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Abstract

The increasingly large amount of proteomics data in the public domain enables, among other
applications, the combined analyses of datasets to create comparative protein expression
maps covering different organisms and different biological conditions. Here we have
reanalysed public proteomics datasets from mouse and rat tissues (14 and 9 datasets,
respectively), to assess baseline protein abundance. Overall, the aggregated dataset contained
23 individual datasets, including a total of 211 samples coming from 34 different tissues

across 14 organs, comprising 9 mouse and 3 rat strains, respectively.

In all cases, we studied the distribution of canonical proteins between the different organs.
The number of canonical proteins per dataset ranged from 273 (tendon) and 9,715 (liver) in
mouse, and from 101 (tendon) and 6,130 (kidney) in rat. Then, we studied how protein
abundances compared across different datasets and organs for both species. As a key point
we carried out a comparative analysis of protein expression between mouse, rat and human
tissues. We observed a high level of correlation of protein expression among orthologs
between all three species in brain, kidney, heart and liver samples, whereas the correlation of
protein expression was generally slightly lower between organs within the same species.
Protein expression results have been integrated into the resource Expression Atlas for

widespread dissemination.
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Author summary

We have reanalysed 23 baseline mass spectrometry-based public proteomics datasets stored
in the PRIDE database. Overall, the aggregated dataset contained 211 samples, coming from
34 different tissues across 14 organs, comprising 9 mouse and 3 rat strains, respectively. We
analysed the distribution of protein expression across organs in both species. We also studied
how protein abundances compared across different datasets and organs for both species. Then
we performed gene ontology and pathway enrichment analyses to identify enriched biological
processes and pathways across organs. We also carried out a comparative analysis of baseline
protein expression across mouse, rat and human tissues, observing a high level of expression
correlation among orthologs in all three species, in brain, kidney, heart and liver samples. To
disseminate these findings, we have integrated the protein expression results into the resource

Expression Atlas.
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69 1. Introduction

70

71  High-throughput mass spectrometry (MS)-based proteomics approaches have matured

72 significantly in recent years, becoming an essential tool in biological research [1]. This has
73  been the consequence of very significant technical improvements in MS instrumentation,

74  chromatography, automation in sample preparation and computational analyses, among other
75  areas. The most used MS-based experimental approach is Data Dependent Acquisition

76  (DDA) bottom-up proteomics. Among the main quantitative proteomics DDA techniques,

77  label-free intensity-based approaches remain very popular, although labelled-approaches,

78  especially those techniques based on the isotopic labelling of peptides (MS? labelling), such
79  as iTRAQ (Isobaric tag for relative and absolute quantitation) and TMT (Tandem Mass

80  Tagging), are becoming increasingly used as well.

81

82  Following the steps initiated by genomics and transcriptomics, open data practices in the field
83  have become embedded and commonplace in proteomics in recent years. In this context,

84  datasets are now commonly available in the public domain to support the claims published in
85  the corresponding manuscripts. The PRIDE database [2], located at the European

86  Bioinformatics Institute (EBI), is currently the largest resource worldwide for public

87  proteomics data deposition. PRIDE is also one of the founding members of the global

88  ProteomeXchange consortium [3], involving five other resources, namely PeptideAtlas,

89  MassIVE, iProX, jPOST and PanoramaPublic. ProteomeXchange has standardised data

90  submission and dissemination of public proteomics data worldwide.

91

92  As a consequence, there is an unprecedented availability of data in the public domain, which

93  istriggering multiple applications [4], including the joint reanalysis of datasets (so-called
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94  meta-analysis studies) [5-7]. Indeed, public proteomics datasets can be systematically
95  reanalysed and integrated e.g., to confirm the results reported in the original publications,
96  potentially in a more robust manner since evidence can be strengthened if it is found
97  consistently across different datasets. Potentially, new insights different to the aims of the
98  original studies can also be obtained by reanalysing the datasets using different strategies, this
99  includes repurposing of public datasets [8], including for instance approaches such as
100  proteogenomics studies for genome annotation purposes [9-12].
101
102 In this context of reuse of public proteomics data, PRIDE has started to work on developing
103 data dissemination and integration pipelines into popular added-value resources at the EBI.
104  This is perceived as a more sustainable approach in the medium-long term than setting up
105 new independent bioinformatics resources. One of them is Expression Atlas [13], a resource
106  that has enabled over the years easy access to gene expression data across species, tissues,
107  cells, experimental conditions and diseases. Only recently, protein expression information
108  coming from reanalysed datasets has been integrated in the ‘bulk’ section of Expression
109  Atlas. As a result, proteomics expression data can be integrated with transcriptomics
110  information, mostly coming from RNA-Seq experiments. So far, we have performed two
111  meta-analysis studies involving the reanalysis and integration of: (i) 11 public quantitative
112 datasets coming from cell lines and human tumour samples [13]; and (ii) 24 human baseline
113 datasets coming from 31 different organs [14].
114
115  The next logical step is to perform an analogous study of baseline protein expression in two
116  of the main model organisms: Mus musculus and Rattus norvegicus. To date, there are only a
117  small number of bioinformatics resources providing access to reanalysed MS-based

118  quantitative proteomics datasets, and even fewer if one considers only mouse and rat data. In
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119  this context, at the end of 2020, ProteomicsDB [15] released a first version of the mouse

120  proteome, based on the reanalysis of five label-free datasets. To the best of our knowledge,
121  there is no such public resource storing accurate MS-derived data for rat data yet. PaxDB is a
122 resource [16] that provides protein expression information coming from many species

123 (including mouse and rat) but the reported data relies on spectral counting, a technique that
124 generally does not provide the same level of accuracy than intensity-based label-free

125  approaches. Additionally, although antibody-based human protein expression information is
126  provided via the Human Protein Atlas [17], their efforts are focused on human protein

127  expression.

128

129  Here, we report the reanalysis and integration of 23 public mouse (14 datasets) and rat (9
130  datasets) label-free datasets, and the incorporation of the results into the resource Expression
131  Atlas as baseline studies. Additionally, we report a comparative analysis of protein

132 expression across mouse, rat and human (in this case using the results reported at [14] using
133 the same methodology).

134
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135 2. Results

136

137  2.1. Baseline proteomics datasets

138  Opverall, we quantified protein expression from 34 healthy tissues in 14 organs coming from
139 23 datasets. The analyses covered a total of 1,173 MS runs from 211 samples that were

140  annotated as healthy/control/non-treated samples, thus representing baseline protein

141  expression. Non-control/disease samples associated with these datasets were also reanalysed
142 but are not discussed here. Normalised protein abundances values (as ppb, parts per billion,
143 see Methods for calculation) from both control/healthy/non-treated and disease/treated tissue
144  samples are available to view as heatmaps in Expression Atlas. The protein abundances along
145  with sample annotations, sample quality assessment summary and experimental parameter
146  inputs for MaxQuant can be downloaded from Expression Atlas as text files. A summary of
147  the data selection and reanalysis protocols is shown in Fig. 1. The total number of peptides

148  and proteins identified in these datasets are shown in Table 1.

