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Abstract

Brain ageing is a complex process which requires a multimodal approach. Neuroimaging can
provide insights into brain morphology, functional organization and vascular dynamics.
However, most neuroimaging studies of ageing have focused on each imaging modality
separately, limiting the understanding of interrelations between processes identified by
different modalities and their relevance to cognitive decline in ageing. Here, we used a data-
driven multimodal approach, linked independent component analysis (ICA), to jointly analyze
magnetic resonance imaging of grey matter volume, cerebrovascular, and functional network
topographies in relation to measures of fluid intelligence. Neuroimaging and cognitive data
from the Cambridge Centre for Ageing and Neuroscience study were used, with healthy
participants aged 18 to 88 years (main dataset n = 215; secondary dataset n = 433). Using linked
ICA, functional network activities were characterized in independent components but not
captured in the same component as structural and cerebrovascular patterns. Split-sample (n =
108/107) and out-of-sample (n = 433) validation analyses using linked ICA were also performed.
Global grey matter volume with regional cerebrovascular changes and the right frontoparietal
network activity were correlated with age-related and individual differences in fluid intelligence.
This study presents the insights from linked ICA to bring together measurements from multiple
imaging modalities, with independent and additive information. We propose that integrating
multiple neuroimaging modalities allows better characterization of brain pattern variability and

changes associated with healthy ageing.
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1. INTRODUCTION

Increasing life expectancy is leading to rapid ageing of the worldwide population (Beard et al.,
2016). The quality of these extra years of life heavily depends on good health, including the
maintenance of good cognitive function across the lifespan (Beard et al., 2016; Sahakian, 2014).
There is a pressing need to better understand the neurobiology of cognitive function associated
with ageing. Neuroimaging studies show age-related changes in brain morphology, functional
networks, and vascular dynamics (Kennedy & Raz, 2015). However, these effects are usually
studied separately, whereas their integration could explain how these components influence

cognitive ageing (K. A. Tsvetanov, Henson, & Rowe, 2021).

Brain atrophy is one of the most commonly studied features of ageing (Grajauskas et al., 2019;
Pini et al., 2016; Romanowski & Wilkinson, 2011). Atrophy refers to the loss of brain tissue,
which mainly comprises of grey matter constituted by the cell bodies of neurons and glial cells
(Azevedo et al., 2009). The concentration and volume of grey matter can be estimated from
structural magnetic resonance imaging (MRI) and generally decrease with age (Grajauskas et al.,
2019; Kennedy & Raz, 2015). Nevertheless, these changes are not uniform across the brain
regions and patterns of brain ageing vary among individuals and the trajectories can be
influenced by environmental, genetic and other neurobiological factors (Bethlehem et al., 2022;
Lemaitre et al.,, 2012; Pini et al., 2016). In fact, atrophy on its own does not fully explain
cognitive performance (Boekel et al., 2015) and is insufficient for understanding ageing and
neurodegenerative syndromes with heterogenous clinical features (Grajauskas et al., 2019;
Murley et al., 2020; Perry et al., 2017; K. A. Tsvetanov, Gazzina, et al., 2021; K. A. Tsvetanov et
al., 2016). Instead, we propose that brain ageing is multifactorial, reflecting complex processes
which require multivariate techniques to elucidate (Doan, Engvig, Persson, et al., 2017; Doan,
Engvig, Zaske, et al., 2017; Douaud et al., 2014; Groves, Beckmann, Smith, & Woolrich, 2011;
Murley et al., 2020). Neuroimaging is a key contributor to this approach, from its quantification

of brain morphology, functional networks and vascular dynamics.
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Brain functional networks are commonly studied using functional magnetic resonance imaging
(fMRI), which measures neural activity indirectly via changes in the blood oxygen level-
dependent (BOLD) signal (Chen & Glover, 2015; Grady, 2012; Rosen & Savoy, 2012). Cognitive
function is dependent on intrinsic interactions within large-scale functional brain networks as
well as extrinsic interactions between such functional brain networks (Fox et al., 2005; Kelly,
Uddin, Biswal, Castellanos, & Milham, 2008). These networks show selective vulnerability to
age and neurodegeneration (Moguilner et al., 2020; K. A. Tsvetanov, Gazzina, et al., 2021).
Task-free fMRI, also known as resting-state fMRI (rs-fMRI), can be used to characterize intrinsic
and extrinsic connectivity of functional networks simultaneously (Cole, Bassett, Power, Braver,
& Petersen, 2014; Smith et al., 2009). Spontaneous activity, which can be measured by rs-fMRI,
is the most metabolic demanding component of neural activity (Raichle & Mintun, 2006).
Moreover, activities in resting-state functional networks, such as the default mode network
(DMN), the salience network (SN) and the frontoparietal network (FPN), are associated with a
wide range of cognitive functions (e.g., memory, language, attention, visual processes)
(Corbetta & Shulman, 2002) and playing an increasingly important role in maintaining good
cognition in old age and progression of some neurodegenerative diseases (Bethlehem et al.,
2020; Day et al., 2013; Marek & Dosenbach, 2018; Rosazza & Minati, 2011; Tibon et al., 2021; K.
A. Tsvetanov, Gazzina, et al., 2021; K. A. Tsvetanov et al., 2016; Zhou & Seeley, 2014).

Resting-state fMRI BOLD signals also reflect the haemodynamic response evoked by neuronal
activity and therefore they represent both vascular and neuronal signals (K. A. Tsvetanov,
Henson, & Rowe, 2021). Age differences in BOLD signal could be confounded by differences in
cerebrovascular function associated with non-neuronal physiological factors (e.g., medications,
time of day, or level of wakefulness). Nevertheless, cerebrovascular function is also implicated
as a major factor in maintaining brain health in ageing and neurodegenerative diseases
(Barisano et al., 2022; Fuhrmann et al.,, 2019; ladecola, 2017; Kisler, Nelson, Montagne, &
Zlokovic, 2017; Sweeney, Kisler, Montagne, Toga, & Zlokovic, 2018; Zimmerman, Rypma,
Gratton, & Fabiani, 2021). The mixture of cerebrovascular and neuronal contributions to BOLD

signals complicates the interpretation of age differences in BOLD imaging and, thus, our
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understanding of neurocognitive ageing (K. A. Tsvetanov et al., 2015). Dissociation of vascular
and neuronal signals would therefore be particularly meaningful (K. A. Tsvetanov, Henson, &

Rowe, 2021).

