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Abstract 24 

Behavior varies even among genetically identical animals raised in the same environment. 25 

However, little is known about the circuit or anatomical origins of this individuality. Here, we 26 

demonstrate a neural correlate of Drosophila odor preference behavior in the olfactory sensory 27 

periphery. Namely, idiosyncratic calcium responses in projection neuron (PN) dendrites and 28 

densities of the presynaptic protein Bruchpilot in olfactory receptor neuron (ORN) axon 29 

terminals correlate with individual preferences in a choice between two aversive odorants. The 30 

ORN-PN synapse appears to be a locus of individuality where microscale variation gives rise to 31 

idiosyncratic behavior. Simulating microscale stochasticity in ORN-PN synapses of a 3,062 32 

neuron model of the antennal lobe recapitulates patterns of variation in PN calcium responses 33 

matching experiments. Conversely, stochasticity in other compartments of this circuit does not 34 

recapitulate those patterns. Our results demonstrate how physiological and microscale structural 35 

circuit variations can give rise to individual behavior, even when genetics and environment are 36 

held constant. 37 

 38 

Keywords: individuality, neural circuits, sensory processing, olfaction, behavioral preference, 39 

variation, Drosophila, antennal lobe, calcium imaging, expansion imaging  40 
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Introduction 41 

Individuality is a fundamental aspect of behavior that is observed even among genetically-42 

identical animals reared in similar environments. We are specifically interested in individuality 43 

that is evident as idiosyncratic differences in behavior that persist for much of an animal’s 44 

lifespan. Such variability is observed across species including round worms (Stern et al., 2017), 45 

aphids (Schuett et al., 2011), fish (Laskowski et al., 2022), mice (Freund et al., 2013), and people 46 

(Johnson et al., 2010). Small, genetically tractable model species, such as Drosophila, are 47 

particularly promising for discovering the genetic and neural circuit basis of individual behavior 48 

variation. Flies exhibit individuality in many behaviors (Werkhoven et al., 2021), and the 49 

mechanistic origins of this variation has been studied for phototactic preference (Kain et al., 50 

2012), temperature preference (Kain et al., 2015), locomotor handedness (Ayroles et al., 2015; 51 

Buchanan et al., 2015; de Bivort et al., 2022), object-fixated walking (Linneweber et al., 2020), 52 

and odor preference (Honegger et al., 2019). Generally, the neural substrates of individuality are 53 

poorly understood, though in a small number of instances nanoscale circuit correlates of 54 

individual behavioral biases have been identified (Lillvis et al., 2022; Linneweber et al., 2020; 55 

Skutt-Kakaria et al., 2019). We hypothesize that as sensory cues are encoded and transformed to 56 

produce motor outputs, their representation in the nervous system becomes increasingly 57 

idiosyncratic and predictive of individual behavioral responses. An alternative hypothesis is that 58 

neural representations are the same across individuals and individuality emerges through 59 

biomechanical differences and interactions with the environment. We seek to determine if “loci 60 

of individuality” – sites at which this idiosyncrasy emerges – exist, and if so, where in the 61 

sensorimotor cascade. 62 

 63 

Olfaction in the fruit fly Drosophila melanogaster is an amenable sensory system for identifying 64 

loci of individuality, as 1) individual odor preferences can be recorded readily, 2) neural 65 

representations of odors can be measured via calcium imaging, 3) the circuit elements of the 66 

pathway are well-established, and 4) a deep genetic toolkit enables mechanism-probing 67 

experiments. The neuroanatomy of the olfactory system, from the antenna through its first 68 

central-brain processing neuropil, the antennal lobe (AL), is broadly stereotyped across 69 

individuals (Couto et al., 2005; Grabe et al., 2015; Wilson et al., 2004). The AL features ~50 70 

anatomically identifiable microcircuits called glomeruli (Figure 1A). Each glomerulus represents 71 

an odor-coding channel and receives axon inputs from olfactory receptor neurons (ORNs) 72 

expressing the same olfactory receptor gene (de Bruyne et al., 2001). Uniglomerular projection 73 

neurons (PNs) carry odor information from each glomerulus deeper into the brain (Jeanne and 74 

Wilson, 2015). AL-intrinsic local neurons (LNs) project among glomeruli (Chou et al., 2010) 75 

and modulate odor representations (Wilson and Laurent, 2005). Glomerular organization is a key 76 

stereotype of the AL; using glomeruli as landmarks, one can identify comparable ORN axons 77 

and PNs across individuals. 78 

 79 
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Individual flies differ in their PN calcium responses to identical odor stimuli, as well as their 80 

odor-vs-odor preference choices (Honegger et al., 2019). Several possible determinants of 81 

individual odor preference can already be hypothesized for the fly olfactory circuit (Rihani and 82 

Sachse, 2022). The extent of preference variability depends on dopamine and serotonergic 83 

modulation (Honegger et al., 2019). Neuromodulation clearly plays a role in the regulation of 84 

behavioral individuality (Maloney, 2021), but its effects vary by modulator and behavior (de 85 

Bivort et al., 2022; Kain et al., 2012). With respect to wiring variation, the number of ORNs and 86 

PNs innervating a given glomerulus varies within hemispheres (Tobin et al., 2017) and across 87 

individuals (Grabe et al., 2016; Schlegel et al., 2020), as does the glomerulus-innervation pattern 88 

of individual LNs (Chou et al., 2010). Subpopulations of LNs and PNs express variable serotonin 89 

receptors (Sizemore and Dacks, 2016), so the effects of neuromodulation and wiring may 90 

interact to influence individuality. Little is known about possible molecular or nanoscale 91 

correlates of individual behavioral bias. Thus, individual odor preference could have its origins 92 

in many potential mechanisms, ranging from circuit wiring to modulation to neuronal intrinsic 93 

properties.   94 

 95 

Outside the olfactory system, there are a few examples in which microscale circuit variation 96 

predicts individual behavioral preference. Wiring asymmetry in an individual fly’s dorsal cluster 97 

neurons is predictive of the straightness of its object-oriented walking behavior (Linneweber et 98 

al., 2020), and left-right asymmetry in the density of presynaptic sites of protocerebral bridge to 99 

lateral accessory lobe-projecting neurons predicts an individual fly’s idiosyncratic turning bias 100 

(Skutt-Kakaria et al., 2019). The number of synaptic connections from the pC2l to pIP10 neurons 101 

correlates with male song rate during courtship (Lillvis et al., 2022), and the presence of ectopic 102 

branches in neurons of the T2 hemilineage predicts delayed spontaneous flight initiation (Mellert 103 

et al., 2016). 104 

 105 

In this work, we sought to identify loci of individuality by measuring odor preferences and 106 

neural responses to odors in the same individuals and determining the extent to which the latter 107 

predicted the former. We found that idiosyncratic calcium responses in PNs were correlated with 108 

individual preferences in a choice between two aversive odorants. Examining a molecular 109 

component presynaptic to PNs, we found that the density of the scaffolding protein Bruchpilot 110 

also predicts odor preference. To unify these results and connect wiring variation to circuit 111 

outputs and behavior, we simulated developmental variation in a 3,062-neuron spiking model of 112 

the antennal lobe. Simulated stochasticity in the ORN-PN synapse recapitulated our empirical 113 

findings. Thus, we identified the ORN-PN synapse as a likely locus of individuality in fly odor 114 

preference, demonstrating that behaviorally-relevant variation in neural circuits can be found in 115 

the sensory periphery at the nanoscale. 116 

 117 

Results 118 

Individual flies encode odors idiosyncratically 119 
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Focusing on behavioral variation within a genotype, we used isogenic animals expressing the 120 

fluorescent calcium reporter GCamp6m (Chen et al., 2013) in either of the two most peripheral 121 

neural subpopulations of the Drosophila olfactory circuit, ORNs or PNs (Figure 1E). We 122 

performed head-fixed 2-photon calcium imaging after measuring odor preference in an 123 

untethered assay (Honegger et al., 2019) (Figure 1B-D, Figure 1 – figure supplement 1A). 124 

Individual odor preferences are stable over timescales longer than this experiment (Figure 1 – 125 

figure supplement 1B-E). 126 

 127 

We measured volumetric calcium responses in the antennal lobe (AL), where ORNs synapse 128 

onto PNs in ~50 discrete microcircuits called glomeruli (Figure 1A) (Couto et al., 2005; Grabe et 129 

al., 2015). Flies were stimulated with a panel of 12 odors plus air (Figure 1D, Figure 1 – figure 130 

supplement 2) and k-means clustering was used to automatically segment the voxels of 5 131 

glomeruli from the resulting 4-D calcium image stacks (Figure 1E, Figure 1 – figure supplement 132 

5, Materials and Methods) (Couto et al., 2005). Both ORN and PN odor responses were roughly 133 

stereotyped across individuals (Figure 1G,H), but also idiosyncratic (Honegger et al., 2019). 134 

Responses in PNs appeared to be more idiosyncratic than ORNs (Figure 1J); a logistic linear 135 

classifier decoding fly identity from glomerular responses was more accurate when trained on 136 

PN than ORN responses (Figure 1 – figure supplement 6A). While the responses of single ORNs 137 

are known to vary more than those of single PNs (Wilson, 2013), our recordings capture the total 138 

response of all ORNs or PNs in a glomerulus. This might explain our observation that ORNs 139 

exhibited less idiosyncrasy than PNs. PN responses were more variable within flies, as measured 140 

across the left and right hemisphere ALs, compared to ORN responses (Figure 1 – figure 141 

supplement 6C; p < 2x10-5, Mann-Whitney U test), suggesting that odor representations become 142 

more divergent farther from the sensory periphery.  143 

 144 

PN, but not ORN, responses predict odor-vs-odor preference 145 

Next we analyzed the relationship of idiosyncratic coding to odor preference, by asking in which 146 

neurons (if any) did calcium responses predict individual preferences of flies choosing between 147 

two aversive monomolecular odors: 3-octanol (OCT) and 4-methylcyclohexanol (MCH). 148 

Because we could potentially predict preference (a single value) using numerous glomerular-149 

odor predictors, and had a limited number of observations (dozens), we used dimensionality 150 

reduction to hold down the number of comparisons we made. We computed the principal 151 

components (PCs) of the glomerulus-odor responses (in either ORNs or PNs) across individuals 152 

(Figure 1G-I; Figure 1 – figure supplement 3, Figure 1 – figure supplement 8) and fit linear 153 

models to predict the behavior of individual flies from their values on the odor response PCs. No 154 

PCs of ORN neural activity could linearly predict OCT-MCH preference beyond the level of 155 

shuffled controls (n = 35 flies) (Figure 1K,L). The best ORN PC model only predicted odor-vs-156 

odor behavior with a nominal R2 of 0.031. In contrast, PC 2 of PN activity was a statistically 157 

significant predictor of odor preference, accounting for 15% of preference variance in a training 158 

set of 47 flies (p = 0.0063; Figure 2 – figure supplement 1C) and 31% of preference variance on 159 
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test data of flies (p = 0.0069; Figure 2 – figure supplement 1D). These p-values remain 160 

significant at 𝛼 = 0.05 following a Bonferroni correction for 5 comparisons. Combined train/test 161 

statistics (R2 = 0.20; p = 0.0001) are presented in Figure 1K,M.  Thus, idiosyncratic PN calcium 162 

predicts odor vs. odor preference. 163 

  164 

We conducted a follow-up analysis to contextualize the finding of calcium PCs predicting odor 165 

preference with an R2 of ~0.2. This value is lower than 1.0 due to at least two factors: 1) any 166 

non-linearity in the relationship between calcium responses and behavior, and 2) sampling error 167 

in, and temporal instability of, behavior and calcium responses over the duration of the 168 

experiment. A lower bound on the latter can be estimated from the repeatability of behavioral 169 

measures over time (Figure 1 – figure supplement 1B-E). We performed a statistical analysis to 170 

roughly estimate model performance if there were no sampling error or drift in the measurement 171 

of behavior and calcium responses (Figure 1 – figure supplement 9; Materials and Methods). 172 

This analysis suggests that the measured correlation between calcium and behavior (R2
latent) 173 

would be 0.46 in the absence of sampling error and temporal instability, but the uncertainty in 174 

this estimate is high (90% CI: 0.06-0.90). 175 

 176 

We additionally assessed the extent to which idiosyncratic calcium responses in ORNs or PNs 177 

could predict preference between air and a single aversive odor (OCT). We found a suggestive 178 

correlate: PC 1 of ORN calcium responses explained 23% of preference variance (n = 30 flies, p 179 