. PRIDE database
—

[~

-}

datasets selection Experimental design templates IDF & SDRF
MaxQuant Post-processing Normalized protein abundances
N
Quality control summary j E
R —
Post-process summary Expression Atlas J

149

150  Figure 1. An overview of the study design and reanalysis pipeline. QA: Quality assessment.
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Expression Number Number of
P Number of | of Number of | unique
— LS rotein eptides nique enes
accession PRIDE dataset of MS Number of p ¥ 173 P uniqu ¥ 8 ¥
numbers identifiers Tissues Organs Species Strains Fractionation | runs samples groups peptides mapped
E-PROT-7% PXD000867 ['® Liver Liver Mus musculus C57BL/6J Yes 24 4 12,792 246,738 167,725 9,715
Triceps
E-PROT-10% PXD000288 [ Triceps muscles | Muscles Mus musculus C57BL/6 Yes 36 3 10,870 189,553 126,670 6,421
Cerebellum, Brain,
E-PROT-16 PXD003155 2% Liver Liver Mus musculus C57BL/6 No 24 12 4,508 59,696 45,728 3,797
Achilles and
E-PROT-74 PXD004612 U | Plantaris tendon | Tendon Mus musculus C57BL/6 No 8 8 457 6,643 3271 273
Hippocampus,
Cerebellum,
E-PROT-75 PXD005230 22 Cortex Brain Mus musculus C57BL/10] Yes 72 36 7,663 63,479 41,683 6,037
ND4 Swiss
E-PROT-76 PXD009909 3 | Retina Eye Mus musculus Webster Yes 12 1 5,002 29,454 24,961 3,686
E-PROT-77 PXDO012307 24 Lung Lung Mus musculus C57BL/6 No 32 2 6,809 106,391 73,950 5,795
E-PROT-78 PXD009639 2! Lens Eye Mus musculus CD1 Yes 10 1 4,519 20,779 18,006 3,064
Heart,
Kidney,
Liver,
Lung,
Heart, Kidney, Brain,
Liver, Lung, Spleen,
Brain, Spleen, Testis, Swiss-
E-PROT-79 PXDO019394 12! | Testis, Pancreas | Pancreas Mus musculus Webster Yes 96 8 9,853 141,506 105,701 8,185
Left atrium,
Left ventricle,
Right atrium,
E-PROT-81 PXD012636 *” | Right ventricle Heart Mus musculus C57BL/6 Yes 120 4 7,772 146,966 99,577 6,435
Articular Articular
E-PROT-82 PXD019431 ¥ | cartilage cartilage Mus musculus BALB\ ¢ No 72 6 1,815 17,695 15,191 1,518
C57BL/6J:
Rj
C57BL/6JR
E-PROT-83 PXD022614 % | Brain Brain Mus musculus ccHsd Yes 120 6 6,645 97,443 69,884 5,673
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E-PROT-84 PXD004496 B | Hippocampus Brain Mus musculus C57BL/6] Yes 204 17 4,192 37,363 30,100 3,424
Right atrium,
E-PROT-85 PXD008736 B!l | Sinus node Heart Mus musculus C57BL/6] Yes 143 6 7,906 144,926 94,379 6,554
Rattus Sprague
E-PROT-86% | PXD012677 ®? | Amygdala Brain norvegicus Dawley No 3 3 1,872 15,326 12,367 1,382
Rattus Sprague
E-PROT-87 | PXD006692 ** | Lung Lung norvegicus Dawley No 10 10 2,079 14,440 11,696 1,398
Rattus Sprague
E-PROT-88% | PXD016793 B4 | Liver Liver norvegicus Dawley No 8 8 4,787 57,998 46,411 3,743
Rattus Sprague
E-PROT-89% | PXD004364 B3 | Testis Testis norvegicus Dawley No 3 3 2,351 15,880 13,674 1,601
Rattus
E-PROT-91 PXDO001839 B¢ | Left ventricle Heart norvegicus F344/BN No 12 12 1,345 10,310 8,804 925
Rattus
E-PROT-92% | PXD013543 B | Left ventricle Heart norvegicus Wistar No 8 8 1,858 17,303 13,622 1,340
First segment of
proximal
tubule, second
segment of
proximal
tubule, third
segment of
proximal
tubule,
medullary thick
ascending limb,
cortical thick
ascending limb,
distal
convoluted
tubule,
connecting
tubule, cortical
collecting duct,
outer medullary
collecting duct,
inner medullary Rattus Sprague
E-PROT-93 PXD016958 *¥ | collecting duct | Kidney norvegicus Dawley Yes 132 32 7,846 103,886 83,662 6,130

10
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151

152

153

154

Caudal and

rostral segments Rattus
E-PROT-94 PXD003375 B | of spinal cord Spinal cord | norvegicus Wistar Yes 21 18 2,477 29,213 22,025 1,926
Rattus
E-PROT-95% | PXD015928 9! | Tendon Tendon norvegicus Wistar No 3 3 199 1,253 1,063 101
1,173 MS
23 datasets 34 tissues 14 organs runs 211 samples
TOTAL (Mouse: 14, (Mouse: 21, (Mouse: (Mouse: (Mouse: 114,
Rat: 9) Rat: 18) 12, Rat: 8) 973, Rat: Rat: 97)
200)

Table 1. List of mouse and rat proteomics datasets that were reanalysed. 3Only normal/untreated samples within this dataset are reported in this

study. However, results from both normal and disease samples are available in Expression Atlas. ¥ Numbers after post-processing.

