recapitulate this empirical structure, resampling PN input-synapse
306 density across glomeruli produced PN response correlations strongly organized by glomerulus
307 (Figure 4I). As a negative control, variation in PN responses due solely to poisson timing of
308 ORN input spikes (i.e., absent any circuit idiosyncrasy) was not organized at the glomerular level
309 (Figure 4H). Strikingly, bootstrapping ORN membership yielded a strong glomerular
310 organization in PN responses (Figure 4J). The loadings of the top PCs under ORN bootstrapping
311 are dominated by responses of a single glomerulus to all odors, including DM2 and DC2. This is
312 reminiscent of PC2 of PN calcium responses, with prominent (opposite sign) loadings for DM2
313 and DC2. Bootstrapping LNs, in contrast, produced much less glomerular organization (Figure
314 4K), with little resemblance to the loadings of the empirical calcium PCs. The PCA loadings for
315 simulated PN responses under all combinations of cell type bootstrapping and PN input-synapse
316 density resampling are given in Figure 4 – figure supplement 5.
317

318 DM2 and DC2 (also DL5) stand out in the PCA loadings under PN input-synapse density
319 resampling and ORN bootstrapping (Figure 4I,J), suggesting that behaviorally-relevant PN

320 coding variation is recapitulated in this modeling framework. To formalize this analysis, for each
321 idiosyncratic AL, we computed a “behavioral preference” by applying the PN PC2 linear model
322 (Figure 1K,M) to simulated PN responses. We then determined how accurately a linear classifier
323 could distinguish OCT- vs MCH-preferring ALs in the space of the first 3 PCs of PN responses
324 (Figure 4 – figure supplement 6). High accuracy was attained under PN input-synapse density
325 resampling and ORN bootstrapping (sources of circuit variation that produced PN response
326 loadings highlighting DM2 and DC2). Thus, developmental variability in ORN populations may
327 drive patterns of PN physiological variation that in turn drive individuality in odor-vs-odor
328 choice behavior.

329

330

331 **Discussion**

332 We found an element of the *Drosophila* olfactory circuit in which patterns of physiological
333 activity predict individual behavioral preferences. This circuit element can be considered a locus
334 of individuality, as it appears to contribute to idiosyncratic preferences among isogenic animals
335 reared in the same environment. Specifically, the difference in the activation of PNs in DC2 and
336 DM2 during odor exposure predicts idiosyncratic OCT-vs-MCH preferences (Figures 1, 2). This
337 circuit element is in the olfactory sensory periphery and explains a large portion of the
338 individuality signal, suggesting that behavioral idiosyncrasy arises early and suddenly in the
339 sensorimotor transformation.

340

341 Correlating behavior to microscopic circuit features at the individual level is challenging
342 (Koulakov et al., 2005). Measurements of both calcium responses and preference behavior are
343 noisy. Calcium recordings are slow to acquire, making it hard to achieve sample sizes sufficient
344 for machine-learning discovery of correlations with behavior. We conducted three major
345 experiments (paired odor-vs-odor preference and calcium recordings, odor-vs-air preference and
346 calcium recordings, and odor-vs-odor and Brp-Short imaging), each with training and test sets on
347 the scale of 20-60 individuals each. This allowed us to do some limited statistical discovery of
348 correlations, which we restrained by conducting at most five exploratory correlation
349 measurements between circuit and behavioral measures. We were particularly struck by the
350 extent to which PN activity could predict preference between two aversive odors. Importantly,
351 we confirmed this by evaluating the PN calcium-behavior model on a test set of flies measured
352 several weeks after the training flies, finding the same statistically robust trend in both data
353 partitions (training set: $R^2 = 0.15$, $n = 47$, $p = 0.0063$; testing set: $R^2 = 0.31$, $n = 22$, $p = 0.0069$;
354 Figure 2 – figure supplement 1).

355

356 Previous work has found mammalian peripheral circuit areas are predictive of individual
357 behavior (Britten et al., 1996; Michelson et al., 2017; Newsome et al., 1989; Osborne et al.,
358 2005), but this study is among the first (Linneweber et al., 2020; Mellert et al., 2016; Skutt-
359 Kakaria et al., 2019) to link cellular-level circuit variants and individual behavior in the absence

360 of genetic variation. Another key conclusion is that loci of individuality are likely to vary, even
361 within the sensory periphery, with the specific behavioral paradigm (i.e., odor-vs-odor or odor-
362 vs-air). Our ability to predict behavioral preferences was limited by the repeatability of the
363 behavior itself (Figure 1 – figure supplement 9). Low persistence of odor preference may be
364 attributable to factors like internal states or plasticity. It may be fruitful in future studies to map
365 circuit elements whose activity predicts trial-to-trial behavioral fluctuations within individuals.
366

367 Seeking insight into the molecular basis of behaviorally-relevant physiological variation, we
368 imaged Brp in the axon terminals of the ORN-PN synapse, using confocal and expansion
369 microscopy. Brp glomerular density was a significant predictor of individual odor-vs-odor
370 preferences (Figure 3). The strongest predictor of OCT-MCH preference among principal
371 components of Brp-Short density features contrastive loadings between DM2 and other
372 glomeruli, similar to the DM2 - DC2 contrast present in the model that predicts odor preference
373 from PN calcium. This is consistent with the recent finding of a linear relationship between
374 synaptic density and excitatory postsynaptic potentials (Liu et al., 2022) and another study in
375 which idiosyncratic synaptic density in central complex output neurons predicts individual
376 locomotor behavior (Skutt-Kakaria et al., 2019). The predictive relationship between Brp and
377 behavior was weaker than that of PN calcium responses, suggesting there are other determinants,
378 such as other synaptic proteins, neurite morphology, or the influence of idiosyncratic LNs (Chou
379 et al., 2010) modulating the ORN-PN transformation (Nagel et al., 2015).
380

381 To integrate our synaptic and physiological results, we implemented a spiking model with 3,062
382 neurons and synaptic weights drawn directly from the fly connectome (Scheffer et al., 2020)
383 (Figure 4). With light parameter tuning, this model recapitulated canonical AL computations,
384 providing a baseline for assessing the effects of idiosyncratic stochastic variation. The apparent
385 variation in odor responses across simulated individuals (Figure 4F) is less than that seen in the
386 empirical calcium responses (Figure 1H), likely due to 1) biological phenomena missing from
387 the model, 2) the lack of measurement noise, and 3) the fact that our perturbations are applied to
388 the connectome of a single fly. When examining PCA loadings, however, simulating
389 idiosyncratic ALs by varying PN input synapse density or bootstrapping ORNs produced
390 correlated PN responses across odors in DC2 and DM2, matching our experimental results.
391 These sources of variation specifically implicate the ORN-PN synapse (like our Brp results) as
392 an important substrate for establishing behaviorally-relevant patterns of PN response variation.
393

394 The flies used in our experiments were isogenic and reared in standardized laboratory conditions
395 that produce reduced behavioral individuality compared to enriched environments (Akhund-Zade
396 et al., 2019; Körholz et al., 2018; Zocher et al., 2020). Yet, even these conditions yield
397 substantial behavioral individuality. We do not expect variability in the expression of the flies'
398 transgenes to be a major driver of this individuality, as wildtype flies have a similarly broad
399 distribution of odor preferences (Honegger et al., 2019). The ultimate source of stochasticity in

400 this behavior remains a mystery, with possibilities ranging from thermal fluctuations at the
401 molecular scale to macroscopic, but seemingly irrelevant, variations like the exact fill level of the
402 culture media (Honegger and de Bivort, 2018). Developing nervous systems employ various
403 compensation mechanisms to dampen out the effects of these fluctuations (Marder, 2011; Tobin
404 et al., 2017). Behavioral variation may be beneficial, supporting a bet-hedging strategy (Hopper,
405 1999) to counter environmental fluctuations (Akhund-Zade et al., 2020; Honegger et al., 2019;
406 Kain et al., 2015; Krams et al., 2021). Empirically, the net effect of dampening systems and
407 accreted ontological fluctuations is individuals with diverse behaviors (Gomez-Marin and
408 Ghazanfar, 2019). This process unfolds across all levels of biological regulation. Just as PN
409 response variation appears to be partially rooted in glomerular Brp variation, the latter has its
410 own molecular roots, including, perhaps, stochasticity in gene expression (Li et al., 2017; Raj et
411 al., 2010), itself a predictor of idiosyncratic behavioral biases (Werkhoven et al., 2021).
412 Improved methods to longitudinally assay the fine-scale molecular and anatomical makeup of
413 behaving organisms throughout development and adulthood will be invaluable to further
414 illuminate the mechanistic origins of individuality.

415 **Materials and Methods**

416

417 **Data and code availability**

418 All raw data, totaling 600 GB, are available via hard drive from the authors. A smaller (7 GB)
419 repository with partially processed data files and MATLAB/Python scripts sufficient to generate
420 figures and results is available at Zenodo (doi:10.5281/zenodo.14252278).

421

422 **Fly rearing**

423 Experimental flies were reared in a *Drosophila* incubator (Percival Scientific DR-36VL) at 22°
424 C, 40% relative humidity, and 12:12h light:dark cycle. Flies were fed cornmeal/dextrose
425 medium, as previously described (Honegger et al., 2019). Mated female flies aged 3 days post-
426 eclosion were used for behavioral persistence experiments. Mated female flies aged 7 to 15 days
427 post-eclosion were used for all paired behavior-calcium imaging and immunohistochemistry
428 experiments.

429

430 **Fly stocks**

431 The following stocks were obtained from the Bloomington *Drosophila* Stock Center:
432 P{20XUAS-IVS-GCaMP6m}attP40 (BDSC #42748), w[*]; P{w[+mC]=Or13a-GAL4.F}40.1
433 (BDSC #9945), w[*]; P{w[+mC]=Or19a-GAL4.F}61.1 (BDSC #9947), w[*];
434 P{w[+mC]=Or22a-GAL4.7.717}14.2 (BDSC #9951), w[*]; P{w[+mC]=Orco-GAL4.W}11.17;
435 TM2/TM6B, Tb[1] (BDSC #26818). Transgenic lines were outcrossed to the isogenic line
436 isokh11 (Honegger et al., 2019) for at least 5 generations prior to being used in any experiments.
437 GH146-Gal4 was a gift provided by Y. Zhong (Honegger et al., 2019). w; UAS-Brp-Short-
438 mStrawberry; UAS-mCD8-GFP; + was a gift of Timothy Mosca and was not outcrossed to the
439 isokh11 background (Mosca and Luo, 2014).

440

441 **Odor delivery**

442 Odor delivery during behavioral tracking and neural activity imaging was controlled with
443 isolation valve solenoids (NResearch Inc.) (Honegger et al., 2019). Saturated headspace from 40
444 ml vials containing 5 ml pure odorant were serially diluted via carbon-filtered air to generate a
445 variably (10-25%) saturated airstream controlled by digital flow controllers (Alicat Scientific)
446 and presented to flies at total flow rates of ~100 mL/min. Dilution on the order of 10% is typical
447 of other odor tunnel assays, as in Claridge-Chang et al. (2009). To yield the greatest signal of
448 individual odor preference, dilution factors for odorants were adjusted on a week-by-week basis
449 to ensure that the mean preference was approximately 50%. The odor panel used for imaging
450 was comprised of the following odorants: 2-heptanone (CAS #110-43-0, Millipore Sigma), 1-
451 pentanol (CAS #71-41-0, Millipore Sigma), 3-octanol (CAS #589-98-0, Millipore Sigma), hexyl-
452 acetate (CAS #142-92-7, Millipore Sigma), 4-methylcyclohexanol (CAS #589-91-3, Millipore
453 Sigma), pentyl acetate (CAS #628-63-7, Millipore Sigma), 1-butanol (CAS #71-36-3, Millipore
454 Sigma), ethyl lactate (CAS #97-64-3, Millipore Sigma), geranyl acetate (CAS #105-87-3,

455 Millipore Sigma), 1-hexanol (CAS #111-27-34, Millipore Sigma), citronella java essential oil (456 191112, Aura Cacia), and 200 proof ethanol (V1001, Decon Labs).

457

458 ***Odor preference behavior***

459 Odor preference was measured at 25°C and 20% relative humidity. As previously described
460 (Honegger et al., 2019), individual flies confined to custom-fabricated tunnels were illuminated
461 with infrared light and behavior was recorded with a digital camera (Basler) and zoom lens
462 (Pentax). The odor choice tunnels were 50 mm long, 5 mm wide, and 1.3 mm tall. Custom real-
463 time tracking software written in MATLAB was used to track centroid, velocity, and principal
464 body axis angle throughout the behavioral experiment, as previously described (Honegger et al.,
465 2019). After a 3-minute acclimation period, odorants were delivered to either end of the tunnel
466 array for 3 minutes. Odor preference score was calculated as the fraction of time spent in the
467 reference side of the tunnel during odor-on period minus the time spent in the reference side of
468 the tunnel during the pre-odor acclimation period.

469

470 ***Behavioral preference persistence measurements***

471 After measuring odor preference, flies were stored in individual housing fly plates (modified 96-
472 well plates; FlySorter, LLC) on standard food, temperature, humidity, and lighting conditions.
473 Odor preference of the same individuals was measured 3 and/or 24 hours later. In some cases, fly
474 tunnel position was randomized between measurements. We observed that randomization had
475 little effect on preference persistence.

476

477 ***Calcium imaging***

478 Flies expressing GCaMP6m in defined neural subpopulations were imaged using a custom-built
479 two-photon microscope and ultrafast Ti:Sapphire laser (Spectra-Physics Mai Tai) tuned to 930
480 nm, at a power of 20 mW out of the objective (Olympus XLUMPlanFL N 20x/1.00 W). For
481 paired behavior and imaging experiments, the time elapsed between behavior measurement and
482 imaging ranged from 15 minutes to 3 hours. Flies were anesthetized on ice and immobilized in
483 an aluminum sheet with a female-fly-sized hole cut in it. The head cuticle between the antennae
484 and ocelli was removed along with the tracheae to expose the ALs from the dorsal side. Volume
485 scanning was performed using a piezoelectric objective mount (Physik Instrumente). ScanImage
486 2013 software (Vidrio Technologies) was used to coordinate galvanometer laser scanning and
487 image acquisition. Custom Matlab (Mathworks) scripts were used to coordinate image
488 acquisition and control odor delivery. 256 by 192 (x-y) pixel 16-bit tiff images were recorded.
489 The piezo travel distance was adjusted between 70 and 90 μm so as to cover most of the AL. The
490 number of z-sections in a given odor panel delivery varied between 7 and 12 yielding a volume
491 acquisition rate of 0.833 Hz. Odor delivery occurred from 6-9.6s of each recording.

492

493 Each fly experienced up to four deliveries of the odor panel. The antennal lobe being recorded
494 (left or right) was alternated after each successful completion of an odor panel. Odors were

495 delivered in randomized order. In cases where baseline fluorescence was very weak or no
496 obvious odor responses were visible, not all four panels were delivered.

497

498 ***Glomerulus segmentation and labeling***

499 Glomerular segmentation masks were extracted from raw image stacks using a k -means
500 clustering algorithm based on time-varying voxel fluorescence intensities, as previously
501 described (Honegger et al., 2019). Each image stack, corresponding to a single odor panel
502 delivery, was processed individually. Time-varying voxel fluorescence values for each odor
503 delivery were concatenated to yield a voxel-by-time matrix consisting of each voxel's recorded
504 value during the course of all 13 odor deliveries of the odor panel. After z-scoring, principal
505 component analysis was performed on this matrix and 75% of the variance was retained. Next, k -
506 means ($k = 80$, 50 replicates with random starting seeds) was performed to produce 50 distinct
507 voxel cluster assignment maps which we next used to calculate a consensus map. This approach
508 was more accurate than clustering based on a single k -means seed.

509

510 Of the 50 generated voxel cluster assignment maps, the top 5 were selected by choosing those
511 maps with the lowest average within-cluster sum of distances, selecting for compact glomeruli.
512 The remaining maps were discarded. Next, all isolated voxel islands in each of the top 5 maps
513 were identified and pruned based on size (minimum size = 100 voxels, maximum size = 10000
514 voxels). Finally, consensus clusters were calculated by finding voxel islands with significant
515 overlap across all 5 of the pruned maps. Voxels which fell within a given cluster across all 5
516 pruned maps were added to the consensus cluster. This process was repeated for all clusters until
517 the single consensus cluster map was complete. In some cases we found by manual inspection
518 that some individual glomeruli were clearly split into two discrete clusters. These splits were
519 remedied by automatically merging all consensus clusters whose centroids were separated by a
520 physical distance of less than 30 voxels and whose peak odor response Spearman correlation was
521 greater than 0.8. Finally, glomeruli were manually labeled based on anatomical position,
522 morphology, and size (Grabe et al., 2015). We focused our analysis on 5 glomeruli (DM1, DM2,
523 DM3, DL5, and DC2), which were the only glomeruli that could be observed in all paired
524 behavior-calcium datasets. However, not all 5 glomeruli were identified in all recordings (Figure
525 1 – figure supplement 3). Missing glomerular data was later mean-imputed. Using alternating
526 least squares to impute data (running the pca function with option 'als' to infill missing values
527 1,000 times and taking the mean infilled matrix – see Figure 1 – figure supplement 5 of
528 Werkhoven et al., 2021) had negligible effect on the fitted slope and predictive capacity of the
529 PN PC2 OCT-MCH model compared to mean-infilling.

530

531 ***Calcium image data analysis***

532 All data was processed and analyzed in MATLAB 2018a (Mathworks). Calcium responses for
533 each voxel were calculated as $\Delta f/f = [f(t) - F]/F$, where $f(t)$ and F are the instantaneous and
534 average fluorescence, respectively. Each glomerulus' time-dependent calcium response was

535 calculated as the mean $\Delta f/f$ across all voxels falling within the glomerulus' automatically-
536 generated segmentation mask during a single volume acquisition. Time-varying odor responses
537 were normalized to baseline by subtracting the median of pre-odor $\Delta f/f$ from each trace. Peak
538 odor response was calculated as the maximum fluorescence signal from 7.2s to 10.8s (images 6
539 through 9) of the recording.

540

541 To compute principal components of calcium dynamics, each fly's complement of odor panel
542 responses (a 5 glomeruli by 13 odors = 65-dimensional vector) was concatenated. Missing
543 glomerulus-odor response values were filled in with the mean glomerulus-odor pair across all fly
544 recordings for which the data was not missing. After infilling, principal component analysis was
545 carried out with individual odor panel deliveries as observations and glomerulus-odor responses
546 pairs as features.

547

548 Inter- and intra-fly distances (Figure 1J) were calculated using the projections of each fly's
549 glomerulus-odor responses onto all principal components. For each fly, the average Euclidean
550 distance between response projections 1) among left lobe trials, 2) among right lobe trials, and 3)
551 between left and right lobe trials were averaged together to get a single within-fly distance. Intra-
552 fly distances were computed in a similar fashion (for each fly, taking the average distance of its
553 response projections to those of other flies using only left lobe trials / only right lobe trials /
554 between left-right trials, then averaging these three values to get a single across-fly distance).

555

556 In a subset of experiments in which we imaged calcium activity, some solenoids failed to open,
557 resulting in the failure of odor delivery in a small number of trials. In these cases, we identified
558 trials with valve failures by manually recognizing that glomeruli failed to respond during the
559 nominal odor period. These trials were treated as missing data and infilled, as described above.
560 Fewer than ~10% of flies and 5% of odor trials were affected.

561

562 For all predictive models constructed, the average principal component score or glomerulus-odor
563 $\Delta f/f$ response across trials was used per individual; that is, each fly contributed one data point to
564 the relevant model. Linear models were constructed from behavior scores and the relevant
565 predictor (principal component, average $\Delta f/f$ across dimensions, specific glomerulus
566 measurements) as described in the text and Tables 1-2. All reported linear model p-values are
567 nominal, i.e., unadjusted for multiple hypothesis comparisons. 95% confidence intervals around
568 model regression lines were estimated as +/- 2 standard deviations of the value of the regression
569 line at each x-position across 2000 bootstrap replicates (resampling flies). To predict behavior as
570 a function of time during odor delivery, we analyzed data as described above, but considered
571 only $\Delta f/f$ at each single time point (Figure 2 – figure supplement 2A-C), rather than averaging
572 during the peak response interval.

573

574 To decode individual identity from neural responses, we first performed PCA on individual odor
575 panel peak responses. We retained principal component scores constituting specified fractions of
576 variance (Figure 1 – figure supplement 6A) and trained a linear logistic classifier to predict
577 individual identity from single odor panel deliveries.

578
579 To decode odor identity from neural responses, each of the 5 recorded glomeruli were used as
580 features, and the calcium response of each glomerulus to a specific odor at a specified time point
581 were used as observations (PNs, n = 5317 odor deliveries; ORNs, n = 2704 odor deliveries). A
582 linear logistic classifier was trained to predict the known odor identity using 2-fold cross-
583 validation. That is, a model was trained on half the data and evaluated on the remaining half, and
584 then this process was repeated with the train and test half reversed. The decoding accuracy was
585 quantified as the fraction of odor deliveries in which the predicted odor was correct.

