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Abstract 

 

Brain ageing is a complex process which requires a multimodal approach. Neuroimaging can 

provide insights into brain morphology, functional organization and vascular dynamics. 

However, most neuroimaging studies of ageing have focused on each imaging modality 

separately, limiting the understanding of interrelations between processes identified by 

different modalities and their relevance to cognitive decline in ageing. Here, we used a data-

driven multimodal approach, linked independent component analysis (ICA), to jointly analyze 

magnetic resonance imaging of grey matter volume, cerebrovascular, and functional network 

topographies in relation to measures of fluid intelligence. Neuroimaging and cognitive data 

from the Cambridge Centre for Ageing and Neuroscience study were used, with healthy 

participants aged 18 to 88 years (main dataset n = 215; secondary dataset n = 433). Using linked 

ICA, functional network activities were characterized in independent components but not 

captured in the same component as structural and cerebrovascular patterns. Split-sample (n = 

108/107) and out-of-sample (n = 433) validation analyses using linked ICA were also performed. 

Global grey matter volume with regional cerebrovascular changes and the right frontoparietal 

network activity were correlated with age-related and individual differences in fluid intelligence. 

This study presents the insights from linked ICA to bring together measurements from multiple 

imaging modalities, with independent and additive information. We propose that integrating 

multiple neuroimaging modalities allows better characterization of brain pattern variability and 

changes associated with healthy ageing. 

 

 

Keywords: multimodal fusion, linked independent component analysis, neuroimaging, healthy 

ageing, fluid intelligence 
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1. INTRODUCTION 

 

Increasing life expectancy is leading to rapid ageing of the worldwide population (Beard et al., 

2016). The quality of these extra years of life heavily depends on good health, including the 

maintenance of good cognitive function across the lifespan (Beard et al., 2016; Sahakian, 2014). 

There is a pressing need to better understand the neurobiology of cognitive function associated 

with ageing. Neuroimaging studies show age-related changes in brain morphology, functional 

networks, and vascular dynamics (Kennedy & Raz, 2015). However, these effects are usually 

studied separately, whereas their integration could explain how these components influence 

cognitive ageing (K. A. Tsvetanov, Henson, & Rowe, 2021). 

 

Brain atrophy is one of the most commonly studied features of ageing (Grajauskas et al., 2019; 

Pini et al., 2016; Romanowski & Wilkinson, 2011). Atrophy refers to the loss of brain tissue, 

which mainly comprises of grey matter constituted by the cell bodies of neurons and glial cells 

(Azevedo et al., 2009). The concentration and volume of grey matter can be estimated from 

structural magnetic resonance imaging (MRI) and generally decrease with age (Grajauskas et al., 

2019; Kennedy & Raz, 2015). Nevertheless, these changes are not uniform across the brain 

regions and patterns of brain ageing vary among individuals and the trajectories can be 

influenced by environmental, genetic and other neurobiological factors (Bethlehem et al., 2022; 

Lemaitre et al., 2012; Pini et al., 2016). In fact, atrophy on its own does not fully explain 

cognitive performance (Boekel et al., 2015) and is insufficient for understanding ageing and 

neurodegenerative syndromes with heterogenous clinical features (Grajauskas et al., 2019; 

Murley et al., 2020; Perry et al., 2017; K. A. Tsvetanov, Gazzina, et al., 2021; K. A. Tsvetanov et 

al., 2016). Instead, we propose that brain ageing is multifactorial, reflecting complex processes 

which require multivariate techniques to elucidate (Doan, Engvig, Persson, et al., 2017; Doan, 

Engvig, Zaske, et al., 2017; Douaud et al., 2014; Groves, Beckmann, Smith, & Woolrich, 2011; 

Murley et al., 2020). Neuroimaging is a key contributor to this approach, from its quantification 

of brain morphology, functional networks and vascular dynamics.  
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Brain functional networks are commonly studied using functional magnetic resonance imaging 

(fMRI), which measures neural activity indirectly via changes in the blood oxygen level-

dependent (BOLD) signal (Chen & Glover, 2015; Grady, 2012; Rosen & Savoy, 2012). Cognitive 

function is dependent on intrinsic interactions within large-scale functional brain networks as 

well as extrinsic interactions between such functional brain networks (Fox et al., 2005; Kelly, 

Uddin, Biswal, Castellanos, & Milham, 2008). These networks show selective vulnerability to 

age and neurodegeneration (Moguilner et al., 2020; K. A. Tsvetanov, Gazzina, et al., 2021). 

Task-free fMRI, also known as resting-state fMRI (rs-fMRI), can be used to characterize intrinsic 

and extrinsic connectivity of functional networks simultaneously (Cole, Bassett, Power, Braver, 

& Petersen, 2014; Smith et al., 2009). Spontaneous activity, which can be measured by rs-fMRI, 

is the most metabolic demanding component of neural activity (Raichle & Mintun, 2006). 

Moreover, activities in resting-state functional networks, such as the default mode network 

(DMN), the salience network (SN) and the frontoparietal network (FPN), are associated with a 

wide range of cognitive functions (e.g., memory, language, attention, visual processes) 

(Corbetta & Shulman, 2002) and playing an increasingly important role in maintaining good 

cognition in old age and progression of some neurodegenerative diseases (Bethlehem et al., 

2020; Day et al., 2013; Marek & Dosenbach, 2018; Rosazza & Minati, 2011; Tibon et al., 2021; K. 

A. Tsvetanov, Gazzina, et al., 2021; K. A. Tsvetanov et al., 2016; Zhou & Seeley, 2014).  

 

Resting-state fMRI BOLD signals also reflect the haemodynamic response evoked by neuronal 

activity and therefore they represent both vascular and neuronal signals (K. A. Tsvetanov, 

Henson, & Rowe, 2021). Age differences in BOLD signal could be confounded by differences in 

cerebrovascular function associated with non-neuronal physiological factors (e.g., medications, 

time of day, or level of wakefulness). Nevertheless, cerebrovascular function is also implicated 

as a major factor in maintaining brain health in ageing and neurodegenerative diseases 

(Barisano et al., 2022; Fuhrmann et al., 2019; Iadecola, 2017; Kisler, Nelson, Montagne, & 

Zlokovic, 2017; Sweeney, Kisler, Montagne, Toga, & Zlokovic, 2018; Zimmerman, Rypma, 

Gratton, & Fabiani, 2021). The mixture of cerebrovascular and neuronal contributions to BOLD 

signals complicates the interpretation of age differences in BOLD imaging and, thus, our 
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understanding of neurocognitive ageing (K. A. Tsvetanov et al., 2015). Dissociation of vascular 

and neuronal signals would therefore be particularly meaningful (K. A. Tsvetanov, Henson, & 

Rowe, 2021).  