An important aspect of cerebrovascular function is the ability to move blood through a network
of cerebral vasculature supplying the brain, which can be assessed by measuring resting
cerebral blood flow (CBF) using arterial spin labelling (ASL) (Detre, Wang, Wang, & Rao, 2009;
Williams, Detre, Leigh, & Koretsky, 1992). ASL is a noninvasive MRI technique used to quantify
cerebral blood perfusion by labelling blood water as it flows throughout the brain. Baseline CBF,
which relates to cerebrovascular ageing (K. A. Tsvetanov, Henson, Jones, et al.,, 2021), is
important for maintaining cognitive function, while its non-neuronal contributions to BOLD
signals reflect age-related confound (Wu et al, 2021). Another important aspect of
cerebrovascular function is the ability to regulate regional blood flow via carbon dioxide-
modulated constriction or dilation of cerebral vessels (Willie, Tzeng, Fisher, & Ainslie, 2014).
This cerebrovascular reactivity can be assessed using resting state fluctuation amplitude (RSFA)
(Kannurpatti & Biswal, 2008), which reflects naturally occurring fluctuations in BOLD signals
induced by variations in cardiac and respiratory rhythms at resting state (Birn, Diamond, Smith,
& Bandettini, 2006; Shmueli et al., 2007). RSFA is a safe, scalable, and robust alternative to
hypercapnia and breath-holding approaches (Kannurpatti & Biswal, 2008; K. A. Tsvetanov,
Henson, Jones, et al., 2021). RSFA is sensitive to cardiovascular and cerebrovascular differences
in ageing (Garrett, Lindenberger, Hoge, & Gauthier, 2017; K. A. Tsvetanov et al., 2015; K. A.
Tsvetanov, Henson, Jones, et al.,, 2021), intracranial vascular disease (Makedonov, Black, &
Maclntosh, 2013; Nair, Raut, & Prabhakaran, 2017; Raut, Nair, Sattin, & Prabhakaran, 2016),
neurodegeneration (Makedonov, Chen, Masellis, & MacIntosh, 2016; Peter R. Millar et al., 2020)
and cognitive impairment (Millar et al., 2021; Peter R Millar et al., 2020; Kamen A Tsvetanov et

al., 2022).

The majority of neuroimaging studies have focused on each imaging modality separately,

limiting the understanding of interrelations between modalities and the complex neural
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mechanisms associated with cognitive change. Unraveling the interactive effects of changes on
morphometry, cerebrovascular and functional levels could provide better understanding of the
multifactorial neurobiological mechanisms underlying cognitive change in ageing and
neurodegeneration. Linked independent component analysis (ICA) is a data-driven analytic
method that allows for simultaneous characterization of multimodal imaging modalities while
taking into account the covariance across imaging modalities (Groves et al., 2011). In
comparison with other commonly used multivariate approaches such as canonical correlation
analysis (CCA) and partial least squares (PLS), linked ICA is able to identify patterns of
covariance across more than two modalities. By identifying common patterns that are shared
by different imaging modalities and identifying independent components that are dominated
by single imaging modality, one can more accurately characterize the predictors of the

outcomes of interest.

We aimed to integrate structural, functional and cerebrovascular neuroimaging signals to
better understand their contribution to cognitive decline in ageing. We focused on fluid
intelligence, which includes reasoning and problem-solving abilities (Gottfredson & Deary, 2004)
and has been shown consistently to decrease markedly with ageing (Ghisletta, Rabbitt, Lunn, &
Lindenberger, 2012; Hartshorne & Germine, 2015; Kievit et al., 2014; T. A. Salthouse, 2009;
Timothy A. Salthouse, 2010). Specifically, we tested whether differences in structural,
cerebrovascular, and functional network activation patterns have independent or convergent
patterns with age, and whether these patterns are correlated with measures of fluid

intelligence across the lifespan.

2. METHODS

2.1 Cohorts and participants
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The Cambridge Centre for Ageing and Neuroscience (Cam-CAN) cohort study recruited healthy
adults from its local general population in the UK, in three stages (Shafto et al., 2014). In Stage 1,
3000 adults aged 18 and above were recruited for a home interview. In Stage 2, a subset of 700
participants aged 18-88 (100 per age decile) was selected to participate in neuroimaging (e.g.,
structural MRI and fMRI) and behavioural tests (Shafto et al., 2014). We refer to Stage 2 as
CC700 in this paper. In Stage 3, a subset of 280 participants (40 per age decile) was selected to
participate in further neuroimaging (e.g., fMRI, ASL) and cognitive examinations across key
cognitive domains (Shafto et al., 2014; Taylor et al., 2017), and we refer to Stage 3 as CC280 in
this paper. Details of the neuroimaging experiments and cognitive tasks are reported previously
(Shafto et al., 2014; Taylor et al., 2017). Fluid intelligence was assessed as a principal cognitive
measure due to its strong positive correlations with performance on many other cognitive tests,
and sensitivity to age. To assess fluid intelligence in the Cam-CAN study, we used the standard
form of the Cattell Culture Fair, Scale 2 Form A (Cattell, 1971; Cattell, Cattell, Institute for, &
Ability, 1960). This test contained four subtests with different types of nonverbal “puzzles”:
series completion, classification, matrices, and conditions. Each subtest was timed with 3
minutes for the first subtest, 4 minutes for the second, 3 minutes for the third, and 2.5 minutes
for the final subtest (participants were not informed about precise timings beforehand) (Shafto
et al., 2014). Before each subtest, instructions were read from the manual and participants
were given examples. The Cattell test was a pen-and-paper test where the participant chose a
response on each trial from multiple choices, and recorded responses on an answer sheet.
Correct responses were given a score of 1 for a total maximum score of 46. The total score of
Cattell test was interpreted as a measure of fluid intelligence in this study. Ethical approval was
obtained from the Cambridge 2 Research Ethics Committee, and written informed consent was
given by all participants. Subjects in Cam-CAN Stage 3 (CC280) were analyzed as the main
analysis of this study (n = 215). Subjects from CC700 that were excluded from the CC280 main
analysis formed an independent sample for out-of-sample validation analysis, and we refer to

this sample as CC420 (n = 433) in this paper.

2.2 Image acquisition
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Imaging data from Cam-CAN were acquired using a 3T Siemens TIM Trio. A 3D structural MRI
was acquired using T1l-weighted sequence with generalized autocalibrating partially parallel
acquisition with acceleration factor 2; repetition time (TR) = 2250 ms; echo time (TE) = 2.99 ms;
inversion time (TI) = 900 ms; flip angle o = 9°; field-of-view (FOV) = 256 X 240 X 192 mm;

resolution = 1 mm isotropic; acquisition time of 4 min and 32 s.

For rs-fMRI, echoplanar imaging (EPI) acquired 261 volumes with 32 slices (sequential
descending order, slice thickness of 3.7 mm with a slice gap of 20% for whole-brain coverage,
TR = 1970 ms; TE = 30 ms; flip angle o = 78°; FOV = 192 mm x 192 mm; resolution =3 mm x 3
mm x 4.44 mm) during 8 min and 40 s. Participants were instructed to lie still with their eyes

closed. The initial six volumes were discarded to allow for T1 equilibration.

An index of cerebrovascular reactivity was estimated using the RSFA (Kannurpatti & Biswal,
2008; K. A. Tsvetanov et al., 2015; K. A. Tsvetanov, Henson, & Rowe, 2021). RSFA was estimated
from the resting-state EPI reported above. Subject specific RSFA maps were calculated based on
the normalized standard deviation across time for processed rs-fMRI time series data. Details
on the acquisition of RSFA are also reported previously (K. A. Tsvetanov, Henson, Jones, et al.,

2021).