586

587 ***Inference of correlation between latent calcium and behavior states***

588 We performed a simulation-based analysis to infer the strength of the correlation between latent
589 calcium (Brp) and behavior states, given the R^2 of a given linear model. Figure 1 – figure
590 supplement 9 is a schematic of a possible data generation process that underlies our observed
591 data. We assume that the “true” behavioral and calcium values of the animal are captured by
592 unobserved latent states X_c and X_b , respectively, such that the R^2 between X_c and X_b is the
593 biological signal captured by the model, having adjusted for the noise associated with actually
594 measuring behavior and calcium (R^2_{latent}). Our calcium and odor preference scores are subject to
595 measurement error and temporal instability (behavior and neural activity were measured 1-3
596 hours apart). These effects are both noise with respect to estimating the linear relationship
597 between calcium and behavior. Their magnitude can be estimated using the empirical
598 repeatability of behavior and calcium experiments respectively. Thus, our overall approach was
599 to assume true latent behavior and calcium signals that are correlated by the level set at R^2_{latent} ,
600 add noise commensurate with the repeatability of these measures to simulate measured behavior
601 and calcium, and record the simulated empirical R^2 between these measured signals. This was
602 done many times to estimate distributions of empirical R^2 given R^2_{latent} . These distributions could
603 finally be used in the inverse direction to infer R^2_{latent} given the actual model R^2 values computed
604 in our study.

605

606 Specifically, we simulated X_c as a set of N standard normal variables (N equalling the number of
607 flies used to compute a correlation between predicted and measured preference) and generated X_b
608 = $r_{latent} X_c + (1 - r_{latent}^2 Z)^{1/2}$, where Z is a set of N standard normal variables uncorrelated with X_c , a
609 procedure that ensures that $corr(X_c, X_b) = r_{latent}$. Next, we simulated observed calcium readouts
610 X_c' and X_c'' , such that $corr(X_c, X_c') = corr(X_c, X_c'') = r_c$. Similarly, we simulated noisy observed
611 behavioral assay readouts X_b' and X_b'' , such that $corr(X_b, X_b') = corr(X_b, X_b'') = r_b$. The values
612 of r_c and r_b were drawn from the empirical repeatability of calcium ($R_{c,c}^2$) and behavior ($R_{b,b}^2$)
613 respectively as follows. Since calcium is a multidimensional measure, and our calcium model

614 predictors are based on principal components of glomerulus-odor responses, we used variance
615 explained along the PCs to calculate a single value for the calcium repeatability $R_{c,c}^2$. We
616 compared the eigenvalues of the real calcium PCA to those of shuffled calcium data (shuffling
617 glomerulus/odor responses for each individual fly), computing $R_{c,c}^2$ by summing the variance
618 explained along the PCs of the calcium data up until the component-wise variance for the
619 calcium data fell below that of the shuffled data, a similar approach as done in Berman et al.,
620 2014 and Werkhoven et al., 2021. That is, we determined which empirical PCs had more
621 variance than their corresponding rank-matched PC in shuffled data, interpreted the remaining
622 PCs as harboring the noise of the experiment, and totaled the variance explained of the non-noise
623 PCs as our measure of the repeatability of the measurement as a whole. $R_{c,c}^2$ was calculated to be
624 0.77 for the full PN calcium data.

625
626 To incorporate uncertainty in calcium-calcium repeatability, we utilized bootstrapping. We
627 resampled the calcium data associated with individual flies 10,000 times, performed PCA and
628 computed $R_{c,c}^2$ for each resampled dataset, then set $r_c = (R_{c,c}^2)^{1/4}$ to ensure $\text{corr}(X_c', X_c'')^2 = R_{c,c}^2$.
629 For behavior-behavior uncertainty, we set r_b from the repeatability across odor preference trials
630 in the same flies measured 3h apart ($R_{b,b}^2 = 0.12$ for OCT vs MCH, Figure 1 – figure supplement
631 1D using the full dataset of flies). We also resampled the flies 10,000 times, computed $R_{b,b}^2$ for
632 each resampled dataset, and set $r_b = (R_{b,b}^2)^{1/4}$ to ensure $\text{corr}(X_b', X_b'')^2 = R_{b,b}^2$.

633
634 We varied r_{latent} from 0 to 1 in increments of 0.01, and for each r_{latent} and bootstrap iteration we
635 simulated a set of $N X_c$, and generated X_b , X_c' , X_c'' , X_b' , and X_b'' , then we computed a simulated
636 observed calcium-behavior relationship strength $R_{c,b}^2 = \text{corr}(X_c', X_b')^2$. We repeated this
637 simulation 10,000 times for each r_{latent} , transformed r_{latent} to R^2_{latent} such that for a quantile of
638 interest q , $P(r_{latent} \leq q)$ matched $P(R^2_{latent} \leq q^2)$, and plotted the resultant relationship between
639 R^2_{latent} against $R_{c,b}^2$ (percentiles of $R_{c,b}^2$ are displayed in Figure 1 – figure supplement 9B). We
640 inferred R^2_{latent} by first drawing bootstrapped samples of calcium-behavior R^2 , then adding
641 together the marginal distributions of R^2_{latent} for each calcium-behavior R^2 . We report the median
642 R^2_{latent} and 90% confidence interval as estimated by the 5th-95th quantiles.

643
644 The procedure outlined above was done analogously for models using Brp-short relative
645 fluorescence intensity, performing the PCA-based calcium response repeatability step with PCA
646 on the multidimensional Brp-short relative fluorescence intensity (which yielded $R_{brp,brp}^2 =$
647 0.78).

648

649 **DoOR data**

650 DoOR data for the glomeruli and odors relevant to our study was downloaded from
651 <http://neuro.uni-konstanz.de/DoOR/default.html> (Münch and Galizia, 2016).

652

653 ***Yoked odor experience experiments***

654 We selected six flies for which both odor preference and neural activity were recorded to serve
655 as the basis for imposed odor experiences for yoked control flies. The experimental flies were
656 chosen to represent a diversity of preference scores. Each experimental fly's odor experience was
657 binned into discrete odor bouts to represent experience of either MCH or OCT based on its
658 location in the tunnel as a function of time (Figure 2D). Odor bouts lasting less than 100 ms were
659 omitted due to limitations on odor-switching capabilities of the odor delivery apparatus. To
660 deliver a given experimental fly's odor experience to yoked controls, we set both odor streams
661 (on either end of the tunnel apparatus) to deliver the same odor experienced by the experimental
662 fly at that moment during the odor-on period. No odor was delivered to yoked controls during
663 time points in which the experimental fly resided in the tunnel choice zone (central 5 mm). See
664 Figure 2D for an example pair of experimental fly and yoked control behavior and odor
665 experience.

666

667 ***Immunohistochemistry***

668 After measuring odor preference behavior, 7-15 day-old flies were anesthetized on ice and brains
669 were dissected in phosphate buffered saline (PBS). Dissection and immunohistochemistry were
670 carried out as previously reported (Wu and Luo, 2006). The experimenter was blind to the
671 behavioral scores of all individuals throughout dissection, imaging, and analysis. Individual
672 identities were maintained by fixing, washing, and staining each brain in an individual 0.2 mL
673 PCR tube using fluid volumes of 100 uL per brain (Fisher Scientific). Primary incubation
674 solution contained mouse anti-nc82 (1:40, DSHB), chicken anti-GFP (1:1000, Aves Labs), rabbit
675 anti-mStrawberry (1:1000, biorbyt), and 5% normal goat serum (NGS, Invitrogen) in PBT (0.5%
676 Triton X-100 in PBS). Secondary incubation solution contained Atto 647N-conjugated goat anti-
677 mouse (1:250, Millipore Sigma), Alexa Fluor 568-conjugated goat anti-rabbit (1:250), Alexa
678 Fluor 488-conjugated goat anti-chicken (1:250, ThermoFisher), and 5% NGS in PBT. Primary
679 and secondary incubation times were 2 and 3 overnights, respectively, at 4° C. Stained samples
680 were mounted and cleared in Vectashield (H-1000, Vector Laboratories) between two coverslips
681 (12-568B, Fisher Scientific). Two reinforcement labels (5720, Avery) were stacked to create a
682 0.15 mm spacer.

683

684 ***Expansion microscopy***

685 Immunohistochemistry for expansion microscopy was carried out as described above, with the
686 exception that antibody concentrations were modified as follows: mouse anti-nc82 (1:40),
687 chicken anti-GFP (1:200), rabbit anti-mStrawberry (1:200), Atto 647N-conjugated goat anti-
688 mouse (1:100), Alexa Fluor 568-conjugated goat anti-rabbit (1:100), Alexa Fluor 488-conjugated
689 goat anti-chicken (1:100). Expansion of stained samples was performed as previously described
690 (Asano et al., 2018; Gao et al., 2019). Expanded samples were mounted in coverslip-bottom petri
691 dishes (MatTek Corporation) and anchored by treating the coverslip with poly-l-lysine solution
692 (Millipore Sigma) as previously described (Asano et al., 2018).

693

694 ***Confocal imaging***

695 All confocal imaging was carried out at the Harvard Center for Biological Imaging. Unexpanded
696 samples were imaged on an LSM700 (Zeiss) inverted confocal microscope equipped with a 40x
697 oil-immersion objective (1.3 NA, EC Plan Neofluar, Zeiss). Expanded samples were imaged on
698 an LSM880 (Zeiss) inverted confocal microscope equipped with a 40x water-immersion
699 objective (1.1 NA, LD C-Apochromat, Zeiss). Acquisition of Z-stacks was automated with Zen
700 Black software (Zeiss).

701

702 ***Standard confocal image analysis***

703 We used custom semi-automated code to generate glomerular segmentation masks from confocal
704 z-stacks of unexpanded Orco>Brp-Short brains. Using Matlab, each image channel was median
705 filtered ($\sigma_x, \sigma_y, \sigma_z = 11, 11, 1$ pixels) and downsampled in x and y by a factor of 11. Next, an
706 ORN mask was generated by multiplying and thresholding the Orco>mCD8 and Orco>Brp-Short
707 channels. Next, a locally normalized nc82 and Orco>mCD8 image stack were multiplied and
708 thresholded, and the ORN mask was applied to remove background and other undesired brain
709 structures. This pipeline resulted in a binary image stack which maximized the contrast of the
710 glomerular structure of the antennal lobe. We then applied a binary distance transform and
711 watershed transform to generate discrete subregions which aimed to represent segmentation
712 masks for each glomerulus tagged by Orco-Gal4.

713

714 However, this procedure generally resulted in some degree of under-segmentation; that is, some
715 glomerular segmentation masks were merged. To split each merged segmentation mask, we
716 convolved a ball (whose radius was proportional to the cube root of the volume of the
717 segmentation mask in question) across the mask and thresholded the resulting image. The
718 rationale of this procedure was that 2 merged glomeruli would exhibit a mask shape resembling
719 two touching spheres, and convolving a similarly-sized sphere across this volume followed by
720 thresholding would split the merged object. After ball convolution, we repeated the distance and
721 watershed transform to once more generate discrete subregions representing glomerular
722 segmentation masks. This second watershed step generally resulted in over-segmentation; that is,
723 by visual inspection it was apparent that many glomeruli were split into multiple subregions.
724 Therefore, we finally manually agglomerated the over-segmented subregions to generate single
725 segmentation masks for each glomerulus of interest. We used a published atlas to aid manual
726 identification of glomeruli (Grabe et al., 2015). The total Brp-Short fluorescence signal within
727 each glomerulus was determined and divided by the volume of the glomerulus' segmentation
728 mask to calculate Brp-Short density values.

729

730 ***Expansion microscopy image analysis***

731 The spots function in Imaris 9.0 (Bitplane) was used to identify individual Brp-Short puncta in
732 expanded sample image stacks of Or13a>Brp-Short samples (Mosca and Luo, 2014). The spot
733 size was set to 0.5 um, background subtraction and region-growing were enabled, and the default

734 spot quality threshold was used for each image stack. Identified spots were used to mask the Brp-
735 Short channel and the resultant image was saved as a new stack. In MATLAB, a glomerular
736 mask was generated by smoothing ($\sigma_x, \sigma_y, \sigma_z = 40, 40, 8$ pixels) and thresholding (92.5th
737 percentile) the raw Brp-Short image stack. The mask was then applied to the spot image stack to
738 remove background spots. Finally, the masked spot image stack was binarized and spot number
739 and properties were quantified.

740

741 ***Antennal Lobe modeling***

742 We constructed a model of the antennal lobe to test the effect of circuit variation on PN activity
743 variation across individuals. Our general approach to producing realistic circuit activity with the
744 AL model was 1) using experimentally-measured parameters whenever possible (principally the
745 connectome wiring diagram and biophysical parameters measured electrophysiologically), 2)
746 associating free parameters only with biologically plausible categories of elements, while
747 minimizing their number, and 3) tuning the model using those free parameters so that it
748 reproduced high-level patterns of activity considered in the field to represent the canonical
749 operations of the AL. Simulations were run in Python (version 3.6) (van Rossum and Drake,
750 2011), and model outputs were analyzed using Jupyter notebooks (Kluyver et al., 2016) and
751 Python and Matlab scripts.

752

753 ***AL model neurons***

754 Release 1.2 of the hemibrain connectomics dataset (Scheffer et al., 2020) was used to set the
755 connections in the model. Hemibrain body IDs for ORNs, LNs, and PNs were obtained via the
756 lists of neurons supplied in the supplementary tables in Schlegel et al., 2020. ORNs and PNs of
757 non-olfactory glomeruli (VP1d, VP11, VP1m, VP2, VP3, VP4, VP5) were ignored, leaving 51
758 glomeruli. Synaptic connections between the remaining 2574 ORNs, 197 LNs, 166 mPNs, and
759 130 uPNs were queried from the hemibrain API. All ORNs were assigned to be excitatory
760 (Wilson, 2013). Polarities were assigned to PNs based on the neurotransmitter assignments in
761 Bates et al., 2020. mPNs without neurotransmitter information were randomly assigned an
762 excitatory polarity with probability equal to the fraction of neurotransmitter-identified mPNs that
763 are cholinergic; the same process was performed for uPNs. After confirming that the model's
764 output was qualitatively robust to which mPNs and uPNs were randomly chosen, this random
765 assignment was performed once and then frozen for subsequent analyses.

766

767 Of the 197 LNs, we assigned 31 to be excitatory, based on the estimated 1:5.4 ratio of eLNs to
768 iLNs in the AL (Tsai et al., 2018). To account for observations that eLNs broadly innervate the
769 AL (Shang et al., 2007), all LNs were ranked by the number of innervated glomeruli, and the 31
770 eLNs were chosen uniformly at random from the top 50% of LNs in the list. This produced a
771 distribution of glomerular innervations in eLNs qualitatively similar to that of *krasavietz* LNs in
772 Supplementary Figure 6 of Chou et al., 2010.

773

774 ***Voltage model***

775 We used a single-compartment leaky-integrate-and-fire voltage model for all neurons as in
776 Kakaria and de Bivort, 2017, in which each neuron had a voltage $V_i(t)$ and current $I_i(t)$. When the
777 voltage of neuron i was beneath its threshold $V_{i,thr}$, the following dynamics were obeyed:
778

$$779 C_i \frac{dV_i}{dt} = \frac{V_{i,0} - V_i(t)}{R_i} + I_{i,odor}(t) + \sum_{j=1}^N a_i W_{ji} I_j(t)$$

780
781 Each neuron i had electrical properties: membrane capacitance C_i , resistance R_i , and resting
782 membrane potential $V_{i,0}$ with values from electrophysiology measurements (Table 2).
783

784 When the voltage of a neuron exceeded the threshold $V_{i,thr}$, a templated action potential was
785 filled into its voltage time trace, and a templated postsynaptic current was added to all
786 downstream neurons, following the definitions in Kakaria and de Bivort, 2017.
787

788 Odor stimuli were simulated by triggering ORNs to spike at frequencies matching known
789 olfactory receptor responses to the desired odor. The timing of odor-evoked spikes was given by
790 a Poisson process, with firing rate FR for ORNs of a given glomerulus governed by:
791

$$792 FR_{glom,odor}(t) = FR_{max} D_{glom,odor} (f_a + (1 - f_a) e^{-t/t_a})$$

793
794 FR_{max} , the maximum ORN firing rate, was set to 400 Hz. $D_{glom,odor}$ is a value between 0 and 1
795 from the DoOR database, representing the response of an odorant receptor/glomerulus to an
796 odor, estimated from electrophysiology and/or fluorescence data (Münch and Galizia, 2016).
797 ORNs display adaptation to odor stimuli (Wilson, 2013), captured by the final term with
798 timescale $t_a = 110\text{ ms}$ to 75% of the initial value, as done in Kao and Lo, 2020. Thus, the
799 functional maximum firing rate of an ORN was 75% of 400 Hz = 300 Hz, matching the highest
800 ORN firing rates observed experimentally (Hallem et al., 2004). After determining the times of
801 ORN spikes according to this firing-rate rule, spikes were induced by the addition of 10^6
802 picoamps in a single time step. This reliably triggered an action potential in the ORN, regardless
803 of currents from other neurons. In the absence of odors, spike times for ORNs were drawn by a
804 Poisson process at 10 Hz, to match reported spontaneous firing rates (de Bruyne et al., 2001).
805

806 For odor-glomeruli combinations with missing DoOR values (40% of the dataset), we performed
807 imputation via alternating least squares (using the `pca` function with option ‘als’ to infill missing
808 values ([MATLAB documentation](#)) on the odor x glomerulus matrix 1000 times and taking the
809 mean infilled matrix, which provides a closer match to ground truth missing values than a single
810 run of ALS (Figure 1 – figure supplement 5 of Werkhoven et al., 2021).
811

812 A neuron j presynaptic to i supplies its current $I_j(t)$ scaled by the synapse strength W_{ji} , the
813 number of synapses in the hemibrain dataset from neuron j to i . Rows in W corresponding to

814 neurons with inhibitory polarity (i.e. GABAergic PNs or LNs) were set negative. Finally, post-
815 synaptic neurons (columns of the connectivity matrix) have a class-specific multiplier a_i , a hand-
816 tuned value, described below.

817

818 ***AL model tuning***

819 Class-specific multiplier current multipliers (a_i) were tuned using the panel of 18 odors from
820 Bhandawat et al., 2007 (our source for several experimental observations of high-level AL
821 function): benzaldehyde, butyric acid, 2,3-butanedione, 1-butanol, cyclohexanone, Z3-hexenol,
822 ethyl butyrate, ethyl acetate, geranyl acetate, isopentyl acetate, isoamyl acetate, 4-methylphenol,
823 methyl salicylate, 3-methylthio-1-propanol, octanal, 2-octanone, pentyl acetate, E2-hexenal,
824 trans-2-hexenal, gamma-valerolactone. Odors were “administered” for 400 ms each, with 300 ms
825 odor-free pauses between odor stimuli.

826

827 The high-level functions of the AL that represent a baseline, working condition were: (1) firing
828 rates for ORNs, LNs, and PNs matching the literature (listed in Table 2 and see (Bhandawat et
829 al., 2007; Dubin and Harris, 1997; Jeanne and Wilson, 2015; Seki et al., 2010), (2) a more
830 uniform distribution of PN firing rates during odor stimuli compared to ORN firing rates, (3)
831 greater separation of representations of odors in PN-coding space than in ORN-coding space, and
832 (4) a sublinear transfer function between ORN firing rates and PN firing rates. Features (2) - (4)
833 relate to the role of the AL in enhancing the separability of similar odors (Bhandawat et al.,
834 2007).

835

836 To find a parameterization with those functions, we tuned the values of a_i as scalar multipliers on
837 ORN, eLN, iLN, and PN columns of the hemibrain connectivity matrix. Thus, these values
838 represent cell type-specific sensitivities to presynaptic currents, which may be justified by the
839 fact that ORNs/LNs/PNs are genetically distinct cell populations (McLaughlin et al., 2021; Xie
840 et al., 2021). A grid search of the four class-wise sensitivity parameters produced a configuration
841 that reasonably satisfied the above criteria (Figure 4 – figure supplement 2). In this
842 configuration, the ORN columns of the hemibrain connectivity matrix are scaled by 0.1, eLNs by
843 0.04, iLNs by 0.02, and PNs by 0.4. The relatively large multiplier on PNs is potentially
844 consistent with the fact that PNs are sensitive to small differences between weak ORN inputs
845 (Bhandawat et al., 2007). Model outputs were robust over several different sets of a_i , provided
846 iLN sensitivity \simeq eLN $<$ ORN $<$ PN.