= 0.0099, Figure 1 – figure supplement 10B), but this association was dominated by a single 180 

outlier (R2 of 0.078, p = 0.14 with the outlier removed).  181 

 182 

We next sought a biological understanding of the models associating calcium responses with 183 

odor preference. The loadings of the ORN and PN PCs indicate that variation across individuals 184 

was correlated at the level of glomeruli much more strongly than odorant (Figure 1H; Figure 1 – 185 

figure supplements 3, 8). This suggests that stochastic variation in the olfactory circuit results in 186 

individual-level fluctuations in the responses of glomeruli-specific rather than odor-specific 187 

responses. In the odor-vs-odor preference model, the loadings of PC2 of PN calcium responses 188 

contrast the responses of the DM2 and DC2 glomeruli with opposing weights (Figure 2A), 189 

suggesting that the activation of DM2 relative to DC2 predicts the likelihood of a fly preferring 190 

OCT to MCH. Indeed, a linear model constructed from the average DM2 minus average DC2 PN 191 

response (Figure 2B) showed a statistically significant correlation with preference for OCT 192 

versus MCH (R2 = 0.12; p = 0.0035; Figure 2C). The model slope coefficient was negative 193 

(Table 1), indicating that greater activation of DM2 vs DC2 correlates with preference for MCH. 194 

With respect to odor-vs-odor behavior, we conclude that the relative responses of DM2 vs DC2 195 

in PNs compactly predict an individual’s preference. 196 

 197 

Odor experience has been shown to modulate subsequent AL responses (Golovin and Broadie, 198 

2016; Iyengar et al., 2010; Sachse et al., 2007). This raises the possibility that our models were 199 
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actually predicting individual flies’ past odor experiences (i.e., the specific pattern of odor 200 

stimulation flies received in the behavioral assay) rather than their preferences. To address this, 201 

we imposed the specific odor experiences of previously tracked flies (in the odor-vs-odor assay) 202 

on naive “yoked” control flies (Figure 2D) and measured PN odor responses of the yoked flies. 203 

Applying the PN PC 2 model to the yoked calcium responses did not predict flies’ odor 204 

experience (R2 = 0.019, p = 0.49; Figure 2E). This is consistent with PN calcium responses 205 

predicting odor preference rather than odor experience. 206 

 207 

(Mazor and Laurent, 2005) found that PN response transients, rather than fixed points, contain 208 

more odor identity information. We therefore asked at which times during odor presentation an 209 

individual’s neural responses could best predict odor preference. Applying our calcium-to-210 

behavior models (PN PC2-odor-vs-odor, as well as ORN PC1-odor-vs-air, PN PC1-odor-vs-air) 211 

to the time-varying calcium signals, we found that in all cases, behavior prediction rose during 212 

odor delivery (Figure 2 – figure supplement 2). In ORNs, the predictive accuracy remained high 213 

after odor offset, whereas in PNs it declined. The times during which calcium responses 214 

predicted individual behavior generally aligned to the times during which a linear classifier could 215 

decode odor identity from neuronal responses (Figure 2 – figure supplement 2D), suggesting that 216 

idiosyncrasies in odor encoding predict individual preferences. 217 

 218 

Variation in a presynaptic scaffolding protein predicts odor preference 219 

We next investigated how structural variation in the nervous system might relate to idiosyncratic 220 

behavior. Because PN, but not ORN, calcium responses predicted odor-vs-odor preference, we 221 

hypothesized that a circuit element between ORNs to PNs could confer onto PNs behaviorally-222 

relevant physiological idiosyncrasies absent in ORNs. We therefore imaged presynaptic T-bar 223 

density in ORNs using transgenic mStrawberry-tagged Brp-Short, immunohistochemistry and 224 

confocal microscopy (Mosca and Luo, 2014) after measuring individual preference for OCT 225 

versus MCH (Figure 3A). Brp-Short density was quantified as total fluorescence intensity / 226 

glomerulus volume for 4 of the 5 focus glomeruli (Figure 3B, Figure 3 – figure supplement 1A-227 

F; DL5 was not readily segmentable in our confocal samples). We chose this metric as we found 228 

it could be used to predict individual behavioral biases in a previous study (Skutt-Kakaria et al., 229 

2019). This measure was consistent across hemispheres (Figure 3 – figure supplement 1C), while 230 

also showing variation among individuals, like calcium responses. 231 

 232 

To relate presynaptic structural variation and behavior, we used the same analytical approach as 233 

we had for calcium responses. PCs 1 and 2 of Brp-Short density had notable similarities to those 234 

of the calcium responses: PC 1 was positive across glomeruli and PC 2 exhibited a sign contrast 235 

between DC2 loadings and all other glomerulus loadings (Figure 3 – figure supplement 1G). As 236 

in the PN calcium response models, PC 2 of Brp-Short density was the best predictor of odor-vs-237 

odor preferences in training data (Figure 3D-E, Figure 3 – figure supplement 1I, R2 = 0.22, n = 238 

22 flies, p = 0.028) and for test data (Figure 3 – figure supplement 1J, R2 = 0.078, n = 31 flies, p 239 
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= 0.13; statistics from combined train and test data: R2 = 0.088, n = 53 flies, p = 0.031; Figure 240 

3F; median R2
latent 0.15, 90% CI 0.00-0.74). To better understand the microstructural basis of our 241 

Brp-Short density metric, we performed paired behavior and expansion microscopy (Asano et 242 

al., 2018; Gao et al., 2019) in flies expressing Brp-Short specifically in DC2-projecting ORNs 243 

(Supplementary Video 3). Expansion yielded a ~4-fold increase in linear resolution, allowing 244 

imaging of individual Brp-Short puncta (Figure 3 – figure supplement 1K). While the sample 245 

size (n = 8) of this imaging pipeline was insufficient for a formal statistical analysis, the trend 246 

between Brp-Short density in DC2 (measured as individual puncta / glomerular volume) and 247 

odor-vs-odor preference was more consistent with a positive correlation than other metrics, such 248 

as median puncta volume (Figure 3 – figure supplement L,M). 249 

 250 

The best presynaptic density models are less predictive of behavior than the best calcium 251 

response models (R2 = 0.088 vs R2 = 0.22; R2
latent = 0.15 and 0.46, respectively; Figure 2 – figure 252 

supplement 1C,D vs Figure 3 – figure supplement 1I,J), suggesting that presynaptic density 253 

variation is not the full explanation of calcium response variability. Nevertheless, differences in 254 

presynaptic inputs to PNs may contribute to variation in the calcium dynamics of those neurons, 255 

in turn giving rise to individual preferences for OCT versus MCH. 256 

 257 

Developmental stochasticity in a simulated AL recapitulates empirical PN response variation  258 

Finally, we sought an integrative understanding of how synaptic variation plays out across the 259 

olfactory circuit to produce behaviorally-relevant physiological variation. We developed a leaky-260 

integrate-and-fire model of the entire AL, comprising 3,062 spiking neurons and synaptic 261 

connectivity taken directly from the Drosophila hemibrain connectome (Scheffer et al., 2020). 262 

After tuning the model to perform canonical AL computations, we introduced different kinds of 263 

stochastic variations to the circuit and determined which (if any) would produce the patterns of 264 

idiosyncratic PN response variation observed in our calcium imaging experiments (Figure 4A). 265 

This approach assesses potential mechanisms linking developmental variation in synapses to 266 

physiological variation that apparently drives behavioral individuality. 267 

 268 

The biophysical properties of neurons in our model (Figure 4B, Table 2) were determined by 269 

published electrophysiological studies (See Voltage model in Materials and Methods) and were 270 

similar to those used in previous fly models (Kakaria and de Bivort, 2017; Pisokas et al., 2020). 271 

The polarity of neurons was determined largely by their cell type (ORNs are excitatory, PNs 272 

predominantly excitatory, and LNs predominantly inhibitory – explained further in Materials and 273 

Methods). The strength of synaptic connections between any pair of AL neurons was given by 274 

the hemibrain connectome (Scheffer et al., 2020) (Figure 4C). Odor inputs were simulated by 275 

injecting current into ORNs to produce spikes in those neurons at rates that match published 276 

ORN-odor recordings (Münch and Galizia, 2016), and the output of the system was recorded as 277 

the firing rates of PNs during odor stimulation (Figure 4D). At this point, there remained only 278 

four free parameters in our model, the relative sensitivity (postsynaptic current per upstream 279 
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action potential) of each AL cell type (ORNs, PNs, excitatory LNs and inhibitory LNs). We 280 

explored this parameter space manually, and identified a configuration in which AL simulation 281 

(Figure 4 – figure supplement 1) recapitulated four canonical properties seen experimentally 282 

(Figure 4 – figure supplement 2): 1) typical firing rates at baseline and during odor stimulation 283 

(Bhandawat et al., 2007; Dubin and Harris, 1997; Jeanne and Wilson, 2015; Seki et al., 2010), 2) 284 

a more uniform distribution of PN firing rates compared to ORN rates (Bhandawat et al., 2007), 285 

3) greater separation of PN odor representations compared to ORN representations (Bhandawat 286 

et al., 2007), and 4) a sub-linear transfer function between ORNs and PNs (Bhandawat et al., 287 

2007). Thus, our simulated AL appeared to perform the fundamental computations of real ALs, 288 

providing a baseline for assessing the effects of idiosyncratic variation. 289 

 290 

We simulated stochastic individuality in the AL circuit in two ways (Figure 4E): 1) glomerular-291 

level variation in PN input-synapse density (reflecting a statistical relationship observed between 292 

glomerular volume and synapse density in the hemibrain, Figure 4 – figure supplement 4), and 2) 293 

bootstrapping of neuronal compositions within cell types (reflecting variety in developmental 294 

program outcomes for ORNs, PNs, etc.). Supplementary Video 4 shows the diverse connectivity 295 

matrices attained under these resampling approaches. We simulated odor responses in thousands 296 

of ALs made idiosyncratic by these sources of variation, and in each, recorded the firing rates of 297 

PNs when stimulated by the 12 odors from our experimental panel (Figure 4F, Figure 4 – figure 298 

supplement 1).  299 

 300 

To determine which sources of variation produced patterns of PN coding variation consistent 301 

with our empirical measurements, we compared principal components of PN responses from real 302 

idiosyncratic flies to those of simulated idiosyncratic ALs. Empirical PN responses are strongly 303 

correlated at the level of glomeruli (Figure 4G; Figure 1 – figure supplement 8). As a positive 304 

control that the model can recapitulate this empirical structure, resampling PN input-synapse 305 

density across glomeruli produced PN response correlations strongly organized by glomerulus 306 

(Figure 4I). As a negative control, variation in PN responses due solely to poisson timing of 307 

ORN input spikes (i.e., absent any circuit idiosyncrasy) was not organized at the glomerular level 308 

(Figure 4H). Strikingly, bootstrapping ORN membership yielded a strong glomerular 309 

organization in PN responses (Figure 4J). The loadings of the top PCs under ORN bootstrapping 310 

are dominated by responses of a single glomerulus to all odors, including DM2 and DC2. This is 311 

reminiscent of PC2 of PN calcium responses, with prominent (opposite sign) loadings for DM2 312 

and DC2. Bootstrapping LNs, in contrast, produced much less glomerular organization (Figure 313 

4K), with little resemblance to the loadings of the empirical calcium PCs. The PCA loadings for 314 

simulated PN responses under all combinations of cell type bootstrapping and PN input-synapse 315 

density resampling are given in Figure 4 – figure supplement 5.  316 

 317 

DM2 and DC2 (also DL5) stand out in the PCA loadings under PN input-synapse density 318 

resampling and ORN bootstrapping (Figure 4I,J), suggesting that behaviorally-relevant PN 319 
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coding variation is recapitulated in this modeling framework. To formalize this analysis, for each 320 

idiosyncratic AL, we computed a “behavioral preference” by applying the PN PC2 linear model 321 

(Figure 1K,M) to simulated PN responses. We then determined how accurately a linear classifier 322 

could distinguish OCT- vs MCH-preferring ALs in the space of the first 3 PCs of PN responses 323 

(Figure 4 – figure supplement 6). High accuracy was attained under PN input-synapse density 324 

resampling and ORN bootstrapping (sources of circuit variation that produced PN response 325 

loadings highlighting DM2 and DC2). Thus, developmental variability in ORN populations may 326 

drive patterns of PN physiological variation that in turn drive individuality in odor-vs-odor 327 

choice behavior. 328 

 329 

 330 

Discussion 331 

We found an element of the Drosophila olfactory circuit in which patterns of physiological 332 

activity predict individual behavioral preferences. This circuit element can be considered a locus 333 

of individuality, as it appears to contribute to idiosyncratic preferences among isogenic animals 334 

reared in the same environment. Specifically, the difference in the activation of PNs in DC2 and 335 