11
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155  2.2. Protein coverage across organs and datasets

156  One of our main aims was to study protein expression across various organs. To enable a
157  simpler comparison [14] we first grouped 34 different tissues into 14 distinct organs, as

158  discussed in ‘Methods’. We defined ‘tissue’ as a distinct functional or structural region within
159 an ‘organ’. We estimated the number of ‘canonical proteins’ identified across organs by first
160  mapping all members of each protein group to their respective parent genes. We defined the
161  parent gene as equivalent to the UniProt ‘canonical protein’ and we will denote the term

162  ‘protein abundance’ to mean ‘canonical protein abundance’ from here on in the manuscript.
163

164  2.2.1. Mouse proteome

165 A total of 21,274 protein groups were identified from mouse datasets, among which 8,176
166  protein groups (38.4%) were uniquely present in only one organ and 70 protein groups

167  (0.3%) were ubiquitously observed (see the full list in Supplementary File 2). This does not
168  imply that these proteins are unique to these organs. Merely, this is the outcome considering
169  the selected datasets. Mouse protein groups were mapped to 12,570 genes (canonical

170  proteins) (Supplementary File 3). We detected the largest number of canonical proteins in
171  samples coming from liver (9,920, 78.9% of the total) and the lowest numbers in samples
172 from tendon (273, 2.2%) and articular cartilage (1,519, 12.1%) (Fig. 2A). In the case of

173 tendon and articular cartilage, both experiments did not include sample fractionation in their
174  sample preparation methodology, which can also explain the lower number of detected

175  proteins. The comparatively even lower number of proteins identified in tendon could be
176  attributed to the smallest sample size (only one sample out of 114, 0.9%). Also, tendon is a
177  relatively hypocellular tissue, which has a low protein turnover rate. Dataset PXD000867,

178  containing mouse liver samples, had the highest number of canonical proteins detected

12
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179 (9,715, 77.3%), while the smallest number of proteins was detected in dataset PXD004612
180  (tendon, 273, 2.2%), as highlighted above (Fig. 2C).

181

182  We studied the normalised protein abundance distribution in organs (Fig. 2B) and found that
183  all organs, except tendon, had similar median abundances. However, one cannot attribute
184  further biological meaning to these observations, since by definition the method of

185  normalisation fixes each sample to have the same “total abundance”, which then gets shared
186  out amongst all proteins. The normalised protein abundance distribution in datasets indicated
187  a higher than median abundances detected in datasets PXD004612 (tendon) and PXD003164
188  (testis) (Fig. 2D). A linear relationship was observed between the number of canonical

189  proteins detected in datasets and organs, when compared to the relative amount of their

190  spectral data (Fig. 2E). We found a significant number of proteins uniquely detected in one
191  organ (Fig. 2F). However, the list of concrete canonical proteins that were detected in just
192 one organ should be taken with caution since the list is subjected to inflated False Discovery
193  Rate (FDR), due to the accumulation of false positives when analysing the datasets

194  separately.

195  Some of the organs (liver, heart and brain) were represented across multiple mouse studies in
196  the aggregated dataset. A pairwise comparison of protein abundances in these organs

197  generally showed a good correlation in expression (heart: R? values ranged from 0.54 to 0.83;
198  brain: R? from 0.28 to 0.72; and liver: R? from 0.59 to 0.74) (Figure S1 in Supplementary File
199 4).

200

201

13
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Figure 2. (A) Number of canonical proteins identified across different mouse organs. The
number within the parenthesis indicates the number of samples. (B) Range of normalised
iBAQ protein abundances across different organs. The number within the parenthesis
indicates the number of samples. (C) Canonical proteins identified across different datasets.
The number within the parenthesis indicate the number of unique tissues in the dataset. (D)
Range of normalised iBAQ protein abundances across different datasets. The number within
parenthesis indicate the number of unique tissues in the dataset. (E) Comparison of total
spectral data with the number of canonical proteins identified in each dataset and organ. (F)

Distribution of canonical proteins identified across organs.

\ 14


https://doi.org/10.1101/2021.12.20.473413
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.20.473413; this version posted May 3, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

212

213 2.2.2. Rat proteome

214 A total of 7,769 protein groups were identified across 8 different rat organs among which
215 3,649 (46.9%) protein groups were unique to one specific organ while 13 (0.16%) protein
216  groups were present among all organs (see full list in Supplementary File 2). The protein

217  groups were mapped to 7,116 genes (canonical proteins) (Supplementary File 3). The highest
218  number of canonical proteins (6,106, 85.1%) was found in rat kidney samples. The lowest
219  number of canonical proteins (101, 1.4%) was found in samples from tendon, as shown in
220  Fig. 3A. The largest number of canonical proteins identified in kidney is likely because of the
221  relatively large number of samples (32 samples), when compared to other organs. However, it
222 isinteresting to note that large numbers of canonical proteins were detected in liver samples,
223 which relatively had fewer number of samples, when compared to the total number of

224 samples in heart and spinal cord.

225

226  Datasets PXD016958 and PXD016793 consisted entirely of kidney (where fractionation was
227  performed) and liver (no fractionation) samples, respectively, and as mentioned above had
228  the largest number of canonical proteins identified (Fig. 3C). The normalised protein

229  abundances were similar among the various organs and datasets (Fig. 3B, D). We also

230  observed a linear relation between the number of canonical proteins identified and the MS
231  spectra identified (Fig. 3E). As seen in the mouse datasets, we also observed a large number
232 of proteins uniquely detected in one organ (Fig. 3F). As highlighted above, the list of

233 concrete canonical proteins that were detected in just one organ should be taken with caution
234  since the list is subjected to inflated False Discovery Rate (FDR).

235 In the case of rat datasets, left ventricle heart samples were the only ones represented in more

236  than one study (PXDO001839 and PXD013543) in the aggregated dataset. A pairwise
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237  comparison of protein abundances of heart between these two datasets was performed,
238  showing a strong correlation in protein expression (R? = 0.9) (Figure S1D in Supplementary

239 File 4).
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242  Figure 3. (A) Number of canonical proteins identified across different rat organs. The

243 number within the parenthesis indicates the number of samples. (B) Range of normalised
244 iBAQ protein abundances across different organs. The number within the parenthesis

245  indicates the number of samples. (C) Canonical proteins identified across different datasets.

246  The number within the parenthesis indicate the number of unique tissues in the dataset. (D)
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247  Range of normalised iBAQ protein abundances across different datasets. The number within
248  parenthesis indicate the number of unique tissues in the dataset. (E) Comparison of total

249  spectral data with the number of canonical proteins identified in each dataset and organ. (F)
250  Distribution of canonical proteins identified across organs.

251

252 2.3. Protein abundance comparison across organs

253  Next, we studied how protein abundances compared across different datasets and organs. The
254  presence of batch effects between datasets makes this type of comparisons challenging. To
255  aid comparison of protein abundances between datasets we transformed the normalised iBAQ
256 intensities into ranked bins as explained in ‘Methods’, i.e., proteins included in bin 5 are

257  highly abundant whereas proteins in bin 1 are expressed in the lowest abundances (among the
258  detected proteins).

259

260  2.3.1. Mouse proteome

261  We found that 1,086 (8.6%) proteins were found with their highest level of expression in at
262  least 3 organs, with a median bin value greater than 4 (Supplementary File 3). On the other
263  end of the scale, 138 (1.1%) canonical proteins were found with their lowest expression in at
264  least 3 organs, with a median bin value of less than 2. The bin transformed abundances in all
265  organs are provided in Supplementary File 3.