847

848 We analyzed the sensitivity of the model’s parameters around their baseline values of a_{ORN} , a_{eLN} ,
849 a_{iLN} , $a_{PN} = (0.1, 0.04, 0.02, 0.4)$. Each parameter was independently scaled up to 4x or 1/4x of its
850 baseline value (Figure 4 – figure supplement 3), and the PN firing rates recorded. Separately,
851 multiple-parameter manipulations were performed by multiplying each parameter by a random
852 log-Normal value with mean 1 and ± 1 standard deviation corresponding to a 2x or 0.5x scaling
853 on each parameter. Mean PN-odor responses were calculated for all manipulated runs and

854 compared to the mean PN-odor responses for the baseline configuration. A manipulation effect
855 size was calculated by cohen's d ((mean manipulated response - mean baseline response)/(pooled
856 standard deviation)). None of these manipulations reached effect size magnitudes larger than 0.9
857 (which can be roughly interpreted as the number of standard deviations in the baseline PN
858 responses away from the mean baseline PN response), which signaled that the model was robust
859 to the sensitivity parameters in this range. The most sensitive parameter was, unsurprisingly, a_{PN} .
860

861 Notable ways in which the model behavior deviates from experimental recordings (and thus
862 caveats on the interpretation of the model) include: 1) Model LNs appear to have more
863 heterogeneous firing rates than real LNs, with many LNs inactive for this panel of odor stimuli.
864 This likely reflects a lack of plastic/homeostatic mechanisms in the model to regularize LN firing
865 rates given their variable synaptic connectivity (Chou et al., 2010). 2) Some PNs had off-odor
866 rates that are high compared to real PNs, resulting in a distribution of ON-OFF responses that
867 had a lower limit than in real recordings. Qualitatively close matches were achieved between the
868 model and experimental data in the distributions of odor representations in ORN vs PN spaces
869 and the non-linearity of the ORN-PN transfer function.
870

871 ***AL model circuit variation generation***

872 We generated AL circuit variability in two ways: cell-type bootstrapping, and synapse density
873 resampling. These methods assume that the distribution of circuit configurations across
874 individual ALs can be generated by resampling circuit components within a single individual's
875 AL (neurons and glomerular synaptic densities, respectively, from the hemibrain EM volume).
876

877 To test the effect of variation in the developmental complement of neurons of particular types,
878 we bootstrapped populations of interest from the list of hemibrain neurons. Resampling with
879 replacement of ORNs was performed glomerulus-by-glomerulus, i.e., separately among each
880 pool of ORNs expressing a particular *Odorant receptor* gene. The same was done for PNs. For
881 LNs, all 197 LNs were treated as a single pool; there was no finer operation based on LN
882 subtypes or glomerular innervations. This choice reflects the high developmental variability of
883 LNs (Chou et al., 2010). The number of synapses between a pair of bootstrapped neurons was
884 equal to the synapse count between those neurons in the hemibrain connectivity matrix.
885

886 In some glomeruli, bootstrapping PNs produced unreasonably high variance in the total PN
887 synapse count. For instance, DP1m, DC4, and DM3 each harbor PNs that differ in total synapse
888 count by a factor of ~10. Since these glomeruli have between two to three PNs each, in a sizable
889 proportion of bootstrap samples, all-highly connected (or all-lowly) connected PNs are chosen in
890 such glomeruli. To remedy this biologically unrealistic outcome, we examined the relationship
891 between total input PN synapses within a glomerulus and glomerular volume (Figure 4 – figure
892 supplement 4). In the “synapse density resampling” method, we required that the number of PN
893 input synapses within a glomerulus reflect a draw from the empirical relationship between total

894 input PN synapses and glomerular volume as present in the hemibrain data set. This was
895 achieved by, for each glomerulus, sampling from the following distribution that depends on
896 glomerular volume, then multiplying the number of PN input synapses by a scalar to match that
897 sampled value:

898

$$\log S_g = \log (a V_g^d) + \varepsilon_g, \varepsilon_g \sim N(0, \sigma^2)$$

900

901 Here S_g is the PN input synapse count for glomerulus g , V_g is the volume of glomerulus g (in
902 cubic microns), ε is a Gaussian noise variable with standard deviation σ , and a , d are the scaling
903 factor and exponent of the volume term, respectively. The values of these parameters ($a = 8.98$,
904 $d = 0.73$, $\sigma = 0.38$) were fit using maximum likelihood.

905

906 Quantification and statistical analysis

907 All fly behavior and calcium data was processed and analyzed in MATLAB 2018a (Mathworks).
908 AL simulations were run in Python (version 3.6) (van Rossum and Drake, 2011), and model
909 outputs were analyzed using Jupyter notebooks (Kluyver et al., 2016) and Python scripts. We
910 performed a power analysis prior to the study to determine that recording calcium activity in 20-
911 40 flies would be sufficient to identify moderate calcium-behavior correlations. Sample sizes for
912 expansion microscopy were smaller, as the experimental procedure was more involved –
913 therefore, we did not conduct a formal statistical analysis. Linear models were fit using the `fitlm`
914 MATLAB function (<https://www.mathworks.com/help/stats/fitlm.html>); coefficients and p-
915 values of models between measured preferences and predicted preferences are listed in Table 1.
916 95% confidence intervals around model regression lines were estimated as +/- 2 standard
917 deviations of the value of the regression line at each x-position across 2000 bootstrap replicates
918 (resampling flies). Boxplots depict the median value (points), interquartile range (boxes), and
919 range of the data (whiskers).

920

921 Acknowledgments

922 We thank Asa Barth-Maron and Rachel Wilson for discussions helpful to the AL modeling, and
923 Katrin Vogt for help revising the manuscript. Ed Soucy and Brett Graham of the Center for Brain
924 Science Neuroengineering Core helped maintain the olfactometer and microscope. D.L. was
925 supported by the NSF-Simons Center for Mathematical and Statistical Analysis of Biology at
926 Harvard, award number #1764269 and the Harvard Quantitative Biology Initiative. B.L.d.B. was
927 supported by a Klingenstein-Simons Fellowship Award, a Smith Family Odyssey Award, a
928 Harvard/MIT Basic Neuroscience Grant, National Science Foundation grant no. IOS-1557913,
929 and NIH/NINDS grant no. 1R01NS121874-01. E.B. was supported by a Harvard/MIT Basic
930 Neuroscience Grant, Lisa Yang, John Doerr, and NIH grant no. 1R01EB024261.

931

932 Author contributions

933 M.C. conducted behavior experiments with assistance from M.S., conducted confocal
934 microscopy, and conducted expansion microscopy with contributions from R. G. and E.B. D.L.
935 implemented the computational AL model. B.L.d.B. supervised the project.
936

937 **Declaration of interests**

938 E.B. is a co-founder of a company that aims to commercialize expansion microscopy for medical
939 purposes. R.G. and E.B. are co-inventors on multiple patents related to expansion microscopy.
940 The authors declare no other competing interests.

941 **References**

942 Akhund-Zade J, Ho S, O'Leary C, de Bivort B. 2019. The effect of environmental enrichment on
943 behavioral variability depends on genotype, behavior, and type of enrichment. *J Exp Biol*
944 **222**. doi:10.1242/jeb.202234

945 Akhund-Zade J, Yoon D, Bangerter A, Polizos N, Campbell M, Soloshenko A, Zhang T, Wice
946 E, Albright A, Narayanan A, Schmidt P, Saltz J, Ayroles J, Klein M, Bergland A, de Bivort
947 B. 2020. Wild flies hedge their thermal preference bets in response to seasonal fluctuations.
948 *bioRxiv*. doi:10.1101/2020.09.16.300731

949 Asano SM, Gao R, Wassie AT, Tillberg PW, Chen F, Boyden ES. 2018. Expansion Microscopy:
950 Protocols for Imaging Proteins and RNA in Cells and Tissues. *Curr Protoc Cell Biol*
951 **80**:e56. doi:10.1002/cpcb.56

952 Ayroles JF, Buchanan SM, O'Leary C, Skutt-Kakaria K, Grenier JK, Clark AG, Hartl DL, De
953 Bivort BL. 2015. Behavioral idiosyncrasy reveals genetic control of phenotypic variability.
954 *Proceedings of the National Academy of Sciences* **112**:6706–6711.

955 Bates AS, Schlegel P, Roberts RV, Drummond N, Tamimi IFM, Turnbull R, Zhao X, Marin
956 EC, Popovici PD, Dhawan S, Jamasb A, Javier A, Serratosa Capdevila L, Li F, Rubin GM,
957 Waddell S, Bock DD, Costa M, Jefferis GSXE. 2020. Complete Connectomic
958 Reconstruction of Olfactory Projection Neurons in the Fly Brain. *Curr Biol*.
959 doi:10.1016/j.cub.2020.06.042

960 Berman GJ, Choi DM, Bialek W, Shaevitz JW. 2014. Mapping the stereotyped behaviour of
961 freely moving fruit flies. *J R Soc Interface* **11**. doi:10.1098/rsif.2014.0672

962 Bhandawat V, Olsen SR, Gouwens NW, Schlief ML, Wilson RI. 2007. Sensory processing in the
963 *Drosophila* antennal lobe increases reliability and separability of ensemble odor
964 representations. *Nat Neurosci* **10**:1474–1482. doi:10.1038/nn1976

965 Britten KH, Newsome WT, Shadlen MN, Celebrini S, Movshon JA. 1996. A relationship
966 between behavioral choice and the visual responses of neurons in macaque MT. *Vis
967 Neurosci* **13**:87–100. doi:10.1017/s095252380000715x

968 Buchanan SM, Kain JS, de Bivort BL. 2015. Neuronal control of locomotor handedness in
969 *Drosophila*. *Proc Natl Acad Sci U S A* **112**:6700–6705. doi:10.1073/pnas.1500804112

970 Cao L-H, Jing B-Y, Yang D, Zeng X, Shen Y, Tu Y, Luo D-G. 2016. Distinct signaling of
971 *Drosophila* chemoreceptors in olfactory sensory neurons. *Proc Natl Acad Sci U S A*
972 **113**:E902–11. doi:10.1073/pnas.1518329113

973 Chen T-W, Wardill TJ, Sun Y, Pulver SR, Renninger SL, Baohan A, Schreiter ER, Kerr RA,
974 Orger MB, Jayaraman V, Looger LL, Svoboda K, Kim DS. 2013. Ultrasensitive fluorescent
975 proteins for imaging neuronal activity. *Nature* **499**:295–300. doi:10.1038/nature12354

976 Chou Y-H, Spletter ML, Yaksi E, Leong JCS, Wilson RI, Luo L. 2010. Diversity and wiring
977 variability of olfactory local interneurons in the *Drosophila* antennal lobe. *Nat Neurosci*
978 **13**:439–449. doi:10.1038/nn.2489

979 Claridge-Chang A, Roorda RD, Vrontou E, Sjulson L, Li H, Hirsh J, Miesenböck G. 2009.
980 Writing memories with light-addressable reinforcement circuitry. *Cell* **139**:405–415.
981 doi:10.1016/j.cell.2009.08.034

982 Couto A, Alenius M, Dickson BJ. 2005. Molecular, anatomical, and functional organization of
983 the *Drosophila* olfactory system. *Curr Biol* **15**:1535–1547. doi:10.1016/j.cub.2005.07.034

984 de Bivort B, Buchanan S, Skutt-Kakaria K, Gajda E, Ayroles J, O'Leary C, Reimers P, Akhund-
985 Zade J, Senft R, Maloney R, Ho S, Werkhoven Z, Smith MA-Y. 2022. Precise

986 Quantification of Behavioral Individuality From 80 Million Decisions Across 183,000 Flies.
987 *Front Behav Neurosci* **16**:836626. doi:10.3389/fnbeh.2022.836626

988 de Bruyne M, Foster K, Carlson JR. 2001. Odor coding in the *Drosophila* antenna. *Neuron*
989 **30**:537–552. doi:10.1016/s0896-6273(01)00289-6

990 Dubin AE, Harris GL. 1997. Voltage-activated and odor-modulated conductances in olfactory
991 neurons of *Drosophila melanogaster*. *Journal of Neurobiology* **32**:123–137.
992 doi:10.1002/(SICI)1097-4695(199701)32:1<123::AID-NEU11>3.0.CO;2-L

993 Freund J, Brandmaier AM, Lewejohann L, Kirste I, Kritzler M, Krüger A, Sachser N,
994 Lindenberger U, Kempermann G. 2013. Emergence of individuality in genetically identical
995 mice. *Science* **340**:756–759. doi:10.1126/science.1235294

996 Gao R, Asano SM, Upadhyayula S, Pisarev I, Milkie DE, Liu T-L, Singh V, Graves A, Huynh
997 GH, Zhao Y, Bogovic J, Colonell J, Ott CM, Zugates C, Tappan S, Rodriguez A,
998 Mosaliganti KR, Sheu S-H, Pasolli HA, Pang S, Xu CS, Megason SG, Hess H, Lippincott-
999 Schwartz J, Hantman A, Rubin GM, Kirchhausen T, Saalfeld S, Aso Y, Boyden ES, Betzig
1000 E. 2019. Cortical column and whole-brain imaging with molecular contrast and nanoscale
1001 resolution. *Science* **363**. doi:10.1126/science.aau8302

1002 Golovin RM, Broadie K. 2016. Developmental experience-dependent plasticity in the first
1003 synapse of the *Drosophila* olfactory circuit. *J Neurophysiol* **116**:2730–2738.
1004 doi:10.1152/jn.00616.2016

1005 Gomez-Marin A, Ghazanfar AA. 2019. The Life of Behavior. *Neuron* **104**:25–36.
1006 doi:10.1016/j.neuron.2019.09.017

1007 Grabe V, Baschwitz A, Dweck HKM, Lavista-Llanos S, Hansson BS, Sachse S. 2016.
1008 Elucidating the Neuronal Architecture of Olfactory Glomeruli in the *Drosophila* Antennal
1009 Lobe. *Cell Rep* **16**:3401–3413. doi:10.1016/j.celrep.2016.08.063

1010 Grabe V, Strutz A, Baschwitz A, Hansson BS, Sachse S. 2015. Digital in vivo 3D atlas of the
1011 antennal lobe of *Drosophila melanogaster*. *J Comp Neurol* **523**:530–544.
1012 doi:10.1002/cne.23697

1013 Hallem EA, Ho MG, Carlson JR. 2004. The molecular basis of odor coding in the *Drosophila*
1014 antenna. *Cell* **117**:965–979. doi:10.1016/j.cell.2004.05.012

1015 Honegger K, de Bivort B. 2018. Stochasticity, individuality and behavior. *Curr Biol* **28**:R8–R12.
1016 doi:10.1016/j.cub.2017.11.058

1017 Honegger KS, Smith MA-Y, Churgin MA, Turner GC, de Bivort BL. 2019. Idiosyncratic neural
1018 coding and neuromodulation of olfactory individuality in *Drosophila*. *Proc Natl Acad Sci U
1019 S A*. doi:10.1073/pnas.1901623116

1020 Hopper KR. 1999. Risk-spreading and bet-hedging in insect population biology. *Annu Rev
1021 Entomol* **44**:535–560. doi:10.1146/annurev.ento.44.1.535

1022 Huang Y-C, Wang C-T, Su T-S, Kao K-W, Lin Y-J, Chuang C-C, Chiang A-S, Lo C-C. 2018. A
1023 Single-Cell Level and Connectome-Derived Computational Model of the *Drosophila* Brain.
1024 *Front Neuroinform* **12**:99. doi:10.3389/fninf.2018.00099

1025 Iyengar A, Chakraborty TS, Goswami SP, Wu C-F, Siddiqi O. 2010. Post-eclosion odor
1026 experience modifies olfactory receptor neuron coding in *Drosophila*. *Proc Natl Acad Sci U
1027 S A* **107**:9855–9860. doi:10.1073/pnas.1003856107

1028 Jeanne JM, Wilson RI. 2015. Convergence, Divergence, and Reconvergence in a Feedforward
1029 Network Improves Neural Speed and Accuracy. *Neuron* **88**:1014–1026.
1030 doi:10.1016/j.neuron.2015.10.018

1031 Johnson W, Turkheimer E, Gottesman II, Bouchard TJ Jr. 2010. Beyond Heritability: Twin

1032 Studies in Behavioral Research. *Curr Dir Psychol Sci* **18**:217–220. doi:10.1111/j.1467-
1033 8721.2009.01639.x

1034 Kain JS, Stokes C, de Bivort BL. 2012. Phototactic personality in fruit flies and its suppression
1035 by serotonin and white. *Proc Natl Acad Sci U S A* **109**:19834–19839.
1036 doi:10.1073/pnas.1211988109

1037 Kain JS, Zhang S, Akhund-Zade J, Samuel ADT, Klein M, de Bivort BL. 2015. Variability in
1038 thermal and phototactic preferences in *Drosophila* may reflect an adaptive bet-hedging
1039 strategy. *Evolution* **69**:3171–3185. doi:10.1111/evo.12813

1040 Kakaria KS, de Bivort BL. 2017. Ring Attractor Dynamics Emerge from a Spiking Model of the
1041 Entire Protocerebral Bridge. *Front Behav Neurosci* **11**:8. doi:10.3389/fnbeh.2017.00008

1042 Kao K-W, Lo C-C. 2020. Short term depression, presynaptic inhibition and local neuron
1043 diversity play key functional roles in the insect antennal lobe. *J Comput Neurosci*.
1044 doi:10.1007/s10827-020-00747-4

1045 Kluyver T, Ragan-Kelley B, Pérez F, Granger B, Bussonnier M, Frederic J, Kelley K, Hamrick J,
1046 Grout J, Corlay S, Ivanov P, Avila D, Abdalla S, Willing C. 2016. Jupyter Notebooks -- a
1047 publishing format for reproducible computational workflows In: Loizides F, Schmidt B,
1048 editors. *Positioning and Power in Academic Publishing: Players, Agents and Agendas*. IOS
1049 Press. pp. 87–90.

1050 Körholz JC, Zocher S, Grzyb AN, Morisse B, Poetzsch A, Ehret F, Schmied C, Kempermann G.
1051 2018. Selective increases in inter-individual variability in response to environmental
1052 enrichment in female mice. *eLife* **7**. doi:10.7554/eLife.35690

1053 Koulakov AA, Rinberg DA, Tsigankov DN. 2005. How to find decision makers in neural
1054 networks. *Biol Cybern* **93**:447–462. doi:10.1007/s00422-005-0022-z

1055 Krams IA, Krama T, Krams R, Trakimas G, Popovs S, Jõers P, Munkevics M, Elferts D, Rantala
1056 MJ, Makna J, de Bivort BL. 2021. Serotonergic Modulation of Phototactic Variability
1057 Underpins a Bet-Hedging Strategy in *Drosophila melanogaster*. *Front Behav Neurosci*
1058 **15**:659331. doi:10.3389/fnbeh.2021.659331

1059 Laskowski KL, Bierbach D, Jolles JW, Doran C, Wolf M. 2022. The emergence and
1060 development of behavioral individuality in clonal fish. *Nat Commun* **13**:1–9.
1061 doi:10.1038/s41467-022-34113-y

1062 Li H, Horns F, Wu B, Xie Q, Li J, Li T, Luginbuhl DJ, Quake SR, Luo L. 2017. Classifying
1063 *Drosophila* Olfactory Projection Neuron Subtypes by Single-Cell RNA Sequencing. *Cell*
1064 **171**:1206–1220.e22. doi:10.1016/j.cell.2017.10.019

1065 Lillvis JL, Otsuna H, Ding X, Pisarev I, Kawase T, Colonell J, Rokicki K, Goina C, Gao R, Hu
1066 A, Wang K, Bogovic J, Milkie DE, Meienberg L, Mensh BD, Boyden ES, Saalfeld S,
1067 Tillberg PW, Dickson BJ. 2022. Rapid reconstruction of neural circuits using tissue
1068 expansion and light sheet microscopy. *eLife* **11**. doi:10.7554/eLife.81248

1069 Linneweber GA, Andriatsilavo M, Dutta SB, Bengochea M, Hellbruegge L, Liu G, Ejsmont RK,
1070 Straw AD, Wernet M, Hiesinger PR, Hassan BA. 2020. A neurodevelopmental origin of
1071 behavioral individuality in the *Drosophila* visual system. *Science* **367**:1112–1119.
1072 doi:10.1126/science.aaw7182

1073 Liu TX, Davoudian PA, Lizbinski KM, Jeanne JM. 2022. Connectomic features underlying
1074 diverse synaptic connection strengths and subcellular computation. *Curr Biol* **32**:559–
1075 569.e5. doi:10.1016/j.cub.2021.11.056

1076 Luo SX, Axel R, Abbott LF. 2010. Generating sparse and selective third-order responses in the
1077 olfactory system of the fly. *Proc Natl Acad Sci U S A* **107**:10713–10718.

