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Abstract

Behavior varies even among genetically identical animals raised in the same environment.
However, little is known about the circuit or anatomical origins of this individuality. Here, we
demonstrate a neural correlate of Drosophila odor preference behavior in the olfactory sensory
periphery. Namely, idiosyncratic calcium responses in projection neuron (PN) dendrites and
densities of the presynaptic protein Bruchpilot in olfactory receptor neuron (ORN) axon
terminals correlate with individual preferences in a choice between two aversive odorants. The
ORN-PN synapse appears to be a locus of individuality where microscale variation gives rise to
idiosyncratic behavior. Simulating microscale stochasticity in ORN-PN synapses of a 3,062
neuron model of the antennal lobe recapitulates patterns of variation in PN calcium responses
matching experiments. Conversely, stochasticity in other compartments of this circuit does not
recapitulate those patterns. Our results demonstrate how physiological and microscale structural
circuit variations can give rise to individual behavior, even when genetics and environment are
held constant.

Keywords: individuality, neural circuits, sensory processing, olfaction, behavioral preference,
variation, Drosophila, antennal lobe, calcium imaging, expansion imaging
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Introduction

Individuality is a fundamental aspect of behavior that is observed even among genetically-
identical animals reared in similar environments. We are specifically interested in individuality
that is evident as idiosyncratic differences in behavior that persist for much of an animal’s
lifespan. Such variability is observed across species including round worms (Stern et al., 2017),
aphids (Schuett et al., 2011), fish (Laskowski et al., 2022), mice (Freund et al., 2013), and people
(Johnson et al., 2010). Small, genetically tractable model species, such as Drosophila, are
particularly promising for discovering the genetic and neural circuit basis of individual behavior
variation. Flies exhibit individuality in many behaviors (Werkhoven et al., 2021), and the
mechanistic origins of this variation has been studied for phototactic preference (Kain et al.,
2012), temperature preference (Kain et al., 2015), locomotor handedness (Ayroles et al., 2015;
Buchanan et al., 2015; de Bivort et al., 2022), object-fixated walking (Linneweber et al., 2020),
and odor preference (Honegger et al., 2019). Generally, the neural substrates of individuality are
poorly understood, though in a small number of instances nanoscale circuit correlates of
individual behavioral biases have been identified (Lillvis et al., 2022; Linneweber et al., 2020;
Skutt-Kakaria et al., 2019). We hypothesize that as sensory cues are encoded and transformed to
produce motor outputs, their representation in the nervous system becomes increasingly
idiosyncratic and predictive of individual behavioral responses. An alternative hypothesis is that
neural representations are the same across individuals and individuality emerges through
biomechanical differences and interactions with the environment. We seek to determine if “loci
of individuality” — sites at which this idiosyncrasy emerges — exist, and if so, where in the
sensorimotor cascade.

Olfaction in the fruit fly Drosophila melanogaster is an amenable sensory system for identifying
loci of individuality, as 1) individual odor preferences can be recorded readily, 2) neural
representations of odors can be measured via calcium imaging, 3) the circuit elements of the
pathway are well-established, and 4) a deep genetic toolkit enables mechanism-probing
experiments. The neuroanatomy of the olfactory system, from the antenna through its first
central-brain processing neuropil, the antennal lobe (AL), is broadly stereotyped across
individuals (Couto et al., 2005; Grabe et al., 2015; Wilson et al., 2004). The AL features ~50
anatomically identifiable microcircuits called glomeruli (Figure 1A). Each glomerulus represents
an odor-coding channel and receives axon inputs from olfactory receptor neurons (ORNS)
expressing the same olfactory receptor gene (de Bruyne et al., 2001). Uniglomerular projection
neurons (PNs) carry odor information from each glomerulus deeper into the brain (Jeanne and
Wilson, 2015). AL-intrinsic local neurons (LNs) project among glomeruli (Chou et al., 2010)
and modulate odor representations (Wilson and Laurent, 2005). Glomerular organization is a key
stereotype of the AL; using glomeruli as landmarks, one can identify comparable ORN axons
and PNs across individuals.
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80 Individual flies differ in their PN calcium responses to identical odor stimuli, as well as their
81  odor-vs-odor preference choices (Honegger et al., 2019). Several possible determinants of
82 individual odor preference can already be hypothesized for the fly olfactory circuit (Rihani and
83  Sachse, 2022). The extent of preference variability depends on dopamine and serotonergic
84  modulation (Honegger et al., 2019). Neuromodulation clearly plays a role in the regulation of
85  behavioral individuality (Maloney, 2021), but its effects vary by modulator and behavior (de
86  Bivortetal., 2022; Kain et al., 2012). With respect to wiring variation, the number of ORNs and
87  PNs innervating a given glomerulus varies within hemispheres (Tobin et al., 2017) and across
88 individuals (Grabe et al., 2016; Schlegel et al., 2020), as does the glomerulus-innervation pattern
89  of individual LNs (Chou et al., 2010). Subpopulations of LNs and PNs express variable serotonin
90 receptors (Sizemore and Dacks, 2016), so the effects of neuromodulation and wiring may
91 interact to influence individuality. Little is known about possible molecular or nanoscale
92  correlates of individual behavioral bias. Thus, individual odor preference could have its origins
93  in many potential mechanisms, ranging from circuit wiring to modulation to neuronal intrinsic
94  properties.
95
96  Outside the olfactory system, there are a few examples in which microscale circuit variation
97  predicts individual behavioral preference. Wiring asymmetry in an individual fly’s dorsal cluster
98  neurons is predictive of the straightness of its object-oriented walking behavior (Linneweber et
99 al, 2020), and left-right asymmetry in the density of presynaptic sites of protocerebral bridge to
100 lateral accessory lobe-projecting neurons predicts an individual fly’s idiosyncratic turning bias
101  (Skutt-Kakaria et al., 2019). The number of synaptic connections from the pC2I to pIP10 neurons
102  correlates with male song rate during courtship (Lillvis et al., 2022), and the presence of ectopic
103  branches in neurons of the T2 hemilineage predicts delayed spontaneous flight initiation (Mellert
104 etal., 2016).
105
106  In this work, we sought to identify loci of individuality by measuring odor preferences and
107  neural responses to odors in the same individuals and determining the extent to which the latter
108 predicted the former. We found that idiosyncratic calcium responses in PNs were correlated with
109 individual preferences in a choice between two aversive odorants. Examining a molecular
110  component presynaptic to PNs, we found that the density of the scaffolding protein Bruchpilot
111  also predicts odor preference. To unify these results and connect wiring variation to circuit
112  outputs and behavior, we simulated developmental variation in a 3,062-neuron spiking model of
113 the antennal lobe. Simulated stochasticity in the ORN-PN synapse recapitulated our empirical
114  findings. Thus, we identified the ORN-PN synapse as a likely locus of individuality in fly odor
115  preference, demonstrating that behaviorally-relevant variation in neural circuits can be found in
116  the sensory periphery at the nanoscale.
117
118 Results
119 Individual flies encode odors idiosyncratically
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120  Focusing on behavioral variation within a genotype, we used isogenic animals expressing the
121  fluorescent calcium reporter GCamp6m (Chen et al., 2013) in either of the two most peripheral
122  neural subpopulations of the Drosophila olfactory circuit, ORNs or PNs (Figure 1E). We

123  performed head-fixed 2-photon calcium imaging after measuring odor preference in an

124  untethered assay (Honegger et al., 2019) (Figure 1B-D, Figure 1 — figure supplement 1A).

125 Individual odor preferences are stable over timescales longer than this experiment (Figure 1 —
126  figure supplement 1B-E).

127

128  We measured volumetric calcium responses in the antennal lobe (AL), where ORNSs synapse
129  onto PNs in ~50 discrete microcircuits called glomeruli (Figure 1A) (Couto et al., 2005; Grabe et
130 al., 2015). Flies were stimulated with a panel of 12 odors plus air (Figure 1D, Figure 1 — figure
131  supplement 2) and k-means clustering was used to automatically segment the voxels of 5

132  glomeruli from the resulting 4-D calcium image stacks (Figure 1E, Figure 1 — figure supplement
133 5, Materials and Methods) (Couto et al., 2005). Both ORN and PN odor responses were roughly
134  stereotyped across individuals (Figure 1G,H), but also idiosyncratic (Honegger et al., 2019).

135 Responses in PNs appeared to be more idiosyncratic than ORNs (Figure 1J); a logistic linear
136 classifier decoding fly identity from glomerular responses was more accurate when trained on
137 PN than ORN responses (Figure 1 — figure supplement 6A). While the responses of single ORNs
138 are known to vary more than those of single PNs (Wilson, 2013), our recordings capture the total
139  response of all ORNs or PNs in a glomerulus. This might explain our observation that ORNs
140  exhibited less idiosyncrasy than PNs. PN responses were more variable within flies, as measured
141  across the left and right hemisphere ALs, compared to ORN responses (Figure 1 — figure

142  supplement 6C; p < 2x10°, Mann-Whitney U test), suggesting that odor representations become
143  more divergent farther from the sensory periphery.

144

145 PN, but not ORN, responses predict odor-vs-odor preference

146  Next we analyzed the relationship of idiosyncratic coding to odor preference, by asking in which
147  neurons (if any) did calcium responses predict individual preferences of flies choosing between
148  two aversive monomolecular odors: 3-octanol (OCT) and 4-methylcyclohexanol (MCH).

149  Because we could potentially predict preference (a single value) using numerous glomerular-
150  odor predictors, and had a limited number of observations (dozens), we used dimensionality

151  reduction to hold down the number of comparisons we made. We computed the principal

152  components (PCs) of the glomerulus-odor responses (in either ORNs or PNSs) across individuals
153  (Figure 1G-I; Figure 1 — figure supplement 3, Figure 1 — figure supplement 8) and fit linear

154  models to predict the behavior of individual flies from their values on the odor response PCs. No
155  PCs of ORN neural activity could linearly predict OCT-MCH preference beyond the level of
156  shuffled controls (n = 35 flies) (Figure 1K,L). The best ORN PC model only predicted odor-vs-
157  odor behavior with a nominal R? of 0.031. In contrast, PC 2 of PN activity was a statistically
158  significant predictor of odor preference, accounting for 15% of preference variance in a training
159  set of 47 flies (p = 0.0063; Figure 2 — figure supplement 1C) and 31% of preference variance on
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160 test data of flies (p = 0.0069; Figure 2 — figure supplement 1D). These p-values remain

161  significant at « = 0.05 following a Bonferroni correction for 5 comparisons. Combined train/test
162  statistics (R?=0.20; p = 0.0001) are presented in Figure 1K,M. Thus, idiosyncratic PN calcium
163  predicts odor vs. odor preference.

164

165 We conducted a follow-up analysis to contextualize the finding of calcium PCs predicting odor
166  preference with an R? of ~0.2. This value is lower than 1.0 due to at least two factors: 1) any
167  non-linearity in the relationship between calcium responses and behavior, and 2) sampling error
168 in, and temporal instability of, behavior and calcium responses over the duration of the

169  experiment. A lower bound on the latter can be estimated from the repeatability of behavioral
170  measures over time (Figure 1 — figure supplement 1B-E). We performed a statistical analysis to
171 roughly estimate model performance if there were no sampling error or drift in the measurement
172  of behavior and calcium responses (Figure 1 — figure supplement 9; Materials and Methods).
173  This analysis suggests that the measured correlation between calcium and behavior (R%atent)

174  would be 0.46 in the absence of sampling error and temporal instability, but the uncertainty in
175  this estimate is high (90% CI: 0.06-0.90).

176

177  We additionally assessed the extent to which idiosyncratic calcium responses in ORNSs or PNs
178  could predict preference between air and a single aversive odor (OCT). We found a suggestive
179  correlate: PC 1 of ORN calcium responses explained 23% of preference variance (n = 30 flies, p
180 =0.0099, Figure 1 — figure supplement 10B), but this association was dominated by a single
181  outlier (R? of 0.078, p = 0.14 with the outlier removed).

