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Abstract  5 

Cerebellar output has been shown to enhance movement precision by scaling the decelerative phase of 6 

reaching movements in mice. We hypothesized that during reach, initial kinematics cue late-phase 7 

adjustments through cerebellar associative learning. We identify a population-level response in mouse 8 

PCs that scales inversely with reach velocity, suggesting a candidate mechanism for anticipatory control 9 

to target limb endpoint. We next interrogate how such a response is generated by combining high-density 10 

neural recordings with closed-loop optogenetic stimulation of cerebellar mossy fiber afferents originating 11 

in the pontine nuclei during reach, using perturbation schedules reminiscent of classic adaptation 12 

paradigms. We found that reach kinematics and PC electrophysiology adapt to position-locked mossy 13 

fiber perturbations and exhibit aftereffects when stimulation is removed. Surprisingly, we observed partial 14 

adaptation to position-randomized stimulation schedules but no opposing aftereffect. A model that 15 

recapitulated these findings provided novel insight into how the cerebellum deciphers cause-and-effect 16 

relationships to adapt. 17 
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Introduction 35 

 In humans and animals with altered cerebellar function, movement is disorganized, often showing 36 

hallmark symptoms of endpoint dysmetria1,2 and impaired abilities to adapt movements in the face of 37 

novel conditions3–7. These observations have led to the idea that the cerebellum makes movements fast, 38 

smooth, and accurate by learning anticipatory control signals that mediate feedforward control 8–10 11,12.  39 

 Understanding the neurobiological basis of learned anticipatory signals is a major effort of 40 

cerebellar physiology. Two dominant learning paradigms, classical conditioning and motor adaptation, 41 

each provide important insight into the mechanisms of anticipatory motor control. Classical conditioning 42 

paradigms13–15 such as delay eyeblink conditioning, illustrate how neutral conditioned stimuli paired with 43 

reflex-eliciting unconditioned stimuli become predictive cues eliciting conditioned responses (e.g. a tone 44 

repeatedly paired with a corneal airpuff eventually elicits a predictive eyeblink). Mechanistically, neutral 45 

cues can be fully replaced by cerebellar mossy fiber stimulation16,17 and unconditioned stimuli can be fully 46 

replaced by climbing fiber stimulation17. Climbing fibers elicit complex spikes (Cspks) in Purkinje cell (PC) 47 

dendrites18,19,  which over many trials reduce parallel fiber efficacy onto PCs, leading to firing rate pauses 48 

at the predicted time of the unconditioned stimulus. Through subsequent disinhibition of the cerebellar 49 

nuclei, these pauses then drive anticipatory conditioned responses.  50 

 Cerebellar cortex also mediates many forms of motor adaptation20–22. Perturbations that result in 51 

movement error, such as prisms that distort gaze or target jumps that cause endpoint errors, modulate 52 

Cspks to induce bidirectional plasticity in PC simple spike activity that correlates with adaptive changes 53 

in behavior23–25. It has been hypothesized that such instances of motor adaptation can be understood 54 

through a lens of associative learning. In this view, sensorimotor information, conveyed to the cerebellum 55 

via mossy fibers, is reweighted onto Purkinje neurons when associated with deviations from basal 56 

climbing fiber rates. Learning mechanisms analogous to those described above for associative 57 

conditioning then reweight the original sensorimotor inputs to Purkinje neurons leading to novel cerebellar 58 

output25.  59 

 Despite the widely held view that motor adaptation shares a mechanistic substrate with classical 60 

conditioning, key differences between motor control and classical conditioning make these inferences 61 

tenuous. For example, perturbations that drive motor adaptation26–28 engage sensorimotor feedback 62 

loops at multiple levels of the nervous system, complicating the view that cerebellar input-output 63 

remapping fully explains adaptation since inconstant cerebellar inputs would deprive associative 64 

mechanism of a stable cue. This problem is even more exaggerated when considering skilled movements 65 

such as reach, where both cerebral cortex and cerebellum are proposed as sites of learning26,29,30, with 66 

long-range loops likely functioning synergistically31. Thus, learning-related changes in cerebellar Purkinje 67 

firing could be inherited from cerebral cortex, generated by cerebellar plasticity, or both32.  68 
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 We hypothesize that cerebellar output during movements is mechanistically akin to conditioned 69 

responses, such that in learned conditions, cerebellar outputs reduce motor error and are cued by mossy 70 

fiber activity that encodes within-movement kinematic features10,25. Recent studies in mice performing 71 

skilled reach movements suggest experimental entry points to testing this idea. Specifically, a population 72 

of cerebellar output neuron firing rates scale with and cause reach deceleration, and covary with early 73 

kinematic features like peak reach velocity2,33. Moreover, acute disruption of cerebral cortical input to the 74 

cerebellum impairs skilled reach kinematics2,34,35, suggesting that cerebellar inputs could be used both 75 

as a perturbation and a cue to predictively adjust skilled movement kinematics.  76 