 

An important aspect of cerebrovascular function is the ability to move blood through a network 

of cerebral vasculature supplying the brain, which can be assessed by measuring resting 

cerebral blood flow (CBF) using arterial spin labelling (ASL) (Detre, Wang, Wang, & Rao, 2009; 

Williams, Detre, Leigh, & Koretsky, 1992). ASL is a noninvasive MRI technique used to quantify 

cerebral blood perfusion by labelling blood water as it flows throughout the brain. Baseline CBF, 

which relates to cerebrovascular ageing (K. A. Tsvetanov, Henson, Jones, et al., 2021), is 

important for maintaining cognitive function, while its non-neuronal contributions to BOLD 

signals reflect age-related confound (Wu et al., 2021). Another important aspect of 

cerebrovascular function is the ability to regulate regional blood flow via carbon dioxide-

modulated constriction or dilation of cerebral vessels (Willie, Tzeng, Fisher, & Ainslie, 2014). 

This cerebrovascular reactivity can be assessed using resting state fluctuation amplitude (RSFA) 

(Kannurpatti & Biswal, 2008), which reflects naturally occurring fluctuations in BOLD signals 

induced by variations in cardiac and respiratory rhythms at resting state (Birn, Diamond, Smith, 

& Bandettini, 2006; Shmueli et al., 2007). RSFA is a safe, scalable, and robust alternative to 

hypercapnia and breath-holding approaches (Kannurpatti & Biswal, 2008; K. A. Tsvetanov, 

Henson, Jones, et al., 2021). RSFA is sensitive to cardiovascular and cerebrovascular differences 

in ageing (Garrett, Lindenberger, Hoge, & Gauthier, 2017; K. A. Tsvetanov et al., 2015; K. A. 

Tsvetanov, Henson, Jones, et al., 2021), intracranial vascular disease (Makedonov, Black, & 

MacIntosh, 2013; Nair, Raut, & Prabhakaran, 2017; Raut, Nair, Sattin, & Prabhakaran, 2016), 

neurodegeneration (Makedonov, Chen, Masellis, & MacIntosh, 2016; Peter R. Millar et al., 2020) 

and cognitive impairment (Millar et al., 2021; Peter R Millar et al., 2020; Kamen A Tsvetanov et 

al., 2022). 

 

The majority of neuroimaging studies have focused on each imaging modality separately, 

limiting the understanding of interrelations between modalities and the complex neural 
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mechanisms associated with cognitive change. Unraveling the interactive effects of changes on 

morphometry, cerebrovascular and functional levels could provide better understanding of the 

multifactorial neurobiological mechanisms underlying cognitive change in ageing and 

neurodegeneration. Linked independent component analysis (ICA) is a data-driven analytic 

method that allows for simultaneous characterization of multimodal imaging modalities while 

taking into account the covariance across imaging modalities (Groves et al., 2011). In 

comparison with other commonly used multivariate approaches such as canonical correlation 

analysis (CCA) and partial least squares (PLS), linked ICA is able to identify patterns of 

covariance across more than two modalities. By identifying common patterns that are shared 

by different imaging modalities and identifying independent components that are dominated 

by single imaging modality, one can more accurately characterize the predictors of the 

outcomes of interest.  

 

We aimed to integrate structural, functional and cerebrovascular neuroimaging signals to 

better understand their contribution to cognitive decline in ageing. We focused on fluid 

intelligence, which includes reasoning and problem-solving abilities (Gottfredson & Deary, 2004) 

and has been shown consistently to decrease markedly with ageing (Ghisletta, Rabbitt, Lunn, & 

Lindenberger, 2012; Hartshorne & Germine, 2015; Kievit et al., 2014; T. A. Salthouse, 2009; 

Timothy A. Salthouse, 2010). Specifically, we tested whether differences in structural, 

cerebrovascular, and functional network activation patterns have independent or convergent 

patterns with age, and whether these patterns are correlated with measures of fluid 

intelligence across the lifespan.  

 

 

 

2. METHODS 

 

2.1 Cohorts and participants 
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The Cambridge Centre for Ageing and Neuroscience (Cam-CAN) cohort study recruited healthy 

adults from its local general population in the UK, in three stages (Shafto et al., 2014). In Stage 1, 

3000 adults aged 18 and above were recruited for a home interview. In Stage 2, a subset of 700 

participants aged 18-88 (100 per age decile) was selected to participate in neuroimaging (e.g., 

structural MRI and fMRI) and behavioural tests (Shafto et al., 2014). We refer to Stage 2 as 

CC700 in this paper. In Stage 3, a subset of 280 participants (40 per age decile) was selected to 

participate in further neuroimaging (e.g., fMRI, ASL) and cognitive examinations across key 

cognitive domains (Shafto et al., 2014; Taylor et al., 2017), and we refer to Stage 3 as CC280 in 

this paper. Details of the neuroimaging experiments and cognitive tasks are reported previously 

(Shafto et al., 2014; Taylor et al., 2017). Fluid intelligence was assessed as a principal cognitive 

measure due to its strong positive correlations with performance on many other cognitive tests, 

and sensitivity to age. To assess fluid intelligence in the Cam-CAN study, we used the standard 

form of the Cattell Culture Fair, Scale 2 Form A (Cattell, 1971; Cattell, Cattell, Institute for, & 

Ability, 1960). This test contained four subtests with different types of nonverbal “puzzles”: 

series completion, classification, matrices, and conditions. Each subtest was timed with 3 

minutes for the first subtest, 4 minutes for the second, 3 minutes for the third, and 2.5 minutes 

for the final subtest (participants were not informed about precise timings beforehand) (Shafto 

et al., 2014). Before each subtest, instructions were read from the manual and participants 

were given examples. The Cattell test was a pen-and-paper test where the participant chose a 

response on each trial from multiple choices, and recorded responses on an answer sheet. 

Correct responses were given a score of 1 for a total maximum score of 46. The total score of 

Cattell test was interpreted as a measure of fluid intelligence in this study. Ethical approval was 

obtained from the Cambridge 2 Research Ethics Committee, and written informed consent was 

given by all participants. Subjects in Cam-CAN Stage 3 (CC280) were analyzed as the main 

analysis of this study (n = 215). Subjects from CC700 that were excluded from the CC280 main 

analysis formed an independent sample for out-of-sample validation analysis, and we refer to 

this sample as CC420 (n = 433) in this paper. 

 

2.2 Image acquisition 
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Imaging data from Cam-CAN were acquired using a 3T Siemens TIM Trio. A 3D structural MRI 

was acquired using T1-weighted sequence with generalized autocalibrating partially parallel 

acquisition with acceleration factor 2; repetition time (TR) = 2250 ms; echo time (TE) = 2.99 ms; 

inversion time (TI) = 900 ms; flip angle α = 9°; field-of-view (FOV) = 256 X 240 X 192 mm; 

resolution = 1 mm isotropic; acquisition time of 4 min and 32 s.  

 

For rs-fMRI, echoplanar imaging (EPI) acquired 261 volumes with 32 slices (sequential 

descending order, slice thickness of 3.7 mm with a slice gap of 20% for whole-brain coverage, 

TR = 1970 ms; TE = 30 ms; flip angle α = 78°; FOV = 192 mm × 192 mm; resolution = 3 mm × 3 

mm × 4.44 mm) during 8 min and 40 s. Participants were instructed to lie still with their eyes 

closed. The initial six volumes were discarded to allow for T1 equilibration.  

