

1 Single-nucleus RNA Sequencing and Spatial Transcriptomics Reveal the 2 Immunological Microenvironment of Cervical Squamous Cell Carcinoma

3
4 Zhihua Ou,^{1,3,13} Shitong Lin,^{2,4,13} Jiaying Qiu,^{1,5,13} Wencheng Ding,^{2,4,13} Peidi Ren,^{1,3,13}
5 Dongsheng Chen,^{1,13} Jiaxuan Wang,^{1,3,13} Yihan Tong,^{1,3,6} Di Wu,^{1,3,7} Ao Chen,^{1,8} Yuan Deng,⁹
6 Mengnan Cheng,^{1,5} Ting Peng,^{2,4} Haorong Lu,^{1,10,11} Huanming Yang,^{1,12} Jian Wang,^{1,12} Xin
7 Jin,¹ Ding Ma,^{2,4} Xun Xu,^{1,11,*} Yanzhou Wang,^{9,*} Junhua Li,^{1,3,*} Peng Wu^{2,4,*}
8

9 ¹ BGI-Shenzhen, Shenzhen 518083, China.

10 ² Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji
11 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan
12 430000, China.

13 ³ Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI-Shenzhen, Shenzhen
14 518083, China.

15 ⁴ Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong
16 University of Science and Technology, Wuhan 430000, China.

17 ⁵ College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049,
18 China.

19 ⁶ College of Innovation and Experiment, Northwest A&F University, Yangling 712100, China.

20 ⁷ School of Basic Medicine, Qingdao University, Qingdao 266071, China.

21 ⁸ Department of Biology, University of Copenhagen, Copenhagen DK-2200, Denmark.

22 ⁹ Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical
23 University, Chongqing 400038, China.

24 ¹⁰ China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China.

25 ¹¹ Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen 518120,
26 China.

27 ¹² James D. Watson Institute of Genome Sciences, Hangzhou 310058, China.

28 ¹³ These authors contributed equally

29 * Correspondence: pengwu8626@tjh.tjmu.edu.cn (P.W.), lijunhua@genomics.cn (J.L.),
30 w.y.z@foxmail.com (Y.W.), xuxun@genomics.cn (X.X.)

31
32 **Keywords:** cervical cancer; tumor microenvironment; cancer-associated fibroblasts; spatial
33 transcriptomics; single-nucleus RNA sequencing

34
35 **Abstract**
36 Effective treatment of advanced invasive cervical cancer remains challenging nowadays.
37 Herein, single-nucleus RNA sequencing (snRNA-seq) and SpaTial Enhanced REsolution
38 Omics-sequencing (Stereo-seq) technology are used to investigate the immunological

39 microenvironment of cervical squamous cell carcinoma (CSCC), a major type of cervical
40 cancers. The expression levels of most immune checkpoint genes in tumor and inflammation
41 areas of CSCC were not significantly higher than those in the non-cancer samples except for
42 *LGALS9* and *IDO1*. Stronger signals of CD56+ NK cells and immature dendritic cells are found
43 in the hypermetabolic tumor areas, while more eosinophils, immature B cells, and Treg cells
44 are found in the hypometabolic tumor areas. Moreover, a cluster of cancer-associated
45 fibroblasts (CAFs) are identified around some tumors, which highly expressed *ACTA2*, *POSTN*,
46 *ITGB4*, and *FAP*. The CAFs might support the growth and metastasis of tumors by inhibiting
47 lymphocyte infiltration and remodeling the tumor extracellular matrix. Furthermore, CAFs are
48 associated with poorer survival probability in CSCC patients and might be present in a small
49 fraction (~20%) of advanced cancer patients. Collectively, these findings might enhance
50 understanding of the CSCC immunological microenvironment and shed some light on the
51 treatment of advanced CSCC.

52

53 **1. Introduction**

54 Cervical cancer is the fourth most common cancer affecting women's health globally,
55 especially in low- and middle-income regions.^{1,2} Currently, over 12 types of human
56 papillomaviruses (HPVs) are carcinogenic.³ Among them, HPV16 is responsible for 60%-70%
57 of the cervical cancer cases, especially cervical squamous cell carcinoma (CSCC). Since 2018,
58 the World Health Organization (WHO) has called for the global elimination of cervical cancer,
59 quantifying actions in vaccination, screening, and disease treatment/management,⁴ which
60 require joint efforts from different parties for decades.

61

62 Although early stage cervical cancer receiving radical hysterectomy can achieve a favorable
63 prognosis, the 5-year overall survival rate or disease-free survival rate of advanced cervical
64 cancer are unsatisfactory.^{5,6} At present, chemotherapy (e.g., paclitaxel, cisplatin, bevacizumab,
65 etc.) and radiotherapy remain the main palliative treatments for metastatic or recurrent patients,
66 with a low response rate (48%) and a short survival period (17 months).⁷⁻¹⁰ Immunotherapy
67 brings new hope to treating incurable cervical cancer by reversing the exhausted or suppressed
68 immune activities. Immune-checkpoint blockade (ICB) drugs targeting programmed cell death
69 1 (PD1), programmed cell death ligand 1 (PD-L1), and cytotoxic T lymphocyte antigen 4
70 (CTLA4) are currently under trials for recurrent/metastatic cervical cancers.^{11,12} Unfortunately,
71 the overall response rates to ICB therapy were low, varying from 4% to 26%.^{11,13-15} Clarifying

72 the immune landscape of CSCC, especially the immunosuppression status in TME, may help
73 us better address this phenomenon and adjust our treating strategy for cervical cancers.

74

75 Single-cell sequencing and spatial transcriptomics are state-of-the-art tools to unravel the cell
76 heterogeneity and microenvironment of tumors, but applications of such techniques to CSCC
77 investigation remain limited. In this study, we collected cervical samples from 20 individuals
78 and combined single-nucleus RNA sequencing (snRNA-seq) and SpaTial Enhanced REsolution
79 Omics-sequencing (Stereo-seq) technology to investigate the immunological profiles of
80 CSCC.¹⁶ Deciphering the immunological microenvironment of CSCC would provide new
81 insights into the treatment of advanced CSCC, which may accelerate cervical cancer
82 elimination.

83

84 **2. Results**

85 **2.1 snRNA-seq data revealed the cellular composition of CSCC**

86 To fully characterize the cell composition of cervical tissues, we collected CSCC samples from
87 5 patients for snRNA-seq (**Figure 1A and S1, Table S1**). A total of 67,003 cells and 30,996
88 genes passed quality control (**Figure 1B, Table S2**), from which we identified 14 cell types
89 based on canonical cell markers (**Figure 1B, Table S3**), including cancer cells (6,960),
90 columnar epithelial cells (CECs, 22,396), endothelial cells (6,340), smooth muscle cells (4,502),
91 fibroblasts (9,836), B cells (689), monocytes (5,281), T cells (4,930), regulatory T (Treg) cells
92 (1,081), plasma cells (3,236), myeloid dendritic cells (DCs) (955), plasmacytoid DCs (272),
93 mast cells (384) and natural killer (NK) cells (141). The uterine cervix contains two types of
94 cells lining its surface, with stratified squamous epithelial cells on the ectocervix and simple
95 columnar epithelial cells on the endocervix and crypts. The dysplasia of squamous epithelial
96 cells leads to CSCC. Therefore, the cancer cells mainly expressed a known CSCC-associated
97 gene *SERPINB3* (Serpin Family B Member 3),^{17,18} tumor gene *TP63*, *CDKN2A*, and keratin
98 gene *KRT15* of squamous cells (**Figure 1C&D**). Since the tissues were mainly from advanced
99 cancer patients (FIGO Stage IB2-IIIC1; the tissue with no staging information was collected
100 during cervical biopsy before chemotherapy), few normal epithelial squamous cells were
101 isolated. Mapping of the snRNA-seq reads against high-risk HPV reference genomes revealed
102 the presence of viral genes in cancer cells (**Figure 1C, Table S2**). We also identified a big
103 cluster of columnar epithelial cells, which highly expressed *MUC5B* and *WFDC2*. This cell
104 type is mainly located in the endocervix epithelia, but it can also appear at the squamocolumnar
105 junction in the adult uterine cervix and some glands. Smooth muscle cells, fibroblasts, and

106 endothelial cells are the major cell types composing the cervical stroma. The smooth muscle
107 cells highly expressed *MYH11*, *MYLK*, *ACTG2*, *COL3A1*, and *COL1A1*, fibroblasts expressed
108 high levels of *LAMA2* besides *COL3A1* and *COL1A1*, while endothelial cells can be
109 distinguished by high expressions of *EMCN*, *FLT1*, and *EGFLT* (**Figure 1C&D**). Besides the
110 structural cells of the cervix, diverse immune cell types were also identified, with monocytes
111 (*ITGAX*, *MX4A7*), T cells (*CD3E*, *CD247*), and plasma cells (*MZB1*, *IGKC*) being the most
112 abundant (**Figure 1B&C**). In short, the snRNA-seq data revealed the structural and immune
113 cell composition of the CSCC tissues, facilitating our downstream spatial transcriptomic
114 analysis with specific cellular gene expression profiles.

115

116 **2.2 Spatial transcriptomic characterization of CSCC**

117 Spatial information is critical in understanding cell-cell interactions in tissues, which
118 unfortunately was missing in the snRNA-seq data. Therefore, we utilized Stereo-seq to acquire
119 the *in situ* gene expression profiles.¹⁶ The Stereo-seq chips contained capture probe contained
120 a 25bp coordinate identity barcode, a 10bp molecular identity barcode, and a 22bp polyT tail
121 for mRNA hybridization. Cervical samples from 2 non-cancer and 14 CSCC patients were
122 obtained and embedded in OCT (**Table S1**). Serial cryosections of 10 μm thickness were
123 dissected from each OCT block for Stereo-seq, hematoxylin and eosin (H&E) staining, and
124 immunohistochemical (IHC) staining (**Figure S1A**, **Table S1**). Finally, a total of 18 Stereo-seq
125 slides were successfully obtained (**Figure 2A**, **Table S4**). These included 3 slides from 2 non-
126 cancer patients and 15 slides from 14 CSCC patients. Two patients contributed more than one
127 sample. Because the samples were all from different anatomical sites, they were all included to
128 compensate for the small sample size. The capture spots in Stereo-seq chips were 220 nm in
129 diameter with a center-to-center distance of 500 nm between two adjacent spots. The capture
130 spots were grouped into bins to include sufficient genes for accurate clustering. Our preliminary
131 analysis revealed much higher RNA abundance in tumor areas than in stroma areas. To balance
132 the expression differences between tumor and stroma, we annotated the CSCC Stereo-seq slides
133 at bin100 (100 x 100 spots) to fully demonstrate the tissue composition, which would cover an
134 area of approximately 49.72 x 49.72 μm . The mean numbers of genes per bin for the CSCC
135 Stereo-seq slides ranged from 1,767 to 4,152 (**Table S4**). Because the three Stereo-seq slides
136 from non-cancer patients had lower gene expression intensity than CSCC slides, they were
137 annotated at bin200 (99.72 x 99.72 μm). Uniform manifold approximation and projection
138 (UMAP) analysis showed that bin clusters of CSCC and non-cancer tended to dissociate from
139 each other while those of CSCC displayed some convergence (**Figure S1B**).

140

141 Considering the complex structure of cancerous tissues, we manually conducted the initial
142 annotations of Stereo-seq slides according to professional pathological assessments (based on
143 H&E and IHC staining results) and marker gene expression patterns (**Figure S1C&D**). Six
144 types of tissue clusters were generally identified in our CSCC samples, including tumor, stroma
145 (without obvious inflammation), inflammation (stroma with diffuse inflammation or focal
146 inflammation), gland, blood vessel, and necrosis. Tumor, stroma, and inflammation clusters
147 were widely distributed among the Stereo-seq slides of the CSCC samples, with certain samples
148 containing necrosis, glands, and blood vessels (**Figure 2A**). Depending on the gene expression
149 profiles, the tissue clusters may be further divided into sub-clusters with number suffixes
150 (**Figure S1C**). It should be kept in mind that a spatial cluster was virtually a mixture of cells in
151 a defined area but was designated by its major characteristics. For example, the tumor clusters
152 were not purely composed of cancer cells, but may also contain other cell types though in small
153 numbers, such as immune cells, fibroblasts, etc. Tissue-specific genes also displayed spatial
154 patterns. Cancerous squamous cell-associated genes such *KRT5*, *CDKN2A*, and *SERPINB3*
155 were mainly enriched in the Stereo-seq tumor areas, *IGKC* and *IGLC2* enriched in inflammation
156 areas, *VIM* in stromal areas, *ADRA2A* in blood vessels, and *MUC5B* in glands (**Figure S1D and**
157 **S2**). All the 14 CSCC patients donating the 15 samples were HPV-positive, with 85.7% (12/14)
158 infected by HPV16, 7.1% (1/14) by HPV33, and 7.1% (1/14) by HPV58. The HPV reads
159 covered 8% - 100% (about 600bp - 7905bp) of the viral genome and were mainly identified in
160 the tumor areas (**Table S4**, **Figure S3 and S4**). Spatial visualization demonstrated varied
161 capture signals of viral genes in different tumor sites of the same sample, with E5, E6, E7, and
162 L1 frequently observed (**Figure S4**). In contrast, only marginal HPV reads were identified in
163 the non-CSCC samples (**Table S4**). In general, higher transcriptional and translational activities,
164 cell proliferation, oxidative phosphorylation, and immune responses were observed in the
165 Stereo-seq tumor areas than in the other areas (**Figure 2B**). The initial manual annotations of
166 the Stereo-seq slides were used to assist downstream analysis of the TME.