182

183  We next sought a biological understanding of the models associating calcium responses with
184  odor preference. The loadings of the ORN and PN PCs indicate that variation across individuals
185  was correlated at the level of glomeruli much more strongly than odorant (Figure 1H; Figure 1 —
186  figure supplements 3, 8). This suggests that stochastic variation in the olfactory circuit results in
187 individual-level fluctuations in the responses of glomeruli-specific rather than odor-specific

188  responses. In the odor-vs-odor preference model, the loadings of PC2 of PN calcium responses
189  contrast the responses of the DM2 and DC2 glomeruli with opposing weights (Figure 2A),

190  suggesting that the activation of DM2 relative to DC2 predicts the likelihood of a fly preferring
191  OCT to MCH. Indeed, a linear model constructed from the average DM2 minus average DC2 PN
192  response (Figure 2B) showed a statistically significant correlation with preference for OCT

193  versus MCH (R? = 0.12; p = 0.0035; Figure 2C). The model slope coefficient was negative

194  (Table 1), indicating that greater activation of DM2 vs DC2 correlates with preference for MCH.
195  With respect to odor-vs-odor behavior, we conclude that the relative responses of DM2 vs DC2
196  in PNs compactly predict an individual’s preference.

197

198  Odor experience has been shown to modulate subsequent AL responses (Golovin and Broadie,
199  2016; lyengar et al., 2010; Sachse et al., 2007). This raises the possibility that our models were
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200  actually predicting individual flies’ past odor experiences (i.e., the specific pattern of odor

201  stimulation flies received in the behavioral assay) rather than their preferences. To address this,
202  we imposed the specific odor experiences of previously tracked flies (in the odor-vs-odor assay)
203  on naive “yoked” control flies (Figure 2D) and measured PN odor responses of the yoked flies.
204  Applying the PN PC 2 model to the yoked calcium responses did not predict flies’ odor

205  experience (R?=0.019, p = 0.49; Figure 2E). This is consistent with PN calcium responses

206  predicting odor preference rather than odor experience.

207

208  (Mazor and Laurent, 2005) found that PN response transients, rather than fixed points, contain
209  more odor identity information. We therefore asked at which times during odor presentation an
210 individual’s neural responses could best predict odor preference. Applying our calcium-to-

211  behavior models (PN PC2-odor-vs-odor, as well as ORN PC1-odor-vs-air, PN PC1-odor-vs-air)
212  to the time-varying calcium signals, we found that in all cases, behavior prediction rose during
213  odor delivery (Figure 2 — figure supplement 2). In ORNSs, the predictive accuracy remained high
214  after odor offset, whereas in PNs it declined. The times during which calcium responses

215  predicted individual behavior generally aligned to the times during which a linear classifier could
216  decode odor identity from neuronal responses (Figure 2 — figure supplement 2D), suggesting that
217  idiosyncrasies in odor encoding predict individual preferences.

218

219  Variation in a presynaptic scaffolding protein predicts odor preference

220  We next investigated how structural variation in the nervous system might relate to idiosyncratic
221  behavior. Because PN, but not ORN, calcium responses predicted odor-vs-odor preference, we
222  hypothesized that a circuit element between ORNSs to PNs could confer onto PNs behaviorally-
223  relevant physiological idiosyncrasies absent in ORNs. We therefore imaged presynaptic T-bar
224 density in ORNs using transgenic mStrawberry-tagged Brp-Short, immunohistochemistry and
225  confocal microscopy (Mosca and Luo, 2014) after measuring individual preference for OCT

226  versus MCH (Figure 3A). Brp-Short density was quantified as total fluorescence intensity /

227  glomerulus volume for 4 of the 5 focus glomeruli (Figure 3B, Figure 3 — figure supplement 1A-
228 F; DL5 was not readily segmentable in our confocal samples). We chose this metric as we found
229 it could be used to predict individual behavioral biases in a previous study (Skutt-Kakaria et al.,
230  2019). This measure was consistent across hemispheres (Figure 3 — figure supplement 1C), while
231  also showing variation among individuals, like calcium responses.

232

233  To relate presynaptic structural variation and behavior, we used the same analytical approach as
234 we had for calcium responses. PCs 1 and 2 of Brp-Short density had notable similarities to those
235  of the calcium responses: PC 1 was positive across glomeruli and PC 2 exhibited a sign contrast
236  between DC2 loadings and all other glomerulus loadings (Figure 3 — figure supplement 1G). As
237  inthe PN calcium response models, PC 2 of Brp-Short density was the best predictor of odor-vs-
238  odor preferences in training data (Figure 3D-E, Figure 3 — figure supplement 11, R?=0.22, n =
239 22 flies, p = 0.028) and for test data (Figure 3 — figure supplement 1J, R?> = 0.078, n = 31 flies, p
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240 = 0.13; statistics from combined train and test data: R? = 0.088, n = 53 flies, p = 0.031; Figure
241  3F; median R?atent 0.15, 90% CI 0.00-0.74). To better understand the microstructural basis of our
242  Brp-Short density metric, we performed paired behavior and expansion microscopy (Asano et
243 al., 2018; Gao et al., 2019) in flies expressing Brp-Short specifically in DC2-projecting ORNs
244  (Supplementary Video 3). Expansion yielded a ~4-fold increase in linear resolution, allowing
245  imaging of individual Brp-Short puncta (Figure 3 — figure supplement 1K). While the sample
246  size (n = 8) of this imaging pipeline was insufficient for a formal statistical analysis, the trend
247  between Brp-Short density in DC2 (measured as individual puncta / glomerular volume) and
248  odor-vs-odor preference was more consistent with a positive correlation than other metrics, such
249  as median puncta volume (Figure 3 — figure supplement L,M).

250

251  The best presynaptic density models are less predictive of behavior than the best calcium

252 response models (R? = 0.088 vs R? = 0.22; R3awent = 0.15 and 0.46, respectively; Figure 2 — figure
253  supplement 1C,D vs Figure 3 — figure supplement 11,J), suggesting that presynaptic density

254  variation is not the full explanation of calcium response variability. Nevertheless, differences in
255  presynaptic inputs to PNs may contribute to variation in the calcium dynamics of those neurons,
256  inturn giving rise to individual preferences for OCT versus MCH.

257

258  Developmental stochasticity in a simulated AL recapitulates empirical PN response variation
259  Finally, we sought an integrative understanding of how synaptic variation plays out across the
260  olfactory circuit to produce behaviorally-relevant physiological variation. We developed a leaky-
261 integrate-and-fire model of the entire AL, comprising 3,062 spiking neurons and synaptic

262  connectivity taken directly from the Drosophila hemibrain connectome (Scheffer et al., 2020).
263  After tuning the model to perform canonical AL computations, we introduced different kinds of
264  stochastic variations to the circuit and determined which (if any) would produce the patterns of
265 idiosyncratic PN response variation observed in our calcium imaging experiments (Figure 4A).
266  This approach assesses potential mechanisms linking developmental variation in synapses to
267  physiological variation that apparently drives behavioral individuality.

268

269  The biophysical properties of neurons in our model (Figure 4B, Table 2) were determined by
270  published electrophysiological studies (See Voltage model in Materials and Methods) and were
271  similar to those used in previous fly models (Kakaria and de Bivort, 2017; Pisokas et al., 2020).
272  The polarity of neurons was determined largely by their cell type (ORNs are excitatory, PNs

273  predominantly excitatory, and LNs predominantly inhibitory — explained further in Materials and
274  Methods). The strength of synaptic connections between any pair of AL neurons was given by
275  the hemibrain connectome (Scheffer et al., 2020) (Figure 4C). Odor inputs were simulated by
276  injecting current into ORNS to produce spikes in those neurons at rates that match published

277  ORN-odor recordings (Miinch and Galizia, 2016), and the output of the system was recorded as
278  the firing rates of PNs during odor stimulation (Figure 4D). At this point, there remained only
279  four free parameters in our model, the relative sensitivity (postsynaptic current per upstream
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280 action potential) of each AL cell type (ORNS, PNs, excitatory LNs and inhibitory LNs). We

281  explored this parameter space manually, and identified a configuration in which AL simulation
282  (Figure 4 — figure supplement 1) recapitulated four canonical properties seen experimentally
283  (Figure 4 — figure supplement 2): 1) typical firing rates at baseline and during odor stimulation
284  (Bhandawat et al., 2007; Dubin and Harris, 1997; Jeanne and Wilson, 2015; Seki et al., 2010), 2)
285  amore uniform distribution of PN firing rates compared to ORN rates (Bhandawat et al., 2007),
286  3) greater separation of PN odor representations compared to ORN representations (Bhandawat
287 etal.,, 2007), and 4) a sub-linear transfer function between ORNSs and PNs (Bhandawat et al.,
288  2007). Thus, our simulated AL appeared to perform the fundamental computations of real ALs,
289  providing a baseline for assessing the effects of idiosyncratic variation.

290

291  We simulated stochastic individuality in the AL circuit in two ways (Figure 4E): 1) glomerular-
292 level variation in PN input-synapse density (reflecting a statistical relationship observed between
293  glomerular volume and synapse density in the hemibrain, Figure 4 — figure supplement 4), and 2)
294  bootstrapping of neuronal compositions within cell types (reflecting variety in developmental
295  program outcomes for ORNSs, PNs, etc.). Supplementary Video 4 shows the diverse connectivity
296  matrices attained under these resampling approaches. We simulated odor responses in thousands
297  of ALs made idiosyncratic by these sources of variation, and in each, recorded the firing rates of
298  PNs when stimulated by the 12 odors from our experimental panel (Figure 4F, Figure 4 — figure
299  supplement 1).

300

301  To determine which sources of variation produced patterns of PN coding variation consistent
302  with our empirical measurements, we compared principal components of PN responses from real
303 idiosyncratic flies to those of simulated idiosyncratic ALs. Empirical PN responses are strongly
304  correlated at the level of glomeruli (Figure 4G; Figure 1 — figure supplement 8). As a positive
305 control that the model can recapitulate this empirical structure, resampling PN input-synapse
306  density across glomeruli produced PN response correlations strongly organized by glomerulus
307  (Figure 41). As a negative control, variation in PN responses due solely to poisson timing of

308 ORN input spikes (i.e., absent any circuit idiosyncrasy) was not organized at the glomerular level
309  (Figure 4H). Strikingly, bootstrapping ORN membership yielded a strong glomerular

310 organization in PN responses (Figure 4J). The loadings of the top PCs under ORN bootstrapping
311 are dominated by responses of a single glomerulus to all odors, including DM2 and DC2. This is
312  reminiscent of PC2 of PN calcium responses, with prominent (opposite sign) loadings for DM2
313 and DC2. Bootstrapping LNs, in contrast, produced much less glomerular organization (Figure
314  4K), with little resemblance to the loadings of the empirical calcium PCs. The PCA loadings for
315 simulated PN responses under all combinations of cell type bootstrapping and PN input-synapse
316  density resampling are given in Figure 4 — figure supplement 5.

317

318 DM2 and DC2 (also DL5) stand out in the PCA loadings under PN input-synapse density

319 resampling and ORN bootstrapping (Figure 41,J), suggesting that behaviorally-relevant PN
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320 coding variation is recapitulated in this modeling framework. To formalize this analysis, for each
321  idiosyncratic AL, we computed a “behavioral preference” by applying the PN PC2 linear model
322 (Figure 1K,M) to simulated PN responses. We then determined how accurately a linear classifier
323  could distinguish OCT- vs MCH-preferring ALs in the space of the first 3 PCs of PN responses
324  (Figure 4 — figure supplement 6). High accuracy was attained under PN input-synapse density
325 resampling and ORN bootstrapping (sources of circuit variation that produced PN response

326  loadings highlighting DM2 and DC2). Thus, developmental variability in ORN populations may
327  drive patterns of PN physiological variation that in turn drive individuality in odor-vs-odor

328  choice behavior.