 

An index of cerebrovascular reactivity was estimated using the RSFA (Kannurpatti & Biswal, 

2008; K. A. Tsvetanov et al., 2015; K. A. Tsvetanov, Henson, & Rowe, 2021). RSFA was estimated 

from the resting-state EPI reported above. Subject specific RSFA maps were calculated based on 

the normalized standard deviation across time for processed rs-fMRI time series data. Details 

on the acquisition of RSFA are also reported previously (K. A. Tsvetanov, Henson, Jones, et al., 

2021).  

 

To assess resting CBF, pulsed ASL was used (PASL, PICORE-Q2T-PASL in axial direction, 2,500 ms 

repetition time, 13 ms echo time, bandwidth 2,232 Hz/Px, 256 × 256 mm2 field of view, imaging 

matrix 64 × 64, 10 slices, 8 mm slice thickness, flip angle 90°, 700 ms TI1, TI2 = 1,800 ms, 1,600 

ms saturation stop time). The imaging volume was positioned to maintain maximal brain 

coverage with a 20.9 mm gap between the imaging volume and a labeling slab with 100 mm 

thickness. There were 90 repetitions giving 45 control-tag pairs (duration 3’52”). A single-shot 

EPI (M0) equilibrium magnetization scan was acquired. 

 

2.3 Image preprocessing 
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Preprocessing of T1-weighted images used standardized preprocessing consistent with Cam-

CAN data processing protocol (Taylor et al., 2017; K. A. Tsvetanov, Henson, Jones, et al., 2021). 

The Automatic Analysis (Cusack et al., 2014) pipelines implemented in Matlab (MathWorks) 

were used. The T1 image was initially coregistered to the MNI template, and the T2 image was 

then coregistered to the T1 image using a rigid-body transformation. The coregistered T1 and 

T2 images were used in a multichannel segmentation to extract probabilistic maps of six tissue 

classes: grey matter, white matter, cerebrospinal fluid, bone, soft tissue, and residual noise. The 

native space grey matter and white matter images were submitted to diffeomorphic 

registration (DARTEL) (Ashburner, 2007) to create group template images. Each template was 

normalized to the MNI template using a 12-parameter affine transformation. Images were 

modulated to correct for individual brain size. Grey matter images were smoothed with an 8 

mm full-width at half maximum (FWHM) Gaussian kernel in alignment with the standardized 

processing protocol of Cam-CAN data (Taylor et al., 2017; K. A. Tsvetanov et al., 2018). 

Modulated grey matter volume (GMV) was analyzed in linked ICA of this study. For the linked 

ICA grey matter images were down-sampled to match the resolution of fMRI and perfusion data. 

A brain mask from Statistical Parametric Mapping 12 (SPM12) 

(https://www.fil.ion.ucl.ac.uk/spm/software/spm12/) was applied at a threshold of 0.9 (i.e., 

regions with > 90% probability being within the brain were included). 

 

Resting-state fMRI data were preprocessed using Automatic Analysis (Cusack et al., 2014) 

calling functions from SPM12 implemented in Matlab (MathWorks). Resting-state fMRI were 

further processed using whole-brain ICA of single-subject time series denoising (termed 

subject-ICA), with noise components selected and removed automatically using the ICA-based 

Automatic Removal of Motion Artifacts toolbox (AROMA) (Pruim, Mennes, Buitelaar, & 

Beckmann, 2015; Pruim, Mennes, van Rooij, et al., 2015). This was complemented with linear 

detrending of the fMRI signal, covarying out six realignment parameters, white matter and 

cerebrospinal fluid signals, their first derivatives, and quadratic terms (Pruim, Mennes, van 

Rooij, et al., 2015). Global white matter and cerebrospinal fluid signals were estimated for each 
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volume from the mean value of white matter and cerebrospinal fluid masks derived by 

thresholding SPM tissue probability maps at 0.75. Resting-state fMRI data were head motion 

corrected, bandpass filtered and spatially smoothed with a 6 mm FWHM Gaussian kernel in 

accordance with recommendations of the AROMA processing pipeline. As the subsequent 

analysis method is robust to potential differences in spatial smoothness across modalities, we 

used modality-specific smoothing kernels. 

 

Pulsed ASL time series were converted to CBF maps using ExploreASL toolbox (H. Mutsaerts et 

al., 2018). Following rigid-body alignment, the images were coregistered with the T1 volume, 

normalised with normalization parameters from the T1 stream to warp ASL images into MNI 

space (K. A. Tsvetanov, Henson, Jones, et al., 2021). Given the ASL data was based on a 

sequence with lower resolution (i.e., slice thickness of 8 mm), a smoothing kernel size 1.5 times 

larger than the slice thickness (i.e., 12 mm FWHM Gaussian kernel) was used, consistent with 

the efficacy of ASL data with heavier smoothing kernels (Wang, Wang, Aguirre, & Detre, 2005). 

RSFA was smoothed with an 8 mm FWHM Gaussian kernel. 

 

All T1 and EPI image processing came from Release004 of the Cam-CAN pipelines, which 

included quality-control checks by semi-automated scripts monitored by the Cam-CAN methods 

team (Taylor et al., 2017). CBF images with artefacts (n = 25) based on visual inspection were 

excluded from analysis.  

 

2.4 Image analysis 

 

A summary flow chart of the processing and analysis of imaging modalities is presented in 

Figure 1. 

 

2.4.1 Functional network decomposition using group-ICA 

 

In order to identify functional networks from rs-fMRI and study network spatial patterns, an ICA 

was performed using the Group-level ICA of fMRI Toolbox to decompose the rs-fMRI 

(trendscenter.org/software/gift/) (V. D. Calhoun, Adali, Pearlson, & Pekar, 2001). ICA 

dissociates signals from complex datasets with minimal assumptions (V. Calhoun, 2018), to 
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represent data in a small number of independent components (ICs) which here are spatial maps 

that describe the temporal and spatial characteristics of underlying signals (V. D. Calhoun et al., 

2001; McKeown et al., 1998). The values at each voxel reflect the correlation between the 

timeseries of the voxel and that of the component. Each component can therefore be 

interpreted as similar BOLD activity of a functional network at resting-state (Rosazza & Minati, 

2011).  