To assess resting CBF, pulsed ASL was used (PASL, PICORE-Q2T-PASL in axial direction, 2,500 ms
repetition time, 13 ms echo time, bandwidth 2,232 Hz/Px, 256 x 256 mm2 field of view, imaging
matrix 64 x 64, 10 slices, 8 mm slice thickness, flip angle 90°, 700 ms TI1, TI2 = 1,800 ms, 1,600
ms saturation stop time). The imaging volume was positioned to maintain maximal brain
coverage with a 20.9 mm gap between the imaging volume and a labeling slab with 100 mm
thickness. There were 90 repetitions giving 45 control-tag pairs (duration 3’52”). A single-shot

EPI (MO) equilibrium magnetization scan was acquired.

2.3 Image preprocessing
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Preprocessing of T1-weighted images used standardized preprocessing consistent with Cam-
CAN data processing protocol (Taylor et al., 2017; K. A. Tsvetanov, Henson, Jones, et al., 2021).
The Automatic Analysis (Cusack et al., 2014) pipelines implemented in Matlab (MathWorks)
were used. The T1 image was initially coregistered to the MNI template, and the T2 image was
then coregistered to the T1 image using a rigid-body transformation. The coregistered T1 and
T2 images were used in a multichannel segmentation to extract probabilistic maps of six tissue
classes: grey matter, white matter, cerebrospinal fluid, bone, soft tissue, and residual noise. The
native space grey matter and white matter images were submitted to diffeomorphic
registration (DARTEL) (Ashburner, 2007) to create group template images. Each template was
normalized to the MNI template using a 12-parameter affine transformation. Images were
modulated to correct for individual brain size. Grey matter images were smoothed with an 8
mm full-width at half maximum (FWHM) Gaussian kernel in alignment with the standardized
processing protocol of Cam-CAN data (Taylor et al.,, 2017; K. A. Tsvetanov et al.,, 2018).
Modulated grey matter volume (GMV) was analyzed in linked ICA of this study. For the linked
ICA grey matter images were down-sampled to match the resolution of fMRI and perfusion data.
A brain mask from Statistical Parametric Mapping 12 (SPM12)

(https://www.fil.ion.ucl.ac.uk/spm/software/spm12/) was applied at a threshold of 0.9 (i.e.,

regions with > 90% probability being within the brain were included).

Resting-state fMRI data were preprocessed using Automatic Analysis (Cusack et al., 2014)
calling functions from SPM12 implemented in Matlab (MathWorks). Resting-state fMRI were
further processed using whole-brain ICA of single-subject time series denoising (termed
subject-ICA), with noise components selected and removed automatically using the ICA-based
Automatic Removal of Motion Artifacts toolbox (AROMA) (Pruim, Mennes, Buitelaar, &
Beckmann, 2015; Pruim, Mennes, van Rooij, et al., 2015). This was complemented with linear
detrending of the fMRI signal, covarying out six realignment parameters, white matter and
cerebrospinal fluid signals, their first derivatives, and quadratic terms (Pruim, Mennes, van

Rooij, et al., 2015). Global white matter and cerebrospinal fluid signals were estimated for each
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volume from the mean value of white matter and cerebrospinal fluid masks derived by
thresholding SPM tissue probability maps at 0.75. Resting-state fMRI data were head motion
corrected, bandpass filtered and spatially smoothed with a 6 mm FWHM Gaussian kernel in
accordance with recommendations of the AROMA processing pipeline. As the subsequent
analysis method is robust to potential differences in spatial smoothness across modalities, we

used modality-specific smoothing kernels.

Pulsed ASL time series were converted to CBF maps using ExploreASL toolbox (H. Mutsaerts et
al., 2018). Following rigid-body alignment, the images were coregistered with the T1 volume,
normalised with normalization parameters from the T1 stream to warp ASL images into MNI
space (K. A. Tsvetanov, Henson, Jones, et al., 2021). Given the ASL data was based on a
sequence with lower resolution (i.e., slice thickness of 8 mm), a smoothing kernel size 1.5 times
larger than the slice thickness (i.e., 12 mm FWHM Gaussian kernel) was used, consistent with
the efficacy of ASL data with heavier smoothing kernels (Wang, Wang, Aguirre, & Detre, 2005).

RSFA was smoothed with an 8 mm FWHM Gaussian kernel.

All T1 and EPI image processing came from Release004 of the Cam-CAN pipelines, which
included quality-control checks by semi-automated scripts monitored by the Cam-CAN methods
team (Taylor et al., 2017). CBF images with artefacts (n = 25) based on visual inspection were

excluded from analysis.

2.4 Image analysis

A summary flow chart of the processing and analysis of imaging modalities is presented in
Figure 1.

2.4.1 Functional network decomposition using group-ICA
In order to identify functional networks from rs-fMRI and study network spatial patterns, an ICA

was performed using the Group-level ICA of fMRI Toolbox to decompose the rs-fMRI

(trendscenter.org/software/gift/) (V. D. Calhoun, Adali, Pearlson, & Pekar, 2001). ICA

dissociates signals from complex datasets with minimal assumptions (V. Calhoun, 2018), to

10
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represent data in a small number of independent components (ICs) which here are spatial maps
that describe the temporal and spatial characteristics of underlying signals (V. D. Calhoun et al.,
2001; McKeown et al.,, 1998). The values at each voxel reflect the correlation between the
timeseries of the voxel and that of the component. Each component can therefore be
interpreted as similar BOLD activity of a functional network at resting-state (Rosazza & Minati,

2011).

The data from participants in CC700 (n = 648) were analyzed using group-ICA. This provided a
twofold advantage: subjects excluded from the main analysis (CC280) formed an independent
second sample (see below in 2.5); and having a larger sample increases the reliability of ICA
decomposition results while maximizing statistical power (V. D. Calhoun, Kiehl, & Pearlson,
2008; Erhardt et al., 2011). The number of components used, N = 15, matched a common
degree of decomposition previously applied in low-dimensional group-ICA of rs-fMRI
(Beckmann, Deluca, Devlin, & Smith, 2005; Damoiseaux et al., 2006; Smith et al., 2009) and
generated network spatial maps that showed a high degree of overlapping with network
templates. Low-dimensional group-ICA was used because the purpose was to define each
network with a single component, and high-dimensional group-ICA would tend to decompose
single network into multiple components. Hundred ICASSO iterations were used to ensure the
reliability of estimated ICs (Himberg & Hyvarinen, 2003). Functional networks were identified
from components by visualization and validated by spatially matching the components to pre-
existing templates (Shirer, Ryali, Rykhlevskaia, Menon, & Greicius, 2012), in accordance with
previous methodology used to identify networks from ICs (K. A. Tsvetanov et al., 2016). Four
resting-state functional networks were selected to achieve a relatively balanced number of
inputs between functional and non-functional imaging measurements. The DMN, SN, right and
left FPN were selected, which are higher-order functional networks known to be associated
with age and cognitive change including fluid intelligence (Buckner, Andrews-Hanna, & Schacter,
2008; Corbetta & Shulman, 2002; Samu et al., 2017; Snyder, Uddin, & Nomi, 2021; Tibon et al.,
2021).