266

267  To compare protein expression across all organs, we calculated pairwise Pearson correlation
268  coefficients across 117 samples (Fig. 4A). We observed some correlation in protein

269  expression within brain (median R> = 0.31) and a higher one in heart (median R? = 0.67)

270  samples. We performed Principal Component Analysis (PCA) on all samples from mouse

271  datasets for testing the effectiveness of the bin transformation method in reducing batch
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272 effects. Fig. 4B shows the clustering of samples from various organs of mouse. We observed
273  samples from the same organ generally clustered together. For example, we observed that
274  brain samples all clustered together in one group, even though they come from different

275  datasets, indicating decent removal of batch effects (Fig. 4C). However, we also observed
276  that samples from other organs such as liver did not cluster according to their organ types but
277  clustered together within the dataset they were part of, indicating some residual batch effects,
278  which are hard to remove completely.

279
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281  Figure 4. (A) Heatmap of pairwise Pearson correlation coefficients across all mouse samples.
282  The colour represents the correlation coefficient and was calculated using the bin transformed
283  iBAQ values. The samples were hierarchically clustered on columns and rows using

284  Euclidean distances. (B) PCA of all samples, using the binned protein abundances as input,
285  coloured by the organ types. (C) PCA of all samples coloured by their respective dataset

286  identifiers. The numbers in parenthesis indicate the number of datasets for each organ.

287  Binned values of canonical proteins quantified in at least 50% of the samples were used to
288  perform the PCA.

289

290 In addition, we compared the protein abundances generated in this study with the data

291  available in the resource PaxDB generated using spectral counting across different mouse
292  organs. We observed generally a strong correlation of protein abundances calculated using
293  iBAQ from this study (fraction of total (FOT) normalised ppb) and spectral counting methods
294  (Figure S2 in Supplementary File 4). However, the expression of low abundant proteins

295  seemed to be underestimated in PaxDB when compared with our results, as shown by a S-
296  shaped curve in the scatterplot in organs such as brain, heart, liver and lung. The ‘dynamic
297  exclusion’ [41] setting used by modern mass spectrometers prevents the instrument from

298  fragmenting abundant peptides multiple times when they are repeatedly observed in scans
299  nearby in time. This has the effect that spectral counting approaches will limit the dynamic
300 range observed, as high abundant proteins will be under sampled. This is a limitation when
301  using spectral counting methods, and these days spectral counting is not commonly used as a
302  truly quantitative data type in proteomics.

303

304  2.3.2. Rat proteome
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305  Next, we studied the distribution of protein abundances across organs in rat. On one hand,
306 311 (4.3%) proteins were found with their highest expression in at least 3 organs with a

307  median bin value greater than 4. On the other hand, 27 (0.37%) canonical proteins were

308  found with their lowest expression in at least 3 organs, with a median bin value of less than 2.
309  The bin transformed abundances in all organs are provided in Supplementary File 3.

310  Overall, the samples from rat datasets showed a better correlation in protein expression (Fig.
311  5A) than in the case of mouse. We observed generally a strong correlation of protein

312  expression within samples from liver (median Pearson’s correlation R? = 0.85), lung (median
313 R2?=0.71), spinal cord (median R? = 0.65), heart (median R? = 0.71) and brain (median R* =
314 0.86). We also observed the clustering in the PCA of samples coming from the same organ
315  (Fig. 5B). Kidney, lung, spinal cord and heart samples all clustered together according to

316  their organ type. Fig. 5C shows the samples based on the dataset they were part of. However,
317  most organ samples were part of individual datasets except in the case of samples from heart,
318  which came from two datasets (PXD001839 and PXD013543). Fig. 5C shows that the heart
319  samples clustered into two nearby groups (bottom left two clusters on Fig. 5B and 5C),

320  wherein each cluster included samples from a different dataset, indicating the presence of

321 small batch effects.
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Figure 5. (A) Heatmap of pairwise Pearson correlation coefficients across all rat samples.
The colour represents the correlation coefficient and was calculated using the bin transformed
iBAQ values. The samples were hierarchically clustered on columns and rows using
Euclidean distances. (B) PCA of all samples coloured by the organ types. (C) PCA of all
samples coloured by their respective dataset identifiers. The numbers in parenthesis indicate
the number of datasets for each organ. Binned values of canonical proteins quantified in at

least 50% of the samples were used to perform the PCA.

2.4. The organ elevated proteome and the over-representative biological processes

| 21


https://doi.org/10.1101/2021.12.20.473413
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.20.473413; this version posted May 3, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

332  Based on their expression, canonical proteins were classified into three different groups based
333 on their organ specificity: “mixed”, “group-enriched” and “organ-enriched” (see

334  Supplementary File 5). We considered over-expressed canonical proteins in each organ as
335  those which were in “group-enriched” and “organ-enriched”. The analysis showed that on
336  average, 20.8% and 26.0% of the total elevated canonical proteins were organ group-specific
337  in mouse and rat, respectively (Fig. 6). In addition, 4.3% and 14.2% were unique organ-

338  enriched in mouse and rat, respectively. The highest ratio of organ-enriched in mouse was

339  found in liver (13.6%), whereas in rat, it was found in kidney (39.8%).

340  We then performed a gene ontology (GO) enrichment analysis of those proteins that were
341  'organ-enriched' and group-enriched' using GO terms associated with biological processes.
342 We found 1,036 GO terms to be statistically significant in all organs, as seen in