329

330

331  Discussion

332  We found an element of the Drosophila olfactory circuit in which patterns of physiological

333  activity predict individual behavioral preferences. This circuit element can be considered a locus
334 of individuality, as it appears to contribute to idiosyncratic preferences among isogenic animals
335 reared in the same environment. Specifically, the difference in the activation of PNs in DC2 and
336 DM2 during odor exposure predicts idiosyncratic OCT-vs-MCH preferences (Figures 1, 2). This
337 circuit element is in the olfactory sensory periphery and explains a large portion of the

338 individuality signal, suggesting that behavioral idiosyncrasy arises early and suddenly in the
339  sensorimotor transformation.

340

341  Correlating behavior to microscopic circuit features at the individual level is challenging

342  (Koulakov et al., 2005). Measurements of both calcium responses and preference behavior are
343  noisy. Calcium recordings are slow to acquire, making it hard to achieve sample sizes sufficient
344  for machine-learning discovery of correlations with behavior. We conducted three major

345  experiments (paired odor-vs-odor preference and calcium recordings, odor-vs-air preference and
346  calcium recordings, and odor-vs-odor and Brp-Short imaging), each with training and test sets on
347  the scale of 20-60 individuals each. This allowed us to do some limited statistical discovery of
348  correlations, which we restrained by conducting at most five exploratory correlation

349  measurements between circuit and behavioral measures. We were particularly struck by the

350 extent to which PN activity could predict preference between two aversive odors. Importantly,
351  we confirmed this by evaluating the PN calcium-behavior model on a test set of flies measured
352  several weeks after the training flies, finding the same statistically robust trend in both data

353  partitions (training set: R? = 0.15, n = 47, p = 0.0063; testing set: R = 0.31, n = 22, p = 0.0069;
354  Figure 2 — figure supplement 1).

355

356  Previous work has found mammalian peripheral circuit areas are predictive of individual

357  Dbehavior (Britten et al., 1996; Michelson et al., 2017; Newsome et al., 1989; Osborne et al.,

358  2005), but this study is among the first (Linneweber et al., 2020; Mellert et al., 2016; Skutt-

359  Kakaria et al., 2019) to link cellular-level circuit variants and individual behavior in the absence
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360 of genetic variation. Another key conclusion is that loci of individuality are likely to vary, even
361  within the sensory periphery, with the specific behavioral paradigm (i.e., odor-vs-odor or odor-
362  vs-air). Our ability to predict behavioral preferences was limited by the repeatability of the

363  behavior itself (Figure 1 — figure supplement 9). Low persistence of odor preference may be
364 attributable to factors like internal states or plasticity. It may be fruitful in future studies to map
365  circuit elements whose activity predicts trial-to-trial behavioral fluctuations within individuals.
366

367  Seeking insight into the molecular basis of behaviorally-relevant physiological variation, we
368 imaged Brp in the axon terminals of the ORN-PN synapse, using confocal and expansion

369  microscopy. Brp glomerular density was a significant predictor of individual odor-vs-odor

370  preferences (Figure 3). The strongest predictor of OCT-MCH preference among principal

371  components of Brp-Short density features contrastive loadings between DM2 and other

372 glomeruli, similar to the DM2 - DC2 contrast present in the model that predicts odor preference
373  from PN calcium. This is consistent with the recent finding of a linear relationship between

374  synaptic density and excitatory postsynaptic potentials (Liu et al., 2022) and another study in
375  which idiosyncratic synaptic density in central complex output neurons predicts individual

376  locomotor behavior (Skutt-Kakaria et al., 2019). The predictive relationship between Brp and
377  behavior was weaker than that of PN calcium responses, suggesting there are other determinants,
378  such as other synaptic proteins, neurite morphology, or the influence of idiosyncratic LNs (Chou
379 etal., 2010) modulating the ORN-PN transformation (Nagel et al., 2015).

380

381  To integrate our synaptic and physiological results, we implemented a spiking model with 3,062
382  neurons and synaptic weights drawn directly from the fly connectome (Scheffer et al., 2020)
383  (Figure 4). With light parameter tuning, this model recapitulated canonical AL computations,
384  providing a baseline for assessing the effects of idiosyncratic stochastic variation. The apparent
385 variation in odor responses across simulated individuals (Figure 4F) is less than that seen in the
386  empirical calcium responses (Figure 1H), likely due to 1) biological phenomena missing from
387  the model, 2) the lack of measurement noise, and 3) the fact that our perturbations are applied to
388  the connectome of a single fly. When examining PCA loadings, however, simulating

389 idiosyncratic ALs by varying PN input synapse density or bootstrapping ORNs produced

390 correlated PN responses across odors in DC2 and DM2, matching our experimental results.

391  These sources of variation specifically implicate the ORN-PN synapse (like our Brp results) as
392  an important substrate for establishing behaviorally-relevant patterns of PN response variation.
393

394  The flies used in our experiments were isogenic and reared in standardized laboratory conditions
395 that produce reduced behavioral individuality compared to enriched environments (Akhund-Zade
396 etal., 2019; Korholz et al., 2018; Zocher et al., 2020). Yet, even these conditions yield

397  substantial behavioral individuality. We do not expect variability in the expression of the flies’
398  transgenes to be a major driver of this individuality, as wildtype flies have a similarly broad

399 distribution of odor preferences (Honegger et al., 2019). The ultimate source of stochasticity in
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this behavior remains a mystery, with possibilities ranging from thermal fluctuations at the
molecular scale to macroscopic, but seemingly irrelevant, variations like the exact fill level of the
culture media (Honegger and de Bivort, 2018). Developing nervous systems employ various
compensation mechanisms to dampen out the effects of these fluctuations (Marder, 2011; Tobin
et al., 2017). Behavioral variation may be beneficial, supporting a bet-hedging strategy (Hopper,
1999) to counter environmental fluctuations (Akhund-Zade et al., 2020; Honegger et al., 2019;
Kain et al., 2015; Krams et al., 2021). Empirically, the net effect of dampening systems and
accreted ontological fluctuations is individuals with diverse behaviors (Gomez-Marin and
Ghazanfar, 2019). This process unfolds across all levels of biological regulation. Just as PN
response variation appears to be partially rooted in glomerular Brp variation, the latter has its
own molecular roots, including, perhaps, stochasticity in gene expression (Li et al., 2017; Raj et
al., 2010), itself a predictor of idiosyncratic behavioral biases (Werkhoven et al., 2021).
Improved methods to longitudinally assay the fine-scale molecular and anatomical makeup of
behaving organisms throughout development and adulthood will be invaluable to further
illuminate the mechanistic origins of individuality.
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415  Materials and Methods

416

417  Data and code availability

418  All raw data, totaling 600 GB, are available via hard drive from the authors. A smaller (7 GB)
419  repository with partially processed data files and MATLAB/Python scripts sufficient to generate
420  figures and results is available at Zenodo (doi:10.5281/zenodo.14252278).

421

422  Fly rearing

423  Experimental flies were reared in a Drosophila incubator (Percival Scientific DR-36VL) at 22°
424  C, 40% relative humidity, and 12:12h light:dark cycle. Flies were fed cornmeal/dextrose

425  medium, as previously described (Honegger et al., 2019). Mated female flies aged 3 days post-
426  eclosion were used for behavioral persistence experiments. Mated female flies aged 7 to 15 days
427  post-eclosion were used for all paired behavior-calcium imaging and immunohistochemistry
428  experiments.

429

430  Fly stocks

431  The following stocks were obtained from the Bloomington Drosophila Stock Center:

432  P{20XUAS-IVS-GCaMP6m}attP40 (BDSC #42748), w[*]; P{w[+mC]=0r13a-GAL4.F}40.1
433  (BDSC #9945), w[*]; P{w[+mC]=0r19a-GAL4.F}61.1 (BDSC #9947), w[*];

434  P{w[+mC]=0r22a-GAL4.7.717}14.2 (BDSC #9951), w[*]; P{w[+mC]=Orco-GAL4.W}11.17,;
435 TM2/TM6B, Tb[1] (BDSC #26818). Transgenic lines were outcrossed to the isogenic line

436  isokhll (Honegger et al., 2019) for at least 5 generations prior to being used in any experiments.
437  GH146-Gal4 was a gift provided by Y. Zhong (Honegger et al., 2019). w; UAS-Brp-Short-

438  mStrawberry; UAS-mCD8-GFP; + was a gift of Timothy Mosca and was not outcrossed to the
439  isokh11 background (Mosca and Luo, 2014).

440

441  Odor delivery

442  Odor delivery during behavioral tracking and neural activity imaging was controlled with

443  isolation valve solenoids (NResearch Inc.) (Honegger et al., 2019). Saturated headspace from 40
444 ml vials containing 5 ml pure odorant were serially diluted via carbon-filtered air to generate a
445  variably (10-25%) saturated airstream controlled by digital flow controllers (Alicat Scientific)
446  and presented to flies at total flow rates of ~100 mL/min. Dilution on the order of 10% is typical
447  of other odor tunnel assays, as in Claridge-Chang et al. (2009). To yield the greatest signal of
448 individual odor preference, dilution factors for odorants were adjusted on a week-by-week basis
449  to ensure that the mean preference was approximately 50%. The odor panel used for imaging
450  was comprised of the following odorants: 2-heptanone (CAS #110-43-0, Millipore Sigma), 1-
451  pentanol (CAS #71-41-0, Millipore Sigma), 3-octanol (CAS #589-98-0, Millipore Sigma), hexyl-
452  acetate (CAS #142-92-7, Millipore Sigma), 4-methylcyclohexanol (CAS #589-91-3, Millipore
453  Sigma), pentyl acetate (CAS #628-63-7, Millipore Sigma), 1-butanol (CAS #71-36-3, Millipore
454  Sigma), ethyl lactate (CAS #97-64-3, Millipore Sigma), geranyl acetate (CAS #105-87-3,
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455  Millipore Sigma), 1-hexanol (CAS #111-27-34, Millipore Sigma), citronella java essential oil (
456 191112, Aura Cacia), and 200 proof ethanol (V1001, Decon Labs).

457

458  Odor preference behavior

459  Odor preference was measured at 25°C and 20% relative humidity. As previously described

460  (Honegger et al., 2019), individual flies confined to custom-fabricated tunnels were illuminated
461  with infrared light and behavior was recorded with a digital camera (Basler) and zoom lens

462  (Pentax). The odor choice tunnels were 50 mm long, 5 mm wide, and 1.3 mm tall. Custom real-
463  time tracking software written in MATLAB was used to track centroid, velocity, and principal
464  body axis angle throughout the behavioral experiment, as previously described (Honegger et al.,
465  2019). After a 3-minute acclimation period, odorants were delivered to either end of the tunnel
466  array for 3 minutes. Odor preference score was calculated as the fraction of time spent in the
467  reference side of the tunnel during odor-on period minus the time spent in the reference side of
468  the tunnel during the pre-odor acclimation period.

469

470 Behavioral preference persistence measurements

471  After measuring odor preference, flies were stored in individual housing fly plates (modified 96-
472  well plates; FlySorter, LLC) on standard food, temperature, humidity, and lighting conditions.
473  Odor preference of the same individuals was measured 3 and/or 24 hours later. In some cases, fly
474 tunnel position was randomized between measurements. We observed that randomization had
475  little effect on preference persistence.

476

477  Calcium imaging

478  Flies expressing GCaMP6m in defined neural subpopulations were imaged using a custom-built
479  two-photon microscope and ultrafast Ti:Sapphire laser (Spectra-Physics Mai Tai) tuned to 930
480 nm, at a power of 20 mW out of the objective (Olympus XLUMPIlanFL N 20x/1.00 W). For
481  paired behavior and imaging experiments, the time elapsed between behavior measurement and
482  imaging ranged from 15 minutes to 3 hours. Flies were anesthetized on ice and immobilized in
483  an aluminum sheet with a female-fly-sized hole cut in it. The head cuticle between the antennae
484  and ocelli was removed along with the tracheae to expose the ALs from the dorsal side. Volume
485  scanning was performed using a piezoelectric objective mount (Physik Instrumente). Scanlmage
486 2013 software (Vidrio Technologies) was used to coordinate galvanometer laser scanning and
487  image acquisition. Custom Matlab (Mathworks) scripts were used to coordinate image

488  acquisition and control odor delivery. 256 by 192 (x-y) pixel 16-bit tiff images were recorded.
489  The piezo travel distance was adjusted between 70 and 90 um so as to cover most of the AL. The
490  number of z-sections in a given odor panel delivery varied between 7 and 12 yielding a volume
491  acquisition rate of 0.833 Hz. Odor delivery occurred from 6-9.6s of each recording.