2.4.2 Multimodal fusion using linked ICA

11
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Linked ICA was performed using FLICA of FMRIB (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FLICA)

(Groves et al., 2011; Smith et al., 2004) implemented in Matlab (MathWorks version 2020b).
Linked ICA was run with 7 spatial map inputs: GMV, CBF, RSFA and four maps from three
resting-state functional networks (i.e., the DMN, the SN, the right FPN and the left FPN) of
those subjects that were included in CC280. We refer to these imaging derived inputs as
modalities. Within each modality, images from all subjects were concatenated into a single
input image for linked ICA. Linked ICA decomposed this n-by-m matrix of participants-by-voxels
into spatial components, with each component being an aggregate of spatial patterns, one for
each modality, along with a set of subject loadings, one for each component (for more details
see (Groves et al., 2011; Groves et al., 2012)). Each modality spatial pattern is a map of weights
that is later converted to pseudo-Z-statistic by accounting the scaling of the variables and the
signal-to-noise ratio in that modality. Only modalities with significant contribution (i.e., having
weight with Z-score > 3.34, which corresponds to P < 0.001) were presented in this study.
Linked ICA subject loadings for a given component were shared between all modalities
represented in that component and indicated the degree to which that component was
presented in any individual subject. Subject loadings were used as inputs to the second-level
between-subject regression analysis (see below in 2.6). To ensure that results were not
influenced dominantly by non-grey matter regions, a grey matter probability mask from SPM12
was used with a threshold of 0.3. We performed linked ICA using a dimensionality of 40, with
1000 iterations based on recommendation in previous studies (Doan, Engvig, Zaske, et al., 2017;
Doan, Kaufmann, et al., 2017; Francx et al., 2016; Groves et al., 2012; Li et al., 2020; Wolfers et
al.,, 2017). To ensure linked ICA fusion patterns were robust to the model order, we also
performed the linked ICA using 30 and 50 dimensions. To ensure linked ICA fusion patterns
were not biased by multiple functional network inputs, we repeated linked ICA with only one

functional network (DMN) input to examine the fusion patterns.

2.5 Split-sample and out-of-sample validation of multimodal fusion
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For validation of the multimodal fusion approach, a split-sample validation analysis was
performed with similar age distributions. This was achieved by splitting the original sample
based on odd/even parity of ranked participants’ ages. Linked ICA using a dimensionality of 40
with 1000 iterations (same as the CC280 main analysis) was performed on each sub-sample.
Linked ICA components of the main sample were spatially correlated with linked ICA
components of the validation sub-samples to examine the robustness of linked ICA to
characterize brain patterns in independent components. Each of linked ICA components in one
sample was matched to the component that showed the highest correlation with it in the

comparing sample.

To further assess the reliability of fusion between neuroimaging modalities using the linked ICA
approach in a larger sample size, linked ICA was performed in an independent sample using the
same processing steps and settings. This sample was the CC420 as described above in 2.1, a
subset of the Cam-CAN cohort comprised of participants who were included in CC700 but were
not included in CC280 main analysis because they were either not selected to enter CC280 or
had missing data from CC280. CC420 lacked ASL data so the linked ICA included 6 inputs only
(DMN, SN, right FPN, left FPN, RSFA, and GMV). Other protocols were the same as the main
analysis (i.e., the acquisition and preprocessing of neuroimaging data, functional network

decomposition using group-ICA, and multimodal fusion using linked ICA).

2.6 Statistical analysis

Demographic variables were compared between age groups using one-way ANOVA for
continuous variables and using chi-square test for categorical variable. Matching between
functional network spatial maps and corresponding network templates was analyzed using

spatial correlation tests.

To investigate the relationship between linked ICA subject loadings of each component with

cognition and how it varied with age, component subject loadings from linked ICA output were

13


https://doi.org/10.1101/2021.12.22.473894
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.22.473894; this version posted June 28, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

analyzed in relation to Cattell test total score using regression analysis with robust fitting
algorithm (Matlab function fitim.m). Each linked ICA component subject loading score was used
as the dependent variable. Cattell score, age, their interaction (age*Cattell) and quadratic
effect of age were used as the independent variables in the model. Covariates of no interest
included gender and head motion. The model's formula took the following form using
Wilkinson notation (Wilkinson & Rogers, 1973): IC ~ Cattell*age + age”2 + gender + head
motion. To investigate whether variance in head size across subjects could explain biologically
plausible effects in addition to confounding effects, we performed an additional regression
analysis with total intracranial volume (TIV) as a covariate along with the other covariates
mentioned above (IC ~ Cattell*age + age”2 + gender + head motion + TIV). The overall model fit
was corrected for multiple comparison using the Bonferroni correction of family-wise error rate
(FWER). A corrected P < 0.05 was chosen as the significance level. Only those models with
significant overall model fit after FWER-correction were considered as relevant in this study.
Components that were not significant after FWER-correction were considered as components
not related to the predictors in the models, but possibly related to other factors such as noise

signals. All statistical analyses were performed in Matlab version 2020b.

3. RESULTS

3.1 Characteristics of participants

The demographic characteristics of participants are reported in Table 1. Performance on the
Cattell test was highly correlated with age within the CC280 main sample (R =-0.64, P < 0.0001)
and CC420 validation sample (R =-0.69, P < 0.0001) (Figure 2).

3.2 Group-average effects on functional networks, RSFA, CBF and grey matter maps

Among the 15 components generated from group-ICA, whole brain spatial maps associated
with the following networks of interest specified a priori were identified: the DMN, the SN, and
the lateralized FPNs (Figure 3a). The correlation between each functional network spatial map

and its corresponding template from a previous study (Shirer et al., 2012) was r = 0.62, P <
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0.0001 for the DMN, r = 0.58, P < 0.0001 for the SN, r = 0.55, P < 0.0001 for the right FPN, and r
=0.54, P < 0.0001 for the left FPN.

CC280 group-average spatial maps of RSFA, CBF, and GMV that were entered into linked ICA are
shown in Figure 3b. Relatively strong group-average RSFA signals were observed in the
temporal lobe and subcortical regions; relatively high CBF was observed in cortical and
subcortical regions including frontal, posterior cingulate, pericalcarine, temporal, insula and
thalamic regions; and relatively high GMV was observed in the temporal lobe, prefrontal,

middle and superior frontal areas, medial occipital areas, and cerebellum.