343 Supplementary File 6. The most significant GO terms for each organ are shown in Table 2.

344
A Mouse B Rat
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346  Figure 6. Organ specificity of canonical proteins in (A) mouse and (B) rat.
347
Organ Species GO ID Description adjusted p-
value
Articular G0:0030198 Extracellular matrix organization 8.94*10738
cartilage Mus musculus G0:0043062 Extracellular structure organization 8.94*10738
g GO0:0045229 External encapsulating structure organization | 8.94*103%
Modulation of chemical synaptic
GO:0050804 transmission 7.03%10°6
Brain Mus musculus GO0:0099177 Reeulation of trans-svnantic sienallin 7.03*10°%
G0:0050808 cguiation ot trans-synapuc sighatng 1.41%1074
Synapse organization
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GO:0060047 Heart contraction 7.10%10-1
Heart Mus musculus G0:0008016 Regulation of heart contraction 4.43%10°10
GO0:0060537 Muscle tissue development 6.16*101°
-19
GO:0015711 Organic anion transport ig?: }81 p
Kidney Mus musculus G0:0044282 Small molecule catabolic process 6’2 510115
GO:0016054 Organic acid catabolic process '
GO0:0007601 Visual perception 7.54%1(0750
Eye Mus musculus G0:0001654 Eye development 5.31*%1073!
G0:0099504 Synaptic vesicle cycle 8.36*1018
G0:0016569 Covalent chromatin modification 6.26%1071°
Liver Mus musculus G0:0016570 Histone modification 1.71%10°8
GO0:0019369 Arachidonic acid metabolic process 1.71%10°%
GO:0120031 ;’sleslzﬁlz;lmembrane bounded cell projection 3.61%1014
Lung Mus musculus G0:0030031 Cell Y " b 3.61%10°4
GO:0044782 o projection assembly 9.83%10714
Cilium organization
Pancreas Mus musculus GO:0007586 Digestion 0.005
o ’ G0:0032328 Alanine transport 0.018
GO:0046649 Lymphocyte activation 4.12%10°22
Spleen Mus musculus G0:0050776 Regulation of immune response 2.00%10-2°
GO0:0045087 Innate immune response 2.23*1020
GO:0003012 Muscle system process 1.46%10°25
Tendon Mus musculus G0:0050879 Multicellular organismal movement 3.14*10°1°
G0:0050881 Musculoskeletal movement 1.46%10°%
GO:0048232 Male gamete generation 8. 75%1049
Testis Mus musculus G0:0003341 Cilium movement 3.04*10-38
GO:0044782 Cilium organization 6.78*10%7
GO:0061061 Muscle structure development 1.56*10°14
Triceps muscles | Mus musculus G0:0055002 Striated muscle cell development 2.41%10°1
G0:0003009 Skeletal muscle contraction 3.53*10°14
Ratt G0:0099537 Trans-synaptic signalling 1.79%1060
Brain anvlf sous GO:0007268 Chemical synaptic transmission 1.79%10%°
& G0:0098916 Anterograde trans-synaptic signalling 1.79%10°¢
Rait GO0:0061061 Muscle structure development 2.94%10-17
Heart anvtg s G0:0003012 Muscle system process 6.30%1071
Gl G0:0055001 Muscle cell development 4.00*10°13
‘ RNA processing 6.19%10°3
. Rattus GOHCLE e positive regulation of transcription by RNA | 7.29%10-0¢
Kidney . GO0:0045944 05
norvegicus . polymerase II 1.74*10
G0:0006260 . .
DNA replication
Ratt GO0:0008202 Steroid metabolic process 2 74%10°10
Liver anva s GO0:0016054 Organic acid catabolic process 1.61%#10°%°
Gl GO:0032787 Monocarboxylic acid metabolic process 1.64*10°%
Ratt GO:0031589 Cell-substrate adhesion 7.62%109
Lung ngrvlzs sous GO:0009617 Response to bacterium 7.62%10°%8
& G0:0030036 Actin cytoskeleton organization 1.40%10°
Rait GO:0061564 Axon development 4.26*10°18
Spinal cord m‘)’w‘f s G0:0099537 Trans-synaptic signalling 5.93%10°16
Gl GO:0007268 Chemical synaptic transmission 5.93*1016
o G0:0030199 Collagen fibril organization 1.23*10°13
Tendon ngrvlzs cous G0:0061448 Connective tissue development 2.31*10%
& GO:0001501 Skeletal system development 3.39%10:%°
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Rait GO:0019953 Sexual reproduction 3.98%1024
Testis m‘)’w‘f s GO:0051704 Multi-organism process 1.61*10°'8
greus GO:0007018 Microtubule-based movement 4.00*1012

348

349  Table 2. Analysis of the top three GO terms for each organ in mouse and rat using the

350 elevated organ-specific and group-specific canonical proteins as described in the ‘Methods’
351  section.

352

353  2.5. Protein abundances across orthologs in three species

354  In a previous study, we analysed 25 label-free proteomics datasets from healthy human

355  samples to assess baseline protein abundances in 14 organs following the same analytical
356  methodology [14]. We compared the expression of canonical proteins identified in all three
357  species (rat, mouse and human). Overall, 13,248 detected human genes (corresponding to the
358  canonical proteins) were compared with 12,570 genes detected in mouse and 7,116 genes
359  detected in rat. The number of orthologous mappings (i.e., “one-to-one” mappings, see

360  ‘Methods’) between rat, mouse and human genes are listed in table 3. We only considered

361  one-to-one mapped orthologues for the comparison of protein abundances.

362
Orthologs
of human
genes Percentage of genes with different mapping against identified
identified human genes
Identified in [14] one-to- many-to- many-to-
Species genes one-to-one | many many one not mapped
Mus
musculus 12,570 10,601 80.4% 1.9% 0.56% 1.46% 15.7%
Rattus
norvegicus | 7,116 6,058 82.0% 2.2% 0.70% 0.25% 14.9%
363

364  Table 3. Homologs identified in mouse and rat datasets when compared with the background
365  list of genes (corresponding to canonical proteins) identified in human datasets

366  (Supplementary File 2 in [14]).
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367

368  Among human and mouse orthologues we observed relatively high levels of correlation of
369  protein abundances in brain (R? = 0.61), heart (R?> = 0.65) and liver (R? = 0.56) (Fig. 7A).
370  Human and rat orthologs showed also relatively high levels of correlation in brain (R? =

371  0.62), kidney (R? = 0.53) and liver (R? = 0.56), but almost no correlation in lung (R> = 0.12)
372  and testis (R? = 0.18) (Fig. 7B). Between mouse and rat orthologs, the correlation of protein
373  abundances was higher in liver (R? = 0.65), kidney (R? = 0.54) and brain (R? = 0.57) samples,
374  when compared to the samples coming from the rest of the organs (Fig. 7C). Fig. 7D shows
375  anillustration of some example comparisons of individual orthologs using binned protein
376  abundances.

377

378  For the same corresponding subsets, we also investigated the correlation of protein

379  expression between various organs within each organism. We observed that in general the
380  correlation of protein expression was slightly lower between organs within the same species,
381  when compared to a higher correlation, which was observed among orthologs (Figure S3 in
382  Supplementary File 4). The found lower correlation of protein expression between different
383  organs was more apparent in mouse and rat.

384

385  Among the orthologs expressed in all organs in all three species, 747 (12.3%) orthologs were
386  detected with a median bin expression value of more than 4, i.e., proteins that appear to have
387  conserved high expression in all organs and all tissues. Additionally, 13 (0.2%) orthologs
388  were found with a median bin expression value less than 2 in all organs, although, it is harder
389  to detect consistently proteins with low abundances across all organs. A full list of the binned
390  protein abundances of orthologs is available in Supplementary File 7. The illustration of all

391  binned protein abundances across the three species is shown in Supplementary File 8.
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394  Figure 7. Comparison of protein abundances (in ppb) between one-to-one mapped orthologs
395  of mouse, rat and human in various organs. (A) Pairwise correlation using normalised protein
396  abundances of human and mouse orthologues. (B) Human and rat orthologs. (C) Mouse and
397 rat orthologs. (D) As an example, the comparisons of binned protein expression of ten

398 randomly sampled orthologs are shown. Data corresponding to all cases (as reported in panel

399 D) are available in Supplementary File 7 and the corresponding illustration of binned values

400 is available in Supplementary File 8. Orthologs in (D) are shown using their human gene

401  symbol.