DM2 during odor exposure predicts idiosyncratic OCT-vs-MCH preferences (Figures 1, 2). This 336 

circuit element is in the olfactory sensory periphery and explains a large portion of the 337 

individuality signal, suggesting that behavioral idiosyncrasy arises early and suddenly in the 338 

sensorimotor transformation.  339 

 340 

Correlating behavior to microscopic circuit features at the individual level is challenging 341 

(Koulakov et al., 2005). Measurements of both calcium responses and preference behavior are 342 

noisy. Calcium recordings are slow to acquire, making it hard to achieve sample sizes sufficient 343 

for machine-learning discovery of correlations with behavior. We conducted three major 344 

experiments (paired odor-vs-odor preference and calcium recordings, odor-vs-air preference and 345 

calcium recordings, and odor-vs-odor and Brp-Short imaging), each with training and test sets on 346 

the scale of 20-60 individuals each. This allowed us to do some limited statistical discovery of 347 

correlations, which we restrained by conducting at most five exploratory correlation 348 

measurements between circuit and behavioral measures. We were particularly struck by the 349 

extent to which PN activity could predict preference between two aversive odors. Importantly, 350 

we confirmed this by evaluating the PN calcium-behavior model on a test set of flies measured 351 

several weeks after the training flies, finding the same statistically robust trend in both data 352 

partitions (training set: R2 = 0.15, n = 47, p = 0.0063; testing set: R2 = 0.31, n = 22, p = 0.0069; 353 

Figure 2 – figure supplement 1).  354 

 355 

Previous work has found mammalian peripheral circuit areas are predictive of individual 356 

behavior (Britten et al., 1996; Michelson et al., 2017; Newsome et al., 1989; Osborne et al., 357 

2005), but this study is among the first (Linneweber et al., 2020; Mellert et al., 2016; Skutt-358 

Kakaria et al., 2019) to link cellular-level circuit variants and individual behavior in the absence 359 
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of genetic variation. Another key conclusion is that loci of individuality are likely to vary, even 360 

within the sensory periphery, with the specific behavioral paradigm (i.e., odor-vs-odor or odor-361 

vs-air). Our ability to predict behavioral preferences was limited by the repeatability of the 362 

behavior itself (Figure 1 – figure supplement 9). Low persistence of odor preference may be 363 

attributable to factors like internal states or plasticity. It may be fruitful in future studies to map 364 

circuit elements whose activity predicts trial-to-trial behavioral fluctuations within individuals. 365 

 366 

Seeking insight into the molecular basis of behaviorally-relevant physiological variation, we 367 

imaged Brp in the axon terminals of the ORN-PN synapse, using confocal and expansion 368 

microscopy. Brp glomerular density was a significant predictor of individual odor-vs-odor 369 

preferences (Figure 3). The strongest predictor of OCT-MCH preference among principal 370 

components of Brp-Short density features contrastive loadings between DM2 and other 371 

glomeruli, similar to the DM2 - DC2 contrast present in the model that predicts odor preference 372 

from PN calcium. This is consistent with the recent finding of a linear relationship between 373 

synaptic density and excitatory postsynaptic potentials (Liu et al., 2022) and another study in 374 

which idiosyncratic synaptic density in central complex output neurons predicts individual 375 

locomotor behavior (Skutt-Kakaria et al., 2019). The predictive relationship between Brp and 376 

behavior was weaker than that of PN calcium responses, suggesting there are other determinants, 377 

such as other synaptic proteins, neurite morphology, or the influence of idiosyncratic LNs (Chou 378 

et al., 2010) modulating the ORN-PN transformation (Nagel et al., 2015). 379 

 380 

To integrate our synaptic and physiological results, we implemented a spiking model with 3,062 381 

neurons and synaptic weights drawn directly from the fly connectome (Scheffer et al., 2020) 382 

(Figure 4). With light parameter tuning, this model recapitulated canonical AL computations, 383 

providing a baseline for assessing the effects of idiosyncratic stochastic variation. The apparent 384 

variation in odor responses across simulated individuals (Figure 4F) is less than that seen in the 385 

empirical calcium responses (Figure 1H), likely due to 1) biological phenomena missing from 386 

the model, 2) the lack of measurement noise, and 3) the fact that our perturbations are applied to 387 

the connectome of a single fly. When examining PCA loadings, however, simulating 388 

idiosyncratic ALs by varying PN input synapse density or bootstrapping ORNs produced 389 

correlated PN responses across odors in DC2 and DM2, matching our experimental results. 390 

These sources of variation specifically implicate the ORN-PN synapse (like our Brp results) as 391 

an important substrate for establishing behaviorally-relevant patterns of PN response variation. 392 

 393 

The flies used in our experiments were isogenic and reared in standardized laboratory conditions 394 

that produce reduced behavioral individuality compared to enriched environments (Akhund-Zade 395 

et al., 2019; Körholz et al., 2018; Zocher et al., 2020). Yet, even these conditions yield 396 

substantial behavioral individuality. We do not expect variability in the expression of the flies’ 397 

transgenes to be a major driver of this individuality, as wildtype flies have a similarly broad 398 

distribution of odor preferences (Honegger et al., 2019). The ultimate source of stochasticity in 399 
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this behavior remains a mystery, with possibilities ranging from thermal fluctuations at the 400 

molecular scale to macroscopic, but seemingly irrelevant, variations like the exact fill level of the 401 

culture media (Honegger and de Bivort, 2018). Developing nervous systems employ various 402 

compensation mechanisms to dampen out the effects of these fluctuations (Marder, 2011; Tobin 403 

et al., 2017). Behavioral variation may be beneficial, supporting a bet-hedging strategy (Hopper, 404 

1999) to counter environmental fluctuations (Akhund-Zade et al., 2020; Honegger et al., 2019; 405 

Kain et al., 2015; Krams et al., 2021). Empirically, the net effect of dampening systems and 406 

accreted ontological fluctuations is individuals with diverse behaviors (Gomez-Marin and 407 

Ghazanfar, 2019). This process unfolds across all levels of biological regulation. Just as PN 408 

response variation appears to be partially rooted in glomerular Brp variation, the latter has its 409 

own molecular roots, including, perhaps, stochasticity in gene expression (Li et al., 2017; Raj et 410 

al., 2010), itself a predictor of idiosyncratic behavioral biases (Werkhoven et al., 2021). 411 

Improved methods to longitudinally assay the fine-scale molecular and anatomical makeup of 412 

behaving organisms throughout development and adulthood will be invaluable to further 413 

illuminate the mechanistic origins of individuality.   414 
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Materials and Methods 415 

 416 

Data and code availability 417 

All raw data, totaling 600 GB, are available via hard drive from the authors. A smaller (7 GB) 418 

repository with partially processed data files and MATLAB/Python scripts sufficient to generate 419 

figures and results is available at Zenodo (doi:10.5281/zenodo.14252278). 420 

 421 

Fly rearing 422 

Experimental flies were reared in a Drosophila incubator (Percival Scientific DR-36VL) at 22° 423 

C, 40% relative humidity, and 12:12h light:dark cycle. Flies were fed cornmeal/dextrose 424 

medium, as previously described (Honegger et al., 2019). Mated female flies aged 3 days post-425 

eclosion were used for behavioral persistence experiments. Mated female flies aged 7 to 15 days 426 

post-eclosion were used for all paired behavior-calcium imaging and immunohistochemistry 427 

experiments. 428 

 429 

Fly stocks 430 

The following stocks were obtained from the Bloomington Drosophila Stock Center: 431 

P{20XUAS-IVS-GCaMP6m}attP40 (BDSC #42748), w[*]; P{w[+mC]=Or13a-GAL4.F}40.1 432 

(BDSC #9945), w[*]; P{w[+mC]=Or19a-GAL4.F}61.1 (BDSC #9947), w[*]; 433 

P{w[+mC]=Or22a-GAL4.7.717}14.2 (BDSC #9951), w[*]; P{w[+mC]=Orco-GAL4.W}11.17; 434 

TM2/TM6B, Tb[1] (BDSC #26818). Transgenic lines were outcrossed to the isogenic line 435 

isokh11 (Honegger et al., 2019) for at least 5 generations prior to being used in any experiments. 436 

GH146-Gal4 was a gift provided by Y. Zhong (Honegger et al., 2019). w; UAS-Brp-Short-437 

mStrawberry; UAS-mCD8-GFP; + was a gift of Timothy Mosca and was not outcrossed to the 438 

isokh11 background (Mosca and Luo, 2014). 439 

 440 

Odor delivery 441 

Odor delivery during behavioral tracking and neural activity imaging was controlled with 442 

isolation valve solenoids (NResearch Inc.) (Honegger et al., 2019). Saturated headspace from 40 443 

ml vials containing 5 ml pure odorant were serially diluted via carbon-filtered air to generate a 444 

variably (10-25%) saturated airstream controlled by digital flow controllers (Alicat Scientific) 445 

and presented to flies at total flow rates of ~100 mL/min. Dilution on the order of 10% is typical 446 

of other odor tunnel assays, as in Claridge-Chang et al. (2009). To yield the greatest signal of 447 

individual odor preference, dilution factors for odorants were adjusted on a week-by-week basis 448 

to ensure that the mean preference was approximately 50%. The odor panel used for imaging 449 

was comprised of the following odorants: 2-heptanone (CAS #110-43-0, Millipore Sigma), 1-450 

pentanol (CAS #71-41-0, Millipore Sigma), 3-octanol (CAS #589-98-0, Millipore Sigma), hexyl-451 

acetate (CAS #142-92-7, Millipore Sigma), 4-methylcyclohexanol (CAS #589-91-3, Millipore 452 

Sigma), pentyl acetate (CAS #628-63-7, Millipore Sigma), 1-butanol (CAS #71-36-3, Millipore 453 

Sigma), ethyl lactate (CAS #97-64-3, Millipore Sigma), geranyl acetate (CAS #105-87-3, 454 
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Millipore Sigma), 1-hexanol (CAS #111-27-34, Millipore Sigma), citronella java essential oil (455 

191112, Aura Cacia), and 200 proof ethanol (V1001, Decon Labs).  456 

 457 

Odor preference behavior 458 

Odor preference was measured at 25°C and 20% relative humidity. As previously described 459 

(Honegger et al., 2019), individual flies confined to custom-fabricated tunnels were illuminated 460 

with infrared light and behavior was recorded with a digital camera (Basler) and zoom lens 461 

(Pentax). The odor choice tunnels were 50 mm long, 5 mm wide, and 1.3 mm tall. Custom real-462 

time tracking software written in MATLAB was used to track centroid, velocity, and principal 463 

body axis angle throughout the behavioral experiment, as previously described (Honegger et al., 464 

2019). After a 3-minute acclimation period, odorants were delivered to either end of the tunnel 465 

array for 3 minutes. Odor preference score was calculated as the fraction of time spent in the 466 

reference side of the tunnel during odor-on period minus the time spent in the reference side of 467 

the tunnel during the pre-odor acclimation period.  468 

 469 

Behavioral preference persistence measurements 470 

After measuring odor preference, flies were stored in individual housing fly plates (modified 96-471 

well plates; FlySorter, LLC) on standard food, temperature, humidity, and lighting conditions. 472 

Odor preference of the same individuals was measured 3 and/or 24 hours later. In some cases, fly 473 

tunnel position was randomized between measurements. We observed that randomization had 474 

little effect on preference persistence. 475 

 476 

Calcium imaging 477 

Flies expressing GCaMP6m in defined neural subpopulations were imaged using a custom-built 478 

two-photon microscope and ultrafast Ti:Sapphire laser (Spectra-Physics Mai Tai) tuned to 930 479 

nm, at a power of 20 mW out of the objective (Olympus XLUMPlanFL N 20x/1.00 W). For 480 

paired behavior and imaging experiments, the time elapsed between behavior measurement and 481 

imaging ranged from 15 minutes to 3 hours. Flies were anesthetized on ice and immobilized in 482 

an aluminum sheet with a female-fly-sized hole cut in it. The head cuticle between the antennae 483 

and ocelli was removed along with the tracheae to expose the ALs from the dorsal side. Volume 484 

scanning was performed using a piezoelectric objective mount (Physik Instrumente). ScanImage 485 

2013 software (Vidrio Technologies) was used to coordinate galvanometer laser scanning and 486 

image acquisition. Custom Matlab (Mathworks) scripts were used to coordinate image 487 

acquisition and control odor delivery. 256 by 192 (x-y) pixel 16-bit tiff images were recorded. 488 