3.3 Multimodal fusion using linked ICA

The relative weight of modalities in each component of CC280 is shown in Figure 4. Only
modalities with significant weight (i.e., pseudo-Z-score > 3.34 which corresponds to P < 0.001)
are presented. Two out of 40 components were excluded due to no values beyond the
significance threshold from any modality. Most components (> 75%) were dominated by a
single input neuroimaging modality. Components reflecting structural and cerebrovascular
inputs explained overall more variance compared to resting-state functional network
topography. Fusion in the same component between imaging inputs were observed between
GMV, CBF and RSFA maps (i.e., IC1, I1C4, IC14, 1C33). Fusion was also observed between
different functional networks (i.e., 1C19, 1C24, 1C26, IC38). However, no significant fusion was

observed between functional network, cerebrovascular and structural spatial maps.

For the components considered relevant in this study (i.e., components with significant overall
model fit after FWER-correction in regression), the spatial patterns of the split-sample
validation analysis were generally similar to those of the main analysis, as shown by the spatial
correlation between the linked ICA components of the CC280 main sample and split-sample
validation sub-samples (Figure 4). The average spatial correlation of the relevant components
was r = 0.83 between the main sample and sub-sample 1, r = 0.77 between the main sample

and sub-sample 2, and r = 0.76 between sub-sample 1 and sub-sample 2.
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Linked ICA was repeated with 30 and 50 numbers of components in order to ensure the results
were not significantly affected by the ICA dimensionality. Fusion patterns between modalities
were consistent across different model orders (Figure 5). The relative weight of modalities in
each component of linked ICA with only one functional network input is shown in
Supplementary Figure 3. No fusion was found between the functional network and

cerebrovascular/structural patterns.

3.4 Age- and cognition-related effects on linked ICA subject loadings

Results of regression analysis of the CC280 are shown in Table 2. The overall model fits of 15
components remained significant after FWER-correction. Components that were not significant
after FWER-correction were considered as components not related to the predictors in the
models, but possibly related to other factors such as noise signals. Association with age was
observed in multiple components and the strongest age effects were observed in components
related to GMV, CBF and RSFA (Figure 6). The strongest non-linear changes in relation to age
were observed in IC4, IC7 and IC22. Among the 15 components of interest, Cattell score was
positively correlated with IC1 which reflected global GMV with regional CBF and RSFA signals,
IC16 which reflected the right FPN pattern and IC17 which reflected the left FPN pattern,
accounting for age, gender and head motion as covariates. Spatial maps of IC1, IC16 and IC17,
accompanied by scatter plots showing models of Cattell test score against IC subject loadings,
are shown in Figure 7. Results of IC1 indicate that subjects with higher Cattell score had higher
subject loadings indicating i) higher GMV globally; ii) higher CBF mainly in the lingual gyrus,
calcarine, thalamus, and cingulate gyrus coupled with low perfusion in middle temporal gyrus;
and iii) higher RSFA values in areas proximal to vascular and cerebrospinal fluid territories

(venous sinuses and middle cerebral arteries).

Among the components of interest, TIV altered the correlation with Cattell on IC1 (i.e., the
Cattell coefficient was no longer significant, t =-0.19, P = 0.85, by including TIV as a covariate in

the regression model). This suggests that individuals with high TIV and high Cattell performance
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expressed strongly IC1. No evidence was found for TIV explaining the effects of age on subject

loadings across all ICs.

3.5 Multimodal fusion using linked ICA in an independent Cam-CAN subset

Results of the out-of-sample validation analysis using CC420 were reported in supplementary

materials. Major results were consistent with the main analysis.

4. DISCUSSION

We present a multivariate data-driven analysis of the patterns of structural, cerebrovascular
and functional change in the brain across the adult lifespan in healthy subjects from 18 — 88
years old. The main results are that (i) there were concordant changes in morphometry and
cerebrovascular signals, but not between resting-state functional network spatial maps and
morphometry or cerebrovascular signals; and (ii) the variance in expression of linked ICA
components was cognitively relevant after adjusting for age and other covariates of no interest.
In particular, individual differences in fluid intelligence correlated with (i) diffuse brain atrophy
coupled with regional cerebrovascular differences and (ii) resting-state network activity in the
right FPN. These principal findings were replicated in an independent cohort, without ASL data,
and in split-sample analysis of the original cohort with ASL data. We present the insights from
linked ICA to bring together measurements from multimodal neuroimaging with their
independent and additive information to characterize structural, functional and

cerebrovascular brain changes of healthy ageing.

The results demonstrate the robustness of linked ICA to characterize brain patterns comprising
information from multiple neuroimaging measurements in independent components by
repeating linked ICA in different sample sizes and dimensionalities. The independently

distributed structural-cerebrovascular and functional patterns underline the need for a precise
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method to integrate information from multiple neuroimaging measurements in order to

comprehensively characterize brain pattern and associated variability in cognition.

The linked ICA identified a strong structural effect, in that the component showing global GMV
change (i.e., IC1 from the main analysis) explained the most variance. This is consistent with
previous studies of ageing using linked ICA (Doan, Engvig, Zaske, et al., 2017; Douaud et al.,
2014). Cerebrovascular measures were identified in the same component, suggesting that the
atrophy effects were partly linked to cerebrovascular health. This accords with large-scale
lifespan studies showing global brain atrophy association with cerebrovascular changes (Asllani
et al.,, 2009; ladecola, 2017; Kennedy & Raz, 2015; Lemaitre et al., 2012; Peelle, Cusack, &
Henson, 2012). Strongest changes with age were also observed in components reflecting GMV
and CBF. Most age effects were linear while four components showed statistically significant
quadratic changes, consistent with current literature showing significant age-related
alternations in GMV and cerebrovascular activity (Bethlehem et al., 2022; Kievit et al., 2014; K.
A. Tsvetanov, Henson, Jones, et al., 2021). In contrast with atrophy and cerebrovascular indices,
there was little fusion in the output components between resting-state functional networks and
other modalities. A previous study including the DMN in linked ICA together with grey matter
density, area, thickness, mean diffusivity, fractional anisotropy, and radial diffusivity also
showed little fusion between the DMN and other modalities in the output components
(Maglanoc et al., 2020). The distributed structural, cerebrovascular and functional topography
warrants integrated and multimodal neuroimaging analytical approach, as these neuroimaging
measurements could indicate independent and additive information about ageing and

cognition.