402  Since each sample contains potentially thousands of protein values this creates a high level of

403  dimensionality within the data. To reduce this, we used the non-linear dimension reduction


https://doi.org/10.1101/2021.12.20.473413
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.20.473413; this version posted May 3, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

404  algorithm, Uniform Manifold Approximation and Projection (UMAP) (see Section 4.7 in the
405  ‘Methods’ section). The UMAP algorithm enables the reduction of multidimensional data to
406  atwo-dimensional space upon which the relationship between each sample can be visualised.
407  Specifically, it enables the visualisation of the relationships of proteins across individual

408  samples and organs. Should multiple samples be positioned near to each other, it allows for
409  us to predict that these samples shared similar properties (in this case, similar protein

410  abundance values). Consequently, by overlaying samples from various species UMAP

411  representations can be used to visualise the relationship of various orthologs across similar

412  organs.

413 Using the UMAP algorithm, we were able to visualise the relationships between individual
414  organs regardless of the involved species (human, mouse, rat) and to identify similar genes
415  (corresponding to canonical proteins) within those organs. The overall view of all samples
416  labelled by their respective organ is shown as Figure 8A. We chose to use the biological

417  system as the basis for the colouring scheme for each sample to reduce the overall complexity
418  of the visualisation, due the high number of organs included. By using this labelling scheme,
419  we could see that the clustering of each sample was deterministic. Each sample was

420  positioned within a clear region for the corresponding organs, despite the original layout

421  being unaware of this information. This indicates that not only do the samples within those
422  organs share common protein abundance values, but furthermore, that samples that come

423 from the same organs share similar protein expression (as three species are present).

424  Furthermore, in Figure 8B we show the representation of binned protein abundance values for
425  three example genes (SH3GL2, MYOZ2 and PYROXD?2), providing information on the
426  abundance of them across different biological systems. These visualisations use the same

427  layout than within Figure 8A. In the example of SH3GL2, it can be seen that Figure 8B
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428  shows multiple values that have been scored as bin 5. By referring to Figure 8A, we can see
429  that those points corresponding to highly abundant proteins, come from samples from the
430  nervous system (in all three species). Furthermore, using the same method, it can be seen that
431  MYOZ2 is highly abundant in the circulatory system, and that PYROXD?2 is highly abundant
432  in the urinary system. The UMAP coordinates and our binned protein abundance data that is
433 wused in these plots to allow for the generation of similar visualisations are provided in

434 Supplementary File 9.
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435

436  Figure 8: Visualisations generated using the UMAP algorithm to show the relationships
437  between human, mouse, and rat samples. (A) Shows the relationship of all samples,

438  particularly showing strong relationship between biological systems. (B) Shows the protein
439  abundancy of 3 example gene orthologs (SH3GL2, MYOZ2 and PYROXD?2), within each
440  sample. Human baseline protein expression data was generated in [14].

441
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442 2.6. Pathway enrichment analysis
443  Based on the ortholog protein expression analysis described above, we mapped canonical
444  proteins from mouse and rat to the corresponding ortholog human proteins, which were
445  subsequently subjected to pathway-enrichment analysis using Reactome (Fig. 9). After
446  filtering out the disease and statistically insignificant pathways, there were 2,990 pathways
447  found in all the organs of mouse and 2,162 pathways in all the organs of rat. In mouse
448  samples, the largest number of pathways (367) were found in articular cartilage, and the
449  lowest number of pathways was found in liver (44). We also observed that Neuronal System-
450  related pathways were predominantly present in the brain and eye, which is consistent with
451  expectations. In rat samples, brain included the largest number of pathways (387), while the
452  lowest number of pathways was found in tendon, with 117.
453
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455  Figure 9. Pathway analysis performed using the canonical proteins, showing the statistically

456  significant representative pathways (p-value < 0.05) in (A) mouse and (B) rat organs.
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457 3. Discussion

458  We have previously reported two meta-analysis studies involving the reanalysis and

459  integration in Expression Atlas of public quantitative datasets coming from cell lines and
460  human tumour samples [13], and from human baseline tissues [14], respectively. In this

461  study, we reanalysed mouse and rat baseline proteomics datasets representing protein

462  expression across 34 healthy tissues and 14 organs. We have used the same methodology as
463  in the study involving baseline human tissues, which enabled a comparison of protein

464  expression levels across the three species. Our main overall aim was to provide a system-
465  wide baseline protein expression catalogue across various tissues and organs of mouse and rat
466  and to offer a reference for future related studies.

467

468  We analysed each dataset separately using the same software (MaxQuant) and the same

469  search protein sequence database. The disadvantage of this approach is that the FDR

470  statistical thresholds are applied at a dataset level and not to all datasets together as a whole.
471  However, as reported before [14], using a dataset per dataset analysis approach is in our view
472  the only sustainable manner to reanalyse and integrate quantitative proteomics datasets, at
473  least at present. The disadvantage of this approach is that the FDR statistical threshold are
474  applied at a dataset level and not to all datasets together as a whole, with the potential

475  accumulation of false positives across datasets. However, it is important to highlight that the
476  number of commonly detected false positives is reduced in parallel with the increase in the
477  number of common datasets where a given protein is detected. As also reported in previous
478  studies, one of the major bottlenecks was the curation of dataset metadata, consisting of

479  mapping files to samples and biological conditions. Very recently, the MAGE-TAB-

480  Proteomics format has been developed and formalised to enable the reporting of the

481  experimental design in proteomics experience, including the relationship between samples
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482  and raw files, which is recorded in the SDRF-Proteomics section of the file [42]. Submission
483  of the SDRF-Proteomics files to PRIDE is now supported. The more well-annotated datasets
484  in the public domain, the easier these data reuse activities will become.

485

486  The generated baseline protein expression data can be used with different purposes such as
487  the generation of protein co-expression networks and/or the inference of protein complexes.
488  For the latter application, expression data can be alone or for potentially refining predictions
489  obtained using different methods such as the recently developed AlphaFold-based protein
490  complexes predictions [43]. Mouse and rat are widely used species in the context of drug
491  discovery, the latter especially, to undertake regulatory pre-clinical safety studies. Therefore,
492  itis important to know quantitative protein expression distribution in these species in

493  different tissues [44] to assist in the selection of species for such studies and also for the

494  interpretation of the final results.