The piezo travel distance was adjusted between 70 and 90 μm so as to cover most of the AL. The 489 

number of z-sections in a given odor panel delivery varied between 7 and 12 yielding a volume 490 

acquisition rate of 0.833 Hz. Odor delivery occurred from 6-9.6s of each recording. 491 

 492 

Each fly experienced up to four deliveries of the odor panel. The antennal lobe being recorded 493 

(left or right) was alternated after each successful completion of an odor panel. Odors were 494 
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delivered in randomized order. In cases where baseline fluorescence was very weak or no 495 

obvious odor responses were visible, not all four panels were delivered. 496 

 497 

Glomerulus segmentation and labeling 498 

Glomerular segmentation masks were extracted from raw image stacks using a k-means 499 

clustering algorithm based on time-varying voxel fluorescence intensities, as previously 500 

described (Honegger et al., 2019). Each image stack, corresponding to a single odor panel 501 

delivery, was processed individually. Time-varying voxel fluorescence values for each odor 502 

delivery were concatenated to yield a voxel-by-time matrix consisting of each voxel’s recorded 503 

value during the course of all 13 odor deliveries of the odor panel. After z-scoring, principal 504 

component analysis was performed on this matrix and 75% of the variance was retained. Next, k-505 

means (k = 80, 50 replicates with random starting seeds) was performed to produce 50 distinct 506 

voxel cluster assignment maps which we next used to calculate a consensus map. This approach 507 

was more accurate than clustering based on a single k-means seed.  508 

 509 

Of the 50 generated voxel cluster assignment maps, the top 5 were selected by choosing those 510 

maps with the lowest average within-cluster sum of distances, selecting for compact glomeruli. 511 

The remaining maps were discarded. Next, all isolated voxel islands in each of the top 5 maps 512 

were identified and pruned based on size (minimum size = 100 voxels, maximum size = 10000 513 

voxels). Finally, consensus clusters were calculated by finding voxel islands with significant 514 

overlap across all 5 of the pruned maps. Voxels which fell within a given cluster across all 5 515 

pruned maps were added to the consensus cluster. This process was repeated for all clusters until 516 

the single consensus cluster map was complete. In some cases we found by manual inspection 517 

that some individual glomeruli were clearly split into two discrete clusters. These splits were 518 

remedied by automatically merging all consensus clusters whose centroids were separated by a 519 

physical distance of less than 30 voxels and whose peak odor response Spearman correlation was 520 

greater than 0.8. Finally, glomeruli were manually labeled based on anatomical position, 521 

morphology, and size (Grabe et al., 2015). We focused our analysis on 5 glomeruli (DM1, DM2, 522 

DM3, DL5, and DC2), which were the only glomeruli that could be observed in all paired 523 

behavior-calcium datasets. However, not all 5 glomeruli were identified in all recordings (Figure 524 

1 – figure supplement 3). Missing glomerular data was later mean-imputed. Using alternating 525 

least squares to impute data (running the pca function with option ‘als’ to infill missing values 526 

1,000 times and taking the mean infilled matrix – see Figure 1 – figure supplement 5 of 527 

Werkhoven et al., 2021) had negligible effect on the fitted slope and predictive capacity of the 528 

PN PC2 OCT-MCH model compared to mean-infilling. 529 

 530 

Calcium image data analysis 531 

All data was processed and analyzed in MATLAB 2018a (Mathworks). Calcium responses for 532 

each voxel were calculated as Δf/f = [f(t) - F]/F, where f(t) and F are the instantaneous and 533 

average fluorescence, respectively. Each glomerulus' time-dependent calcium response was 534 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 3, 2024. ; https://doi.org/10.1101/2021.12.24.474127doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.24.474127
http://creativecommons.org/licenses/by/4.0/


calculated as the mean Δf/f across all voxels falling within the glomerulus’ automatically-535 

generated segmentation mask during a single volume acquisition. Time-varying odor responses 536 

were normalized to baseline by subtracting the median of pre-odor Δf/f from each trace. Peak 537 

odor response was calculated as the maximum fluorescence signal from 7.2s to 10.8s (images 6 538 

through 9) of the recording. 539 

 540 

To compute principal components of calcium dynamics, each fly’s complement of odor panel 541 

responses (a 5 glomeruli by 13 odors = 65-dimensional vector) was concatenated. Missing 542 

glomerulus-odor response values were filled in with the mean glomerulus-odor pair across all fly 543 

recordings for which the data was not missing. After infilling, principal component analysis was 544 

carried out with individual odor panel deliveries as observations and glomerulus-odor responses 545 

pairs as features.  546 

 547 

Inter- and intra-fly distances (Figure 1J) were calculated using the projections of each fly’s 548 

glomerulus-odor responses onto all principal components. For each fly, the average Euclidean 549 

distance between response projections 1) among left lobe trials, 2) among right lobe trials, and 3) 550 

between left and right lobe trials were averaged together to get a single within-fly distance. Intra-551 

fly distances were computed in a similar fashion (for each fly, taking the average distance of its 552 

response projections to those of other flies using only left lobe trials / only right lobe trials / 553 

between left-right trials, then averaging these three values to get a single across-fly distance). 554 

 555 

In a subset of experiments in which we imaged calcium activity, some solenoids failed to open, 556 

resulting in the failure of odor delivery in a small number of trials. In these cases, we identified 557 

trials with valve failures by manually recognizing that glomeruli failed to respond during the 558 

nominal odor period. These trials were treated as missing data and infilled, as described above. 559 

Fewer than ~10% of flies and 5% of odor trials were affected. 560 

 561 

For all predictive models constructed, the average principal component score or glomerulus-odor 562 

Δf/f response across trials was used per individual; that is, each fly contributed one data point to 563 

the relevant model. Linear models were constructed from behavior scores and the relevant 564 

predictor (principal component, average Δf/f across dimensions, specific glomerulus 565 

measurements) as described in the text and Tables 1-2. All reported linear model p-values are 566 

nominal, i.e., unadjusted for multiple hypothesis comparisons. 95% confidence intervals around 567 

model regression lines were estimated as +/- 2 standard deviations of the value of the regression 568 

line at each x-position across 2000 bootstrap replicates (resampling flies). To predict behavior as 569 

a function of time during odor delivery, we analyzed data as described above, but considered 570 

only Δf/f at each single time point (Figure 2 – figure supplement 2A-C), rather than averaging 571 

during the peak response interval. 572 

 573 
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To decode individual identity from neural responses, we first performed PCA on individual odor 574 

panel peak responses. We retained principal component scores constituting specified fractions of 575 

variance (Figure 1 – figure supplement 6A) and trained a linear logistic classifier to predict 576 

individual identity from single odor panel deliveries. 577 

 578 

To decode odor identity from neural responses, each of the 5 recorded glomeruli were used as 579 

features, and the calcium response of each glomerulus to a specific odor at a specified time point 580 

were used as observations (PNs, n = 5317 odor deliveries; ORNs, n = 2704 odor deliveries). A 581 

linear logistic classifier was trained to predict the known odor identity using 2-fold cross-582 

validation. That is, a model was trained on half the data and evaluated on the remaining half, and 583 

then this process was repeated with the train and test half reversed. The decoding accuracy was 584 

quantified as the fraction of odor deliveries in which the predicted odor was correct. 585 

 586 

Inference of correlation between latent calcium and behavior states 587 

We performed a simulation-based analysis to infer the strength of the correlation between latent 588 

calcium (Brp) and behavior states, given the R2 of a given linear model. Figure 1 – figure 589 

supplement 9 is a schematic of a possible data generation process that underlies our observed 590 

data. We assume that the “true” behavioral and calcium values of the animal are captured by 591 

unobserved latent states Xc and Xb, respectively, such that the R2 between Xc and Xb is the 592 

biological signal captured by the model, having adjusted for the noise associated with actually 593 

measuring behavior and calcium (R2
latent). Our calcium and odor preference scores are subject to 594 

measurement error and temporal instability (behavior and neural activity were measured 1-3 595 

hours apart). These effects are both noise with respect to estimating the linear relationship 596 

between calcium and behavior. Their magnitude can be estimated using the empirical 597 

repeatability of behavior and calcium experiments respectively. Thus, our overall approach was 598 

to assume true latent behavior and calcium signals that are correlated by the level set at R2
latent, 599 

add noise commensurate with the repeatability of these measures to simulate measured behavior 600 

and calcium, and record the simulated empirical R2 between these measured signals. This was 601 

done many times to estimate distributions of empirical R2 given R2
latent. These distributions could 602 

finally be used in the inverse direction to infer R2
latent given the actual model R2 values computed 603 

in our study. 604 

 605 

Specifically, we simulated Xc as a set of N standard normal variables (N equalling the number of 606 

flies used to compute a correlation between predicted and measured preference) and generated Xb 607 

= rlatent Xc + (1- rlatent
 2Z)½, where Z is a set of N standard normal variables uncorrelated with Xc, a 608 

procedure that ensures that corr(Xc, Xb) = rlatent. Next, we simulated observed calcium readouts 609 

Xc’ and Xc”, such that corr(Xc, Xc’) = corr(Xc, Xc”) = rc. Similarly, we simulated noisy observed 610 

behavioral assay readouts Xb’ and Xb”, such that corr(Xb, Xb’) = corr(Xb, Xb”) = rb. The values 611 

of rc and rb were drawn from the empirical repeatability of calcium (Rc,c
2) and behavior (Rb,b

2) 612 

respectively as follows. Since calcium is a multidimensional measure, and our calcium model 613 
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predictors are based on principal components of glomerulus-odor responses, we used variance 614 

explained along the PCs to calculate a single value for the calcium repeatability Rc,c
2. We 615 

compared the eigenvalues of the real calcium PCA to those of shuffled calcium data (shuffling 616 

glomerulus/odor responses for each individual fly), computing Rc,c
2  by summing the variance 617 

explained along the PCs of the calcium data up until the component-wise variance for the 618 

calcium data fell below that of the shuffled data, a similar approach as done in Berman et al., 619 

2014 and Werkhoven et al., 2021. That is, we determined which empirical PCs had more 620 

variance than their corresponding rank-matched PC in shuffled data, interpreted the remaining 621 

PCs as harboring the noise of the experiment, and totaled the variance explained of the non-noise 622 

PCs as our measure of the repeatability of the measurement as a whole. Rc,c
2 was calculated to be 623 

0.77 for the full PN calcium data.  624 

 625 

To incorporate uncertainty in calcium-calcium repeatability, we utilized bootstrapping. We 626 

resampled the calcium data associated with individual flies 10,000 times, performed PCA and 627 

computed Rc,c
2 for each resampled dataset, then set rc = (Rc,c

2)1/4 to ensure corr(Xc’, Xc”)2 = Rc,c
2. 628 

For behavior-behavior uncertainty, we set rb from the repeatability across odor preference trials 629 

in the same flies measured 3h apart (Rb,b
2 = 0.12 for OCT vs MCH, Figure 1 – figure supplement 630 

1D using the full dataset of flies). We also resampled the flies 10,000 times, computed Rb,b
2 for 631 

each resampled dataset, and set rb = (Rb,b
2)1/4 to ensure corr(Xb’, Xb”)2 = Rb,b

2.  632 

 633 

We varied rlatent from 0 to 1 in increments of 0.01, and for each rlatent and bootstrap iteration we 634 

simulated a set of N Xc, and generated Xb , Xc’, Xc”, Xb’, and Xb”, then we computed a simulated 635 

observed calcium-behavior relationship strength Rc,b
2 = corr(Xc’, Xb’)2. We repeated this 636 

simulation 10,000 times for each rlatent, transformed rlatent to R2
latent such that for a quantile of 637 

interest q, P(rlatent ≤ q) matched P(R2
latent ≤ q2), and plotted the resultant relationship between 638 

R2
latent against Rc,b

2  (percentiles of Rc,b
2 are displayed in Figure 1 – figure supplement 9B). We 639 

inferred R2
latent by first drawing bootstrapped samples of calcium-behavior R2, then adding 640 

together the marginal distributions of R2
latent for each calcium-behavior R2. We report the median 641 

R2
latent and 90% confidence interval as estimated by the 5th-95th quantiles. 642 

 643 

The procedure outlined above was done analogously for models using Brp-short relative 644 

fluorescence intensity, performing the PCA-based calcium response repeatability step with PCA 645 

on the multidimensional Brp-short relative fluorescence intensity (which yielded  Rbrp,brp
2 = 646 