 Here, we performed experiments designed to link the cerebellum’s role in associative learning 77 

with its generation of anticipatory control of reaching movements. We superimposed a variant of 78 

associative learning onto a skilled reach task through repeated optogenetic manipulation of mossy fiber 79 

activity in closed loop with reach, triggered at a consistent kinematic landmark. In addition to monitoring 80 

the kinematic effect of stimulation over trials, we also measured changes in PC response to stimulation. 81 

To test reliance of temporal specificity on learning, we randomized the position of stimulation. A cerebellar 82 

model of timed adaptation within a movement recapitulated our key experimental findings and gives 83 

mechanistic insight into the circuit properties underlying cerebellar reach adaptation. Together, these 84 

experiments unify the frameworks of cerebellar associative learning and motor adaptation in skilled 85 

movements, an important step in understanding mechanisms of motor learning. 86 

 87 

Results 88 

A suppression-based Purkinje cell population code tuned to reach velocity 89 

Neurons in the anterior interposed nucleus fire proportional to reach velocity and causally scale limb 90 

deceleration, such that the limb lands on target despite initial kinematic variability2,33, consistent with the 91 

cerebellum implementing anticipatory control. To determine whether upstream PCs may drive these 92 

decelerative bursts in the cerebellar nuclei, we combined kinematic and electrophysiological recordings 93 

in mice engaged in a skilled head-fixed reach task. After mice were proficient at the task, we recorded 94 

reach kinematics with high-speed cameras via an IR-reflective marker affixed to the mouse’s hand (Fig. 95 

1a, Fig. S1). Acute recordings in cerebellar cortex were made simultaneously, using either single 96 

electrodes or Neuropixel probes (Fig. 1a, Video S1). Recordings were targeted to a cerebellar cortical 97 

site situated between Lob 4/5 and Simplex known to influence forelimb movements in mice13. Putative 98 

PCs were identified as neurons with Cspks or with a firing rate > 40 spikes/s, CV2 > 0.20, MAD < 0.008 99 

(see Methods, Fig. S2). We found that activity in many PCs was highly modulated around the time of 100 

the reach across cells and sessions (Fig 1).  101 
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     To test the prediction that decelerative signals in the cerebellar nuclei derive from Purkinje neuron 102 

activity patterns during reach, we first sought to understand what individual PCs encode. We used least 103 

absolute shrinkage and selection operator (LASSO) regression to model PC simple spike firing rate 104 

using limb kinematics on a trial-by-trial basis, with a ten-fold cross validation step to avoid over-fitting 105 

(Fig. 1b; see Methods) 36. On average, kinematics of the limb alone could explain a modest 18.0 ± 0.01% 106 

(mean ± SEM) of the variance in simple spike firing rate on individual trials, although trial-averaged data 107 

was a much closer fit (58.0 ± 0.01%, Fig. 1c, d) consistent with other studies of PC simple spike tuning 108 

to limb movements in primates37–41. Kinematic encoding was not a result of generic movement-related 109 

modulation but was specific to the kinematics of individual reaches as demonstrated by a reach shuffled 110 

control that reassigned reaches with PC firing recorded during separate reaches, and a spike shuffled 111 

control, where simple spike times on each trial were time shuffled and regressed against kinematics. In 112 

both cases, regression performance on the empirical data was significantly higher than the shuffled 113 

controls indicating that simple spike firing rates encode reach kinematics on a reach-by-reach basis (Fig. 114 

1d; N = 11 animals, n = 465 cells; empirical vs. reach shuffle: p = 1.1 x 10-71, W = 103803, r = 0.83; 115 

empirical vs spike shuffle: p = 6.9 x 10-78, W = 108331, r = 0.87, Wilcoxon signed rank test). The 116 

regression model performance was stable across the spatial trajectory of reaches, suggesting kinematic 117 

encoding is continuous in individual cells (Fig. 1e). To assess which kinematic variables in the regression 118 

model were the most important in modeling simple spike firing rate, we repeated the regression with 119 

each variable independently time shuffled and measured the change in variance explained relative to 120 

the complete model42 (Fig. S3d). Positional terms -- outward, upward, and lateral – each accounted for 121 

approximately 10% of the explained variance of the complete model, with each of the remaining 20 122 

variables accounting for < 5%, although there was a wide variety in the relative importance of different 123 

kinematic variables across cells. These measurements are roughly consistent with PC-limb kinematic 124 

relationships observed in primates40,43,44, however the relatively weak encoding on individual trials 125 

obscures how the cerebellum might influence control over movements to make them smooth and 126 

accurate.  127 

     As has been noted previously, PC simple spike rates fluctuate during movements, with modulations 128 

that are either predominately positive or negative 45,46. Of 465 PCs recorded during reach, 226 displayed 129 

increases in activity during the reach epoch and 239 showed a decrease (Fig. 1f). When segregated 130 

into groups that predominantly increase or decrease rates during reach, both populations had lower 131 

firing rates during faster reaches relative to slower reaches (Fig. 1g; highest peak velocity). The peak 132 

rates of the population of positively modulated cells preceded negatively modulated cells (dashed 133 

vertical lines, ~ 220 ms difference), raising the question of how these subpopulations collaborate as a 134 

group.  135 
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     Populations of ~40 PCs converge onto single nuclear cells47. In the oculomotor vermis – where 136 

