

1 **Title** Cerebellar associative learning underlies skilled reach adaptation

2

3 **Authors** Dylan J. Calame, Matthew I. Becker, Abigail L. Person

4

5 **Abstract**

6 Cerebellar output has been shown to enhance movement precision by scaling the decelerative phase of
7 reaching movements in mice. We hypothesized that during reach, initial kinematics cue late-phase
8 adjustments through cerebellar associative learning. We identify a population-level response in mouse
9 PCs that scales inversely with reach velocity, suggesting a candidate mechanism for anticipatory control
10 to target limb endpoint. We next interrogate how such a response is generated by combining high-density
11 neural recordings with closed-loop optogenetic stimulation of cerebellar mossy fiber afferents originating
12 in the pontine nuclei during reach, using perturbation schedules reminiscent of classic adaptation
13 paradigms. We found that reach kinematics and PC electrophysiology adapt to position-locked mossy
14 fiber perturbations and exhibit aftereffects when stimulation is removed. Surprisingly, we observed partial
15 adaptation to position-randomized stimulation schedules but no opposing aftereffect. A model that
16 recapitulated these findings provided novel insight into how the cerebellum deciphers cause-and-effect
17 relationships to adapt.

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35 **Introduction**

36 In humans and animals with altered cerebellar function, movement is disorganized, often showing
37 hallmark symptoms of endpoint dysmetria^{1,2} and impaired abilities to adapt movements in the face of
38 novel conditions^{3–7}. These observations have led to the idea that the cerebellum makes movements fast,
39 smooth, and accurate by learning anticipatory control signals that mediate feedforward control^{8–10 11,12}.

40 Understanding the neurobiological basis of learned anticipatory signals is a major effort of
41 cerebellar physiology. Two dominant learning paradigms, classical conditioning and motor adaptation,
42 each provide important insight into the mechanisms of anticipatory motor control. Classical conditioning
43 paradigms^{13–15} such as delay eyeblink conditioning, illustrate how neutral conditioned stimuli paired with
44 reflex-eliciting unconditioned stimuli become predictive cues eliciting conditioned responses (e.g. a tone
45 repeatedly paired with a corneal airpuff eventually elicits a predictive eyeblink). Mechanistically, neutral
46 cues can be fully replaced by cerebellar mossy fiber stimulation^{16,17} and unconditioned stimuli can be fully
47 replaced by climbing fiber stimulation¹⁷. Climbing fibers elicit complex spikes (Cspks) in Purkinje cell (PC)
48 dendrites^{18,19}, which over many trials reduce parallel fiber efficacy onto PCs, leading to firing rate pauses
49 at the predicted time of the unconditioned stimulus. Through subsequent disinhibition of the cerebellar
50 nuclei, these pauses then drive anticipatory conditioned responses.

51 Cerebellar cortex also mediates many forms of motor adaptation^{20–22}. Perturbations that result in
52 movement error, such as prisms that distort gaze or target jumps that cause endpoint errors, modulate
53 Cspks to induce bidirectional plasticity in PC simple spike activity that correlates with adaptive changes
54 in behavior^{23–25}. It has been hypothesized that such instances of motor adaptation can be understood
55 through a lens of associative learning. In this view, sensorimotor information, conveyed to the cerebellum
56 via mossy fibers, is reweighted onto Purkinje neurons when associated with deviations from basal
57 climbing fiber rates. Learning mechanisms analogous to those described above for associative
58 conditioning then reweight the original sensorimotor inputs to Purkinje neurons leading to novel cerebellar
59 output²⁵.

60 Despite the widely held view that motor adaptation shares a mechanistic substrate with classical
61 conditioning, key differences between motor control and classical conditioning make these inferences
62 tenuous. For example, perturbations that drive motor adaptation^{26–28} engage sensorimotor feedback
63 loops at multiple levels of the nervous system, complicating the view that cerebellar input-output
64 remapping fully explains adaptation since inconstant cerebellar inputs would deprive associative
65 mechanism of a stable cue. This problem is even more exaggerated when considering skilled movements
66 such as reach, where both cerebral cortex and cerebellum are proposed as sites of learning^{26,29,30}, with
67 long-range loops likely functioning synergistically³¹. Thus, learning-related changes in cerebellar Purkinje
68 firing could be inherited from cerebral cortex, generated by cerebellar plasticity, or both³².

69 We hypothesize that cerebellar output during movements is mechanistically akin to conditioned
70 responses, such that in learned conditions, cerebellar outputs reduce motor error and are cued by mossy
71 fiber activity that encodes within-movement kinematic features^{10,25}. Recent studies in mice performing
72 skilled reach movements suggest experimental entry points to testing this idea. Specifically, a population
73 of cerebellar output neuron firing rates scale with and cause reach deceleration, and covary with early
74 kinematic features like peak reach velocity^{2,33}. Moreover, acute disruption of cerebral cortical input to the
75 cerebellum impairs skilled reach kinematics^{2,34,35}, suggesting that cerebellar inputs could be used both
76 as a perturbation and a cue to predictively adjust skilled movement kinematics.

77 Here, we performed experiments designed to link the cerebellum's role in associative learning
78 with its generation of anticipatory control of reaching movements. We superimposed a variant of
79 associative learning onto a skilled reach task through repeated optogenetic manipulation of mossy fiber
80 activity in closed loop with reach, triggered at a consistent kinematic landmark. In addition to monitoring
81 the kinematic effect of stimulation over trials, we also measured changes in PC response to stimulation.
82 To test reliance of temporal specificity on learning, we randomized the position of stimulation. A cerebellar
83 model of timed adaptation within a movement recapitulated our key experimental findings and gives
84 mechanistic insight into the circuit properties underlying cerebellar reach adaptation. Together, these
85 experiments unify the frameworks of cerebellar associative learning and motor adaptation in skilled
86 movements, an important step in understanding mechanisms of motor learning.

87

88 **Results**

89 **A suppression-based Purkinje cell population code tuned to reach velocity**

90 Neurons in the anterior interposed nucleus fire proportional to reach velocity and causally scale limb
91 deceleration, such that the limb lands on target despite initial kinematic variability^{2,33}, consistent with the
92 cerebellum implementing anticipatory control. To determine whether upstream PCs may drive these
93 decelerative bursts in the cerebellar nuclei, we combined kinematic and electrophysiological recordings
94 in mice engaged in a skilled head-fixed reach task. After mice were proficient at the task, we recorded
95 reach kinematics with high-speed cameras via an IR-reflective marker affixed to the mouse's hand (Fig.
96 1a, Fig. S1). Acute recordings in cerebellar cortex were made simultaneously, using either single
97 electrodes or Neuropixel probes (Fig. 1a, Video S1). Recordings were targeted to a cerebellar cortical
98 site situated between Lob 4/5 and Simplex known to influence forelimb movements in mice¹³. Putative
99 PCs were identified as neurons with Cspks or with a firing rate > 40 spikes/s, CV2 > 0.20, MAD < 0.008
100 (see Methods, Fig. S2). We found that activity in many PCs was highly modulated around the time of
101 the reach across cells and sessions (Fig 1).

102 To test the prediction that decelerative signals in the cerebellar nuclei derive from Purkinje neuron
103 activity patterns during reach, we first sought to understand what individual PCs encode. We used least
104 absolute shrinkage and selection operator (LASSO) regression to model PC simple spike firing rate
105 using limb kinematics on a trial-by-trial basis, with a ten-fold cross validation step to avoid over-fitting
106 (Fig. 1b; see Methods)³⁶. On average, kinematics of the limb alone could explain a modest $18.0 \pm 0.01\%$
107 (mean \pm SEM) of the variance in simple spike firing rate on individual trials, although trial-averaged data
108 was a much closer fit ($58.0 \pm 0.01\%$, Fig. 1c, d) consistent with other studies of PC simple spike tuning
109 to limb movements in primates^{37–41}. Kinematic encoding was not a result of generic movement-related
110 modulation but was specific to the kinematics of individual reaches as demonstrated by a reach shuffled
111 control that reassigned reaches with PC firing recorded during separate reaches, and a spike shuffled
112 control, where simple spike times on each trial were time shuffled and regressed against kinematics. In
113 both cases, regression performance on the empirical data was significantly higher than the shuffled
114 controls indicating that simple spike firing rates encode reach kinematics on a reach-by-reach basis (Fig.
115 1d; $N = 11$ animals, $n = 465$ cells; empirical vs. reach shuffle: $p = 1.1 \times 10^{-71}$, $W = 103803$, $r = 0.83$;
116 empirical vs spike shuffle: $p = 6.9 \times 10^{-78}$, $W = 108331$, $r = 0.87$, Wilcoxon signed rank test). The
117 regression model performance was stable across the spatial trajectory of reaches, suggesting kinematic
118 encoding is continuous in individual cells (Fig. 1e). To assess which kinematic variables in the regression
119 model were the most important in modeling simple spike firing rate, we repeated the regression with
120 each variable independently time shuffled and measured the change in variance explained relative to
121 the complete model⁴² (Fig. S3d). Positional terms -- outward, upward, and lateral – each accounted for
122 approximately 10% of the explained variance of the complete model, with each of the remaining 20
123 variables accounting for < 5%, although there was a wide variety in the relative importance of different
124 kinematic variables across cells. These measurements are roughly consistent with PC-limb kinematic
125 relationships observed in primates^{40,43,44}, however the relatively weak encoding on individual trials
126 obscures how the cerebellum might influence control over movements to make them smooth and
127 accurate.

128 As has been noted previously, PC simple spike rates fluctuate during movements, with modulations
129 that are either predominately positive or negative^{45,46}. Of 465 PCs recorded during reach, 226 displayed
130 increases in activity during the reach epoch and 239 showed a decrease (Fig. 1f). When segregated
131 into groups that predominantly increase or decrease rates during reach, both populations had lower
132 firing rates during faster reaches relative to slower reaches (Fig. 1g; highest peak velocity). The peak
133 rates of the population of positively modulated cells preceded negatively modulated cells (dashed
134 vertical lines, ~ 220 ms difference), raising the question of how these subpopulations collaborate as a
135 group.

136 Populations of ~40 PCs converge onto single nuclear cells⁴⁷. In the oculomotor vermis – where
137 heterogenous rate modulation profiles of PCs strongly resemble the patterns we saw during reach –
138 grouping PCs into populations across classes revealed much stronger kinematic relationships with
139 saccades^{45,48}. Speculating that similar population encoding principles may be seen in reach-related PCs,
140 we next grouped all PCs across all animals and looked at average activity for reaches binned by outward
141 velocity. Firing rate increases were followed by sharp drops in net activity during the reach epoch that
142 scaled with the velocity of outreach (Fig. 1h). Quantifying the minimum simple spike firing rate during
143 the reach window (see Methods) showed a strong negative relationship with outreach velocity, such that
144 the population showed a suppression of activity that scaled with reach velocity (Fig. 1i; N = 11 animals,
145 n = 465 cells, 2100 reaches; 11806 reach-cell pairs; $R^2 = 0.99$, slope = -0.094 with 95% CI [-0.111, -
146 0.077], $p = 4.0 \times 10^{-4}$, $F = 307.5$). The timing of rate suppression was intermediate between peak
147 outward acceleration and peak outward velocity, just before the transition to the decelerative phase of
148 reach (Fig. 1j). Notably, each velocity percentile contained equal populations of positively and negatively
149 modulated neurons. These data suggest that PC suppression scales in a way that is the inverse of
150 decelerative nuclear bursts that causally slow the limb.

151 Summarizing, we found that individual PCs are privately and modestly tuned to specific kinematic
152 features of reach but weakly related to previously observed patterns of firing in the cerebellar nuclei.
153 Yet, at the population level, PC activity shows scaled suppression in activity shortly before deceleration,
154 consistent with a disinhibitory mechanism driving decelerative bursts in nuclear cells. We hypothesize
155 that this firing rate suppression may be mechanistically akin to conditioned responses seen in delay
156 eyeblink conditioning – learned rate changes that produce anticipatory movements in response to
157 predictive cues. Both the precise timing and scaling of the population activity suppression observed here
158 are consistent with learned cerebellar responses linked to motor and sensory contingencies to control
159 movement. As such, this behavior offers a unique opportunity to test theories relating motor adaptation
160 to associative learning in service of skilled movement^{24,49–51}.

161

162 **Cspks signal movement onset and reach outcome**

163 To probe mechanisms that might shape cerebellar cortex scaling of output as a function of kinematics,
164 we first identified cerebellar recordings with Cspks, the drivers of learning in PCs. Cspks could be sorted
165 stably across the experiment in 59 of 465 putative PCs, 58 of which had Cspks during the peri-reach
166 window (~1s window centered on reach; see Methods). Cspk probability increased shortly before
167 movement onset, consistent with reports of early synchronized Cspk activity occurring at movement
168 initiation^{52–54}, then dropped near steady-state levels (Fig. 2a; $p = 3.3 \times 10^{-5}$, $F = 2.6$, RM one-way
169 ANOVA; mean Cpsk probability vs. -500 ms bin: $p = 7.1 \times 10^{-4}$, $d = -0.62$, Dunnett's multiple comparisons

170 test). In addition, a wide literature relates late complex spikes occurring after movement initiation to
171 movement errors and sculpting of simple spike rates during movement. Therefore, we analyzed
172 kinematics in which we observed early or late complex spikes in these different epochs (see Methods).
173 Trials with late Cspks had distinct kinematics compared to trials without late Cspks showing significantly
174 deviated endpoints (Fig. 2b-e, N = 8 animals, n = 58 cells; Euclidean distance from session median, No
175 Cspk trials vs. Cspk trials: $p = 8.1 \times 10^{-4}$, $W = -847$, $r = -0.43$, Wilcoxon signed rank test) but not peak
176 velocity (Fig. 2f; $p = 0.81$, $t = 0.24$, $d = 0.032$, paired t-test). By contrast, reaches with early Cspks had
177 no discernable kinematic differences (Fig. S4a,b; N = 8 animals, n = 58 cells; Euclidean distance from
178 session median, No Cspk trials vs. Cspk trials: $p = 0.32$, $W = -257$, $r = -0.13$, Wilcoxon signed rank test;
179 Peak velocity, No Cspk trials vs. Cspk trials: $p = 0.75$, $t = 0.32$, $d = -0.042$, paired t-test), although we
180 cannot rule out changes in reaction time or movement initiation^{54,55}.

181 To test whether the relationship of PC rates to kinematics changes on Cspk trials, indicative of
182 an encoding error, we compared simple spike rates on Cspk and non-Cspk trials for early and late
183 Cspks. Across neurons, simple spike rate was significantly elevated on late-Cspk trials (Fig. 2g,h; No
184 Cspk trials vs. Cspk trials: $p = 2.8 \times 10^{-4}$, $t = 3.9$, $d = -0.51$, paired t-test) and this elevation led to a shift
185 in the relationship of simple spike rate to reach velocity (Fig. 2i; No Cspk trials vs. Cspk trials: $p = 1.0 \times$
186 10^{-3} , $W = -833$, $r = -0.42$, Wilcoxon signed rank test). Trials with early Cspks did not show elevated
187 simple spike rates during outreach or changes in the relationship between simple spikes and reach
188 velocity across sessions (Fig. S4c-e; Simple spike rate during outreach, No Cspk trials vs. Cspk trials:
189 $p = 0.37$, $t = 0.90$, $d = -0.12$, paired t-test; Simple spike rate to peak velocity ratio, No Cspk trials vs.
190 Cspk trials: $p = 0.29$, $W = -273$, $r = -0.14$, Wilcoxon signed rank test). Cspks function to depress PC
191 inputs, leading to reductions of simple spike rate^{56,57}. If Cspks are responding to erroneous simple spike
192 elevation, we speculated that simple spike rate should be elevated shortly before the time of a Cspk, as
193 has been previously demonstrated⁵⁸. We therefore analyzed simple spike rates aligned to the time of
194 the Cspk, or the same time on the previous or next trial. In late Cspk trials, Cspks were associated with
195 higher than average simple spike rates in the 100 ms before a Cspk compared to the previous trial, and
196 simple spikes in this window were lowered on the trial after the Cspk trial (Fig. 2j,k; $p = 9.8 \times 10^{-4}$, $F =$
197 8.0, RM one-way ANOVA; previous trial vs Cspk trial: $p = 3.6 \times 10^{-3}$, $d = -0.45$, Cspk trial vs next trial: p
198 = 0.024, $d = 0.36$, Tukey's multiple comparisons test). In contrast, early Cspks that occurred before the
199 onset of reach did not display increases in simple spikes before the Cspk (Fig. S4f,g; $p = 0.17$, $F = 0.69$,
200 RM one-way ANOVA). Together these data reveal dynamics of PC Cspks, simple spikes, and
201 associated kinematics that suggest a continuous recalibration of kinematic tuning in PCs.

202

203 **Repeated closed-loop optogenetic perturbation of cerebellar inputs during reach causes**
204 **hallmark characteristics of sensorimotor adaptation**

205 Next, we sought to probe whether PCs reweight cerebellar inputs that shape movement kinematics.
206 Previous work has shown that stimulation of pontine afferents to the cerebellum perturbs reaching
207 movements in mice³⁵. This effect is interpretable as corrupted cortical information entering the
208 cerebellum which initially drives an erroneous cerebellar control policy observable in acute kinematic
209 effects. If cerebellar associative learning mechanisms implement the formation of an anticipatory control
210 policy, a number of predictions emerge: pontocerebellar mossy fiber stimulation that drives reach errors
211 will, when repeated over many reaches, lead to adaptation of PC responsivity. Removing the
212 perturbation should lead to aftereffects due to accumulated learning of new contingencies. Finally,
213 adaptation and aftereffects will be dependent upon the temporal context of the perturbation within the
214 movement, where learning only accumulates when perturbations are temporally locked to the execution
215 of the movement.