0.78). 647 

 648 

DoOR data 649 

DoOR data for the glomeruli and odors relevant to our study was downloaded from 650 

http://neuro.uni-konstanz.de/DoOR/default.html (Münch and Galizia, 2016).  651 

 652 

Yoked odor experience experiments 653 
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We selected six flies for which both odor preference and neural activity were recorded to serve 654 

as the basis for imposed odor experiences for yoked control flies. The experimental flies were 655 

chosen to represent a diversity of preference scores. Each experimental fly’s odor experience was 656 

binned into discrete odor bouts to represent experience of either MCH or OCT based on its 657 

location in the tunnel as a function of time (Figure 2D). Odor bouts lasting less than 100 ms were 658 

omitted due to limitations on odor-switching capabilities of the odor delivery apparatus. To 659 

deliver a given experimental fly’s odor experience to yoked controls, we set both odor streams 660 

(on either end of the tunnel apparatus) to deliver the same odor experienced by the experimental 661 

fly at that moment during the odor-on period. No odor was delivered to yoked controls during 662 

time points in which the experimental fly resided in the tunnel choice zone (central 5 mm). See 663 

Figure 2D for an example pair of experimental fly and yoked control behavior and odor 664 

experience. 665 

 666 

Immunohistochemistry 667 

After measuring odor preference behavior, 7-15 day-old flies were anesthetized on ice and brains 668 

were dissected in phosphate buffered saline (PBS). Dissection and immunohistochemistry were 669 

carried out as previously reported (Wu and Luo, 2006). The experimenter was blind to the 670 

behavioral scores of all individuals throughout dissection, imaging, and analysis. Individual 671 

identities were maintained by fixing, washing, and staining each brain in an individual 0.2 mL 672 

PCR tube using fluid volumes of 100 uL per brain (Fisher Scientific). Primary incubation 673 

solution contained mouse anti-nc82 (1:40, DSHB), chicken anti-GFP (1:1000, Aves Labs), rabbit 674 

anti-mStrawberry (1:1000, biorbyt), and 5% normal goat serum (NGS, Invitrogen) in PBT (0.5% 675 

Triton X-100 in PBS). Secondary incubation solution contained Atto 647N-conjugated goat anti-676 

mouse (1:250, Millipore Sigma), Alexa Fluor 568-conjugated goat anti-rabbit (1:250), Alexa 677 

Fluor 488-conjugated goat anti-chicken (1:250, ThermoFisher), and 5% NGS in PBT. Primary 678 

and secondary incubation times were 2 and 3 overnights, respectively, at 4° C. Stained samples 679 

were mounted and cleared in Vectashield (H-1000, Vector Laboratories) between two coverslips 680 

(12-568B, Fisher Scientific). Two reinforcement labels (5720, Avery) were stacked to create a 681 

0.15 mm spacer.  682 

 683 

Expansion microscopy 684 

Immunohistochemistry for expansion microscopy was carried out as described above, with the 685 

exception that antibody concentrations were modified as follows: mouse anti-nc82 (1:40), 686 

chicken anti-GFP (1:200), rabbit anti-mStrawberry (1:200), Atto 647N-conjugated goat anti-687 

mouse (1:100), Alexa Fluor 568-conjugated goat anti-rabbit (1:100), Alexa Fluor 488-conjugated 688 

goat anti-chicken (1:100). Expansion of stained samples was performed as previously described 689 

(Asano et al., 2018; Gao et al., 2019). Expanded samples were mounted in coverslip-bottom petri 690 

dishes (MatTek Corporation) and anchored by treating the coverslip with poly-l-lysine solution 691 

(Millipore Sigma) as previously described (Asano et al., 2018).  692 

 693 
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Confocal imaging 694 

All confocal imaging was carried out at the Harvard Center for Biological Imaging. Unexpanded 695 

samples were imaged on an LSM700 (Zeiss) inverted confocal microscope equipped with a 40x 696 

oil-immersion objective (1.3 NA, EC Plan Neofluar, Zeiss). Expanded samples were imaged on 697 

an LSM880 (Zeiss) inverted confocal microscope equipped with a 40x water-immersion 698 

objective (1.1 NA, LD C-Apochromat, Zeiss). Acquisition of Z-stacks was automated with Zen 699 

Black software (Zeiss). 700 

 701 

Standard confocal image analysis 702 

We used custom semi-automated code to generate glomerular segmentation masks from confocal 703 

z-stacks of unexpanded Orco>Brp-Short brains. Using Matlab, each image channel was median 704 

filtered (σx, σy, σz = 11, 11, 1 pixels) and downsampled in x and y by a factor of 11. Next, an 705 

ORN mask was generated by multiplying and thresholding the Orco>mCD8 and Orco>Brp-Short 706 

channels. Next, a locally normalized nc82 and Orco>mCD8 image stack were multiplied and 707 

thresholded, and the ORN mask was applied to remove background and other undesired brain 708 

structures. This pipeline resulted in a binary image stack which maximized the contrast of the 709 

glomerular structure of the antennal lobe. We then applied a binary distance transform and 710 

watershed transform to generate discrete subregions which aimed to represent segmentation 711 

masks for each glomerulus tagged by Orco-Gal4.  712 

 713 

However, this procedure generally resulted in some degree of under-segmentation; that is, some 714 

glomerular segmentation masks were merged. To split each merged segmentation mask, we 715 

convolved a ball (whose radius was proportional to the cube root of the volume of the 716 

segmentation mask in question) across the mask and thresholded the resulting image. The 717 

rationale of this procedure was that 2 merged glomeruli would exhibit a mask shape resembling 718 

two touching spheres, and convolving a similarly-sized sphere across this volume followed by 719 

thresholding would split the merged object. After ball convolution, we repeated the distance and 720 

watershed transform to once more generate discrete subregions representing glomerular 721 

segmentation masks. This second watershed step generally resulted in over-segmentation; that is, 722 

by visual inspection it was apparent that many glomeruli were split into multiple subregions. 723 

Therefore, we finally manually agglomerated the over-segmented subregions to generate single 724 

segmentation masks for each glomerulus of interest. We used a published atlas to aid manual 725 

identification of glomeruli (Grabe et al., 2015). The total Brp-Short fluorescence signal within 726 

each glomerulus was determined and divided by the volume of the glomerulus’ segmentation 727 

mask to calculate Brp-Short density values. 728 

 729 

Expansion microscopy image analysis 730 

The spots function in Imaris 9.0 (Bitplane) was used to identify individual Brp-Short puncta in 731 

expanded sample image stacks of Or13a>Brp-Short samples (Mosca and Luo, 2014). The spot 732 

size was set to 0.5 um, background subtraction and region-growing were enabled, and the default 733 
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spot quality threshold was used for each image stack. Identified spots were used to mask the Brp-734 

Short channel and the resultant image was saved as a new stack. In MATLAB, a glomerular 735 

mask was generated by smoothing (σx, σy, σz = 40, 40, 8 pixels) and thresholding (92.5th 736 

percentile) the raw Brp-Short image stack. The mask was then applied to the spot image stack to 737 

remove background spots. Finally, the masked spot image stack was binarized and spot number 738 

and properties were quantified. 739 

 740 

Antennal Lobe modeling 741 

We constructed a model of the antennal lobe to test the effect of circuit variation on PN activity 742 

variation across individuals. Our general approach to producing realistic circuit activity with the 743 

AL model was 1) using experimentally-measured parameters whenever possible (principally the 744 

connectome wiring diagram and biophysical parameters measured electrophysiologically), 2) 745 

associating free parameters only with biologically plausible categories of elements, while 746 

minimizing their number, and 3) tuning the model using those free parameters so that it 747 

reproduced high-level patterns of activity considered in the field to represent the canonical 748 

operations of the AL. Simulations were run in Python (version 3.6) (van Rossum and Drake, 749 

2011), and model outputs were analyzed using Jupyter notebooks (Kluyver et al., 2016) and 750 

Python and Matlab scripts.  751 

 752 

AL model neurons 753 

Release 1.2 of the hemibrain connectomics dataset (Scheffer et al., 2020) was used to set the 754 

connections in the model. Hemibrain body IDs for ORNs, LNs, and PNs were obtained via the 755 

lists of neurons supplied in the supplementary tables in Schlegel et al., 2020. ORNs and PNs of 756 

non-olfactory glomeruli (VP1d, VP1l, VP1m, VP2, VP3, VP4, VP5) were ignored, leaving 51 757 

glomeruli. Synaptic connections between the remaining 2574 ORNs, 197 LNs, 166 mPNs, and 758 

130 uPNs were queried from the hemibrain API. All ORNs were assigned to be excitatory 759 

(Wilson, 2013). Polarities were assigned to PNs based on the neurotransmitter assignments in 760 

Bates et al., 2020. mPNs without neurotransmitter information were randomly assigned an 761 

excitatory polarity with probability equal to the fraction of neurotransmitter-identified mPNs that 762 

are cholinergic; the same process was performed for uPNs. After confirming that the model’s 763 

output was qualitatively robust to which mPNs and uPNs were randomly chosen, this random 764 

assignment was performed once and then frozen for subsequent analyses. 765 

 766 

Of the 197 LNs, we assigned 31 to be excitatory, based on the estimated 1:5.4 ratio of eLNs to 767 

iLNs in the AL (Tsai et al., 2018). To account for observations that eLNs broadly innervate the 768 

AL (Shang et al., 2007), all LNs were ranked by the number of innervated glomeruli, and the 31 769 

eLNs were chosen uniformly at random from the top 50% of LNs in the list. This produced a 770 

distribution of glomerular innervations in eLNs qualitatively similar to that of krasavietz LNs in 771 

Supplementary Figure 6 of Chou et al., 2010. 772 

 773 

Voltage model 774 
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We used a single-compartment leaky-integrate-and-fire voltage model for all neurons as in 775 

Kakaria and de Bivort, 2017, in which each neuron had a voltage Vi(t) and current Ii(t). When the 776 

voltage of neuron i was beneath its threshold Vi, thr, the following dynamics were obeyed: 777 

 778 

𝐶𝑖

𝑑𝑉𝑖

𝑑𝑡
 =  

𝑉𝑖,0 − 𝑉𝑖(𝑡)

𝑅𝑖
+ 𝐼𝑖,𝑜𝑑𝑜𝑟(𝑡)  + ∑ 𝑎𝑖𝑊𝑗𝑖𝐼𝑗(𝑡)

𝑁

𝑗 =1

 779 

 780 

Each neuron i had electrical properties: membrane capacitance Ci, resistance Ri, and resting 781 

membrane potential Vi,0 with values from electrophysiology measurements (Table 2). 782 

 783 

When the voltage of a neuron exceeded the threshold Vi, thr, a templated action potential was 784 

filled into its voltage time trace, and a templated postsynaptic current was added to all 785 

downstream neurons, following the definitions in Kakaria and de Bivort, 2017. 786 

 787 

Odor stimuli were simulated by triggering ORNs to spike at frequencies matching known 788 

olfactory receptor responses to the desired odor. The timing of odor-evoked spikes was given by 789 

a Poisson process, with firing rate FR for ORNs of a given glomerulus governed by: 790 

 791 

𝐹𝑅𝑔𝑙𝑜𝑚,𝑜𝑑𝑜𝑟(𝑡)  =  𝐹𝑅𝑚𝑎𝑥𝐷𝑔𝑙𝑜𝑚,𝑜𝑑𝑜𝑟(𝑓𝑎 + (1 − 𝑓𝑎)𝑒−𝑡/𝑡𝑎) 792 

 793 

FRmax, the maximum ORN firing rate, was set to 400 Hz. Dglom, odor is a value between 0 and 1 794 

from the DoOR database, representing the response of an odorant receptor/glomerulus to an 795 

odor, estimated from electrophysiology and/or fluorescence data (Münch and Galizia, 2016). 796 

ORNs display adaptation to odor stimuli (Wilson, 2013), captured by the final term with 797 

timescale ta = 110 ms to 75% of the initial value, as done in Kao and Lo, 2020. Thus, the 798 

functional maximum firing rate of an ORN was 75% of 400 Hz = 300 Hz, matching the highest 799 

ORN firing rates observed experimentally (Hallem et al., 2004). After determining the times of 800 

ORN spikes according to this firing-rate rule, spikes were induced by the addition of 106 801 

picoamps in a single time step. This reliably triggered an action potential in the ORN, regardless 802 

of currents from other neurons. In the absence of odors, spike times for ORNs were drawn by a 803 

Poisson process at 10 Hz, to match reported spontaneous firing rates (de Bruyne et al., 2001).  804 