heterogenous rate modulation profiles of PCs strongly resemble the patterns we saw during reach – 137 

grouping PCs into populations across classes revealed much stronger kinematic relationships with 138 

saccades45,48. Speculating that similar population encoding principles may be seen in reach-related PCs, 139 

we next grouped all PCs across all animals and looked at average activity for reaches binned by outward 140 

velocity. Firing rate increases were followed by sharp drops in net activity during the reach epoch that 141 

scaled with the velocity of outreach (Fig. 1h). Quantifying the minimum simple spike firing rate during 142 

the reach window (see Methods) showed a strong negative relationship with outreach velocity, such that 143 

the population showed a suppression of activity that scaled with reach velocity (Fig. 1i; N = 11 animals, 144 

n = 465 cells, 2100 reaches; 11806 reach-cell pairs; R2 = 0.99, slope = -0.094 with 95% CI [-0.111, -145 

0.077], p = 4.0 x 10-4, F = 307.5).  The timing of rate suppression was intermediate between peak 146 

outward acceleration and peak outward velocity, just before the transition to the decelerative phase of 147 

reach (Fig. 1j). Notably, each velocity percentile contained equal populations of positively and negatively 148 

modulated neurons.  These data suggest that PC suppression scales in a way that is the inverse of 149 

decelerative nuclear bursts that causally slow the limb. 150 

     Summarizing, we found that individual PCs are privately and modestly tuned to specific kinematic 151 

features of reach but weakly related to previously observed patterns of firing in the cerebellar nuclei. 152 

Yet, at the population level, PC activity shows scaled suppression in activity shortly before deceleration, 153 

consistent with a disinhibitory mechanism driving decelerative bursts in nuclear cells. We hypothesize 154 

that this firing rate suppression may be mechanistically akin to conditioned responses seen in delay 155 

eyeblink conditioning – learned rate changes that produce anticipatory movements in response to 156 

predictive cues. Both the precise timing and scaling of the population activity suppression observed here 157 

are consistent with learned cerebellar responses linked to motor and sensory contingencies to control 158 

movement. As such, this behavior offers a unique opportunity to test theories relating motor adaptation 159 

to associative learning in service of skilled movement24,49–51.  160 

 161 

Cspks signal movement onset and reach outcome 162 

To probe mechanisms that might shape cerebellar cortex scaling of output as a function of kinematics, 163 

we first identified cerebellar recordings with Cspks, the drivers of learning in PCs. Cspks could be sorted 164 

stably across the experiment in 59 of 465 putative PCs, 58 of which had Cspks during the peri-reach 165 

window (~1s window centered on reach; see Methods). Cspk probability increased shortly before 166 

movement onset, consistent with reports of early synchronized Cspk activity occurring at movement 167 

initiation52–54, then dropped near steady-state levels (Fig. 2a; p = 3.3 x 10-5, F = 2.6, RM one-way 168 

ANOVA; mean Cpsk probability vs. -500 ms bin: p = 7.1 x 10-4, d = -0.62, Dunnett’s multiple comparisons 169 
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test). In addition, a wide literature relates late complex spikes occurring after movement initiation to 170 

movement errors and sculpting of simple spike rates during movement. Therefore, we analyzed 171 

kinematics in which we observed early or late complex spikes in these different epochs (see Methods).  172 

Trials with late Cspks had distinct kinematics compared to trials without late Cspks showing significantly 173 

deviated endpoints (Fig. 2b-e, N = 8 animals, n = 58 cells; Euclidean distance from session median, No 174 

Cspk trials vs. Cspk trials: p = 8.1 x 10-4, W = -847, r = -0.43, Wilcoxon signed rank test) but not peak 175 

velocity (Fig. 2f; p = 0.81, t = 0.24, d = 0.032, paired t-test). By contrast, reaches with early Cspks had 176 

no discernable kinematic differences (Fig. S4a,b; N = 8 animals, n = 58 cells; Euclidean distance from 177 

session median, No Cspk trials vs. Cspk trials: p = 0.32, W = -257, r = -0.13, Wilcoxon signed rank test; 178 

Peak velocity, No Cspk trials vs. Cspk trials: p = 0.75, t = 0.32, d = -0.042, paired t-test), although we 179 

cannot rule out changes in reaction time or movement initiation54,55.  180 

To test whether the relationship of PC rates to kinematics changes on Cspk trials, indicative of 181 

an encoding error, we compared simple spike rates on Cspk and non-Cspk trials for early and late 182 

Cspks. Across neurons, simple spike rate was significantly elevated on late-Cspk trials (Fig. 2g,h; No 183 

Cspk trials vs. Cspk trials: p = 2.8 x 10-4, t = 3.9, d = -0.51, paired t-test) and this elevation led to a shift 184 

in the relationship of simple spike rate to reach velocity (Fig. 2i; No Cspk trials vs. Cspk trials: p = 1.0 x 185 