167

168 **2.3 Variable immune inhibition in CSCC**

169 Regarding the low response rates of ICB therapy to cervical cancer,¹⁰ we decided to scrutinize
170 the immune landscape of CSCC for clues. The expression profiles of three gene sets with
171 different immune functions, i.e., co-stimulatory, cytotoxic/effectector, and co-
172 inhibitory/exhaustion were evaluated in both snRNA-seq (**Figure 2C**) and Stereo-seq data
173 (**Figure 2D**, **Table S5**). At the single-cell level, the co-stimulatory genes were expressed in

174 cells of both the innate and adaptive immunity, especially in Treg, T, and NK cells (**Figure 2C**).
175 Treg cells were found to highly express *CD27*, *CD28*, *CD40LG*, *ICOS*, *TNFRSF18*, *TNFRSF4*,
176 and *TNFRSF9*. While these genes are necessary for the maturation and normal suppressive
177 function of Treg cells, overexpression of *CD27* in Treg cells may restrain the anti-tumor
178 immune response.^{19,20} Spatially, the co-stimulatory genes tended to be enriched in tumor and
179 inflammation areas (**Figure 2D**). Especially, *TNFRSF18* (also named glucocorticoid-induced
180 TNF receptor, *GITR*) was commonly expressed in both inflammation and tumor areas. However,
181 its expression was also up-regulated in the epithelia of non-cancer samples. In our snRNA-seq
182 data, this gene was mainly detected in Treg, NK, T cells, and mast cells. Although *TNFRSF18*
183 was associated with the immune suppression by Treg cells in tumors,^{21,22} its high spatial
184 expression level may be jointly contributed by multiple types of immunocytes. The immune
185 cytotoxic/effector genes were mainly expressed by T and NK cells, some of which were
186 commonly up-regulated in the inflammation and tumor regions in the Stereo-seq slides,
187 including *GNLY*, *GZMA*, *GZMB*, and *NKG7* (**Figure 2D**). These genes were mainly expressed
188 by NK cells (**Figure 2C**), indicating their important role in the cytotoxic response against CSCC.
189 For the co-inhibitory/exhaustion genes, we failed to detect any prominent expression of *CTLA4*
190 and *PD-1* in our Stereo-seq data (**Figure 2D**), although *CTLA4* can be highly expressed by Treg
191 cells and *PD-1* by Treg, T, and NK cells (**Figure 2C**). *PD-L1*, which was mainly expressed by
192 plasmacytoid DCs, was only overexpressed in the tumor or inflammation areas of a small
193 fraction of Stereo-seq samples. While *CD276*, *ENTPD1*, *IDO1*, *LGALS9*, and *VSIR* were
194 commonly detected in the Stereo-seq samples, only *IDO1* and *LGALS9* seemed to have higher
195 and wider expressions in the CSCC samples compared to the non-cancer samples (**Figure 2D**).
196 These two genes were both expressed by DCs (**Figure 2C**) and could downregulate cytotoxic
197 T cell activity.^{23,24} Whether *IDO1* and *LGALS9* could be better targets for ICB therapy against
198 CSCC than *CTLA4* and *PD-L1* remains to be explored. Moreover, when we zoomed in to check
199 the immune genes in the same Stereo-seq slide, their expressions can vary greatly between
200 different tumor areas. In sample TJH08, the tumor areas commonly expressed high *IDO1*, low
201 *PD-L1*, and very low *CTLA4* (**Figure 2E**). In contrast, only one tumor area in sample TJH37
202 expressed these genes (**Figure 2E and S2**). Collectively, although both our snRNA-seq and
203 Stereo-seq data displayed evidence of immune exhaustion in CSCC patients, the immune
204 microenvironment varied considerably between and within patients.

205

206 **2.4 Metabolic statuses of tumors were associated with different immune responses**

207 Metabolism can modulate the immune microenvironment of tumors, which could be putative
208 intervention targets for cancer therapy.^{25,26} We performed gene set variation analysis (GSVA)
209 separately on six pathways, including hypoxia, lactic acid, glycolysis, lipid metabolism, pentose
210 phosphate, and oxidative phosphorylation pathways. The mean of the GSVA scores for the
211 above six pathways was then calculated as the metabolic score of each tumor area. Based on
212 the GSVA metabolic score, the Stereo-seq tumor clusters ranked top 20 were categorized as
213 hypermetabolic tumors, with those ranked the last 20 as hypometabolic tumors (**Figure 2F**).
214 Generally, the hypermetabolic tumors displayed much higher activities in the oxidative
215 phosphorylation, glycolysis, and lactic acid pathway, indicating active aerobic glycolysis in
216 proliferating cancer cells, i.e., the Warburg effect. Moreover, the hypermetabolic tumors were
217 also accompanied by severe hypoxia and active lipid metabolism, suggesting intense oxidative
218 and nutrient stress in fast-growing tumors. To further explore the relationship between
219 metabolism and immune response, the GSVA signature scores for different immunocytes of
220 each bin within the hyper- and hypometabolic tumor areas were calculated. Based on the
221 average signature score in each tumor area, significant differences were observed for several
222 cell types (**Figure 2G**). CD56+ NK cells and immature dendritic cells showed much stronger
223 signals in the hypermetabolic tumor areas than in the hypometabolic ones, indicating that the
224 hypermetabolic tumors might be more prone to be associated with innate immune response. At
225 the same time, there were more eosinophils, immature B cells, and Treg cells in the
226 hypometabolic tumor areas, which might suggest ineffective adaptive immune response. Two
227 of the Stereo-seq samples, TJH34 and TJH35, contained both hyper- and hypometabolic tumor
228 areas. Using *TOP2A* and *MS4A1* as markers for cancer cells and B lymphocytes, respectively,
229 the spatial association between metabolic and B cell distribution was visualized. Disseminating
230 *MS4A1* expression was detected within and outside the hypometabolic tumor areas, consistent
231 with the lymphocyte distribution pattern in H&E images (**Figure 2H**) and the GSVA signature
232 scores (**Figure 2G**).
233

234 **2.5 Identification of a cluster of cancer-associated fibroblasts (CAFs) in CSCC**

235 When exploring the immune differences between the hyper- and hypo-metabolic tumor areas
236 in sample TJH34, we noticed a unique spatial cluster outside the hypermetabolic tumor regions.
237 This cluster was different from most stromal clusters and looked like a ribbon enclosing the
238 tumor. As this cluster was part of the stroma, we closely scrutinized the fibroblasts in our
239 snRNA-seq data. Luckily, we identified a small set of fibroblasts derived from all five samples
240 (**Figure 3A**), which highly expressed reported marker genes for CAFs, including *ACTA2*,

241 *POSTN*, *ITGB4*, and *FAP* (**Figure 3B**). The CAFs had a lower stemness score than cancer cells
242 and fibroblasts and were in various cell cycle stages (**Figure 3C**). Function enrichments based
243 on the hallmark gene sets (MSigDB v7.4, <https://www.gsea-msigdb.org/gsea/msigdb/>) showed
244 that CAFs shared common activities with both fibroblasts and cancer cells (**Figure 3D**). CAFs
245 were involved in similar pathways to fibroblasts including UV response down, angiogenesis,
246 myogenesis, and epithelial-mesenchymal transition. For pathways including the p53 pathway,
247 KRAS signaling down, estrogen response, mitotic spindle, G2/M checkpoint, and E2F targets,
248 CAFs showed similar activities to cancer cells. At the gene level, CAFs not only highly
249 expressed marker genes for fibroblasts, such as the collagen protein family (*COL1A1*, *COL3A1*,
250 *COL4A1*, *COL5A2*, *COL6A3*, etc.), but also marker genes for malignant squamous cells, such
251 as *KRT4* and *KRT13* of the keratin family (**Figure 3E, Table S6**). Though CAFs in cancers
252 might have different origins, the epithelial characteristics indicated that the origin of the CAFs
253 in our CSCC samples might be associated with EMT.

254
255 To locate the spatial distribution of CAFs in CSCC tissues, we adopted the multimodal
256 intersection analysis (MIA) approach developed by Moncada et al. to integrate snRNA-seq and
257 Stereo-seq data.²⁷ Briefly, this method calculated the overlapping degree of the expression
258 levels of cell type-specific genes identified by snRNA-seq data and the area-specific genes
259 characterized by Stereo-seq data. The smaller the resultant p-value, which was mentioned as
260 MIA score in our later description, the stronger the correlation between a defined cell type and
261 a spatial area. Initial MIA results showed that our Stereo-seq clustering results complied with
262 the expected cell composition in the corresponding areas (**Figure S5A**). Unfortunately, the MIA
263 score alone cannot fully reflect the spatial specificity of cells, especially in areas with low RNA
264 abundance. Therefore, a high expression level of *POSTN*, which was experimentally verified
265 to be linked with CAFs,²⁸⁻³⁰ and a high MIA score for CAFs were simultaneously utilized to
266 define Stereo-seq clusters of CAFs (**Figure S5B**). Results showed that CAFs were enriched
267 around some tumor areas in 4 out of the 15 Stereo-seq slides (**Figure 3F**), including the
268 hypermetabolic tumor areas of sample TJH34 (**Figure 2H and 3F**). The existence of CAFs in
269 CSCC was further confirmed by IHC staining of *POSTN* using serial tissue sections of the same
270 samples (**Figure S5C**). Notably, not all the tumor areas were surrounded by CAFs, making us
271 curious about the biological differences associated with the presence of these cells.

272
273 **2.6 CAFs might facilitate the growth and metastasis of CSCC from diverse aspects**

274 To comprehensively reveal the biological functions of CAFs in CSCC, we divided the tumor
275 areas in the Stereo-seq slides into two types: tumor areas surrounded by CAFs (CAFs+ tumors),
276 and tumor areas not surrounded by CAFs (CAFs- tumors). Three Stereo-seq slides were found
277 to contain both CAFs+ and CAFs- tumor areas and were used for downstream analysis. We
278 then used the up- and down-regulated DEGs between the CAFs+ and CAFs- tumor areas
279 ($|Log_2FC| > 1.28$, $P < 0.05$) of the 3 samples to perform GO enrichment analysis (**Figure 3G**
280 **and 3H, Table S7**). Results showed that the CAFs+ tumors were more active in energy usage,
281 metabolism, mitosis, and cell growth than CAFs- tumors (**Figure 3I**). Meanwhile, cellular
282 adhesion, apoptosis, and immune response were down-regulated in CAFs+ tumors. The above
283 observations coincided with the immune and metabolic heterogeneity of CSCC (**Figure 2F&G**),
284 especially in sample TJH34 (**Figure 2H**). These indicated that the presence of CAFs might
285 support tumor progression from different aspects.

286

287 Next, we calculated the gene module expression scores of 993 individual bins regarding
288 immune gene sets to evaluate the immune cell abundances. Results showed significantly
289 reduced numbers of B cells, CD4 T cells, CD8 T cells, neutrophils, DCs, NK cells, and Th1
290 cells in CAFs+ tumors (**Figure 4A and S5D**), indicating that CAFs might act as a physical
291 barrier to prevent the infiltration of pro-immunity cells into tumor areas. While more tumor-
292 associated macrophages (TAM) were identified in CAFs+ tumor areas (**Figure 4A**), the
293 distribution of M1 (tumor-suppressive) and M2 (tumor-promoting) phenotypes showed the
294 opposite (**Figure S5E**).³¹ Due to the small sample size and the weak signal of macrophages, we
295 were unsure about the relationship between CAFs and TAMs of different phenotypes.

296

297 As part of the stroma, CAFs will have to interact closely with cancer cells, stromal cells, and
298 immune cells. Indeed, analysis of the snRNA-seq data showed potential interactions between
299 CAFs and the other cells regarding extracellular matrix (ECM) formation and cell-cell contact
300 (**Figure 4B**). CAFs highly expressed genes of the collagen family, especially *COL1A1*,
301 *COL1A2*, *COL4A1*, *COL4A2*, *COL4A5*, *COL6A1*, *COL6A2*, and *COL6A3*) that might interact
302 with *CD44* expressed by immunocytes and smooth muscle cells, which may be involved in cell
303 adhesion and migration. The collagens might also interact with diverse members of the integrin
304 family expressed by the cancer cells, immune cells, and stromal cells. Similarly, *FN1*
305 (fibronectin 1, a soluble glycoprotein) and laminins (*LAMA2*, *LAMA3*, *LAMA4*, *LAMA5*,
306 *LAMB1*, *LAMB2*, *LAMB3*, *LAMC1*, *LAMC3*) expressed by CAFs might also interact with the
307 other cell types through integrins. The integrins are membrane receptor proteins made up of a

308 and β subunits and are involved in cell adhesion and recognition. CAFs seems to use different
309 heterodimeric forms of integrins to contact the other cell types. They might interact with cancer
310 cells through integrins composed of subunits $\alpha 2\beta 1$, $\alpha 3\beta 1$, and $\alpha v\beta 8$, while interact with
311 endothelial cells, CECs, smooth muscle cells through integrins made up of subunits $\alpha 9\beta 1$, $\alpha 6\beta 1$,
312 and $\alpha 1\beta 1$, and with T cells and NK cells through integrins made up by subunits $\alpha 1\beta 1$ (**Figure**
313 **4C**). Importantly, CAFs might take advantage of F11R (also called JAM1, junctional adhesion
314 molecule 1) to form tight junctions with cancer cells and stromal cells through F11R and JAM3,
315 which might prevent the infiltration of immunocytes. CAFs might also express other matrix
316 proteins including *THBS1* (thrombospondin 1), *THBS2*, and *TNC* (tenascin C) to communicate
317 with immunocytes, smooth muscle cells, cancer cells, and plasma cells through *CD44*, integrin
318 ($\alpha 3\beta 1$), and *SDC1*. Moreover, CAFs overexpressed several tissue remodeling factors (**Figure**
319 **4D**), including *POSTN* (periostin, a secreted ECM protein), *FAP* (fibroblast activation protein,
320 a serine protease), *MMP1* (matrix metalloproteinase 1), *TNC* (Tenascin-C, a matrix protein),
321 and *LOXL1* (lysyl oxidase like 1, catalyzes the cross-linking of collagen and elastin). This
322 evidence suggested a critical role of CAFs in shaping the tumor extracellular environment.

323
324 Besides their role in ECM construction, CAFs might also enhance the stemness and
325 proliferation of cancer cells through overexpressing secreted factors including *SEMA3C*,
326 *POSTN*, *CXCL6* (**Figure 4B**). *SEMA3C* was reported to promote cancer stem cell maintenance,
327 angiogenesis, and invasion.^{32,33} *POSTN* can augment cancer cell survival by activating the
328 Akt/PKB pathway through integrins $\alpha v\beta 3$.³⁴ It may also promote cancer growth through the
329 PTK7-Wnt/ β -Catenin signally pathway.²⁹ *CXCL6* (C-X-C motif chemokine ligand 6), though
330 mainly related to immune response, was reported to promote the growth and metastasis of
331 esophageal squamous cell carcinoma (**Figure 4D**).³⁵ Another highly expressed gene in CAFs,
332 *SNAI2* (Slug), a snail-related zinc-finger transcription factor, may inhibit apoptosis and promote
333 cancer progression.^{36,37} Several common growth factors such as *TGFB1* (transforming growth
334 factor beta 1), *EGF* (epidermal growth factor), and *VEGFA* (vascular endothelial growth factor
335 A) were also expressed by CAFs (**Figure 4D**). Moreover, the upregulation of *LSD1* (histone
336 lysine demethylase 1) in CAFs might inhibit the IFN activation to evade immune attack.³⁸ The
337 Wnt5a signaling protein produced by CAFs might also suppress the immune response to
338 facilitate tumor metastasis (**Figure 4B**).^{39,40} In summary, CAFs might be able to potentiate the
339 TME, promoting the progression of tumors.