Fluid intelligence is the core of psychometric analyses of intelligence and correlated with other
cognitive tests including tests that assess successful day-to-day functioning in society (Ghisletta
et al., 2012; Marsiske & Willis, 1995). Within our sample, we assessed fluid intelligence using
the Cattell task. Performance on this task declined with age, consistent with previously

demonstrated negative correlation with age in both cross-sectional (Hartshorne & Germine,
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2015; Kievit et al., 2016; Kievit et al., 2014) and longitudinal studies (Ghisletta et al., 2012;
Timothy A. Salthouse, 2010; Schaie, 1994). Multiple regression analysis using the linked ICA
component subject loadings indicates that global GMV coupled with regional cerebrovascular
activity (IC1) and the right FPN (IC16) were positively correlated with fluid intelligence after
adjusting for age and other covariates of no interest. Results of IC1 indicate that subjects with
higher fluid intelligence had i) higher GMV globally; ii) higher CBF mainly in the lingual gyrus,
calcarine, thalamus, and cingulate gyrus coupled with low perfusion in middle temporal gyrus;
and iii) higher RSFA values in areas proximal to vascular and cerebrospinal fluid territories. The
paradoxical hypoperfusion in middle frontal gyrus for young adults and high performers may be
explained by higher perfusion values in old adults or poor performers. Macrovascular artifacts
are common in ASL findings (Detre, Rao, Wang, Chen, & Wang, 2012; H. J. Mutsaerts et al.,
2017; K. A. Tsvetanov, Henson, Jones, et al., 2021) due to prolonged arterial transfer times with
ageing (Dai et al., 2017). The increase of RSFA with age or poor cognition in vascular regions is
consistent with previous studies (Makedonov et al., 2013; Theyers, Goldstein, Metcalfe,
Robertson, & Maclntosh, 2019; K. A. Tsvetanov et al., 2015; K. A. Tsvetanov, Henson, Jones, et
al.,, 2021; Kamen A Tsvetanov et al., 2022; Viessmann, Moller, & Jezzard, 2019), which likely
reflects pulsatile signals known to increase with atherosclerosis and vessel stiffening in ageing
(Webb et al., 2012). The patterns reflected by IC1 and IC16 were consistently found in an
independent and larger sample and had significant correlations with fluid intelligence. TIV
accounted for most of the correlation between IC1 and fluid intelligence, consistent with
previous findings on the link between head size and fluid intelligence (Lee, McGue, lacono,
Michael, & Chabris, 2019). The FPN is an important control network, in which functional
integration is positively correlated with general cognitive ability including fluid intelligence
(Marek & Dosenbach, 2018; Samu et al., 2017; Sheffield et al., 2015). The current results are
compatible with previous reports that the across-network connectivity of resting-state FPN is
positively correlated with fluid intelligence (Bethlehem et al., 2020; Cole, Ito, & Braver, 2015;
Hearne, Mattingley, & Cocchi, 2016). The results also suggest that when cognitively healthy, the

right FPN activity is positively correlated with fluid intelligence regardless of age.
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A major advantage of linked ICA is its ability to combine imaging modalities with different
spatial dimensions or features by applying ICA on each modality while accounting for the spatial
correlation of each modality, enabling us to model shared variance across different imaging
modalities (Groves et al., 2011; Groves et al., 2012). Hence, the derived components may be
more sensitive to an effect of interest especially when the effect is present across different
imaging modalities (Francx et al., 2016). Linked ICA has revealed morphological patterns that
are related to age, cognition, and Alzheimer’s disease (Alnaes et al., 2018; Doan, Engvig,
Persson, et al., 2017; Doan, Engvig, Zaske, et al., 2017; Douaud et al., 2014; Groves et al., 2012)
and predicted brain morphological patterns in neuropsychiatric disorders such as depression
(Maglanoc et al., 2020), schizophrenia (Brandt et al., 2015; Doan, Kaufmann, et al., 2017),
bipolar disorders (Doan, Kaufmann, et al., 2017), and attention-deficit/hyperactivity disorder
(ADHD) (Francx et al., 2016). However, many previous studies using linked ICA focused on co-
modelling brain structural effects across modalities, for example combining only grey matter
morphological measures (e.g., grey matter volume/density, cortical thickness) or combining
grey with white matter properties (Doan, Engvig, Zaske, et al., 2017; Doan, Kaufmann, et al.,
2017; Douaud et al., 2014; Francx et al., 2016). In the present study, we showed the potential
to characterize joint changes in functional, cerebrovascular and structural measures and
disentangle their relationships with cognition and ageing. We found no cognitively relevant
fusion between functional network spatial maps and structural or cerebrovascular spatial maps.
The majority of components were dominated by a single neuroimaging measurement. It
suggests that variability of brain patterns in healthy ageing subjects is better characterized by
multiple independent components dominated by one of the structural, cerebrovascular or
functional network measurements, but not captured in a single component reflecting all of
these signals. This is contrary to our hypothesis that concordant changes on functional,
structural and cerebrovascular activities would be observed, as it is a common view that age-
related changes in vasculature, brain anatomy and brain function are a complex interplay that
affects cognition (Fabiani, Rypma, & Gratton, 2021; Zimmerman et al., 2021). Previous studies
have also reported a correlation between brain functional and structural connectivity in healthy

subjects (Horn, Ostwald, Reisert, & Blankenburg, 2014; Vazquez-Rodriguez et al., 2019).
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Nevertheless, the current results of linked ICA do not necessarily indicate no correlation
between functional network activity and structural or cerebrovascular changes, but rather
suggest that age-related individual variance in the brain of cognitively-healthy subjects is better
characterized by independent components representing either functional network activity

alone or anatomical and cerebrovascular activity.

There are other multivariate approaches that might be more robust and sensitive in discovering
covariance, such as CCA and PLS (Murley et al., 2020; Murley et al., 2022; Passamonti et al.,
2019; Tibon et al., 2021; K. A. Tsvetanov, Gazzina, et al., 2021; K. A. Tsvetanov et al., 2016) as
well as combinations in approaches (e.g., mCCA+jICA) (V. D. Calhoun & Sui, 2016; Sui, Adali, Yu,
Chen, & Calhoun, 2012). However, the linked ICA approach offers a number of advantages. First,
using CCA or PLS, where subjects and voxels are entered as samples and variables (e.g.,
215x90000), would result in a multi-fold increase of variables compared to samples, which may
undermine stability (e.g., a rule of thumb for CCA is to have a samples:variables ratio > 5) and
make the analysis susceptible to overfitting. Alternative strategies would be to introduce an
additional data reduction step (e.g., principal component analysis), regularisation or pre-
whitening, or transposition of the matrices. The latter increases the computational cost and
constrains the spatial correspondence. Second, linked ICA does not impose constraints on the
spatial overlap between modalities. Beyond the advantage of accommodating differential
spatial smoothness, linked ICA also enables detection of spatially adjacent but non-overlapping
signals between structural, cerebrovascular and functional modalities (e.g., atrophy or
hypoperfusion in one region may lead to changes in connectivity on a network level). Third,
linked ICA can identify patterns that are multi-modal or that are sparse in modalities. Many
variations of CCA or PLS exist which have been mainly optimised for two datasets, while in this
study we have considered 6-7 datasets. Nonetheless, using another multivariate approach to
analyze the association between two imaging modalities that are subsequently linked to
performance on multiple cognitive measures could be a future work to confirm the associations