216 To drive erroneous activity in PCs during reaching movements, we injected AAV-expressing hSyn-
217 ChR2 into the pontine nuclei in mice, a major hub relaying motor commands from motor cortex to the
218 cerebellum^{35,59-63} (Fig. 3, Fig. S5a, Fig. S6a,b). Recordings of PCs showed that optogenetic stimulation
219 of mossy fiber afferents in the cerebellar cortex drove both increases and decreases in simple spike
220 firing rates (Fig. S5b; N = 4 animals, 43/151 cells, 26 increase, 17 decrease; p<0.05, paired t-test). This
221 diverging stimulation effect is likely due to network properties in the cerebellar input layers leading to
222 either net excitatory or inhibitory drive onto PCs^{35,64}. Interestingly, cells with sorted Cspks (see Methods)
223 showed a small but significant increase in Cspk probability in the 250 ms after stimulation during rest
224 compared to the probability outside of this epoch in response to mossy fiber stimulation (Fig. S5c; N =
225 4 animals; n = 39 cells; p = 5.6 x 10⁻³, t = 2.9, d = -0.45, paired t-test), consistent with previous findings
226 during electrical stimulation of mossy fibers⁶⁵. Cspks time-locked to mossy fiber stimulation suggest that
227 optogenetically-driven simple spikes may engage plasticity mechanisms to respond to perturbation.

228 To assess whether repeated closed-loop stimulation could engage cerebellar learning mechanisms
229 to produce sensorimotor adaptation, optical fibers were implanted in cerebellar cortex at the interface
230 between Lobule Simplex and Lobules 4/5 (Fig. S6c,d). Experiments were structured in a block format
231 where animals reached unperturbed in a baseline block, followed by a stimulation block where closed-
232 loop stimulation of pontocerebellar axons (50-ms train) was delivered on every reach when the hand
233 passed a 1-cm threshold in the outward direction, and finally a washout block where stimulation was
234 removed to assess any aftereffects of learning. Each block was roughly 15-30 reaches long determined
235 by each individual animal's endurance in the task (Fig. 3a; baseline: 23.1 ± 6.24 reaches; stimulation:
236 22.4 ± 5.77 reaches; washout: 20.56 ± 6.65 reaches; mean ± SD; N = 5 animals, 104 sessions). Early

237 in the stimulation block, we found that stimulation caused acute changes in reach kinematics: in 4/5
238 animals it caused hypermetric reaches in outward position and in 1 animal it caused hypometric reaches
239 (Fig. 3b-c, Fig. S7a examples 1 and 2). To assess the relative change in hand position over the
240 stimulation block, we measured the magnitude of the stimulation effect over the block, defining the initial
241 direction of the stimulation effect on hand position as positive and the opposing direction as negative.
242 We found that the magnitude of the stimulation effect decreased over the stimulation block. When the
243 stimulation was removed, early in the washout block reaches deviated in the direction opposite the initial
244 stimulation direction, before eventually correcting back to baseline at the end of the washout block in
245 both outward position and velocity (Fig 3d,e; N = 5 animals, 104 sessions; Outward position: $p = 1.7 \times 10^{-3}$, $F = 11.3$, RM one-way ANOVA; early stimulation to middle stimulation: $p = 8.9 \times 10^{-3}$, $d = 2.0$; early
246 stimulation to early washout: $p = 0.030$, $d = 1.5$; early stimulation to middle washout: $p = 0.017$, $d = 1.7$;
247 early stimulation to late washout: $p = 0.031$, $d = 1.4$; early washout to late washout: $p = 0.042$, $d = -1.3$,
248 Tukey's multiple comparisons test; Outward velocity: $p = 4.7 \times 10^{-3}$, $F = 12.1$, RM one-way ANOVA; early
249 stimulation to middle stimulation: $p = 0.024$, $d = 1.6$; early stimulation to early washout: $p = 0.041$, $d = 1.3$;
250 early stimulation to middle washout: $p = 3.5 \times 10^{-3}$, $d = 2.6$; early stimulation to late washout: $p = 0.030$, $d = 1.5$;
251 late stimulation to early washout: $p = 0.048$, $d = 1.3$, Tukey's multiple comparisons test).
252 The magnitude of the initial stimulation effect on outward position predicted the magnitude of the initial
253 washout aftereffect across animals (Fig. 3f, $R^2 = 0.820$, slope = -0.608 with 95% CI [-1.13, -0.0853], $p = 0.034$, $F = 13.7$); however, hypometric effects were generally larger than hypermetric effects (both during
254 stimulation and washout), possibly due to biomechanical constraints of the limb and reaching apparatus
255 imposing a ceiling effect on hypermetric movements. Interestingly, the aftereffect did not appear until
256 the time that stimulation would have been delivered during outreach (Fig. 3c, Fig. S7d). In control
257 experiments using red light (635 nm) we observed no kinematic deviations or adaptation profiles as seen
258 with blue-light stimulation (Fig. S7e). Further, blue-light stimulation at rest produced negligible
259 movements (Fig. S7f; N = 4 animals, 21 sessions; maximum outward velocity during stimulation: 0.26
260 cm/s).

261 To summarize, we have shown that animals adapt to a precisely timed internal perturbation of
262 pontocerebellar mossy fibers and this learning is reflected in opposing aftereffects when the perturbation
263 is removed. Adaptation was temporally precise, with changes in limb kinematics early in the washout
264 block timed to the predicted point of perturbation.

265
266
267
268 **PC recordings show electrophysiological correlates of adaptation at the time of perturbation**
269 To investigate cellular correlates of learning in PCs during behavioral adaptation to this circuit-level
270 perturbation, we performed stimulation experiments while recording near the optical fiber with a

271 Neuropixel probe (Fig. 4a). To assure that any firing rate changes were not attributable to unstable cell
272 isolation across the experiment, we assessed the stability of every PC using two metrics: a correlation
273 of spike template waveforms and the displacement of units along the electrode in the baseline and
274 washout blocks (Fig. S8, see Methods). 203 of 314 putative PCs were stable across the experiment,
275 159 of which were modulated with reach. In the analyses that follow, we analyzed stimulus responsivity
276 over the stimulus block in all stimulus-responsive PCs and population-level changes over adaptation of
277 all reach-modulated PCs. First, to assess optogenetic stimulus responsivity in these neurons, we
278 compared simple spike firing rates between baseline and stimulated reaches within the 50-ms
279 stimulation epoch. Consistent with mossy fiber stimulation at rest, we observed a diverging effect pattern
280 with stimulation during reach: 17 cells showed significant increases in simple spike firing and 25 cells
281 showed decreases (Fig. 4b, $p < 0.05$, paired t-test). In both groups, the efficacy of stimulation dropped
282 over the course of the stimulation block, consistent with adaptation (Fig. 4c,d). To statistically analyze
283 the progression of the stimulus effect over the stimulation block, we defined the direction of the initial
284 response as positive for all cells, (pooling cells that were inhibited and excited by stimulation), then
285 measured the response magnitude over time. The response magnitude dropped across the stimulation
286 block such that in later trials, firing rates were not significantly different from baseline (Fig 4e,f; $n = 5$
287 animals, 42 stimulation modulated cells; $p = 7.2 \times 10^{-3}$, $F = 5.5$, RM one-way ANOVA; end baseline vs.
288 first 5 stim: $p = 2.6 \times 10^{-3}$, $d = -0.56$; end baseline vs. middle 5 stim: $p = 0.037$, $d = -0.41$; end baseline
289 vs. last 5 stim: $p = 0.32$, $d = -0.26$, Tukey's multiple comparisons test). Notably, stimulation affected cells
290 did not show consistent aftereffects opposing the direction of the initial stimulation effect when the
291 perturbation was removed.

292 Next, we analyzed how mossy fiber perturbations affected simple spike firing across the
293 population of all reach modulated PCs (stimulus responsive and non-responsive cells). We observed
294 transient effects of stimulation and opposing aftereffects that were visible on the first trial of the
295 stimulation and washout blocks, respectively (Fig. 4g). Across the population, the net effect of the first
296 stimulation was a reduction of simple spike firing rate relative to baseline. (Fig. 4g,h; $n = 6$ animals, 159
297 reach modulated cells; rates during the stimulation epoch: $p = 2.3 \times 10^{-9}$, $F = 13.8$, RM one-way ANOVA;
298 end baseline vs. first stim: $p = 0.012$, $d = 0.26$; end baseline vs. first wash: $p = 0.039$, $d = -0.23$; first stim
299 vs. last 5 stim: $p = 7.4 \times 10^{-4}$, $d = -0.47$; first stim vs. first wash: $p = 3.0 \times 10^{-6}$, $d = -0.42$; first stim vs. last
300 5 wash: $p = 1.9 \times 10^{-7}$, $d = -0.47$; last 5 stim vs. first wash: $p = 0.019$, $d = -0.25$; last 5 stim vs. last 5
301 wash: $p = 0.015$, $d = -0.25$, Tukey's multiple comparisons test). This effect was rapidly adapted such
302 that by the end of the stimulation block mean simple spike firing returned to baseline levels. On the first
303 washout reach, there was marked increase in simple spike rates, an aftereffect opposite the direction of
304 the initial stimulation effect. This aftereffect was only marginally lower by the end of the washout block;

305 however simple spike firing outside of the stimulation window showed a more visible normalization to
306 baseline levels (Fig. S9a). The dataset was underpowered to relate complex spike probability to these
307 changes, but in the PCs in which complex spikes were observed, the mean Cspk rate in the 250 ms
308 after stimulation was not significantly different across the blocks (Fig. S9b; N = 5 animals, n = 13 Cspk
309 sorted cells, $p = 0.31$, $F = 1.2$, RM one-way ANOVA). Overall, these data demonstrate acute effects of
310 stimulation that adapt across the stimulation block and population-level net aftereffects that oppose the
311 initial firing rate deflection caused by stimulation, consistent with adaptation to perturbation and opposing
312 aftereffects seen in reaches.

313

314 **Dissociation of adaptation and aftereffects with a randomized perturbation schedule**

315 In the experiments above, we have shown that adaptation is temporally specific (e.g. Fig S7b). We
316 hypothesized that the temporal specificity of perturbation within the reach produced a fixed association
317 between active inputs and error, facilitating adaptation. We therefore predicted that by presenting
318 spatially inconsistent stimuli trial to trial, mice would not adapt to stimulation. To test this, we repeated
319 block-stimulation experiments, but rather than stimulating when the hand passed the 1-cm outward
320 plane, we stimulated at a pseudorandomized position in the outward direction uniformly distributed
321 between 0.3 and 1.8 cm (Fig 5a,b). To assess the effect of stimulation at different points in the reach,
322 we aligned reaches to the time of stimulation and measured the difference in position compared to
323 aligned baseline block reaches. Baseline subtracted reach profiles showed a characteristic change in
324 outward position aligned to the time of stimulation, similar to results in fixed-position stimulation
325 experiments. Surprisingly, even though perturbation positions were distributed across the stimulation
326 block, we found that animals still exhibited adaptation to the stimulation early in the stimulation block,
327 although this adaptation plateaued to intermediate levels between middle and late block epochs in
328 outward position and velocity (Fig. 5c,d n = 5 animals, 60 sessions; Outward position: $p = 0.016$, $F =$
329 10.8, RM one-way ANOVA; baseline to early stimulation: $p = 3.6 \times 10^{-4}$, $d = -3.9$, Tukey's multiple
330 comparisons test; Outward velocity: $p = 0.016$, $F = 7.5$, RM one-way ANOVA; baseline to early
331 stimulation: $p = 0.040$, $d = -1.1$; early stimulation to late stimulation: $p = 0.017$, $d = 1.4$, Tukey's multiple
332 comparisons test). To assess the presence of aftereffects, we analyzed the positional and velocity
333 differences between baseline and washout reaches near the mean of the distribution of stimulus
334 thresholds (50-100 ms after crossing the 1-cm outward plane). Despite evidence for adaption to the
335 randomized stimulation, there were no consistent aftereffects; instead, reaches tended to have a greater
336 distribution of positional differences that averaged to roughly zero (Fig. 5e, Fig. S10; Outward position:
337 $p = 0.65$, $F = 0.40$, RM one-way ANOVA; Outward velocity: $p = 0.76$, $F = 0.23$, RM one-way ANOVA).

338

339 **A cerebellar model accounts for experimental adaptation and aftereffect dissociation**
340 To better understand the non-intuitive adaptation profile of position-randomized stimulation, we modified
341 a simple model of PC firing based on a previously published study⁶⁶. The model takes as an input parallel
342 fibers and inhibitory interneurons, each active for 15 ms, that as a population tile a 400-ms hypothetical
343 movement (Fig. 6a). The PC rate mimicked the net firing rate suppression that we see in population
344 activity during reach. At equilibrium, the populations of parallel fibers and interneurons are perfectly
345 balanced during the movement and cause no deviation in the PC firing rate from trial to trial. The model
346 employed a learning rule such that any elevation of the PC rate from this equilibrium would lead to
347 depressing the weights of parallel fibers active at the time of deviation through a Cspk-like error signal,
348 as in cerebellar LTD. Conversely, parallel fibers with depressed weights relax back to baseline levels in
349 the absence of Cspks. We titrated the learning rate to match that observed in fixed-position stimulation
350 experiments (see Methods).

351 First, we modelled fixed-position optogenetic-perturbation experiments by artificially increasing
352 activity in a random subset of parallel fibers and interneurons 50 ms in the middle of the hypothetical
353 movement (Fig. 6a). Differential parallel fiber to interneuron activation ratios lead to a net activation of
354 the PC to engage the Cspk-on learning rule, see Methods. Initially, this modification of PC inputs caused
355 a large deviation in the PC firing rate in the stimulated window, resulting in an error and synaptic
356 depression of the concomitantly active parallel fibers (Fig. 6b). Over several repeated perturbation trials
357 this reweighting minimized the effect of the perturbation, correcting PC firing rate back to baseline. After
358 20 trials, we removed the perturbation. The model output then exhibited opposing aftereffects in PC
359 firing rate at the previous time of perturbation, before eventually relaxing back to baseline. The
360 adaptation profile was quantitatively similar to the empirically observed behavior. Importantly, we note
361 that the aftereffect seen in the PC firing profile is a consequence of depressed weights in both perturbed
362 parallel fibers and other unperturbed parallel fibers that were coincidentally active at the time of the
363 perturbation (Fig. 6c,d). Thus, the model was unable to distinguish the difference between parallel fibers
364 that caused or did not cause a deviation from the target PC activity within the perturbation epoch.

365 Next, we modeled the position-randomized mossy fiber stimulation paradigm (Fig 6e-g). As with the
366 empirical results, we saw a reduction in the magnitude of the perturbation effect, consistent with high
367 probabilities of Cspks around the time of a perturbation – that is, the perturbed inputs are subject to
368 learning because they are always aligned to the error that follows (Fig. 6e). While the magnitude of
369 adaptation was smaller than observed in the fixed position model, we found that the model learning
370 plateaued late in the perturbation block, similar to empirical observations (Fig. 6g). When the
371 perturbation was removed, there were minimal aftereffects, also consistent with experimental data.
372 Model weights at the end of perturbation show that this absence of aftereffects is explained by the lack

373 of accumulated learning in coincidentally active parallel fibers; *i.e.*, when perturbations are distributed
374 across the movement, coincidentally active parallel fibers are different from trial to trial, and therefore
375 subjected to only transient plasticity (Fig. 6f). Thus, in randomized stimulation, the presence of
376 adaptation illustrated a mechanism by which the cerebellum distinguishes cause-and-effect using time:
377 adaptation is explained by the conserved causal relationship between stimulated PC inputs and error,
378 while the absence of an aftereffect is the result of unaccumulated trial-over-trial learning in coincidentally
379 active non-stimulated inputs. By contrast, aftereffects in the fixed position paradigm are a consequence
380 of the system generalizing attribution of error to fibers that were merely coincidentally active relative to
381 perturbation but did not necessarily drive error.

382

383 **Discussion**

384 Here we discovered a naturally occurring PC population suppression during mouse reaching
385 movements that scaled with the velocity of outreach and occurred shortly before the transition to the
386 decelerative phase of movement, reminiscent of emergent PC population kinematic coding in
387 oculomotor vermis during saccades⁴⁵. We speculate that this suppression is a type of conditioned
388 response: sensorimotor information relayed through mossy fibers become learned cues for PCs to scale
389 the decelerative phase of movement via disinhibition of the anterior interposed nucleus. We further
390 demonstrate kinematic effects of mossy fiber stimulation that decrease over trials, akin to sensorimotor
391 adaptation, with concordant changes in PC activity that imply cerebellar associative learning. We
392 observed a surprising dissociation of adaptation and aftereffects when randomizing the position of
393 stimulation during reach, designed to test the reliance of adaptation on perturbation context. A model
394 demonstrated that aftereffects are a consequence of misattribution of error to consistently coactive
395 parallel fibers. Conversely, the dissociation of adaptation and aftereffects reflects a lack of accumulated
396 plasticity at a single point during the movement.

397 By demonstrating remapping of inputs to outputs of the cerebellar cortex, we link concepts developed
398 in delay eyeblink conditioning to adaptation of a skilled volitional movement. Specifically, the mossy fiber
399 stimulation used here to drive reach perturbations is analogous to mossy fiber stimulation used as a
400 conditioned stimulus in eyeblink conditioning. We speculate that motor plan or early kinematic
401 information acts endogenously as such a conditioned stimulus associated with reach outcome that,
402 when erroneous, drives cerebellar learning⁵¹. We note some nuanced differences between paradigms,
403 however. For instance, adaptation to pontocerebellar stimulation occurs within tens of trials, many fewer
404 than conditioned eyeblink responses, which require hundreds of pairings⁶⁷. However, non-human
405 primates and cats exhibit rapid adaptation consistent with our results in other sensorimotor adaptation
406 paradigms^{32,68}. One possible explanation for these different learning speeds is the richness of a

407 temporal basis set that may emerge in the cerebellar granule cell layer in response to inflow of efferent
408 commands and sensory feedback during movement compared to a relatively impoverished basis set
409 from an invariant, unimodal conditioned stimulus. Indeed, locomotion concurrent with eyeblink training
410 expedites learning⁶⁹, consistent with this view. Further, eyeblink responses are generated *de novo*,
411 where PCs must develop a novel response to an unfamiliar stimulus. Conversely, pontocerebellar
412 stimulation during reach alters the execution of a movement for which a mossy fiber to cerebellar output
413 mapping may already exist. Thus, PCs must simply adjust already existing responses, potentially
414 speeding the rate of learning.