340

341 **2.7 The presence of CAFs was associated with poorer clinical statuses of CSCC**

342 To verify the pro-tumorigenic effects of CAFs, we first performed survival analyses with a
343 dataset from the Cancer Genome Atlas (TCGA), which contained 252 CSCC patients.⁴¹ The
344 GSVA score for CAFs was calculated for each CSCC patient using the marker gene set (*ACTA2*,
345 *POSTN*, *ITGB4*, and *FAP*) (**Figure 3B**). Not surprisingly, higher signals of CAFs predicted
346 unfavorable progression-free survival (HR = 1.66, 95%CI = 1.03-2.67, *P* = 0.038) and overall
347 survival (HR = 1.69, 95%CI= 1.00-2.84, *P* = 0.05) for CSCC patients (**Figure 4E**). Next, we
348 measured the expression levels of POSTN, a biomarker of CAFs, in the stroma and tumor
349 regions using an independent sample set, which consisted of 65 archived formalin-fixed
350 paraffin-embedded (FFPE) CSCC samples (**Figure 4F**). Based on the staining intensity and
351 distribution pattern, we assigned POSTN staining scores to each sample (see Method). The
352 overall positive (weak, moderate, and strong) rate of POSTN expression in the stroma was much
353 higher than that in the tumor regions (**Figure 4G**). However, only 21.1% (14/65) of the FFPE
354 samples had moderate or strong staining of POSTN in the stroma around tumor. Chi-square test
355 showed that higher expression levels of POSTN in the stroma were significantly correlated with
356 more advanced pathological stages, poorer differentiation, larger tumor size, higher squamous
357 cell antigen (SCC) concentrations in peripheral blood, and older age (**Table 1**), which further
358 confirmed the pro-tumorigenic ability of CAFs.

359

360 Collectively, our results indicated CAFs were a crucial component of the TME of CSCC,
361 forming a barrier to protect the cancer cells from immune surveillance and clearance. They
362 might also help stimulate cell proliferation and angiogenesis, inhibit apoptosis, and reconstruct
363 the ECM to enhance tumor metastasis (**Figure 4H**).
364

365 **3. Discussion**

366 Although vaccines and radical hysterectomy are effective measures in preventing and treating
367 cervical cancers, the treatment of recurrent/metastatic cervical cancers remains a big obstacle
368 to achieving the goal of cervical cancer elimination. Herein, we have characterized a high-
369 resolution immunological landscape of CSCC combining snRNA-seq and Stereo-seq
370 technology, which may facilitate the management and treatment of HPV-induced cervical
371 cancer.
372

373 Nowadays, ICB therapies, especially those using PD-L1/PD-1 and CTLA4 inhibitors, are
374 among the novel methods to treat metastatic cervical cancers. Several studies reported wide
375 expression of PD-L1 in cervical cancers, with positive rates ranging from 34% to 96%.⁴²⁻⁴⁴

376 However, PD-L1 expression alone wasn't associated with the disease outcome of cervical
377 cancer patients.⁴² Indeed, the response rates to PD-1/PD-L1 and CTLA-4 inhibitors fluctuated
378 greatly among different trials and the efficacies seemed independent of the expression status of
379 associated checkpoint genes.^{10,45} In our study, the expression levels of most immune checkpoint
380 genes in tumor and inflammation areas of CSCC were not significantly higher than those in the
381 non-cancer samples except for *LGALS9* and *IDO1* (**Figure 2D**). *LGALS9* (i.e., galectin 9)
382 downregulates effector T cell immunity through binding to Tim-3 on the T cell surface or
383 inhibiting the antigen-presenting ability of DCs.^{23,24} While disruption of the galectin 9 signaling
384 pathway was shown to induce tumor regression in mice harboring pancreatic ductal
385 adenocarcinoma, reversed effect was reported in lung metastasis mouse models.^{46,47} *IDO1* is
386 mainly expressed in DCs and helps degrade tryptophan into kynurenine, which suppresses T
387 cell functions.⁴⁸ It is found that inhibition of *IDO1* could enhance the radiosensitivity of HeLa
388 and SiHa tumorsphere cells, indicating the potential application of *IDO1* inhibitors as
389 radiosensitizers.⁴⁹ Whether targeting *LGALS9* and *IDO1* can improve the treatment of CSCC
390 requires further exploration. Our study also revealed suppressive adaptive immunity in tumor
391 areas with low metabolic activity, highlighting the critical role of metabolic modulation in TME.
392 Indeed, recent clinical trials have combined checkpoint inhibitors with metabolic agents
393 targeting glucose, amino acid, and nucleotide metabolism.⁵⁰ A better understanding of the
394 crosstalk between immune response and metabolism would further benefit cancer therapies.
395

396 CAFs have been characterized in multiple types of cancers and can be classified into diverse
397 subtypes.⁵¹ While cell line studies have implicated a supportive role of CAFs in the proliferation
398 of cervical cancer cells,^{52,53} this is the first study to systemically describe the spatial distribution
399 and biological properties of pro-tumorigenic CAFs in clinical samples of CSCC. Due to tissue
400 heterogeneity, the marker genes for CAFs varied among cancers. In this study, *ACTA2*, *POSTN*,
401 *ITGB4*, and *FAP* were adequate marker genes to identify CAFs in CSCC (**Figure 4B**). Other
402 genes such as *KRT4*, *ITGA1*, *COL24A1*, and *COL7A1* might serve as complementary marker
403 genes for CAFs in CSCC (**Figure 4E, Table S7**), which displayed cellular properties of both
404 fibroblasts and cancerous squamous cells. These CAFs contributed significantly to the
405 heterogeneity of TME, which displayed a pro-tumorigenic phenotype by facilitating tumor
406 growth, metastasis, and immune evasion. The CAFs+ tumors were active in proliferation but
407 lacked lymphocyte infiltration. Exposing these immune-evasive tumors to the immune system
408 is essential to eradicate the cancer cells. However, not all the CSCC samples were positive of
409 CAFs. Only 28.6% (4/14) of the CSCC patients in the Stereo-seq experiment showed presence

410 of CAFs, and only 21.1% (14/65) of the FFPE samples in the IHC experiment were positive of
411 POSTN, a biomarker of CAFs. As CAFs tended to be associated with more advanced
412 pathological status (**Table 1**), chances are that they might function in invasive cancer patients
413 with high variation among individuals. Researchers have tried to interfere with the activation,
414 the action, and the normalization processes of CAFs using antibodies or inhibitors, with several
415 clinical trials ongoing.⁵⁴ Since genes highly expressed by CAFs are also essential to normal
416 tissues, their efficacies and side effects require close monitoring.

417

418 Several limitations exist in this study. 1) Samples for snRNA-seq and Stereo-seq were not
419 paired. We were only able to collect paired samples from one cancer patient. Individual and
420 anatomical heterogeneity may hinder the comprehensive annotation of cell types. For example,
421 CAFs were found in 4 Stereo-seq samples, but the number of CAFs was very small in snRNA-
422 seq data. 2) Since all the cervical cancer cases have progressed to invasive stages, most of the
423 tissues collected mainly contained invasive tumors, making it impossible to compare the intra-
424 individual difference between normal epithelia and tumors. 3) Unlike tumor cells, the gene
425 expression levels of immunocytes were relatively low, hindering the spatial analysis of most
426 immune cells at high resolution. 4) Our results were drawn from observations of a limited
427 number of clinical samples. Although we have tried to incorporate public data to validate the
428 pro-tumorigenic phenotype of CAFs, further experimental conformation is necessary.

429

430 In conclusion, our data have demonstrated the high heterogeneity of viral gene expression,
431 immune response, and metabolism in CSCC, indicating that combined drugs or therapies
432 targeting multiple biological processes would be better practice to treat CSCC. Interventions on
433 CAFs and tumor metabolism may complement the current treatments of CSCC. Further
434 investigations into these biological aspects may facilitate the development of new drugs or
435 therapies against CSCC and the other HPV-induced squamous cell carcinomas.

436

437 **4. Experimental Section/Methods**

438 **4.1 Patients and samples**

439 The cervical specimens were collected from 20 patients aged 38 to 69 by the Department of
440 Obstetrics and Gynecology of Tongji Hospital in Wuhan and the Department of Obstetrics and
441 Gynecology of Southwest Hospital in Chongqing. Based on colposcopy examination, 18
442 patients were diagnosed with CSCC (Stage IB1 to Stage IIIC1), 2 patients were diagnosed with
443 benign gynecological diseases but also required surgery (**Table S1, Figure S1A**). Carcinoma

444 staging was conducted based on the criteria of the FIGO staging system. The freshly-taken
445 samples were used for single-cell RNA sequencing and Stereo-seq experiments. A total of 65
446 archived FFPE samples were retrospectively obtained from the Department of Obstetrics and
447 Gynecology of Tongji Hospital in Wuhan to verify the presence of CAFs in CSCC.

448

449 **4.2 Experiments**

450 *4.2.1 Single-nucleus RNA sequencing*

451 The collected cervical tissues were quick-frozen with liquid nitrogen for 30 minutes and then
452 stored in a -80°C refrigerator. Nuclei isolation and permeabilization were performed under the
453 guidance of Chromium Next GEM Single Cell Multiome ATAC + Gene Expression User Guide
454 (CG000338). snRNA-seq libraries were prepared using the Chromium Single Cell 3' Reagent
455 Kits v3 (10x Genomics, USA), according to the manufacturer's instructions. Briefly, high-
456 quality sequencing data was obtained after a series of experimental procedures including cell
457 counting and quality control, gel beads-in-emulsion (GEMs) generation and barcoding, post
458 GEM-RT cleanup, cDNA amplification, gene expression library construction, and NovaSeq
459 platform (Illumina, USA) sequencing.

460

461 *4.2.2 Tissue preparation for spatial transcriptomic experiment*

462 A tissue block with an edge length of less than 1cm was dissected from the surgically removed
463 tissues. The tissue block was then rinsed by cold PBS, immersed in the pre-cooled tissue storage
464 solution (Miltenyi Biotec, Germany), and then embedded with pre-cooled OCT (Sakura, USA)
465 in a -30°C microtome (Thermo Fisher, USA) within 30 minutes after surgery. Three to four
466 serial cryosections of 10 μ m thickness were cut from the OCT-embedded samples for H&E
467 staining, Stereo-seq library preparation, and IHC staining. Brightfield images of the H&E
468 samples were taken with a Motic microscope scanner (Motic, China) for histopathological
469 assessment.

470

471 *4.2.3 Quality control of RNA obtained from OCT-embedded samples*

472 100-200 μ m thick sections were cut from each OCT-embedded sample for total RNA extraction
473 using the RNeasy Mini Kit (Qiagen, USA) according to the manufacturer's protocol. RNA
474 integrity number (RIN) was determined by a 2100 Bioanalyzer (Agilent, USA). Only samples
475 with RIN \geq 7 were qualified for the transcriptomic study. All samples used had RIN of 7-10.

476

477 *4.2.4 Stereo-seq library preparation and sequencing*

478 The spatial transcriptomic RNA library was constructed using Stereo-seq capture chips (BGI-
479 Shenzhen, China), which had a size of 1 cm². The capture spots were 220 nm in diameter with
480 a center-to-center distance of 500 nm between each other. Each Stereo-seq capture probe
481 contained a 25bp coordinate identity barcode, a 10bp molecular identity barcode, and a 22bp
482 polyT tail for in situ mRNA hybridization.¹⁶ A cryosection of 10 μ m thickness cut from OCT-
483 embedded tissue was quickly placed on the chip, incubated at 37°C for 3 minutes, and then
484 fixed in pre-cooled methanol at -20°C for 40 minutes. The fixed tissue section was stained with
485 the Qubit ssDNA dye (Thermo Fisher, USA) to check tissue integrity before fluorescent
486 imaging. After that, the tissue section was permeabilized using 0.1% pepsin (Sigma, USA) in
487 0.01 N HCl buffer, incubated at 37°C for 14 minutes, and then washed with 0.1x SSC. RNA
488 released from the permeabilized tissue was reverse transcribed for 1 hour at 42°C. Later, the
489 tissue section was digested with tissue removal buffer at 42°C for 30 min. The cDNA-
490 containing chip was then subjected to cDNA release enzyme treatment overnight at 55°C. The
491 released cDNA was further amplified with cDNA HIFI PCR mix (MGI, China). Around 20ng
492 cDNA was fragmented to 400-600bp, amplified for 13 cycles, and purified to generate DNA
493 nanoball library, which was sequenced with the single-end 50+100bp strategy on an MGI
494 DNBSEQ sequencer (MGI, China).

495

496 4.2.5 Immunohistochemical (IHC) staining

497 The IHC staining for Ki67 and POSTN were performed under the manufacturers' protocol. The
498 frozen sections dried at room temperature were placed in a 37°C oven for 10-20 minutes, fixed
499 with 4% paraformaldehyde for 20 minutes, and washed thrice with PBS (pH = 7.4) for 5 minutes.
500 The antigens were then repaired with EDTA (pH9.0) and the endogenous peroxidase was
501 blocked by 3% hydrogen peroxide. The slides were further blocked with 3% BSA (G5001-100g,
502 Servicebio) at room temperature for 30 minutes, and then incubated with Ki67 (ab16667,
503 Abcam, 1:200) or POSTN (ab215199, Abcam, 1:500) at 4°C overnight. Finally, the frozen
504 slices were subjected to secondary antibody blocking, DAB staining, nuclear re-staining, and
505 dehydration. The protein expression levels of Ki67 and POSTN were evaluated by professional
506 pathologists under a microscope. The expression scores of POSTN in tumor and stromal regions
507 of 65 FFPE samples were measured according to the positivity percentage (0-5% = 0, 5-25% =
508 1, 26-50% = 2, 51-75% = 3, >75% = 4) and staining intensity (negative = 0, weak = 1, moderate
509 = 2, strong = 3) (**Figure 4F and 4G**). The final score was obtained by multiplying the two scores,
510 ranging from 0 to 12. Negative = 0, weak = 1-4, moderate = 4-8, strong = 9-12 (**Table 1**).

511

512 **4.3 Bioinformatic analysis**

513 *4.3.1 Cell type characterization using snRNA-seq data*

514 *Quality control and gene expression quantification of snRNA-seq data*

515 Raw sequencing files were first processed using CellRanger version v6.0.2 (10x Genomics,
516 USA) to obtain gene expression matrices. After cell calling, the droplets containing no cell were
517 excluded based on the number of filtered unique molecular identifiers (UMIs) mapped to each
518 cell barcode. Droplets with low-quality cells or more than one cell were also removed. To obtain
519 a gene expression matrix optimized to individual samples, the R package scCancer v2.2.1 was
520 employed to further filter the expression matrix.⁵⁵ The filtering thresholds were determined by
521 catching outliers from the distribution of four quality spectra, including the number of total
522 UMIs, the number of expressed genes, the percentages of UMIs from mitochondrial genes, and
523 the percentages of UMIs from ribosomal genes. Besides filtering cells, genes expressed in less
524 than three cells were also excluded to avoid false-positive results. The filtering thresholds for
525 the five samples were documented in **Table S2**.