492

493  Each fly experienced up to four deliveries of the odor panel. The antennal lobe being recorded
494  (left or right) was alternated after each successful completion of an odor panel. Odors were
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495  delivered in randomized order. In cases where baseline fluorescence was very weak or no

496  obvious odor responses were visible, not all four panels were delivered.

497

498  Glomerulus segmentation and labeling

499  Glomerular segmentation masks were extracted from raw image stacks using a k-means

500 clustering algorithm based on time-varying voxel fluorescence intensities, as previously

501 described (Honegger et al., 2019). Each image stack, corresponding to a single odor panel

502 delivery, was processed individually. Time-varying voxel fluorescence values for each odor

503 delivery were concatenated to yield a voxel-by-time matrix consisting of each voxel’s recorded
504  value during the course of all 13 odor deliveries of the odor panel. After z-scoring, principal

505 component analysis was performed on this matrix and 75% of the variance was retained. Next, k-
506 means (k = 80, 50 replicates with random starting seeds) was performed to produce 50 distinct
507  voxel cluster assignment maps which we next used to calculate a consensus map. This approach
508  was more accurate than clustering based on a single k-means seed.

509

510 Of the 50 generated voxel cluster assignment maps, the top 5 were selected by choosing those
511  maps with the lowest average within-cluster sum of distances, selecting for compact glomeruli.
512  The remaining maps were discarded. Next, all isolated voxel islands in each of the top 5 maps
513  were identified and pruned based on size (minimum size = 100 voxels, maximum size = 10000
514  voxels). Finally, consensus clusters were calculated by finding voxel islands with significant
515  overlap across all 5 of the pruned maps. Voxels which fell within a given cluster across all 5
516  pruned maps were added to the consensus cluster. This process was repeated for all clusters until
517  the single consensus cluster map was complete. In some cases we found by manual inspection
518 that some individual glomeruli were clearly split into two discrete clusters. These splits were
519 remedied by automatically merging all consensus clusters whose centroids were separated by a
520 physical distance of less than 30 voxels and whose peak odor response Spearman correlation was
521  greater than 0.8. Finally, glomeruli were manually labeled based on anatomical position,

522 morphology, and size (Grabe et al., 2015). We focused our analysis on 5 glomeruli (DM1, DM2,
523 DMB3, DL5, and DC2), which were the only glomeruli that could be observed in all paired

524  behavior-calcium datasets. However, not all 5 glomeruli were identified in all recordings (Figure
525 1 - figure supplement 3). Missing glomerular data was later mean-imputed. Using alternating
526  least squares to impute data (running the pca function with option ‘als’ to infill missing values
527 1,000 times and taking the mean infilled matrix — see Figure 1 — figure supplement 5 of

528  Werkhoven et al., 2021) had negligible effect on the fitted slope and predictive capacity of the
529 PN PC2 OCT-MCH model compared to mean-infilling.

530

531  Calcium image data analysis

532  All data was processed and analyzed in MATLAB 2018a (Mathworks). Calcium responses for
533  each voxel were calculated as Af/f = [f(t) - F]/F, where f(t) and F are the instantaneous and

534  average fluorescence, respectively. Each glomerulus' time-dependent calcium response was
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535 calculated as the mean Af/f across all voxels falling within the glomerulus’ automatically-

536  generated segmentation mask during a single volume acquisition. Time-varying odor responses
537  were normalized to baseline by subtracting the median of pre-odor Af/f from each trace. Peak
538  odor response was calculated as the maximum fluorescence signal from 7.2s to 10.8s (images 6
539 through 9) of the recording.

540

541  To compute principal components of calcium dynamics, each fly’s complement of odor panel
542  responses (a5 glomeruli by 13 odors = 65-dimensional vector) was concatenated. Missing

543  glomerulus-odor response values were filled in with the mean glomerulus-odor pair across all fly
544  recordings for which the data was not missing. After infilling, principal component analysis was
545  carried out with individual odor panel deliveries as observations and glomerulus-odor responses
546  pairs as features.

547

548 Inter- and intra-fly distances (Figure 1J) were calculated using the projections of each fly’s

549  glomerulus-odor responses onto all principal components. For each fly, the average Euclidean
550 distance between response projections 1) among left lobe trials, 2) among right lobe trials, and 3)
551  between left and right lobe trials were averaged together to get a single within-fly distance. Intra-
552  fly distances were computed in a similar fashion (for each fly, taking the average distance of its
553  response projections to those of other flies using only left lobe trials / only right lobe trials /

554  Dbetween left-right trials, then averaging these three values to get a single across-fly distance).
555

556  Ina subset of experiments in which we imaged calcium activity, some solenoids failed to open,
557  resulting in the failure of odor delivery in a small number of trials. In these cases, we identified
558 trials with valve failures by manually recognizing that glomeruli failed to respond during the
559  nominal odor period. These trials were treated as missing data and infilled, as described above.
560 Fewer than ~10% of flies and 5% of odor trials were affected.

561

562  For all predictive models constructed, the average principal component score or glomerulus-odor
563  Af/f response across trials was used per individual; that is, each fly contributed one data point to
564  the relevant model. Linear models were constructed from behavior scores and the relevant

565  predictor (principal component, average Af/f across dimensions, specific glomerulus

566  measurements) as described in the text and Tables 1-2. All reported linear model p-values are
567  nominal, i.e., unadjusted for multiple hypothesis comparisons. 95% confidence intervals around
568  model regression lines were estimated as +/- 2 standard deviations of the value of the regression
569 line at each x-position across 2000 bootstrap replicates (resampling flies). To predict behavior as
570 afunction of time during odor delivery, we analyzed data as described above, but considered
571  only Af/f at each single time point (Figure 2 — figure supplement 2A-C), rather than averaging
572  during the peak response interval.

573
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574  To decode individual identity from neural responses, we first performed PCA on individual odor
575  panel peak responses. We retained principal component scores constituting specified fractions of
576  variance (Figure 1 — figure supplement 6A) and trained a linear logistic classifier to predict

577 individual identity from single odor panel deliveries.

578

579  To decode odor identity from neural responses, each of the 5 recorded glomeruli were used as
580 features, and the calcium response of each glomerulus to a specific odor at a specified time point
581  were used as observations (PNs, n = 5317 odor deliveries; ORNs, n = 2704 odor deliveries). A
582 linear logistic classifier was trained to predict the known odor identity using 2-fold cross-

583  validation. That is, a model was trained on half the data and evaluated on the remaining half, and
584  then this process was repeated with the train and test half reversed. The decoding accuracy was
585  quantified as the fraction of odor deliveries in which the predicted odor was correct.

586

587 Inference of correlation between latent calcium and behavior states

588  We performed a simulation-based analysis to infer the strength of the correlation between latent
589 calcium (Brp) and behavior states, given the R? of a given linear model. Figure 1 — figure

590 supplement 9 is a schematic of a possible data generation process that underlies our observed
591  data. We assume that the “true” behavioral and calcium values of the animal are captured by
592  unobserved latent states Xc and Xb, respectively, such that the R? between Xc and Xp is the

593  Diological signal captured by the model, having adjusted for the noise associated with actually
594  measuring behavior and calcium (R?jatent). Our calcium and odor preference scores are subject to
595  measurement error and temporal instability (behavior and neural activity were measured 1-3

596  hours apart). These effects are both noise with respect to estimating the linear relationship

597  between calcium and behavior. Their magnitude can be estimated using the empirical

598 repeatability of behavior and calcium experiments respectively. Thus, our overall approach was
599  to assume true latent behavior and calcium signals that are correlated by the level set at R?atent,
600 add noise commensurate with the repeatability of these measures to simulate measured behavior
601 and calcium, and record the simulated empirical R? between these measured signals. This was
602  done many times to estimate distributions of empirical R? given R%aent. These distributions could
603 finally be used in the inverse direction to infer R%aent given the actual model R? values computed
604  inour study.

605

606  Specifically, we simulated X as a set of N standard normal variables (N equalling the number of
607  flies used to compute a correlation between predicted and measured preference) and generated Xo
608 = latent Xc + (1- Natent 2Z)*, Where Z is a set of N standard normal variables uncorrelated with Xc, a
609  procedure that ensures that corr(Xc, Xb) = riatent. Next, we simulated observed calcium readouts
610  Xc’and Xc”, such that corr(Xc, Xc’) = corr(Xe, Xc”) = re. Similarly, we simulated noisy observed
611  behavioral assay readouts X»’ and Xy ”, such that corr(Xo, Xo’) = corr(Xp, Xo”’) = ro. The values
612  of rcand ro were drawn from the empirical repeatability of calcium (Rc.c?) and behavior (Ro )
613  respectively as follows. Since calcium is a multidimensional measure, and our calcium model
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614  predictors are based on principal components of glomerulus-odor responses, we used variance
615  explained along the PCs to calculate a single value for the calcium repeatability Rc,c2. We

616  compared the eigenvalues of the real calcium PCA to those of shuffled calcium data (shuffling
617  glomerulus/odor responses for each individual fly), computing Rcc? by summing the variance
618 explained along the PCs of the calcium data up until the component-wise variance for the

619  calcium data fell below that of the shuffled data, a similar approach as done in Berman et al.,
620 2014 and Werkhoven et al., 2021. That is, we determined which empirical PCs had more

621  variance than their corresponding rank-matched PC in shuffled data, interpreted the remaining
622  PCs as harboring the noise of the experiment, and totaled the variance explained of the non-noise
623  PCs as our measure of the repeatability of the measurement as a whole. Rc.c> was calculated to be
624  0.77 for the full PN calcium data.

625

626  To incorporate uncertainty in calcium-calcium repeatability, we utilized bootstrapping. We

627  resampled the calcium data associated with individual flies 10,000 times, performed PCA and
628  computed Rcc? for each resampled dataset, then set rc= (Rcc?)Y to ensure corr(Xc’, Xc”)?> = Rec?.
629  For behavior-behavior uncertainty, we set r, from the repeatability across odor preference trials
630 in the same flies measured 3h apart (Rop?=0.12 for OCT vs MCH, Figure 1 — figure supplement
631 1D using the full dataset of flies). We also resampled the flies 10,000 times, computed Ro,»? for
632  each resampled dataset, and set ro = (Ro,x?)Y* to ensure corr(Xo’, Xo”)> = Rpp?.

633

634  We varied riaent from 0 to 1 in increments of 0.01, and for each riatent and bootstrap iteration we
635 simulated a set of N Xc, and generated Xb , Xc’, Xc”, Xb’, and Xp ”, then we computed a simulated
636  observed calcium-behavior relationship strength Rep? = corr(Xc’, Xb’)%. We repeated this

637  simulation 10,000 times for each riatent, transformed riatent to R?atent Such that for a quantile of
638 interest g, P(riatent < g) matched P(R%atent < g2), and plotted the resultant relationship between
639  RZaent against Rep? (percentiles of Rep? are displayed in Figure 1 — figure supplement 9B). We
640 inferred R?atent by first drawing bootstrapped samples of calcium-behavior R?, then adding

641  together the marginal distributions of R?atent for each calcium-behavior R2. We report the median
642  RZaent and 90% confidence interval as estimated by the 5th-95th quantiles.

643

644  The procedure outlined above was done analogously for models using Brp-short relative

645  fluorescence intensity, performing the PCA-based calcium response repeatability step with PCA
646  on the multidimensional Brp-short relative fluorescence intensity (which yielded Rorpbrp® =

647  0.78).

648

649 DoOR data

650 DoOR data for the glomeruli and odors relevant to our study was downloaded from

651  http://neuro.uni-konstanz.de/DoOR/default.ntml (Minch and Galizia, 2016).