415 Another conspicuous departure from learning seen in eyeblink conditioning is that mossy fiber
416 stimulation during reach drives an error. Thus, the unconditioned stimulus is not externally imposed but
417 is rather the erroneous behavior that results from the perturbed mossy fiber activity. In this sense, the
418 mossy fiber activity that interferes with cerebellar control acts as both a conditioned stimulus and
419 generates a movement error that acts as an unconditioned stimulus to drive learning. In addition,
420 eyeblink conditioning involves the cerebellum associating two stimuli that are not causally linked (*i.e.*,
421 the tone does not cause an air puff) while reach adaptation associates sensorimotor information that is
422 causal to reach error (*i.e.*, the erroneous motor commands generated by the cerebellum cause a reach
423 error). Because this conditioned stimulus cannot be decoupled from the movement error, adaptation
424 should always occur with repeated stimulation even under randomized stimulus conditions. In the case
425 of external perturbations of limb movements, randomizing the direction of perturbations on reaching
426 movements manifests as reach adaptation on the subsequent trial⁷⁰, but adaptation does not accumulate
427 because the cause of errors cannot be predicted. Our randomization experiments have a key difference:
428 the internally perturbed mossy fibers are a consistent source of error, allowing the system to drive
429 adaptation to these inputs. Importantly, because these perturbed inputs have no temporal correlation
430 with the movement, no aftereffects are produced in the native population of mossy fibers active in the
431 absence of stimulation.

432 Isolating a locus of skilled reach adaptation to the cerebellum poses an important conceptual hurdle.
433 Cerebral cortex is a major input to the pontine nuclei – the focus of perturbation in this study – thus
434 learning in motor cortex must be accounted for in cerebellar contributions to movement. Likewise,
435 cerebellar outputs relay information back to motor cortex indirectly via thalamus^{71–74}. Previous work has
436 demonstrated that reach-associated pontocerebellar stimulation drives activity in motor cortex³⁵,
437 meaning each learner in this loop stays apprised of the activity in the other. Could plasticity sites outside
438 the cerebellum account for our observations? Our data argue for a locus of learning in the cerebellum
439 in two major ways: First, we observe a reduced efficacy of mossy fiber drive onto Purkinje cells over
440 many repeated trials. A parsimonious explanation is that highly-plastic parallel fiber synaptic weights are

441 changing during adaptation rather than cortical commands overriding these proximal perturbations.
442 Second, if PC firing rate changes were caused by modulated afferents to the cerebellum, it would be
443 difficult to reconcile such a mechanism with adaptation to randomized stimulation because these
444 compensatory cerebellar inputs could not predict the time of stimulation.

445 How might multiple connected brain regions, all of which are implicated in learning, accomplish
446 learning a task in parallel? In our study, mice were expertly trained when we introduced optogenetic
447 perturbation of inputs. Thus, stimulating pontocerebellar fibers, we corrupted the relationship of action
448 directed by motor cortex and the established cerebellar response tuned to that action. Through
449 adaptation, the cerebellum learned to assist movements with these newly modified inputs as evidenced
450 by the diminishing kinematic effect on the limb; when stimulation was removed, the novel mismatch of
451 cortical and adapted cerebellar contribution to the movement again manifests as movement errors.
452 Our data unite two threads of cerebellar theory, classical conditioning and motor adaptation under the
453 umbrella of associative learning, where active inputs to the cerebellum can be flexibly reformatted to
454 more accurately accomplish a goal.

455 **Methods:**

456 *Animals*

457 All procedures followed National Institutes of Health Guidelines and were approved by the Institutional
458 Animal Care and Use Committee at the University of Colorado Anschutz Medical Campus. Animals were
459 housed in an environmentally controlled room, kept on a 12 h light/dark cycle and had ad libitum access
460 to food and water except during behavioral training and testing as described below. Adult C57BL/6
461 (Charles River Laboratories) mice of either sex (11 females, 8 males) were used in all experiments.

462

463 *Surgical procedures*

464 All surgical procedures were conducted under Ketamine/Xylazine anesthesia. After induction of
465 anesthesia, the surgical site was cleaned and subcutaneously injected with bupivacaine (2.5 mg/mL).
466 Pressure injections of approximately 150 nL of AAV2-hSyn-ChR2-mCherry were stereotactically targeted
467 to the left pontine nuclei (-4.0 mm anterior-posterior, -0.5 mm medial-lateral, -5.4 mm dorsal-ventral,
468 measured from bregma) and animals were allowed to recover for a minimum of 8 weeks to ensure
469 expression in mossy fiber terminals in the cerebellar cortex. Custom made aluminum head plates were
470 affixed to the skull centered on bregma with luting (3M) and dental acrylic (Teet's cold cure). Optical
471 fibers (105 micron core diameter, Thor Labs) attached to a ceramic ferrule (1.25 mm, Thor Labs) were
472 implanted into the primary fissure, between Lob 4/5 and Simplex (-6.25 mm anterior-posterior, 1.9 mm
473 medial-lateral, measured from bregma) at a depth of 1.2 mm¹³. For recording experiments, a craniotomy
474 was made medial to the fiber placement and a recording chamber was secured with dental acrylic as
475 previously described⁷⁵.

476

477 *Behavioral task*

478 Animals were allowed a minimum of 2 days of recovery after head fixation surgery, then were food
479 restricted to 80-90% of their baseline weight for reach training. Mice were habituated to the headfixed
480 apparatus by presenting food pellets (20 mg, BioServ #F0163) that could be retrieved with their tongue,
481 then pellets were progressively moved further from the mouth until animals began reaching for food.
482 Pellets were positioned to the right of the animal to encourage reaching with the right forelimb and moved
483 to a consistent position specific to each mouse ~1.2 – 2.5 cm from reach start. Sessions lasted until
484 animals successfully retrieved 20 pellets or until 30 minutes had elapsed, whichever came first. Mice
485 were trained for a minimum of 15 days and were considered fully trained once they could successfully
486 retrieve 50% of pellets 3 days in a row.

487

488 *Kinematic tracking and closed-loop optogenetic stimulation*

489 Hand position was tracked in real time using an infrared-based machine-vision motion-capture system
490 (6 Optitrack Slim3U Cameras mounted with LED ring arrays, Motive software) at 120 frames-per-second
491 as previously described². Cameras were positioned in front and to the right of the animal and focused
492 on the approximately 8 cm³ spatial volume that covered the reach area of the right forelimb. 1-mm
493 diameter retroreflective markers were used for camera calibration and affixed to the mouse hand for
494 kinematic tracking. A custom-built calibration wand and ground plane were used to set position and
495 orientation of the cameras in Optitrack Motive software. Camera calibration was refined monthly to
496 account for any drift of the cameras over time. Calibrations that reported a mean triangulation error <0.05
497 mm were considered passes. The spatial origin was set to be at the center of the bar where mice placed
498 their hand during rest. Spatial blocking and camera detection thresholds were adjusted to prevent
499 erroneous tracking of minimally infrared-reflective objects.

500 Real-time hand positions were streamed into MATLAB (2018a) with a latency under 1 ms. Custom-
501 written MATLAB code was used to detect when the hand passed a positional threshold 1-cm outward
502 from the bar where the mice rested their hand then send a 'go' signal to an Arduino microcontroller (Uno)
503 which triggered a laser with TTL pulses. To ensure low-latency closed-loop stimulation we used an open-
504 source C++ dynamic link library⁷⁶ edited to reflect the parameters of laser stimulation (50-ms stimulation,
505 100 Hz, 2-ms train). This system has a closed-loop latency of 9.5 ms from the time of threshold crossing
506 (120 fps camera frame rate, 0.5 ± 0.1 ms (mean ± SD) MATLAB-Arduino communication). Hand
507 positions and stimulation times were streamed into MATLAB and saved for post-processing.

508

509 *Kinematic analysis*

510 All kinematic analysis was performed using custom-written MATLAB code. First, erroneously tracked
511 objects were removed using a nearest neighbor analysis, which assessed the closest markers in
512 subsequent frames and removed others, to produce a single positional trajectory of the hand marker
513 over time. Any dropped frames where the marker was not detected were interpolated over, then data
514 were filtered using a 2nd-order low-pass Butterworth filter (10 Hz)⁷⁷ using MATLAB's zero-phase filter
515 function "filtfilt". Last, interpolated points were removed such that the filtered marker positional data
516 reflected only data captured during the experimental session.

517 To segment continuous data into reaches, we found instances of the marker passing the 1-cm
518 positional threshold in the outward direction and clipped 10-s segments centered on this time point. We
519 defined outreach as the segment of this data from the time before threshold crossing that the hand
520 exceeded 2 cm/s in outward and upward velocity to the time after threshold crossing where the hand
521 stopped moving in the positive outward direction (outward velocity < 0 cm/s). Occasionally, the marker
522 would become obscured behind the pellet holder during reach or spurious detection of the nose would

523 jump the marker position to the nose and be detected as a reach. Therefore, to prevent against analyzing
524 reaches that had large segments of data missing, any threshold crossings where the marker dropped
525 greater than 25% of points between the start and end of outreach were not considered for further
526 analysis.

527 Reach velocity and acceleration were calculated using the numerical gradient between position
528 timepoints in each dimension. To produce aligned reach position curves, we interpolated data at 10 ms
529 centered on the time the hand passed the 1 cm positional threshold crossing in outward direction. The
530 effect of stimulation was assessed by measuring changes in stimulation and washout reaches (early,
531 middle, and late) relative to the last 5 baseline reaches in the 50-ms interval following the end of
532 stimulation. To assess the unadapted effect of stimulation or washout, early reaches were defined as
533 the first reach in each block; middle and late reaches were the middle 5 and last 5 reaches of reach
534 block, respectively. To align random-stimulation position reaches, we found the positional threshold of
535 stimulation on each reach, then aligned stimulation reaches and baseline reaches to the time they
536 crossed this boundary during outreach, averaged across reaches, then measured the difference in these
537 curves, yielding the stimulation-aligned positional difference between end baseline and stimulation
538 reaches. For washout reaches in random-position stimulation experiments, reaches were aligned to the
539 time of the threshold crossing at 1 cm such that the aftereffect could be compared to fixed-position
540 stimulation experiments. To account for varying effects of stimulation seen across animals (hypermetric
541 and hypometric movements), the direction of positional change in early stimulation reaches relative to
542 baseline for each animal in random- or fixed-position stimulation experiments was defined as the positive
543 direction and the opposing direction as negative for that animal in each paradigm, allowing us to group
544 data across animals with diverging effects. To assess the time course of stimulation effects within
545 individual animals, we measured differences in position at each timepoint between the early stimulation
546 reaches and baseline reaches using a Wilcoxon signed rank test.

547

548 *Electrophysiology recording procedure*

549 Craniotomies were made over the cerebellum ipsilateral to the reaching arm of in fully trained animals.
550 A custom-made recording chamber was implanted over the craniotomy, the brain was covered with
551 triple-antibiotic cream (Globe), and the recording chamber was sealed with Quik-sil silicone (World
552 Precision Instruments) such that it could be preserved for multiple recordings.

553

554 *Single electrode recordings*

555 Single-electrode recordings were performed with 3-5 MΩ platinum/tungsten optrodes (Thomas
556 Recording). Once animals were headfixed, the electrode was targeted to -6.25 mm anterior-posterior,

557 1.9 mm medial-lateral (measured from bregma) then lowered into the brain up to a depth of 1.8 mm with
558 a motorized micromanipulator (Newport Motion Controller, Model 861). Signals were band-pass filtered
559 at 300-5000 Hz, amplified with a MultiClamp 700A amplifier (Axon Instruments), then digitized (CED
560 Power3 1401) and recorded with Spike2 software (CED). Once a putative PC was isolated, the brain
561 tissue was allowed to relax for 15 minutes. Cell sorting was performed offline using Psort⁷⁸.

562

563 *Neuropixel recordings*

564 Neuropixels were lowered into the brain using a motorized micromanipulator (Sensapex uMp
565 micromanipulator). Once the electrode shank spanned the putative PC layer, the tissue was allowed to
566 relax for 15 minutes. Electrophysiology data was acquired using an OpenEphys system (<https://open-ephys.org/gui>). Data were sorted offline in Kilosort2⁷⁹ and manually curated in phy
568 (<https://github.com/cortex-lab/phy>).

569

570 *Neural data analysis*

571 Following sorting, isolated units were analyzed offline using custom-written MATLAB code. In well-
572 isolated single-electrode units, simple spikes and identifiable Cspks were sorted using Psort. To identify
573 Cspks in Neuropixel recordings, we cross-correlated cells with high firing rates in the cortex with adjacent
574 low-firing-rate clusters and looked for the presence of a Cspk-aligned simple spike pause and
575 characteristic simple spike and Cspk waveforms. In many cells Cspks could not be identified across the
576 length of the experiment. In these cases, we identified PCs based on cortical location and
577 electrophysiological criteria using the firing rate, CV2, and median absolute difference from the median
578 interspike interval (MAD)⁸⁰. Cerebellar cortical cells with a firing rate > 40 spikes/s, CV2 > 0.20, MAD <
579 0.008 were labeled as PCs (Fig. S2). Using these metrics we were able to positively identify 94.9% of
580 Cspk identified cells. We visualized these metrics in a 2-dimensional space using the tSNE function in
581 MATLAB (parameters: distance = 'euclidean', exaggeration = 4, perplexity = 30, learning rate = 5000).
582 Instantaneous firing rates for PCs were calculated by taking the inverse of the ISI between spikes,
583 convolving with a 20-ms gaussian, then sampling at 10-ms intervals. In Neuropixel recording adaptation
584 experiments we analyzed reach modulated PCs, defined as exhibiting a firing rate change during the
585 reach epoch ≥ 1 standard deviation of the mean firing rate of the cell. Cell recordings from the baseline
586 (unstimulated) block from cerebellar stimulation experiments during reach were included in the datasets
587 in Figures 1 and 2. For analysis of pooled population firing rate data in Figure 1, we normalized reaches
588 by velocity for each session, and binned them into velocity quintiles. Thus, each cell was equally
589 represented across all velocity quintiles. To find the magnitude of the firing rate decrease in grouped
590 population PC data, we found the minimum value of the population firing rate traces for each percentile

591 bin within the peri-reach window (-500 ms to +500 from threshold crossing). We found the time of firing
592 rate suppression by measuring the point at which each trace decreased firing by 50% from peak to nadir
593 in this peri-reach window. We characterized early Cspks as those that occurred within 500 ms before
594 reach onset, corresponding to roughly the time of Cspk elevation seen across cells (Fig. 2a). Late Cspks
595 were characterized as those that occurred during outreach or the 500 ms window after the end of
596 outreach.

597 In pontocerebellar stimulation experiments, to assure that observed simple spike adaptation was not
598 the result of changing unit isolation across the experiment, we assessed unit stability with two metrics:
599 waveform correlation and unit displacement across the experiment⁸¹. To assess waveform correlation,
600 we isolated the template waveforms for each unit on the electrode with the greatest spike amplitude and
601 the 32 surrounding electrodes (33 total). We averaged 1000 randomly selected spike waveforms for
602 each channel from the baseline block and the washout block, concatenated waveform templates across
603 the 33 channels, then correlated the concatenated waveforms from the baseline and washout blocks
604 (Pearson correlation). As a shuffled control, we correlated concatenated templates from neighboring
605 units in the baseline and washout block. Neighboring units were defined as those whose 32 surrounding
606 electrodes overlapped with the unit of interest. PCs whose across experiment waveform correlation did
607 not exceed the 99th percentile (0.76) of the across-unit shuffled control correlation were excluded from
608 further analysis.

609 To assess cell displacement across the experiment we calculated the position of unit (x, y) using
610

$$611 (x, y) = \left(\frac{\sum_{i=1}^N x_i a_i^2}{\sum_{i=1}^N a_i^2}, \frac{\sum_{i=1}^N y_i a_i^2}{\sum_{i=1}^N a_i^2} \right)$$

612 where N is the number of electrodes, x_i and y_i are the lateral and upward position of the electrode, and
613 a_i is the peak-to-peak spike waveform amplitude on the i^{th} electrode. Unit displacement was defined as
614 the Euclidean distance between unit positions in the baseline and washout blocks. As a shuffled control,
615 the displacement between neighboring units (as defined above) across the experiment was calculated.
616 PCs whose displacement was above the 1st percentile (2.36 μm) of shuffled control were excluded from
617 further analysis.