of specific neuroimaging measurements with cognition.
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There are limitations in the present study. First, there is no standard dimensionality to be used
in ICA. However, the number of components used in group-ICA and linked ICA in the present
study was based on the stable and favorable dimensionality indicated by previous literature
(Beckmann et al., 2005; Damoiseaux et al., 2006; Doan, Engvig, Zaske, et al., 2017; Doan,
Kaufmann, et al.,, 2017; Francx et al., 2016; Groves et al.,, 2012). Moreover, linked ICA was
repeated with several dimensionalities and the results were similar: the fusion patterns in the
derived components were similar and the cognitively relevant components were consistent
across analyses with 30, 40 and 50 dimensions. Second, the Cattell test informed components
relevant to domain-general abilities. Future research should investigate more detailed or
domain-specific brain-cognition relationships. Using a variety of cognitive tests taxing different
cognitive abilities enables to dissociate domain-general from domain-specific associations and
better understand cognitive diversity in ageing (Shafto et al.,, 2020). Third, the functional
network spatial maps used in linked ICA were based on associations of components with the
topography of functional networks. As joint consideration of activity and connectivity might
better characterize the brain dynamics and cognitive performance in normal ageing (K. A.
Tsvetanov et al., 2018), it is possible that connectivity between functional nodes could indicate
more information than the functional network topography alone. Future research could
consider investigating the intercorrelations between functional connectivity and multiple
neuroimaging modalities or integrating time-course rs-fMRI data (4D data) with 3D spatial maps
from other modalities (Qi et al., 2022). Fourth, considering that we investigated healthy
subjects across the whole lifespan, the relatively small sample size of the main analysis could be

a limitation (Marek et al., 2022).

Advances in neuroimaging provide more insights into brain morphology, functional networks
and vascular dynamics. While integration of information from multiple modalities provides
more accurate representation of brain patterns, currently there are limited analysis approaches
to co-model multiple neuroimaging inputs. In the present study, using linked ICA we have
shown cognitively-relevant integration between grey matter and cerebrovascular changes, but

minimal integration between functional networks and other modalities. The current sample
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comprises of cognitively healthy and, in comparison with the general population, relatively
well-educated subjects. Hence, one possibility might be that for people with well-maintained
cognition, resting-state functional network and structural-cerebrovascular dynamics
independently characterize brain patterns that are related to age and fluid intelligence; while
these would not necessarily be consistently found in cognitively impaired subjects, such as
those with dementia. In subjects with dementia, the cognitively relevant dynamics of functional
network, morphometry and vasculature might be more dependent on one another and such
dependency might correlate to a compensation mechanism (Cabeza et al., 2018). The present
study highlights the importance of future study to combine neuroimaging modalities measuring
these major dynamics to characterize brain patterns related to the diagnosis and prognosis of

neurodegenerative diseases.

5. CONCLUSION

Linked ICA can be used to integrate multiple neuroimaging modalities. We have demonstrated
its ability to characterize brain pattern variability and to differentiate brain changes in healthy
ageing. Across the lifespan, the most significant predictors of differences in fluid intelligence
were global GMV coupled with regional cerebrovascular activity, and right FPN activity. The
independently distributed structural-cerebrovascular and functional patterns in normal ageing
adults underline the need for considering information from multiple neuroimaging
measurements to characterize and understand brain pattern variability and cognition. Linked
ICA as a multimodal neuroimaging analysis method can provide new insights into the relative
brain structural, functional and vascular contributors to cognitive impairment in disorders

associated with ageing, including dementia and other neurodegenerative disease.

23


https://doi.org/10.1101/2021.12.22.473894
http://creativecommons.org/licenses/by-nc-nd/4.0/

Table 1. Characteristics of participants.

Difference
between
Age range deciles
(ANOVA or %)
All 18-27 28-37 38-47 48-57 58-67 68-77 78-88 P-values
CC280
n 215 17 38 36 35 38 26 25
Mean age (years) 52.9 24.6 335 43.6 52.2 62.8 72.3 81.0
Gender
n (%)
Males 106 (49.3) 7 (41.2) 19 (50) 19(52.8) 18(51.4) 19 (50) 12 (46.2) 12 (48) 0.99
Females 109 (50.7)  10(58.8) 19 (50) 17(47.2) 17 (48.6) 19 (50) 14 (53.8) 13 (52)
Cattell score <0.0001
Mean * SD 33.5+6.0 37.8+4.4  38.4+4.5 35.5+3.8 33.6#45 32.245.0 289+4.2  26.445.7 '
Mini-Mental State
Examination 0.0099
Mean * SD 29.2+1.0 29.3+0.9  29.740.6  29.1+1.2  29.3+0.8 29.1+1.0 29.0+1.2 28.7+1.4
CCa20
n 433 34 66 62 64 62 75 70
Mean age (years) 55.1 22.8 32.4 42.5 52.5 62.3 721 81.3
Gender
n (%)
Males 212 (49.0) 16(47.1) 31(47.0) 28(45.2) 31(48.4) 31(50.0) 38(50.7) 37(52.9) 0.98
Females 221 (51.0) 18(52.9) 35(53.0) 34(54.8) 33(51.6) 31(50.0) 37(49.3) 33(47.1)
Cattell score <0.0001
Mean * SD 31.0+£7.0 37.3+3.7 36.5+4.0 34945 334446  29.6153 26.4+6.2  23.545.6
Mini-Mental State
Examination < 0.0001
Mean £+ SD 28.8+1.3 29.1#1.5 29.4+41.1  29.1+1.1  29.1+1.2  29.0#1.2 28.4+1.3 27.9+1.5

24

"9suUd2I| [eUORRWIBIU| O AN-DN-AG-DD® Japun a|qe|ieAe
apeuw sl ] ‘Aunadiad uruudaid ayy Aejdsip 01 asuadl| e AIxHoIq pajuelh sey oym ‘1spunyoyine ayi si (mainal 19ad Aq paijiniad Jou sem Yyaiym)

jundaud siys Joy Japjoy 1ybuAdod 8yl "zz0z ‘8z aunr paisod UOISIBA SIUY ‘¥68€ .22 2T T202/TOTT 0T/B10"10p//:sdny :1op juudaid Aixyolq


https://doi.org/10.1101/2021.12.22.473894
http://creativecommons.org/licenses/by-nc-nd/4.0/

Table 2. Multiple regression analysis results of each independent component (IC) subject loadings from linked independent
component analysis of CC280 participants (38 components based on 7 modalities and n = 215).