526

527 *Cell type clustering using multi-sample snRNA-seq data*

528 Integrative analysis of the snRNA-seq data from the five patients was carried out using the
529 IntegrateData function of Seurat v4.⁵⁶ Further analysis included normalization, log-
530 transformation, highly variable genes identification, dimension reduction, clustering, and
531 differential expression analysis were all conducted using default parameters of Seurat except
532 that *dims* was set as 1:30. Initially, a total of 35 cell clusters were obtained (69,312 cells with
533 30,996 genes). To ensure reliable identification, we removed the cell clusters consisting of less
534 than two samples and with less than 15 cells per sample. Finally, 14 cell clusters (67,003 cells
535 with 30,996 genes) were determined based on reported cell type marker genes (**Table S3**).

536

537 *Analysis of differentially expressed genes (DEGs)*

538 Expression of each gene in each cluster was compared against the rest of the clusters using the
539 Wilcoxon rank-sum test with the FindAllMarkers function of Seurat v4.⁵⁶ Significantly up- or
540 down-regulated genes were identified using the following criteria: 1) the difference in gene
541 expression level was >1.28 fold unless explicitly noted; 2) genes were expressed by more than
542 25% of the cells belonging to the target cluster. 3) the adjusted p-value was less than 0.05.

543

544 *4.3.2 Processing and annotation of Stereo-seq data*

545 *Preliminary processing of Stereo-seq data*

546 Stereo-seq raw data were automatically processed using the BGI Stereomics analytical pipeline
547 (<http://stereomap.cngb.org/>), where the reads were decoded, trimmed, deduplicated, and
548 mapped against the human and HPV reference genomes. The reference genomes were: Human,
549 GRCh38.p12; HPV16:K02718.1; HPV18: EF202147.1; HPV33: M12732.1; HPV58:
550 D90400.1. Data of the chip area covered by tissue was extracted based on the ssDNA and H&E
551 staining images using the Lasso function of the BGI Stereomics website. It's worth noting that
552 tumor sites usually had much higher overall mRNA levels than the other anatomical areas,
553 leading to a significant imbalance of transcriptomic signals between the tumor areas and the
554 other sites on the Stereo-seq slides. Therefore, to fully reflect the spatial transcriptomic
555 landscape around the tumor areas, a bin size of 100 (100 spots x 100 spots, i.e., 49.72 x 49.72
556 μm) was used as the analytical unit for the annotation of CSCC Stereo-seq slides, while a bin
557 size of 200 (200 spots x 200 spots, i.e., 99.72 x 99.72 μm) was used for the non-CSCC samples.
558 The downloaded data was then processed with Seurat v4.⁵⁶ We used the criteria of >200 UMIs
559 per bin to remove bins with low expression signals. The data were then normalized using the
560 SCTransform function. Dimension reduction was conducted with principal PCA. Unsupervised
561 clustering of bins was performed with UMAP. Sequencing and analytical details can be found
562 in **Table S4**.

563

564 *Annotation of bin clusters in Stereo-seq slides*

565 The bin clusters were annotated based on the in situ expression patterns of marker genes
566 combining H&E and IHC staining results. The spatial expression patterns of genes in Stereo-
567 seq slides (**Figure S1 and S2**) were conducted with the SpatialFeaturePlot function of Seurat
568 v4.⁵⁶ The H&E and IHC images were examined by professional pathologists to determine the
569 tissue types. The annotated Stereo-seq areas were confirmed to be consistent with the H&E and
570 IHC assessment and marker gene expression patterns.

571

572 *Identification of viral RNA*

573 The viral reads were mapped against HPV reference genomes with BWA. The genome
574 coverage (covered length/full length of the reference genome) and effective depth (total mapped
575 bases/covered length) for each type were calculated. Only samples with a viral genome
576 coverage of >5% and an effective depth of >50x were deemed as HPV positive (**Table S2&S4**,
577 **Figure S3**).

578

579 *4.3.3 Characterization of the immunity, hypoxia, and metabolism statuses in CSCC*

580 *Signature enrichment analysis of Stereo-seq clusters*

581 In enrichment analysis, the expression scores of signature genes were calculated for individual
582 bins using the AddModuleScore (on log-normalized data) of Seurat v4 with default
583 parameters.⁵⁶ Pathways and cell types included in the enrichment analysis, with the
584 corresponding reference for gene signatures, were listed as follows: hypoxia,⁵⁷ glycolysis,⁵⁸
585 lipid metabolism,⁵⁹ lactic acid metabolism, oxidative phosphorylation (MSigDB,
586 <https://www.gsea-msigdb.org/gsea/msigdb/>), pentose phosphate pathway,⁶⁰ macrophages,⁶¹
587 and other immune cells (**Figure 2F and 2G**).⁶²

588

589 *Prediction of the spatial distribution of immunocytes*

590 Using the gene signatures of immunocytes as input, we calculated the cell type scores of each
591 bin in tumor areas using the AddModuleScore of Seurat v4.⁵⁶ Combining with the spatial
592 coordinate of bins, the possible spatial distribution of the corresponding cell type was obtained
593 (**Figure S5D**).

594

595 *4.3.4 Characterization of CAFs*

596 *Signature enrichment analysis of fibroblasts, CAFs, and cancer cells with snRNA-seq data*

597 Expression scores of signature genes from MSigDB v7.4 ([https://www.gsea-
598 msigdb.org/gsea/msigdb/](https://www.gsea-msigdb.org/gsea/msigdb/)) were calculated for individual cells using the AddModuleScore
599 function (on log-normalized data) of Seurat v4 with default parameters to assess differential
600 pathways in fibroblasts, CAFs, and cancer cells.⁵⁶

601

602 *Cell cycle and stemness analysis of fibroblasts, CAFs, and cancer cells with snRNA-seq data*

603 We used the AddModuleScore function of Seurat v4 to calculate the relative average
604 expression of a list of G2/M and S phase markers to obtain the cell cycle scores.⁶³ Cell
605 stemness analysis was conducted using the OCLR model and the stemness signatures
606 embedded in the scCancer package.^{55,64}

607

608 *Multimodal intersection analysis (MIA)*

609 To integrate snRNA-seq and Stereo-seq data, we calculated the overlapping degree of the
610 expression levels of cell type-specific genes identified by snRNA-seq data and the area-specific
611 genes characterized by Stereo-seq data using the MIA approach.²⁷ The lower the p-value, the
612 higher overlapping between a certain cell type and a Stereo-seq area. MIA was conducted to

613 confirm the consistency between cell types and Stereo-seq annotated areas and to identify the
614 Stereo-seq areas composed of CAFs.

615

616 *DEG and GO enrichment analysis of CAFs+ and CAFs- tumor areas*

617 Expression of each gene in CAFs+ cluster was compared against that in the CAFs- clusters of
618 the same Stereo-seq chip using the Wilcoxon rank-sum test with the FindMarkers function of
619 Seurat v4.⁵⁶ Significantly up- or down-regulated genes (**Figure 3G**) were identified using the
620 following criteria: 1) the difference in gene expression level was >1.28 fold unless explicitly
621 noted; 2) genes were expressed by more than 25% of the bins belonging to the target cluster. 3)
622 the adjusted p-value was less than 0.05. GO enrichment analysis was conducted using
623 Metascape with default settings (**Figure 3I**).⁶⁵

624

625 *Cell-cell communication between CAFs and the other cell types in CSCC tissues*

626 To understand the communication network between CAFs and the other cell types, we
627 conducted cell-cell communication with CellChat with the snRNA-seq data to obtain the ligand-
628 receptor pairs regulated by CAFs.⁶⁶ The probability of cell-cell communication was estimated
629 by integrating gene expression with prior knowledge of the interactions between signaling
630 ligands, receptors and their cofactors.

631

632 *Prognostic analysis of CAFs with TCGA data*

633 The gene expression profiles of CSCC were downloaded from The Cancer Genome Atlas
634 (TCGA) (<https://portal.gdc.cancer.gov/>) with the latest follow-up prognostic information
635 obtained from an integrated clinical data resource. We calculated a signature score of CAFs for
636 each CSCC patient with GSVA using the marker genes of CAFs (*ACTA2*, *POSTN*, *ITGB4*, and
637 *FAP*). Based on the median GSVA score, the patients were then divided into two groups: high
638 CAFs v.s. low CAFs. The Kaplan-Meier overall survival and progression-free survival curves
639 were generated with GraphPad Prism 6 (**Figure 4E**).

640

641 **4.4 Statistical analysis and plotting**

642 Statistical analyses, including Student's t-test, Wilcoxon's rank-sum test, Wilcoxon signed-rank
643 test, and Chi-square test were performed in R 3.6.0. Asterisks indicate the significance levels
644 of p-values: ns, not significant; *, p <0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001. The
645 schematic plots of CAFs were created with BioRender (<https://biorender.com/>).

646

647 **Ethical statement**

648 This study was reviewed and approved by the Medical Ethics Committee of Tongji Medical
649 College, Huazhong University of Science and Technology (TJ-IRB20210609), Southwest
650 Hospital, Third Military Medical University (KY2020142), and the Institutional Review Board
651 of Beijing Genomics Institute, Shenzhen, China (BGI-IRB 21050).

652

653 **Data and code availability**

654 The data and scripts supporting the findings of this study have been deposited into CNSA
655 (CNGB Sequence Archive) of CNGBdb (<https://db.cngb.org/cnsa/>, accession numbers to be
656 updated) and are available upon reasonable request. The dataset used to verify the
657 distinguishing ability of the DEGs between preinvasive and invasive cancerous lesions was
658 obtained from the Gene Expression Omnibus (GEO) database (www.ncbi.nlm.nih.gov/geo) by
659 the Accession Number of GSE63514.

660

661 **Author contributions**

662 Z. Ou, P. Wu, J. Li, W. Ding, and D. Chen designed this study. P. Wu, Z. Ou, J. Li, X. Xu, D.
663 Ma, X. Jin, H. Yang, and J. Wang supervised this study. P. Wu, Y. Wang, W. Ding, and S. Lin
664 coordinated sample collection. S. Lin, Y. Ding, and T. Peng conducted snRNA-seq and IHC
665 experiments. P. Ren, Y. Tong, and D. Wu performed Stereo-seq library construction and H&E
666 staining. A. Chen and M. Cheng provided technical support for Stereo-seq experiments. H. Lu
667 conducted sequencing for Stereo-seq libraries. J. Qiu, J. Wang, Y. Tong, and D. Wu conducted
668 data analysis. Z. Ou, S. Lin, P. Ren, J. Qiu, and J. Wang wrote the original manuscript. Z. Ou,
669 S. Lin, P. Wu, J. Li, W. Ding, and D. Chen reviewed and polished the manuscript.

670

671 **Declarations of interest**

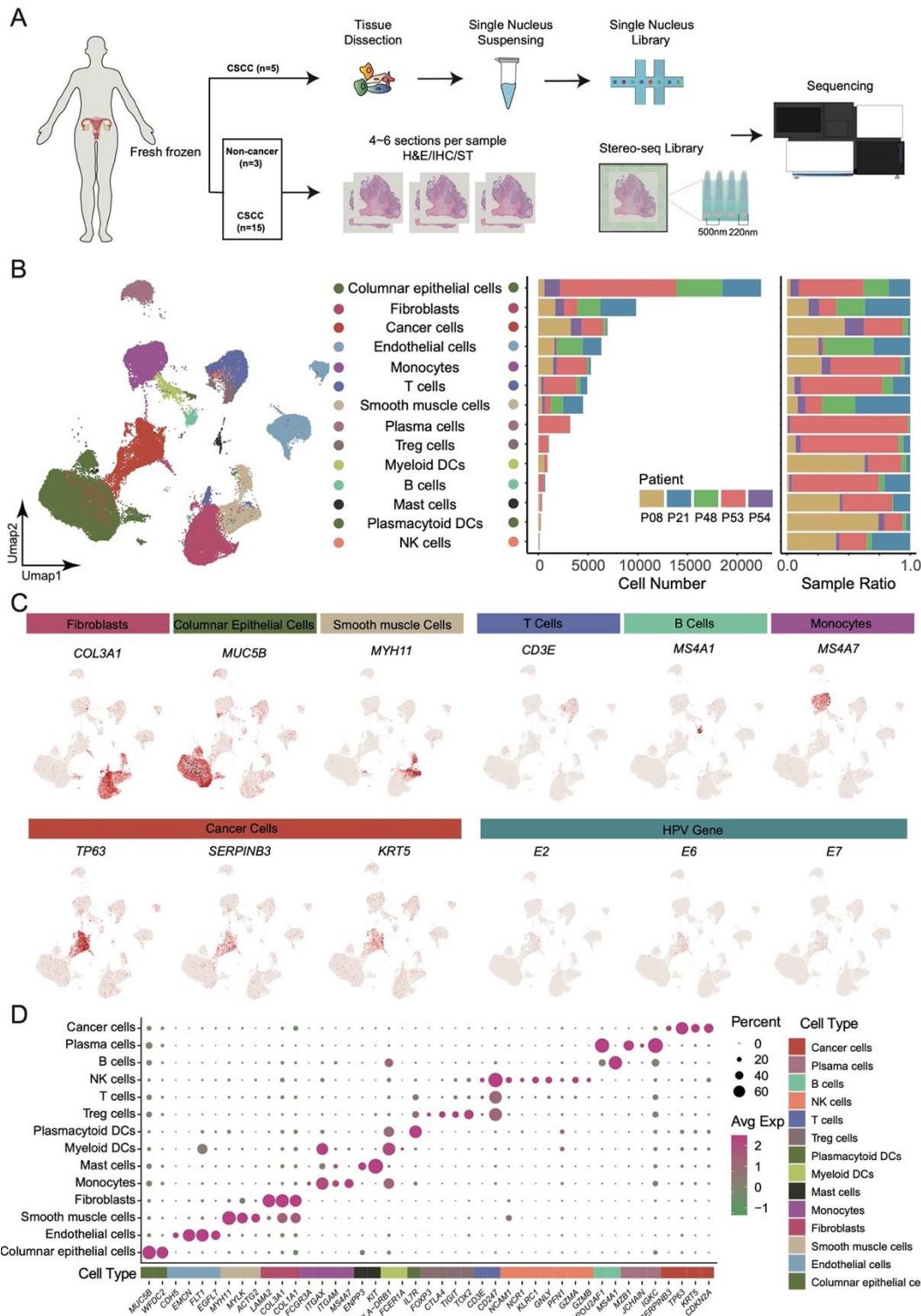
672 A. Chen and M. Cheng are applying for patents covering the chip, procedure, and applications
673 of Stereo-seq. The other authors declare that they have no competing interests.