618
619
620 *LASSO regression*
621 To quantify the variance of PC simple spike firing rate that could be explained by reach kinematics, we
622 used least absolute shrinkage and selection operator (LASSO) regression³⁶. LASSO has the advantage
623 of performing both regressor selection and regularization, producing a sparse model of many correlated

624 kinematic regressors. 23 kinematic variables were used as regressors, including position, velocity, and
625 acceleration in the upward, outward, and lateral directions, speed, unsigned acceleration, with each
626 velocity and acceleration term additionally broken into positive and negative components. A full list of
627 regressors is included in Fig. S3. Data for each reach were clipped into 2-s segments centered at the
628 time of a 1-cm threshold crossing in the outward direction. Regression was performed using a custom-
629 written MATLAB code using the “lasso” function. All kinematic data were standardized to have a mean
630 of 0 and a variance of 1, and regression was performed with a 10-fold cross validation to avoid overfitting.
631 To find the appropriate offset of firing rate and kinematics, instantaneous simple spike firing rates for
632 each reach were offset by lags from 0 ms to -300 ms (firing rate leading kinematics) in 10-ms steps. The
633 lag that minimized the mean squared error (MSE) of the regression was selected for each cell. To
634 calculate the variance of firing rate explained, the predicted firing rates from the best fit regression were
635 calculated from the kinematic data and compared to empirical data. R^2 was calculated using:
636

$$637 R^2 = 1 - \frac{SS_{res}}{SS_{tot}}$$

638 where SS_{res} is the sum of squared residuals and SS_{tot} is the total sum of squares.
639

640 For the spike shuffled control, spike times on individual trials were shuffled in time so that each reach
641 epoch had the same mean firing rate, then converted to instantaneous firing rates as described above.
642 For the reach shuffled control, reaches were assigned to firing rates recorded on different reaches. For
643 both controls regressions were performed at the lag that minimized the MSE for empirical data and
644 repeated 100 times; R^2 values of each shuffled control were taken as the average of these 100
645 regressions. To assess the unique contribution of individual kinematic regressors to the fraction of
646 variance explained in the empirical data regression, each regressor was time shuffled independently
647 and regressions were repeated. The change in R^2 value between the regressor shuffled regression
648 compared to the complete empirical data model is the fraction of unique contribution to total variance
649 explained for each kinematic variable⁴².
650

651 *Cerebellar model*

652 The cerebellar model in the paper was derived from a previously published model⁶⁶ and written using
653 custom code in Python. A major difference between our paper’s model and the cited model is the
654 assumption of a continuous temporal input of parallel fiber activity distributed across a hypothetical 400-
655 ms movement, rather than a single parallel fiber input trial over trial. The model PC was fed 1000 parallel
656 fibers that positively modulated the PC firing rate and 1000 MLIs that negatively modulated the PC firing

657 rate, which were each active for 15 ms during a 400-ms interval, mimicking hypothesized temporal basis
658 sets produced by the granule cell layer⁸²⁻⁸⁴. In the absence of perturbation these populations were
659 perfectly balanced leading to no changes of PC firing from trial to trial. PC firing at time t on the n^{th} trial
660 was calculated as the sum of the weighted contribution of all parallel fibers and MLIs at time t .
661

$$662 \quad PC_n(t) = PC_0(t) + \sum_i^{1000} w_n^i PF_n^i(t) - \sum_i^{1000} MLI_n^i(t)$$

663

664 Here, w_n^i is the weight of parallel fiber i on the n^{th} trial and PC_0 is the baseline firing rate of the PC.

665 Parallel fibers weights were subject to a learning rule based on deviations of the PC firing rate
666 from trial to trial. Weights were adjusted following each trial according to two parameters: the probability
667 of a Cspk as a function of trial error $\beta P(CS|E_n)$ where β (0.15) dictates the strength of synaptic
668 depression in response to a Cspk, and a decay term, α_{PF} (0.95), that relaxes parallel fiber weights back
669 to their initial value w_0^i :
670

$$671 \quad w_{n+1}^i = w_n^i - (1 - \alpha_{PF})(w_n^i - w_0^i) - \beta P(CS(t)|E_n(t)) \text{ if } PF^i(t) > 0$$

672

673 The probability of a Cspk is a function of t , where positive deviations in the PC rate from baseline at time
674 t lead to elevation of Cspks rates from baseline leading to LTD and negative deviations of PC rate lead
675 to reduction of Cspk rates from baseline levels, leading to LTP⁸⁵. Specifically, the error at time t ($E_n(t)$)
676 was used to calculate the probability of a Cspk at each time in the movement interval:
677

$$678 \quad P(CS(t)|E_n(t)) = \frac{a}{1+e^{-\tau E_n(t)}} - \frac{a}{2}$$

679

680 To obtain values for the parameters a and τ , we fit a curve to the change in position of early, middle,
681 and late stimulated reaches in fixed-position stimulation experiments, then took the derivative of this
682 curve to obtain the error correction (trial-over-trial positional change) for a given error magnitude.

683 We ran the simulations mimicking the experimental block structure used for empirical data, including
684 a baseline block with no perturbation, an experimental block with a perturbation on every trial, and a
685 washout block with the perturbation removed. For net positive perturbation trials, we added activity to a
686 random subset of 150 parallel fibers and 50 MLIs at $t = 200$ ms for 50 ms that, when combined, drove
687 an increase of 60 simple spikes/second in PCs at their initial weights (Fig 7). For net negative
688 perturbation trials, we added activity to a random subset of 50 parallel fibers and 150 MLIs at $t = 200$ ms

689 for 50 ms that drove a net decrease 60 simple spikes/second in PCs (Fig. S9). For each simulation, after
690 20 perturbation trials, the perturbation was removed, and the model was run for an additional 20 washout
691 trials. To simulate random-position perturbation experiments, the time of perturbation was changed on
692 every trial.

693

694 *Statistical analysis and data presentation*

695 Data reported in the manuscript reflect statistical summaries from each animal across multiple sessions.
696 For electrophysiological data, each neuron was treated as an independent sample. All data were tested
697 for normality with the Kolmogorov-Smirnov test to choose the appropriate statistical analysis. All t-tests
698 mentioned in the manuscript were two-sided, unless stated otherwise. In box and whisker plots, the box
699 displays the median and 25th and 75th percentiles and the whiskers extend to the max and min of the
700 data, with the mean is displayed as a dot in the box.

701 Effect sizes for parametric tests were estimated using Cohen's d. For datasets with fewer than 50
702 samples, the Cohen's d value was corrected for small sample size by multiplying by

$$703 \left(\frac{N-3}{N-2.25} \right) \left(\sqrt{\frac{N-2}{N}} \right)$$

704

705 where N is the number of samples. Effect sizes for non-parametric tests were estimated by calculating
706 r defined as

707

$$708 \left(\frac{Z}{\sqrt{N}} \right)$$

709

710 where Z is the Z statistic and N is the number of samples.

711

712 *Code and data availability*

713 The code for cerebellar model can be found at github.com/dycala. Data used to make each of the figures
714 is included in the supplementary materials. Analysis code and other data are available upon reasonable
715 request to the authors.

716

717 **Acknowledgements**

718 We thank the members of the Person lab for critical feedback on the manuscript; the Neurotechnology
719 Center at the University of Colorado Anschutz Medical campus for use of core facilities including the
720 Advanced Light Microscopy Core and the Optogenetics and Neural Engineering Core. We thank Mr.

721 Michael Spindle and Ms. Elena Judd for technical assistance. Work was supported by F31 NS113395-
722 01 to DJC; and NS114430, NSF CAREER 1749568, and by a grant from the Simons Foundation as part
723 of the Simons-Emory International Consortium on Motor Control to ALP.

724

725 **Contributions**

726 DJC and ALP designed experiments, interpreted data, and wrote the manuscript. DJC performed
727 experiments, built the computational model, made figures, and analyzed data. MIB developed the closed-
728 loop system, edited the manuscript, and contributed to early conceptualization of the project.

Figures:

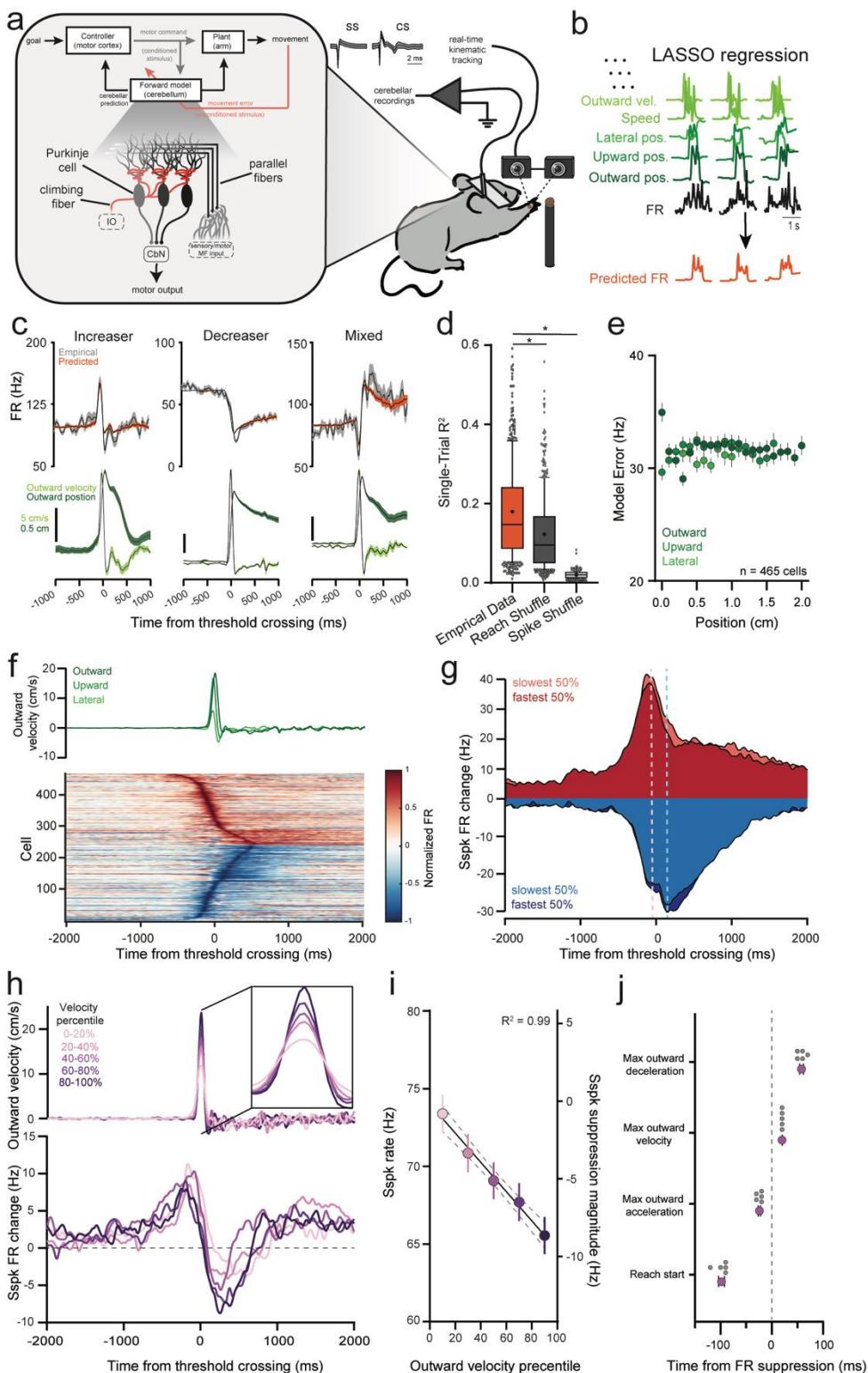


Figure 1. Net population activity in Purkinje cells predicts reach velocity.

- a. Schematic diagram of conceptual framework and experimental paradigm. Predictions computed by the cerebellum are hypothesized to be learned through reweighting of cerebellar inputs, including copies of motor commands, instructed by changes in climbing fiber activity. PCs of the deep central sulcus were recorded with either single electrodes or Neuropixel probes while the reaching hand was tracked in real-time with high-speed cameras.
- b. Kinematic regressors in multilinear LASSO regression were used to model firing rates on individual reaches across sessions.
- c. Examples of 3 PCs fit with LASSO regression. Top: trial-averaged empirical and LASSO predicted firing rates. Bottom: outward position and velocity aligned to firing rate at optimal lag (mean \pm SEM).
- d. Modest single-trial R^2 for single cells in empirical, reach shuffled, and spike shuffled LASSO regressions (Box plot shows median line +/- 25%tiles, center dot is mean, whiskers are 10-90%).
- e. Absolute model error (empirical vs predicted, across outward, upward and lateral positions) as a function of reach position. Stable error suggests continuous encoding of reach kinematics across reach epoch. Positions binned at 0.1 cm.
- f. During reach (kinematics, green), PCs group roughly into cells that increase firing rate (red) and cells that decrease firing rate (blue), aligned to the time the hand passed 'threshold', 1-cm in the outward direction.
- g. Simple spike firing rate modulation during reaches grouped by reach speed. Cells that increase (red) and decrease (blue) firing rate both showed lower firing rates during faster reaches.
- h. Pooling all PCs reveals net firing rate suppression that scales with reach velocity percentile. Top: Binned reach velocities associated with recordings. Bottom: Net PC population firing rate change for each reach velocity bin.
- i. Magnitude of net firing rate suppression in total PC population as a function of outward velocity. Firing rate during the suppression in population activity was strongly negatively related to reach velocity (mean \pm SEM).
- j. Time of population suppression is intermediate between peak outward acceleration and peak outward velocity, preceding deceleration. Plot relates the median timing of reach start, peak outward acceleration, peak outward velocity, and peak outward deceleration to the time of population simple spike suppression for each reach velocity bin shown in i (mean \pm SEM).

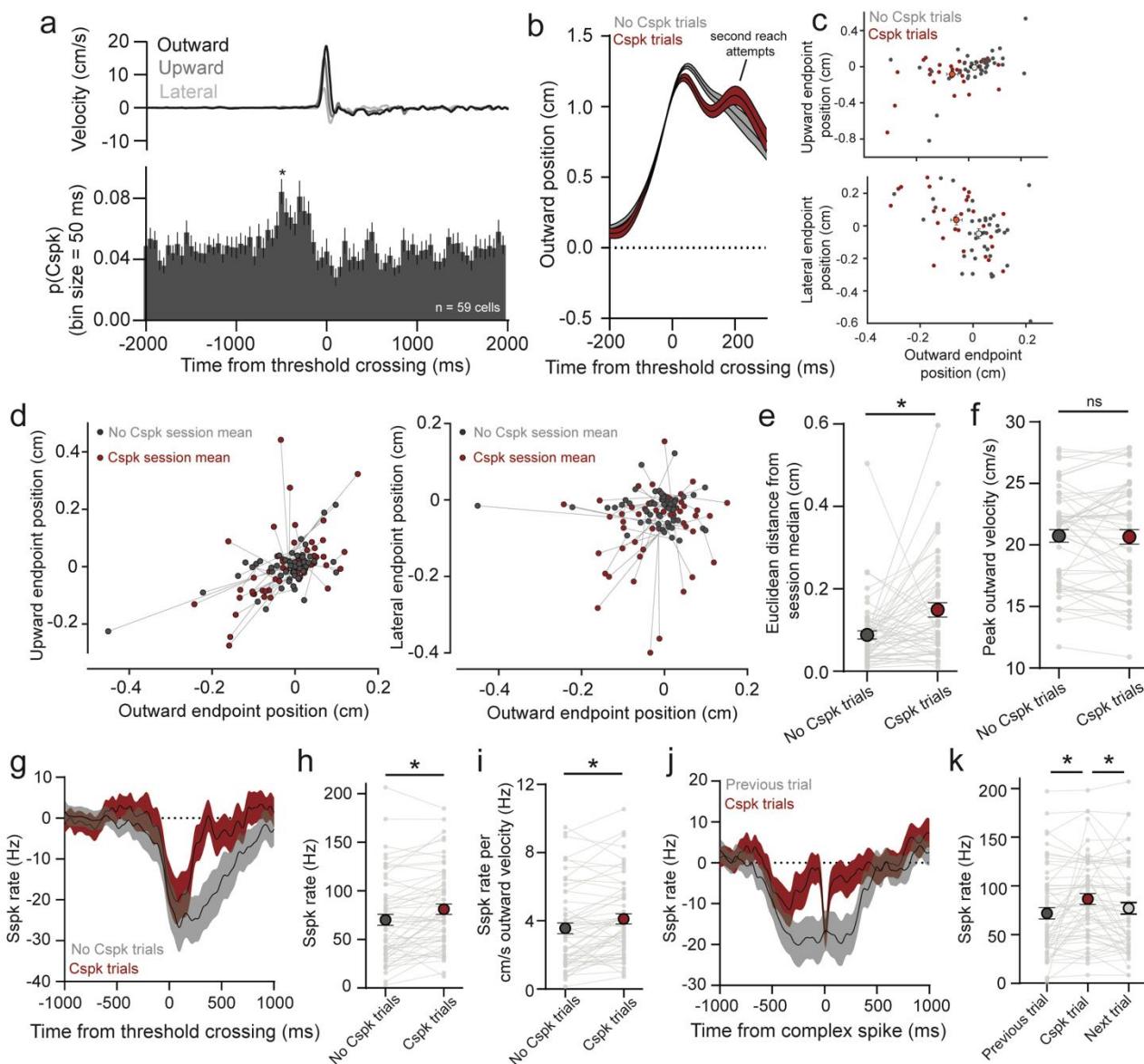


Figure 2. Reaches with Cspks have erroneous kinematics and elevated simple spike rates.

- Cspks are positively modulated in the 500 ms before reach before dropping close to baseline values. Top: Mean velocity of reaches with Cspks recorded. Bottom: PETH of Cspk activity relative to the time of threshold crossing (mean \pm SEM, asterisk indicates $p < 0.05$ for post-hoc Dunnett's multiple comparisons test with mean Cspk firing rate).
- Positional profiles from an example session separated into reaches with (red) and without Cspks (black) during or shortly after outreach (mean \pm SEM).
- Endpoint of reaches relative to session median in the outward and upward directions (top) and outward and lateral directions (bottom) for trials with and without Cspks. Large red or grey dot indicates mean and SEM from Cspk and non-Cspk reaches.
- Session endpoints relative to session median for Cspk and non-Cspk reaches for each recorded cell with Cspks during or after outreach ($n = 58$ cells). Grey line links Cspk endpoint average with non-Cspk endpoint average for an individual session with the recorded cell. Left: outward and upward endpoint position. Right: outward and lateral endpoint position.
- Reach endpoints on Cspk trials were significantly further from session median compared to non-Cspk trials.
- Peak outward velocity was not significantly different between Cspk and non-Cspk trials.
- PC simple spikes (Sspk) on Cspk and non-Cspk trials aligned to threshold crossing (mean \pm SEM).
- PC simple spike (Sspk) rates were significantly higher during outreach in trials with Cspks ($n = 58$ cells).
- Ratio of simple spike rate to outward velocity was significantly higher during outreach in trials with Cspks.