IC ~ Cattell*Age + Age”2 + gender + head motion

Overall model fit Age Age”2 Cattell Cattell*Age
. FWER-
Ic Azj L:{s;te P correcte t P t P t P t P
dp
IC1 0.56 <0.0001 <0.0001 -863 <0.0001 -1.73 0.086 241 0.017 0.15 0.88
1C2 0.046 0.015 0.57
IC3 -0.0016 0.46 >0.99
IC4 0.71 <0.0001 <0.0001 1211 <0.0001 3.39 0.00084 1.96 0.051 0.60 0.55
IC5 0.0048 0.32 >0.99
IC6 0.18 <0.0001 <0.0001 -2.42 0.016 0.093 0.93 -0.93 0.35 -1.23 0.22
IC7 0.078 0.00081 0.031 -2.18 0.030 3.38 0.00086 0.13 0.90 1.26 0.21
IC8 -0.0054 0.57 >0.99
1C9 0.059 0.0045 0.17
IC10 0.040 0.025 0.95
IC11 0.023 0.093 >0.99
IC12 -0.0019 0.47 >0.99
IC13 0.12 2e-5 0.00076 -2.82 0.0053 -1.69 0.092 -0.029 0.98 0.49 0.63
IC14 0.047 0.014 0.53
IC15 0.28 <0.0001 <0.0001 2.78 0.0059 1.12 0.26 -1.55 0.12 1.78 0.076
IC16 0.16 <0.0001 <0.0001 -0.97 0.33 -1.69 0.092 2.67 0.0082 -0.75 0.46
IC17 0.16 <0.0001 <0.0001 0.44 0.66 -0.17 0.86 2.71 0.0074 1.62 0.11
IC18 0.10 < 0.0001 0.0038 -3.02 0.0029 1.12 0.26 -0.53 0.60 1.00 0.32
IC19 0.062 0.0034 0.13
IC20 0.047 0.014 0.53
IC21 0.088 0.00031 0.012 -0.24 0.81 -2.22 0.028 0.63 0.53 -1.90 0.059
1C22 0.16 <0.0001 <0.0001 -2.79 0.0058 -4.21 <0.0001 -1.06 0.29 -1.44 0.15
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IC23
IC24
IC25
1C26
IC27
IC28
1C29
IC30
IC31
IC32
IC33
IC34
IC35
IC36
IC37
IC38

0.13
0.047
0.14
0.17
0.075
0.053
-0.0023
0.045
0.052
0.064
0.059
0.027
0.035
-0.020
0.0018
0.010

<0.0001
0.014
<0.0001
<0.0001
0.0010
0.0082
0.48
0.016
0.0085
0.0028
0.0047
0.071
0.038
0.93
0.39
0.23

0.00019
0.53
<0.0001
<0.0001
0.038
0.31
>0.99
0.61
0.32
0.11
0.18
>0.99
>0.99
>0.99
>0.99
>0.99

-2.15

-2.73
-1.88
-1.12

0.033

0.0069
0.062
0.26

-1.21

-0.15
0.36
1.16

0.23

0.88
0.72
0.25

-0.16

0.36
153
0.43

0.87

0.72
0.13
0.66

0.32 0.75
-1.87 0.062
0.90 0.37
1.90 0.059
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Figure 1. Summary of processing and analysis of the imaging modalities, comprising functional,
cerebrovascular and structural measurements. Abbreviations: ASL, arterial spin labelling; CBF, cerebral
blood flow; DMN, default mode network; FPN, frontoparietal network; GMV, grey matter volume; ICA,
independent component analysis; RSFA, resting state fluctuation amplitude; rsfMRI, resting-state
functional magnetic resonance imaging; SN, salience network; Tlw, T1-weighted.
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Figure 2. Scatter plots showing the correlation between age and fluid intelligence measured by Cattell
test score in the CC280 main sample (n = 215) and CC420 validation sample (n = 433).
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Salience network

Grey matter

Figure 3. (a) The group-average spatial maps associated with the default mode network, the salience
network, and the lateralized frontoparietal networks, generated from group-level independent
component analysis of 648 subjects from Cam-CAN cohort Stage 2. (b) The group-average spatial maps
of cerebrovascular and structural neuroimaging modality inputs to linked ICA, including resting state
fluctuation amplitude and cerebral blood flow as cerebrovascular measurements, and grey matter
volume as a structural measurement.
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Figure 4. The relative weight of modalities in each component generated from linked independent
component analysis (ICA) and the percentage of variance explained of each component of the CC280
main analysis (n = 215). Note that most components are dominated by one modality. Two columns on
the right show the spatial correlation coefficients between each of linked ICA components of the CC280
main sample and split-sample validation sub-sample 1 (split-sample 1, n = 108), and main sample and
split-sample validation sub-sample 2 (split-sample 2, n = 107). Abbreviations: DMN, default mode
network; SN, salience network; FPN, frontoparietal network; RSFA, resting state fluctuation amplitude;
CBF, cerebral blood flow; GMV, grey matter volume.
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Figure 5. Degree of fusion between the 7 neuroimaging modalities included in linked independent
component analysis (ICA) CC280 (n = 215) with 30, 40, and 50 components, respectively. Greater
number (i.e., darker color) in the matrix represents more fusion found between the two modalities in
linked ICA output components. Abbreviations: DMN, default mode network; SN, salience network; FPNr,
right frontoparietal network; FPNI, left frontoparietal network; RSFA, resting state fluctuation amplitude;
CBF, cerebral blood flow; GMV, grey matter volume.

30


https://doi.org/10.1101/2021.12.22.473894
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.22.473894; this version posted June 28, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

5
"

Ic18

Ic22

CBF

Figure 6. Linked ICA weighted spatial maps for five components showing strong age effects on subject
loadings in CC280 main analysis (n = 215). Warm and cold colour scheme indicate positive and negative
association with linked ICA subject loadings, respectively. For example, an individual with a high loading
value on IC1, i.e., young adult, had i) high whole brain GMV, ii) high perfusion in visual cortex and
posterior cingulate cortex (PCC) coupled with low perfusion in middle temporal gyrus and iii) high RSFA
in dorsolateral prefrontal cortex and PCC, coupled with low RSFA values in areas proximal to vascular
and cerebrospinal fluid territories (venous sinuses and middle cerebral arteries). The brain figures depict
the weighted spatial maps and the accompanying scatter plots show models of age plotted against IC
subject loadings. Non-linear changes in relation to age were observed in IC4, IC7 and IC22 (refer to Table
2 for regression results). For visualization the spatial map threshold is set to 3 < |Z| < 10. Abbreviations:
CBF, cerebral blood flow; GMV, grey matter volume; RSFA, resting state fluctuation amplitude.
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ivi

IC17

Figure 7. Linked ICA weighted spatial maps for three components showing unique associations with
Cattell test score in CC280 main analysis (n = 215). Warm and cold colour scheme indicate positive and
negative association with linked ICA subject loadings, respectively. The accompanying scatter plots show
models of Cattell test score plotted against IC subject loadings. One component reflects signals from
structural and cerebrovascular measurements: IC1 which reflects grey matter volume (GMV), cerebral
blood flow (CBF) and resting state fluctuation amplitude (RSFA) (see Figure 6 and main text for further
interpretation). Two components reflect signals from functional networks: IC16 which reflects the right
frontoparietal network (FPN) and IC17 which reflects the left FPN. For visualization the spatial map
threshold is set to 3 < |Z| < 10. Similar components of IC1 and IC16 were found in CC420 out-of-sample
validation analysis (supplementary materials) to be associated with fluid intelligence.
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