1078 doi:10.1073/pnas.1005635107
1079 Maloney RT. 2021. Neuromodulation and Individuality. *Front Behav Neurosci* **15**:777873.
1080 doi:10.3389/fnbeh.2021.777873
1081 Marder E. 2011. Variability, compensation, and modulation in neurons and circuits. *Proc Natl
1082 Acad Sci U S A* **108 Suppl 3**:15542–15548. doi:10.1073/pnas.1010674108
1083 MATLAB pca documentation. n.d. . *MathWorks*.
1084 <https://www.mathworks.com/help/stats/pca.html>
1085 Mazor O, Laurent G. 2005. Transient dynamics versus fixed points in odor representations by
1086 locust antennal lobe projection neurons. *Neuron* **48**:661–673.
1087 doi:10.1016/j.neuron.2005.09.032
1088 McLaughlin CN, Brbić M, Xie Q, Li T, Horns F, Kolluru SS, Kebschull JM, Vacek D, Xie A, Li
1089 J, Jones RC, Leskovec J, Quake SR, Luo L, Li H. 2021. Single-cell transcriptomes of
1090 developing and adult olfactory receptor neurons in *Drosophila*. *eLife* **10**.
1091 doi:10.7554/eLife.63856
1092 Mellert DJ, Williamson WR, Shirangi TR, Card GM, Truman JW. 2016. Genetic and
1093 Environmental Control of Neurodevelopmental Robustness in *Drosophila*. *PLoS One*
1094 **11**:e0155957. doi:10.1371/journal.pone.0155957
1095 Michelson CA, Pillow JW, Seidemann E. 2017. Majority of choice-related variability in
1096 perceptual decisions is present in early sensory cortex. *bioRxiv*. doi:10.1101/207357
1097 Mosca TJ, Luo L. 2014. Synaptic organization of the *Drosophila* antennal lobe and its regulation
1098 by the Teneurins. *eLife*. doi:10.7554/elife.03726
1099 Münch D, Galizia CG. 2016. DoOR 2.0--Comprehensive Mapping of *Drosophila melanogaster*
1100 Odorant Responses. *Sci Rep* **6**:21841. doi:10.1038/srep21841
1101 Nagel KI, Hong EJ, Wilson RI. 2015. Synaptic and circuit mechanisms promoting broadband
1102 transmission of olfactory stimulus dynamics. *Nat Neurosci* **18**:56–65. doi:10.1038/nn.3895
1103 Newsome WT, Britten KH, Anthony Movshon J. 1989. Neuronal correlates of a perceptual
1104 decision. *Nature*. doi:10.1038/341052a0
1105 Olsen SR, Wilson RI. 2008. Lateral presynaptic inhibition mediates gain control in an olfactory
1106 circuit. *Nature* **452**:956–960. doi:10.1038/nature06864
1107 Osborne LC, Lisberger SG, Bialek W. 2005. A sensory source for motor variation. *Nature*
1108 **437**:412–416. doi:10.1038/nature03961
1109 Pisokas I, Heinze S, Webb B. 2020. The head direction circuit of two insect species. *eLife* **9**.
1110 doi:10.7554/eLife.53985
1111 Raj A, Rifkin SA, Andersen E, van Oudenaarden A. 2010. Variability in gene expression
1112 underlies incomplete penetrance. *Nature* **463**:913–918. doi:10.1038/nature08781
1113 Rihani K, Sachse S. 2022. Shedding Light on Inter-Individual Variability of Olfactory Circuits in
1114 *Drosophila*. *Front Behav Neurosci* **16**. doi:10.3389/fnbeh.2022.835680
1115 Rohatgi A. 2021. Webplotdigitizer: Version 4.5.
1116 Sachse S, Rueckert E, Keller A, Okada R, Tanaka NK, Ito K, Vosshall LB. 2007. Activity-
1117 dependent plasticity in an olfactory circuit. *Neuron* **56**:838–850.
1118 doi:10.1016/j.neuron.2007.10.035
1119 Scheffer LK, Xu CS, Januszewski M, Lu Z, Takemura S-Y, Hayworth KJ, Huang GB,
1120 Shinomiya K, Maitlin-Shepard J, Berg S, Clements J, Hubbard PM, Katz WT, Umayam L,
1121 Zhao T, Ackerman D, Blakely T, Bogovic J, Dolafi T, Kainmueller D, Kawase T, Khairy
1122 KA, Leavitt L, Li PH, Lindsey L, Neubarth N, Olbris DJ, Otsuna H, Trautman ET, Ito M,
1123 Bates AS, Goldammer J, Wolff T, Svirskas R, Schlegel P, Neace E, Knecht CJ, Alvarado

1124 CX, Bailey DA, Ballinger S, Borycz JA, Canino BS, Cheatham N, Cook M, Dreher M,
1125 Duclos O, Eubanks B, Fairbanks K, Finley S, Forknall N, Francis A, Hopkins GP, Joyce
1126 EM, Kim S, Kirk NA, Kovalyak J, Lauchie SA, Lohff A, Maldonado C, Manley EA, McLin
1127 S, Mooney C, Ndama M, Ogundeyi O, Okeoma N, Ordish C, Padilla N, Patrick CM,
1128 Paterson T, Phillips EE, Phillips EM, Rampally N, Ribeiro C, Robertson MK, Rymer JT,
1129 Ryan SM, Sammons M, Scott AK, Scott AL, Shinomiya A, Smith C, Smith K, Smith NL,
1130 Sobeski MA, Suleiman A, Swift J, Takemura S, Talebi I, Tarnogorska D, Tenshaw E, Tokhi
1131 T, Walsh JJ, Yang T, Horne JA, Li F, Parekh R, Rivlin PK, Jayaraman V, Costa M, Jefferis
1132 GS, Ito K, Saalfeld S, George R, Meinertzhagen IA, Rubin GM, Hess HF, Jain V, Plaza
1133 SM. 2020. A connectome and analysis of the adult *Drosophila* central brain. *eLife* **9**.
1134 doi:10.7554/eLife.57443

1135 Schlegel P, Bates AS, Stürner T, Jagannathan S, Drummond N, Hsu J, Capdevila LS, Javier A,
1136 Marin EC, Barth-Maron A, Tamimi IFM, Li F, Rubin GM, Plaza SM, Costa M, Jefferis
1137 GSXE. 2020. Information flow, cell types and stereotypy in a full olfactory connectome.
1138 *bioRxiv*. doi:10.1101/2020.12.15.401257

1139 Schuett W, Dall SRX, Baeumer J, Kloesener MH, Nakagawa S, Beinlich F, Eggers T. 2011.
1140 Personality variation in a clonal insect: the pea aphid, *Acyrtosiphon pisum*. *Dev
1141 Psychobiol* **53**:631–640. doi:10.1002/dev.20538

1142 Seki Y, Rybak J, Wicher D, Sachse S, Hansson BS. 2010. Physiological and morphological
1143 characterization of local interneurons in the *Drosophila* antennal lobe. *J Neurophysiol*
1144 **104**:1007–1019. doi:10.1152/jn.00249.2010

1145 Shang Y, Claridge-Chang A, Sjulson L, Pypaert M, Miesenböck G. 2007. Excitatory local
1146 circuits and their implications for olfactory processing in the fly antennal lobe. *Cell*
1147 **128**:601–612. doi:10.1016/j.cell.2006.12.034

1148 Sizemore TR, Dacks AM. 2016. Serotonergic Modulation Differentially Targets Distinct
1149 Network Elements within the Antennal Lobe of *Drosophila melanogaster*. *Sci Rep* **6**:37119.
1150 doi:10.1038/srep37119

1151 Skutt-Kakaria K, Reimers P, Currier TA, Werkhoven Z, de Bivort BL. 2019. A neural circuit
1152 basis for context-modulation of individual locomotor behavior. *bioRxiv*.
1153 doi:10.1101/797126

1154 Stern S, Kirst C, Bargmann CI. 2017. Neuromodulatory Control of Long-Term Behavioral
1155 Patterns and Individuality across Development. *Cell* **171**:1649–1662.e10.
1156 doi:10.1016/j.cell.2017.10.041

1157 Tobin WF, Wilson RI, Lee W-CA. 2017. Wiring variations that enable and constrain neural
1158 computation in a sensory microcircuit. *eLife* **6**:e24838. doi:10.7554/eLife.24838

1159 Tsai K-T, Hu C-K, Li K-W, Hwang W-L, Chou Y-H. 2018. Circuit variability interacts with
1160 excitatory-inhibitory diversity of interneurons to regulate network encoding capacity. *Sci
1161 Rep* **8**:8027. doi:10.1038/s41598-018-26286-8

1162 van Rossum G, Drake FL. 2011. The Python Language Reference Manual. Network Theory Ltd.
1163 Werkhoven Z, Bravin A, Skutt-Kakaria K, Reimers P, Pallares LF, Ayroles J, de Bivort BL.
1164 2021. The structure of behavioral variation within a genotype. *eLife* **10**:e64988.
1165 doi:10.7554/eLife.64988

1166 Wilson RI. 2013. Early Olfactory Processing in *Drosophila*: Mechanisms and Principles. *Annual
1167 Review of Neuroscience*. doi:10.1146/annurev-neuro-062111-150533

1168 Wilson RI. 2004. Transformation of Olfactory Representations in the *Drosophila* Antennal Lobe.
1169 *Science*. doi:10.1126/science.1090782

1170 Wilson RI, Laurent G. 2005. Role of GABAergic inhibition in shaping odor-evoked
1171 spatiotemporal patterns in the *Drosophila* antennal lobe. *J Neurosci* **25**:9069–9079.
1172 doi:10.1523/JNEUROSCI.2070-05.2005

1173 Wilson RI, Turner GC, Laurent G. 2004. Transformation of olfactory representations in the
1174 *Drosophila* antennal lobe. *Science* **303**:366–370. doi:10.1126/science.1090782

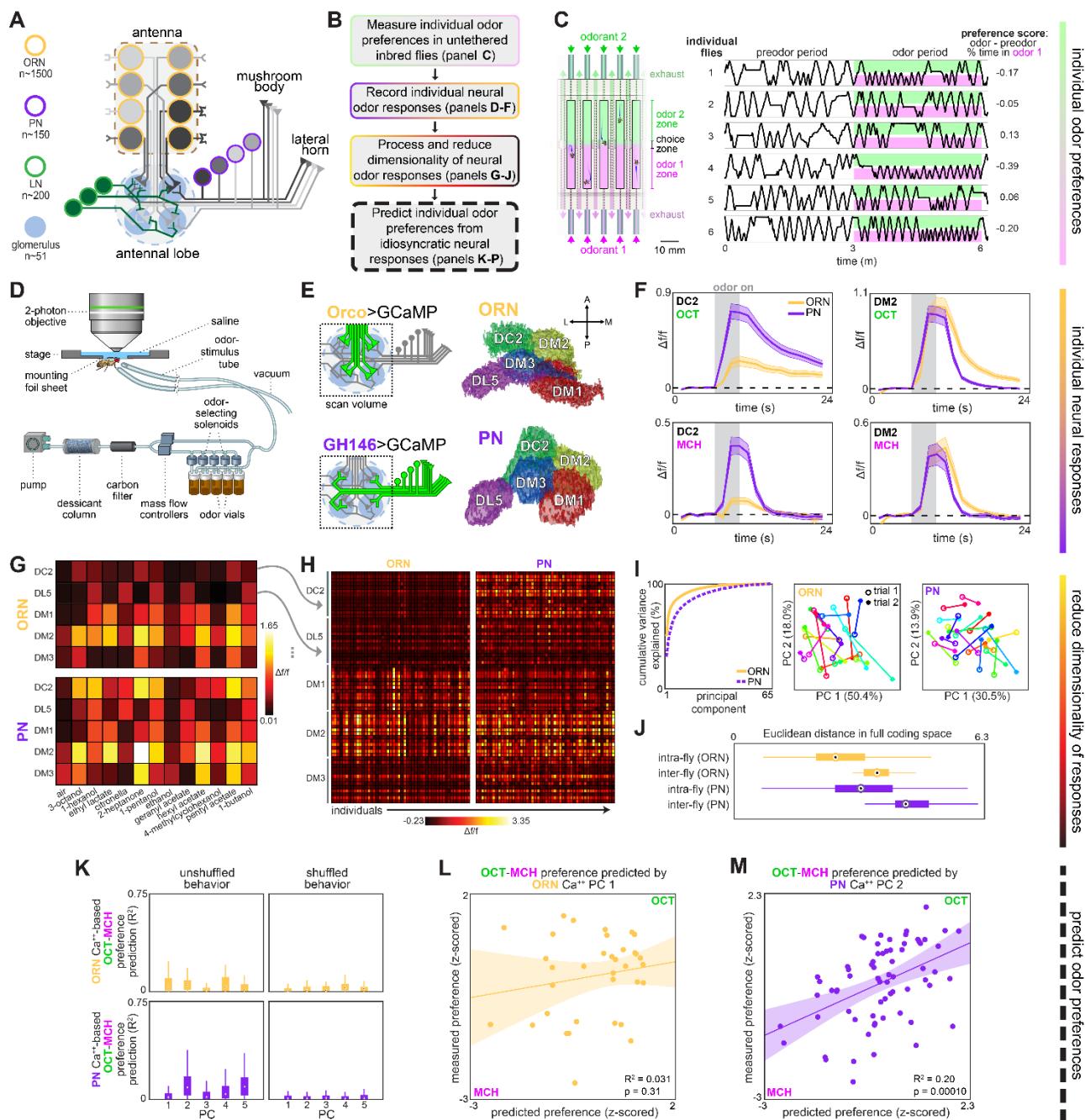
1175 Wu JS, Luo L. 2006. A protocol for dissecting *Drosophila melanogaster* brains for live imaging
1176 or immunostaining. *Nat Protoc* **1**:2110–2115. doi:10.1038/nprot.2006.336

1177 Xie Q, Brbic M, Horns F, Kolluru SS, Jones RC, Li J, Reddy AR, Xie A, Kohani S, Li Z,
1178 McLaughlin CN, Li T, Xu C, Vacek D, Luginbuhl DJ, Leskovec J, Quake SR, Luo L, Li H.
1179 2021. Temporal evolution of single-cell transcriptomes of *Drosophila* olfactory projection
1180 neurons. *eLife* **10**. doi:10.7554/eLife.63450

1181 Yaksi E, Wilson RI. 2010. Electrical coupling between olfactory glomeruli. *Neuron* **67**:1034–
1182 1047. doi:10.1016/j.neuron.2010.08.041

1183 Zocher S, Schilling S, Grzyb AN, Adusumilli VS, Bogado Lopes J, Günther S, Overall RW,
1184 Winter Y, Kempermann G. 2020. Early-life environmental enrichment generates persistent
1185 individualized behavior in mice. *Sci Adv* **6**:eabb1478. doi:10.1126/sciadv.abb1478

1186 **Figures and figure supplements**

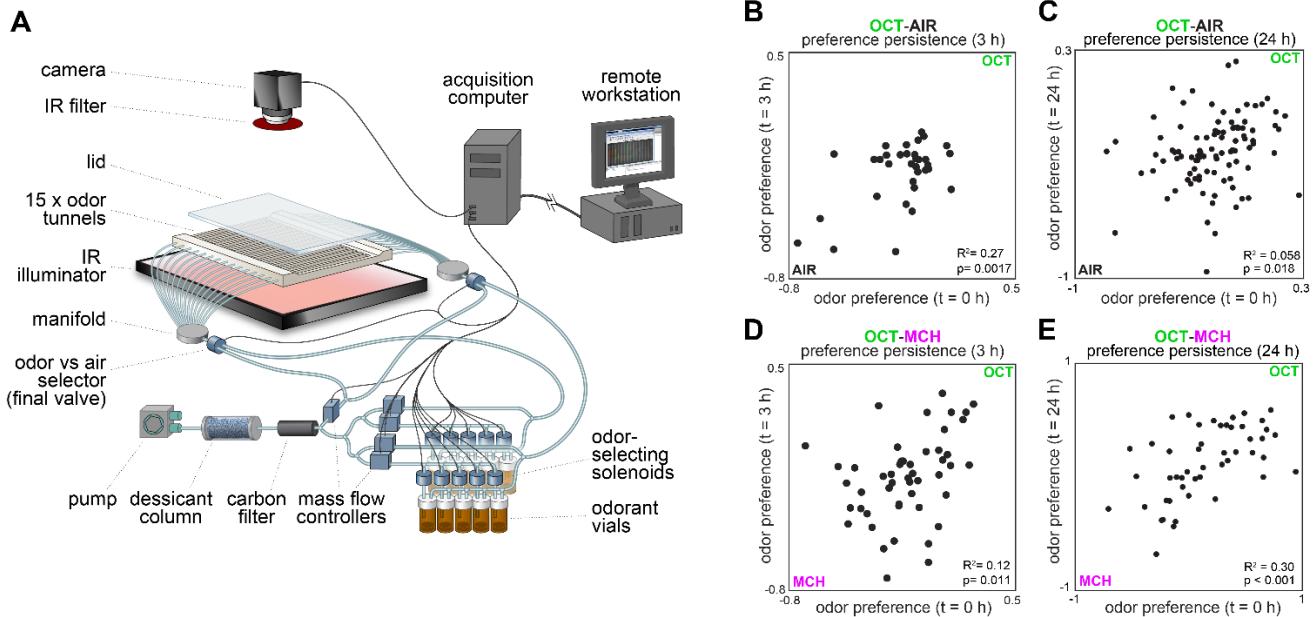


1187

1188 **Figure 1. Idiosyncratic calcium dynamics predict individual odor preferences.**

1189 (A) Olfactory circuit schematic. Olfactory receptor neurons (ORNs, peach outline) and
1190 projection neurons (PNs, plum outline) are comprised of ~51 classes corresponding to odor
1191 receptor response channels. ORNs (gray shading) sense odors in the antennae and synapse on
1192 dendrites of PNs of the same class in ball-shaped structures called glomeruli located in the
1193 antennal lobe (AL). Local neurons (LNs, green outline) mediate interglomerular cross-talk and
1194 presynaptic inhibition, amongst other roles (Olsen and Wilson, 2008; Yaksi and Wilson, 2010).
1195 Odor signals are normalized and whitened in the AL before being sent to the mushroom body
1196 and lateral horn for further processing. Schematic adapted from Honegger et al., 2019 (B)
1197 Experiment outline. (C) Odor preference behavior tracking setup (reproduced from Honegger, et

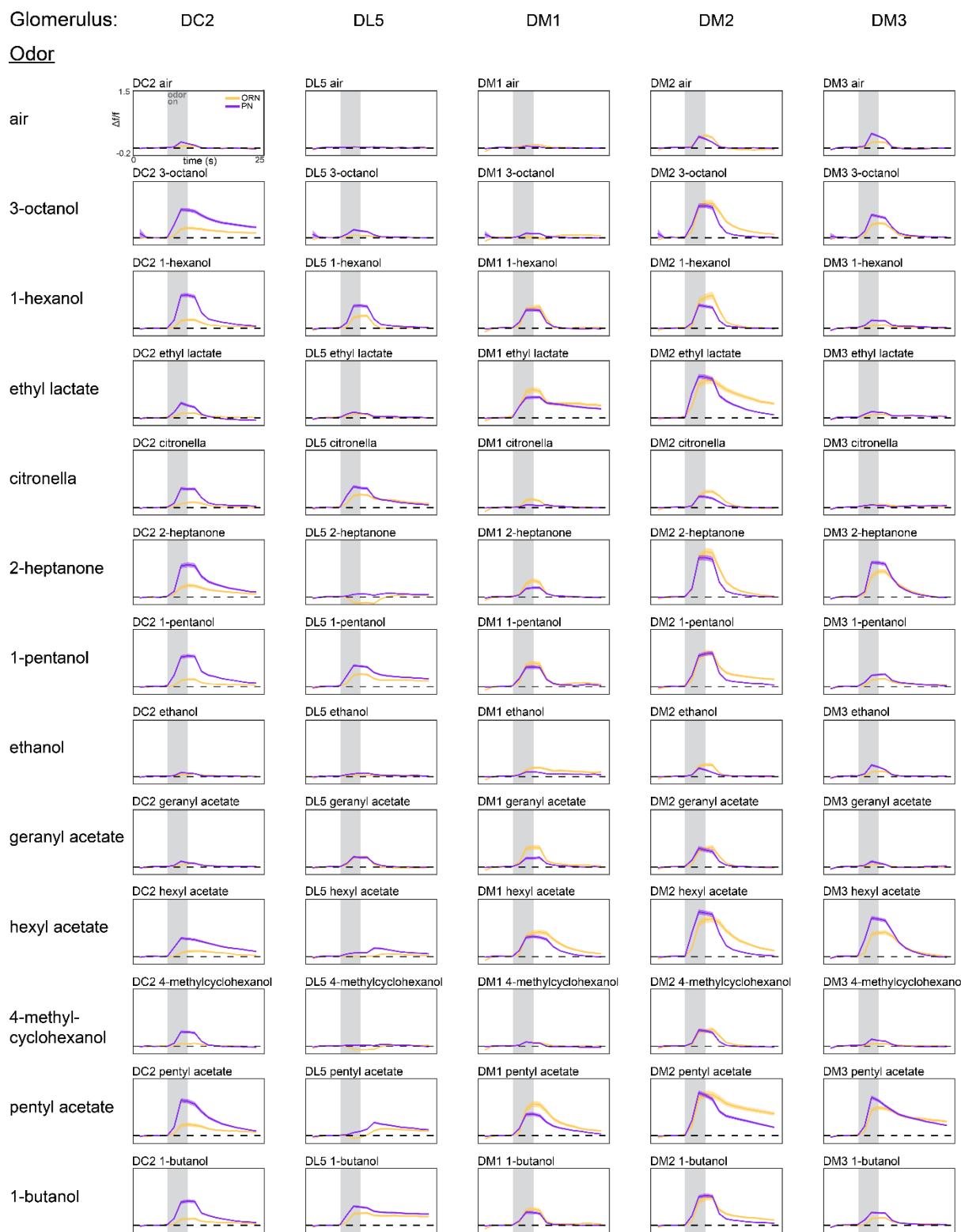
1198 al. 2019) and example individual fly ethograms. OCT (green) and MCH (magenta) were
1199 presented for 3 minutes. **(D)** Head-fixed 2-photon calcium imaging and odor delivery setup
1200 (reproduced from Honegger et al., 2019) **(E)** Orco and GH146 driver expression profiles (left)
1201 and example segmentation masks (right) extracted from 2-photon calcium images for a single fly
1202 expressing Orco>GCaMP6m (top, expressed in a subset of all ORN classes) or
1203 GH146>GCaMP6m (bottom, expressed in a subset of all PN classes). **(F)** Time-dependent $\Delta f/f$
1204 for glomerular odor responses in ORNs (peach) and PNs (plum) averaged across all individuals:
1205 DC2 to OCT (upper left), DM2 to OCT (upper right), DC2 to MCH (lower left), and DM2 to
1206 OCT (lower right). Shaded error bars represent S.E.M. **(G)** Peak $\Delta f/f$ for each glomerulus-odor
1207 pair averaged across all flies. **(H)** Individual neural responses measured in ORNs (left) or PNs
1208 (right) for 50 flies each. Columns represent the average of up to 4 odor responses from a single
1209 fly. Each row represents one glomerulus-odor response pair. Odors are the same as in panel (G).
1210 **(I)** Principal component analysis of individual neural responses. Fraction of variance explained
1211 versus principal component number (left). Trial 1 and trial 2 of ORN (middle) and PN (right)
1212 responses for 20 individuals (unique colors) embedded in PC 1-2 space. **(J)** Euclidean distances
1213 between glomerulus-odor responses within and across flies measured in ORNs ($n = 65$ flies) and
1214 PNs ($n = 122$ flies). Distances calculated without PCA compression. Points represent the median
1215 value, boxes represent the interquartile range, and whiskers the range of the data. **(K)**
1216 Bootstrapped R^2 of OCT-MCH preference prediction from each of the first 5 principal
1217 components of neural activity measured in ORNs (top, all data) or PNs (bottom, training set). **(L)**
1218 Measured OCT-MCH preference versus preference predicted from PC 1 of ORN activity ($n = 35$
1219 flies). **(M)** Measured OCT-MCH preference versus preference predicted from PC 2 of PN
1220 activity in $n = 69$ flies using a model trained on a training set of $n = 47$ flies (see Figure 2 –
1221 figure supplement 1C-D for train/test flies analyzed separately). Shaded regions in L,M are the
1222 95% CIs of the fit estimated by bootstrapping.