 805 

For odor-glomeruli combinations with missing DoOR values (40% of the dataset), we performed 806 

imputation via alternating least squares (using the pca function with option ‘als’ to infill missing 807 

values (MATLAB documentation) on the odor x glomerulus matrix 1000 times and taking the 808 

mean infilled matrix, which provides a closer match to ground truth missing values than a single 809 

run of ALS (Figure 1 – figure supplement 5 of Werkhoven et al., 2021).  810 

 811 

A neuron j presynaptic to i supplies its current Ij(t) scaled by the synapse strength Wji, the 812 

number of synapses in the hemibrain dataset from neuron j to i. Rows in W corresponding to 813 
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neurons with inhibitory polarity (i.e. GABAergic PNs or LNs) were set negative. Finally, post-814 

synaptic neurons (columns of the connectivity matrix) have a class-specific multiplier ai, a hand-815 

tuned value, described below. 816 

 817 

AL model tuning 818 

Class-specific multiplier current multipliers (ai) were tuned using the panel of 18 odors from 819 

Bhandawat et al., 2007 (our source for several experimental observations of high-level AL 820 

function): benzaldehyde, butyric acid, 2,3-butanedione, 1-butanol, cyclohexanone, Z3-hexenol, 821 

ethyl butyrate, ethyl acetate, geranyl acetate, isopentyl acetate, isoamyl acetate, 4-methylphenol, 822 

methyl salicylate, 3-methylthio-1-propanol, octanal, 2-octanone, pentyl acetate, E2-hexenal, 823 

trans-2-hexenal, gamma-valerolactone. Odors were “administered” for 400 ms each, with 300 ms 824 

odor-free pauses between odor stimuli. 825 

 826 

The high-level functions of the AL that represent a baseline, working condition were: (1) firing 827 

rates for ORNs, LNs, and PNs matching the literature (listed in Table 2 and see (Bhandawat et 828 

al., 2007; Dubin and Harris, 1997; Jeanne and Wilson, 2015; Seki et al., 2010), (2) a more 829 

uniform distribution of PN firing rates during odor stimuli compared to ORN firing rates, (3) 830 

greater separation of representations of odors in PN-coding space than in ORN-coding space, and 831 

(4) a sublinear transfer function between ORN firing rates and PN firing rates. Features (2) - (4) 832 

relate to the role of the AL in enhancing the separability of similar odors (Bhandawat et al., 833 

2007). 834 

 835 

To find a parameterization with those functions, we tuned the values of ai as scalar multipliers on 836 

ORN, eLN, iLN, and PN columns of the hemibrain connectivity matrix. Thus, these values 837 

represent cell type-specific sensitivities to presynaptic currents, which may be justified by the 838 

fact that ORNs/LNs/PNs are genetically distinct cell populations (McLaughlin et al., 2021; Xie 839 

et al., 2021). A grid search of the four class-wise sensitivity parameters produced a configuration 840 

that reasonably satisfied the above criteria (Figure 4 – figure supplement 2). In this 841 

configuration, the ORN columns of the hemibrain connectivity matrix are scaled by 0.1, eLNs by 842 

0.04, iLNs by 0.02, and PNs by 0.4. The relatively large multiplier on PNs is potentially 843 

consistent with the fact that PNs are sensitive to small differences between weak ORN inputs 844 

(Bhandawat et al., 2007). Model outputs were robust over several different sets of ai, provided 845 

iLN sensitivity ≃ eLN < ORN < PN.  846 

 847 

We analyzed the sensitivity of the model’s parameters around their baseline values of aORN, aeLN, 848 

aiLN, aPN = (0.1, 0.04, 0.02, 0.4). Each parameter was independently scaled up to 4x or 1/4x of its 849 

baseline value (Figure 4 – figure supplement 3), and the PN firing rates recorded. Separately, 850 

multiple-parameter manipulations were performed by multiplying each parameter by a random 851 

log-Normal value with mean 1 and +/-1 standard deviation corresponding to a 2x or 0.5x scaling 852 

on each parameter. Mean PN-odor responses were calculated for all manipulated runs and 853 
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compared to the mean PN-odor responses for the baseline configuration. A manipulation effect 854 

size was calculated by cohen’s d ((mean manipulated response - mean baseline response)/(pooled 855 

standard deviation)). None of these manipulations reached effect size magnitudes larger than 0.9 856 

(which can be roughly interpreted as the number of standard deviations in the baseline PN 857 

responses away from the mean baseline PN response), which signaled that the model was robust 858 

to the sensitivity parameters in this range. The most sensitive parameter was, unsurprisingly, aPN. 859 

 860 

Notable ways in which the model behavior deviates from experimental recordings (and thus 861 

caveats on the interpretation of the model) include: 1) Model LNs appear to have more 862 

heterogeneous firing rates than real LNs, with many LNs inactive for this panel of odor stimuli. 863 

This likely reflects a lack of plastic/homeostatic mechanisms in the model to regularize LN firing 864 

rates given their variable synaptic connectivity (Chou et al., 2010). 2) Some PNs had off-odor 865 

rates that are high compared to real PNs, resulting in a distribution of ON-OFF responses that 866 

had a lower limit than in real recordings. Qualitatively close matches were achieved between the 867 

model and experimental data in the distributions of odor representations in ORN vs PN spaces 868 

and the non-linearity of the ORN-PN transfer function. 869 

 870 

AL model circuit variation generation 871 

We generated AL circuit variability in two ways: cell-type bootstrapping, and synapse density 872 

resampling. These methods assume that the distribution of circuit configurations across 873 

individual ALs can be generated by resampling circuit components within a single individual’s 874 

AL (neurons and glomerular synaptic densities, respectively, from the hemibrain EM volume).  875 

 876 

To test the effect of variation in the developmental complement of neurons of particular types, 877 

we bootstrapped populations of interest from the list of hemibrain neurons. Resampling with 878 

replacement of ORNs was performed glomerulus-by-glomerulus, i.e., separately among each 879 

pool of ORNs expressing a particular Odorant receptor gene. The same was done for PNs. For 880 

LNs, all 197 LNs were treated as a single pool; there was no finer operation based on LN 881 

subtypes or glomerular innervations. This choice reflects the high developmental variability of 882 

LNs (Chou et al., 2010). The number of synapses between a pair of bootstrapped neurons was 883 

equal to the synapse count between those neurons in the hemibrain connectivity matrix. 884 

 885 

In some glomeruli, bootstrapping PNs produced unreasonably high variance in the total PN 886 

synapse count. For instance, DP1m, DC4, and DM3 each harbor PNs that differ in total synapse 887 

count by a factor of ~10. Since these glomeruli have between two to three PNs each, in a sizable 888 

proportion of bootstrap samples, all-highly connected (or all-lowly) connected PNs are chosen in 889 

such glomeruli. To remedy this biologically unrealistic outcome, we examined the relationship 890 

between total input PN synapses within a glomerulus and glomerular volume (Figure 4 – figure 891 

supplement 4). In the “synapse density resampling” method, we required that the number of PN 892 

input synapses within a glomerulus reflect a draw from the empirical relationship between total 893 
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input PN synapses and glomerular volume as present in the hemibrain data set. This was 894 

achieved by, for each glomerulus, sampling from the following distribution that depends on 895 

glomerular volume, then multiplying the number of PN input synapses by a scalar to match that 896 

sampled value: 897 

 898 

𝑙𝑜𝑔 𝑆𝑔  = 𝑙𝑜𝑔 (𝑎 𝑉𝑔
𝑑)  +  𝜀𝑔, 𝜀𝑔 ∼ 𝑁(0, 𝜎2)  899 

 900 

Here Sg is the PN input synapse count for glomerulus g, Vg is the volume of glomerulus g (in 901 

cubic microns), ε is a Gaussian noise variable with standard deviation σ, and a, d are the scaling 902 

factor and exponent of the volume term, respectively. The values of these parameters (a = 8.98, 903 

d = 0.73, σ = 0.38) were fit using maximum likelihood. 904 

 905 

Quantification and statistical analysis 906 

All fly behavior and calcium data was processed and analyzed in MATLAB 2018a (Mathworks). 907 

AL simulations were run in Python (version 3.6) (van Rossum and Drake, 2011), and model 908 

outputs were analyzed using Jupyter notebooks (Kluyver et al., 2016) and Python scripts. We 909 

performed a power analysis prior to the study to determine that recording calcium activity in 20-910 

40 flies would be sufficient to identify moderate calcium-behavior correlations. Sample sizes for 911 

expansion microscopy were smaller, as the experimental procedure was more involved – 912 

therefore, we did not conduct a formal statistical analysis. Linear models were fit using the fitlm 913 

MATLAB function (https://www.mathworks.com/help/stats/fitlm.html); coefficients and p-914 

values of models between measured preferences and predicted preferences are listed in Table 1. 915 

95% confidence intervals around model regression lines were estimated as +/- 2 standard 916 

deviations of the value of the regression line at each x-position across 2000 bootstrap replicates 917 

(resampling flies). Boxplots depict the median value (points), interquartile range (boxes), and 918 

range of the data (whiskers). 919 
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1187 
Figure 1. Idiosyncratic calcium dynamics predict individual odor preferences.  1188 

(A) Olfactory circuit schematic. Olfactory receptor neurons (ORNs, peach outline) and 1189 

projection neurons (PNs, plum outline) are comprised of ~51 classes corresponding to odor 1190 

receptor response channels. ORNs (gray shading) sense odors in the antennae and synapse on 1191 

dendrites of PNs of the same class in ball-shaped structures called glomeruli located in the 1192 

antennal lobe (AL). Local neurons (LNs, green outline) mediate interglomerular cross-talk and 1193 

presynaptic inhibition, amongst other roles (Olsen and Wilson, 2008; Yaksi and Wilson, 2010). 1194 

Odor signals are normalized and whitened in the AL before being sent to the mushroom body 1195 

and lateral horn for further processing. Schematic adapted from Honegger et al., 2019 (B) 1196 

Experiment outline. (C) Odor preference behavior tracking setup (reproduced from Honegger, et 1197 
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al. 2019) and example individual fly ethograms. OCT (green) and MCH (magenta) were 1198 

presented for 3 minutes. (D) Head-fixed 2-photon calcium imaging and odor delivery setup 1199 

(reproduced from Honegger et al., 2019) (E) Orco and GH146 driver expression profiles (left) 1200 

and example segmentation masks (right) extracted from 2-photon calcium images for a single fly 1201 

expressing Orco>GCaMP6m (top, expressed in a subset of all ORN classes) or 1202 

GH146>GCaMP6m (bottom, expressed in a subset of all PN classes). (F) Time-dependent Δf/f 1203 

for glomerular odor responses in ORNs (peach) and PNs (plum) averaged across all individuals: 1204 

DC2 to OCT (upper left), DM2 to OCT (upper right), DC2 to MCH (lower left), and DM2 to 1205 

OCT (lower right). Shaded error bars represent S.E.M. (G) Peak Δf/f for each glomerulus-odor 1206 

pair averaged across all flies. (H) Individual neural responses measured in ORNs (left) or PNs 1207 

(right) for 50 flies each. Columns represent the average of up to 4 odor responses from a single 1208 

fly. Each row represents one glomerulus-odor response pair. Odors are the same as in panel (G). 1209 

(I) Principal component analysis of individual neural responses. Fraction of variance explained 1210 

versus principal component number (left). Trial 1 and trial 2 of ORN (middle) and PN (right) 1211 

responses for 20 individuals (unique colors) embedded in PC 1-2 space. (J) Euclidean distances 1212 

between glomerulus-odor responses within and across flies measured in ORNs (n = 65 flies) and 1213 

PNs (n = 122 flies). Distances calculated without PCA compression. Points represent the median 1214 

value, boxes represent the interquartile range, and whiskers the range of the data. (K) 1215 

Bootstrapped R2 of OCT-MCH preference prediction from each of the first 5 principal 1216 

components of neural activity measured in ORNs (top, all data) or PNs (bottom, training set). (L) 1217 

Measured OCT-MCH preference versus preference predicted from PC 1 of ORN activity (n = 35 1218 

flies). (M) Measured OCT-MCH preference versus preference predicted from PC 2 of PN 1219 

activity in n = 69 flies using a model trained on a training set of n = 47 flies (see Figure 2 – 1220 

figure supplement 1C-D for train/test flies analyzed separately). Shaded regions in L,M are the 1221 

95% CIs of the fit estimated by bootstrapping.  1222 
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1223 

Figure 1 – figure supplement 1. Behavioral measurements and individual preference 1224 

persistence. 1225 

(A) Behavioral measurement apparatus (adapted from Honegger et al., 2019) (B) Odor 1226 

preference persistence over 3 hours for flies given a choice between 3-octanol and air (n = 34 1227 

flies). (C) Odor preference persistence over 24 hours for flies given a choice between 3-octanol 1228 

and air (n = 97 flies). (D) Odor preference persistence over 3 hours for flies given a choice 1229 

between 3-octanol and 4-methylcyclohexanol (n = 51 flies). (E) Odor preference persistence 1230 

over 24 hours for flies given a choice between 3-octanol and 4-methylcyclohexanol (n = 49 1231 

flies).   1232 
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1233 
Figure 1 – figure supplement 2. Average glomerulus-odor time-dependent responses. 1234 