652

653  Yoked odor experience experiments
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654  We selected six flies for which both odor preference and neural activity were recorded to serve
655  as the basis for imposed odor experiences for yoked control flies. The experimental flies were
656  chosen to represent a diversity of preference scores. Each experimental fly’s odor experience was
657  binned into discrete odor bouts to represent experience of either MCH or OCT based on its

658 location in the tunnel as a function of time (Figure 2D). Odor bouts lasting less than 100 ms were
659  omitted due to limitations on odor-switching capabilities of the odor delivery apparatus. To

660 deliver a given experimental fly’s odor experience to yoked controls, we set both odor streams
661  (on either end of the tunnel apparatus) to deliver the same odor experienced by the experimental
662  fly at that moment during the odor-on period. No odor was delivered to yoked controls during
663  time points in which the experimental fly resided in the tunnel choice zone (central 5 mm). See
664  Figure 2D for an example pair of experimental fly and yoked control behavior and odor

665  experience.

666

667  Immunohistochemistry

668  After measuring odor preference behavior, 7-15 day-old flies were anesthetized on ice and brains
669  were dissected in phosphate buffered saline (PBS). Dissection and immunohistochemistry were
670 carried out as previously reported (Wu and Luo, 2006). The experimenter was blind to the

671  behavioral scores of all individuals throughout dissection, imaging, and analysis. Individual

672  identities were maintained by fixing, washing, and staining each brain in an individual 0.2 mL
673  PCR tube using fluid volumes of 100 uL per brain (Fisher Scientific). Primary incubation

674  solution contained mouse anti-nc82 (1:40, DSHB), chicken anti-GFP (1:1000, Aves Labs), rabbit
675  anti-mStrawberry (1:1000, biorbyt), and 5% normal goat serum (NGS, Invitrogen) in PBT (0.5%
676  Triton X-100 in PBS). Secondary incubation solution contained Atto 647N-conjugated goat anti-
677  mouse (1:250, Millipore Sigma), Alexa Fluor 568-conjugated goat anti-rabbit (1:250), Alexa
678  Fluor 488-conjugated goat anti-chicken (1:250, ThermoFisher), and 5% NGS in PBT. Primary
679 and secondary incubation times were 2 and 3 overnights, respectively, at 4° C. Stained samples
680  were mounted and cleared in Vectashield (H-1000, Vector Laboratories) between two coverslips
681  (12-568B, Fisher Scientific). Two reinforcement labels (5720, Avery) were stacked to create a
682  0.15 mm spacer.

683

684  Expansion microscopy

685  Immunohistochemistry for expansion microscopy was carried out as described above, with the
686  exception that antibody concentrations were modified as follows: mouse anti-nc82 (1:40),

687  chicken anti-GFP (1:200), rabbit anti-mStrawberry (1:200), Atto 647N-conjugated goat anti-

688  mouse (1:100), Alexa Fluor 568-conjugated goat anti-rabbit (1:100), Alexa Fluor 488-conjugated
689  goat anti-chicken (1:100). Expansion of stained samples was performed as previously described
690 (Asano etal., 2018; Gao et al., 2019). Expanded samples were mounted in coverslip-bottom petri
691 dishes (MatTek Corporation) and anchored by treating the coverslip with poly-I-lysine solution
692  (Millipore Sigma) as previously described (Asano et al., 2018).

693
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694  Confocal imaging

695  All confocal imaging was carried out at the Harvard Center for Biological Imaging. Unexpanded
696  samples were imaged on an LSM700 (Zeiss) inverted confocal microscope equipped with a 40x
697  oil-immersion objective (1.3 NA, EC Plan Neofluar, Zeiss). Expanded samples were imaged on
698 an LSMB880 (Zeiss) inverted confocal microscope equipped with a 40x water-immersion

699 objective (1.1 NA, LD C-Apochromat, Zeiss). Acquisition of Z-stacks was automated with Zen
700  Black software (Zeiss).

701

702  Standard confocal image analysis

703  We used custom semi-automated code to generate glomerular segmentation masks from confocal
704  z-stacks of unexpanded Orco>Brp-Short brains. Using Matlab, each image channel was median
705  filtered (ox, oy, 6:= 11, 11, 1 pixels) and downsampled in x and y by a factor of 11. Next, an

706  ORN mask was generated by multiplying and thresholding the Orco>mCD8 and Orco>Brp-Short
707  channels. Next, a locally normalized nc82 and Orco>mCD8 image stack were multiplied and
708 thresholded, and the ORN mask was applied to remove background and other undesired brain
709  structures. This pipeline resulted in a binary image stack which maximized the contrast of the
710  glomerular structure of the antennal lobe. We then applied a binary distance transform and

711  watershed transform to generate discrete subregions which aimed to represent segmentation

712  masks for each glomerulus tagged by Orco-Gal4.

713

714  However, this procedure generally resulted in some degree of under-segmentation; that is, some
715  glomerular segmentation masks were merged. To split each merged segmentation mask, we

716  convolved a ball (whose radius was proportional to the cube root of the volume of the

717  segmentation mask in question) across the mask and thresholded the resulting image. The

718  rationale of this procedure was that 2 merged glomeruli would exhibit a mask shape resembling
719  two touching spheres, and convolving a similarly-sized sphere across this volume followed by
720 thresholding would split the merged object. After ball convolution, we repeated the distance and
721  watershed transform to once more generate discrete subregions representing glomerular

722 segmentation masks. This second watershed step generally resulted in over-segmentation; that is,
723 by visual inspection it was apparent that many glomeruli were split into multiple subregions.

724  Therefore, we finally manually agglomerated the over-segmented subregions to generate single
725  segmentation masks for each glomerulus of interest. We used a published atlas to aid manual
726  identification of glomeruli (Grabe et al., 2015). The total Brp-Short fluorescence signal within
727  each glomerulus was determined and divided by the volume of the glomerulus’ segmentation
728  mask to calculate Brp-Short density values.

729

730  Expansion microscopy image analysis

731  The spots function in Imaris 9.0 (Bitplane) was used to identify individual Brp-Short puncta in
732  expanded sample image stacks of Or13a>Brp-Short samples (Mosca and Luo, 2014). The spot
733 size was set to 0.5 um, background subtraction and region-growing were enabled, and the default


https://doi.org/10.1101/2021.12.24.474127
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.24.474127; this version posted December 3, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

734  spot quality threshold was used for each image stack. Identified spots were used to mask the Brp-
735  Short channel and the resultant image was saved as a new stack. In MATLAB, a glomerular
736  mask was generated by smoothing (ox, oy, 6z = 40, 40, 8 pixels) and thresholding (92.5th

737  percentile) the raw Brp-Short image stack. The mask was then applied to the spot image stack to
738  remove background spots. Finally, the masked spot image stack was binarized and spot number
739  and properties were quantified.

740

741  Antennal Lobe modeling

742  We constructed a model of the antennal lobe to test the effect of circuit variation on PN activity
743  variation across individuals. Our general approach to producing realistic circuit activity with the
744 AL model was 1) using experimentally-measured parameters whenever possible (principally the
745  connectome wiring diagram and biophysical parameters measured electrophysiologically), 2)
746  associating free parameters only with biologically plausible categories of elements, while

747  minimizing their number, and 3) tuning the model using those free parameters so that it

748  reproduced high-level patterns of activity considered in the field to represent the canonical

749  operations of the AL. Simulations were run in Python (version 3.6) (van Rossum and Drake,
750  2011), and model outputs were analyzed using Jupyter notebooks (Kluyver et al., 2016) and
751  Python and Matlab scripts.

752

753 AL model neurons

754  Release 1.2 of the hemibrain connectomics dataset (Scheffer et al., 2020) was used to set the
755  connections in the model. Hemibrain body IDs for ORNSs, LNs, and PNs were obtained via the
756 lists of neurons supplied in the supplementary tables in Schlegel et al., 2020. ORNs and PNs of
757  non-olfactory glomeruli (VP1d, VP1l, VP1m, VP2, VP3, VP4, VP5) were ignored, leaving 51
758  glomeruli. Synaptic connections between the remaining 2574 ORNSs, 197 LNs, 166 mPNs, and
759 130 uPNs were queried from the hemibrain API. All ORNs were assigned to be excitatory

760  (Wilson, 2013). Polarities were assigned to PNs based on the neurotransmitter assignments in
761  Bates et al., 2020. mPNs without neurotransmitter information were randomly assigned an

762  excitatory polarity with probability equal to the fraction of neurotransmitter-identified mPNs that
763  are cholinergic; the same process was performed for uPNs. After confirming that the model’s
764  output was qualitatively robust to which mPNs and uPNs were randomly chosen, this random
765  assignment was performed once and then frozen for subsequent analyses.

766

767  Of the 197 LNs, we assigned 31 to be excitatory, based on the estimated 1:5.4 ratio of eLNs to
768 iLNs inthe AL (Tsai et al., 2018). To account for observations that eLNs broadly innervate the
769 AL (Shang et al., 2007), all LNs were ranked by the number of innervated glomeruli, and the 31
770  eLNs were chosen uniformly at random from the top 50% of LNs in the list. This produced a
771  distribution of glomerular innervations in eLNs qualitatively similar to that of krasavietz LNs in
772  Supplementary Figure 6 of Chou et al., 2010.

773

774  Voltage model
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775  We used a single-compartment leaky-integrate-and-fire voltage model for all neurons as in
776  Kakaria and de Bivort, 2017, in which each neuron had a voltage Vi(t) and current li(t). When the
777  voltage of neuron i was beneath its threshold Vi, tr, the following dynamics were obeyed:
778
N
avi Vo= Vi(®)
779 ot = T o (®) + ) aWi(6)
L j=1
780
781  Each neuron i had electrical properties: membrane capacitance Ci, resistance Ri, and resting
782  membrane potential Vio with values from electrophysiology measurements (Table 2).
783
784  When the voltage of a neuron exceeded the threshold Vi tr, @ templated action potential was
785 filled into its voltage time trace, and a templated postsynaptic current was added to all
786  downstream neurons, following the definitions in Kakaria and de Bivort, 2017.
787
788  Odor stimuli were simulated by triggering ORNSs to spike at frequencies matching known
789  olfactory receptor responses to the desired odor. The timing of odor-evoked spikes was given by
790 aPoisson process, with firing rate FR for ORNs of a given glomerulus governed by:
791
792 FRglom,odor(t) = FRmanglom,odor(fa + (] - fa)e_t/ta)
793
794  FRmax, the maximum ORN firing rate, was set to 400 Hz. Dglom, odor IS @ value between 0 and 1
795  from the DoOR database, representing the response of an odorant receptor/glomerulus to an
796  odor, estimated from electrophysiology and/or fluorescence data (Miinch and Galizia, 2016).
797  ORNSs display adaptation to odor stimuli (Wilson, 2013), captured by the final term with
798  timescale ta = 110 ms to 75% of the initial value, as done in Kao and Lo, 2020. Thus, the
799  functional maximum firing rate of an ORN was 75% of 400 Hz = 300 Hz, matching the highest
800 ORN firing rates observed experimentally (Hallem et al., 2004). After determining the times of
801  ORN spikes according to this firing-rate rule, spikes were induced by the addition of 10°
802  picoamps in a single time step. This reliably triggered an action potential in the ORN, regardless
803  of currents from other neurons. In the absence of odors, spike times for ORNs were drawn by a
804  Poisson process at 10 Hz, to match reported spontaneous firing rates (de Bruyne et al., 2001).
805
806  For odor-glomeruli combinations with missing DoOR values (40% of the dataset), we performed
807  imputation via alternating least squares (using the pca function with option ‘als’ to infill missing
808  values (MATLAB documentation) on the odor x glomerulus matrix 1000 times and taking the
809  mean infilled matrix, which provides a closer match to ground truth missing values than a single
810  run of ALS (Figure 1 — figure supplement 5 of Werkhoven et al., 2021).
811
812 A neuron j presynaptic to i supplies its current Ij(t) scaled by the synapse strength Wj;, the
813  number of synapses in the hemibrain dataset from neuron j to i. Rows in W corresponding to



https://www.mathworks.com/help/stats/pca.html
https://doi.org/10.1101/2021.12.24.474127
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.24.474127; this version posted December 3, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

814  neurons with inhibitory polarity (i.e. GABAergic PNs or LNs) were set negative. Finally, post-
815  synaptic neurons (columns of the connectivity matrix) have a class-specific multiplier ai, a hand-
816  tuned value, described below.