- j. Simple spike rate aligned to the time a Cspks, or simple spikes aligned to the same time relative to threshold crossing on the previous trial showed simple spike increases shortly before the Cspk (mean \pm SEM).
- k. Quantification of simple spike rates in the 100 ms before a Cspk on a Cspk trial or a the previous/next trial aligned to the same time of the Cspk relative to threshold crossing.

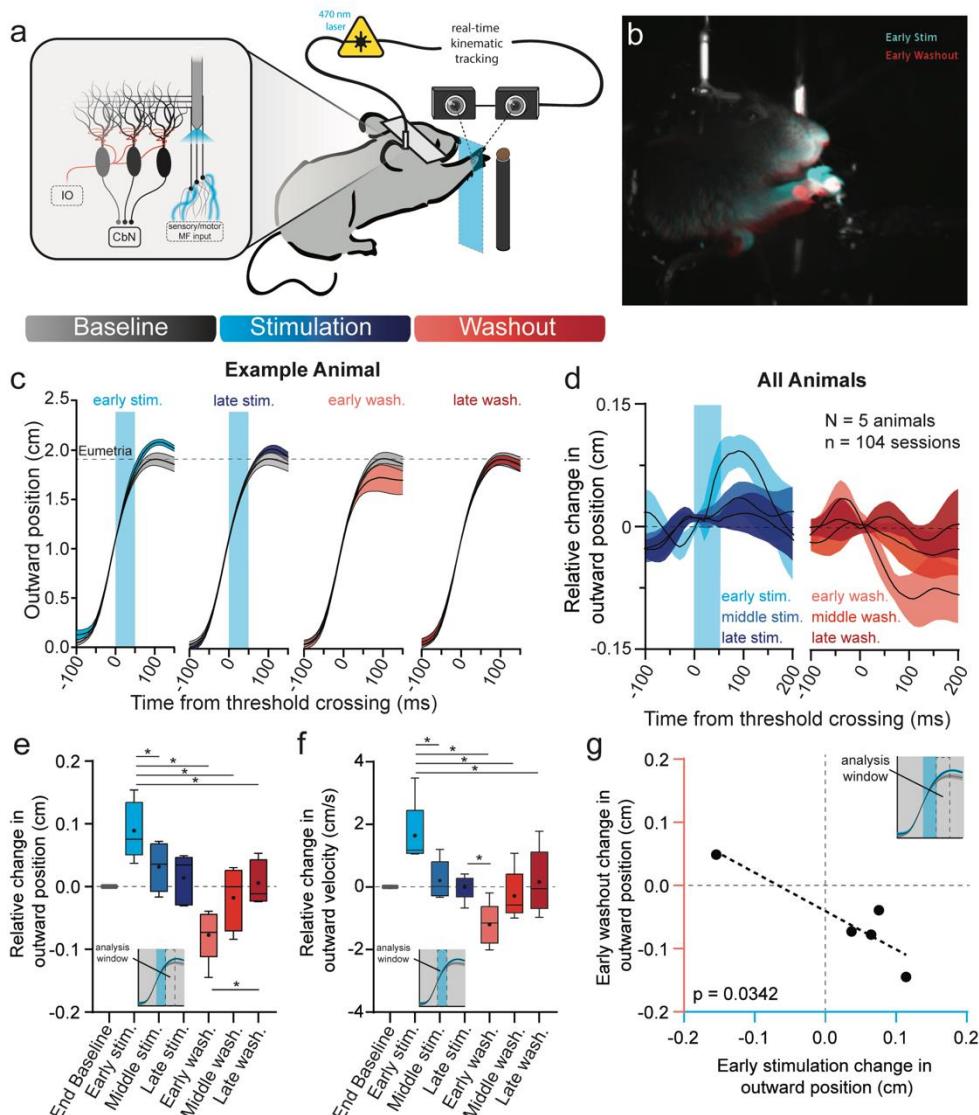


Figure 3. Adaptation to mossy fiber stimulation during reach.

- a. Headfixed mice expressing ChR2 in pontocerebellar mossy fibers were trained to reach for food pellets while the hand was tracked with high-speed cameras. On laser trials, light directed to cerebellar primary fissure through an implanted fiber was triggered in closed loop after the hand crossed a plane 1 cm outward from reach start position. Bottom: Perturbation schedule followed canonical adaptation structure, with a baseline (no-stimulation) block, stimulation block with stimulation on every reach, followed by a washout block with stimulation omitted.
- b. Hand position 100 ms after threshold crossing in the first stimulated (blue) and washout (red) reaches heading to the target (white), after Guo et al. (2021).
- c. Hand position during baseline (grey), compared to hand position measured across the adaptation and washout blocks in an example mouse ($n = 20$ sessions; mean \pm SEM). Blue shading denotes the time of mossy fiber stimulation.
- d. Summary of stimulation-induced kinematic effects, which decay over the adaptation block and show opposing aftereffects. Baseline subtracted hand position, rectified relative to the direction of kinematic effect of stimulation, is shown for reaches

in the early (first reach), middle (middle 5), and late (last 5) phases for both stimulation (blue) and washout (red) blocks (N=5 mice; 104 sessions; mean \pm SEM).

- e. Summary of adaptation effects across animals and sessions. Relative change in outward position was assessed in the 50-ms window following the end of stimulation. Asterisks indicate statistically significant differences between blocks (p values reported in main text; Box and whiskers denote median, 25%, 75%, max and min, circle indicates mean).
- f. Same as e, but with outward velocity assessed in the 50-ms following the start of stimulation.
- g. The magnitude and direction of early stimulation effect was related to aftereffects. Plot shows linear regression relating the magnitude of the early stimulation outward position effect and early washout outward position effect compared to baseline reaches.

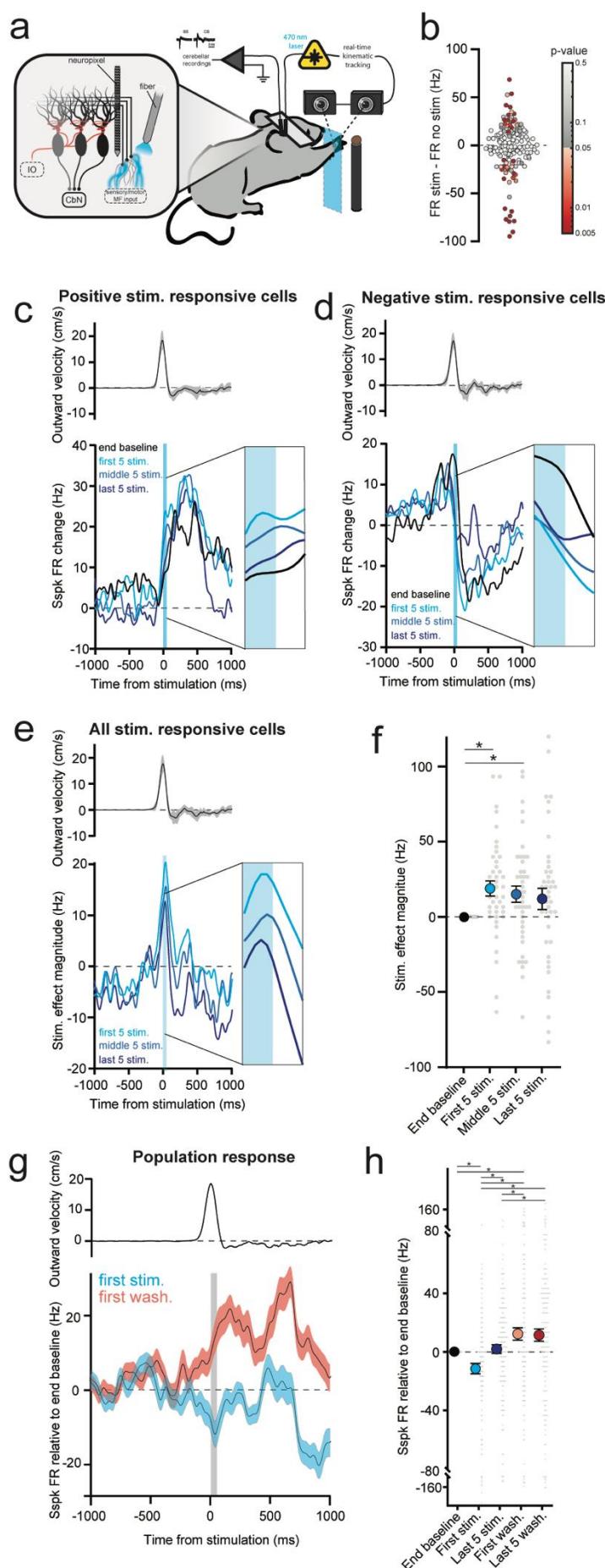


Figure 4. PCs show electrophysiological correlates of behavioral adaptation over the stimulation and washout blocks.

- a. Mossy fibers were stimulated at threshold crossing during outreach while recording PCs with Neuropixel probes.
- b. Mossy fiber stimulation effect during reach of all reach-modulated PCs. The difference in simple spike rate during the stimulation window is compared to the same epoch during baseline reaches ($n = 159$ cells). Significant differences are denoted by the color map on the right.
- c. Population summary of activity of PCs firing rate adaptation over stimulation block for all PCs positively modulated by stimulation. Top: mean reach velocity for all sessions (mean \pm SEM). Bottom: Average change in simple spike rates for the last 5 baseline reaches (black) and the first 5 (cyan), middle 5 (light blue), and last 5 (dark blue) stimulated reaches. $n = 17$ cells.
- d. Same as in c but for the population of PCs negatively modulated by stimulation. $n = 25$ cells.
- e. Same as in c but measuring the magnitude of stimulation across stim increase and stim decrease cells. Here the effect of stimulation is measured in the direction of the initial stimulation effect, thus a positive deflection for stimulation increase cells means an increase in firing rate relative to baseline, and a positive deflection for stimulation decrease cells means a decrease in firing rate relative to baseline.
- f. Quantification of the data shown in e. (mean \pm SEM).
- g. Population activity across all reach modulated cells. The first stimulated trial shows a negative deflection in net firing rate relative to baseline. Conversely, the first washout reach shows a net positive deflection. Grey box indicates the time of stimulation or analogous time in the washout block.
- h. Quantification of simple spike firing rates in the stimulation window for the data shown in g and the last 5 stimulated reaches and washout reaches.

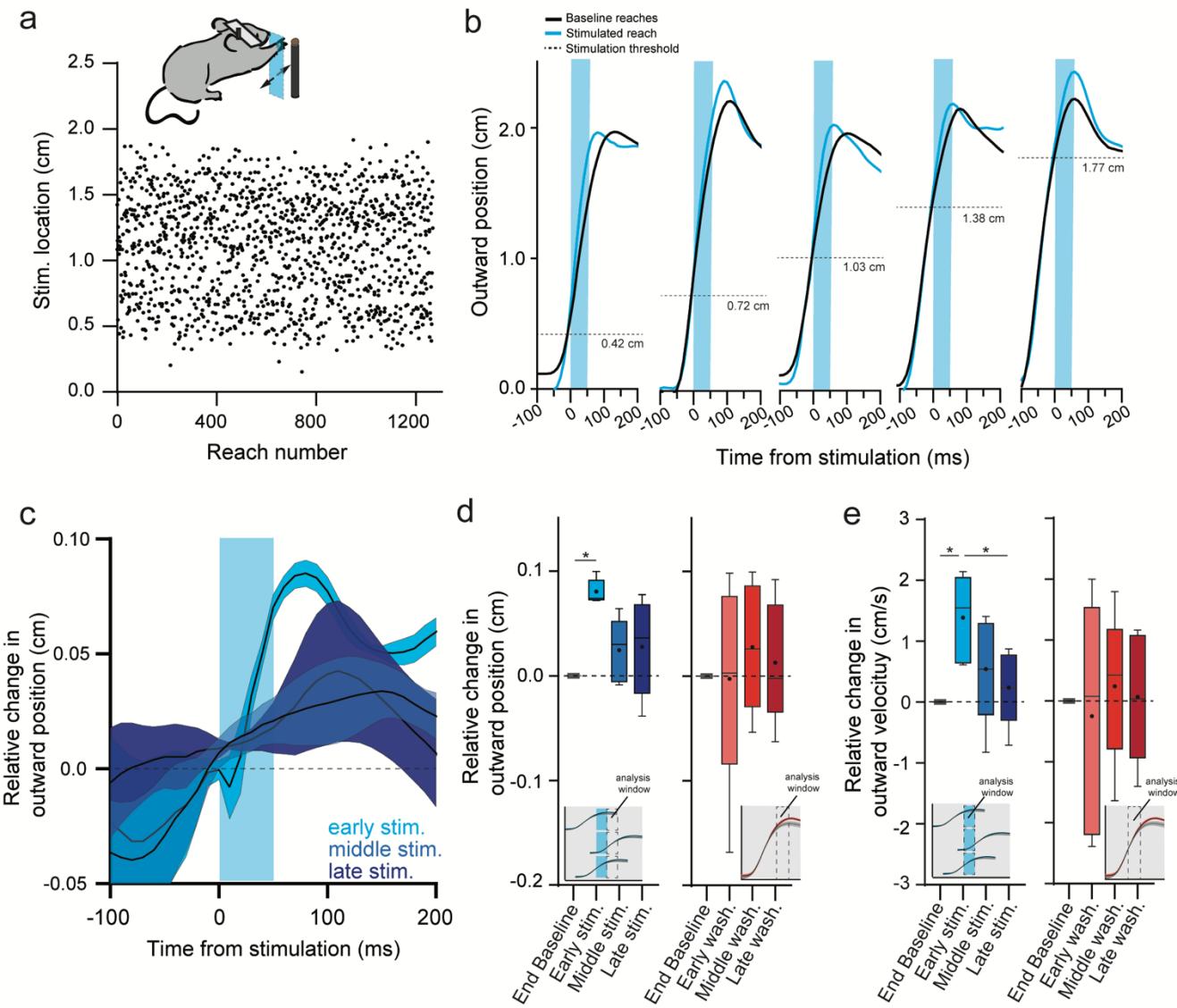


Figure 5. Dissociation of adaptation and aftereffects with randomized stimulation position.

- Stimulation location during outreach was distributed pseudorandomly between 0.3 and 1.8 cm in the outward direction during the stimulation block.
- Examples of reaches stimulated at 5 different locations during outreach. Each stimulated reach is compared to the last 5 baseline reaches of each session. The horizontal dashed line indicated the threshold crossing that triggered stimulation.
- Summary data of relative change in outward position for stimulation reaches in the early, middle, and late block. N=5 mice; 60 sessions.
- Quantification of stimulation effect on outward position across adaption block. For each reach, the analysis window was the 50-100 ms after stimulation onset aligned to the time of threshold crossing for each reach (inset). Quantification of aftereffects on outward position during washout block. Here, the analysis window is the 50-100 ms after crossing the 1-cm threshold for each reach – the same as the analysis in fixed-position stimulation experiments.
- Same as d but instead quantifying of outward velocity in the stimulus window, and aftereffects in the 50 ms after crossing the 1-cm threshold for each reach.

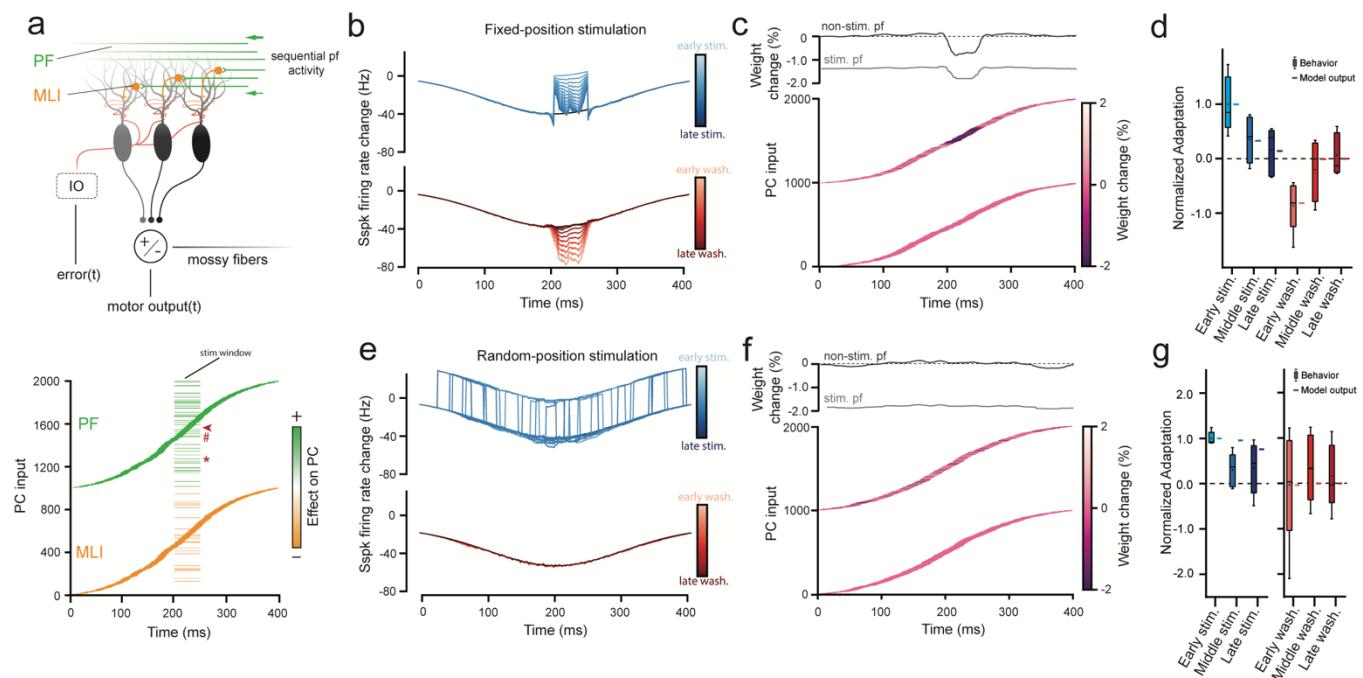


Figure 6. A cerebellar model accounts for adaptation and aftereffect dissociation.