 

The data from participants in CC700 (n = 648) were analyzed using group-ICA. This provided a 

twofold advantage: subjects excluded from the main analysis (CC280) formed an independent 

second sample (see below in 2.5); and having a larger sample increases the reliability of ICA 

decomposition results while maximizing statistical power (V. D. Calhoun, Kiehl, & Pearlson, 

2008; Erhardt et al., 2011). The number of components used, N = 15, matched a common 

degree of decomposition previously applied in low-dimensional group-ICA of rs-fMRI 

(Beckmann, DeLuca, Devlin, & Smith, 2005; Damoiseaux et al., 2006; Smith et al., 2009) and 

generated network spatial maps that showed a high degree of overlapping with network 

templates. Low-dimensional group-ICA was used because the purpose was to define each 

network with a single component, and high-dimensional group-ICA would tend to decompose 

single network into multiple components. Hundred ICASSO iterations were used to ensure the 

reliability of estimated ICs (Himberg & Hyvarinen, 2003). Functional networks were identified 

from components by visualization and validated by spatially matching the components to pre-

existing templates (Shirer, Ryali, Rykhlevskaia, Menon, & Greicius, 2012), in accordance with 

previous methodology used to identify networks from ICs (K. A. Tsvetanov et al., 2016). Four 

resting-state functional networks were selected to achieve a relatively balanced number of 

inputs between functional and non-functional imaging measurements. The DMN, SN, right and 

left FPN were selected, which are higher-order functional networks known to be associated 

with age and cognitive change including fluid intelligence (Buckner, Andrews-Hanna, & Schacter, 

2008; Corbetta & Shulman, 2002; Samu et al., 2017; Snyder, Uddin, & Nomi, 2021; Tibon et al., 

2021).  

 

2.4.2 Multimodal fusion using linked ICA 
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Linked ICA was performed using FLICA of FMRIB (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FLICA) 

(Groves et al., 2011; Smith et al., 2004) implemented in Matlab (MathWorks version 2020b). 

Linked ICA was run with 7 spatial map inputs: GMV, CBF, RSFA and four maps from three 

resting-state functional networks (i.e., the DMN, the SN, the right FPN and the left FPN) of 

those subjects that were included in CC280. We refer to these imaging derived inputs as 

modalities. Within each modality, images from all subjects were concatenated into a single 

input image for linked ICA. Linked ICA decomposed this n-by-m matrix of participants-by-voxels 

into spatial components, with each component being an aggregate of spatial patterns, one for 

each modality, along with a set of subject loadings, one for each component (for more details 

see (Groves et al., 2011; Groves et al., 2012)). Each modality spatial pattern is a map of weights 

that is later converted to pseudo-Z-statistic by accounting the scaling of the variables and the 

signal-to-noise ratio in that modality. Only modalities with significant contribution (i.e., having 

weight with Z-score > 3.34, which corresponds to P < 0.001) were presented in this study. 

Linked ICA subject loadings for a given component were shared between all modalities 

represented in that component and indicated the degree to which that component was 

presented in any individual subject. Subject loadings were used as inputs to the second-level 

between-subject regression analysis (see below in 2.6). To ensure that results were not 

influenced dominantly by non-grey matter regions, a grey matter probability mask from SPM12 

was used with a threshold of 0.3. We performed linked ICA using a dimensionality of 40, with 

1000 iterations based on recommendation in previous studies (Doan, Engvig, Zaske, et al., 2017; 

Doan, Kaufmann, et al., 2017; Francx et al., 2016; Groves et al., 2012; Li et al., 2020; Wolfers et 

al., 2017). To ensure linked ICA fusion patterns were robust to the model order, we also 

performed the linked ICA using 30 and 50 dimensions. To ensure linked ICA fusion patterns 

were not biased by multiple functional network inputs, we repeated linked ICA with only one 

functional network (DMN) input to examine the fusion patterns. 

 

2.5 Split-sample and out-of-sample validation of multimodal fusion 
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For validation of the multimodal fusion approach, a split-sample validation analysis was 

performed with similar age distributions. This was achieved by splitting the original sample 

based on odd/even parity of ranked participants’ ages. Linked ICA using a dimensionality of 40 

with 1000 iterations (same as the CC280 main analysis) was performed on each sub-sample. 

Linked ICA components of the main sample were spatially correlated with linked ICA 

components of the validation sub-samples to examine the robustness of linked ICA to 

characterize brain patterns in independent components. Each of linked ICA components in one 

sample was matched to the component that showed the highest correlation with it in the 

comparing sample. 

 

To further assess the reliability of fusion between neuroimaging modalities using the linked ICA 

approach in a larger sample size, linked ICA was performed in an independent sample using the 

same processing steps and settings. This sample was the CC420 as described above in 2.1, a 

subset of the Cam-CAN cohort comprised of participants who were included in CC700 but were 

not included in CC280 main analysis because they were either not selected to enter CC280 or 

had missing data from CC280. CC420 lacked ASL data so the linked ICA included 6 inputs only 

(DMN, SN, right FPN, left FPN, RSFA, and GMV). Other protocols were the same as the main 

analysis (i.e., the acquisition and preprocessing of neuroimaging data, functional network 

decomposition using group-ICA, and multimodal fusion using linked ICA).  

 

2.6 Statistical analysis 

 

Demographic variables were compared between age groups using one-way ANOVA for 

continuous variables and using chi-square test for categorical variable. Matching between 

functional network spatial maps and corresponding network templates was analyzed using 

spatial correlation tests.  

 

To investigate the relationship between linked ICA subject loadings of each component with 

cognition and how it varied with age, component subject loadings from linked ICA output were 
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analyzed in relation to Cattell test total score using regression analysis with robust fitting 

algorithm (Matlab function fitlm.m). Each linked ICA component subject loading score was used 

as the dependent variable. Cattell score, age, their interaction (age*Cattell) and quadratic 

effect of age were used as the independent variables in the model. Covariates of no interest 

included gender and head motion. The model’s formula took the following form using 

Wilkinson notation (Wilkinson & Rogers, 1973): IC ~ Cattell*age + age^2 + gender + head 

motion. To investigate whether variance in head size across subjects could explain biologically 

plausible effects in addition to confounding effects, we performed an additional regression 

analysis with total intracranial volume (TIV) as a covariate along with the other covariates 

mentioned above (IC ~ Cattell*age + age^2 + gender + head motion + TIV). The overall model fit 

was corrected for multiple comparison using the Bonferroni correction of family-wise error rate 

(FWER). A corrected P < 0.05 was chosen as the significance level. Only those models with 

significant overall model fit after FWER-correction were considered as relevant in this study. 

Components that were not significant after FWER-correction were considered as components 

not related to the predictors in the models, but possibly related to other factors such as noise 

signals. All statistical analyses were performed in Matlab version 2020b. 

 

3. RESULTS 

 

3.1 Characteristics of participants 

 
The demographic characteristics of participants are reported in Table 1. Performance on the 

Cattell test was highly correlated with age within the CC280 main sample (R = -0.64, P < 0.0001) 

and CC420 validation sample (R = -0.69, P < 0.0001) (Figure 2). 

 

3.2 Group-average effects on functional networks, RSFA, CBF and grey matter maps 

 
Among the 15 components generated from group-ICA, whole brain spatial maps associated 

with the following networks of interest specified a priori were identified: the DMN, the SN, and 

the lateralized FPNs (Figure 3a). The correlation between each functional network spatial map 

and its corresponding template from a previous study (Shirer et al., 2012) was r = 0.62, P < 
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0.0001 for the DMN, r = 0.58, P < 0.0001 for the SN, r = 0.55, P < 0.0001 for the right FPN, and r 

= 0.54, P < 0.0001 for the left FPN.  