674

675 **Acknowledgements**

676 This work received funding from the National Key R&D Program of China (2021YFC2701201),
677 the National Natural Science Foundation of China (82072895, 82141106, 82103134) and the
678 Guangdong Provincial Key Laboratory of Genome Read and Write (2017B030301011). We
679 thank China National GeneBank for providing sequencing services for this project. The authors

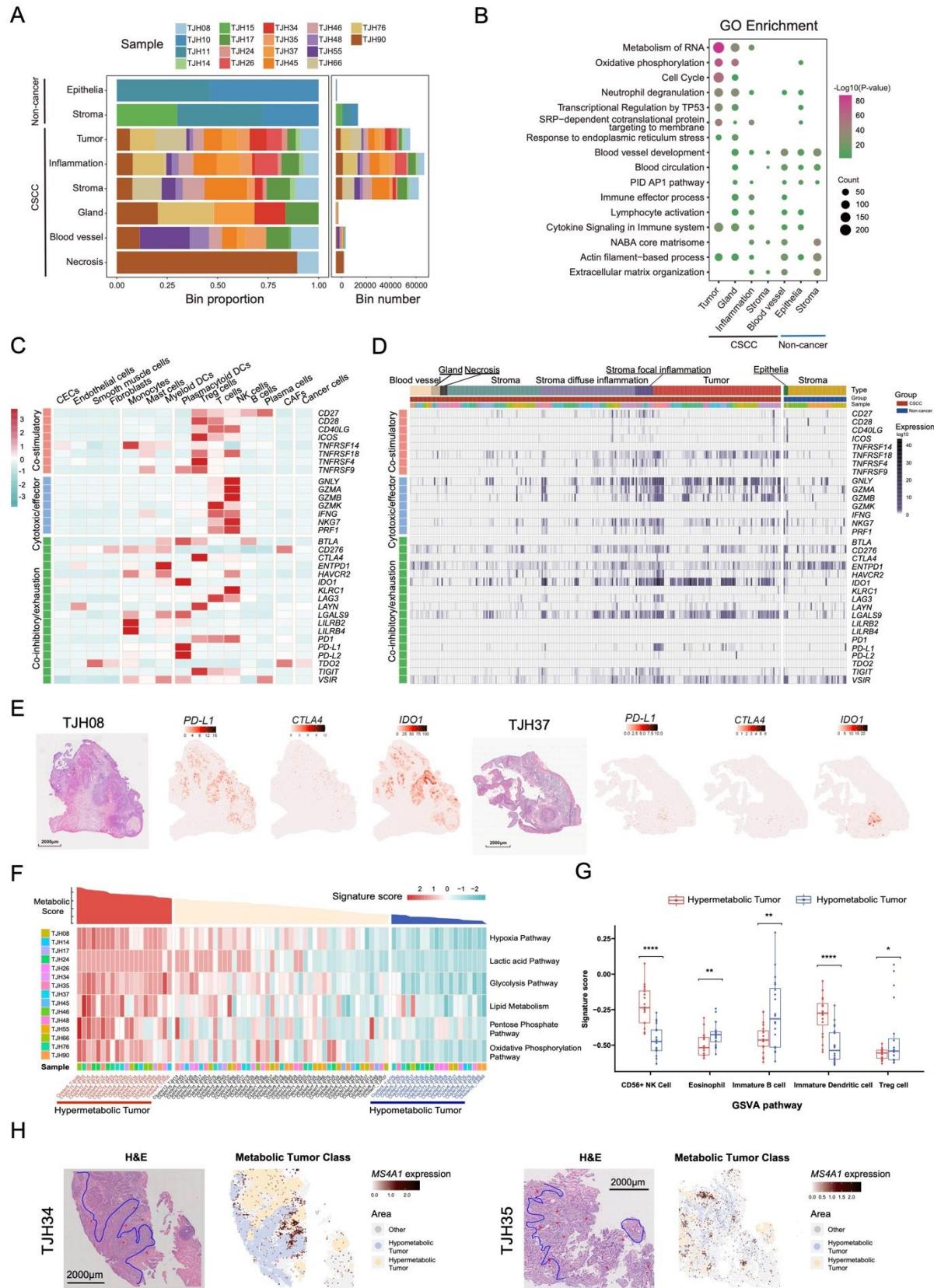
680 also would like to thank Miss Feiyun Xuanyuan and Mr. Geer Xuanyuan for their inspirational
681 communications.


682

683 Tables and Figures

684 **Table 1. Stromal POSTN expression characteristics in 65 FFPE CSCC samples.**

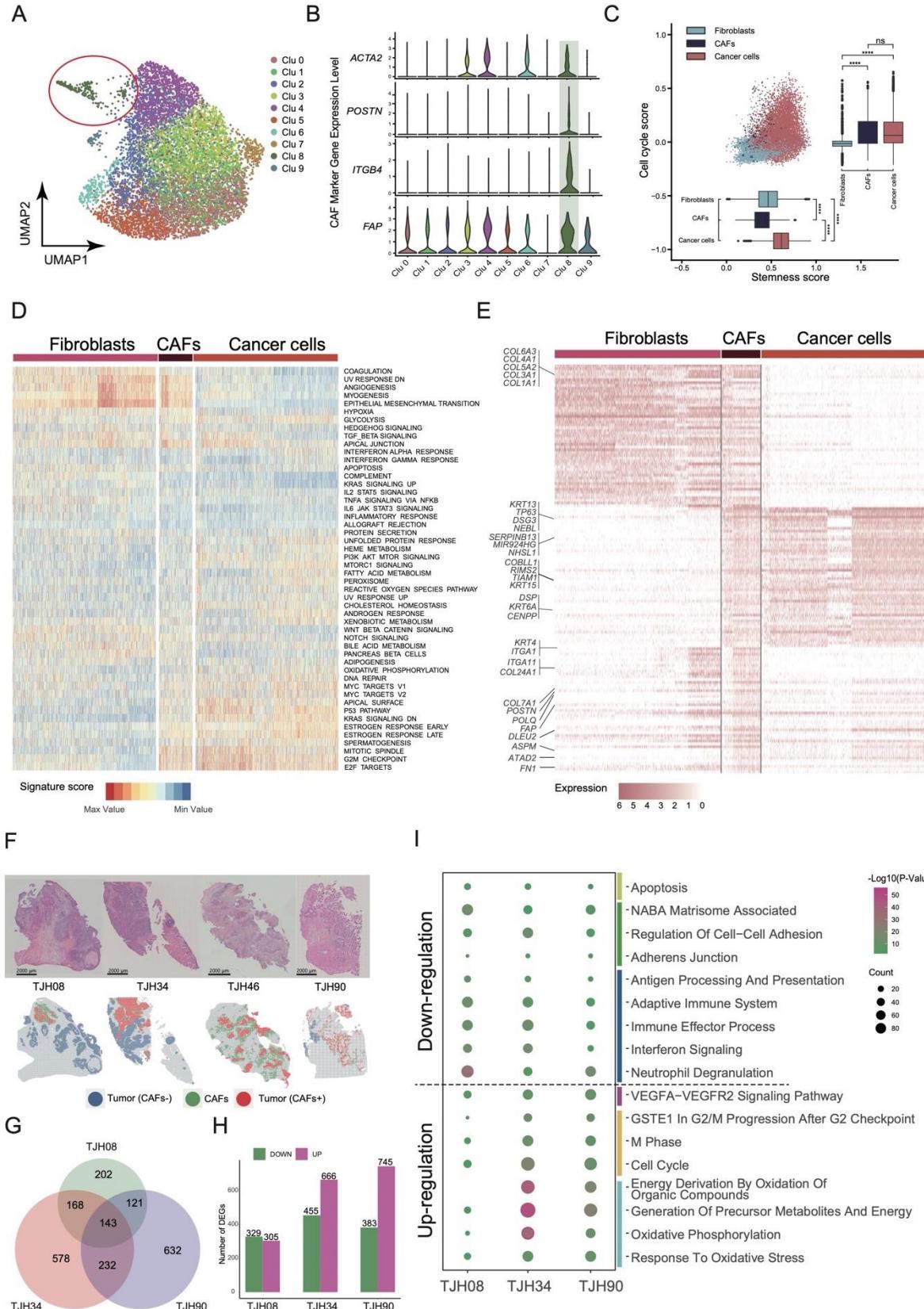
Characteristic	IHC score >=4	IHC score <4	p
Number of patients	24 (36.9%)	41 (63.1%)	
Pathologic stage, n (%)			0.012
I	5 (17.2%)	24 (82.8%)	
II	10 (50.0%)	10 (50.0%)	
III	9 (56.2%)	7 (43.8%)	
Lymph node metastasis, n (%)			0.401
N0	13 (31.0%)	29 (69.0%)	
N1	4 (50.0%)	4 (50.0%)	
N1+	6 (50.0%)	6 (50.0%)	
Differentiation, n (%)			0.007
Low	16 (57.1%)	12 (42.9%)	
Well/Moderate	8 (21.6%)	29 (78.4%)	
Tumor size, n (%)			0.018
<4 cm	10 (29.4%)	24 (70.6%)	
>=4 cm	10 (71.4%)	4 (28.6%)	
Age, n (%)			0.042
<=50	7 (22.6%)	24 (77.4%)	
>50	17 (50.0%)	17 (50.0%)	
SCC, n (%)			0.030
<=1.5 ng/ml	3 (15.0%)	17 (85.0%)	
>1.5 ng/ml	16 (48.5%)	17 (51.5%)	


685 IHC: immunohistochemistry; SCC: squamous cell carcinoma antigen.

686

687 **Figure 1. The cellular composition of CSCC tissues.** (A) Workflow of snRNA-seq and
 688 Stereo-seq experiments applied to cervical tissues. n indicates the number of samples. (B)
 689 UMAP of cells identified from the snRNA-seq data of five CSCC tissues (left). The cell number
 690 and proportion of each cell type from each sample (right). (C) Expression of selected marker
 691 genes and HPV genes in the major cell types of CSCC tissues. (D) Expression matrix of cell-
 692 type marker genes in the 14 cell types isolated from CSCC tissues.

693

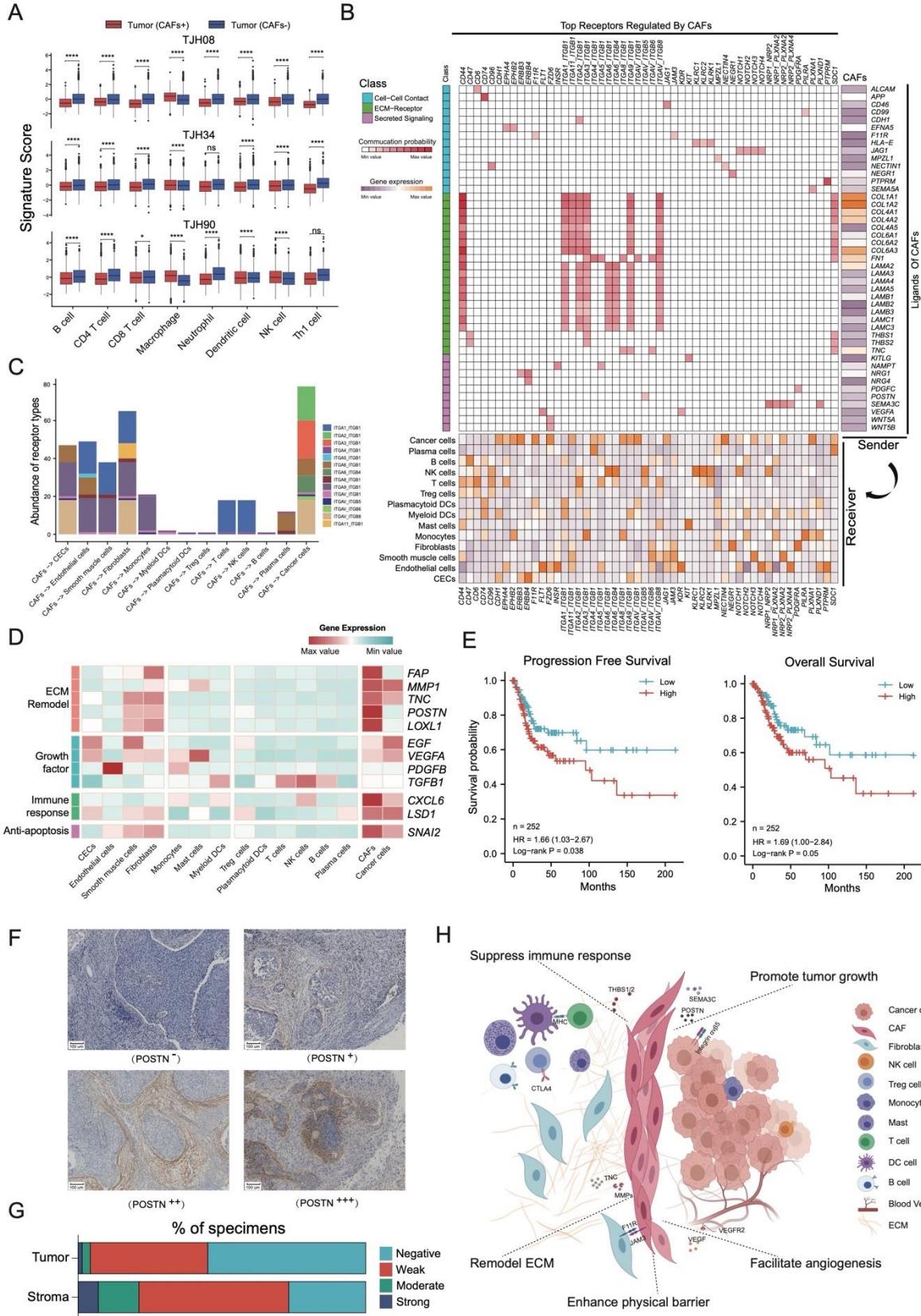


694

Figure 2. Transcriptomic analysis of the immune heterogeneity in CSCC. (A) Distribution of Stereo-seq clusters in the 18 cervical samples. CSCC (n=15): tumor, stroma, inflammation,

697 gland, blood vessel, and necrosis; non-cancer (n=3, TJH10, TJH11 and TJH15): epithelia and
698 stroma. (B) Gene ontology (GO) enrichment of major Stereo-seq clusters. (C) Heatmap
699 showing the expressions of gene sets associated with different immune functions (co-
700 stimulatory, cytotoxic/effectector, and co-inhibitory/exhaustion) in cell types identified by
701 snRNA-seq data. (D) Heatmap showing the expressions of gene sets associated with different
702 immune functions (co-stimulatory, cytotoxic/effectector, and co-inhibitory/exhaustion) in Stereo-
703 seq clusters. (E) Spatial expression of selected immune checkpoint genes (*PD-L1*, *CTLA4*, and
704 *IDO1*) in two representative Stereo-seq samples. The gene tended to be enriched in tumor areas.
705 (F) Top, metabolic scores corresponding to the tumor areas of the 15 CSCC samples. Bottom,
706 heatmap showing the GSVA scores of hypoxia, lactic acid, glycolysis, lipid metabolism,
707 pentose phosphate, and oxidative phosphorylation pathways for tumor areas from each Stereo-
708 seq sample. (G) Violin plots showing abundance of CD56+ NK cells, eosinophils, immature B
709 cells, immature dendritic cells and Treg cells in hyper- and hypo-metabolic tumors. The Y axis
710 shows the GSVA scores for each cell type. The p-values were determined by the Wilcoxon
711 signed-rank test: ns, not significant; *, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001.
712 (H) Spatial expression of marker genes for proliferating cells (*TOP2A*) and B cells (*MS4A1*) in
713 representative two Stereo-seq slides. In the HE images, the blue line indicates the approximate
714 border between hyper- and hypometabolic tumor areas, while the red arrow indicates focal
715 lymphocyte infiltration.