- a. Schematic diagram of the temporal cerebellar-learning model. The model input is a population of 2000 cells, divided into 2 balanced populations of 1000 parallel fibers and 1000 interneurons, activated during a brief window during a simulated 400-ms movement. The output of the PC module that receives this information is compared to the input in the cerebellar nuclei. At equilibrium, the 2 populations are perfectly balanced (parallel fibers cause net activation of the PC, and the interneurons cause a net decrease; bottom) and the PC module outputs an activity curve (Gaussian that mimics the firing rate suppression observed in empirical data) that spans the movement. Positive deviations from this curve (errors) lead to mismatch in the nuclei and subsequent activation of the inferior olive, which reduces the weights of parallel fibers active shortly before the error. To simulate optogenetic perturbation experiments (bar-code like pattern at 200 ms), a step of activity was added to a subset of parallel fibers and interneurons for 50 ms in the center of the movement (fixed stim) or randomized across the block (random stim). Note that stimulation can either activate a cell twice (e.g. parallel fiber 1257, *) or overlap with endogenous activity (e.g. 1490, #), and non-stimulated neurons can be endogenously active during the stimulus window (e.g. 1561, arrow).
- b. PC simple spike activity during the stimulation block (top, blue) and washout block (bottom, red) showing progressively adapting response magnitudes during the adaptation block and progressively decaying aftereffects during washout.
- c. Parallel fiber weight changes at the end of the fixed-position stimulation block. Top: change in weights of “artificially” stimulated and non-stimulated parallel fibers plotted by time of endogenous activation. Bottom: heatmap of parallel fiber weight changes on top and unchanged interneurons on bottom. Note population weight change concentrated at time of stimulation, seen in both artificially stimulated and unstimulated fibers during stimulation epoch.
- d. Comparison of model output to empirical observations for fixed-position stimulus conditions (Fig.3). Model closely matches behavioral adaptation.
- e. Same as b but here the stimulation window is randomized across the reach.
- f. Same as c but for random position stimulation experiments. Note the absence of clustered weight changes in unstimulated parallel fibers.
- g. Comparison of model output to empirical observations for random-position stimulus conditions (Fig.5) showing that both model and empirical observations show adaptation but not directional aftereffects.

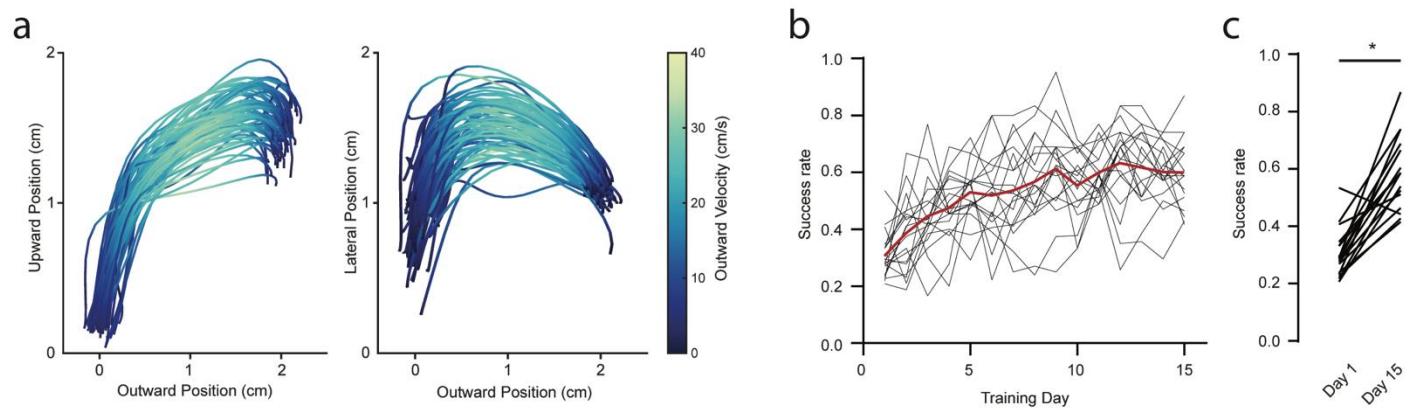


Figure S1. Reach tracking and reach performance over sessions.

- The right hand was tracked with high-speed cameras as mice reached upwards and outwards towards a food pellet. Positional outreach trajectories from a lateral (left) or bottom-up (right) vantage point with traces colored by the magnitude of outward velocity.
- Mice were trained for a minimum of 15 days on the reaching task. Pellet retrieval success was tracked throughout training for each mouse, mean is shown in red ($n = 19$ mice).
- Quantification of success rate on day 1 of training and day 15.

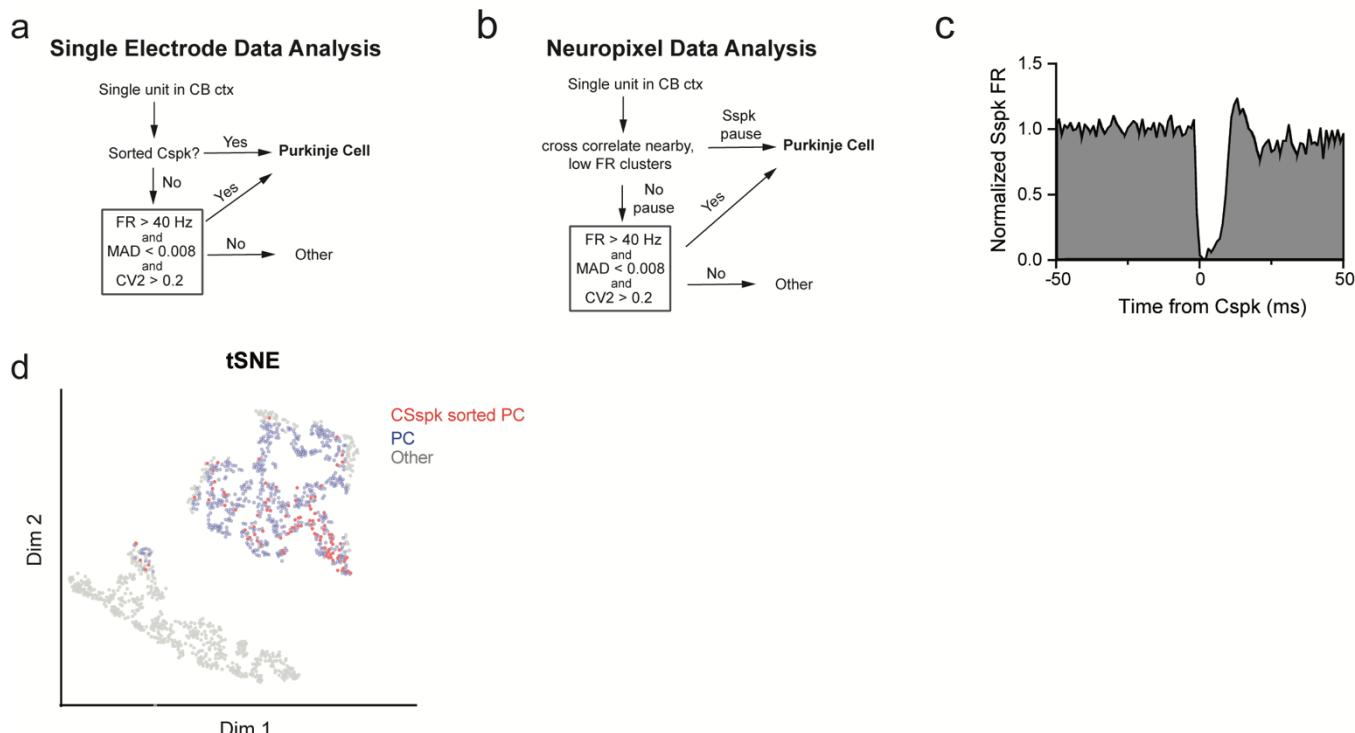


Figure S2. PC identification by firing rate characteristics.

- Cerebellar recordings using single electrodes were first anatomically targeted to cerebellar cortex. If a recorded cell had visible Cspks they were classified as PCs. Otherwise, if cells had a firing rate > 40 Hz, a median absolute difference firing rate from the median interspike interval (MAD) < 0.008 , and a CV2 > 0.2 , they were classified as PCs⁸⁰.
- Neuropixel-recorded single units were cross correlated with nearby (<200 microns) low firing rate (<5 Hz) single units. If this cross correlation exhibited the characteristic firing rate pause seen in PC simple spikes after a Cspk, these units were classified as the simple spikes and Cspks of a single PC. If no pause was seen, cells that exhibited the same firing rate, MAD, and CV2 profile described in **a** were classified as PCs.
- Example simple spike pause aligned to the time of a Cspk from a Neuropixel recording.
- Embedding MAD, CV2, and FR into a two-dimensional space using tSNE shows two distinct clusters, one corresponding largely to cells that were identified using the criteria in **a** and **b** and the other corresponding to other cells ($n = 1268$ sorted cells).

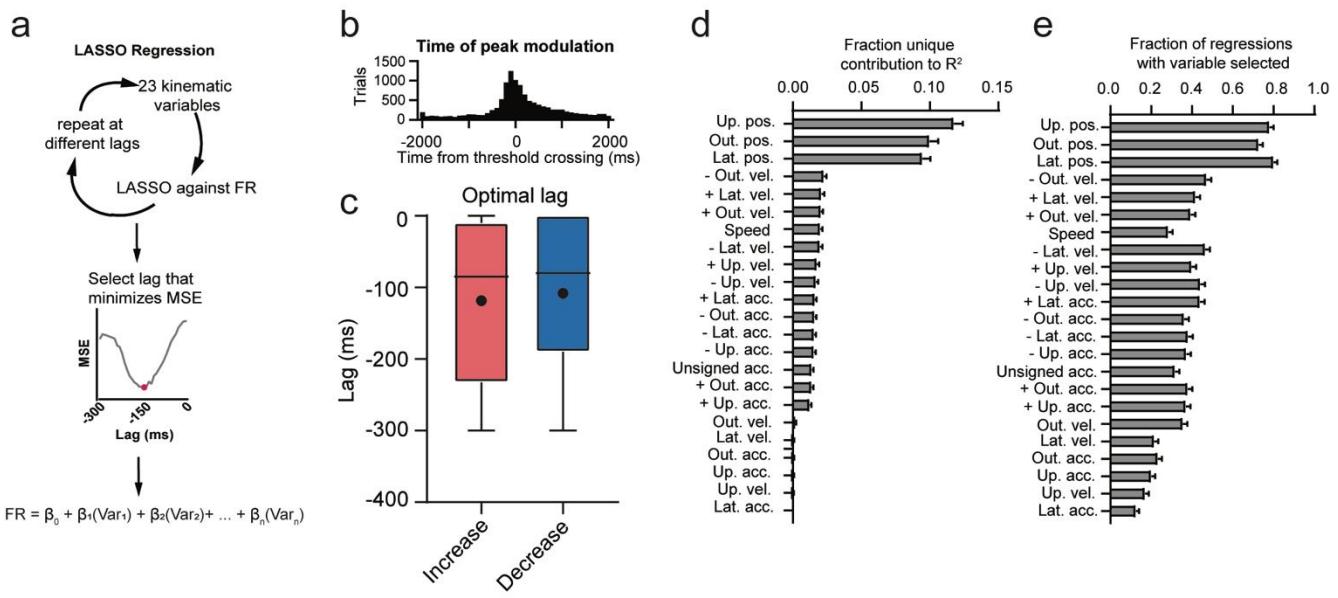


Figure S3. Lasso regression details.

- Schematic of lasso regressions. 23 kinematic variables were regressed against firing rate at different lags from 0 to -300 ms. The lag that minimized the mean squared error (MSE) of the regressions was selected.
- Peak modulation time of all cells across all reaches (n = 11806 trials, 465 cells).
- Optimal lags of the LASSO regression for each cell.
- Fraction of the unique contribution to total variance explained for each regressor.
- Fraction of regressions with each variable selected.

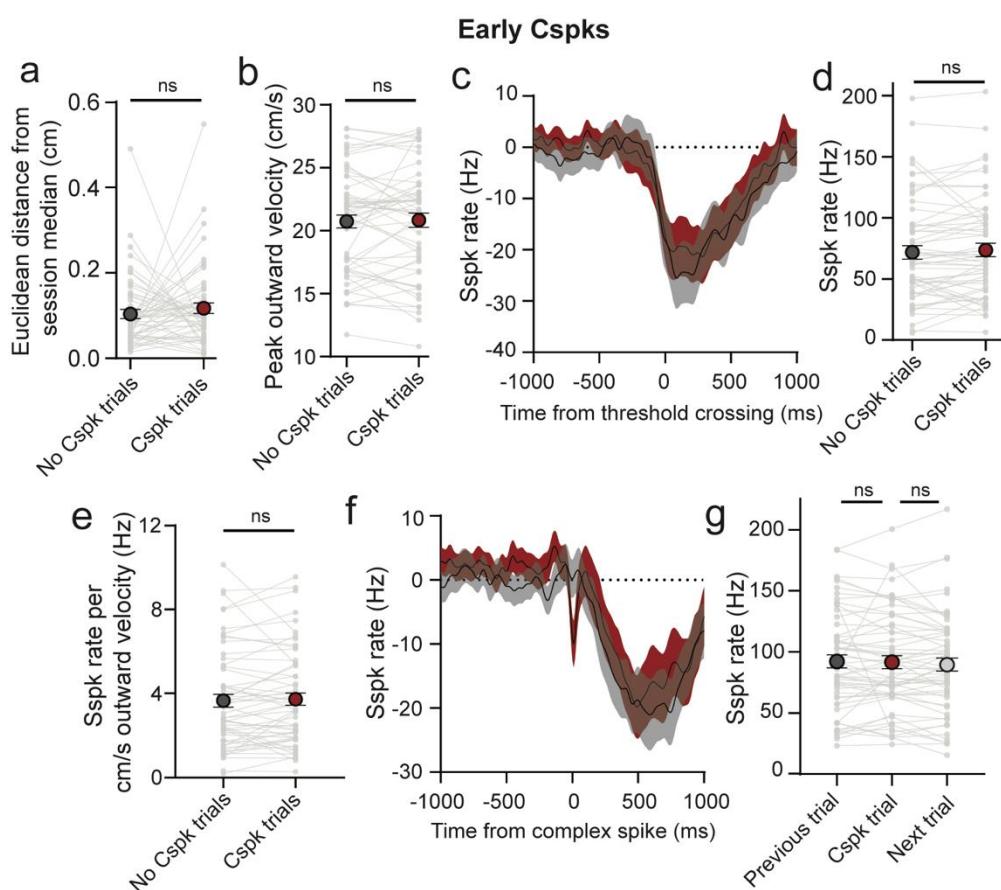
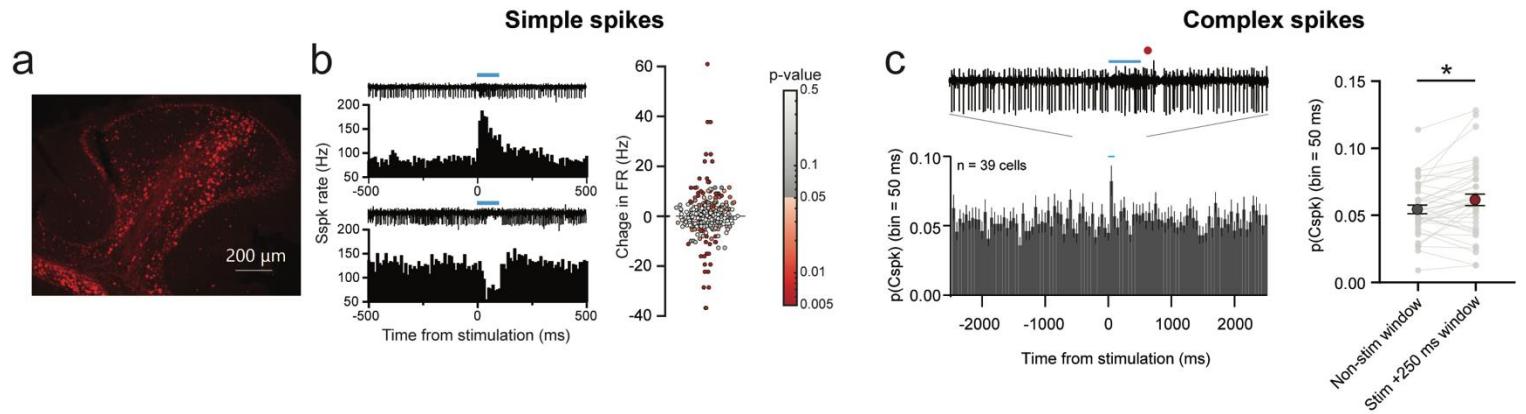


Figure S4. Kinematic and simple spike correlates of early Cspks.

- Cspks in the 500 ms before reach onset were not associated with differences in target error as assessed with euclidean distance from session median compared to non-Cspk trials.
- No difference in peak outward velocity was observed between Cspks and non-Cspk trials.
- Simple spike firing rate in trials with early Cspk and non-Cspk trials.
- No difference in simple spike rate during outreach was seen in early Cspk trials compared with non-Cspk trials.
- No difference in simple spike rate per outward velocity was seen in early Cspk trials compared with non-Cspk trials.
- Simple spike firing aligned to the time of early Cspks compared to similarly aligned trials without early Cspk trials.
- No difference in simple spike rate in the 100 ms preceding early Cspks was seen compared to the similarly aligned previous or next trial.