817

818 AL model tuning

819  Class-specific multiplier current multipliers (ai) were tuned using the panel of 18 odors from

820 Bhandawat et al., 2007 (our source for several experimental observations of high-level AL

821  function): benzaldehyde, butyric acid, 2,3-butanedione, 1-butanol, cyclohexanone, Z3-hexenol,
822  ethyl butyrate, ethyl acetate, geranyl acetate, isopentyl acetate, isoamyl acetate, 4-methylphenol,
823  methyl salicylate, 3-methylthio-1-propanol, octanal, 2-octanone, pentyl acetate, E2-hexenal,

824  trans-2-hexenal, gamma-valerolactone. Odors were “administered” for 400 ms each, with 300 ms
825  odor-free pauses between odor stimuli.

826

827  The high-level functions of the AL that represent a baseline, working condition were: (1) firing
828  rates for ORNSs, LNs, and PNs matching the literature (listed in Table 2 and see (Bhandawat et
829 al., 2007; Dubin and Harris, 1997; Jeanne and Wilson, 2015; Seki et al., 2010), (2) a more

830 uniform distribution of PN firing rates during odor stimuli compared to ORN firing rates, (3)
831  greater separation of representations of odors in PN-coding space than in ORN-coding space, and
832  (4) asublinear transfer function between ORN firing rates and PN firing rates. Features (2) - (4)
833 relate to the role of the AL in enhancing the separability of similar odors (Bhandawat et al.,

834  2007).

835

836  To find a parameterization with those functions, we tuned the values of ai as scalar multipliers on
837 ORN, eLN, iLN, and PN columns of the hemibrain connectivity matrix. Thus, these values

838  represent cell type-specific sensitivities to presynaptic currents, which may be justified by the
839  fact that ORNs/LNs/PNs are genetically distinct cell populations (McLaughlin et al., 2021; Xie
840 etal., 2021). A grid search of the four class-wise sensitivity parameters produced a configuration
841 that reasonably satisfied the above criteria (Figure 4 — figure supplement 2). In this

842  configuration, the ORN columns of the hemibrain connectivity matrix are scaled by 0.1, eLNs by
843  0.04, iLNs by 0.02, and PNs by 0.4. The relatively large multiplier on PNs is potentially

844  consistent with the fact that PNs are sensitive to small differences between weak ORN inputs
845  (Bhandawat et al., 2007). Model outputs were robust over several different sets of ai, provided
846  iLN sensitivity =~ eLN < ORN < PN.

847

848  We analyzed the sensitivity of the model’s parameters around their baseline values of aorn, aeLN,
849  ain, arn = (0.1, 0.04, 0.02, 0.4). Each parameter was independently scaled up to 4x or 1/4x of its
850  baseline value (Figure 4 — figure supplement 3), and the PN firing rates recorded. Separately,
851  multiple-parameter manipulations were performed by multiplying each parameter by a random
852  log-Normal value with mean 1 and +/-1 standard deviation corresponding to a 2x or 0.5x scaling
853  on each parameter. Mean PN-odor responses were calculated for all manipulated runs and
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854  compared to the mean PN-odor responses for the baseline configuration. A manipulation effect
855  size was calculated by cohen’s d ((mean manipulated response - mean baseline response)/(pooled
856  standard deviation)). None of these manipulations reached effect size magnitudes larger than 0.9
857  (which can be roughly interpreted as the number of standard deviations in the baseline PN

858  responses away from the mean baseline PN response), which signaled that the model was robust
859  to the sensitivity parameters in this range. The most sensitive parameter was, unsurprisingly, aen.
860

861  Notable ways in which the model behavior deviates from experimental recordings (and thus

862  caveats on the interpretation of the model) include: 1) Model LNs appear to have more

863  heterogeneous firing rates than real LNs, with many LNs inactive for this panel of odor stimuli.
864  This likely reflects a lack of plastic/homeostatic mechanisms in the model to regularize LN firing
865 rates given their variable synaptic connectivity (Chou et al., 2010). 2) Some PNs had off-odor
866 rates that are high compared to real PNs, resulting in a distribution of ON-OFF responses that
867  had a lower limit than in real recordings. Qualitatively close matches were achieved between the
868  model and experimental data in the distributions of odor representations in ORN vs PN spaces
869  and the non-linearity of the ORN-PN transfer function.

870

871 AL model circuit variation generation

872  We generated AL circuit variability in two ways: cell-type bootstrapping, and synapse density
873  resampling. These methods assume that the distribution of circuit configurations across

874  individual ALs can be generated by resampling circuit components within a single individual’s
875 AL (neurons and glomerular synaptic densities, respectively, from the hemibrain EM volume).
876

877  To test the effect of variation in the developmental complement of neurons of particular types,
878  we bootstrapped populations of interest from the list of hemibrain neurons. Resampling with
879  replacement of ORNs was performed glomerulus-by-glomerulus, i.e., separately among each
880  pool of ORNSs expressing a particular Odorant receptor gene. The same was done for PNs. For
881  LNs, all 197 LNs were treated as a single pool; there was no finer operation based on LN

882  subtypes or glomerular innervations. This choice reflects the high developmental variability of
883  LNs (Chou et al., 2010). The number of synapses between a pair of bootstrapped neurons was
884  equal to the synapse count between those neurons in the hemibrain connectivity matrix.

885

886  In some glomeruli, bootstrapping PNs produced unreasonably high variance in the total PN

887  synapse count. For instance, DP1m, DC4, and DM3 each harbor PNs that differ in total synapse
888  count by a factor of ~10. Since these glomeruli have between two to three PNs each, in a sizable
889  proportion of bootstrap samples, all-highly connected (or all-lowly) connected PNs are chosen in
890  such glomeruli. To remedy this biologically unrealistic outcome, we examined the relationship
891  Dbetween total input PN synapses within a glomerulus and glomerular volume (Figure 4 — figure
892  supplement 4). In the “synapse density resampling” method, we required that the number of PN
893 input synapses within a glomerulus reflect a draw from the empirical relationship between total
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894  input PN synapses and glomerular volume as present in the hemibrain data set. This was

895  achieved by, for each glomerulus, sampling from the following distribution that depends on

896  glomerular volume, then multiplying the number of PN input synapses by a scalar to match that
897  sampled value:

898

899 logS; =log (aV,*) + &5, ~ N(0,6%)

900

901  Here Sy is the PN input synapse count for glomerulus g, Vq is the volume of glomerulus g (in
902 cubic microns), ¢ is a Gaussian noise variable with standard deviation o, and a, d are the scaling
903  factor and exponent of the volume term, respectively. The values of these parameters (a = 8.98,
904 d=0.73, 0 = 0.38) were fit using maximum likelihood.

905

906  Quantification and statistical analysis

907  All fly behavior and calcium data was processed and analyzed in MATLAB 2018a (Mathworks).
908 AL simulations were run in Python (version 3.6) (van Rossum and Drake, 2011), and model

909  outputs were analyzed using Jupyter notebooks (Kluyver et al., 2016) and Python scripts. We
910 performed a power analysis prior to the study to determine that recording calcium activity in 20-
911 40 flies would be sufficient to identify moderate calcium-behavior correlations. Sample sizes for
912  expansion microscopy were smaller, as the experimental procedure was more involved —

913 therefore, we did not conduct a formal statistical analysis. Linear models were fit using the fitim
914  MATLAB function (https://www.mathworks.com/help/stats/fitim.html); coefficients and p-

915  values of models between measured preferences and predicted preferences are listed in Table 1.
916  95% confidence intervals around model regression lines were estimated as +/- 2 standard

917  deviations of the value of the regression line at each x-position across 2000 bootstrap replicates
918  (resampling flies). Boxplots depict the median value (points), interquartile range (boxes), and
919 range of the data (whiskers).

920
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1188  Figure 1. Idiosyncratic calcium dynamics predict individual odor preferences.

1189  (A) Olfactory circuit schematic. Olfactory receptor neurons (ORNS, peach outline) and

1190  projection neurons (PNs, plum outline) are comprised of ~51 classes corresponding to odor
1191  receptor response channels. ORNs (gray shading) sense odors in the antennae and synapse on
1192  dendrites of PNs of the same class in ball-shaped structures called glomeruli located in the

1193  antennal lobe (AL). Local neurons (LNs, green outline) mediate interglomerular cross-talk and
1194  presynaptic inhibition, amongst other roles (Olsen and Wilson, 2008; Yaksi and Wilson, 2010).
1195  Odor signals are normalized and whitened in the AL before being sent to the mushroom body
1196  and lateral horn for further processing. Schematic adapted from Honegger et al., 2019 (B)

1197  Experiment outline. (C) Odor preference behavior tracking setup (reproduced from Honegger, et
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1198  al. 2019) and example individual fly ethograms. OCT (green) and MCH (magenta) were

1199  presented for 3 minutes. (D) Head-fixed 2-photon calcium imaging and odor delivery setup
1200  (reproduced from Honegger et al., 2019) (E) Orco and GH146 driver expression profiles (left)
1201  and example segmentation masks (right) extracted from 2-photon calcium images for a single fly
1202  expressing Orco>GCaMP6m (top, expressed in a subset of all ORN classes) or

1203 GH146>GCaMP6m (bottom, expressed in a subset of all PN classes). (F) Time-dependent Af/f
1204  for glomerular odor responses in ORNs (peach) and PNs (plum) averaged across all individuals:
1205 DC2to OCT (upper left), DM2 to OCT (upper right), DC2 to MCH (lower left), and DM2 to
1206  OCT (lower right). Shaded error bars represent S.E.M. (G) Peak Af/f for each glomerulus-odor
1207  pair averaged across all flies. (H) Individual neural responses measured in ORNs (left) or PNs
1208  (right) for 50 flies each. Columns represent the average of up to 4 odor responses from a single
1209 fly. Each row represents one glomerulus-odor response pair. Odors are the same as in panel (G).
1210 (I) Principal component analysis of individual neural responses. Fraction of variance explained
1211  versus principal component number (left). Trial 1 and trial 2 of ORN (middle) and PN (right)
1212  responses for 20 individuals (unique colors) embedded in PC 1-2 space. (J) Euclidean distances
1213  between glomerulus-odor responses within and across flies measured in ORNs (n = 65 flies) and
1214  PNs (n =122 flies). Distances calculated without PCA compression. Points represent the median
1215 value, boxes represent the interquartile range, and whiskers the range of the data. (K)

1216  Bootstrapped R? of OCT-MCH preference prediction from each of the first 5 principal

1217  components of neural activity measured in ORNSs (top, all data) or PNs (bottom, training set). (L)
1218 Measured OCT-MCH preference versus preference predicted from PC 1 of ORN activity (n = 35
1219  flies). (M) Measured OCT-MCH preference versus preference predicted from PC 2 of PN

1220  activity in n = 69 flies using a model trained on a training set of n = 47 flies (see Figure 2 —
1221 figure supplement 1C-D for train/test flies analyzed separately). Shaded regions in L,M are the
1222  95% Cls of the fit estimated by bootstrapping.
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1224  Figure 1 - figure supplement 1. Behavioral measurements and individual preference
1225  persistence.

1226  (A) Behavioral measurement apparatus (adapted from Honegger et al., 2019) (B) Odor

1227  preference persistence over 3 hours for flies given a choice between 3-octanol and air (n = 34
1228 flies). (C) Odor preference persistence over 24 hours for flies given a choice between 3-octanol
1229 andair (n = 97 flies). (D) Odor preference persistence over 3 hours for flies given a choice
1230  between 3-octanol and 4-methylcyclohexanol (n = 51 flies). (E) Odor preference persistence
1231  over 24 hours for flies given a choice between 3-octanol and 4-methylcyclohexanol (n = 49
1232 flies).
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Figure 1 — figure supplement 2. Average glomerulus-odor time-dependent responses.