 

CC280 group-average spatial maps of RSFA, CBF, and GMV that were entered into linked ICA are 

shown in Figure 3b. Relatively strong group-average RSFA signals were observed in the 

temporal lobe and subcortical regions; relatively high CBF was observed in cortical and 

subcortical regions including frontal, posterior cingulate, pericalcarine, temporal, insula and 

thalamic regions; and relatively high GMV was observed in the temporal lobe, prefrontal, 

middle and superior frontal areas, medial occipital areas, and cerebellum.  

 

3.3 Multimodal fusion using linked ICA 

 

The relative weight of modalities in each component of CC280 is shown in Figure 4. Only 

modalities with significant weight (i.e., pseudo-Z-score > 3.34 which corresponds to P < 0.001) 

are presented. Two out of 40 components were excluded due to no values beyond the 

significance threshold from any modality. Most components (> 75%) were dominated by a 

single input neuroimaging modality. Components reflecting structural and cerebrovascular 

inputs explained overall more variance compared to resting-state functional network 

topography. Fusion in the same component between imaging inputs were observed between 

GMV, CBF and RSFA maps (i.e., IC1, IC4, IC14, IC33). Fusion was also observed between 

different functional networks (i.e., IC19, IC24, IC26, IC38). However, no significant fusion was 

observed between functional network, cerebrovascular and structural spatial maps.  

 

For the components considered relevant in this study (i.e., components with significant overall 

model fit after FWER-correction in regression), the spatial patterns of the split-sample 

validation analysis were generally similar to those of the main analysis, as shown by the spatial 

correlation between the linked ICA components of the CC280 main sample and split-sample 

validation sub-samples (Figure 4). The average spatial correlation of the relevant components 

was r = 0.83 between the main sample and sub-sample 1, r = 0.77 between the main sample 

and sub-sample 2, and r = 0.76 between sub-sample 1 and sub-sample 2.  
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Linked ICA was repeated with 30 and 50 numbers of components in order to ensure the results 

were not significantly affected by the ICA dimensionality. Fusion patterns between modalities 

were consistent across different model orders (Figure 5). The relative weight of modalities in 

each component of linked ICA with only one functional network input is shown in 

Supplementary Figure 3. No fusion was found between the functional network and 

cerebrovascular/structural patterns. 

 

3.4 Age- and cognition-related effects on linked ICA subject loadings 

 

Results of regression analysis of the CC280 are shown in Table 2. The overall model fits of 15 

components remained significant after FWER-correction. Components that were not significant 

after FWER-correction were considered as components not related to the predictors in the 

models, but possibly related to other factors such as noise signals. Association with age was 

observed in multiple components and the strongest age effects were observed in components 

related to GMV, CBF and RSFA (Figure 6). The strongest non-linear changes in relation to age 

were observed in IC4, IC7 and IC22. Among the 15 components of interest, Cattell score was 

positively correlated with IC1 which reflected global GMV with regional CBF and RSFA signals, 

IC16 which reflected the right FPN pattern and IC17 which reflected the left FPN pattern, 

accounting for age, gender and head motion as covariates. Spatial maps of IC1, IC16 and IC17, 

accompanied by scatter plots showing models of Cattell test score against IC subject loadings, 

are shown in Figure 7. Results of IC1 indicate that subjects with higher Cattell score had higher 

subject loadings indicating i) higher GMV globally; ii) higher CBF mainly in the lingual gyrus, 

calcarine, thalamus, and cingulate gyrus coupled with low perfusion in middle temporal gyrus; 

and iii) higher RSFA values in areas proximal to vascular and cerebrospinal fluid territories 

(venous sinuses and middle cerebral arteries).  

 

Among the components of interest, TIV altered the correlation with Cattell on IC1 (i.e., the 

Cattell coefficient was no longer significant, t = -0.19, P = 0.85, by including TIV as a covariate in 

the regression model). This suggests that individuals with high TIV and high Cattell performance 
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expressed strongly IC1. No evidence was found for TIV explaining the effects of age on subject 

loadings across all ICs. 

 

 

3.5 Multimodal fusion using linked ICA in an independent Cam-CAN subset 

 

Results of the out-of-sample validation analysis using CC420 were reported in supplementary 

materials. Major results were consistent with the main analysis. 

 

 

 

4. DISCUSSION 

 

We present a multivariate data-driven analysis of the patterns of structural, cerebrovascular 

and functional change in the brain across the adult lifespan in healthy subjects from 18 – 88 

years old. The main results are that (i) there were concordant changes in morphometry and 

cerebrovascular signals, but not between resting-state functional network spatial maps and 

morphometry or cerebrovascular signals; and (ii) the variance in expression of linked ICA 

components was cognitively relevant after adjusting for age and other covariates of no interest. 

In particular, individual differences in fluid intelligence correlated with (i) diffuse brain atrophy 

coupled with regional cerebrovascular differences and (ii) resting-state network activity in the 

right FPN. These principal findings were replicated in an independent cohort, without ASL data, 

and in split-sample analysis of the original cohort with ASL data. We present the insights from 

linked ICA to bring together measurements from multimodal neuroimaging with their 

independent and additive information to characterize structural, functional and 

cerebrovascular brain changes of healthy ageing.  

 

The results demonstrate the robustness of linked ICA to characterize brain patterns comprising 

information from multiple neuroimaging measurements in independent components by 

repeating linked ICA in different sample sizes and dimensionalities. The independently 

distributed structural-cerebrovascular and functional patterns underline the need for a precise 
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method to integrate information from multiple neuroimaging measurements in order to 

comprehensively characterize brain pattern and associated variability in cognition. 

 

The linked ICA identified a strong structural effect, in that the component showing global GMV 

change (i.e., IC1 from the main analysis) explained the most variance. This is consistent with 

previous studies of ageing using linked ICA (Doan, Engvig, Zaske, et al., 2017; Douaud et al., 

2014). Cerebrovascular measures were identified in the same component, suggesting that the 

atrophy effects were partly linked to cerebrovascular health. This accords with large-scale 

lifespan studies showing global brain atrophy association with cerebrovascular changes (Asllani 

et al., 2009; Iadecola, 2017; Kennedy & Raz, 2015; Lemaitre et al., 2012; Peelle, Cusack, & 

Henson, 2012). Strongest changes with age were also observed in components reflecting GMV 

and CBF. Most age effects were linear while four components showed statistically significant 

quadratic changes, consistent with current literature showing significant age-related 

alternations in GMV and cerebrovascular activity (Bethlehem et al., 2022; Kievit et al., 2014; K. 

A. Tsvetanov, Henson, Jones, et al., 2021). In contrast with atrophy and cerebrovascular indices, 

there was little fusion in the output components between resting-state functional networks and 

other modalities. A previous study including the DMN in linked ICA together with grey matter 

density, area, thickness, mean diffusivity, fractional anisotropy, and radial diffusivity also 

showed little fusion between the DMN and other modalities in the output components 

(Maglanoc et al., 2020). The distributed structural, cerebrovascular and functional topography 

warrants integrated and multimodal neuroimaging analytical approach, as these neuroimaging 

measurements could indicate independent and additive information about ageing and 

cognition. 