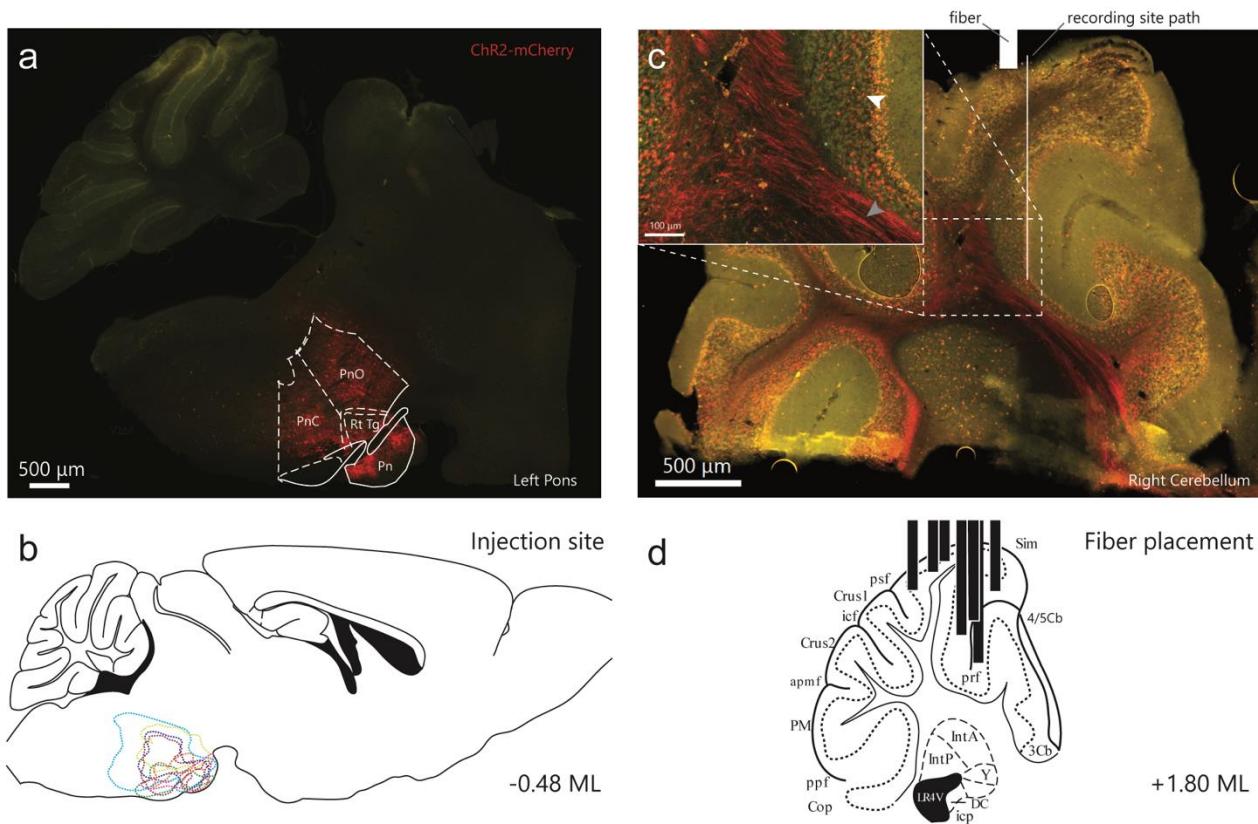


Figure S6. Opsin expression for mice in behavioral experiments.

- Histological section showing ChR2-mCherry expression at the injection site in the left pontine nuclei (Pn: pontine nuclei; RtTg: reticulotegmental nuclei; PnO: pontine reticular nuclei, oral part; PnC: pontine reticular nuclei, caudal part).
- Contours of ChR2 expression in the pontine nuclei for mice used in behavioral experiments.
- Right cerebellum of the animal shown in **a**. Mossy fiber axons (grey arrow) and boutons (white arrow) can be seen expressing ChR2 in the cerebellar cortex. The approximate location of the optical fiber and recording site path are shown in white.
- Location of fiber placement in a representative section for animals used in behavioral experiments.

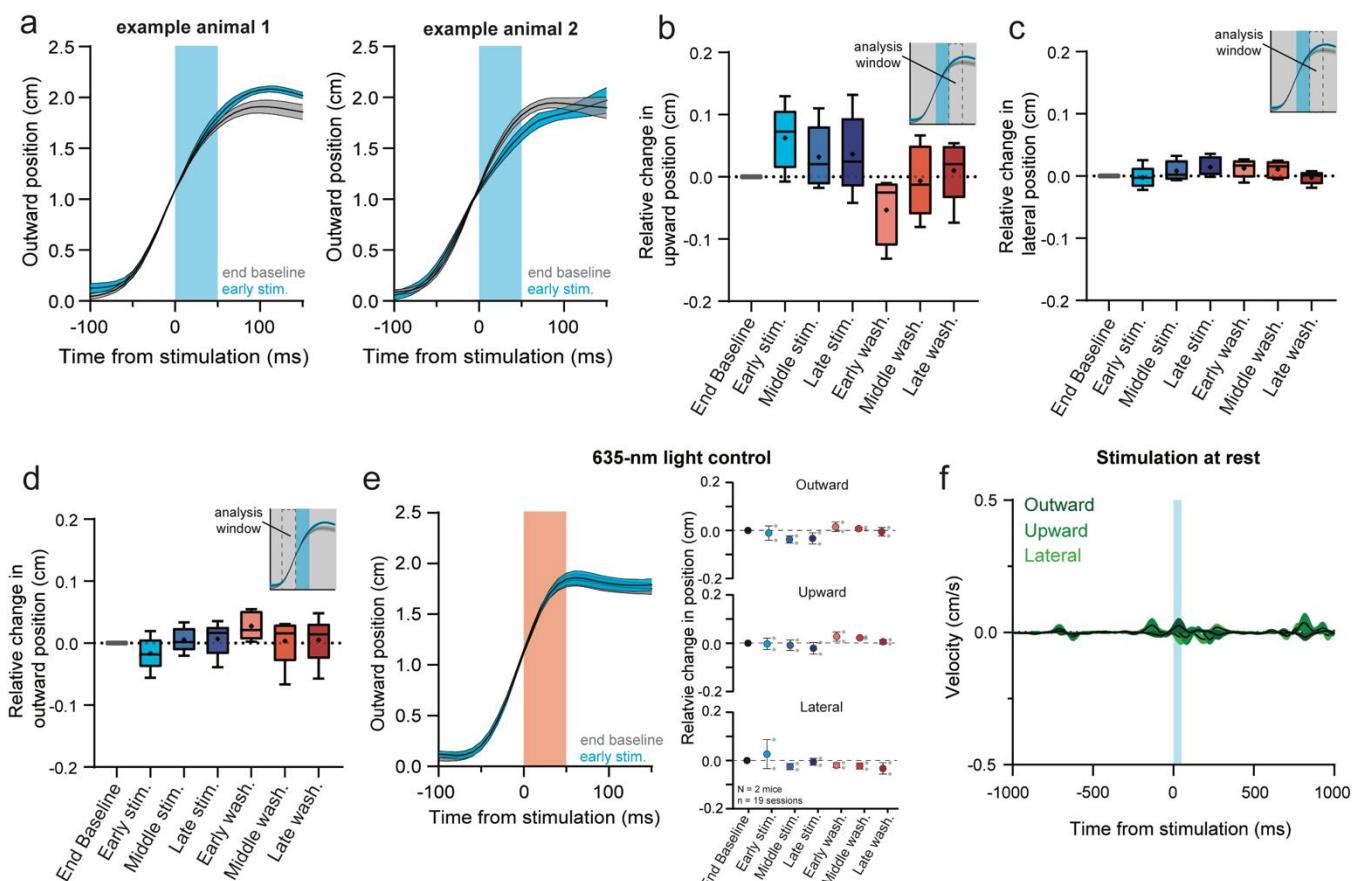


Figure S7. Fixed-position stimulation supplemental data

- Two example mice with differing effects of stimulation on early reaches in the stimulation block. To account for diverging effects we define the direction of deviation with stimulation as positive and the opposing direction as negative.
- Summary of the relative change in upward position for the same data shown in Fig. 3e. Relative change in upward position was assessed in the 50-ms window following the end of stimulation.
- Summary of the relative change in lateral position for the same data shown in Fig. 3e.
- Summary of the relative change in outward position for in the 50-ms window before stimulation.
- Stimulating with 635-nm light did not cause deviations in position or adaptation profiles.
- Stimulating while the mouse was awake with its hand at rest on the bar produced virtually no movement.

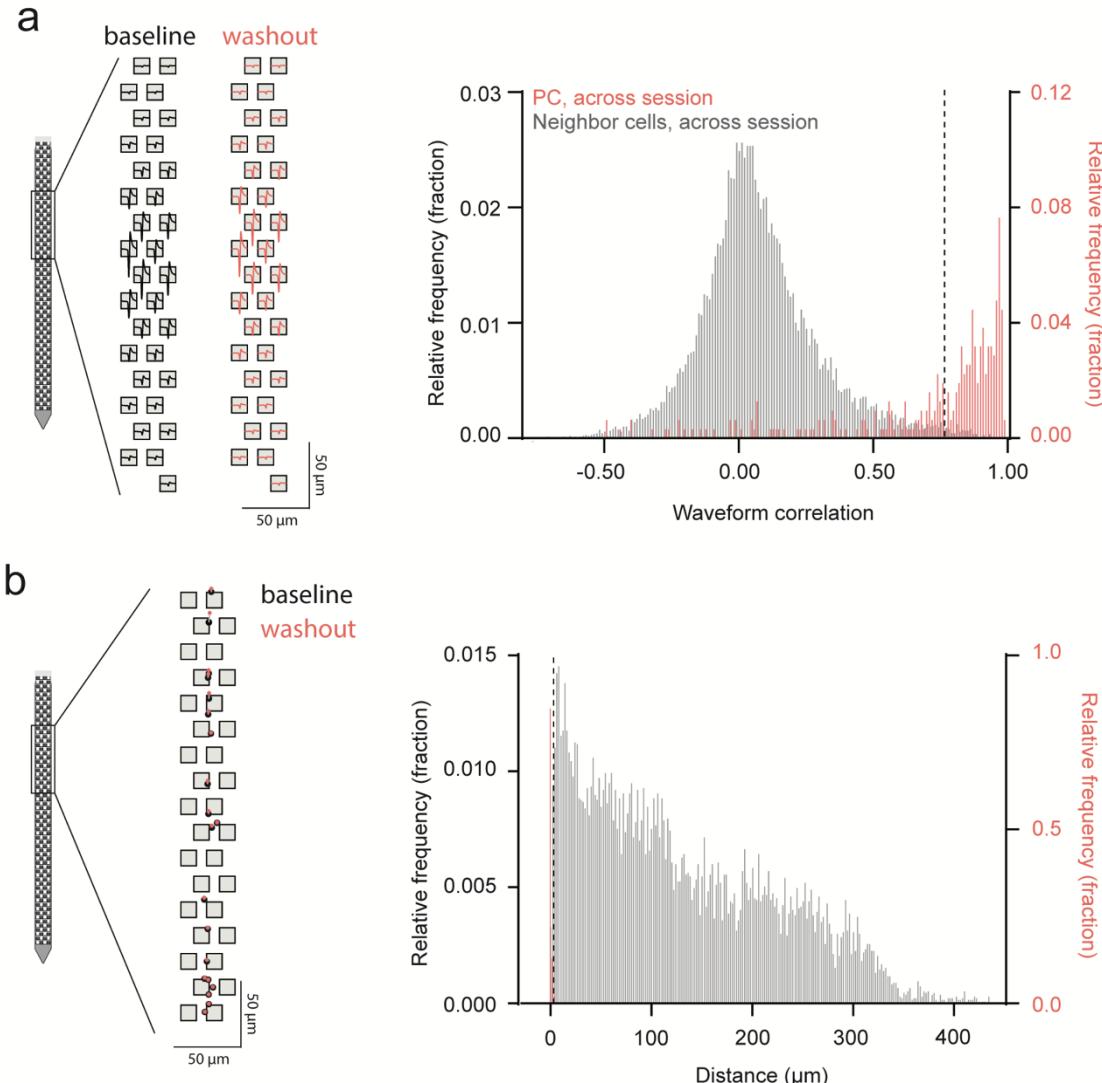


Figure S8. Assessing unit stability across recording sessions.

a. Left: Waveforms templates detected on each Neuropixel electrode for a cell during baseline and during washout. Right: Histogram of waveform correlation of PCs across sessions (red) and of mismatched neighboring cells, across the session (shuffled control, grey). PCs with an across-session waveform correlation that fell below the 99th percentile of the shuffled control (dashed line) were excluded from further analysis.

b. Left: Unit displacement for cells across a session. Baseline unit position is shown in grey and washout position is shown in red. Right: Histogram of unit displacement of PCs across sessions (red) and of mismatched neighboring cells, across the session (shuffled control, grey). PCs with an across-session displacement that fell below the 1st percentile of the shuffled control (dashed line) were excluded from further analysis.

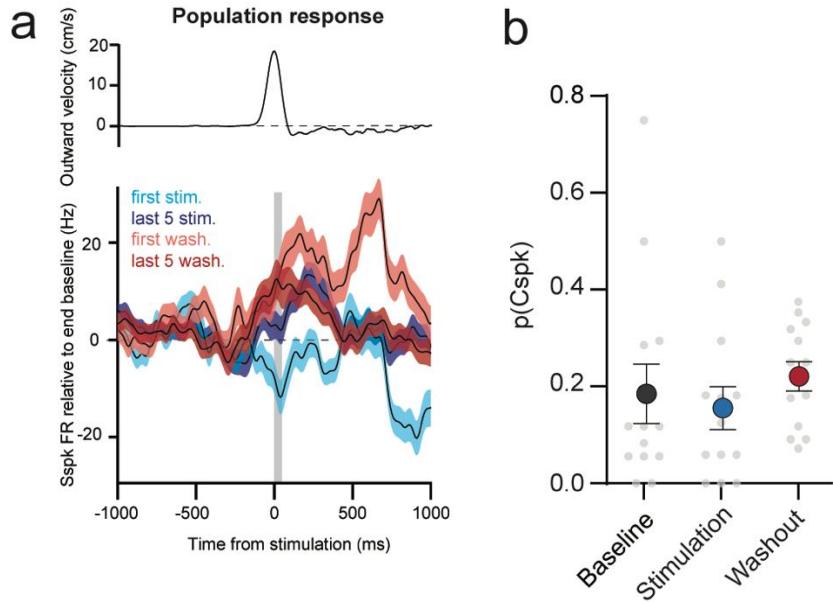


Figure S9. Population simple spike and complex spike responses during fixed-position stimulation experiments.

- Same as data shown in Fig. 4g with the last 5 stimulated and washout reaches included. The initial stimulation and washout effects are reduced across the stimulation and washout blocks, respectively.
- Cspks analyzed during fixed position stimulation experiments for the baseline, stimulation, and washout blocks ($n = 13$ cells with sorted Cspks).

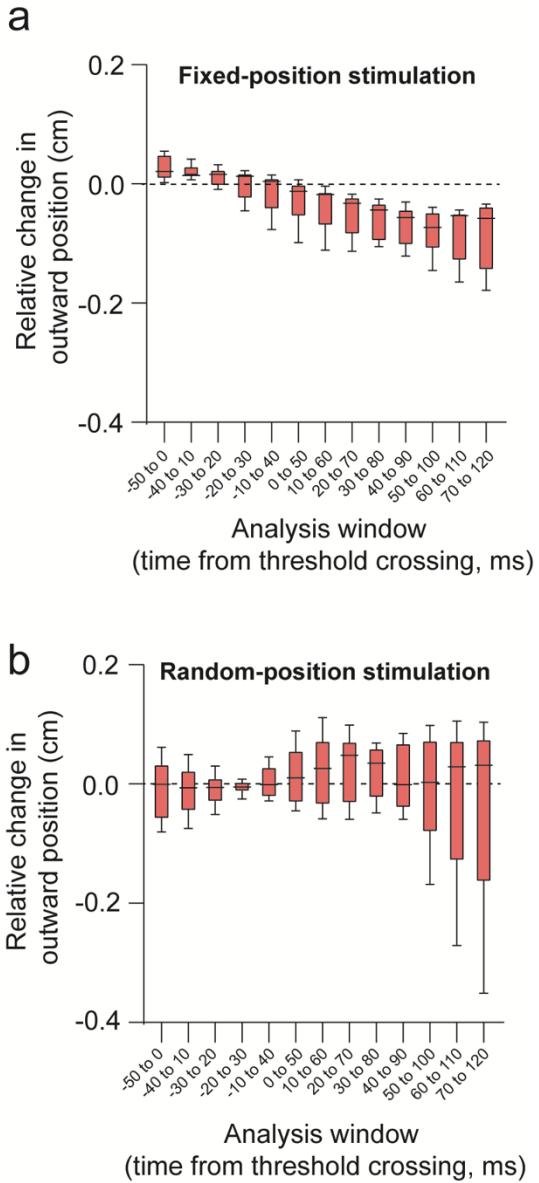


Figure S10. Temporal analysis of early washout effect for fixed-position and random-stimulation experiments.

- Analysis of fixed-position stimulation experiment early washout reaches in 50-ms time windows across the reach. Each window is shifted 10 ms from the adjacent time window. Aftereffect emerges around the time stimulation was delivered in the stimulation block.
- Same as **a** but for random-position stimulation experiments. Consistent aftereffects relative to baseline reaches do not emerge in any of the analyzed windows.