1223

1224 **Figure 1 – figure supplement 1. Behavioral measurements and individual preference**
1225 **persistence.**

1226 (A) Behavioral measurement apparatus (adapted from Honegger et al., 2019) (B) Odor
1227 preference persistence over 3 hours for flies given a choice between 3-octanol and air ($n = 34$
1228 flies). (C) Odor preference persistence over 24 hours for flies given a choice between 3-octanol
1229 and air ($n = 97$ flies). (D) Odor preference persistence over 3 hours for flies given a choice
1230 between 3-octanol and 4-methylcyclohexanol ($n = 51$ flies). (E) Odor preference persistence
1231 over 24 hours for flies given a choice between 3-octanol and 4-methylcyclohexanol ($n = 49$
1232 flies).



1233

1234

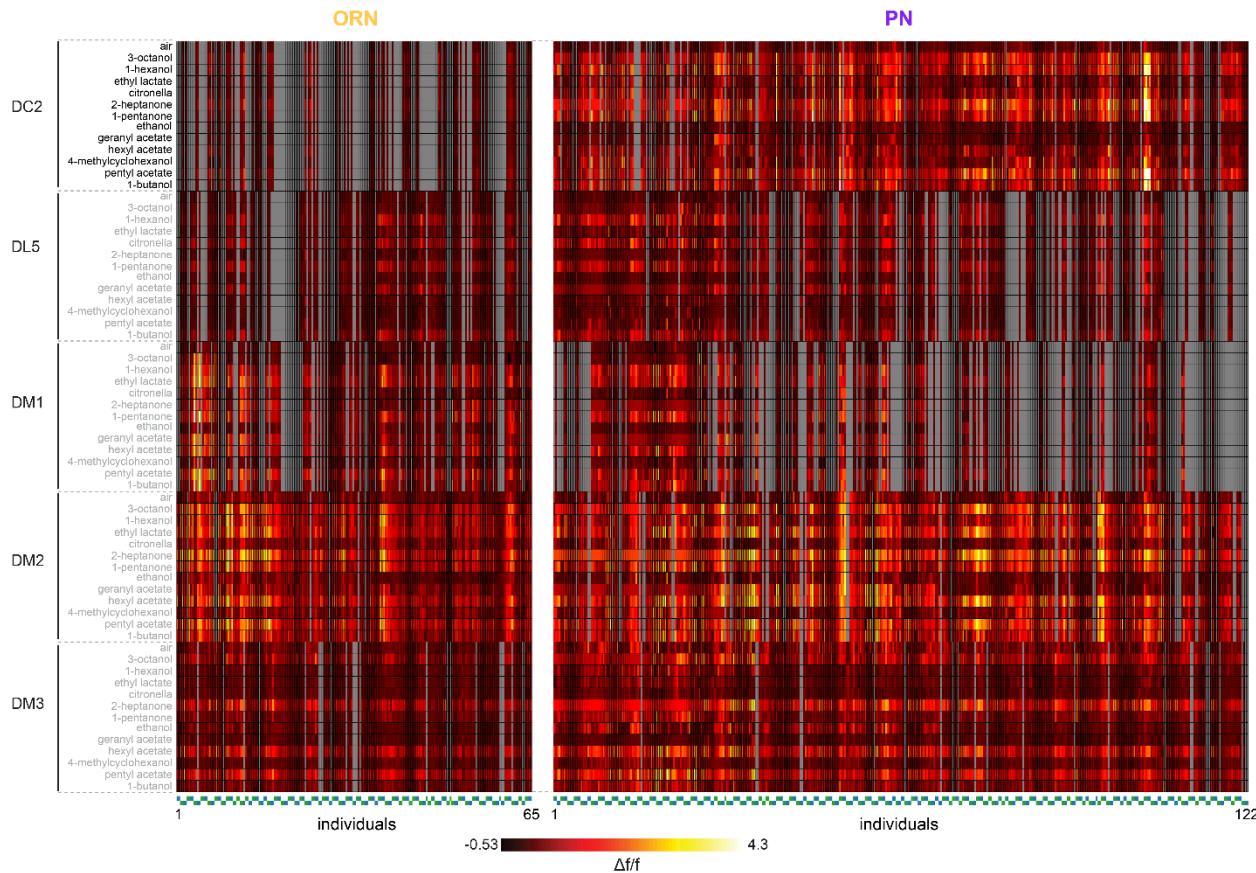
1235

1236

1237

Figure 1 – figure supplement 2. Average glomerulus-odor time-dependent responses.

Time-dependent responses of each glomerulus identified in our study to the 13 odors in our odor panel. Data represents the average across flies (ORN, peach curves, n = 65 flies; PN, plum curves, n = 122 flies). Shaded error bars represent S.E.M.



1238
1239
1240
1241
1242
1243
1244
1245

Figure 1 – figure supplement 3. Individual glomerulus-odor responses.

Idiosyncratic odor coding measured in ORNs (left, 208 recordings across 65 flies) and PNs (right, 406 trials across 122 flies). Each column represents the response (max $\Delta f/f$ attained over the odor trial) in a single recording from either the left or right lobe of a single fly. Below each heatmap, markers are grouped by individual fly (fly order is arbitrary, markers of adjacent flies alternate in height). Green markers correspond to left lobes, blue markers right lobes. Each row represents a glomerulus-odor response pair. Missing data are indicated in gray.

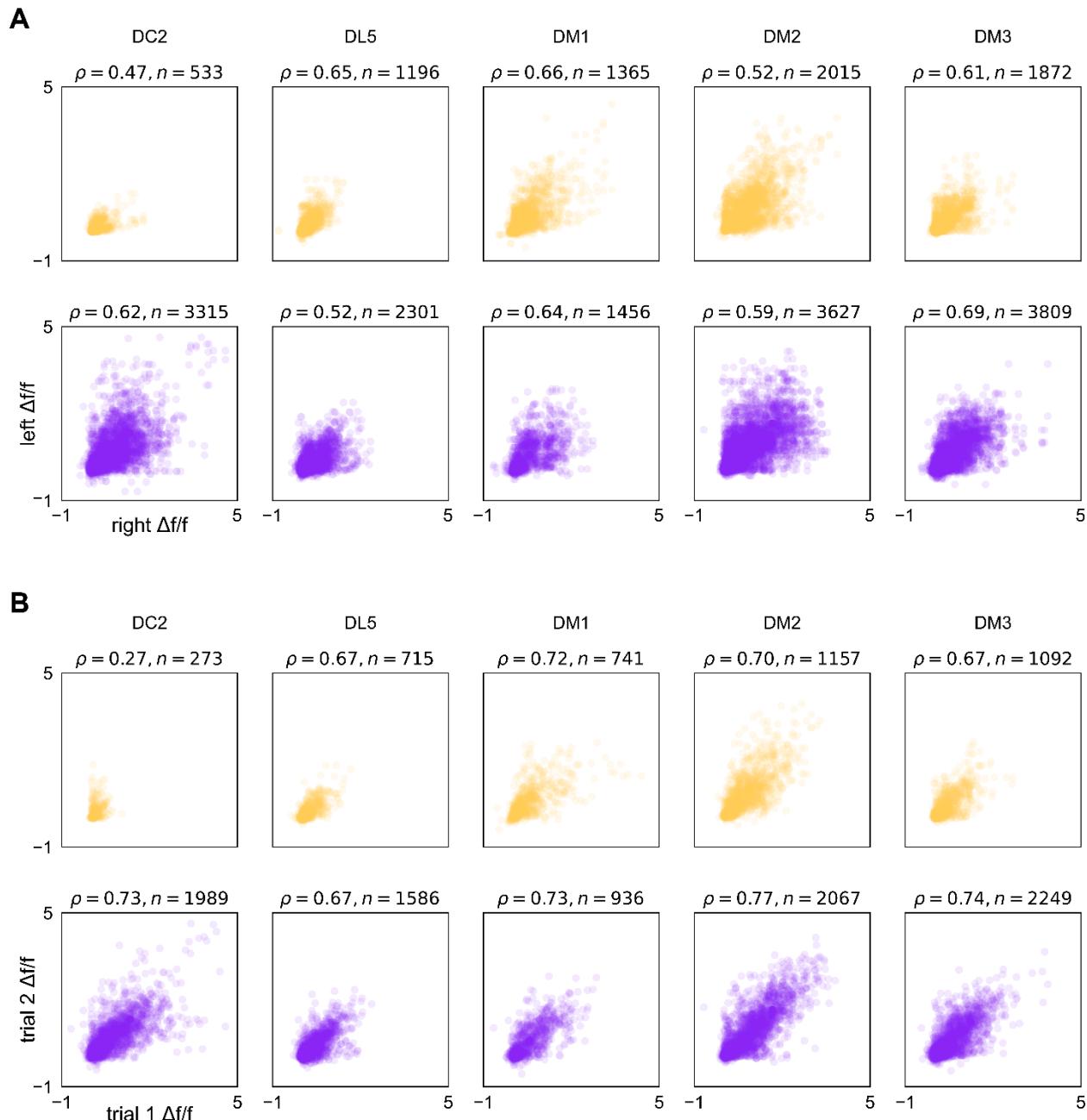


Figure 1 – figure supplement 4. Correspondence in calcium responses between lobes and trials.

(A) Scatter plots of max $\Delta f/f$ attained over an odor presentation in a left-lobe recording vs. a right-lobe recording in the same fly (same data as presented in Figure 1 – figure supplement 3). Plum points are PN responses and peach points ORNs. ρ is Spearman's rank correlation coefficient, points correspond to fly-odor-trial combinations, and n indicates the number of points within each subplot. (B) As in (A), for responses across two trials within the same lobe of the same fly. Points correspond to fly-odor-lobe combinations.

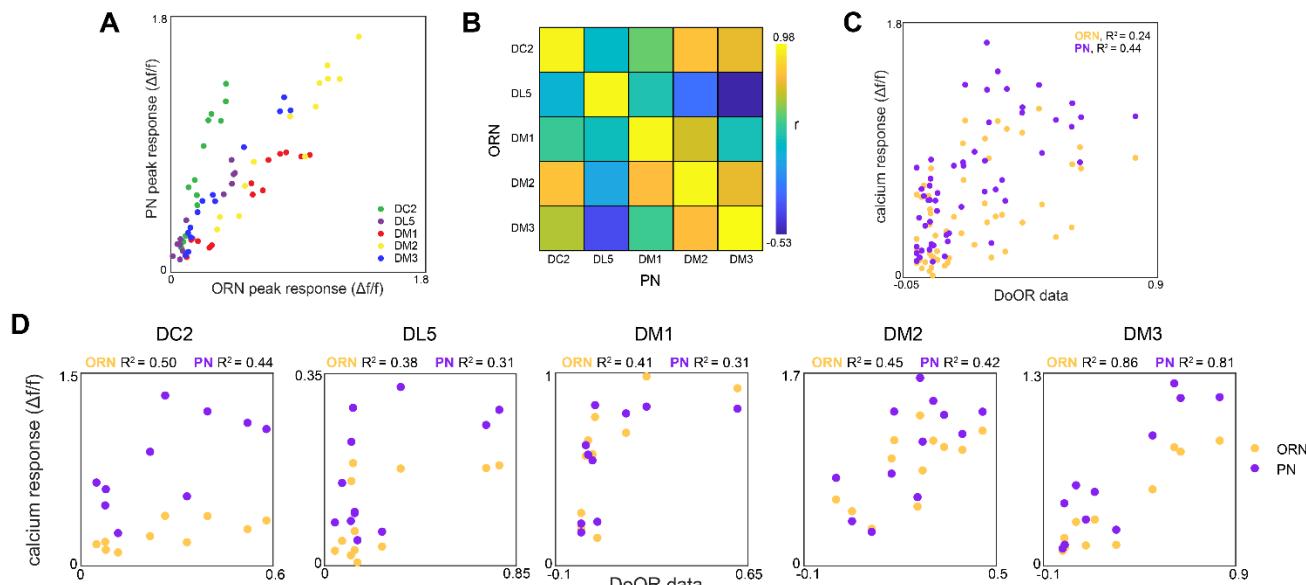
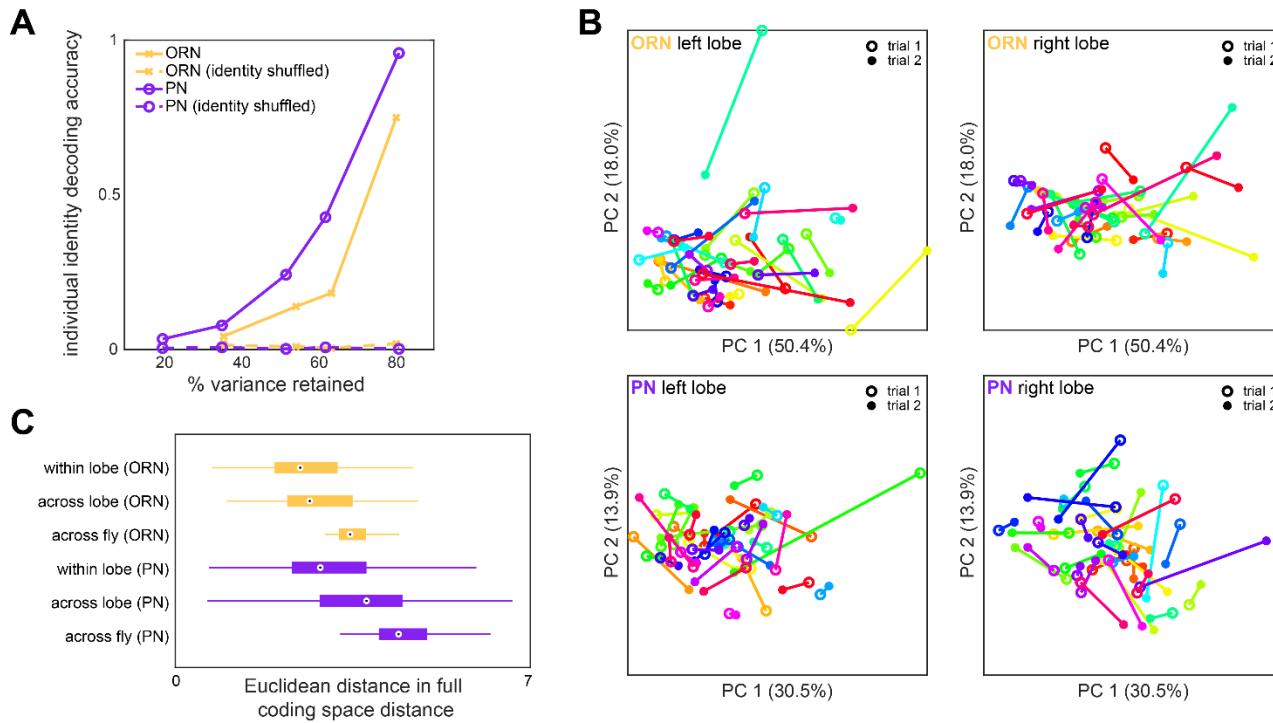


Figure 1 – figure supplement 5. Glomerulus responses and identification.

1255
1256
1257
1258
1259
1260
1261
1262

(A) Glomerulus odor responses measured in PNs versus those measured in ORNs. Points correspond to the odorants listed in Figure 1G. (B) Cross-odor trial correlation matrix between glomerular odor responses in ORNs and PNs. (C) Peak calcium responses for each glomerulus-odor pair measured in this study plotted against those recorded in the DoOR dataset (Münch and Galizia, 2016). (D) Peak calcium responses for each individual glomerulus plotted against those recorded in the DoOR dataset.

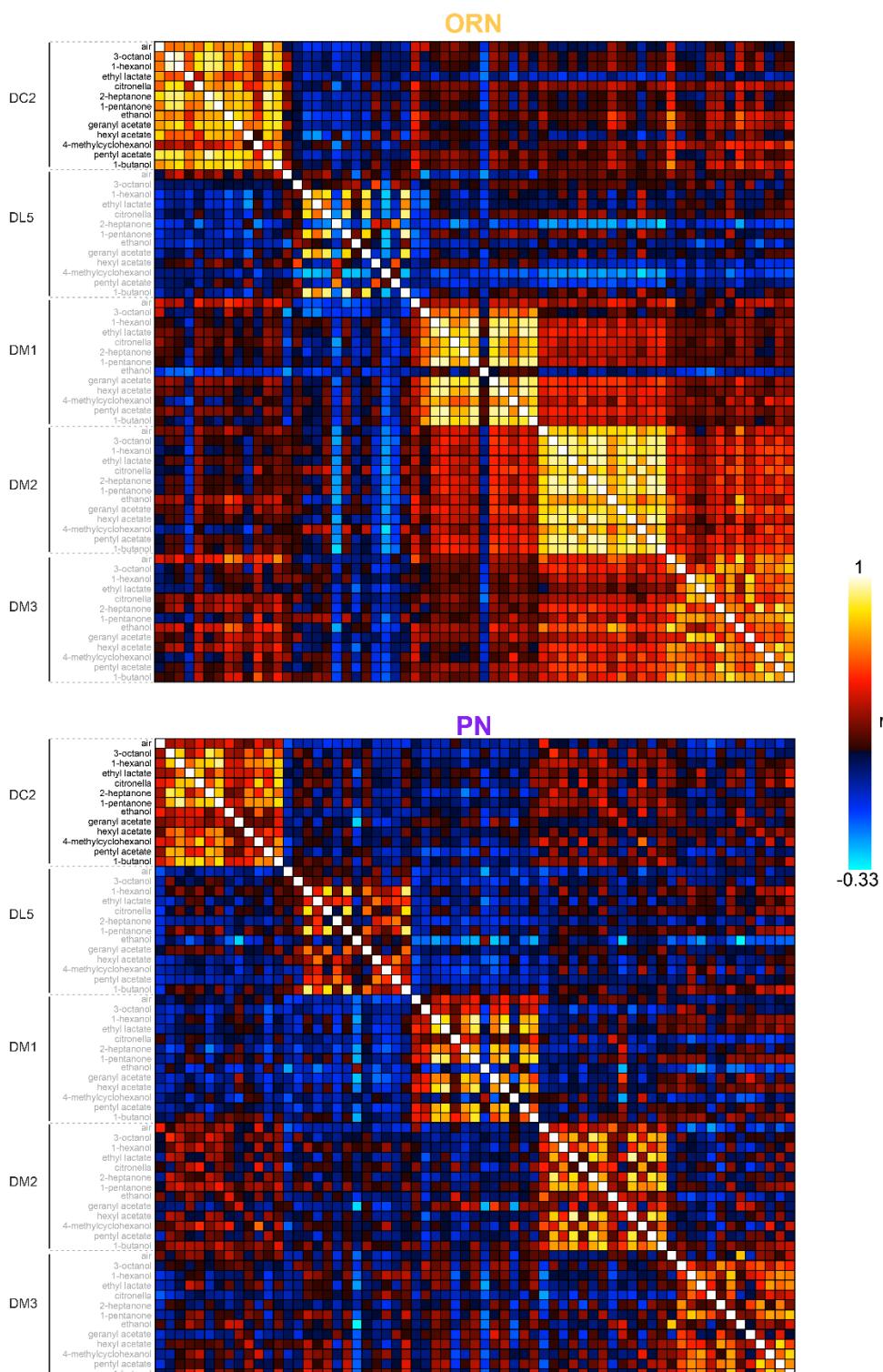


1263

1264 **Figure 1 – figure supplement 6. Idiosyncrasy of ORN and PN responses.**

1265 (A) Logistic regression classifier accuracy of decoding individual identity from individual odor
1266 panel peak responses. PCA was performed on population responses and the specified fraction of
1267 variance (x-axis) was retained. Individual identity can be better decoded from PN responses than
1268 ORN responses in all cases. (B) Individual trial-to-trial glomerulus-odor responses embedded in
1269 PC 1-2 space. Responses for the same flies as Figure 1I are shown. Each linked color represents
1270 one fly. Trial 1 and trial 2 responses are shown for ORN left lobe (upper left), ORN right lobe
1271 (upper right), PN left lobe (lower left), and PN right lobe (lower right). (C) Distance in the full
1272 glomerulus-odor response space between recordings within a lobe (trial-to-trial), across lobes
1273 (within fly), and across flies for ORNs and PNs. Points represent the median value, boxes
1274 represent the interquartile range, and whiskers the range of the data.