716



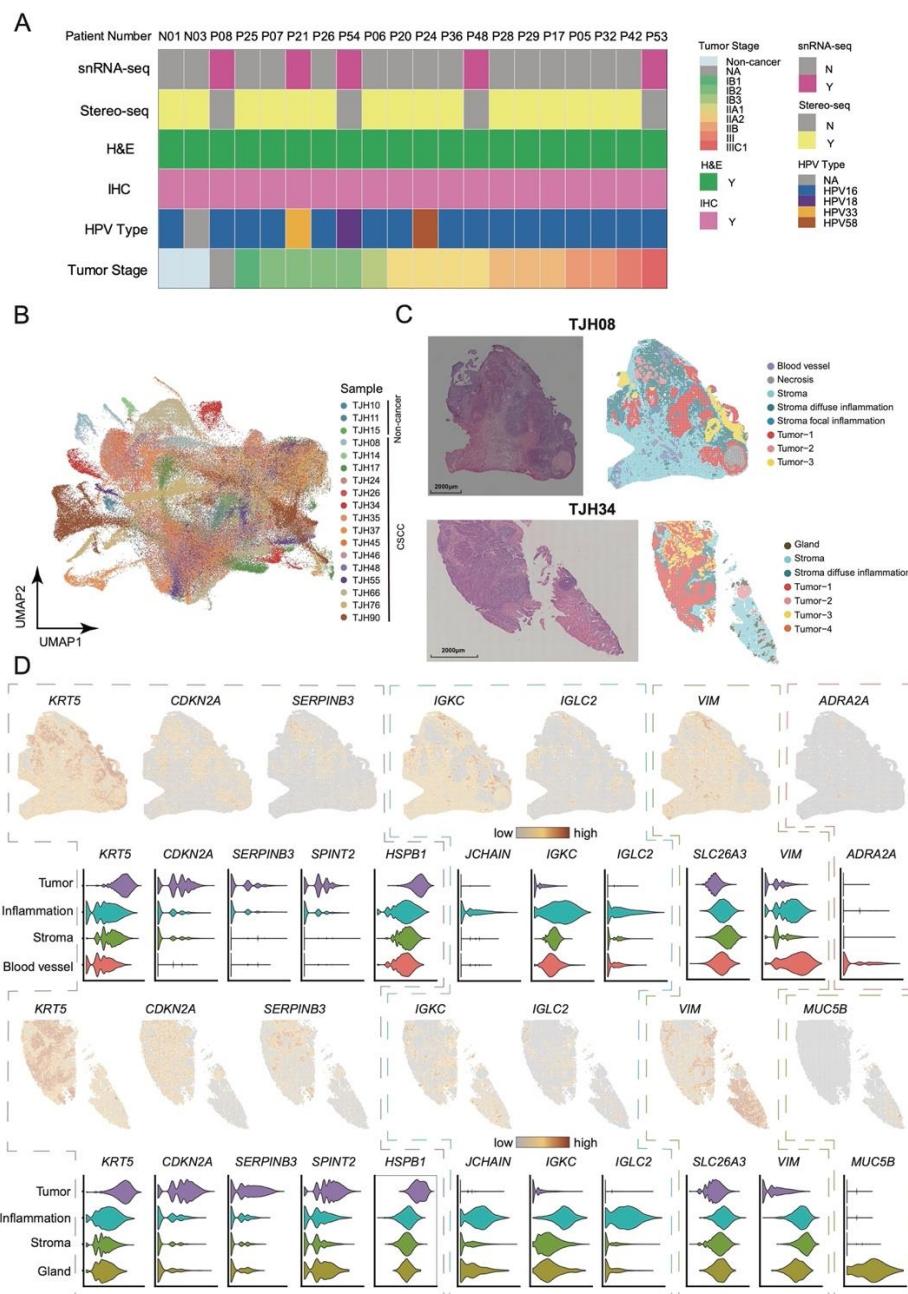
717

718 **Figure 3. Identification and spatial characterization of cancer-associated fibroblasts**
 719 **(CAFs) in CSCC.** (A) UMAP of 9,836 fibroblasts. CAFs were outlined in red. (B) Violin plot
 720 showing the expression levels of *ACTA2*, *POSTN*, *ITGB4*, and *FAP* in the 10 clusters of

721 fibroblasts. (C) Box plot showing the stemness and cell cycle scores of fibroblasts, CAFs, and
722 cancer cells. The p-values were determined by the Wilcoxon signed-rank test: ns, not
723 significant; *, $p < 0.05$; **, $p < 0.01$; ***, $p < 0.001$; ****, $p < 0.0001$. (D) GSVA results of
724 fibroblasts, CAFs, and cancer cells. (E) DEGs identified in fibroblasts, CAFs, and cancer cells.
725 (F) Spatially projected CAFs in representative Stereo-seq slides. The projected area was
726 determined based on the MIA score of CAFs, *POSTN* expression pattern, and the IHC staining
727 results of *POSTN* (see **Figure S5B&C**). (G) Venn map showing the number of DEGs identified
728 in the three Stereo-seq samples with both CAFs+ and CAFs- tumors. (H) Bar plot showing the
729 numbers of up- and down-regulated genes in three Stereo-seq samples. The CAFs+ tumors were
730 compared to the CAFs- tumors. (I) Dot plot of enriched GO terms for up- and down-regulated
731 DEGs identified in H.

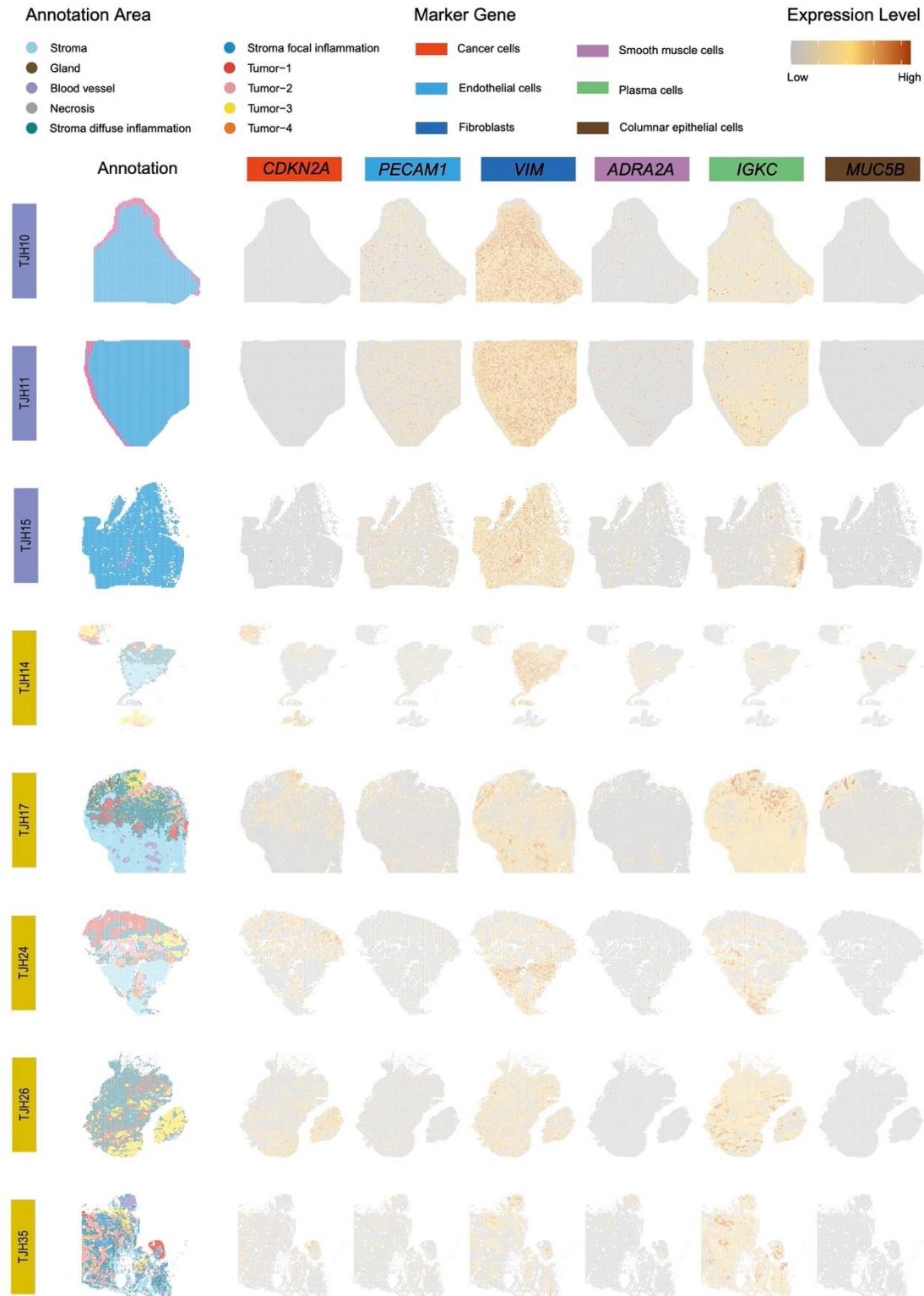
732

733 **Figure 4. Functional analysis of CAFs.** (A) Box plot showing the abundance of immune cells
 734 in CAFs+ and CAFs- tumors in three samples. The p-values were determined by the Student's
 735 t-test: ns, not significant; *, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001. (B) Ligand-


737 receptor communication network between CAFs and different cervical cells predicted by
738 snRNA-seq data. The cell–cell communication probability was estimated by integrating gene
739 expression with prior knowledge of the interactions between signaling ligands, receptors and
740 their cofactors. Right, heatmap of the top predicted ligands expressed by CAFs. Middle,
741 heatmap of ligand-receptor pairs between CAFs and different cell types in CSCC. Bottom,
742 expression heatmap of top receptors regulated by CAFs in different cell types. CECs, columnar
743 epithelial cells; ECM, extracellular matrix. (C) Bar plot showing the integrin types involved in
744 potential communications between CAFs and the other cell types. (D) Expression heatmap of
745 gene sets related to functions of CAFs in tumor development in snRNA-seq data. (E) The
746 progression-free and overall survival probabilities of CSCC patients estimated based on the
747 signature scores of the marker gene set for CAFs. The analysis was conducted using the TCGA
748 dataset. (F) Representative IHC staining patterns of POSTN in the stroma adjacent to tumor
749 areas in FFPE CSCC samples. (G) Bar plot showing the IHC staining intensities of POSTN
750 within the tumor area or in the stroma area around tumors in 65 FFPE CSCC samples. (H)
751 Schematic summary of the possible functions of CAFs in CSCC.