495

496  In addition to the analyses reported, it would have also been possible to perform correlation
497  studies between gene and protein expression information. However, we did not find any

498  relevant public datasets in the context of this manuscript where the same samples were

499  analysed by both techniques, which is the optimal way to perform these studies. Future

500 directions in analogous studies will involve: (i) additional baseline protein expression studies
501  of other species, including other model organisms or other species of economic importance;
502 (i) the inclusion of differential proteomics datasets (e.g. using TMT and/or iTRAQ); and (iii)
503  include relevant proteomics expression data coming from the reanalysis of Data Independent
504  Acquisition (DIA) datasets [45].

505
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506  As mentioned above, we performed a comparative analysis of baseline protein expression
507  across human, mouse and rat. It was possible to perform this analysis for six common organs
508  (brain, heart, kidney, liver, lung and testis). Ortholog expression across species is useful to
509 infer protein function across experimentally studied proteins. This is particularly useful as
510  evolutionarily closely related species are likely to conserve protein function. We could not
511  find in the literature an analogous comparative study performed at the protein level.

512  However, expression from closely related orthologs across tissues or organs has been

513  compared at the transcriptomics level, providing a complete picture of gene expression. In
514  this context, many studies have compared gene-expression in mouse, rat and human

515  orthologues and found that orthologues had generally a highly correlated expression tissue
516  distribution profile in baseline conditions [46-50]. Gene expression levels among orthologs
517  were found to be highly similar in muscle and heart tissues, liver and nervous system and less
518  similar in epithelial cells, reproductive systems, bone and endocrine organs [48]. Studies have
519  also shown that variability of gene expression between homologous tissues/organs in closely
520  related species can be lower than the variability between unrelated tissues within the same
521  organism [46, 47], in agreement with the results reported here at the protein level.

522  Additionally, we showed an initial analysis of protein expression of orthologs across the three
523  species using UMAP.

524

525  In conclusion we here present a meta-analysis study of public mouse and rat baseline

526  proteomics datasets from PRIDE. We demonstrate its feasibility, perform a comparative

527  analysis across the three species and show the main current challenges. Finally, the data is
528 made available via Expression Atlas. Whereas there are several analogous studies performed
529  at the gene expression level for mouse and rat tissues, to the best of our knowledge this is the

530 first of this kind at protein expression level.
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531 4. Materials and Methods

532

533  4.1. Datasets

534  As of May 2021, there were 2,060 mouse (Mus musculus) and 339 rat (Rattus norvegicus)
535  MS proteomics datasets publicly available in the PRIDE database

536  (https://www.ebi.ac.uk/pride/). Datasets were manually selected based on the selection

537  criteria described previously [14]. Briefly, we selected datasets where baseline expression
538  experiments were performed on (i) label-free samples from tissues not enriched for post-

539 translational modifications; (ii) Thermo Fisher Scientific instruments such as LTQ Orbitrap,
540  LTQ Orbitrap Elite, LTQ Orbitrap Velos, LTQ Orbitrap XL ETD, LTQ-Orbitrap XL ETD,
541  Orbitrap Fusion and Q-Exactive, since they represent a large proportion of datasets in PRIDE
542  and to avoid heterogeneity introduced by data from other vendor instruments; (iii) had

543  suitable sample metadata available in the original publication or it was possible to obtain it by
544  contacting the authors; and (iv) our previous experience in the team of some datasets

545  deposited in PRIDE, which were discarded because they were not considered to be useful.
546  Overall, 14 mouse and 9 rat datasets were selected from all mouse and rat datasets for further
547 analysis. Table 1 lists the selected datasets. The 23 datasets contained a total of 211 samples
548  from 34 different tissues across 14 organs (meaning groups of related tissues, more details
549  below), comprising 9 different mouse and 3 rat strains, respectively.

550  The sample and experimental metadata were manually curated using the information

551  provided in the respective publications or by contacting the original authors/submitters.

552 Annotare [51] was used for annotating the metadata and stored using the Investigation

553  Description Format (IDF) and Sample-Data Relationship Format (SDRF) file formats [42],
554 which are required for integration in Expression Atlas. An overview of the experimental

555  design including experimental factors, protocols, publication information and contact
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556  information are present in the IDF file, and the SDRF includes sample metadata describing
557  the relationship between the various sample characteristics and the data files contained in the
558  dataset.

559

560 4.2. Proteomics raw data processing

561  All datasets were analysed with MaxQuant (version 1.6.3.4) [52, 53] on a Linux high-

562  performance computing cluster for peptide/protein identification and protein quantification.
563  Input parameters for each dataset, such as MS! and MS? tolerances, digesting enzymes, fixed
564  and variable modifications, were set as described in their respective publications, with two
565 missed cleavage sites. The FDR at the PSM (peptide spectrum match) and protein levels were
566  setto 1%. The MaxQuant parameters were otherwise set to default values: the maximum

567  number of modifications per peptide was 5, the minimum peptide length was 7, the maximum
568  peptide mass was set to 4,600 Da, and for the matches between runs the minimum match time
569  window was set to 0.7 seconds and the minimum retention time alignment window was set to
570 20 seconds. The MaxQuant parameter files are available for downloading from Expression
571  Atlas. The Mus musculus UniProt Reference proteome release-2021 04 (including isoforms,
572 63,656 sequences) and Rattus norvegicus UniProt Reference proteome release-2021 04

573  (including isoforms, 31,562 sequences) were used as the target sequence databases for mouse
574  and rat datasets, respectively. The built-in contaminant database within MaxQuant was used
575  and a decoy database was generated by MaxQuant by reversing the input database sequences
576  after the respective enzymatic digestion. The datasets were run separately in multi-threaded
577  mode.

578

579  4.3. Post-processing
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580  The post-processing of results from MaxQuant is explained in detail in [14]. In brief, the
581  protein groups labelled as potential contaminants, decoys and those with fewer than 2 PSMs
582  were removed. Protein intensities in each sample were normalised by scaling the iBAQ

583  intensity values to the total amount of signal in each MS run and converted to parts per

584  billion (ppb).

585 ppb_iBAQ; = (iBAQi/Zn B AQi)x 1,000,000,000

i=1
586  The ‘majority protein identifiers’ within each protein group were mapped to their Ensembl
587  gene identifiers/annotations using the Bioconductor package ‘mygene’. For downstream
588  analysis only protein groups whose isoforms mapped to a single unique Ensembl gene 1D
589  were considered. Protein groups that mapped to more than one Ensembl gene ID are provided
590  in Supplementary File 1. The protein intensity values from different protein groups with the
591  same Ensembl gene ID were aggregated as median values. The parent genes to which the
592  different protein groups were mapped to are equivalent to ‘canonical proteins’ in UniProt

593  (https://www.uniprot.org/help/canonical and_isoforms) and therefore the term protein

594  abundance is used to describe the protein abundance of the canonical protein throughout the
595  manuscript.