10-3, W = -833, r = -0.42, Wilcoxon signed rank test). Trials with early Cspks did not show elevated 186 

simple spike rates during outreach or changes in the relationship between simple spikes and reach 187 

velocity across sessions (Fig. S4c-e; Simple spike rate during outreach, No Cspk trials vs. Cspk trials: 188 

p = 0.37, t = 0.90, d = -0.12, paired t-test; Simple spike rate to peak velocity ratio, No Cspk trials vs. 189 

Cspk trials: p = 0.29, W = -273, r = -0.14, Wilcoxon signed rank test). Cspks function to depress PC 190 

inputs, leading to reductions of simple spike rate56,57. If Cspks are responding to erroneous simple spike 191 

elevation, we speculated that simple spike rate should be elevated shortly before the time of a Cspk, as 192 

has been previously demonstrated58. We therefore analyzed simple spike rates aligned to the time of 193 

the Cspk, or the same time on the previous or next trial. In late Cspk trials, Cspks were associated with 194 

higher than average simple spike rates in the 100 ms before a Cspk compared to the previous trial, and 195 

simple spikes in this window were lowered on the trial after the Cspk trial (Fig. 2j,k; p = 9.8 x 10-4, F = 196 

8.0, RM one-way ANOVA; previous trial vs Cspk trial: p = 3.6 x 10-3, d = -0.45, Cspk trial vs next trial: p 197 

= 0.024, d = 0.36, Tukey’s multiple comparisons test). In contrast, early Cspks that occurred before the 198 

onset of reach did not display increases in simple spikes before the Cspk (Fig. S4f,g; p = 0.17, F = 0.69, 199 

RM one-way ANOVA). Together these data reveal dynamics of PC Cspks, simple spikes, and 200 

associated kinematics that suggest a continuous recalibration of kinematic tuning in PCs.  201 

 202 
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Repeated closed-loop optogenetic perturbation of cerebellar inputs during reach causes 203 

hallmark characteristics of sensorimotor adaptation 204 

Next, we sought to probe whether PCs reweight cerebellar inputs that shape movement kinematics. 205 

Previous work has shown that stimulation of pontine afferents to the cerebellum perturbs reaching 206 

movements in mice35. This effect is interpretable as corrupted cortical information entering the 207 

cerebellum which initially drives an erroneous cerebellar control policy observable in acute kinematic 208 

effects. If cerebellar associative learning mechanisms implement the formation of an anticipatory control 209 

policy, a number of predictions emerge: pontocerebellar mossy fiber stimulation that drives reach errors 210 

will, when repeated over many reaches, lead to adaptation of PC responsivity. Removing the 211 

perturbation should lead to aftereffects due to accumulated learning of new contingencies. Finally, 212 

adaptation and aftereffects will be dependent upon the temporal context of the perturbation within the 213 

movement, where learning only accumulates when perturbations are temporally locked to the execution 214 

of the movement.    215 

     To drive erroneous activity in PCs during reaching movements, we injected AAV-expressing hSyn-216 

ChR2 into the pontine nuclei in mice, a major hub relaying motor commands from motor cortex to the 217 

cerebellum35,59–63 (Fig. 3, Fig. S5a, Fig. S6a,b). Recordings of PCs showed that optogenetic stimulation 218 

of mossy fiber afferents in the cerebellar cortex drove both increases and decreases in simple spike 219 

firing rates (Fig. S5b; N = 4 animals, 43/151 cells, 26 increase, 17 decrease; p<0.05, paired t-test). This 220 

diverging stimulation effect is likely due to network properties in the cerebellar input layers leading to 221 

either net excitatory or inhibitory drive onto PCs35,64. Interestingly, cells with sorted Cspks (see Methods) 222 

showed a small but significant increase in Cspk probability in the 250 ms after stimulation during rest 223 

compared to the probability outside of this epoch in response to mossy fiber stimulation (Fig. S5c; N = 224 

4 animals; n = 39 cells; p = 5.6 x 10-3, t = 2.9, d = -0.45, paired t-test), consistent with previous findings 225 

during electrical stimulation of mossy fibers65. Cspks time-locked to mossy fiber stimulation suggest that 226 

optogenetically-driven simple spikes m ay engage plasticity mechanisms to respond to perturbation.   227 

    To assess whether repeated closed-loop stimulation could engage cerebellar learning mechanisms 228 

to produce sensorimotor adaptation, optical fibers were implanted in cerebellar cortex at the interface 229 

between Lobule Simplex and Lobules 4/5 (Fig. S6c,d). Experiments were structured in a block format 230 

where animals reached unperturbed in a baseline block, followed by a stimulation block where closed-231 

loop stimulation of pontocerebellar axons (50-ms train) was delivered on every reach when the hand 232 

passed a 1-cm threshold in the outward direction, and finally a washout block where stimulation was 233 

removed to assess any aftereffects of learning. Each block was roughly 15-30 reaches long determined 234 

by each individual animal’s endurance in the task (Fig. 3a; baseline: 23.1 ± 6.24 reaches; stimulation: 235 

22.4 ± 5.77 reaches; washout: 20.56 ± 6.65 reaches; mean ± SD; N = 5 animals, 104 sessions). Early 236 
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in the stimulation block, we found that stimulation caused acute changes in reach kinematics: in 4/5 237 

animals it caused hypermetric reaches in outward position and in 1 animal it caused hypometric reaches 238 