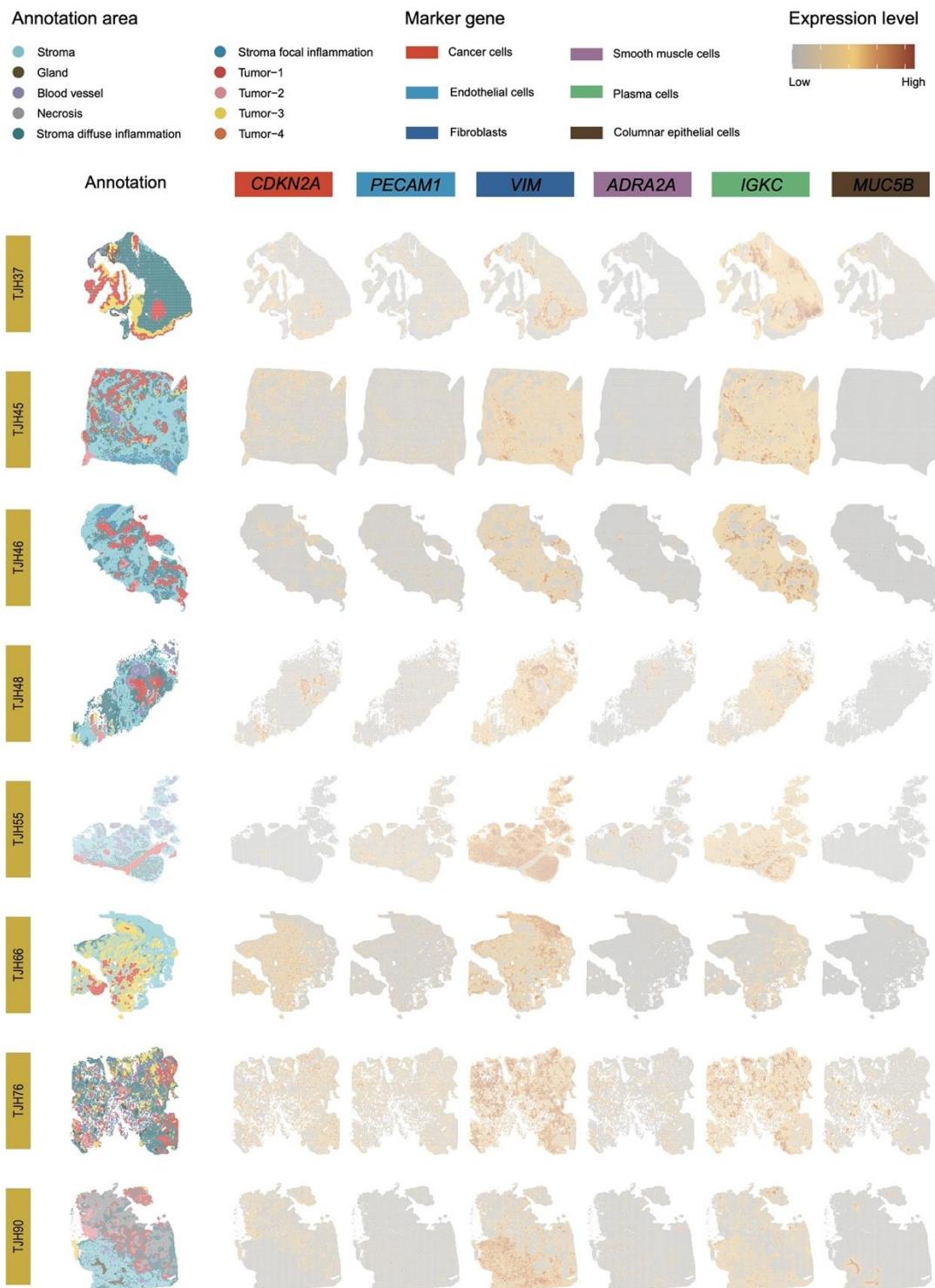
752

753

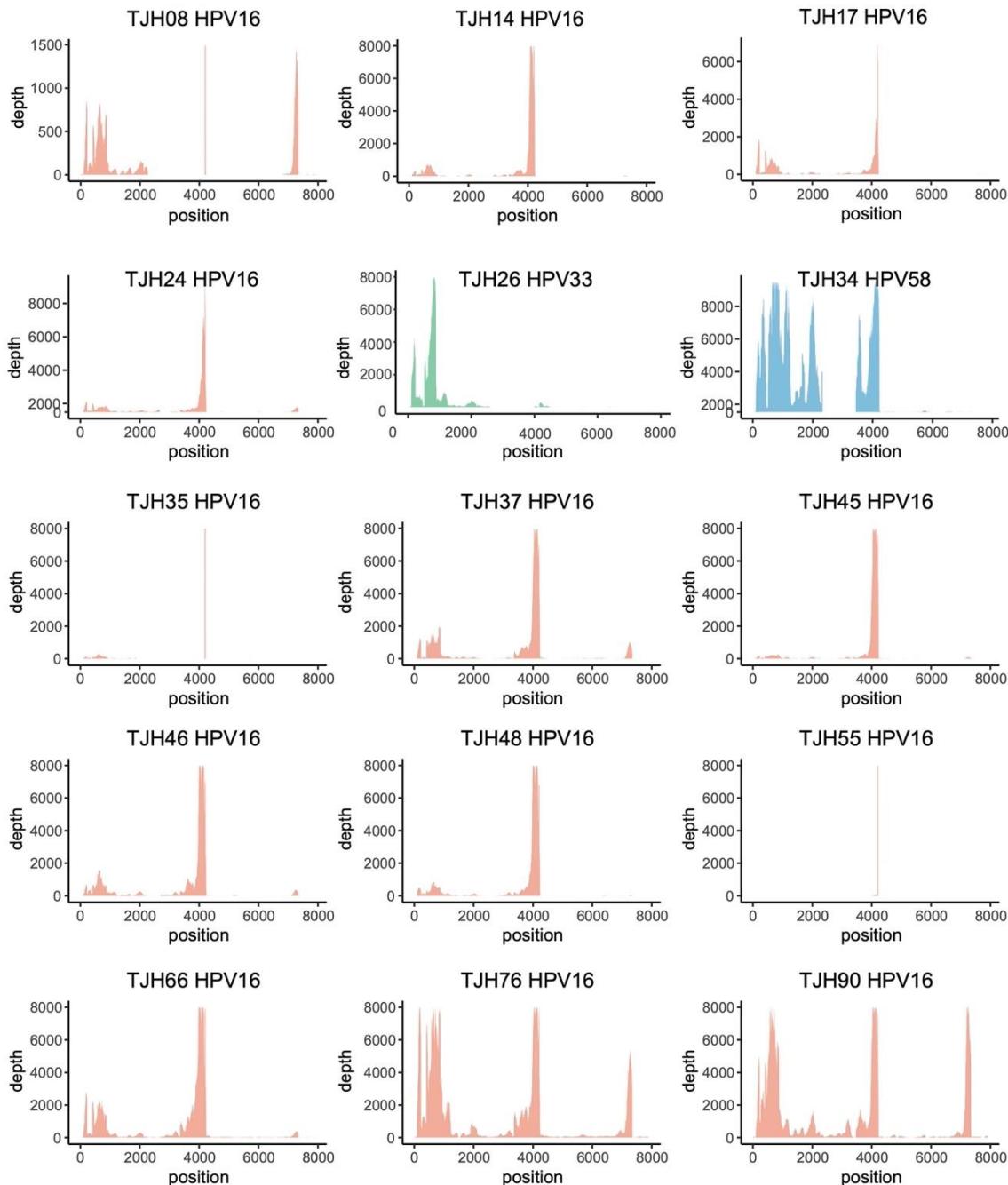

754

755 **Supplementary Figures**

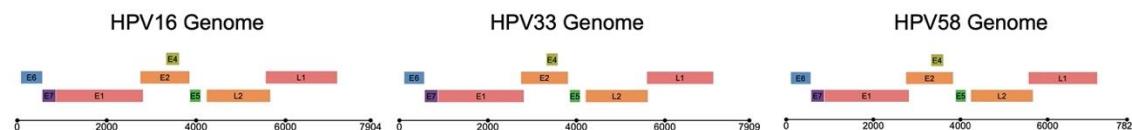
756


757 **Figure S1. Experimental details and the annotation process of Stereo-seq slides.** (A) 758 Clinical characteristics and experimental details of cervical samples from CSCC and non- 759 cancer patients. (B) UMAP of Stereo-seq bins from 18 cervical samples. (C) Annotation results 760 of 2 representative Stereo-seq slides. (D) Expression of tissue-specific genes in 2 representative 761 Stereo-seq slides. The outline color indicates different tissue types: purple, tumor; blue, stroma 762 with inflammation; green, stroma; red, blood vessel; brown, gland. Violin plots display the gene 763 expression levels in the Stereo-seq areas.

764

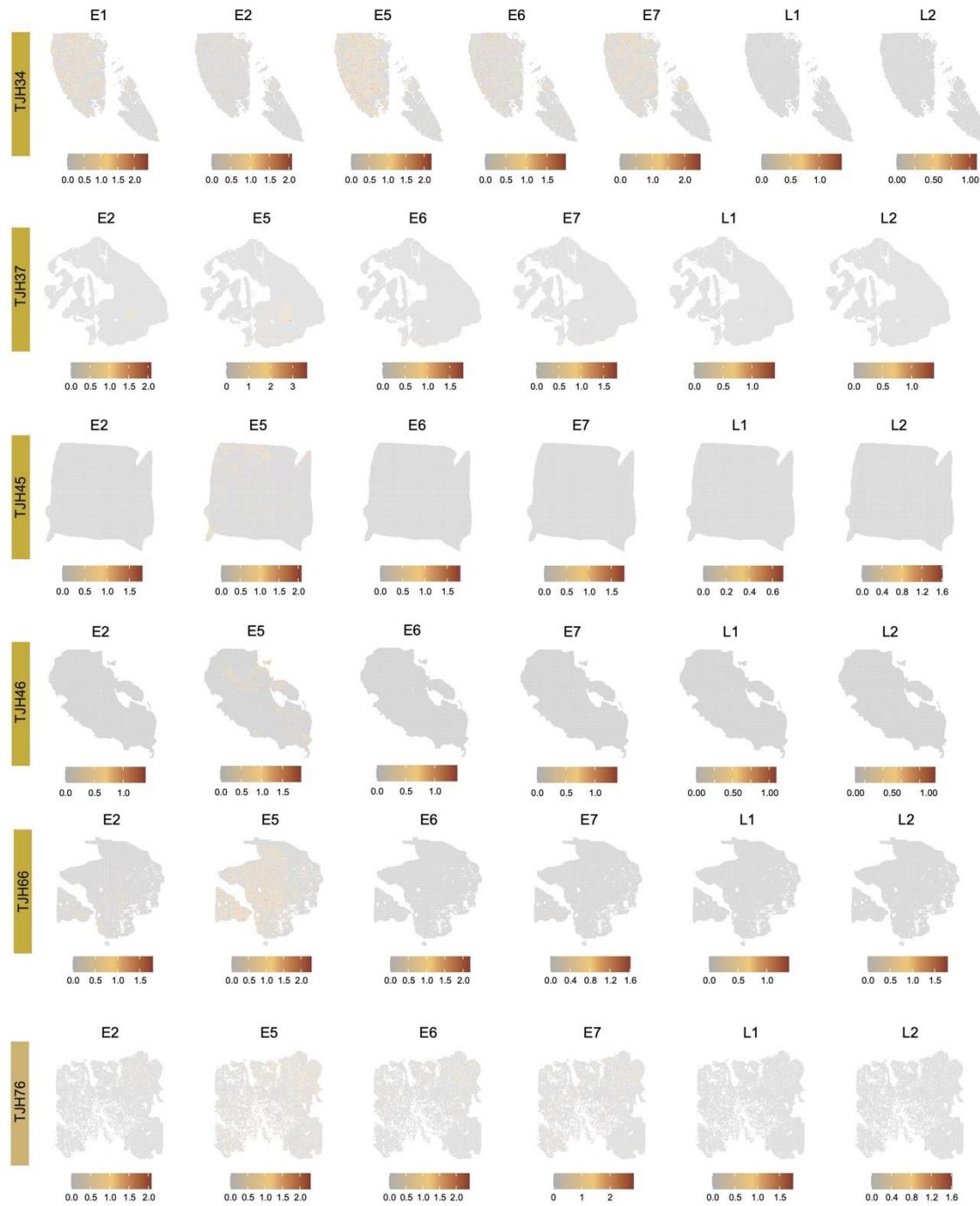

765 **Figure S2 (To be continued). Annotation results of the 18 Stereo-seq slides.** Non-cancer
766 samples included TJH10, TJH11, and TJH15. All the other samples were CSCC samples. Six
767 genes were selected to represent different tissue types. Cancer cells, *CDKN2A*; Endothelial cells,
768 *PECAM1*; Fibroblasts, *VIM*; Smooth muscle cells, *ADRA2A*; Plasma cells, *IGKC*; Columnar
769 epithelial cells, *MUC5B*.

770 **Figure S2 (Continued)**



771

A


B

772

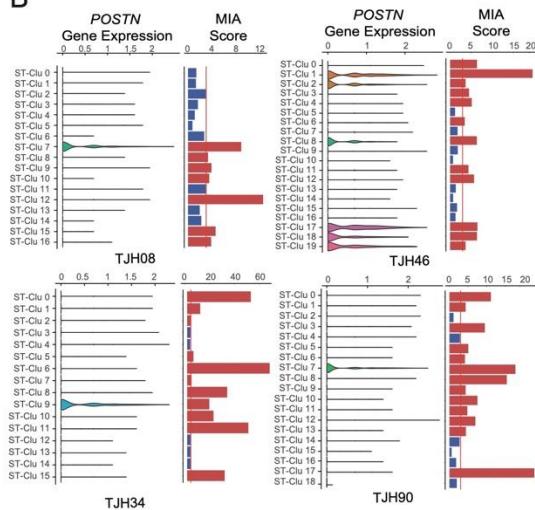
773 **Figure S3. HPV reads in the Stereo-seq sequencing data of 15 CSCC tissues.** (A) Mapping
774 of HPV reads against the corresponding reference genome. (B) Schematic plot showing the
775 genomic arrangement of the HPV genes in a linear form.

776

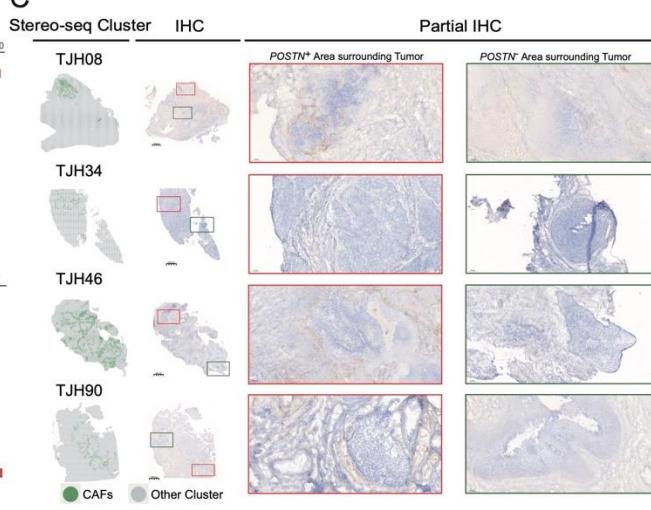
777

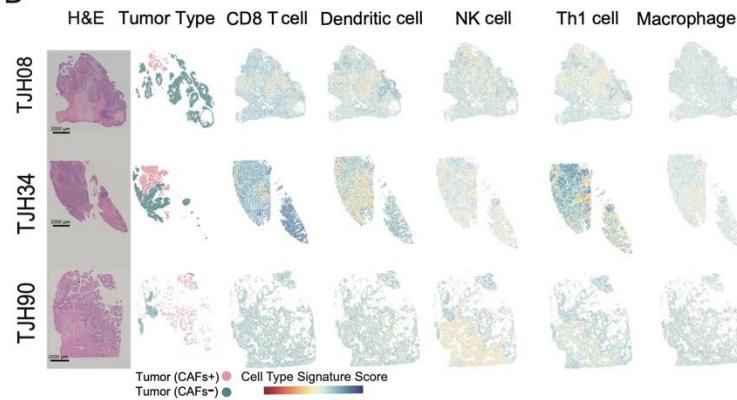
778 **Figure S4. Expression of HPV genes in the tumor areas of selected CSCC Stereo-seq slides.**

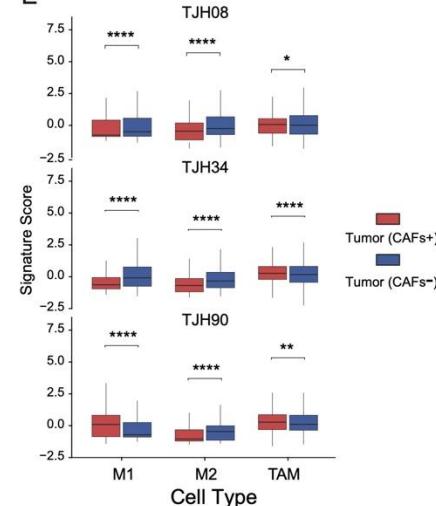
779 The annotation result for each sample can be found in **Figure S2**.


780

A


Stereo-seq Area Type and snRNA-seq Cell Type MIA analysis result


B


C

D

E

781

782 **Figure S5. Characterization of CAFs.** (A) Correlation between snRNA-seq cell types and the
 783 Stereo-seq areas defined by multimodal intersection analysis (MIA). (B) Expression of *POSTN*
 784 in Stereo-seq clusters and the associated MIA scores for CAFs. (C) Spatial clustering of CAFs
 785 in Stereo-seq slides and the IHC staining of *POSTN* in corresponding serial sections of CSCC

786 samples. (D) Spatial prediction of immunocytes in Stereo-seq slides. (E) The abundance of
787 macrophages including M1 (tumor-suppressive phenotype macrophage), (tumor-promoting
788 phenotype macrophage) M2, and TAM (tumor-associated macrophage) in CAFs+ and CAFs-
789 tumors. Asterisks indicate the significance levels of p-values: *, p <0.05; **, p < 0.01; ***, p <
790 0.001; ****, p < 0.0001.