 

Fluid intelligence is the core of psychometric analyses of intelligence and correlated with other 

cognitive tests including tests that assess successful day-to-day functioning in society (Ghisletta 

et al., 2012; Marsiske & Willis, 1995). Within our sample, we assessed fluid intelligence using 

the Cattell task. Performance on this task declined with age, consistent with previously 

demonstrated negative correlation with age in both cross-sectional (Hartshorne & Germine, 
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2015; Kievit et al., 2016; Kievit et al., 2014) and longitudinal studies (Ghisletta et al., 2012; 

Timothy A. Salthouse, 2010; Schaie, 1994). Multiple regression analysis using the linked ICA 

component subject loadings indicates that global GMV coupled with regional cerebrovascular 

activity (IC1) and the right FPN (IC16) were positively correlated with fluid intelligence after 

adjusting for age and other covariates of no interest. Results of IC1 indicate that subjects with 

higher fluid intelligence had i) higher GMV globally; ii) higher CBF mainly in the lingual gyrus, 

calcarine, thalamus, and cingulate gyrus coupled with low perfusion in middle temporal gyrus; 

and iii) higher RSFA values in areas proximal to vascular and cerebrospinal fluid territories. The 

paradoxical hypoperfusion in middle frontal gyrus for young adults and high performers may be 

explained by higher perfusion values in old adults or poor performers. Macrovascular artifacts 

are common in ASL findings (Detre, Rao, Wang, Chen, & Wang, 2012; H. J. Mutsaerts et al., 

2017; K. A. Tsvetanov, Henson, Jones, et al., 2021) due to prolonged arterial transfer times with 

ageing (Dai et al., 2017). The increase of RSFA with age or poor cognition in vascular regions is 

consistent with previous studies (Makedonov et al., 2013; Theyers, Goldstein, Metcalfe, 

Robertson, & MacIntosh, 2019; K. A. Tsvetanov et al., 2015; K. A. Tsvetanov, Henson, Jones, et 

al., 2021; Kamen A Tsvetanov et al., 2022; Viessmann, Moller, & Jezzard, 2019), which likely 

reflects pulsatile signals known to increase with atherosclerosis and vessel stiffening in ageing 

(Webb et al., 2012). The patterns reflected by IC1 and IC16 were consistently found in an 

independent and larger sample and had significant correlations with fluid intelligence. TIV 

accounted for most of the correlation between IC1 and fluid intelligence, consistent with 

previous findings on the link between head size and fluid intelligence (Lee, McGue, Iacono, 

Michael, & Chabris, 2019). The FPN is an important control network, in which functional 

integration is positively correlated with general cognitive ability including fluid intelligence 

(Marek & Dosenbach, 2018; Samu et al., 2017; Sheffield et al., 2015). The current results are 

compatible with previous reports that the across-network connectivity of resting-state FPN is 

positively correlated with fluid intelligence (Bethlehem et al., 2020; Cole, Ito, & Braver, 2015; 

Hearne, Mattingley, & Cocchi, 2016). The results also suggest that when cognitively healthy, the 

right FPN activity is positively correlated with fluid intelligence regardless of age.  
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A major advantage of linked ICA is its ability to combine imaging modalities with different 

spatial dimensions or features by applying ICA on each modality while accounting for the spatial 

correlation of each modality, enabling us to model shared variance across different imaging 

modalities (Groves et al., 2011; Groves et al., 2012). Hence, the derived components may be 

more sensitive to an effect of interest especially when the effect is present across different 

imaging modalities (Francx et al., 2016). Linked ICA has revealed morphological patterns that 

are related to age, cognition, and Alzheimer’s disease (Alnaes et al., 2018; Doan, Engvig, 

Persson, et al., 2017; Doan, Engvig, Zaske, et al., 2017; Douaud et al., 2014; Groves et al., 2012) 

and predicted brain morphological patterns in neuropsychiatric disorders such as depression 

(Maglanoc et al., 2020), schizophrenia (Brandt et al., 2015; Doan, Kaufmann, et al., 2017), 

bipolar disorders (Doan, Kaufmann, et al., 2017), and attention-deficit/hyperactivity disorder 

(ADHD) (Francx et al., 2016). However, many previous studies using linked ICA focused on co-

modelling brain structural effects across modalities, for example combining only grey matter 

morphological measures (e.g., grey matter volume/density, cortical thickness) or combining 

grey with white matter properties (Doan, Engvig, Zaske, et al., 2017; Doan, Kaufmann, et al., 

2017; Douaud et al., 2014; Francx et al., 2016). In the present study, we showed the potential 

to characterize joint changes in functional, cerebrovascular and structural measures and 

disentangle their relationships with cognition and ageing. We found no cognitively relevant 

fusion between functional network spatial maps and structural or cerebrovascular spatial maps. 

The majority of components were dominated by a single neuroimaging measurement. It 

suggests that variability of brain patterns in healthy ageing subjects is better characterized by 

multiple independent components dominated by one of the structural, cerebrovascular or 

functional network measurements, but not captured in a single component reflecting all of 

these signals. This is contrary to our hypothesis that concordant changes on functional, 

structural and cerebrovascular activities would be observed, as it is a common view that age-

related changes in vasculature, brain anatomy and brain function are a complex interplay that 

affects cognition (Fabiani, Rypma, & Gratton, 2021; Zimmerman et al., 2021). Previous studies 

have also reported a correlation between brain functional and structural connectivity in healthy 

subjects (Horn, Ostwald, Reisert, & Blankenburg, 2014; Vazquez-Rodriguez et al., 2019). 
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Nevertheless, the current results of linked ICA do not necessarily indicate no correlation 

between functional network activity and structural or cerebrovascular changes, but rather 

suggest that age-related individual variance in the brain of cognitively-healthy subjects is better 

characterized by independent components representing either functional network activity 

alone or anatomical and cerebrovascular activity.  

 

There are other multivariate approaches that might be more robust and sensitive in discovering 

covariance, such as CCA and PLS (Murley et al., 2020; Murley et al., 2022; Passamonti et al., 

2019; Tibon et al., 2021; K. A. Tsvetanov, Gazzina, et al., 2021; K. A. Tsvetanov et al., 2016) as 

well as combinations in approaches (e.g., mCCA+jICA) (V. D. Calhoun & Sui, 2016; Sui, Adali, Yu, 

Chen, & Calhoun, 2012). However, the linked ICA approach offers a number of advantages. First, 

using CCA or PLS, where subjects and voxels are entered as samples and variables (e.g., 