Time-dependent responses of each glomerulus identified in our study to the 13 odors in our odor

panel. Data represents the average across flies (ORN, peach curves, n = 65 flies; PN, plum
curves, n = 122 flies). Shaded error bars represent S.E.M.
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Figure 1 — figure supplement 3. Individual glomerulus-odor responses.
Idiosyncratic odor coding measured in ORNs (left, 208 recordings across 65 flies) and PNs
(right, 406 trials across 122 flies). Each column represents the response (max Af/f attained over
the odor trial) in a single recording from either the left or right lobe of a single fly. Below each
heatmap, markers are grouped by individual fly (fly order is arbitrary, markers of adjacent flies
alternate in height). Green markers correspond to left lobes, blue markers right lobes. Each row
represents a glomerulus-odor response pair. Missing data are indicated in gray.
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Figure 1 — figure supplement 4. Correspondence in calcium responses between lobes and
trials.
(A) Scatter plots of max Af/f attained over an odor presentation in a left-lobe recording vs. a
right-lobe recording in the same fly (same data as presented in Figure 1 — figure supplement 3).
Plum points are PN responses and peach points ORNSs. pis Spearman’s rank correlation
coefficient, points correspond to fly-odor-trial combinations, and n indicates the number of
points within each subplot. (B) As in (A), for responses across two trials within the same lobe of
the same fly. Points correspond to fly-odor-lobe combinations.
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Figure 1 — figure supplement 5. Glomerulus responses and identification.
(A) Glomerulus odor responses measured in PNs versus those measured in ORNSs. Points
correspond to the odorants listed in Figure 1G. (B) Cross-odor trial correlation matrix between
glomerular odor responses in ORNs and PNs. (C) Peak calcium responses for each glomerulus-
odor pair measured in this study plotted against those recorded in the DoOR dataset (Miinch and

Galizia, 2016). (D) Peak calcium responses for each individual glomerulus plotted against those
recorded in the DoOR dataset.
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1264  Figure 1 —figure supplement 6. Idiosyncrasy of ORN and PN responses.

1265  (A) Logistic regression classifier accuracy of decoding individual identity from individual odor
1266  panel peak responses. PCA was performed on population responses and the specified fraction of
1267  variance (x-axis) was retained. Individual identity can be better decoded from PN responses than
1268  ORN responses in all cases. (B) Individual trial-to-trial glomerulus-odor responses embedded in
1269 PC 1-2 space. Responses for the same flies as Figure 11 are shown. Each linked color represents
1270  one fly. Trial 1 and trial 2 responses are shown for ORN left lobe (upper left), ORN right lobe
1271 (upper right), PN left lobe (lower left), and PN right lobe (lower right). (C) Distance in the full
1272 glomerulus-odor response space between recordings within a lobe (trial-to-trial), across lobes
1273  (within fly), and across flies for ORNs and PNs. Points represent the median value, boxes

1274  represent the interquartile range, and whiskers the range of the data.
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1277  Figure 1 —figure supplement 7. Calcium response correlation matrices.

1278  Correlation between calcium response dimensions across flies measured in ORNs (top) and PNs
1279  (bottom). Glomerulus-odor responses are correlated at the level of glomeruli in both cell types.
1280 Inter-glomerulus correlations are more prominent in ORNs than PNs, consistent with known AL
1281 transformations that result in decorrelated PN activity (Bhandawat et al., 2007; Luo et al., 2010).
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1283  Figure 1 —figure supplement 8. Calcium imaging principal component loadings.
1284  (A-B) First 10 principal component loadings measured from calcium responses in ORNs (A, n =
1285 65 flies) and PNs (B, n = 122 flies). Loadings are grouped by glomerulus, with each loading
1286  within a glomerulus representing the response of that glomerulus to one odor in the odor panel.
1287  Odors are the same as those listed in Figure 1G. (C-D) The same 10 principal component
1288 loadings as those shown in panels (A-B) grouped by odor rather than glomerulus. Glomeruli
1289  within each odor block are given in the order of panels (A) and (B).
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Figure 1 — figure supplement 9. Estimating latent calcium - behavior correlations.
(A) Schematic of inference approach to estimate the correlation between latent calcium (c) and
behavioral (b) states (R?atent). This method can be applied identically to infer R?atent between Brp
measurements and behavior. (B) Demonstration of R?atent inference for OCT vs MCH model
presented in Figure 1M: PN calcium PC 2 from trained model applied to train+test data. Bottom
subplot: bootstrap distribution of calcium-behavior Rcv? (dashed line: Rep? = 0.20 for the N = 69
flies). Top left subplot: simulated Rcn? values. Black line indicates median Re»? among the
10,000 simulations for each R?atent, shaded areas (from lightest to darkest to lightest) indicate 5-
15th, 15-25th, ..., 85-95th percentile Re¢p?. Right subplot: inferred distribution for R?jatent,
estimated by adding marginal distributions over R?jatent for Rcb? values sampled from the
bootstrap Rcp? distribution. The median R?atent is 0.46 (dashed line), with 90% CI 0.06-0.90
estimated by the 5th-95th percentiles of the marginal distribution (dot-dashed lines).
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1304  Figure 1 —figure supplement 10. OCT-AIR preference prediction.
1305  (A) Bootstrapped R? of OCT-AIR preference prediction from each of the first 5 principal
1306  components of neural activity measured in ORNs (top, all data) or PNs (bottom, training set).
1307 (B) Measured OCT-AIR preference versus preference predicted from PC 1 of ORN activity (n =
1308 30 flies). (C) PC 1 loadings of ORN activity for flies in B. (D) Interpreted ORN PC 1 loadings.
1309 (E) Measured OCT-AIR preference versus preference predicted by the average peak response
1310 across all ORN coding dimensions (n = 30 flies). (F) Measured OCT-AIR preference versus
1311  preference predicted from PC 1 of PN activity in n = 53 flies using a model trained on a training
1312  setof n =18 flies (see Figure 2 — figure supplement 1A-B for train/test flies analyzed separately).
1313  (G) PC 2 loadings of PN activity for flies in F. (H) Interpreted PN PC2 loadings. (I) Measured
1314  OCT-MCH preference versus preference predicted by the average peak PN response in DM2
1315 minus DC2 across all odors (n = 69 flies).
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1317  Figure 2. Variation in relative glomerular responses explains individual odor preference.
1318 (A) PC 2 loadings of PN activity for flies tested for OCT-MCH preference (n = 69 flies). (B)
1319  Interpreted PN PC 2 loadings. (C) Measured OCT-MCH preference versus preference predicted
1320 by the average peak PN response in DM2 minus DC2 across all odors (n = 69 flies). (D) Yoked-
1321  control experiment outline and example behavior traces. Experimental flies are free to move
1322  about tunnels permeated with steady state OCT and MCH flowing into either end. Yoked-control
1323  flies are delivered the same odor at both ends of the tunnel which matches the odor experienced
1324  at the nose of the experimental fly at each moment in time. (E) Imposed odor experience versus
1325  the odor experience predicted from PC 2 of PN activity (n = 27 flies) evaluated on the model
1326  trained from data in Figure 1M. Shaded regions in C,E are the 95% Cls of the fit estimated by
1327  bootstrapping.

1328
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Figure 2 — figure supplement 1. Measured preference vs. PN activity-based predicted
preference, split by training/testing set.

(A) Measured OCT-AIR preference versus preference predicted from PC 1 of PN activity in a
training set (n = 18 flies). (B) Measured OCT-AIR preference versus preference predicted from
PC 1 on PN activity in a test set (n = 35 flies) evaluated on a model trained on data from panel
(A). (C) Measured OCT-MCH preference versus preference predicted from PC 2 of PN activity
in a training set (n = 47 flies). (D) Measured OCT-MCH preference versus preference predicted
from PC 2 on PN activity in a test set (n = 22 flies) evaluated on a model trained on data from
panel (C).

predicted preference (z-scored)
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1340  Figure 2 —figure supplement 2. Time-dependent preference- and odor-decoding.
1341  (A) R?of odor-vs-air preference predicted by PC 1 of PN activity as a function of time across
1342 trials (n = 53 flies). (B) R? of odor-vs-air preference predicted by PC 1 of ORN activity as a

1343  function of time across trials (n = 30 flies). (C) R? of odor-vs-odor preference predicted by PC 2
1344  of PN activity (solid plum, n = 69 flies) or PC 1 of ORN activity (dashed peach, n = 35 flies) as a
1345  function of time across trials. (D) Logistic regression classifier accuracy of decoding odor

1346  identity from 5 glomerular responses as a function of time. Dashed curves indicate performance
1347  on shuffled data.

24 24 0


https://doi.org/10.1101/2021.12.24.474127
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.24.474127; this version posted December 3, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

A Measure individual odor D unshuffled  shuffled F OCT-MCH preference
preferences in untethered 07 behavior  behavior predicted by Brp-Short
|nbred flies 28" density PC 2

&6 22 R’ =0.088 OCT
Zol 3 =0.031
Digsect, slaln and acquire 5T T e (PED
confocal image stacks of £ o8 o _
=] L5
|nd|V|duaI brains 205 o2
o= 2 &g
= 2 2
Process i |mages and Q . 5N
segment glomeruli of © o 1 23 4 1234 é?
mterest PC PC £
MCH
E 22
Predict |nd|u|dua| odor Brp-Short 22 predicted preference 22
preferences from pc2 — {z-scored)
idiosyncratic presynaptic loadings
density - = -
S F DMz o o oo
1348 DC24

1349  Figure 3. Idiosyncratic presynaptic marker density in DM2 and DC2 predicts OCT-MCH
1350 preference.

1351  (A) Experiment outline. (B) Example slice from a z-stack of the antennal lobe expressing

1352  Orco>Brp-Short (green) with DC2 and DM2 visible (white dashed outline). nc82 counterstain
1353  (magenta). (C) Example glomerulus segmentation masks extracted from an individual z-stack.
1354 (D) Bootstrapped R? of OCT-MCH preference prediction from each of the first 4 principal

1355 components of Brp-Short density measured in ORNSs (training set, n = 22 flies). (E) PC 2

1356 loadings of Brp-Short density. (F) Measured OCT-MCH preference versus preference predicted
1357  from PC 2 of ORN Brp-Short density in n = 53 flies using a model trained on a training set of n
1358 =22 flies (see Figure 3 — figure supplement 1 for train/test flies analyzed separately).
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1360 Figure 3 —figure supplement 1. ORN>Brp-Short characterization and model predictions.
1361  (A-C) Right versus left glomerulus properties measured from z-stacks of stained Orco>Brp-
1362  Short samples: (A) Volume, (B) total Brp-Short fluorescence, (C) Brp-Short fluorescence
1363  density. (D-F) Same data as panels (A-C) represented in violin plots (kernel density estimated).
1364  (G) Principal component loadings of Brp-Short density calculated using only training data (n =
1365 22 flies). (H) Principal component loadings of Brp-Short density calculated using all data (n = 53
1366  flies). (I) Measured OCT-MCH preference versus preference predicted from PC 2 of ORN Brp-
1367  Short density in a training set (n = 22 flies). (J) Measured OCT-MCH preference versus
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preference predicted from PC 2 on ORN Brp-Short density in a test set (n = 31 flies) evaluated
on a model trained on data from panel (I). (K) Example expanded AL expressing Or13a>Brp-
Short (left) and Imaris-identified puncta from that sample (right). (L) OCT-MCH preference
score plotted against Brp-Short puncta density in expanded Or13a>Brp-Short samples (n =8
flies). (M) OCT-MCH preference score plotted against Brp-Short median puncta volume in
expanded Orl13a>Brp-Short samples (n = 8 flies). Shaded regions in 1,J,L,M are the 95% CI of
the fit estimated by bootstrapping.
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1376  Figure 3 —figure supplement 2. Calcium and Brp-Short predictor variation.