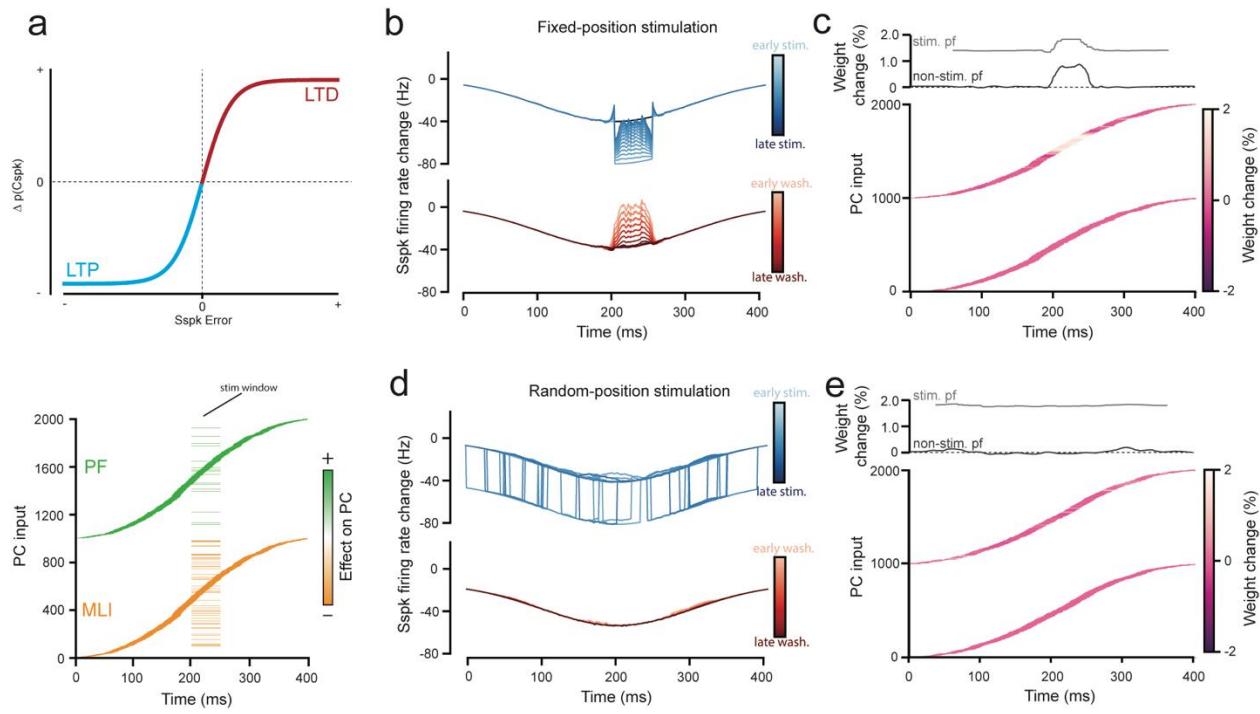


Figure S11. Cerebellar model adaptation to a negative-going perturbation.

- Model as described in Fig. 6. In this case the number of stimulated MLIs is greater than the number of parallel fibers (bottom) leading to a net negative stimulation effect. Negative simple spike error lowers the probability of Cspks below baseline, leading to LTD (top).
- PC simple spike activity during the stimulation block and washout block of fixed-position stimulation as described in Fig. 6b. Here the stimulation reduces firing rate.
- Same as described in Fig. 6c. Here parallel fiber weight changes increase to compensate for the stimulation. Note that while not displayed the quantification of the adaptation is identical to the data displayed in Fig. 6d.
- Comparison of model output to empirical observations for fixed-position stimulus conditions (Fig. 3). Model closely matches behavioral adaptation.
- Same as b. but here the stimulation window is randomized across the reach. Note that while not displayed the quantification of the adaptation is identical to the data displayed in Fig. 6d.

729 **References:**

730

731 1. Holmes, G. The symptoms of acute cerebellar injuries due to gunshot injuries. *Brain* **40**, 461–535
732 (1917).

733 2. Becker, M. I. & Person, A. L. Cerebellar Control of Reach Kinematics for Endpoint Precision.
734 *Neuron* **103**, 335–348.e5 (2019).

735 3. Lang, C. E. & Bastian, A. J. Cerebellar subjects show impaired adaptation of anticipatory EMG
736 during catching. *J. Neurophysiol.* **82**, 2108–2119 (1999).

737 4. Baizer, J. S., Kralj-Hans, I. & Glickstein, M. Cerebellar lesions and prism adaptation in macaque
738 monkeys. *J. Neurophysiol.* **81**, 1960–1965 (1999).

739 5. Tseng, Y. W., Diedrichsen, J., Krakauer, J. W., Shadmehr, R. & Bastian, A. J. Sensory prediction
740 errors drive cerebellum-dependent adaptation of reaching. *J. Neurophysiol.* **98**, 54–62 (2007).

741 6. Morton, S. M. & Bastian, A. J. Cerebellar contributions to locomotor adaptations during splitbelt
742 treadmill walking. *J. Neurosci.* **26**, 9107–9116 (2006).

743 7. Smith, M. A. & Shadmehr, R. Intact ability to learn internal models of arm dynamics in
744 Huntington's disease but not cerebellar degeneration. *J. Neurophysiol.* **93**, 2809–2821 (2005).

745 8. Miall, R. & Wolpert, D. Forward Models for physiological motor control. *Neural Networks* **9**, 1265–
746 1279 (1996).

747 9. Kawato, M. & Gomi, H. The cerebellum and VOR / OKR learning models. *Trends Neurosci.* **15**,
748 445–453 (1992).

749 10. Ohyama, T., Nores, W. L., Murphy, M. & Mauk, M. D. What the cerebellum computes. *Trends
750 Neurosci.* **26**, 222–227 (2003).

751 11. Shadmehr, R. & Krakauer, J. W. A computational neuroanatomy for motor control. *Exp. Brain
752 Res.* **185**, 359–381 (2008).

753 12. Shadmehr, R., Smith, M. A. & Krakauer, J. W. Error correction, sensory prediction, and
754 adaptation in motor control. *Annu. Rev. Neurosci.* **33**, 89–108 (2010).

755 13. Lee, K. H. *et al.* Circuit mechanisms underlying motor memory formation in the cerebellum.
756 *Neuron* **86**, 529–540 (2015).

757 14. Ekerot, C. F., Garwicz, M. & Schouenborg, J. Topography and nociceptive receptive fields of
758 climbing fibres projecting to the cerebellar anterior lobe in the cat. *J. Physiol.* **441**, 257–274
759 (1991).

760 15. Bloedel, J. R. & Bracha, V. On the cerebellum, cutaneomuscular reflexes, movement control and
761 the elusive engrams of memory. *Behav. Brain Res.* **68**, 1–44 (1995).

762 16. Lavond, D. G., Knowlton, B. J., Steinmetz, J. E. & Thompson, R. F. Classical Conditioning of the
763 Rabbit Eyelid Response With a Mossy-Fiber Stimulation CS: II. Lateral Reticular Nucleus
764 Stimulation. *Behav. Neurosci.* **101**, 676–682 (1987).

765 17. Mauk, M. D., Steinmetz, J. E. & Thompson, R. F. Classical conditioning using stimulation of the
766 inferior olive as the unconditioned stimulus. *Proc. Natl. Acad. Sci. U. S. A.* **83**, 5349–5353
767 (1986).

768 18. Coesmans, M., Weber, J. T., De Zeeuw, C. I. & Hansel, C. Bidirectional parallel fiber plasticity in
769 the cerebellum under climbing fiber control. *Neuron* **44**, 691–700 (2004).

770 19. Ito, M. & Kano, M. Long-lasting depression of parallel fiber-Purkinje cell transmission induced by
771 conjunctive stimulation of parallel fibers and climbing fibers in the cerebellar cortex. *Neurosci.
772 Lett.* **33**, 253–258 (1982).

773 20. Ito, M. Cerebellar control of the vestibulo-ocular reflex--around the flocculus hypothesis. *Annu.
774 Rev. Neurosci.* **5**, 275–297 (1982).

775 21. Blazquez, P. M., Hirata, Y., Heiney, S. A., Green, A. M. & Highstein, S. M. Cerebellar Signatures
776 of Vestibulo-Ocular Reflex Motor Learning. *J. Neurosci.* **23**, 9742–9751 (2003).

777 22. Rowan, M. J. M. *et al.* Graded Control of Climbing-Fiber-Mediated Plasticity and Learning by
778 Inhibition in the Cerebellum. *Neuron* 1–17 (2018). doi:10.1016/j.neuron.2018.07.024

779 23. Yang, Y. & Lisberger, S. G. Interaction of plasticity and circuit organization during the acquisition
780 of cerebellum-dependent motor learning. *Elife* **2013**, 1–19 (2013).

781 24. Herzfeld, D. J., Kojima, Y., Soetedjo, R. & Shadmehr, R. Encoding of error and learning to
782 correct that error by the Purkinje cells of the cerebellum. *Nat. Neurosci.* **21**, (2018).

783 25. Raymond, J. L., Lisberger, S. G. & Mauk, M. D. The cerebellum: A neuronal learning machine?
784 *Science (80-.)* **272**, 1126–1131 (1996).

785 26. Mathis, M. W., Mathis, A. & Uchida, N. Somatosensory Cortex Plays an Essential Role in
786 Forelimb Motor Adaptation in Mice. *Neuron* **93**, 1493–1503.e6 (2017).

787 27. Ito, M. Neural design of the cerebellar motor control system. *Brain Res.* **40**, 81–84 (1972).

788 28. Weiler, J., Gribble, P. L. & Pruszynski, J. A. Spinal stretch reflexes support efficient hand control.
789 *Nat. Neurosci.* **22**, 529–533 (2019).

790 29. Gandolfo, F., Li, C. S. R., Benda, B. J., Padoa Schioppa, C. & Bizzi, E. Cortical correlates of
791 learning in monkeys adapting to a new dynamical environment. *Proc. Natl. Acad. Sci. U. S. A.*
792 **97**, 2259–2263 (2000).

793 30. Li, C. S. R., Padoa-Schioppa, C. & Bizzi, E. Neuronal correlates of motor performance and motor
794 learning in the primary motor cortex of monkeys adapting to an external force field. *Neuron* **30**,
795 593–607 (2001).

796 31. Proville, R. D. *et al.* Cerebellum involvement in cortical sensorimotor circuits for the control of
797 voluntary movements. *Nat. Neurosci.* **17**, 1233–1239 (2014).

798 32. Hewitt, A. L., Popa, L. S. & Ebner, T. J. Changes in Purkinje Cell Simple Spike Encoding of
799 Reach Kinematics during Adaption to a Mechanical Perturbation. *J. Neurosci.* **35**, 1106–1124
800 (2015).

801 33. Becker, M. I., Calame, D. J., Wrobel, J. & Person, A. L. Online control of reach accuracy in mice.
802 *J. Neurophysiol.* **124**, 1637–1655 (2020).

803 34. Low, A. Y. T. *et al.* Precision of Discrete and Rhythmic Forelimb Movements Requires a Distinct
804 Neuronal Subpopulation in the Interposed Anterior Nucleus. *Cell Rep.* **22**, 2322–2333 (2018).

805 35. Guo, J.-Z. *et al.* Disrupting cortico-cerebellar communication impairs dexterity. *Elife* **10**, 1–31
806 (2021).

807 36. Tibshirani, R. Regression Shrinkage and Selection via the Lasso. *J. R. Stat. Soc.* **58**, 267–288
808 (1996).

809 37. Popa, L. S., Streng, M. L. & Ebner, T. J. Long-Term Predictive and Feedback Encoding of Motor
810 Signals in the Simple Spike Discharge of Purkinje Cells. *4*, (2017).

811 38. Streng, M. L., Popa, L. S. & Ebner, T. J. Climbing Fibers Control Purkinje Cell Representations of
812 Behavior. *J. Neurosci.* **37**, 1997–2009 (2017).

813 39. Coltz, J. D., Johnson, M. T. & Ebner, T. J. Cerebellar Purkinje cell simple spike discharge
814 encodes movement velocity in primates during visuomotor arm tracking. *J. Neurosci.* **19**, 1782–
815 803 (1999).

816 40. Hewitt, A. L., Popa, L. S., Pasalar, S., Hendrix, C. M. & Ebner, T. J. Representation of limb
817 kinematics in Purkinje cell simple spike discharge is conserved across multiple tasks. *J.*
818 *Neurophysiol.* **106**, 2232–2247 (2011).

819 41. Roitman, A. V., Pasalar, S., Johnson, M. T. V. & Ebner, T. J. Position, direction of movement,
820 and speed tuning of cerebellar Purkinje cells during circular manual tracking in monkey. *J.*
821 *Neurosci.* **25**, 9244–9257 (2005).

822 42. Musall, S., Kaufman, M. T., Juavinett, A. L., Gluf, S. & Churchland, A. K. Single-trial neural
823 dynamics are dominated by richly varied movements. *Nat. Neurosci.* **22**, 1677–1686 (2019).

824 43. Hewitt, A. L., Popa, L. S. & Ebner, T. J. Changes in Purkinje Cell Simple Spike Encoding of
825 Reach Kinematics during Adaption to a Mechanical Perturbation. *J. Neurosci.* **35**, 1106–1124
826 (2015).

827 44. Ebner, T. J., Hewitt, A. L. & Popa, L. S. What Features of Limb Movements are Encoded in the
828 Discharge of Cerebellar Neurons? *The Cerebellum* **10**, 683–693 (2010).

829 45. Herzfeld, D. J., Kojima, Y., Soetedjo, R. & Shadmehr, R. Encoding of action by the Purkinje cells

830 of the cerebellum. *Nature* **526**, 439–441 (2015).

831 46. Brown, S. T. & Raman, I. M. Sensorimotor Integration and Amplification of Reflexive Whisking by
832 Well-Timed Spiking in the Cerebellar Corticonuclear Circuit. *Neuron* 1–12 (2018).
833 doi:10.1016/j.neuron.2018.06.028

834 47. Person, A. L. & Raman, I. M. Purkinje neuron synchrony elicits time-locked spiking in the
835 cerebellar nuclei. *Nature* **481**, 502–505 (2012).

836 48. Thier, P., Dicke, P. W., Haas, R. & Barash, S. Encoding of movement time by populations of
837 cerebellar Purkinje cells. *Nature* **405**, 72–76 (2000).

838 49. Medina, J. F. & Lisberger, S. G. Links from complex spikes to local plasticity and motor learning
839 in the cerebellum of awake-behaving monkeys. *Nat. Neurosci.* **11**, 1185–1192 (2008).

840 50. Kimpo, R. R., Rinaldi, J. M., Kim, C. K., Payne, H. L. & Raymond, J. L. Gating of neural error
841 signals during motor learning. *Elife* **3**, 1–23 (2014).

842 51. Avraham, G., Taylor, J. A., Breska, A., Ivry, R. B. & McDougle, S. D. Contextual effects in motor
843 adaptation adhere to associative learning rules. *bioRxiv* 2020.09.14.297143 (2021).

844 52. Wagner, M. J. *et al.* A neural circuit state change underlying skilled movements. *Cell* 3731–3747
845 (2021). doi:10.1016/j.cell.2021.06.001

846 53. Kitazawa, S., Kimura, T. & Yin, P. B. Cerebellar complex spikes encode both destinations and
847 errors in arm movements. *Nature* **392**, 494–497 (1998).

848 54. Gaffield, M. A. & Christie, J. M. The cerebellum encodes and influences the initiation and
849 termination of discontinuous movements. *bioRxiv* 1–31 (2021).

850 55. Chabrol, F. P., Blot, A. & Mrsic-Flogel, T. D. Cerebellar Contribution to Preparatory Activity in
851 Motor Neocortex. *Neuron* **103**, 506–519.e4 (2019).

852 56. Ekerot, C.-F. & Kano, M. Long-term depression of parallel fibre synapses following stimulation of
853 climbing fibres. *Brain Res.* **342**, 357–360 (1985).

854 57. Ito, M., Sakurai, M. & Tongroach, P. Climbing fibre induced depression of both mossy fibre
855 responsiveness and glutamate sensitivity of cerebellar Purkinje cells. *J. Physiol.* **324**, 113–134
856 (1982).

857 58. Miall, R. C., Keating, J. G., Malkmus, M. & Thach, W. T. Simple spike activity predicts
858 occurrence of complex spikes in cerebellar Purkinje cells. *Nat. Neurosci.* **1**, 13–15 (1998).

859 59. Brodal, A. & Jansen, J. The ponto-cerebellar projection in the rabbit and cat. *J. Comp. Neurol.*
860 **84**, 31–118 (1946).

861 60. Brodal, P. & Bjaalie, J. G. Organization of the pontine nuclei. *Neurosci. Res.* **13**, 83–118 (1992).

862 61. Leergaard, T. B. *et al.* Three-dimensional topography of corticopontine projections from rat
863 sensorimotor cortex: Comparisons with corticostriatal projections reveal diverse integrative
864 organization. *J. Comp. Neurol.* **478**, 306–322 (2004).

865 62. Sillitoe, R. V., Fu, Y. H. & Watson, C. *Cerebellum. The Mouse Nervous System* (Elsevier Inc.,
866 2012). doi:10.1016/B978-0-12-369497-3.10011-1

867 63. Huang, C. C. *et al.* Convergence of pontine and proprioceptive streams onto multimodal
868 cerebellar granule cells. *Elife* **2013**, 1–17 (2013).

869 64. Kim, J. & Augustine, G. J. Molecular Layer Interneurons: Key Elements of Cerebellar Network
870 Computation and Behavior. *Neuroscience* **462**, 22–35 (2021).

871 65. Rasmussen, A., Jireheds, D. A., Wetmore, D. Z. & Hesslow, G. Changes in complex spike
872 activity during classical conditioning. *Front. Neural Circuits* **8**, 1–13 (2014).

873 66. Herzfeld, D. J., Hall, N. J., Tringides, M. & Lisberger, S. G. Principles of operation of a cerebellar
874 learning circuit. *Elife* **9**, 1–30 (2020).

875 67. Mauk, M. D. & Buonomano, D. V. The neural basis of temporal processing. *Annu. Rev. Neurosci.*
876 **27**, 307–340 (2004).

877 68. Shimansky, Y., Wang, J. J., Bauer, R. A., Bracha, V. & Bloedel, J. R. On-line compensation for
878 perturbations of a reaching movement is cerebellar dependent: Support for the task dependency
879 hypothesis. *Exp. Brain Res.* **155**, 156–172 (2004).

880 69. Albergaria, C., Silva, N. T., Pritchett, D. L. & Carey, M. R. Locomotor activity modulates