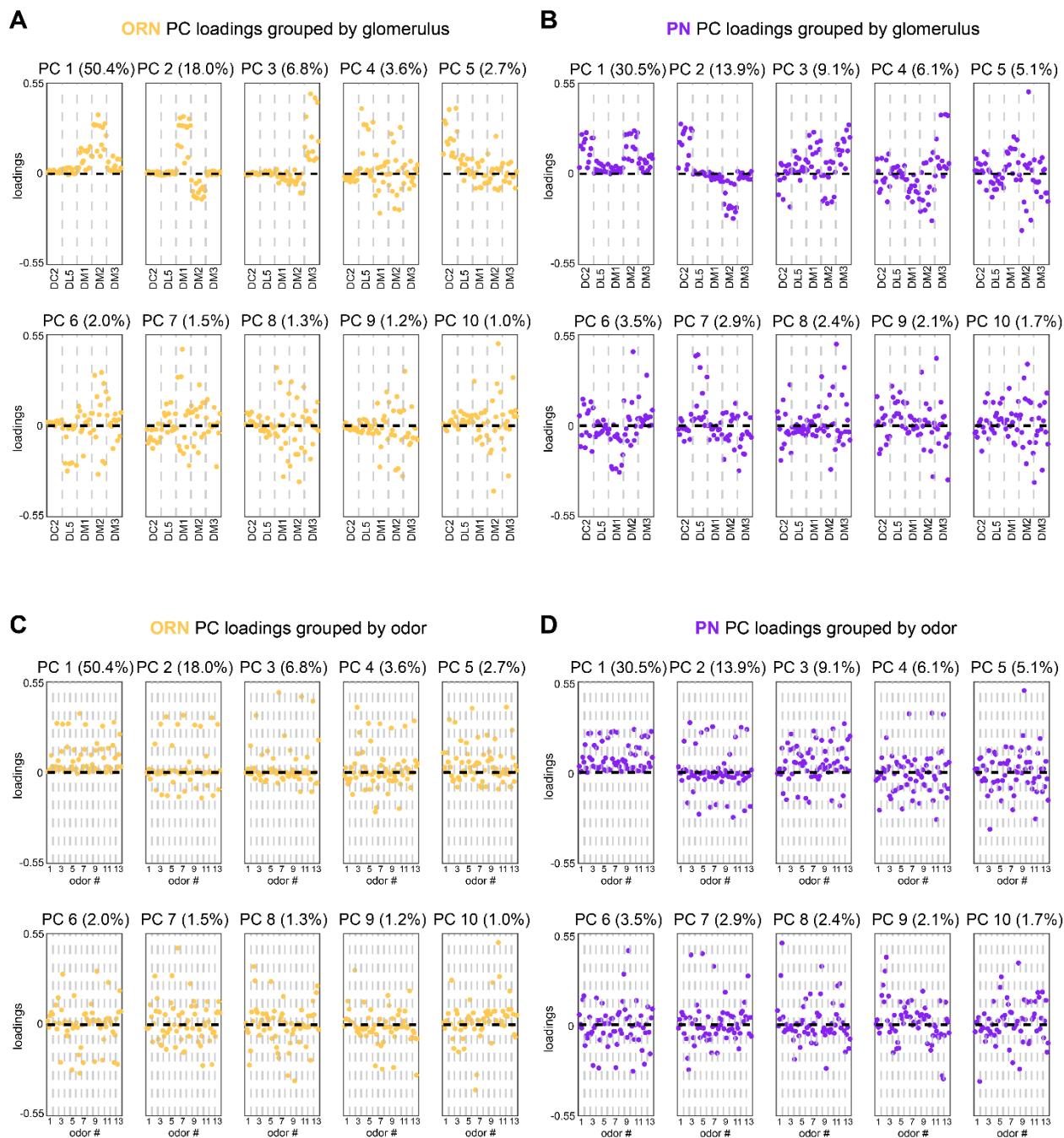
1275



1276

1277 **Figure 1 – figure supplement 7. Calcium response correlation matrices.**

1278 Correlation between calcium response dimensions across flies measured in ORNs (top) and PNs
1279 (bottom). Glomerulus-odor responses are correlated at the level of glomeruli in both cell types.
1280 Inter-glomerulus correlations are more prominent in ORNs than PNs, consistent with known AL
1281 transformations that result in decorrelated PN activity (Bhandawat et al., 2007; Luo et al., 2010).



1282

1283

Figure 1 – figure supplement 8. Calcium imaging principal component loadings.

1284 **(A-B)** First 10 principal component loadings measured from calcium responses in ORNs (A, n =
1285 65 flies) and PNs (B, n = 122 flies). Loadings are grouped by glomerulus, with each loading
1286 within a glomerulus representing the response of that glomerulus to one odor in the odor panel.
1287 Odors are the same as those listed in Figure 1G. **(C-D)** The same 10 principal component
1288 loadings as those shown in panels (A-B) grouped by odor rather than glomerulus. Glomeruli
1289 within each odor block are given in the order of panels (A) and (B).



1290

1291

Figure 1 – figure supplement 9. Estimating latent calcium - behavior correlations.

1292

1293

1294

1295

1296

1297

1298

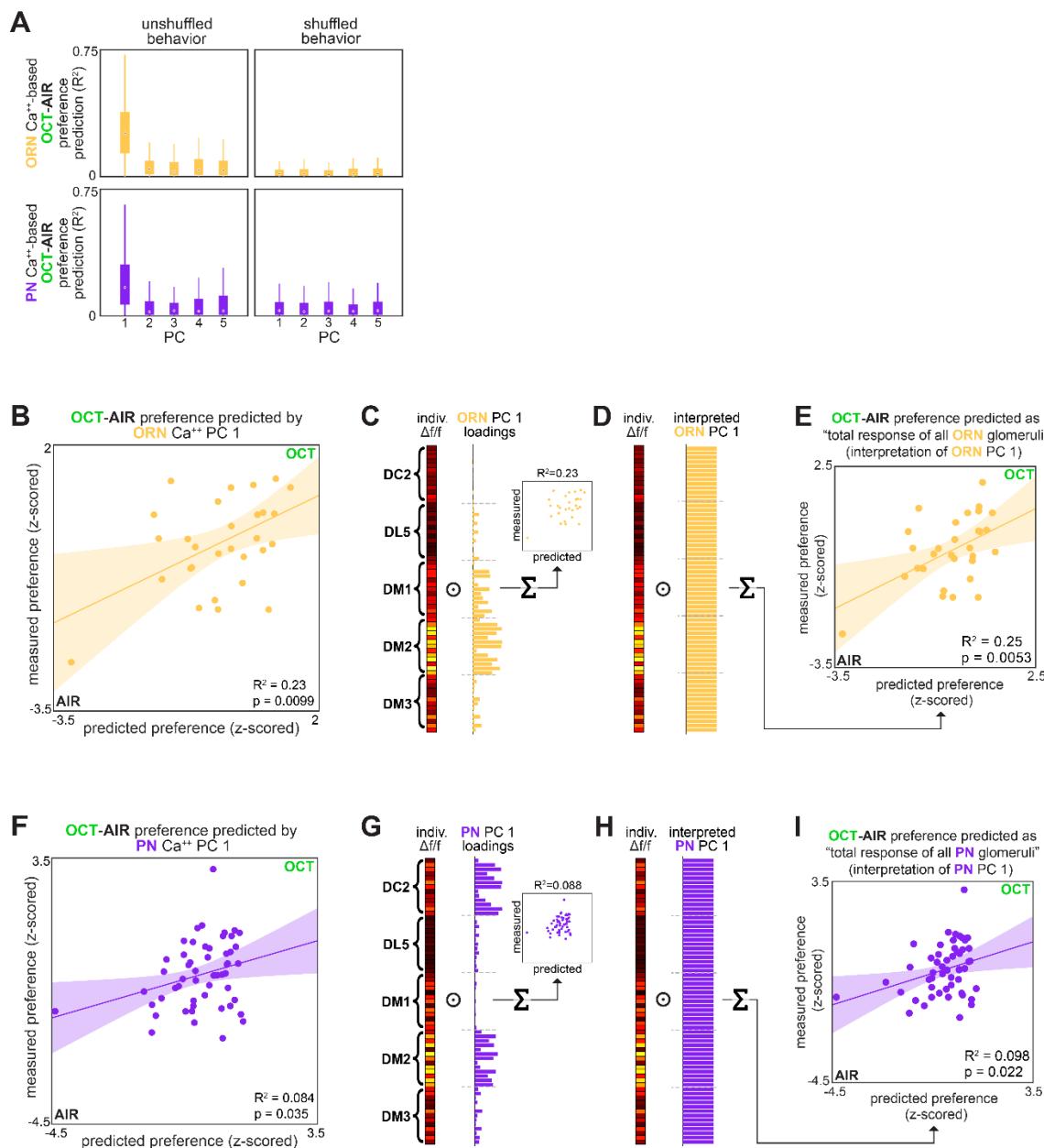
1299

1300

1301

1302

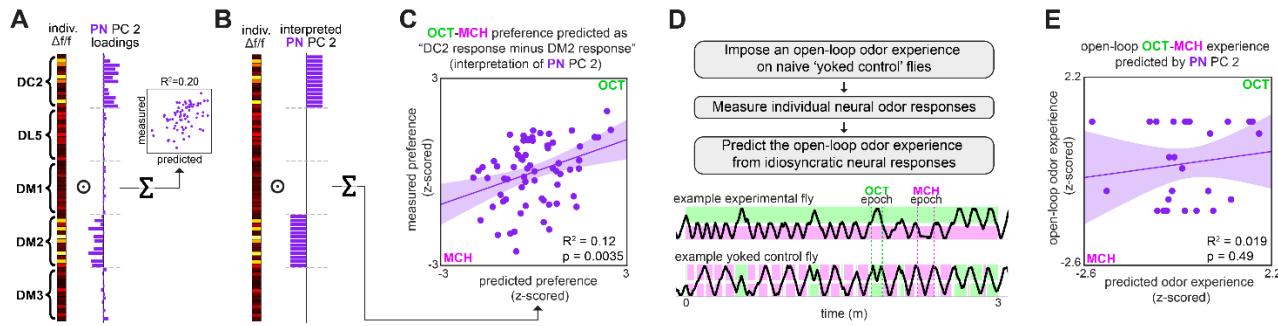
(A) Schematic of inference approach to estimate the correlation between latent calcium (c) and behavioral (b) states (R^2_{latent}). This method can be applied identically to infer R^2_{latent} between Brp measurements and behavior. (B) Demonstration of R^2_{latent} inference for OCT vs MCH model presented in Figure 1M: PN calcium PC 2 from trained model applied to train+test data. Bottom subplot: bootstrap distribution of calcium-behavior $R_{c,b}^2$ (dashed line: $R_{c,b}^2 = 0.20$ for the $N = 69$ flies). Top left subplot: simulated $R_{c,b}^2$ values. Black line indicates median $R_{c,b}^2$ among the 10,000 simulations for each R^2_{latent} , shaded areas (from lightest to darkest to lightest) indicate 5-15th, 15-25th, ..., 85-95th percentile $R_{c,b}^2$. Right subplot: inferred distribution for R^2_{latent} , estimated by adding marginal distributions over R^2_{latent} for $R_{c,b}^2$ values sampled from the bootstrap $R_{c,b}^2$ distribution. The median R^2_{latent} is 0.46 (dashed line), with 90% CI 0.06-0.90 estimated by the 5th-95th percentiles of the marginal distribution (dot-dashed lines).



1303

1304 **Figure 1 – figure supplement 10. OCT-AIR preference prediction.**

1305 (A) Bootstrapped R^2 of OCT-AIR preference prediction from each of the first 5 principal
 1306 components of neural activity measured in ORNs (top, all data) or PNs (bottom, training set).
 1307 (B) Measured OCT-AIR preference versus preference predicted from PC 1 of ORN activity (n =
 1308 30 flies). (C) PC 1 loadings of ORN activity for flies in B. (D) Interpreted ORN PC 1 loadings.
 1309 (E) Measured OCT-AIR preference versus preference predicted by the average peak response
 1310 across all ORN coding dimensions (n = 30 flies). (F) Measured OCT-AIR preference versus
 1311 preference predicted from PC 1 of PN activity in n = 53 flies using a model trained on a training
 1312 set of n = 18 flies (see Figure 2 – figure supplement 1A-B for train/test flies analyzed separately).
 1313 (G) PC 2 loadings of PN activity for flies in F. (H) Interpreted PN PC2 loadings. (I) Measured
 1314 OCT-MCH preference versus preference predicted by the average peak PN response in DM2
 1315 minus DC2 across all odors (n = 69 flies).



1316

1317 **Figure 2. Variation in relative glomerular responses explains individual odor preference.**

1318 (A) PC 2 loadings of PN activity for flies tested for OCT-MCH preference ($n = 69$ flies). (B)
1319 Interpreted PN PC 2 loadings. (C) Measured OCT-MCH preference versus preference predicted
1320 by the average peak PN response in DM2 minus DC2 across all odors ($n = 69$ flies). (D) Yoked-
1321 control experiment outline and example behavior traces. Experimental flies are free to move
1322 about tunnels permeated with steady state OCT and MCH flowing into either end. Yoked-control
1323 flies are delivered the same odor at both ends of the tunnel which matches the odor experienced
1324 at the nose of the experimental fly at each moment in time. (E) Imposed odor experience versus
1325 the odor experience predicted from PC 2 of PN activity ($n = 27$ flies) evaluated on the model
1326 trained from data in Figure 1M. Shaded regions in C,E are the 95% CIs of the fit estimated by
1327 bootstrapping.

1328

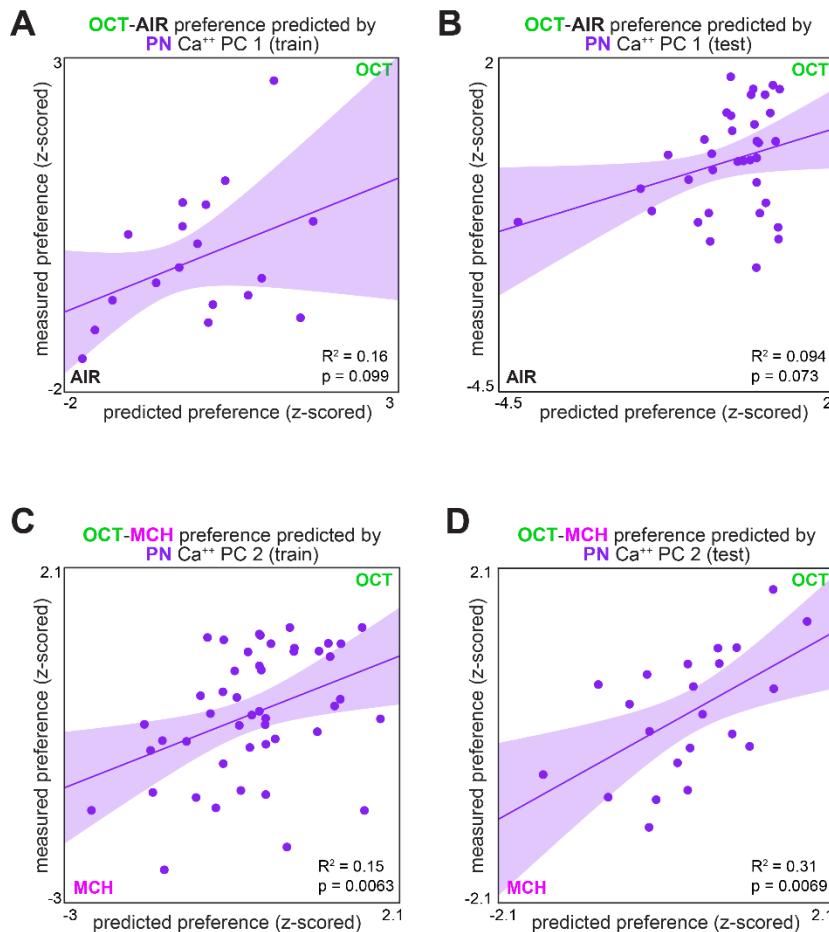
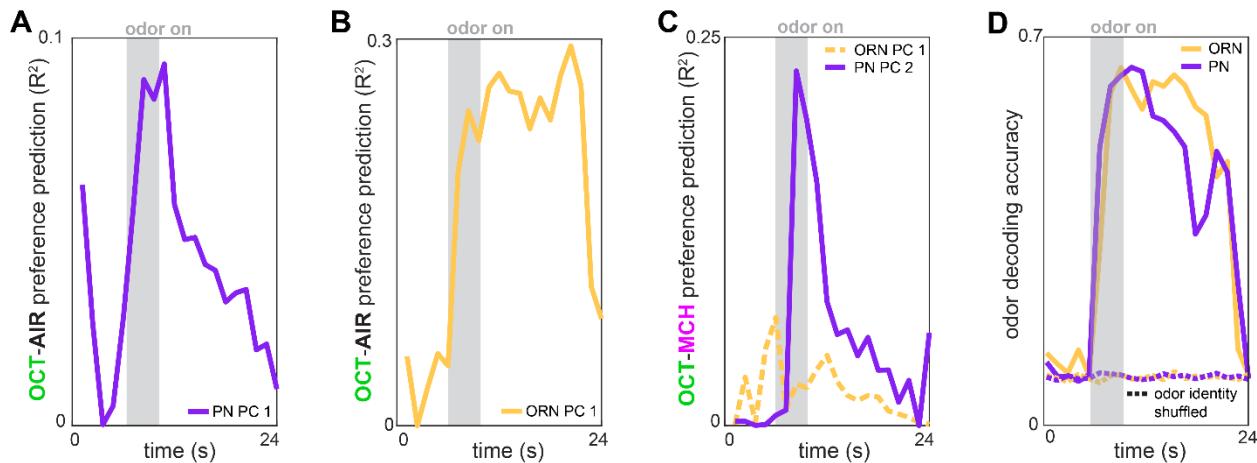


Figure 2 – figure supplement 1. Measured preference vs. PN activity-based predicted preference, split by training/testing set.

1329
1330
1331
1332
1333
1334
1335
1336
1337
1338

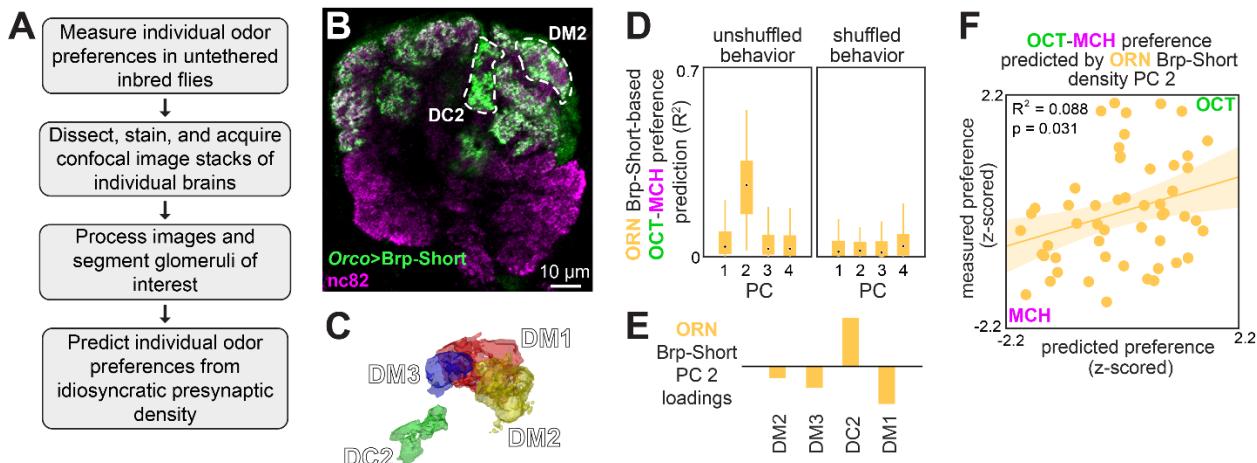
(A) Measured OCT-AIR preference versus preference predicted from PC 1 of PN activity in a training set ($n = 18$ flies). (B) Measured OCT-AIR preference versus preference predicted from PC 1 on PN activity in a test set ($n = 35$ flies) evaluated on a model trained on data from panel (A). (C) Measured OCT-MCH preference versus preference predicted from PC 2 of PN activity in a training set ($n = 47$ flies). (D) Measured OCT-MCH preference versus preference predicted from PC 2 on PN activity in a test set ($n = 22$ flies) evaluated on a model trained on data from panel (C).



1339
1340
1341
1342
1343
1344
1345
1346
1347

Figure 2 – figure supplement 2. Time-dependent preference- and odor-decoding.

(A) R^2 of odor-vs-air preference predicted by PC 1 of PN activity as a function of time across trials ($n = 53$ flies). (B) R^2 of odor-vs-air preference predicted by PC 1 of ORN activity as a function of time across trials ($n = 30$ flies). (C) R^2 of odor-vs-odor preference predicted by PC 2 of PN activity (solid plum, $n = 69$ flies) or PC 1 of ORN activity (dashed peach, $n = 35$ flies) as a function of time across trials. (D) Logistic regression classifier accuracy of decoding odor identity from 5 glomerular responses as a function of time. Dashed curves indicate performance on shuffled data.