1377  (A) Histogram of average PN Af/f across all coding dimensions in flies in which OCT-AIR

1378  preference was measured (top) and OCT-AIR preference versus average PN Af/f (n = 53 flies)
1379  (bottom). (B) Similar to (A) for ORN Af/f and OCT-AIR preference (n = 30 flies). (C) Similar to
1380 (A) for Af/f difference between DM2 and DC2 PN responses and OCT-MCH preference (n = 69
1381 flies). (D) Similar to (A) for % Brp-Short density difference between DM2 and DC2 ORNs and
1382  OCT-MCH (n =53 flies).
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Figure 4. Simulation of developmentally stochastic olfactory circuits

(A) AL modeling analysis outline. (B) Leaky-integrator dynamics of each simulated neuron.
When a neuron’s voltage reaches its firing threshold, a templated action potential is inserted, and
downstream neurons receive a postsynaptic current. See Antennal Lobe modeling in Materials
and Methods. (C) Synaptic weight connectivity matrix, derived from the hemibrain connectome
(Scheffer et al., 2020). (D) Spike raster for randomly selected example neurons from each AL
cell type. Colors indicate ORN/PN glomerular identity and LN polarity (i = inhibitory, e =
excitatory). (E) Schematic illustrating sources of developmental stochasticity as implemented in
the simulated AL framework. See Supplementary Video 4 for the effects of these resampling
methods on the synaptic weight connectivity matrix. (F) PN glomerulus-odor response vectors
for 8 idiosyncratic ALs subject to Input spike Poisson timing variation, PN input synapse density
resampling, and ORN and LN population bootstrapping. (G) Loadings of the principal
components of PN glomerulus-odor responses as observed across experimental flies (top).
Dotted outlines highlight loadings selective for the DC2 and DM2 glomerular responses, which
underlie predictions of individual behavioral preference. (H-K) As in (G) for simulated PN
glomerulus-odor responses subject to Input spike Poisson timing variation, PN input synapse
density resampling, and ORN and LN population bootstrapping. See Figure 4 — figure
supplement 5 for additional combinations of idiosyncrasy methods. In (F-K) the sequence of
odors within each glomerular block is: OCT, 1-hexanol, ethyl-lactate, 2-heptanone, 1-pentanol,
ethanol, geranyl acetate, hexyl acetate, MCH, pentyl acetate and butanol.
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1405  Figure 4 —figure supplement 1. AL model raster plot.

1406  (A) Action potential raster plot of ORNSs in the baseline simulated AL. Rows are individual
1407  ORNSs, black ticks indicate action potentials. Random shades of gold at left indicate blocks of
1408  ORN rows projecting to the same glomerulus. (B) The remaining neurons in the model. Shades
1409  of green indicate excitatory vs inhibitory LNs and shades of purple indicate PNs with dendrites
1410  in the same glomeruli.
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1412  Figure 4 —figure supplement 2. AL model baseline outputs compared to experimental data.
1413  (A) Distributions of model neuron firing rates by cell type across odors (transparent black points
1414  are individual neuron-odor combinations). Black lozenge symbols indicate the mean firing rate
1415  of the points to the right. Yellow stars indicate the comparable experimental values reported in
1416  (Chou et al., 2010; de Bruyne et al., 2001; Nagel et al., 2015; Wilson, 2004). (B) Scatter plots of
1417  average PN firing rate vs ORN firing rate during odor stimuli in the model vs experimental

1418  values (Bhandawat et al., 2007). Points are odors, colors are glomeruli. (C) Histograms of ON
1419  odor minus OFF odor glomerulus-average PN and ORN firing rates in the model vs experimental
1420  values (Bhandawat et al., 2007), showing flatter distributions in PNs. (D) Odor representations in
1421 the first 2 PCs of glomerulus-average ORN responses and PN responses in the model and

1422  experimental results (Bhandawat et al., 2007). Points are odors. Pairwise distances between PN
1423  representations are more uniform than in ORNs in both the model and experimental data. Panels
1424  (B)-(D) use glomerulus-average PN and ORN firing rates from six of the seven glomeruli in
1425 Bhandawat et al., 2007, as VM2 is significantly truncated in the hemibrain (Scheffer et al.,

1426  2020). Literature features in panels (B)-(D) were extracted from Bhandawat et al., 2007 using
1427  WebPlotDigitizer (Rohatgi, 2021).
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1429  Figure 4 —figure supplement 3. Sensitivity analysis of aorn, a@eLn, aiLn, apn parameters.
1430  (Left, blue to red colormap): magnitude of parameter manipulation. (Center, dark blue to yellow
1431  colormap): mean glomerular firing rate (Hz) responses of PNs (DL1, DM1, DM2, DM3, DM4,
1432  VAZ2)to 11 odors (order within each glomerulus (colored bands at top): 3-octanol, 1-hexanol,
1433  ethyl lactate, 2-heptanone, 1-pentanol, ethanol, geranyl acetate, hexyl acetate, 4-

1434  methylcyclohexanol, pentyl acetate, 1-butanol, 3-octanol). (Right, pink to green colormap):
1435  manipulation effect size on mean PN-odor responses (Cohen’s d). (Top): baseline parameter set.
1436  (Middle): single-parameter manipulations from 1/4x to 4x. (Bottom): multiple-parameter

1437  manipulations. For further detail see AL model tuning in Materials and Methods. No

1438  manipulations yielded effect sizes larger than 0.9; apn is the most sensitive parameter.
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Figure 4 — figure supplement 4. Synapse counts vs glomerular volume in the hemibrain and
AL model.
(A) Left) Scatter plot of total PN input synapses within a glomerulus vs that glomerulus’ volume
from the hemibrain data set. Solid line represents the maximum likelihood-fit mean synapse
count vs glomerular volume, and dashed lines the fit +/-1 standard deviation. Middle) As (left)
but for a single sample from the parameterized distribution of PN input synapses vs glomerular
volume. Right) As in previous for a single bootstrap resample of PNs. Color-highlighted
glomeruli illustrate that when PNs within a glomerulus have highly asymmetrical synapse
counts, bootstrapping them alone can result in apparent synapse densities that lie outside the
empirical distribution (left). (B) As in (A) but on log-log axes, showing the linear relationship
between synapse density and glomerular volume after this transformation, and bootstrapped
densities falling outside this distribution at right.
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Figure 4 — figure supplement 5. PN response PCA loadings under various sources of circuit
idiosyncrasy.

(A) Loadings of the principal components of PN glomerulus-odor responses as simulated across
AL models where Gaussian noise with a standard deviation equal to 0, 20, 50, and 100% of each
synapse weight was added to each synaptic weight in the hemibrain data set. (B) circuit variation
coming from bootstrapping of each major AL cell type or all three simultaneously. (C) circuit
variation coming from bootstrap resampling of different cell-type combinations in addition to PN
input synapse density resampling as illustrated in Figure 4 — figure supplement 4.
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1462  Figure 4 —figure supplement 6. Classifiability of simulated idiosyncratic behavior under

1463  different sources of circuit idiosyncrasy.
1464  Simulated PN odor-glomerulus firing rates projected into their first 3 principal components.

1465 Individual points represent single runs of resampled AL models, under four different sources of
1466 idiosyncratic variation. PN responses in all odor-glomerulus dimensions were used to calculate
1467  simulated behavior scores for each resampled AL, by applying the PN calcium-odor-vs-odor
1468  linear model (Figure 2A). Magenta points represent flies with simulated preference for MCH in
1469  the top 50%, and green OCT preference. % Misclassification refers to 100% — the accuracy of a
1470  linear classifier trained on MCH-vs-OCT preference in the space of the first three PCs. This
1471  measures how much of the variance along the PN calcium-odor-vs-odor linear model lies outside
1472  the first three PCs of simulated PN variation.
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Tables
Table 1: Calcium & Brp-Short — behavior model statistics

Behavior | Neural Figure Panel n | Bo Bz R2 p-value
Measured | Predictor
OCT vs. PN Calcium Figure 2 — figure | 18 | -0.26 | -0.079 0.16 0.099
AIR PC1 supplement 1A
OCT vs. PN Calcium Figure 1 —figure | 53 | -0.051 | -0.38 0.098 | 0.022
AIR Average all supplement 10l

dimensions
OCT vs. ORN Calcium | Figure 1 —figure | 30 | -0.29 | -0.053 0.23 0.007
AIR PC1 supplement 10B
OCT vs. ORN Calcium | Figure 1 —figure | 30 | -0.032 | -0.71 0.25 0.005
AIR Average all supplement 10E

dimensions
OCT vs. PN Calcium Figure 2 — figure | 47 | -0.058 | -0.081 0.15 0.006
MCH PC 2 supplement 1C
OCT vs. PN Calcium Figure 2I 69 | -0.032 | -0.0018 |0.12 | 0.004
MCH DM2 - DC2

(% difference)
OCT vs. ORN Calcium | Figure 1L 351-0.14 |-0.027 0.031 | 0.32
MCH PC1
OCT vs. ORN Brp- Figure 3 — figure | 22 | -0.087 | 0.017 0.22 0.028
MCH Short PC 2 supplement 1I

(train data

only)
OCT vs. ORN Brp- Figure 3F 53 1-0.019 | 0.012 0.088 | 0.031
MCH Short PC 2

(all data)
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Table 2: Typical electrophysiology features of AL cell types, used as model parameters

Parameter

ORNSs

LNs

PNs

Membrane resting
potential

-70 mV (Dubin and
Harris, 1997)

-50 mV (Seki et al.,
2010)

-55 mV (Jeanne and
Wilson, 2015)

Action potential
threshold

-50 mV (Dubin and
Harris, 1997)

-40 mV (Seki et al.,
2010)

-40 mV (Jeanne and
Wilson, 2015)

Action potential
minimum

-70 mV (Cao et al., 2016)

-60 mV (Seki et al.,
2010)

-55 mV (Jeanne and
Wilson, 2015)

Action potential
maximum

0 mV (Dubin and Hatrris,
1997)

0 mV (Seki et al., 2010)

-30 mV (Wilson and
Laurent, 2005)

Action potential

2 ms (Jeanne and

4 ms (Seki et al., 2010)

2 ms (Jeanne and

duration Wilson, 2015) Wilson, 2015)
Membrane 73 pF (assumed = PNs) 64 pF (Huang et al., 73 pF (Huang et al.,
capacitance 2018) 2018)

Membrane 1.8 GOhm (Dubin and 1 GOhm (Seki et al., 0.3 GOhm (Jeanne and
resistance Harris, 1997) 2010) Wilson, 2015)
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1479  Supplementary Videos

1480

1481  Supplementary Video 1. Example recording with automated tracking of an odor-vs-air
1482  behavioral assay.

1483  The recent positions of each fly (green line) are shown in different colors. Red bar indicates
1484  when the odor stream is turned on.

1485

1486  Supplementary Video 2. Example recording with automated tracking of an odor-vs-odor
1487  behavioral assay.

1488  The recent positions of each fly (green line) are shown in different colors. Magenta and green
1489  bars at right indicate when MCH and OCT are respectively flowing into the top and bottom
1490 halves of each arena.

1491

1492  Supplementary Video 3. Confocal image stack of expanded DC2>Brp-Short.

1493  Magenta is nc82 stain, Green is Or13a>Brp-Short. Frames are z-slices spaced at 0.54 pum. Image
1494  height corresponds to a post-expansion field of view of 107 x 90 um (a ~2.5 x linear expansion
1495  factor).

1496

1497  Supplementary Video 4. Simulated AL connectivity matrices.

1498  Left: Glomerular density resampling. Each frame corresponds to the hemibrain connectome
1499  synaptic weights, rescaled according to a sample from the relationship between synapse count
1500 and volume parameterized in Figure 4 — figure supplement 4. Middle: ORN bootstrapping. Each
1501 frame corresponds to the hemibrain connectome synaptic weights, but with the population of
1502  ORNSs projecting to each glomerulus resampled with replacement. Right: LN bootstrapping.
1503  Each frame corresponds to the hemibrain connectome synaptic weights, but with the population
1504  of LNs resampled with replacement.
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