215x90000), would result in a multi-fold increase of variables compared to samples, which may 

undermine stability (e.g., a rule of thumb for CCA is to have a samples:variables ratio > 5) and 

make the analysis susceptible to overfitting. Alternative strategies would be to introduce an 

additional data reduction step (e.g., principal component analysis), regularisation or pre-

whitening, or transposition of the matrices. The latter increases the computational cost and 

constrains the spatial correspondence. Second, linked ICA does not impose constraints on the 

spatial overlap between modalities. Beyond the advantage of accommodating differential 

spatial smoothness, linked ICA also enables detection of spatially adjacent but non-overlapping 

signals between structural, cerebrovascular and functional modalities (e.g., atrophy or 

hypoperfusion in one region may lead to changes in connectivity on a network level). Third, 

linked ICA can identify patterns that are multi-modal or that are sparse in modalities. Many 

variations of CCA or PLS exist which have been mainly optimised for two datasets, while in this 

study we have considered 6-7 datasets. Nonetheless, using another multivariate approach to 

analyze the association between two imaging modalities that are subsequently linked to 

performance on multiple cognitive measures could be a future work to confirm the associations 

of specific neuroimaging measurements with cognition.   
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There are limitations in the present study. First, there is no standard dimensionality to be used 

in ICA. However, the number of components used in group-ICA and linked ICA in the present 

study was based on the stable and favorable dimensionality indicated by previous literature 

(Beckmann et al., 2005; Damoiseaux et al., 2006; Doan, Engvig, Zaske, et al., 2017; Doan, 

Kaufmann, et al., 2017; Francx et al., 2016; Groves et al., 2012). Moreover, linked ICA was 

repeated with several dimensionalities and the results were similar: the fusion patterns in the 

derived components were similar and the cognitively relevant components were consistent 

across analyses with 30, 40 and 50 dimensions. Second, the Cattell test informed components 

relevant to domain-general abilities. Future research should investigate more detailed or 

domain-specific brain-cognition relationships. Using a variety of cognitive tests taxing different 

cognitive abilities enables to dissociate domain-general from domain-specific associations and 

better understand cognitive diversity in ageing (Shafto et al., 2020). Third, the functional 

network spatial maps used in linked ICA were based on associations of components with the 

topography of functional networks. As joint consideration of activity and connectivity might 

better characterize the brain dynamics and cognitive performance in normal ageing (K. A. 

Tsvetanov et al., 2018), it is possible that connectivity between functional nodes could indicate 

more information than the functional network topography alone. Future research could 

consider investigating the intercorrelations between functional connectivity and multiple 

neuroimaging modalities or integrating time-course rs-fMRI data (4D data) with 3D spatial maps 

from other modalities (Qi et al., 2022). Fourth, considering that we investigated healthy 

subjects across the whole lifespan, the relatively small sample size of the main analysis could be 

a limitation (Marek et al., 2022). 

 

Advances in neuroimaging provide more insights into brain morphology, functional networks 

and vascular dynamics. While integration of information from multiple modalities provides 

more accurate representation of brain patterns, currently there are limited analysis approaches 

to co-model multiple neuroimaging inputs. In the present study, using linked ICA we have 

shown cognitively-relevant integration between grey matter and cerebrovascular changes, but 

minimal integration between functional networks and other modalities. The current sample 
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comprises of cognitively healthy and, in comparison with the general population, relatively 

well-educated subjects. Hence, one possibility might be that for people with well-maintained 

cognition, resting-state functional network and structural-cerebrovascular dynamics 

independently characterize brain patterns that are related to age and fluid intelligence; while 

these would not necessarily be consistently found in cognitively impaired subjects, such as 

those with dementia. In subjects with dementia, the cognitively relevant dynamics of functional 

network, morphometry and vasculature might be more dependent on one another and such 

dependency might correlate to a compensation mechanism (Cabeza et al., 2018). The present 

study highlights the importance of future study to combine neuroimaging modalities measuring 

these major dynamics to characterize brain patterns related to the diagnosis and prognosis of 

neurodegenerative diseases.  

 

 

5. CONCLUSION 

 

Linked ICA can be used to integrate multiple neuroimaging modalities. We have demonstrated 

its ability to characterize brain pattern variability and to differentiate brain changes in healthy 

ageing. Across the lifespan, the most significant predictors of differences in fluid intelligence 

were global GMV coupled with regional cerebrovascular activity, and right FPN activity. The 

independently distributed structural-cerebrovascular and functional patterns in normal ageing 

adults underline the need for considering information from multiple neuroimaging 

measurements to characterize and understand brain pattern variability and cognition. Linked 

ICA as a multimodal neuroimaging analysis method can provide new insights into the relative 

brain structural, functional and vascular contributors to cognitive impairment in disorders 

associated with ageing, including dementia and other neurodegenerative disease. 
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Table 1. Characteristics of participants. 

 

  Age range 

Difference 

between 

deciles 

(ANOVA or χ2
) 

  All 18-27 28-37 38-47 48-57 58-67 68-77 78-88 P-values 

CC280          

n 215 17 38 36 35 38 26 25  

Mean age (years) 52.9 24.6 33.5 43.6 52.2 62.8 72.3 81.0  

Gender 

n (%) 
        

0.99 
Males 106 (49.3) 7 (41.2) 19 (50) 19 (52.8) 18 (51.4) 19 (50) 12 (46.2) 12 (48) 

Females 109 (50.7) 10 (58.8) 19 (50) 17 (47.2) 17 (48.6) 19 (50) 14 (53.8) 13 (52) 

Cattell score         
< 0.0001 

Mean ± SD 33.5±6.0 37.8±4.4 38.4±4.5 35.5±3.8 33.6±4.5 32.2±5.0 28.9±4.2 26.4±5.7 

Mini-Mental State 

Examination 
        

0.0099 

Mean ± SD 29.2±1.0 29.3±0.9 29.7±0.6 29.1±1.2 29.3±0.8 29.1±1.0 29.0±1.2 28.7±1.4 

CC420          

n 433 34 66 62 64 62 75 70  

Mean age (years) 55.1 22.8 32.4 42.5 52.5 62.3 72.1 81.3  

Gender 

n (%) 
        

0.98 
Males 212 (49.0) 16 (47.1) 31 (47.0) 28 (45.2) 31 (48.4) 31 (50.0) 38 (50.7) 37 (52.9) 

Females 221 (51.0) 18 (52.9) 35 (53.0) 34 (54.8) 33 (51.6) 31 (50.0) 37 (49.3) 33 (47.1) 

Cattell score         
< 0.0001 

 Mean ± SD 31.0±7.0 37.3±3.7 36.5±4.0 34.9±4.5 33.4±4.6 29.6±5.3 26.4±6.2 23.5±5.6 

Mini-Mental State 

Examination 
        

< 0.0001 

Mean ± SD 28.8±1.3 29.1±1.5 29.4±1.1 29.1±1.1 29.1±1.2 29.0±1.2 28.4±1.3 27.9±1.5 
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Table 2. Multiple regression analysis results of each independent component (IC) subject loadings from linked independent 

component analysis of CC280 participants (38 components based on 7 modalities and n = 215). 