Time-dependent responses of each glomerulus identified in our study to the 13 odors in our odor 1235 

panel. Data represents the average across flies (ORN, peach curves, n = 65 flies; PN, plum 1236 

curves, n = 122 flies). Shaded error bars represent S.E.M. 1237 
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1238 
Figure 1 – figure supplement 3. Individual glomerulus-odor responses.  1239 

Idiosyncratic odor coding measured in ORNs (left, 208 recordings across 65 flies) and PNs 1240 

(right, 406 trials across 122 flies). Each column represents the response (max Δf/f attained over 1241 

the odor trial) in a single recording from either the left or right lobe of a single fly. Below each 1242 

heatmap, markers are grouped by individual fly (fly order is arbitrary, markers of adjacent flies 1243 

alternate in height). Green markers correspond to left lobes, blue markers right lobes. Each row 1244 

represents a glomerulus-odor response pair. Missing data are indicated in gray. 1245 
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1246 
Figure 1 – figure supplement 4. Correspondence in calcium responses between lobes and 1247 

trials. 1248 

(A) Scatter plots of max Δf/f attained over an odor presentation in a left-lobe recording vs. a 1249 

right-lobe recording in the same fly (same data as presented in Figure 1 – figure supplement 3). 1250 

Plum points are PN responses and peach points ORNs. ⍴ is Spearman's rank correlation 1251 

coefficient, points correspond to fly-odor-trial combinations, and n indicates the number of 1252 

points within each subplot. (B) As in (A), for responses across two trials within the same lobe of 1253 

the same fly. Points correspond to fly-odor-lobe combinations.  1254 
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1255 
Figure 1 – figure supplement 5. Glomerulus responses and identification. 1256 

(A) Glomerulus odor responses measured in PNs versus those measured in ORNs. Points 1257 

correspond to the odorants listed in Figure 1G. (B) Cross-odor trial correlation matrix between 1258 

glomerular odor responses in ORNs and PNs. (C) Peak calcium responses for each glomerulus-1259 

odor pair measured in this study plotted against those recorded in the DoOR dataset (Münch and 1260 

Galizia, 2016). (D) Peak calcium responses for each individual glomerulus plotted against those 1261 

recorded in the DoOR dataset.   1262 
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1263 

Figure 1 – figure supplement 6. Idiosyncrasy of ORN and PN responses. 1264 

(A) Logistic regression classifier accuracy of decoding individual identity from individual odor 1265 

panel peak responses. PCA was performed on population responses and the specified fraction of 1266 

variance (x-axis) was retained. Individual identity can be better decoded from PN responses than 1267 

ORN responses in all cases. (B) Individual trial-to-trial glomerulus-odor responses embedded in 1268 

PC 1-2 space. Responses for the same flies as Figure 1I are shown. Each linked color represents 1269 

one fly. Trial 1 and trial 2 responses are shown for ORN left lobe (upper left), ORN right lobe 1270 

(upper right), PN left lobe (lower left), and PN right lobe (lower right). (C) Distance in the full 1271 

glomerulus-odor response space between recordings within a lobe (trial-to-trial), across lobes 1272 

(within fly), and across flies for ORNs and PNs. Points represent the median value, boxes 1273 

represent the interquartile range, and whiskers the range of the data.  1274 
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 1275 

 1276 
Figure 1 – figure supplement 7. Calcium response correlation matrices. 1277 

Correlation between calcium response dimensions across flies measured in ORNs (top) and PNs 1278 

(bottom). Glomerulus-odor responses are correlated at the level of glomeruli in both cell types. 1279 

Inter-glomerulus correlations are more prominent in ORNs than PNs, consistent with known AL 1280 

transformations that result in decorrelated PN activity (Bhandawat et al., 2007; Luo et al., 2010). 1281 
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1282 

Figure 1 – figure supplement 8. Calcium imaging principal component loadings. 1283 

(A-B) First 10 principal component loadings measured from calcium responses in ORNs (A, n = 1284 

65 flies) and PNs (B, n = 122 flies). Loadings are grouped by glomerulus, with each loading 1285 

within a glomerulus representing the response of that glomerulus to one odor in the odor panel. 1286 

Odors are the same as those listed in Figure 1G. (C-D) The same 10 principal component 1287 

loadings as those shown in panels (A-B) grouped by odor rather than glomerulus. Glomeruli 1288 

within each odor block are given in the order of panels (A) and (B).1289 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 3, 2024. ; https://doi.org/10.1101/2021.12.24.474127doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.24.474127
http://creativecommons.org/licenses/by/4.0/


1290 
Figure 1 – figure supplement 9. Estimating latent calcium - behavior correlations. 1291 

(A) Schematic of inference approach to estimate the correlation between latent calcium (c) and 1292 

behavioral (b) states (R2
latent). This method can be applied identically to infer R2

latent between Brp 1293 

measurements and behavior. (B) Demonstration of R2
latent inference for OCT vs MCH model 1294 

presented in Figure 1M: PN calcium PC 2 from trained model applied to train+test data. Bottom 1295 

subplot: bootstrap distribution of calcium-behavior Rc,b
2 (dashed line: Rc,b

2  = 0.20 for the N = 69 1296 

flies). Top left subplot: simulated Rc,b
2  values. Black line indicates median Rc,b

2 among the 1297 

10,000 simulations for each R2
latent, shaded areas (from lightest to darkest to lightest) indicate 5-1298 

15th, 15-25th, …, 85-95th percentile Rc,b
2. Right subplot: inferred distribution for R2

latent, 1299 

estimated by adding marginal distributions over R2
latent for Rc,b

2 values sampled from the 1300 

bootstrap Rc,b
2 distribution. The median R2

latent is 0.46 (dashed line), with 90% CI 0.06-0.90 1301 

estimated by the 5th-95th percentiles of the marginal distribution (dot-dashed lines).  1302 
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 1303 
Figure 1 – figure supplement 10. OCT-AIR preference prediction. 1304 

(A) Bootstrapped R2 of OCT-AIR preference prediction from each of the first 5 principal 1305 

components of neural activity measured in ORNs (top, all data) or PNs (bottom, training set).  1306 

(B) Measured OCT-AIR preference versus preference predicted from PC 1 of ORN activity (n = 1307 

30 flies). (C) PC 1 loadings of ORN activity for flies in B. (D) Interpreted ORN PC 1 loadings. 1308 

(E) Measured OCT-AIR preference versus preference predicted by the average peak response 1309 

across all ORN coding dimensions (n = 30 flies). (F) Measured OCT-AIR preference versus 1310 

preference predicted from PC 1 of PN activity in n = 53 flies using a model trained on a training 1311 

set of n = 18 flies (see Figure 2 – figure supplement 1A-B for train/test flies analyzed separately). 1312 

(G) PC 2 loadings of PN activity for flies in F. (H) Interpreted PN PC2 loadings. (I) Measured 1313 

OCT-MCH preference versus preference predicted by the average peak PN response in DM2 1314 

minus DC2 across all odors (n = 69 flies).  1315 
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1316 

Figure 2. Variation in relative glomerular responses explains individual odor preference. 1317 

(A) PC 2 loadings of PN activity for flies tested for OCT-MCH preference (n = 69 flies). (B) 1318 

Interpreted PN PC 2 loadings. (C) Measured OCT-MCH preference versus preference predicted 1319 

by the average peak PN response in DM2 minus DC2 across all odors (n = 69 flies). (D) Yoked-1320 

control experiment outline and example behavior traces. Experimental flies are free to move 1321 

about tunnels permeated with steady state OCT and MCH flowing into either end. Yoked-control 1322 

flies are delivered the same odor at both ends of the tunnel which matches the odor experienced 1323 

at the nose of the experimental fly at each moment in time. (E) Imposed odor experience versus 1324 

the odor experience predicted from PC 2 of PN activity (n = 27 flies) evaluated on the model 1325 

trained from data in Figure 1M. Shaded regions in C,E are the 95% CIs of the fit estimated by 1326 

bootstrapping. 1327 

  1328 
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 1329 
Figure 2 – figure supplement 1. Measured preference vs. PN activity-based predicted 1330 

preference, split by training/testing set. 1331 

(A) Measured OCT-AIR preference versus preference predicted from PC 1 of PN activity in a 1332 

training set (n = 18 flies). (B) Measured OCT-AIR preference versus preference predicted from 1333 

PC 1 on PN activity in a test set (n = 35 flies) evaluated on a model trained on data from panel 1334 

(A). (C) Measured OCT-MCH preference versus preference predicted from PC 2 of PN activity 1335 

in a training set (n = 47 flies). (D) Measured OCT-MCH preference versus preference predicted 1336 

from PC 2 on PN activity in a test set (n = 22 flies) evaluated on a model trained on data from 1337 

panel (C).  1338 
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1339 
Figure 2 – figure supplement 2. Time-dependent preference- and odor-decoding. 1340 

(A) R2 of odor-vs-air preference predicted by PC 1 of PN activity as a function of time across 1341 

trials (n = 53 flies). (B) R2 of odor-vs-air preference predicted by PC 1 of ORN activity as a 1342 

function of time across trials (n = 30 flies). (C) R2 of odor-vs-odor preference predicted by PC 2 1343 

of PN activity (solid plum, n = 69 flies) or PC 1 of ORN activity (dashed peach, n = 35 flies) as a 1344 

function of time across trials. (D) Logistic regression classifier accuracy of decoding odor 1345 

identity from 5 glomerular responses as a function of time. Dashed curves indicate performance 1346 

on shuffled data.  1347 
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1348 
Figure 3. Idiosyncratic presynaptic marker density in DM2 and DC2 predicts OCT-MCH 1349 

preference. 1350 

(A) Experiment outline. (B) Example slice from a z-stack of the antennal lobe expressing 1351 

Orco>Brp-Short (green) with DC2 and DM2 visible (white dashed outline). nc82 counterstain 1352 

(magenta). (C) Example glomerulus segmentation masks extracted from an individual z-stack. 1353 

(D) Bootstrapped R2 of OCT-MCH preference prediction from each of the first 4 principal 1354 

components of Brp-Short density measured in ORNs (training set, n = 22 flies). (E) PC 2 1355 

loadings of Brp-Short density. (F) Measured OCT-MCH preference versus preference predicted 1356 

from PC 2 of ORN Brp-Short density in n = 53 flies using a model trained on a training set of n 1357 

= 22 flies (see Figure 3 – figure supplement 1 for train/test flies analyzed separately).   1358 
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1359 
Figure 3 – figure supplement 1. ORN>Brp-Short characterization and model predictions. 1360 

(A-C) Right versus left glomerulus properties measured from z-stacks of stained Orco>Brp-1361 

Short samples: (A) Volume, (B) total Brp-Short fluorescence, (C) Brp-Short fluorescence 1362 

density. (D-F) Same data as panels (A-C) represented in violin plots (kernel density estimated). 1363 

(G) Principal component loadings of Brp-Short density calculated using only training data (n = 1364 

22 flies). (H) Principal component loadings of Brp-Short density calculated using all data (n = 53 1365 

flies). (I) Measured OCT-MCH preference versus preference predicted from PC 2 of ORN Brp-1366 

Short density in a training set (n = 22 flies). (J) Measured OCT-MCH preference versus 1367 
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preference predicted from PC 2 on ORN Brp-Short density in a test set (n = 31 flies) evaluated 1368 

on a model trained on data from panel (I). (K) Example expanded AL expressing Or13a>Brp-1369 

Short (left) and Imaris-identified puncta from that sample (right). (L) OCT-MCH preference 1370 

score plotted against Brp-Short puncta density in expanded Or13a>Brp-Short samples (n = 8 1371 

flies). (M) OCT-MCH preference score plotted against Brp-Short median puncta volume in 1372 

expanded Or13a>Brp-Short samples (n = 8 flies). Shaded regions in I,J,L,M are the 95% CI of 1373 

the fit estimated by bootstrapping.  1374 
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1375 
Figure 3 – figure supplement 2. Calcium and Brp-Short predictor variation. 1376 

(A) Histogram of average PN Δf/f across all coding dimensions in flies in which OCT-AIR 1377 

preference was measured (top) and OCT-AIR preference versus average PN Δf/f (n = 53 flies) 1378 

(bottom). (B) Similar to (A) for ORN Δf/f and OCT-AIR preference (n = 30 flies). (C) Similar to 1379 