791

792 **Supplementary Tables (see Excel files)**

793 Table S1. Clinical characteristics and experimental details for samples.

794 Table S2. snRNA-seq data statistics.

795 Table S3. Marker genes for the annotation of cell types in CSCC.

796 Table S4. Stereo-seq data statistics.

797 Table S5. Expression matrix of immune genes in Stereo-seq areas.

798 Table S6. DEGs for fibroblasts, CAFs, and cancer cells.

799 Table S7. DEGs for CAFs+ and CAFs- tumors.

800

801 **References**

- 802 1. Arbyn, M. *et al.* Estimates of incidence and mortality of cervical cancer in 2018: a
803 worldwide analysis. *The Lancet Global Health* **8**, e191–e203 (2020).
- 804 2. Sung, H. *et al.* Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and
805 Mortality Worldwide for 36 Cancers in 185 Countries. *CA A Cancer J Clin* **71**, 209–249
806 (2021).
- 807 3. de Sanjose, S. *et al.* Human papillomavirus genotype attribution in invasive cervical
808 cancer: a retrospective cross-sectional worldwide study. *The Lancet Oncology* **11**, 1048–
809 1056 (2010).
- 810 4. WHO. A Global Strategy for elimination of cervical cancer - PAHO/WHO | Pan
811 American Health Organization. [http://www.paho.org/en/topics/cervical-cancer/global-
812 strategy-elimination-cervical-cancer](http://www.paho.org/en/topics/cervical-cancer/global-strategy-elimination-cervical-cancer) (2018).
- 813 5. Friedlander, M. & Grogan, M. Guidelines for the Treatment of Recurrent and Metastatic
814 Cervical Cancer. *The Oncologist* **7**, 342–347 (2002).

815 6. Gupta, S. *et al.* Neoadjuvant Chemotherapy Followed by Radical Surgery Versus
816 Concomitant Chemotherapy and Radiotherapy in Patients With Stage IB2, IIA, or IIB
817 Squamous Cervical Cancer: A Randomized Controlled Trial. *JCO* **36**, 1548–1555 (2018).

818 7. Tewari, K. S. *et al.* Bevacizumab for advanced cervical cancer: final overall survival and
819 adverse event analysis of a randomised, controlled, open-label, phase 3 trial (Gynecologic
820 Oncology Group 240). *The Lancet* **390**, 1654–1663 (2017).

821 8. Bhatla, N., Aoki, D., Sharma, D. N. & Sankaranarayanan, R. Cancer of the cervix uteri.
822 *Int J Gynecol Obstet* **143**, 22–36 (2018).

823 9. Tewari, K. S., Java, J. J., Gatcliffe, T. A., Bookman, M. A. & Monk, B. J. Chemotherapy-
824 induced neutropenia as a biomarker of survival in advanced ovarian carcinoma: An
825 exploratory study of the Gynecologic Oncology Group. *Gynecologic Oncology* **133**, 439–
826 445 (2014).

827 10. Orbegoso, C., Murali, K. & Banerjee, S. The current status of immunotherapy for cervical
828 cancer. *Reports of Practical Oncology & Radiotherapy* **23**, 580–588 (2018).

829 11. Chung, H. C. *et al.* Efficacy and Safety of Pembrolizumab in Previously Treated
830 Advanced Cervical Cancer: Results From the Phase II KEYNOTE-158 Study. *JCO* **37**,
831 1470–1478 (2019).

832 12. Attademo, L. *et al.* Immunotherapy in cervix cancer. *Cancer Treatment Reviews* **90**,
833 102088 (2020).

834 13. Frenel, J.-S. *et al.* Safety and Efficacy of Pembrolizumab in Advanced, Programmed
835 Death Ligand 1–Positive Cervical Cancer: Results From the Phase Ib KEYNOTE-028
836 Trial. *JCO* **35**, 4035–4041 (2017).

837 14. Santin, A. D. *et al.* Phase II evaluation of nivolumab in the treatment of persistent or
838 recurrent cervical cancer (NCT02257528/NRG-GY002). *Gynecologic Oncology* **157**,
839 161–166 (2020).

840 15. Naumann, R. W. *et al.* Safety and Efficacy of Nivolumab Monotherapy in Recurrent or
841 Metastatic Cervical, Vaginal, or Vulvar Carcinoma: Results From the Phase I/II
842 CheckMate 358 Trial. *JCO* **37**, 2825–2834 (2019).

843 16. Chen, A. *et al.* Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA
844 nanoball patterned arrays. *BioRxiv* (2021) doi:10.1101/2021.01.17.427004.

845 17. Kato, H. & Torigoe, T. Radioimmunoassay for tumor antigen of human cervical
846 squamous cell carcinoma. *Cancer* **40**, 1621–1628 (1977).

847 18. Sun, Y., Sheshadri, N. & Zong, W.-X. SERPINB3 and B4: From biochemistry to biology.
848 *Seminars in Cell & Developmental Biology* **62**, 170–177 (2017).

849 19. Muth, S., Klaric, A., Radsak, M., Schild, H. & Probst, H. C. CD27 expression on Treg
850 cells limits immune responses against tumors. *J Mol Med* (2021) doi:10.1007/s00109-
851 021-02116-9.

852 20. Tanaka, A. & Sakaguchi, S. Regulatory T cells in cancer immunotherapy. *Cell Res* **27**,
853 109–118 (2017).

854 21. Vence, L. *et al.* Characterization and Comparison of GITR Expression in Solid Tumors.
855 *Clin Cancer Res* **25**, 6501–6510 (2019).

856 22. Zhu, M. M. T. *et al.* Evaluation of glucocorticoid-induced TNF receptor (GITR)
857 expression in breast cancer and across multiple tumor types. *Mod Pathol* **33**, 1753–1763
858 (2020).

859 23. Wang, M. *et al.* Exosomal LGALS9 in the cerebrospinal fluid of glioblastoma patients
860 suppressed dendritic cell antigen presentation and cytotoxic T-cell immunity. *Cell Death
861 Dis* **11**, 896 (2020).

862 24. Zhu, C. *et al.* The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity.
863 *Nat Immunol* **6**, 1245–1252 (2005).

864 25. Riera-Domingo, C. *et al.* Immunity, Hypoxia, and Metabolism—the Ménage à Trois of
865 Cancer: Implications for Immunotherapy. *Physiological Reviews* **100**, 1–102 (2020).

866 26. Samec, M. *et al.* Flavonoids Targeting HIF-1: Implications on Cancer Metabolism.
867 *Cancers* **13**, 130 (2021).

868 27. Moncada, R. *et al.* Integrating microarray-based spatial transcriptomics and single-cell
869 RNA-seq reveals tissue architecture in pancreatic ductal adenocarcinomas. *Nat Biotechnol*
870 **38**, 333–342 (2020).

871 28. Qin, X. *et al.* TGF β 3-mediated induction of Periostin facilitates head and neck cancer
872 growth and is associated with metastasis. *Sci Rep* **6**, 20587 (2016).

873 29. Yu, B. *et al.* Periostin secreted by cancer-associated fibroblasts promotes cancer stemness
874 in head and neck cancer by activating protein tyrosine kinase 7. *Cell Death Dis* **9**, 1082
875 (2018).

876 30. Yue, H. *et al.* Stromal POSTN induced by TGF- β 1 facilitates the migration and invasion
877 of ovarian cancer. *Gynecologic Oncology* **160**, 530–538 (2021).

878 31. Mantovani, A., Marchesi, F., Malesci, A., Laghi, L. & Allavena, P. Tumour-associated
879 macrophages as treatment targets in oncology. *Nat Rev Clin Oncol* **14**, 399–416 (2017).

880 32. Peacock, J. W. *et al.* SEMA 3C drives cancer growth by transactivating multiple receptor
881 tyrosine kinases via Plexin B1. *EMBO Mol Med* **10**, 219–238 (2018).

882 33. Zhang, X., Klamer, B., Li, J., Fernandez, S. & Li, L. A pan-cancer study of class-3
883 semaphorins as therapeutic targets in cancer. *BMC Med Genomics* **13**, 45 (2020).

884 34. Bao, S. *et al.* Periostin potently promotes metastatic growth of colon cancer by
885 augmenting cell survival via the Akt/PKB pathway. *Cancer Cell* **5**, 329–339 (2004).

886 35. Zheng, S. *et al.* CXCL6 fuels the growth and metastases of esophageal squamous cell
887 carcinoma cells both in vitro and in vivo through upregulation of PD-L1 via activation of
888 STAT3 pathway. *J Cell Physiol* **236**, 5373–5386 (2021).

889 36. Blanco-Gómez, A. *et al.* Stromal SNAI2 Is Required for ERBB2 Breast Cancer
890 Progression. *Cancer Res* **80**, 5216–5230 (2020).

891 37. Cobaleda, C., Pérez-Caro, M., Vicente-Dueñas, C. & Sánchez-García, I. Function of the
892 Zinc-Finger Transcription Factor *SNAI2* in Cancer and Development. *Annu. Rev. Genet.*
893 **41**, 41–61 (2007).

894 38. Sheng, W. *et al.* LSD1 Ablation Stimulates Anti-tumor Immunity and Enables
895 Checkpoint Blockade. *Cell* **174**, 549–563.e19 (2018).

896 39. Asem, M. *et al.* Host Wnt5a Potentiates Microenvironmental Regulation of Ovarian
897 Cancer Metastasis. *Cancer Res* **80**, 1156–1170 (2020).

898 40. Liu, Q. *et al.* Wnt5a-induced M2 polarization of tumor-associated macrophages via IL-10
899 promotes colorectal cancer progression. *Cell Commun Signal* **18**, 51 (2020).

900 41. Liu, J. *et al.* An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-
901 Quality Survival Outcome Analytics. *Cell* **173**, 400–416.e11 (2018).

902 42. Enwere, E. K. *et al.* Expression of PD-L1 and presence of CD8-positive T cells in pre-
903 treatment specimens of locally advanced cervical cancer. *Mod Pathol* **30**, 577–586
904 (2017).

905 43. Mezache, L., Paniccia, B., Nyinawabera, A. & Nuovo, G. J. Enhanced expression of PD
906 L1 in cervical intraepithelial neoplasia and cervical cancers. *Mod Pathol* **28**, 1594–1602
907 (2015).

908 44. Reddy, O. L., Shintaku, P. I. & Moatamed, N. A. Programmed death-ligand 1 (PD-L1) is
909 expressed in a significant number of the uterine cervical carcinomas. *Diagn Pathol* **12**, 45
910 (2017).

911 45. Lheureux, S. *et al.* Association of Ipilimumab With Safety and Antitumor Activity in
912 Women With Metastatic or Recurrent Human Papillomavirus–Related Cervical
913 Carcinoma. *JAMA Oncol* **4**, e173776 (2018).

914 46. Daley, D. *et al.* Dectin 1 activation on macrophages by galectin 9 promotes pancreatic
915 carcinoma and peritumoral immune tolerance. *Nat Med* **23**, 556–567 (2017).

916 47. Nobumoto, A. *et al.* Galectin-9 suppresses tumor metastasis by blocking adhesion to
917 endothelium and extracellular matrices. *Glycobiology* **18**, 735–744 (2008).

918 48. Munn, D. H. *et al.* GCN2 Kinase in T Cells Mediates Proliferative Arrest and Anergy
919 Induction in Response to Indoleamine 2,3-Dioxygenase. *Immunity* **22**, 633–642 (2005).

920 49. Low, H.-Y. *et al.* Reciprocal Regulation Between Indoleamine 2,3-Dioxygenase 1 and
921 Notch1 Involved in Radiation Response of Cervical Cancer Stem Cells. *Cancers* **12**, 1547
922 (2020).

923 50. Li, X. *et al.* Navigating metabolic pathways to enhance antitumour immunity and
924 immunotherapy. *Nat Rev Clin Oncol* **16**, 425–441 (2019).

925 51. Biffi, G. & Tuveson, D. A. Diversity and Biology of Cancer-Associated Fibroblasts.
926 *Physiological Reviews* **101**, 147–176 (2021).

927 52. Chu, T.-Y., Yang, J.-T., Huang, T.-H. & Liu, H.-W. Crosstalk with Cancer-Associated
928 Fibroblasts Increases the Growth and Radiation Survival of Cervical Cancer Cells.
929 *Radiation Research* **181**, 540–547 (2014).

930 53. Zhang, X. *et al.* Extracellular vesicles-encapsulated microRNA-10a-5p shed from cancer-
931 associated fibroblast facilitates cervical squamous cell carcinoma cell angiogenesis and
932 tumorigenicity via Hedgehog signaling pathway. *Cancer Gene Ther* **28**, 529–542 (2021).

933 54. Sahai, E. *et al.* A framework for advancing our understanding of cancer-associated
934 fibroblasts. *Nat Rev Cancer* **20**, 174–186 (2020).

935 55. Guo, W. *et al.* scCancer: a package for automated processing of single-cell RNA-seq data
936 in cancer. *Briefings in Bioinformatics* **22**, bbaa127 (2021).

937 56. Hao, Y. *et al.* Integrated analysis of multimodal single-cell data. *Cell* **184**, 3573–3587.e29
938 (2021).

939 57. Zhang, Q. *et al.* Integrative Analysis of Hypoxia-Associated Signature in Pan-Cancer.
940 *iScience* **23**, 101460 (2020).

941 58. Cascone, T. *et al.* Increased Tumor Glycolysis Characterizes Immune Resistance to
942 Adoptive T Cell Therapy. *Cell Metabolism* **27**, 977-987.e4 (2018).

943 59. Baenke, F., Peck, B., Miess, H. & Schulze, A. Hooked on fat: the role of lipid synthesis in
944 cancer metabolism and tumour development. *Dis Model Mech* **6**, 1353–1363 (2013).

945 60. Mues, C. *et al.* Regulation of Glucose-6-Phosphatase Gene Expression by Insulin and
946 Metformin. *Horm Metab Res* **41**, 730–735 (2009).

947 61. Heusinkveld, M. & van der Burg, S. H. Identification and manipulation of tumor
948 associated macrophages in human cancers. *J Transl Med* **9**, 216 (2011).

949 62. Charoentong, P. *et al.* Pan-cancer Immunogenomic Analyses Reveal Genotype-
950 Immunophenotype Relationships and Predictors of Response to Checkpoint Blockade.
951 *Cell Reports* **18**, 248–262 (2017).

952 63. Stuart, T. *et al.* Comprehensive Integration of Single-Cell Data. *Cell* **177**, 1888-1902.e21
953 (2019).

954 64. Malta, T. M. *et al.* Machine Learning Identifies Stemness Features Associated with
955 Oncogenic Dedifferentiation. *Cell* **173**, 338-354.e15 (2018).

956 65. Zhou, Y. *et al.* Metascape provides a biologist-oriented resource for the analysis of
957 systems-level datasets. *Nat Commun* **10**, 1523 (2019).

958 66. Jin, S. *et al.* Inference and analysis of cell-cell communication using CellChat. *Nat
959 Commun* **12**, 1088 (2021).

960