(Fig. 3b-c, Fig. S7a examples 1 and 2). To assess the relative change in hand position over the 239 

stimulation block, we measured the magnitude of the stimulation effect over the block, defining the initial 240 

direction of the stimulation effect on hand position as positive and the opposing direction as negative. 241 

We found that the magnitude of the stimulation effect decreased over the stimulation block. When the 242 

stimulation was removed, early in the washout block reaches deviated in the direction opposite the initial 243 

stimulation direction, before eventually correcting back to baseline at the end of the washout block in 244 

both outward position and velocity (Fig 3d,e; N = 5 animals, 104 sessions; Outward position: p = 1.7 x 245 

10-3, F = 11.3, RM one-way ANOVA; early stimulation to middle stimulation: p = 8.9 x 10-3, d = 2.0; early 246 

stimulation to early washout: p = 0.030, d = 1.5; early stimulation to middle washout: p = 0.017, d = 1.7; 247 

early stimulation to late washout: p = 0.031, d = 1.4; early washout to late washout: p = 0.042, d = -1.3, 248 

Tukey’s multiple comparisons test; Outward velocity: p = 4.7 x 10-3, F = 12.1, RM one-way ANOVA; early 249 

stimulation to middle stimulation: p = 0.024, d = 1.6; early stimulation to early washout: p = 0.041, d = 250 

1.3; early stimulation to middle washout: p = 3.5 x 10-3, d = 2.6; early stimulation to late washout: p = 251 

0.030, d = 1.5; late stimulation to early washout: p = 0.048, d = 1.3, Tukey’s multiple comparisons test). 252 

The magnitude of the initial stimulation effect on outward position predicted the magnitude of the initial 253 

washout aftereffect across animals (Fig. 3f, R2 = 0.820, slope = -0.608 with 95% CI [-1.13, -0.0853], p = 254 

0.034, F = 13.7); however, hypometric effects were generally larger than hypermetric effects (both during 255 

stimulation and washout), possibly due to biomechanical constraints of the limb and reaching apparatus 256 

imposing a ceiling effect on hypermetric movements. Interestingly, the aftereffect did not appear until 257 

the time that stimulation would have been delivered during outreach (Fig. 3c, Fig. S7d). In control 258 

experiments using red light (635 nm) we observed no kinematic deviations or adaptation profiles as seen 259 

with blue-light stimulation (Fig. S7e). Further, blue-light stimulation at rest produced negligible 260 

movements (Fig. S7f; N = 4 animals, 21 sessions; maximum outward velocity during stimulation: 0.26 261 

cm/s).  262 

     To summarize, we have shown that animals adapt to a precisely timed internal perturbation of 263 

pontocerebellar mossy fibers and this learning is reflected in opposing aftereffects when the perturbation 264 

is removed. Adaptation was temporally precise, with changes in limb kinematics early in the washout 265 

block timed to the predicted point of perturbation. 266 

 267 

PC recordings show electrophysiological correlates of adaptation at the time of perturbation 268 

To investigate cellular correlates of learning in PCs during behavioral adaptation to this circuit-level 269 

perturbation, we performed stimulation experiments while recording near the optical fiber with a 270 
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Neuropixel probe (Fig. 4a). To assure that any firing rate changes were not attributable to unstable cell 271 

isolation across the experiment, we assessed the stability of every PC using two metrics: a correlation 272 

of spike template waveforms and the displacement of units along the electrode in the baseline and 273 

washout blocks (Fig. S8, see Methods). 203 of 314 putative PCs were stable across the experiment, 274 

159 of which were modulated with reach. In the analyses that follow, we analyzed stimulus responsivity 275 

over the stimulus block in all stimulus-responsive PCs and population-level changes over adaptation of 276 

all reach-modulated PCs.  First, to assess optogenetic stimulus responsivity in these neurons, we 277 

compared simple spike firing rates between baseline and stimulated reaches within the 50-ms 278 

stimulation epoch. Consistent with mossy fiber stimulation at rest, we observed a diverging effect pattern 279 

with stimulation during reach: 17 cells showed significant increases in simple spike firing and 25 cells 280 

showed decreases (Fig. 4b, p < 0.05, paired t-test). In both groups, the efficacy of stimulation dropped 281 

over the course of the stimulation block, consistent with adaptation (Fig. 4c,d). To statistically analyze 282 

the progression of the stimulus effect over the stimulation block, we defined the direction of the initial 283 

response as positive for all cells, (pooling cells that were inhibited and excited by stimulation), then 284 

measured the response magnitude over time. The response magnitude dropped across the stimulation 285 

block such that in later trials, firing rates were not significantly different from baseline (Fig 4e,f; n = 5 286 

animals, 42 stimulation modulated cells; p = 7.2 x 10-3, F = 5.5, RM one-way ANOVA; end baseline vs. 287 

first 5 stim: p = 2.6 x 10-3, d = -0.56; end baseline vs. middle 5 stim: p = 0.037, d = -0.41; end baseline 288 

vs. last 5 stim: p = 0.32, d = -0.26, Tukey’s multiple comparisons test). Notably, stimulation affected cells 289 