(A) for Δf/f difference between DM2 and DC2 PN responses and OCT-MCH preference (n = 69 1380 

flies). (D) Similar to (A) for % Brp-Short density difference between DM2 and DC2 ORNs and 1381 

OCT-MCH (n = 53 flies).  1382 
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1383 
Figure 4. Simulation of developmentally stochastic olfactory circuits 1384 

(A) AL modeling analysis outline. (B) Leaky-integrator dynamics of each simulated neuron.  1385 

When a neuron’s voltage reaches its firing threshold, a templated action potential is inserted, and 1386 

downstream neurons receive a postsynaptic current. See Antennal Lobe modeling in Materials 1387 

and Methods. (C) Synaptic weight connectivity matrix, derived from the hemibrain connectome 1388 

(Scheffer et al., 2020). (D) Spike raster for randomly selected example neurons from each AL 1389 

cell type. Colors indicate ORN/PN glomerular identity and LN polarity (i = inhibitory, e = 1390 

excitatory). (E) Schematic illustrating sources of developmental stochasticity as implemented in 1391 

the simulated AL framework. See Supplementary Video 4 for the effects of these resampling 1392 

methods on the synaptic weight connectivity matrix. (F) PN glomerulus-odor response vectors 1393 

for 8 idiosyncratic ALs subject to Input spike Poisson timing variation, PN input synapse density 1394 

resampling, and ORN and LN population bootstrapping. (G) Loadings of the principal 1395 

components of PN glomerulus-odor responses as observed across experimental flies (top). 1396 

Dotted outlines highlight loadings selective for the DC2 and DM2 glomerular responses, which 1397 

underlie predictions of individual behavioral preference. (H-K) As in (G) for simulated PN 1398 

glomerulus-odor responses subject to Input spike Poisson timing variation, PN input synapse 1399 

density resampling, and ORN and LN population bootstrapping. See Figure 4 – figure 1400 

supplement 5 for additional combinations of idiosyncrasy methods. In (F-K) the sequence of 1401 

odors within each glomerular block is: OCT, 1-hexanol, ethyl-lactate, 2-heptanone, 1-pentanol, 1402 

ethanol, geranyl acetate, hexyl acetate, MCH, pentyl acetate and butanol.   1403 
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1404 
Figure 4 – figure supplement 1. AL model raster plot.  1405 

(A) Action potential raster plot of ORNs in the baseline simulated AL. Rows are individual 1406 

ORNs, black ticks indicate action potentials. Random shades of gold at left indicate blocks of 1407 

ORN rows projecting to the same glomerulus. (B) The remaining neurons in the model. Shades 1408 

of green indicate excitatory vs inhibitory LNs and shades of purple indicate PNs with dendrites 1409 

in the same glomeruli.  1410 
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1411 
Figure 4 – figure supplement 2. AL model baseline outputs compared to experimental data. 1412 

(A) Distributions of model neuron firing rates by cell type across odors (transparent black points 1413 

are individual neuron-odor combinations). Black lozenge symbols indicate the mean firing rate 1414 

of the points to the right. Yellow stars indicate the comparable experimental values reported in 1415 

(Chou et al., 2010; de Bruyne et al., 2001; Nagel et al., 2015; Wilson, 2004). (B) Scatter plots of 1416 

average PN firing rate vs ORN firing rate during odor stimuli in the model vs experimental 1417 

values (Bhandawat et al., 2007). Points are odors, colors are glomeruli. (C) Histograms of ON 1418 

odor minus OFF odor glomerulus-average PN and ORN firing rates in the model vs experimental 1419 

values (Bhandawat et al., 2007), showing flatter distributions in PNs. (D) Odor representations in 1420 

the first 2 PCs of glomerulus-average ORN responses and PN responses in the model and 1421 

experimental results (Bhandawat et al., 2007). Points are odors. Pairwise distances between PN 1422 

representations are more uniform than in ORNs in both the model and experimental data. Panels 1423 

(B)-(D) use glomerulus-average PN and ORN firing rates from six of the seven glomeruli in 1424 

Bhandawat et al., 2007, as VM2 is significantly truncated in the hemibrain (Scheffer et al., 1425 

2020). Literature features in panels (B)-(D) were extracted from Bhandawat et al., 2007 using 1426 

WebPlotDigitizer (Rohatgi, 2021).  1427 
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1428 
Figure 4 – figure supplement 3. Sensitivity analysis of aORN, aeLN, aiLN, aPN parameters. 1429 

(Left, blue to red colormap): magnitude of parameter manipulation. (Center, dark blue to yellow 1430 

colormap):  mean glomerular firing rate (Hz) responses of PNs (DL1, DM1, DM2, DM3, DM4, 1431 

VA2) to 11 odors (order within each glomerulus (colored bands at top): 3-octanol, 1-hexanol, 1432 

ethyl lactate, 2-heptanone, 1-pentanol, ethanol, geranyl acetate, hexyl acetate, 4-1433 

methylcyclohexanol, pentyl acetate, 1-butanol, 3-octanol). (Right, pink to green colormap): 1434 

manipulation effect size on mean PN-odor responses (Cohen’s d). (Top): baseline parameter set. 1435 

(Middle): single-parameter manipulations from 1/4x to 4x. (Bottom): multiple-parameter 1436 

manipulations. For further detail see AL model tuning in Materials and Methods. No 1437 

manipulations yielded effect sizes larger than 0.9; aPN is the most sensitive parameter.  1438 
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1439 
Figure 4 – figure supplement 4. Synapse counts vs glomerular volume in the hemibrain and 1440 

AL model.  1441 

(A) Left) Scatter plot of total PN input synapses within a glomerulus vs that glomerulus’ volume 1442 

from the hemibrain data set. Solid line represents the maximum likelihood-fit mean synapse 1443 

count vs glomerular volume, and dashed lines the fit +/-1 standard deviation. Middle) As (left) 1444 

but for a single sample from the parameterized distribution of PN input synapses vs glomerular 1445 

volume. Right) As in previous for a single bootstrap resample of PNs. Color-highlighted 1446 

glomeruli illustrate that when PNs within a glomerulus have highly asymmetrical synapse 1447 

counts, bootstrapping them alone can result in apparent synapse densities that lie outside the 1448 

empirical distribution (left). (B) As in (A) but on log-log axes, showing the linear relationship 1449 

between synapse density and glomerular volume after this transformation, and bootstrapped 1450 

densities falling outside this distribution at right.   1451 
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1452 
Figure 4 – figure supplement 5. PN response PCA loadings under various sources of circuit 1453 

idiosyncrasy.  1454 

(A) Loadings of the principal components of PN glomerulus-odor responses as simulated across 1455 

AL models where Gaussian noise with a standard deviation equal to 0, 20, 50, and 100% of each 1456 

synapse weight was added to each synaptic weight in the hemibrain data set. (B) circuit variation 1457 

coming from bootstrapping of each major AL cell type or all three simultaneously. (C) circuit 1458 

variation coming from bootstrap resampling of different cell-type combinations in addition to PN 1459 

input synapse density resampling as illustrated in Figure 4 – figure supplement 4.   1460 
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 1461 
Figure 4 – figure supplement 6. Classifiability of simulated idiosyncratic behavior under 1462 

different sources of circuit idiosyncrasy.  1463 

Simulated PN odor-glomerulus firing rates projected into their first 3 principal components. 1464 

Individual points represent single runs of resampled AL models, under four different sources of 1465 

idiosyncratic variation. PN responses in all odor-glomerulus dimensions were used to calculate 1466 

simulated behavior scores for each resampled AL, by applying the PN calcium-odor-vs-odor 1467 

linear model (Figure 2A). Magenta points represent flies with simulated preference for MCH in 1468 

the top 50%, and green OCT preference. % Misclassification refers to 100% – the accuracy of a 1469 

linear classifier trained on MCH-vs-OCT preference in the space of the first three PCs. This 1470 

measures how much of the variance along the PN calcium-odor-vs-odor linear model lies outside 1471 

the first three PCs of simulated PN variation.  1472 
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Tables 1473 

 1474 

Table 1: Calcium & Brp-Short – behavior model statistics 1475 

Behavior 
Measured 

Neural 
Predictor 

Figure Panel n β0 β1 R2 p-value 

OCT vs. 
AIR 

PN Calcium 
PC 1 

Figure 2 – figure 
supplement 1A 

18 -0.26 -0.079 0.16 0.099 

OCT vs. 
AIR 

PN Calcium 
Average all 
dimensions 

Figure 1 – figure 
supplement 10I 

53 -0.051 -0.38 0.098 0.022 

OCT vs. 
AIR 

ORN Calcium 
PC 1 

Figure 1 – figure 
supplement 10B 

30 -0.29 -0.053 0.23 0.007 

OCT vs. 
AIR 

ORN Calcium 
Average all 
dimensions 

Figure 1 – figure 
supplement 10E 

30 -0.032 -0.71 0.25 0.005 

OCT vs. 
MCH 

PN Calcium 
PC 2 

Figure 2 – figure 
supplement 1C 

47 -0.058 -0.081  0.15 0.006 

OCT vs. 
MCH 

PN Calcium 
DM2 - DC2 
(% difference) 

Figure 2I 69 -0.032 -0.0018 0.12 0.004 

OCT vs. 
MCH 

ORN Calcium 
PC 1  

Figure 1L 35 -0.14 -0.027 0.031 0.32 

OCT vs. 
MCH 

ORN Brp-
Short PC 2 
(train data 
only) 

Figure 3 – figure 
supplement 1I 

22 -0.087 0.017 0.22 0.028 

OCT vs. 
MCH 

ORN Brp-
Short PC 2 
(all data)  

Figure 3F 53 -0.019 0.012 0.088 0.031 
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Table 2: Typical electrophysiology features of AL cell types, used as model parameters 1477 

Parameter ORNs LNs PNs 

Membrane resting 
potential 

-70 mV (Dubin and 
Harris, 1997) 

-50 mV (Seki et al., 
2010) 

-55 mV (Jeanne and 
Wilson, 2015) 

Action potential 
threshold 

-50 mV (Dubin and 
Harris, 1997) 

-40 mV (Seki et al., 
2010) 

-40 mV (Jeanne and 
Wilson, 2015) 

Action potential 
minimum 

-70 mV (Cao et al., 2016) -60 mV (Seki et al., 
2010) 

-55 mV (Jeanne and 
Wilson, 2015) 

Action potential 
maximum 

0 mV (Dubin and Harris, 
1997) 

0 mV (Seki et al., 2010) -30 mV (Wilson and 
Laurent, 2005) 

Action potential 
duration 

2 ms (Jeanne and 
Wilson, 2015) 

4 ms (Seki et al., 2010) 2 ms (Jeanne and 
Wilson, 2015) 

Membrane 
capacitance 

73 pF (assumed = PNs) 64 pF (Huang et al., 
2018) 

73 pF (Huang et al., 
2018) 

Membrane 
resistance 

1.8 GOhm (Dubin and 
Harris, 1997) 

1 GOhm (Seki et al., 
2010) 

0.3 GOhm (Jeanne and 
Wilson, 2015) 
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Supplementary Videos 1479 

 1480 

Supplementary Video 1. Example recording with automated tracking of an odor-vs-air 1481 

behavioral assay. 1482 

The recent positions of each fly (green line) are shown in different colors. Red bar indicates 1483 

when the odor stream is turned on. 1484 

 1485 

Supplementary Video 2. Example recording with automated tracking of an odor-vs-odor 1486 

behavioral assay. 1487 

The recent positions of each fly (green line) are shown in different colors. Magenta and green 1488 

bars at right indicate when MCH and OCT are respectively flowing into the top and bottom 1489 

halves of each arena. 1490 

 1491 

Supplementary Video 3. Confocal image stack of expanded DC2>Brp-Short.  1492 

Magenta is nc82 stain, Green is Or13a>Brp-Short. Frames are z-slices spaced at 0.54 µm. Image 1493 

height corresponds to a post-expansion field of view of 107 x 90 µm (a ~2.5 x linear expansion 1494 

factor).  1495 

 1496 

Supplementary Video 4. Simulated AL connectivity matrices. 1497 

Left: Glomerular density resampling. Each frame corresponds to the hemibrain connectome 1498 

synaptic weights, rescaled according to a sample from the relationship between synapse count 1499 

and volume parameterized in Figure 4 – figure supplement 4. Middle: ORN bootstrapping. Each 1500 

frame corresponds to the hemibrain connectome synaptic weights, but with the population of 1501 

ORNs projecting to each glomerulus resampled with replacement. Right: LN bootstrapping. 1502 

Each frame corresponds to the hemibrain connectome synaptic weights, but with the population 1503 

of LNs resampled with replacement. 1504 
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