1348

1349

1350

1351

1352

1353

1354

1355

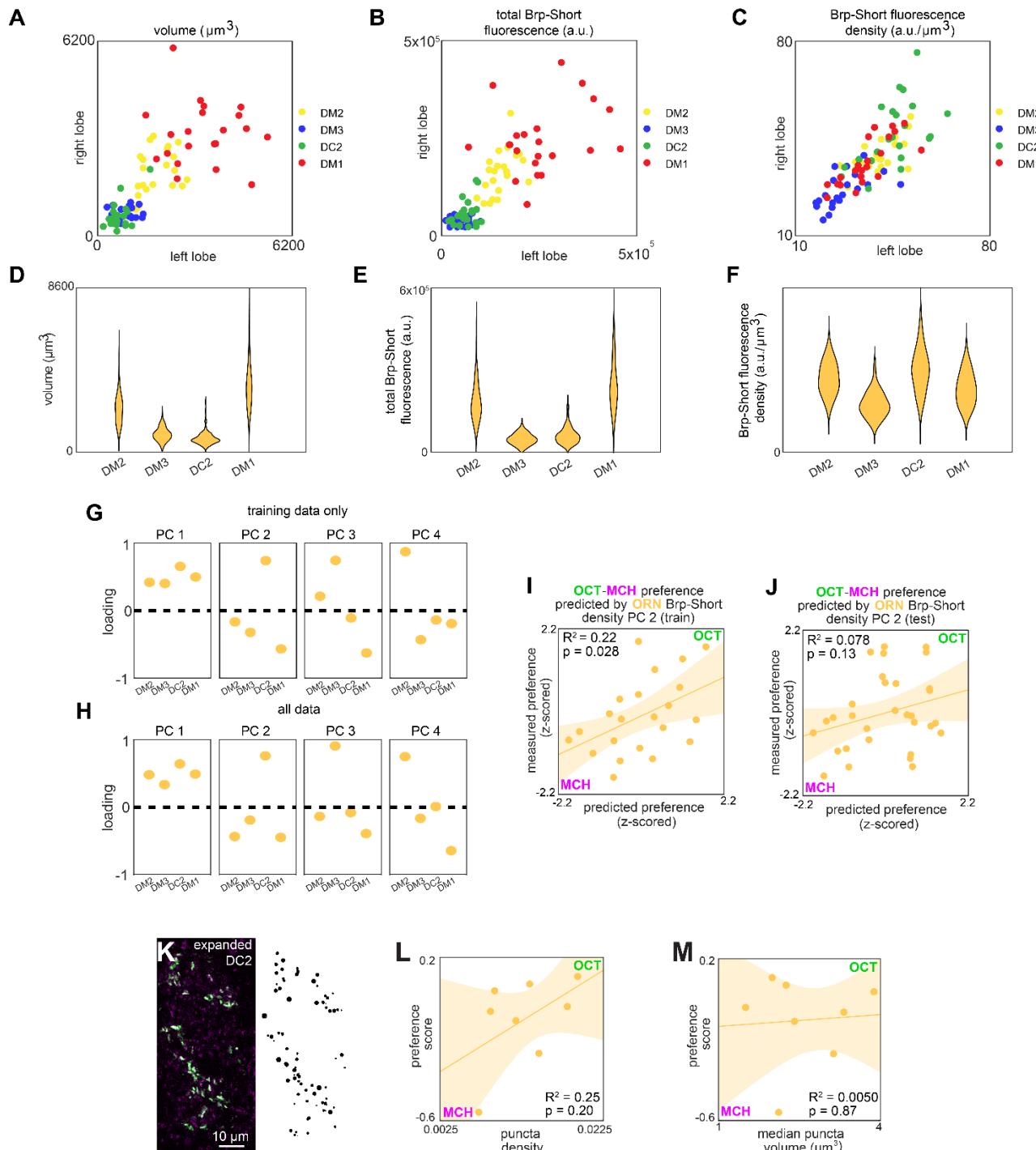
1356

1357

1358

Figure 3. Idiosyncratic presynaptic marker density in DM2 and DC2 predicts OCT-MCH preference.

(A) Experiment outline. (B) Example slice from a z-stack of the antennal lobe expressing Orco>Brp-Short (green) with DC2 and DM2 visible (white dashed outline). nc82 counterstain (magenta). (C) Example glomerulus segmentation masks extracted from an individual z-stack. (D) Bootstrapped R^2 of OCT-MCH preference prediction from each of the first 4 principal components of Brp-Short density measured in ORNs (training set, $n = 22$ flies). (E) PC 2 loadings of Brp-Short density. (F) Measured OCT-MCH preference versus preference predicted from PC 2 of ORN Brp-Short density in $n = 53$ flies using a model trained on a training set of $n = 22$ flies (see Figure 3 – figure supplement 1 for train/test flies analyzed separately).



1359

1360 **Figure 3 – figure supplement 1. ORN>Brp-Short characterization and model predictions.**

1361 (A-C) Right versus left glomerulus properties measured from z-stacks of stained Orco>Brp-
 1362 Short samples: (A) Volume, (B) total Brp-Short fluorescence, (C) Brp-Short fluorescence
 1363 density. (D-F) Same data as panels (A-C) represented in violin plots (kernel density estimated).
 1364 (G) Principal component loadings of Brp-Short density calculated using only training data (n =
 1365 22 flies). (H) Principal component loadings of Brp-Short density calculated using all data (n = 53
 1366 flies). (I) Measured OCT-MCH preference versus preference predicted from PC 2 of ORN Brp-
 1367 Short density in a training set (n = 22 flies). (J) Measured OCT-MCH preference versus

1368 preference predicted from PC 2 on ORN Brp-Short density in a test set (n = 31 flies) evaluated
1369 on a model trained on data from panel (I). **(K)** Example expanded AL expressing Or13a>Brp-
1370 Short (left) and Imaris-identified puncta from that sample (right). **(L)** OCT-MCH preference
1371 score plotted against Brp-Short puncta density in expanded Or13a>Brp-Short samples (n = 8
1372 flies). **(M)** OCT-MCH preference score plotted against Brp-Short median puncta volume in
1373 expanded Or13a>Brp-Short samples (n = 8 flies). Shaded regions in I,J,L,M are the 95% CI of
1374 the fit estimated by bootstrapping.

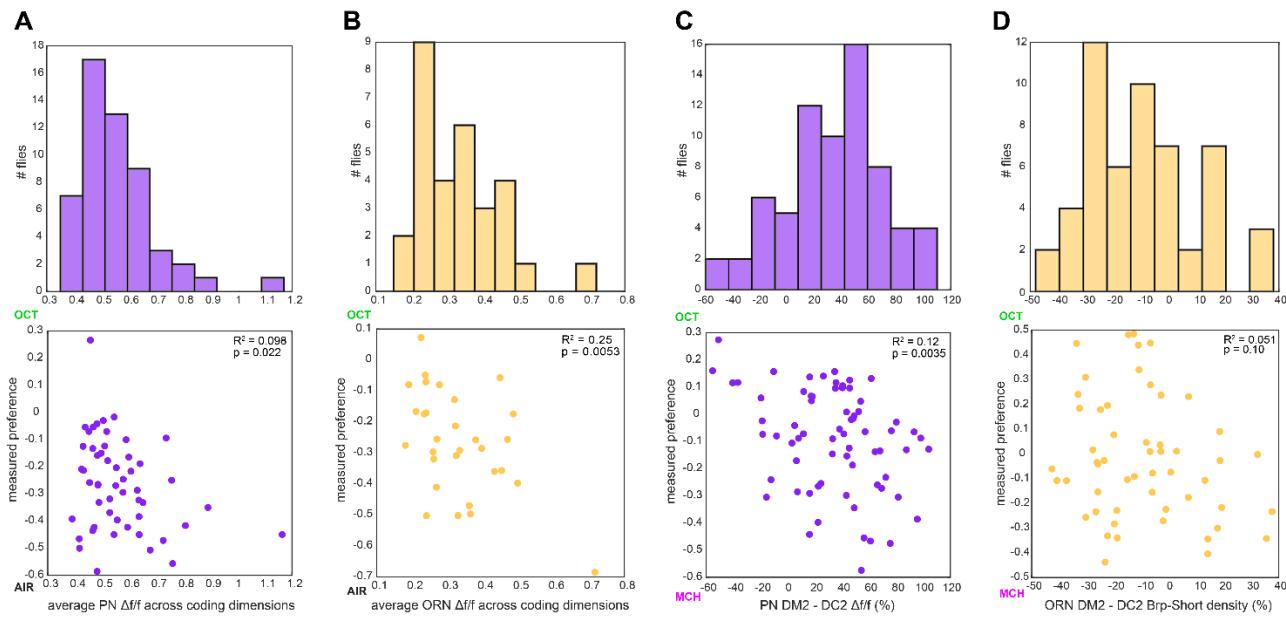


Figure 3 – figure supplement 2. Calcium and Brp-Short predictor variation.

1375
1376
1377
1378
1379
1380
1381
1382

(A) Histogram of average PN $\Delta f/f$ across all coding dimensions in flies in which OCT-AIR preference was measured (top) and OCT-AIR preference versus average PN $\Delta f/f$ ($n = 53$ flies) (bottom). (B) Similar to (A) for ORN $\Delta f/f$ and OCT-AIR preference ($n = 30$ flies). (C) Similar to (A) for $\Delta f/f$ difference between DM2 and DC2 PN responses and OCT-MCH preference ($n = 69$ flies). (D) Similar to (A) for % Brp-Short density difference between DM2 and DC2 ORNs and OCT-MCH ($n = 53$ flies).

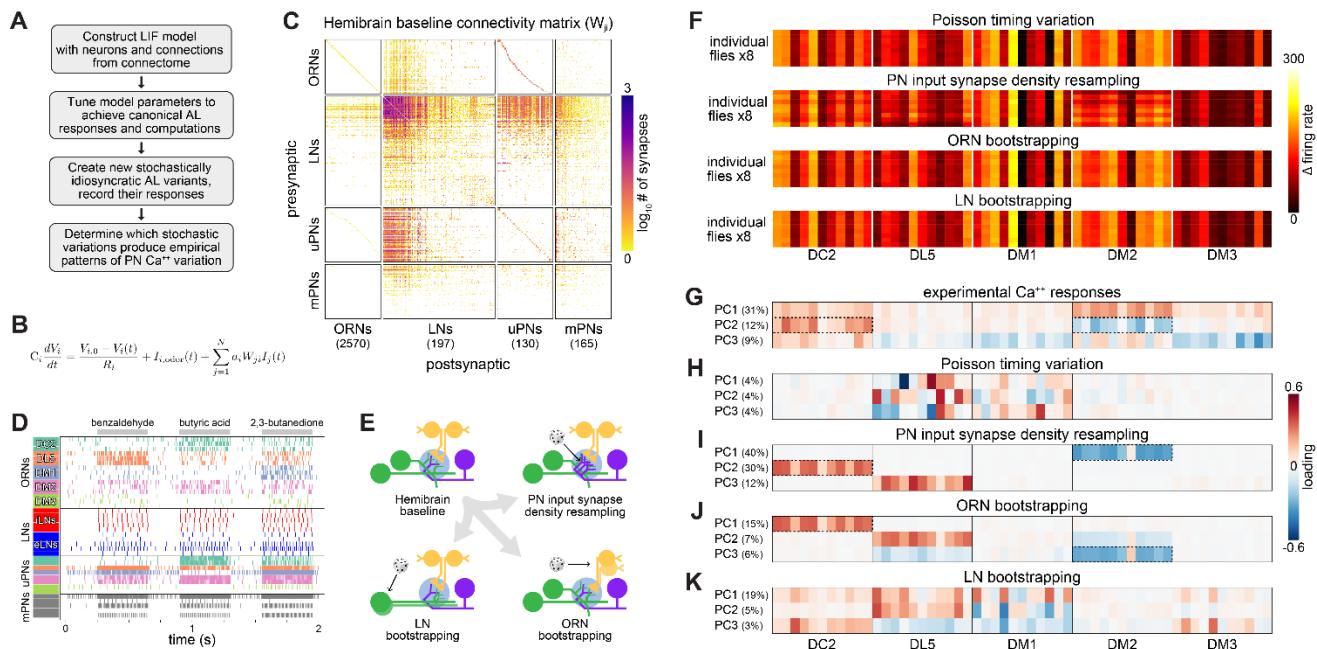
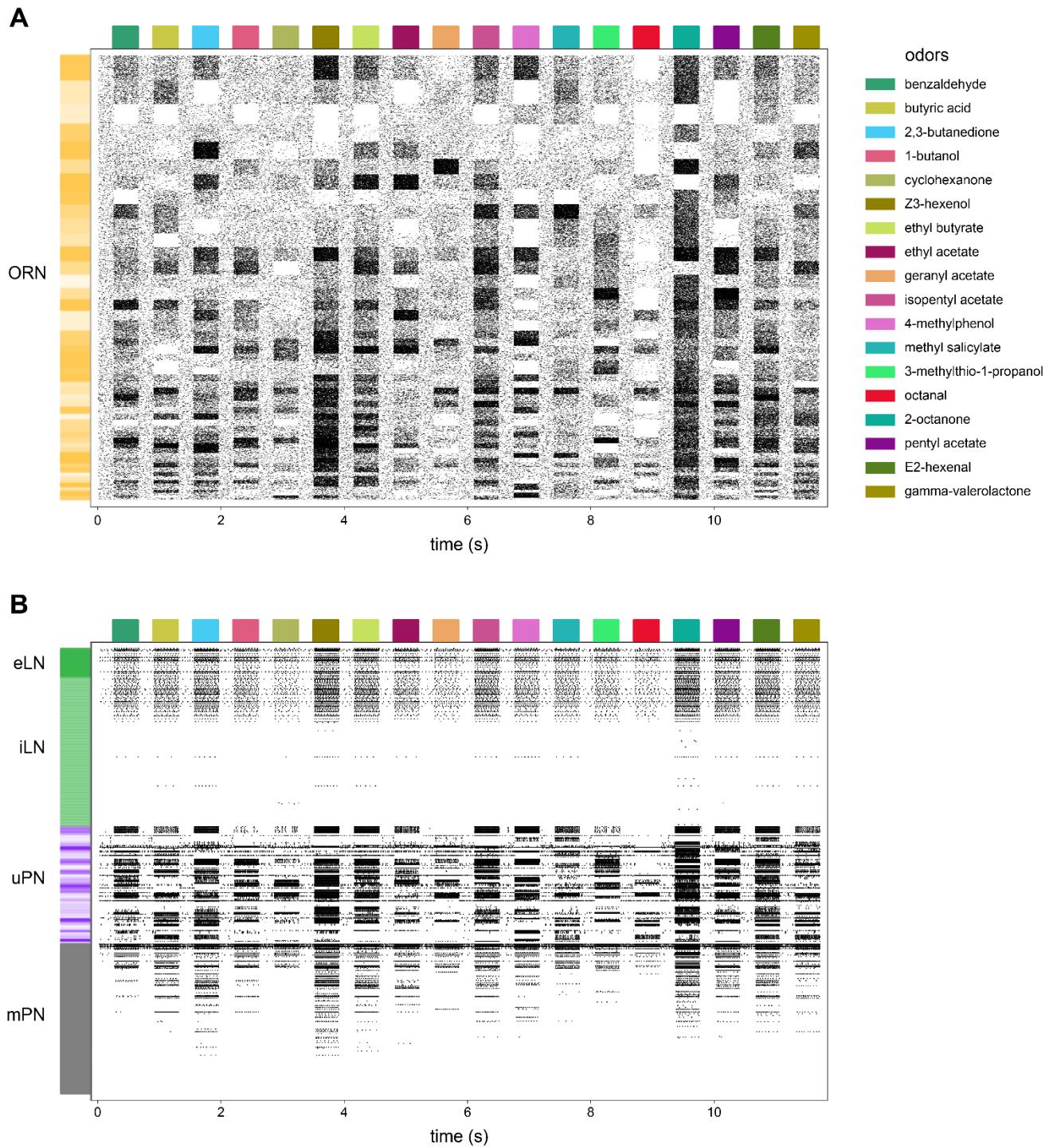


Figure 4. Simulation of developmentally stochastic olfactory circuits

1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

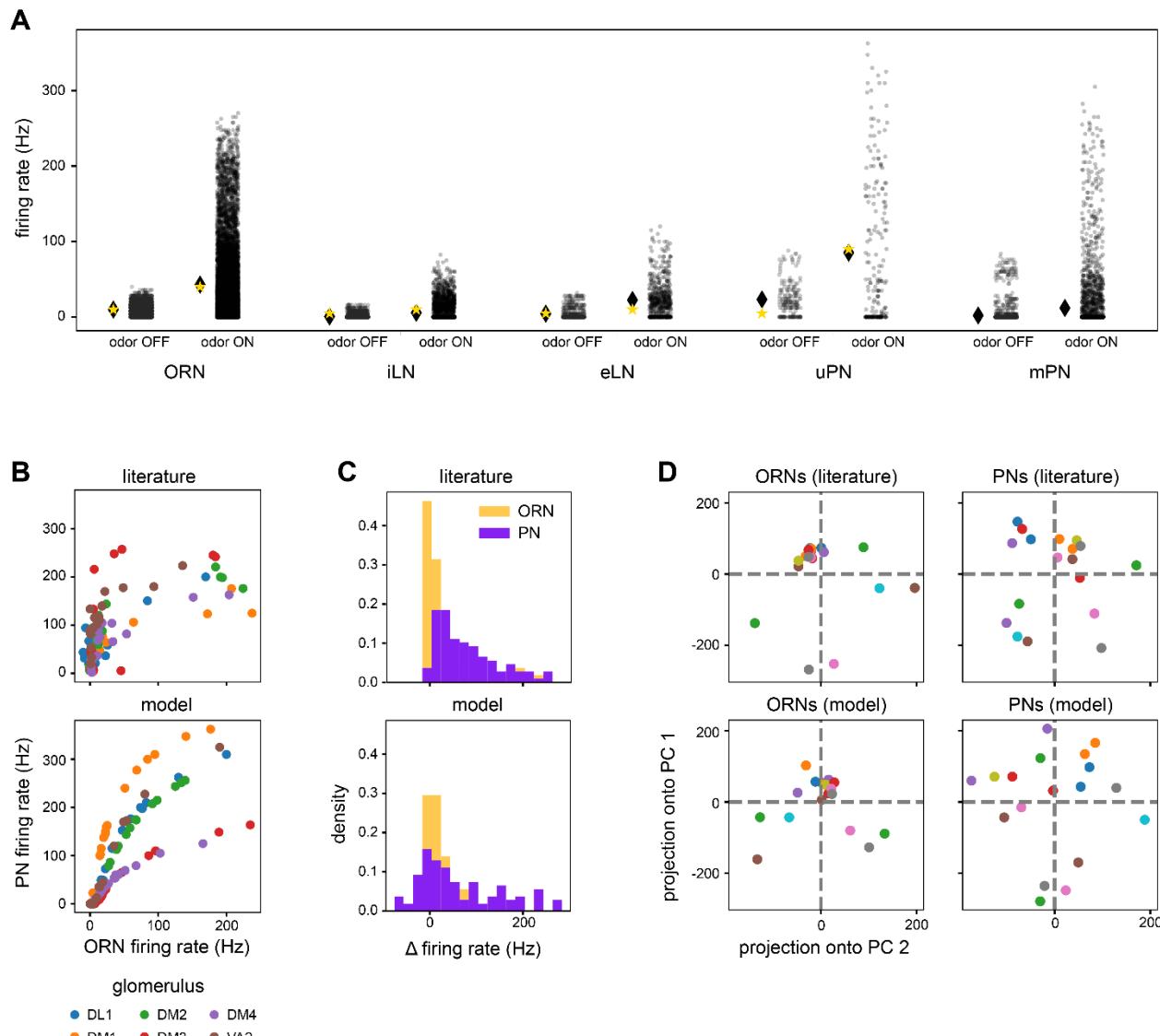
(A) AL modeling analysis outline. (B) Leaky-integrator dynamics of each simulated neuron. When a neuron's voltage reaches its firing threshold, a templated action potential is inserted, and downstream neurons receive a postsynaptic current. See *Antennal Lobe modeling* in Materials and Methods. (C) Synaptic weight connectivity matrix, derived from the hemibrain connectome (Scheffer et al., 2020). (D) Spike raster for randomly selected example neurons from each AL cell type. Colors indicate ORN/PN glomerular identity and LN polarity (i = inhibitory, e = excitatory). (E) Schematic illustrating sources of developmental stochasticity as implemented in the simulated AL framework. See Supplementary Video 4 for the effects of these resampling methods on the synaptic weight connectivity matrix. (F) PN glomerulus-odor response vectors for 8 idiosyncratic ALs subject to Input spike Poisson timing variation, PN input synapse density resampling, and ORN and LN population bootstrapping. (G) Loadings of the principal components of PN glomerulus-odor responses as observed across experimental flies (top). Dotted outlines highlight loadings selective for the DC2 and DM2 glomerular responses, which underlie predictions of individual behavioral preference. (H-K) As in (G) for simulated PN glomerulus-odor responses subject to Input spike Poisson timing variation, PN input synapse density resampling, and ORN and LN population bootstrapping. See Figure 4 – figure supplement 5 for additional combinations of idiosyncrasy methods. In (F-K) the sequence of odors within each glomerular block is: OCT, 1-hexanol, ethyl-lactate, 2-heptanone, 1-pentanol, ethanol, geranyl acetate, hexyl acetate, MCH, pentyl acetate and butanol.