did not show consistent aftereffects opposing the direction of the initial stimulation effect when the 290 

perturbation was removed. 291 

 Next, we analyzed how mossy fiber perturbations affected simple spike firing across the 292 

population of all reach modulated PCs (stimulus responsive and non-responsive cells). We observed 293 

transient effects of stimulation and opposing aftereffects that were visible on the first trial of the 294 

stimulation and washout blocks, respectively (Fig. 4g). Across the population, the net effect of the first 295 

stimulation was a reduction of simple spike firing rate relative to baseline. (Fig. 4g,h; n = 6 animals, 159 296 

reach modulated cells; rates during the stimulation epoch: p = 2.3 x 10-9, F = 13.8, RM one-way ANOVA; 297 

end baseline vs. first stim: p = 0.012, d = 0.26; end baseline vs. first wash: p = 0.039, d = -0.23; first stim 298 

vs. last 5 stim: p = 7.4 x 10-4, d = -0.47; first stim vs. first wash: p = 3.0 x 10-6, d = -0.42; first stim vs. last 299 

5 wash: p = 1.9 x 10-7, d = -0.47; last 5 stim vs. first wash: p = 0.019, d = -0.25; last 5 stim vs. last 5 300 

wash: p = 0.015, d = -0.25, Tukey’s multiple comparisons test). This effect was rapidly adapted such 301 

that by the end of the stimulation block mean simple spike firing returned to baseline levels. On the first 302 

washout reach, there was marked increase in simple spike rates, an aftereffect opposite the direction of 303 

the initial stimulation effect. This aftereffect was only marginally lower by the end of the washout block; 304 
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however simple spike firing outside of the stimulation window showed a more visible normalization to 305 

baseline levels (Fig. S9a). The dataset was underpowered to relate complex spike probability to these 306 

changes, but in the PCs in which complex spikes were observed, the mean Cspk rate in the 250 ms 307 

after stimulation was not significantly different across the blocks (Fig. S9b; N = 5 animals, n = 13 Cspk 308 

sorted cells, p = 0.31, F= 1.2, RM one-way ANOVA). Overall, these data demonstrate acute effects of 309 

stimulation that adapt across the stimulation block and population-level net aftereffects that oppose the 310 

initial firing rate deflection caused by stimulation, consistent with adaptation to perturbation and opposing 311 

aftereffects seen in reaches.  312 

 313 

Dissociation of adaptation and aftereffects with a randomized perturbation schedule 314 

In the experiments above, we have shown that adaptation is temporally specific (e.g. Fig S7b). We 315 

hypothesized that the temporal specificity of perturbation within the reach produced a fixed association 316 

between active inputs and error, facilitating adaptation. We therefore predicted that by presenting 317 

spatially inconsistent stimuli trial to trial, mice would not adapt to stimulation. To test this, we repeated 318 

block-stimulation experiments, but rather than stimulating when the hand passed the 1-cm outward 319 

plane, we stimulated at a pseudorandomized position in the outward direction uniformly distributed 320 

between 0.3 and 1.8 cm (Fig 5a,b).  To assess the effect of stimulation at different points in the reach, 321 

we aligned reaches to the time of stimulation and measured the difference in position compared to 322 

aligned baseline block reaches. Baseline subtracted reach profiles showed a characteristic change in 323 

outward position aligned to the time of stimulation, similar to results in fixed-position stimulation 324 

experiments. Surprisingly, even though perturbation positions were distributed across the stimulation 325 

block, we found that animals still exhibited adaptation to the stimulation early in the stimulation block, 326 

although this adaptation plateaued to intermediate levels between middle and late block epochs in 327 

outward position and velocity (Fig. 5c,d n = 5 animals, 60 sessions; Outward position: p = 0.016, F = 328 

10.8, RM one-way ANOVA; baseline to early stimulation: p = 3.6 x 10-4, d = -3.9, Tukey’s multiple 329 

comparisons test; Outward velocity: p = 0.016, F = 7.5, RM one-way ANOVA; baseline to early 330 

stimulation: p = 0.040, d = -1.1; early stimulation to late stimulation: p = 0.017, d = 1.4, Tukey’s multiple 331 

comparisons test). To assess the presence of aftereffects, we analyzed the positional and velocity 332 

differences between baseline and washout reaches near the mean of the distribution of stimulus 333 

thresholds (50-100 ms after crossing the 1-cm outward plane). Despite evidence for adaption to the 334 

randomized stimulation, there were no consistent aftereffects; instead, reaches tended to have a greater 335 

distribution of positional differences that averaged to roughly zero (Fig. 5e, Fig. S10; Outward position: 336 

p = 0.65, F= 0.40, RM one-way ANOVA; Outward velocity: p = 0.76, F= 0.23, RM one-way ANOVA).  337 

 338 
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A cerebellar model accounts for experimental adaptation and aftereffect dissociation 339 