 IC ~ Cattell*Age + Age^2 + gender + head motion 

IC 

Overall model fit Age Age^2 Cattell Cattell*Age 

Adjuste

d R
2
 

P 

FWER-

correcte

d P 

t P t P t P t P 

IC1 0.56 < 0.0001 < 0.0001 -8.63 < 0.0001 -1.73 0.086 2.41 0.017 0.15 0.88 

IC2 0.046 0.015 0.57         

IC3 -0.0016 0.46 > 0.99         

IC4 0.71 < 0.0001 < 0.0001 12.11 < 0.0001 3.39 0.00084 1.96 0.051 0.60 0.55 

IC5 0.0048 0.32 > 0.99         

IC6 0.18 < 0.0001 < 0.0001 -2.42 0.016 0.093 0.93 -0.93 0.35 -1.23 0.22 

IC7 0.078 0.00081 0.031 -2.18 0.030 3.38 0.00086 0.13 0.90 1.26 0.21 

IC8 -0.0054 0.57 > 0.99         

IC9 0.059 0.0045 0.17         

IC10 0.040 0.025 0.95         

IC11 0.023 0.093 > 0.99         

IC12 -0.0019 0.47 > 0.99         

IC13 0.12 2e-5 0.00076 -2.82 0.0053 -1.69 0.092 -0.029 0.98 0.49 0.63 

IC14 0.047 0.014 0.53         

IC15 0.28 < 0.0001 < 0.0001 2.78 0.0059 1.12 0.26 -1.55 0.12 1.78 0.076 

IC16 0.16 < 0.0001 < 0.0001 -0.97 0.33 -1.69 0.092 2.67 0.0082 -0.75 0.46 

IC17 0.16 < 0.0001 < 0.0001 0.44 0.66 -0.17 0.86 2.71 0.0074 1.62 0.11 

IC18 0.10 < 0.0001 0.0038 -3.02 0.0029 1.12 0.26 -0.53 0.60 1.00 0.32 

IC19 0.062 0.0034 0.13         

IC20 0.047 0.014 0.53         

IC21 0.088 0.00031 0.012 -0.24 0.81 -2.22 0.028 0.63 0.53 -1.90 0.059 

IC22 0.16 < 0.0001 < 0.0001 -2.79 0.0058 -4.21 < 0.0001 -1.06 0.29 -1.44 0.15 
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IC23 0.13 < 0.0001 0.00019 -2.15 0.033 -1.21 0.23 -0.16 0.87 0.32 0.75 

IC24 0.047 0.014 0.53         

IC25 0.14 < 0.0001 < 0.0001 -2.73 0.0069 -0.15 0.88 0.36 0.72 -1.87 0.062 

IC26 0.17 < 0.0001 < 0.0001 -1.88 0.062 0.36 0.72 1.53 0.13 0.90 0.37 

IC27 0.075 0.0010 0.038 -1.12 0.26 1.16 0.25 0.43 0.66 1.90 0.059 

IC28 0.053 0.0082 0.31         

IC29 -0.0023 0.48 > 0.99         

IC30 0.045 0.016 0.61         

IC31 0.052 0.0085 0.32         

IC32 0.064 0.0028 0.11         

IC33 0.059 0.0047 0.18         

IC34 0.027 0.071 > 0.99         

IC35 0.035 0.038 > 0.99         

IC36 -0.020 0.93 > 0.99         

IC37 0.0018 0.39 > 0.99         

IC38 0.010 0.23 > 0.99         
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Figures: 

Figure 1. Summary of processing and analysis of the imaging modalities, comprising functional,

cerebrovascular and structural measurements. Abbreviations: ASL, arterial spin labelling; CBF, cerebra

blood flow; DMN, default mode network; FPN, frontoparietal network; GMV, grey matter volume; ICA,

independent component analysis; RSFA, resting state fluctuation amplitude; rsfMRI, resting-state

functional magnetic resonance imaging; SN, salience network; T1w, T1-weighted. 

 

 

Figure 2. Scatter plots showing the correlation between age and fluid intelligence measured by Cattel

test score in the CC280 main sample (n = 215) and CC420 validation sample (n = 433). 
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Figure 3. (a) The group-average spatial maps associated with the default mode network, the salience

network, and the lateralized frontoparietal networks, generated from group-level independent

component analysis of 648 subjects from Cam-CAN cohort Stage 2. (b) The group-average spatial maps

of cerebrovascular and structural neuroimaging modality inputs to linked ICA, including resting state

fluctuation amplitude and cerebral blood flow as cerebrovascular measurements, and grey matter

volume as a structural measurement. 
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Figure 4. The relative weight of modalities in each component generated from linked independent

component analysis (ICA) and the percentage of variance explained of each component of the CC280

main analysis (n = 215). Note that most components are dominated by one modality. Two columns on

the right show the spatial correlation coefficients between each of linked ICA components of the CC280

main sample and split-sample validation sub-sample 1 (split-sample 1, n = 108), and main sample and

split-sample validation sub-sample 2 (split-sample 2, n = 107). Abbreviations: DMN, default mode

network; SN, salience network; FPN, frontoparietal network; RSFA, resting state fluctuation amplitude;

CBF, cerebral blood flow; GMV, grey matter volume. 
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Figure 5. Degree of fusion between the 7 neuroimaging modalities included in linked independent

component analysis (ICA) CC280 (n = 215) with 30, 40, and 50 components, respectively. Greater

number (i.e., darker color) in the matrix represents more fusion found between the two modalities in

linked ICA output components. Abbreviations: DMN, default mode network; SN, salience network; FPNr,

right frontoparietal network; FPNl, left frontoparietal network; RSFA, resting state fluctuation amplitude

CBF, cerebral blood flow; GMV, grey matter volume. 
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Figure 6. Linked ICA weighted spatial maps for five components showing strong age effects on subject

loadings in CC280 main analysis (n = 215). Warm and cold colour scheme indicate positive and negative

association with linked ICA subject loadings, respectively. For example, an individual with a high loading

value on IC1, i.e., young adult, had i) high whole brain GMV, ii) high perfusion in visual cortex and

posterior cingulate cortex (PCC) coupled with low perfusion in middle temporal gyrus and iii) high RSFA

in dorsolateral prefrontal cortex and PCC, coupled with low RSFA values in areas proximal to vascular

and cerebrospinal fluid territories (venous sinuses and middle cerebral arteries). The brain figures depict

the weighted spatial maps and the accompanying scatter plots show models of age plotted against IC

subject loadings. Non-linear changes in relation to age were observed in IC4, IC7 and IC22 (refer to Table

2 for regression results). For visualization the spatial map threshold is set to 3 < |Z| < 10. Abbreviations

CBF, cerebral blood flow; GMV, grey matter volume; RSFA, resting state fluctuation amplitude. 
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Figure 7. Linked ICA weighted spatial maps for three components showing unique associations with

Cattell test score in CC280 main analysis (n = 215). Warm and cold colour scheme indicate positive and

negative association with linked ICA subject loadings, respectively. The accompanying scatter plots show

models of Cattell test score plotted against IC subject loadings. One component reflects signals from

structural and cerebrovascular measurements: IC1 which reflects grey matter volume (GMV), cerebra

blood flow (CBF) and resting state fluctuation amplitude (RSFA) (see Figure 6 and main text for further

interpretation). Two components reflect signals from functional networks: IC16 which reflects the right

frontoparietal network (FPN) and IC17 which reflects the left FPN. For visualization the spatial map

threshold is set to 3 < |Z| < 10. Similar components of IC1 and IC16 were found in CC420 out-of-sample

validation analysis (supplementary materials) to be associated with fluid intelligence. 
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