596

597  4.4. Integration into Expression Atlas

598  The calculated canonical protein abundances (mapped to genes), together with the validated
599  SDREF files, summary files detailing the quality of post-processing and the input MaxQuant
600  parameter files (mqpar.xml) were integrated into Expression Atlas

601  (https://www.ebi.ac.uk/gxa/home) as proteomics baseline experiments (E-PROT identifiers

602  are available in Table 1).
603

604  4.5. Protein abundance comparison across datasets
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605  To compare protein abundances, the normalised protein abundances (in ppb) from each group
606  of tissues in a dataset were converted into ranked bins. In this study, ‘tissue’ is defined as a
607  distinct functional or structural region within an ‘organ’. For example, hippocampus,

608  cerebellum and cortex are defined as ‘tissues’ that are part of the brain (organ) and similarly
609  sinus node, left atria, left ventricle, right atria, right ventricle are defined as ‘tissues’ in heart
610  (organ). Protein abundances were transformed into bins by first grouping MS runs from each
611 tissue within a dataset as a batch. The normalised protein abundances (ppb) for each MS run
612  within a batch were sorted from lowest to highest abundance and ranked into 5 bins. Proteins
613  whose ppb abundances are ranked in the lowest bin (bin 1) represent lowest abundance and
614  correspondingly proteins within bin 5 are of highest abundance in their respective tissue.

615  When merging tissues into organs, median bin values were used.

616  Proteins that were detected in at least 50% of the samples were selected for PCA (Principal
617  Component Analysis) and was performed using R (The R Stats package) [54] using binned
618  abundance values. For generating heatmaps, a Pearson correlation coefficient for all samples
619  was calculated on pairwise complete observations of bin transformed values. Missing values
620  were marked as NA (not available). For each organ a median R? was calculated from all

621  pairwise R? values of their respective samples. Samples were hierarchically clustered on
622  columns and rows using Euclidean distances. To compare the correlation in protein

623  expression of shared organs between datasets, the FOT normalised protein abundances (ppb)
624  were aggregated by calculating the median over samples. The regression line was computed

625  using the ‘linear model’ (Im) method in R.

626 4.6 Comparison of protein abundances using iBAQ and spectral counting data available

627 in PaxDB
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628  To compare protein abundances generated from iBAQ in this study and spectral counting

629  methods, protein abundance data from different mouse organs was obtained from PaxDB

630  (https://www.pax-db.org/) [16]. FOT normalised iBAQ abundances, as described above, were
631  compared with the spectral counting abundances for the matching mouse organs. Organs

632  from mouse labelled as ‘integrated’ in PaxDB were selected. It was not possible to perform
633  this comparison for rat organs since data in PaxDB for rat are available for either the ‘whole
634  organism’ or for “cell types” only. Abundances were compared across mouse adipose tissue,
635  brain, heart, kidney, liver, lung, pancreas and spleen. The Ensembl ENSG gene ids were

636  mapped to ENSP protein ids in PaxDB using the ‘mygene’ bioconductor package in R.

637  4.7. UMAP analysis

638  To generate the UMAP visualisations we used the binned protein abundance values generated
639 in this study from rat and mouse, as well as the binned human protein abundance values from
640  [14]. First, we reduced this data to only contain the orthologs found in all three species. For
641  the purpose of only the initial visualisation layout, we filtered the data to include those

642  proteins present in 90% of samples. Once the initial layout was generated, we then used the
643  full protein abundance values to generate protein-specific visualisations. We use R v4.1.0

644  with the package ‘umap’ (Uniform Manifold Approximation and Projection in R) [55]

645  v0.2.7.0 to generate the UMAP visualisations.

646  4.8. Organ-specific expression profile analysis

647  For comparison across organs, the tissues were aggregated into organs and their median bin
648  values were considered. As described previously [14] the classification scheme done by
649  Uhlén et al. [17] was modified to classify the proteins into one of the three categories: (1)

650  “Organ-enriched”: present in one unique organ with bin values 2-fold higher than the mean
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651  bin value across all organs; (2) “Group enriched”: present in at least 7 organs in mouse or in
652  atleast 4 organs in rat, with bin values 2-fold higher than the mean bin value across all

653  organs; and (3) “Mixed”: the remaining canonical proteins that are not part of the above two
654  categories.

655

656  Enriched gene ontology (GO) terms analysis was carried out through over-representation test
657  described previously [14], it was combined with “Organ-enriched” and “Group enriched”
658  mapped gene lists for each organ. In addition, Reactome [56] pathway analysis was

659  performed using mapped gene lists and running pathway-topology and over-representation

660  analysis, as reported previously [14].

661  4.9. Comparison of protein expression across species

662  The g:Orth Orthology search function in the g:Profiler suite of programs [57] was used for
663  translating gene identifiers between organisms. Since a custom list of gene identifiers could
664  not be used as the background search set, the mouse and rat genes were first mapped against
665  the background Ensembl database. The resulting list of mouse and rat genes mapped to

666  human orthologs were then filtered so that they only included parent gene identifiers of the
667  protein groups from mouse and rat organs identified in this study and the parent genes of
668  human organs described in our previous study (Supplementary File 2 in [14]), respectively.
669

670  The orthologs were grouped into various categories denoting the resulting mapping between

9% ¢ %9 ¢ CEANTY

671 identifiers: “one-to-one”, “one-to-many”, “many-to-one”, “many-to-many”’, and “no
672  mappings” between gene identifiers. Only “one-to-one” mapped ortholog identifiers were

673  used to compare protein intensities between mouse, rat and human organs. The normalised

674  ppb protein abundances of the one-to-one mapped orthologues in 6 organs (brain, heart,
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675  kidney, liver, lung and testis), that were studied across all three organisms were used to assess
676  the pairwise correlation of protein abundances. The linear regression was calculated using the
677  linear fit ‘lm’ method in R.

678

679  Data availability
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722  Abbreviations

723  DDA: Data Dependent Acquisition

724  DIA: Data Independent Acquisition

725  FOT: Fraction of Total

726  GO: Gene Ontology

727  iBAQ: intensity-based absolute quantification
728  iTRAQ: Isobaric tag for relative and absolute quantitation
729  IDF: Investigation Description Format

730  MS: Mass Spectrometry

731  ppb: Parts per billion

732 PCA: Principal Component Analysis

733 SDRF: Sample and Data Relationship Format
734  TMT: Tandem Mass Tagging

735  UMAP: Uniform Manifold Approximation and Projection
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