To better understand the non-intuitive adaptation profile of position-randomized stimulation, we modified 340 

a simple model of PC firing based on a previously published study66. The model takes as an input parallel 341 

fibers and inhibitory interneurons, each active for 15 ms, that as a population tile a 400-ms hypothetical 342 

movement (Fig. 6a).  The PC rate mimicked the net firing rate suppression that we see in population 343 

activity during reach. At equilibrium, the populations of parallel fibers and interneurons are perfectly 344 

balanced during the movement and cause no deviation in the PC firing rate from trial to trial. The model 345 

employed a learning rule such that any elevation of the PC rate from this equilibrium would lead to 346 

depressing the weights of parallel fibers active at the time of deviation through a Cspk-like error signal, 347 

as in cerebellar LTD. Conversely, parallel fibers with depressed weights relax back to baseline levels in 348 

the absence of Cspks. We titrated the learning rate to match that observed in fixed-position stimulation 349 

experiments (see Methods). 350 

     First, we modelled fixed-position optogenetic-perturbation experiments by artificially increasing 351 

activity in a random subset of parallel fibers and interneurons 50 ms in the middle of the hypothetical 352 

movement (Fig. 6a). Differential parallel fiber to interneuron activation ratios lead to a net activation of 353 

the PC to engage the Cspk-on learning rule, see Methods. Initially, this modification of PC inputs caused 354 

a large deviation in the PC firing rate in the stimulated window, resulting in an error and synaptic 355 

depression of the concomitantly active parallel fibers (Fig. 6b). Over several repeated perturbation trials 356 

this reweighting minimized the effect of the perturbation, correcting PC firing rate back to baseline. After 357 

20 trials, we removed the perturbation. The model output then exhibited opposing aftereffects in PC 358 

firing rate at the previous time of perturbation, before eventually relaxing back to baseline. The 359 

adaptation profile was quantitatively similar to the empirically observed behavior. Importantly, we note 360 

that the aftereffect seen in the PC firing profile is a consequence of depressed weights in both perturbed 361 

parallel fibers and other unperturbed parallel fibers that were coincidentally active at the time of the 362 

perturbation (Fig. 6c,d). Thus, the model was unable to distinguish the difference between parallel fibers 363 

that caused or did not cause a deviation from the target PC activity within the perturbation epoch.    364 

   Next, we modeled the position-randomized mossy fiber stimulation paradigm (Fig 6e-g). As with the 365 

empirical results, we saw a reduction in the magnitude of the perturbation effect, consistent with high 366 

probabilities of Cspks around the time of a perturbation – that is, the perturbed inputs are subject to 367 

learning because they are always aligned to the error that follows (Fig. 6e). While the magnitude of 368 

adaptation was smaller than observed in the fixed position model, we found that the model learning 369 

plateaued late in the perturbation block, similar to empirical observations (Fig. 6g). When the 370 

perturbation was removed, there were minimal aftereffects, also consistent with experimental data. 371 

Model weights at the end of perturbation show that this absence of aftereffects is explained by the lack 372 
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of accumulated learning in coincidentally active parallel fibers; i.e., when perturbations are distributed 373 

across the movement, coincidently active parallel fibers are different from trial to trial, and therefore 374 

subjected to only transient plasticity (Fig. 6f). Thus, in randomized stimulation, the presence of 375 

adaptation illustrated a mechanism by which the cerebellum distinguishes cause-and-effect using time: 376 

adaptation is explained by the conserved causal relationship between stimulated PC inputs and error, 377 

while the absence of an aftereffect is the result of unaccumulated trial-over-trial learning in coincidentally 378 

active non-stimulated inputs. By contrast, aftereffects in the fixed position paradigm are a consequence 379 

of the system generalizing attribution of error to fibers that were merely coincidently active relative to 380 

perturbation but did not necessarily drive error.  381 

 382 

Discussion 383 

Here we discovered a naturally occurring PC population suppression during mouse reaching 384 

movements that scaled with the velocity of outreach and occurred shortly before the transition to the 385 

decelerative phase of movement, reminiscent of emergent PC population kinematic coding in 386 

oculomotor vermis during saccades45. We speculate that this suppression is a type of conditioned 387 

response: sensorimotor information relayed through mossy fibers become learned cues for PCs to scale 388 

the decelerative phase of movement via disinhibition of the anterior interposed nucleus. We further 389 

demonstrate kinematic effects of mossy fiber stimulation that decrease over trials, akin to sensorimotor 390 

adaptation, with concordant changes in PC activity that imply cerebellar associative learning. We 391 

observed a surprising dissociation of adaptation and aftereffects when randomizing the position of 392 

stimulation during reach, designed to test the reliance of adaptation on perturbation context. A model 393 

demonstrated that aftereffects are a consequence of misattribution of error to consistently coactive 394 

parallel fibers. Conversely, the dissociation of adaptation and aftereffects reflects a lack of accumulated 395 

plasticity at a single point during the movement. 396 

     By demonstrating remapping of inputs to outputs of the cerebellar cortex, we link concepts developed 397 

in delay eyeblink conditioning to adaptation of a skilled volitional movement. Specifically, the mossy fiber 398 

stimulation used here to drive reach perturbations is analogous to mossy fiber stimulation used as a 399 

conditioned stimulus in eyeblink conditioning. We speculate that motor plan or early kinematic 400 