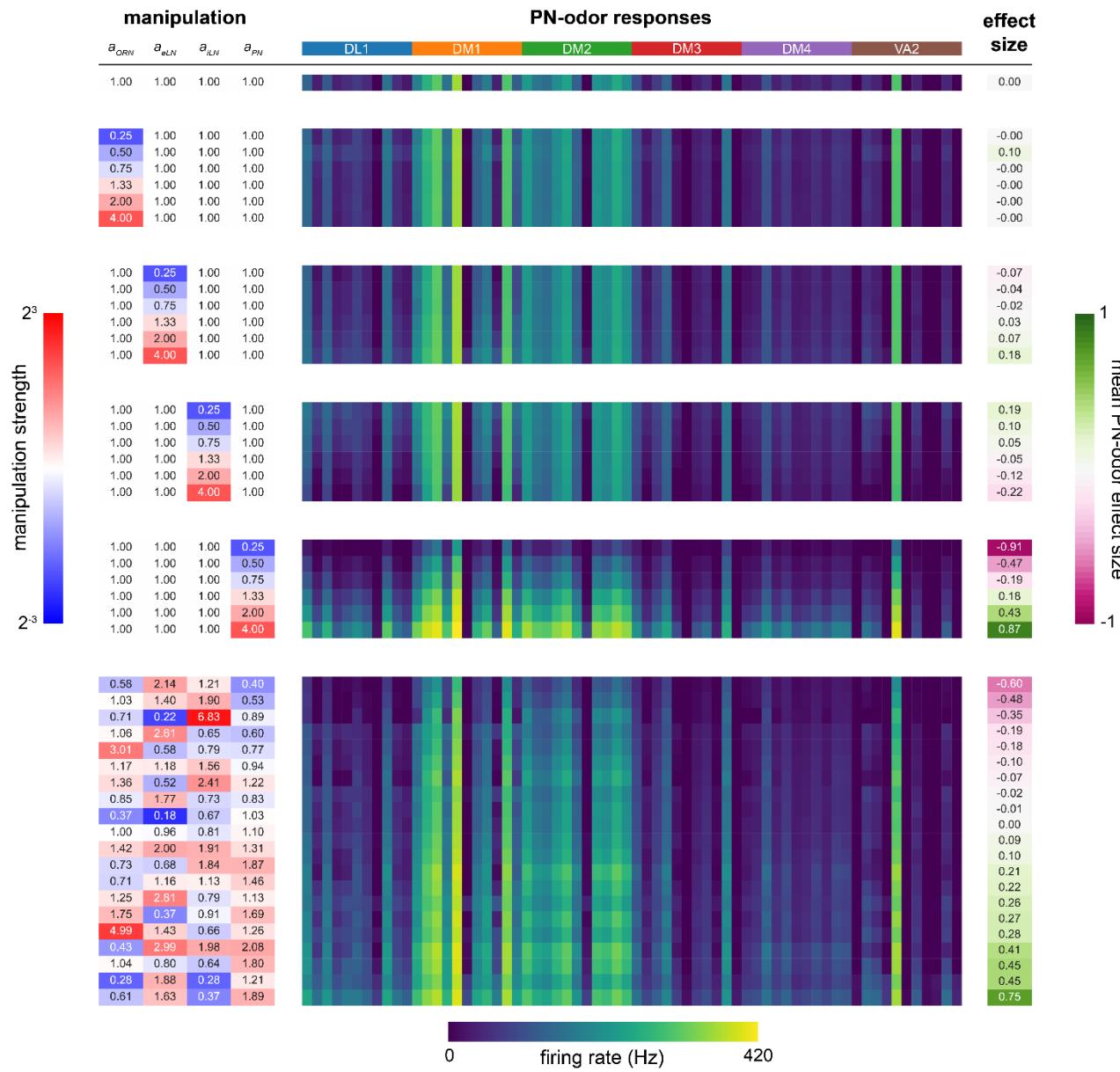
1404

1405 **Figure 4 – figure supplement 1. AL model raster plot.**

1406 (A) Action potential raster plot of ORNs in the baseline simulated AL. Rows are individual
1407 ORNs, black ticks indicate action potentials. Random shades of gold at left indicate blocks of
1408 ORN rows projecting to the same glomerulus. (B) The remaining neurons in the model. Shades
1409 of green indicate excitatory vs inhibitory LNs and shades of purple indicate PNs with dendrites
1410 in the same glomeruli.

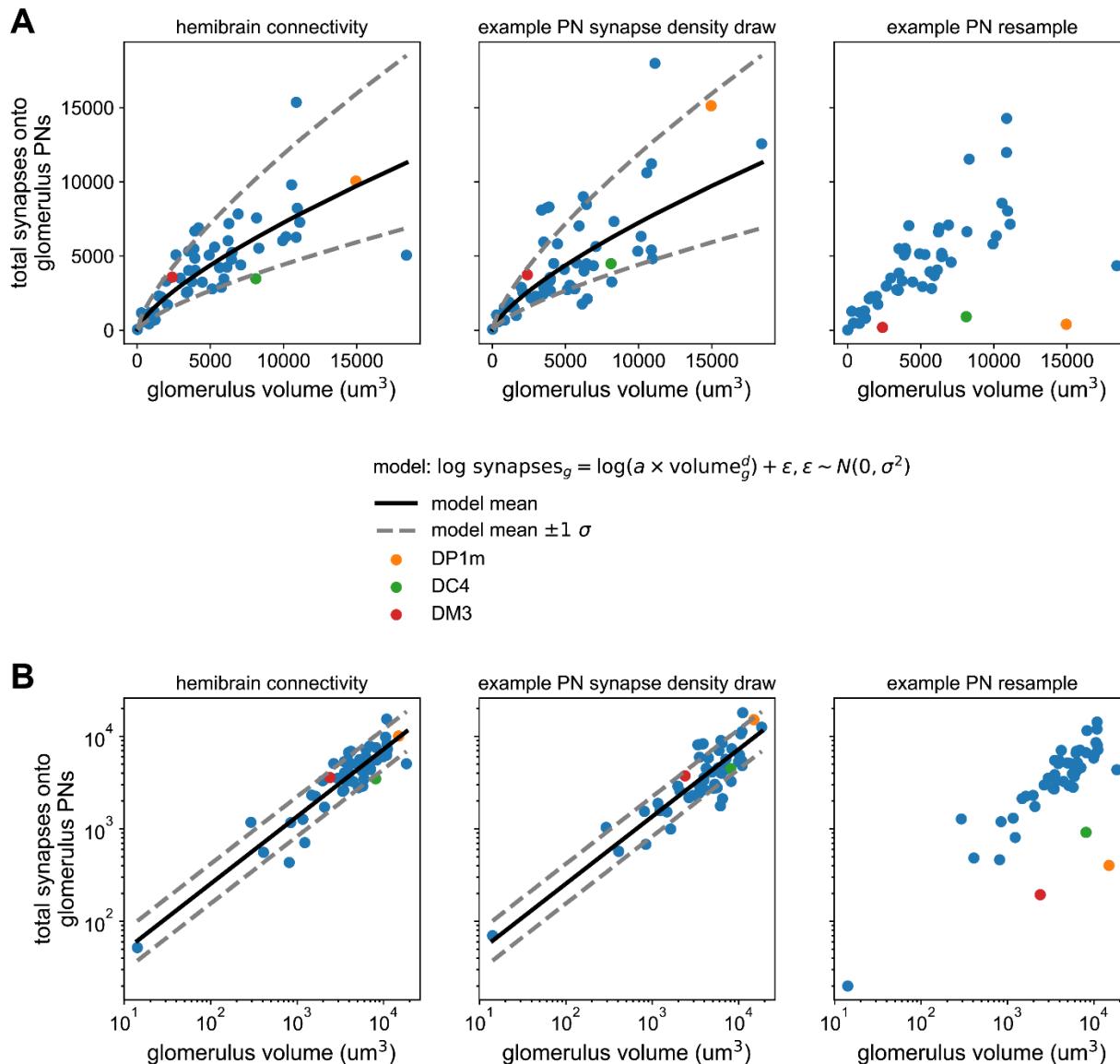


1411
1412 **Figure 4 – figure supplement 2. AL model baseline outputs compared to experimental data.**
1413 (A) Distributions of model neuron firing rates by cell type across odors (transparent black points
1414 are individual neuron-odor combinations). Black lozenge symbols indicate the mean firing rate
1415 of the points to the right. Yellow stars indicate the comparable experimental values reported in
1416 (Chou et al., 2010; de Bruyne et al., 2001; Nagel et al., 2015; Wilson, 2004). (B) Scatter plots of
1417 average PN firing rate vs ORN firing rate during odor stimuli in the model vs experimental
1418 values (Bhandawat et al., 2007). Points are odors, colors are glomeruli. (C) Histograms of ON
1419 odor minus OFF odor glomerulus-average PN and ORN firing rates in the model vs experimental
1420 values (Bhandawat et al., 2007), showing flatter distributions in PNs. (D) Odor representations in
1421 the first 2 PCs of glomerulus-average ORN responses and PN responses in the model and
1422 experimental results (Bhandawat et al., 2007). Points are odors. Pairwise distances between PN
1423 representations are more uniform than in ORNs in both the model and experimental data. Panels
1424 (B)-(D) use glomerulus-average PN and ORN firing rates from six of the seven glomeruli in
1425 Bhandawat et al., 2007, as VM2 is significantly truncated in the hemibrain (Scheffer et al.,
1426 2020). Literature features in panels (B)-(D) were extracted from Bhandawat et al., 2007 using
1427 WebPlotDigitizer (Rohatgi, 2021).



1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438

Figure 4 – figure supplement 3. Sensitivity analysis of a_{ORN} , a_{eLN} , a_{iLN} , a_{PN} parameters.
 (Left, blue to red colormap): magnitude of parameter manipulation. (Center, dark blue to yellow colormap): mean glomerular firing rate (Hz) responses of PNs (DL1, DM1, DM2, DM3, DM4, VA2) to 11 odors (order within each glomerulus (colored bands at top): 3-octanol, 1-hexanol, ethyl lactate, 2-heptanone, 1-pentanol, ethanol, geranyl acetate, hexyl acetate, 4-methylcyclohexanol, pentyl acetate, 1-butanol, 3-octanol). (Right, pink to green colormap): manipulation effect size on mean PN-odor responses (Cohen's d). (Top): baseline parameter set. (Middle): single-parameter manipulations from 1/4x to 4x. (Bottom): multiple-parameter manipulations. For further detail see *AL model tuning* in Materials and Methods. No manipulations yielded effect sizes larger than 0.9; a_{PN} is the most sensitive parameter.



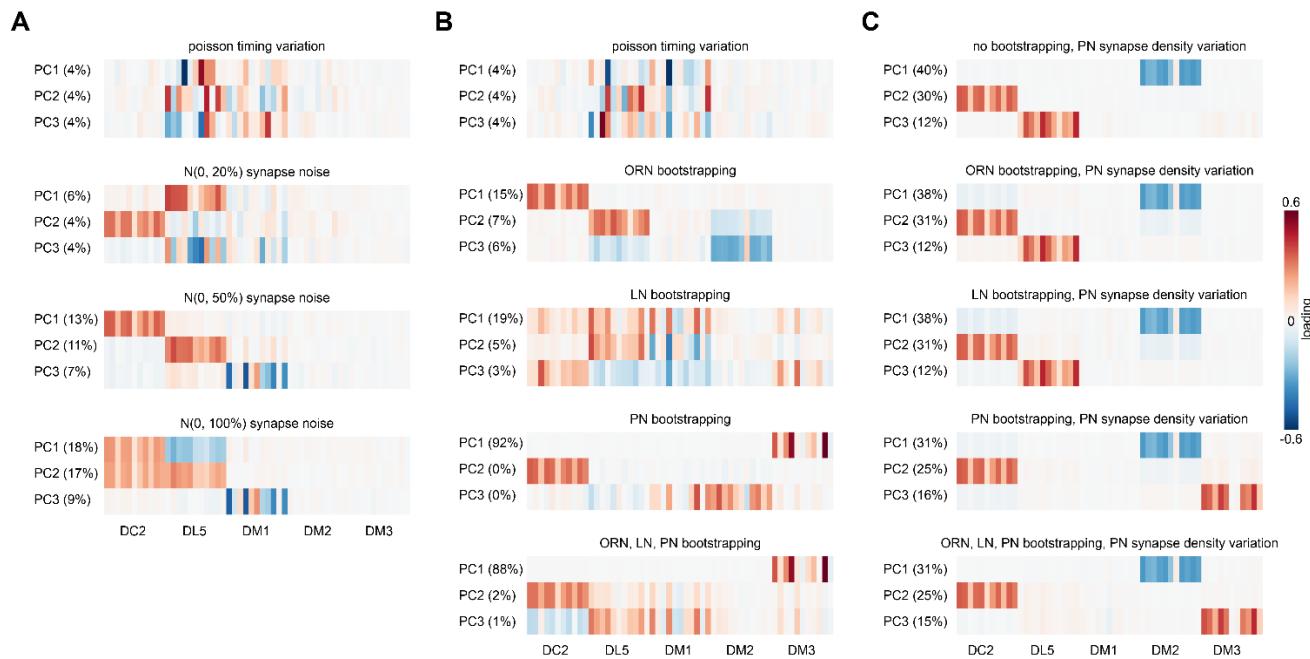
1439

1440

1441

Figure 4 – figure supplement 4. Synapse counts vs glomerular volume in the hemibrain and AL model.

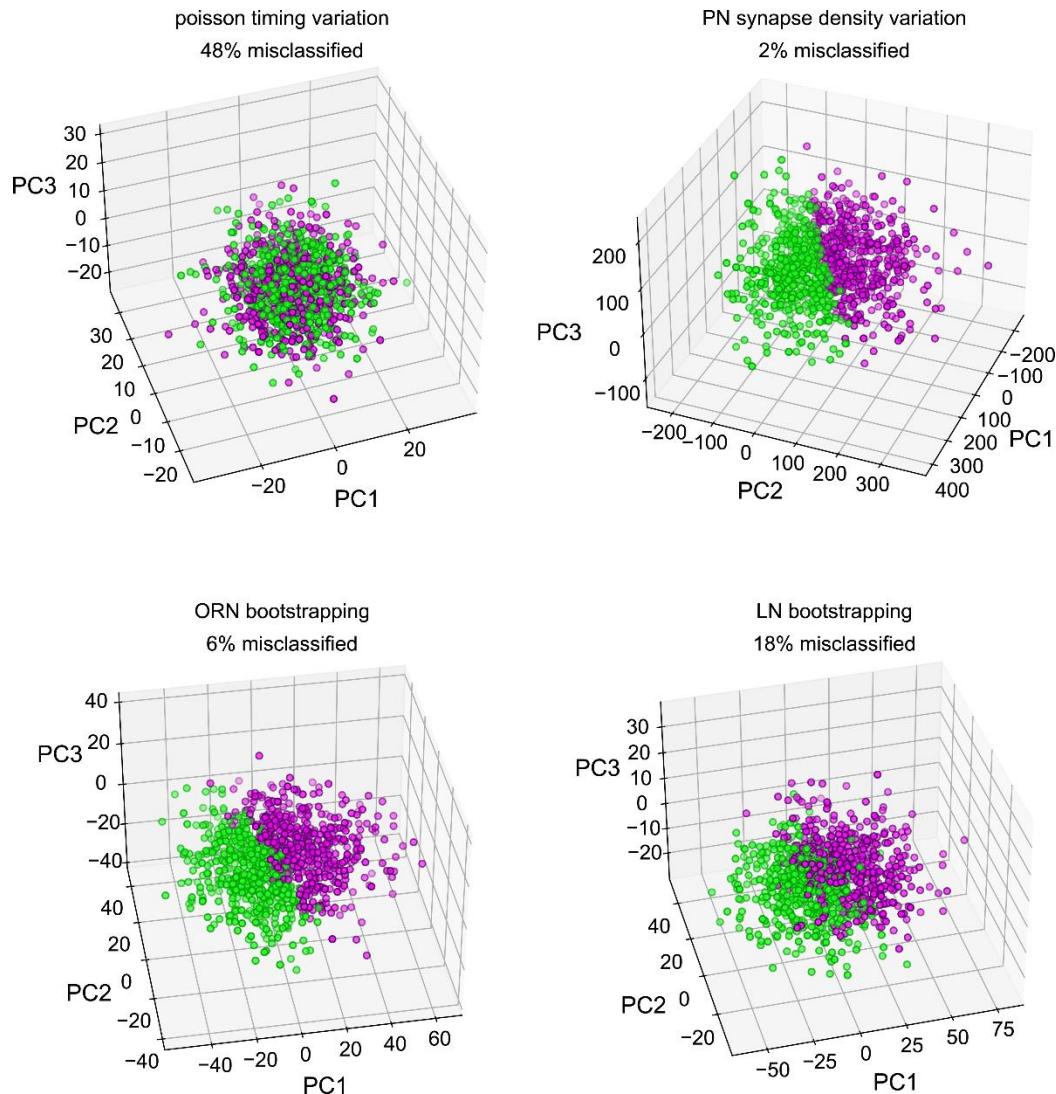
1442 (A) Left) Scatter plot of total PN input synapses within a glomerulus vs that glomerulus' volume
 1443 from the hemibrain data set. Solid line represents the maximum likelihood-fit mean synapse
 1444 count vs glomerular volume, and dashed lines the fit ± 1 standard deviation. Middle) As (left)
 1445 but for a single sample from the parameterized distribution of PN input synapses vs glomerular
 1446 volume. Right) As in previous for a single bootstrap resample of PNs. Color-highlighted
 1447 glomeruli illustrate that when PNs within a glomerulus have highly asymmetrical synapse
 1448 counts, bootstrapping them alone can result in apparent synapse densities that lie outside the
 1449 empirical distribution (left). (B) As in (A) but on log-log axes, showing the linear relationship
 1450 between synapse density and glomerular volume after this transformation, and bootstrapped
 1451 densities falling outside this distribution at right.



1452
1453
1454
1455
1456
1457
1458
1459
1460

Figure 4 – figure supplement 5. PN response PCA loadings under various sources of circuit idiosyncrasy.

(A) Loadings of the principal components of PN glomerulus-odor responses as simulated across AL models where Gaussian noise with a standard deviation equal to 0, 20, 50, and 100% of each synapse weight was added to each synaptic weight in the hemibrain data set. (B) circuit variation coming from bootstrapping of each major AL cell type or all three simultaneously. (C) circuit variation coming from bootstrap resampling of different cell-type combinations in addition to PN input synapse density resampling as illustrated in Figure 4 – figure supplement 4.



1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472

Figure 4 – figure supplement 6. Classifiability of simulated idiosyncratic behavior under different sources of circuit idiosyncrasy.

Simulated PN odor-glomerulus firing rates projected into their first 3 principal components. Individual points represent single runs of resampled AL models, under four different sources of idiosyncratic variation. PN responses in all odor-glomerulus dimensions were used to calculate simulated behavior scores for each resampled AL, by applying the PN calcium-odor-vs-odor linear model (Figure 2A). Magenta points represent flies with simulated preference for MCH in the top 50%, and green OCT preference. % Misclassification refers to 100% – the accuracy of a linear classifier trained on MCH-vs-OCT preference in the space of the first three PCs. This measures how much of the variance along the PN calcium-odor-vs-odor linear model lies outside the first three PCs of simulated PN variation.

1473 **Tables**

1474

1475 **Table 1: Calcium & Brp-Short – behavior model statistics**

Behavior Measured	Neural Predictor	Figure Panel	n	β_0	β_1	R ²	p-value
OCT vs. AIR	PN Calcium PC 1	Figure 2 – figure supplement 1A	18	-0.26	-0.079	0.16	0.099
OCT vs. AIR	PN Calcium Average all dimensions	Figure 1 – figure supplement 10I	53	-0.051	-0.38	0.098	0.022
OCT vs. AIR	ORN Calcium PC 1	Figure 1 – figure supplement 10B	30	-0.29	-0.053	0.23	0.007
OCT vs. AIR	ORN Calcium Average all dimensions	Figure 1 – figure supplement 10E	30	-0.032	-0.71	0.25	0.005
OCT vs. MCH	PN Calcium PC 2	Figure 2 – figure supplement 1C	47	-0.058	-0.081	0.15	0.006
OCT vs. MCH	PN Calcium DM2 - DC2 (% difference)	Figure 2I	69	-0.032	-0.0018	0.12	0.004
OCT vs. MCH	ORN Calcium PC 1	Figure 1L	35	-0.14	-0.027	0.031	0.32
OCT vs. MCH	ORN Brp-Short PC 2 (train data only)	Figure 3 – figure supplement 1I	22	-0.087	0.017	0.22	0.028
OCT vs. MCH	ORN Brp-Short PC 2 (all data)	Figure 3F	53	-0.019	0.012	0.088	0.031

1476

1477

Table 2: Typical electrophysiology features of AL cell types, used as model parameters

Parameter	ORNs	LNs	PNs
Membrane resting potential	-70 mV (Dubin and Harris, 1997)	-50 mV (Seki et al., 2010)	-55 mV (Jeanne and Wilson, 2015)
Action potential threshold	-50 mV (Dubin and Harris, 1997)	-40 mV (Seki et al., 2010)	-40 mV (Jeanne and Wilson, 2015)
Action potential minimum	-70 mV (Cao et al., 2016)	-60 mV (Seki et al., 2010)	-55 mV (Jeanne and Wilson, 2015)
Action potential maximum	0 mV (Dubin and Harris, 1997)	0 mV (Seki et al., 2010)	-30 mV (Wilson and Laurent, 2005)
Action potential duration	2 ms (Jeanne and Wilson, 2015)	4 ms (Seki et al., 2010)	2 ms (Jeanne and Wilson, 2015)
Membrane capacitance	73 pF (assumed = PNs)	64 pF (Huang et al., 2018)	73 pF (Huang et al., 2018)
Membrane resistance	1.8 GOhm (Dubin and Harris, 1997)	1 GOhm (Seki et al., 2010)	0.3 GOhm (Jeanne and Wilson, 2015)

1478

1479 **Supplementary Videos**

1480

1481 **Supplementary Video 1. Example recording with automated tracking of an odor-vs-air**
1482 **behavioral assay.**

1483 The recent positions of each fly (green line) are shown in different colors. Red bar indicates
1484 when the odor stream is turned on.

1485

1486 **Supplementary Video 2. Example recording with automated tracking of an odor-vs-odor**
1487 **behavioral assay.**

1488 The recent positions of each fly (green line) are shown in different colors. Magenta and green
1489 bars at right indicate when MCH and OCT are respectively flowing into the top and bottom
1490 halves of each arena.

1491

1492 **Supplementary Video 3. Confocal image stack of expanded DC2>Brp-Short.**

1493 Magenta is nc82 stain, Green is Or13a>Brp-Short. Frames are z-slices spaced at 0.54 μ m. Image
1494 height corresponds to a post-expansion field of view of 107 x 90 μ m (a ~2.5 x linear expansion
1495 factor).

1496

1497 **Supplementary Video 4. Simulated AL connectivity matrices.**

1498 Left: Glomerular density resampling. Each frame corresponds to the hemibrain connectome
1499 synaptic weights, rescaled according to a sample from the relationship between synapse count
1500 and volume parameterized in Figure 4 – figure supplement 4. Middle: ORN bootstrapping. Each
1501 frame corresponds to the hemibrain connectome synaptic weights, but with the population of
1502 ORNs projecting to each glomerulus resampled with replacement. Right: LN bootstrapping.
1503 Each frame corresponds to the hemibrain connectome synaptic weights, but with the population
1504 of LNs resampled with replacement.