information acts endogenously as such a conditioned stimulus associated with reach outcome that, 401 

when erroneous, drives cerebellar learning51. We note some nuanced differences between paradigms, 402 

however. For instance, adaptation to pontocerebellar stimulation occurs within tens of trials, many fewer 403 

than conditioned eyeblink responses, which require hundreds of pairings 67. However, non-human 404 

primates and cats exhibit rapid adaptation consistent with our results in other sensorimotor adaptation 405 

paradigms32,68.  One possible explanation for these different learning speeds is the richness of a 406 
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temporal basis set that may emerge in the cerebellar granule cell layer in response to inflow of efferent 407 

commands and sensory feedback during movement compared to a relatively impoverished basis set 408 

from an invariant, unimodal conditioned stimulus. Indeed, locomotion concurrent with eyeblink training 409 

expedites learning69, consistent with this view. Further, eyeblink responses are generated de novo, 410 

where PCs must develop a novel response to an unfamiliar stimulus. Conversely, pontocerebellar 411 

stimulation during reach alters the execution of a movement for which a mossy fiber to cerebellar output 412 

mapping may already exist. Thus, PCs must simply adjust already existing responses, potentially 413 

speeding the rate of learning. 414 

     Another conspicuous departure from learning seen in eyeblink conditioning is that mossy fiber 415 

stimulation during reach drives an error. Thus, the unconditioned stimulus is not externally imposed but 416 

is rather the erroneous behavior that results from the perturbed mossy fiber activity. In this sense, the 417 

mossy fiber activity that interferes with cerebellar control acts as both a conditioned stimulus and 418 

generates a movement error that acts as an unconditioned stimulus to drive learning. In addition, 419 

eyeblink conditioning involves the cerebellum associating two stimuli that are not causally linked (i.e., 420 

the tone does not cause an air puff) while reach adaptation associates sensorimotor information that is 421 

causal to reach error (i.e., the erroneous motor commands generated by the cerebellum cause a reach 422 

error). Because this conditioned stimulus cannot be decoupled from the movement error, adaptation 423 

should always occur with repeated stimulation even under randomized stimulus conditions. In the case 424 

of external perturbations of limb movements, randomizing the direction of perturbations on reaching 425 

movements manifests as reach adaptation on the subsequent trial70, but adaptation does not accumulate 426 

because the cause of errors cannot be predicted. Our randomization experiments have a key difference: 427 

the internally perturbed mossy fibers are a consistent source of error, allowing the system to drive 428 

adaptation to these inputs. Importantly, because these perturbed inputs have no temporal correlation 429 

with the movement, no aftereffects are produced in the native population of mossy fibers active in the 430 

absence of stimulation.   431 

     Isolating a locus of skilled reach adaptation to the cerebellum poses an important conceptual hurdle. 432 

Cerebral cortex is a major input to the pontine nuclei – the focus of perturbation in this study – thus 433 

learning in motor cortex must be accounted for in cerebellar contributions to movement. Likewise, 434 

cerebellar outputs relay information back to motor cortex indirectly via thalamus71–74. Previous work has 435 

demonstrated that reach-associated pontocerebellar stimulation drives activity in motor cortex35, 436 

meaning each learner in this loop stays apprised of the activity in the other. Could plasticity sites outside 437 

the cerebellum account for our observations? Our data argue for a locus of learning in the cerebellum 438 

in two major ways: First, we observe a reduced efficacy of mossy fiber drive onto Purkinje cells over 439 

many repeated trials. A parsimonious explanation is that highly-plastic parallel fiber synaptic weights are 440 
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changing during adaptation rather than cortical commands overriding these proximal perturbations. 441 

Second, if PC firing rate changes were caused by modulated afferents to the cerebellum, it would be 442 

difficult to reconcile such a mechanism with adaptation to randomized stimulation because these 443 

compensatory cerebellar inputs could not predict the time of stimulation. 444 

     How might multiple connected brain regions, all of which are implicated in learning, accomplish 445 

learning a task in parallel? In our study, mice were expertly trained when we introduced optogenetic 446 

perturbation of inputs. Thus, stimulating pontocerebellar fibers, we corrupted the relationship of action 447 

directed by motor cortex and the established cerebellar response tuned to that action. Through 448 

adaptation, the cerebellum learned to assist movements with these newly modified inputs as evidenced 449 

by the diminishing kinematic effect on the limb; when stimulation was removed, the novel mismatch of 450 

cortical and adapted cerebellar contribution to the movement again manifests as movement errors.  451 

Our data unite two threads of cerebellar theory, classical conditioning and motor adaptation under the 452 

umbrella of associative learning, where active inputs to the cerebellum can be flexibly reformatted to 453 

more accurately accomplish a goal.  454 
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Methods: 455 

Animals  456 
All procedures followed National Institutes of Health Guidelines and were approved by the Institutional 457 

Animal Care and Use Committee at the University of Colorado Anschutz Medical Campus. Animals were 458 

housed in an environmentally controlled room, kept on a 12 h light/dark cycle and had ad libitum access 459 

to food and water except during behavioral training and testing as described below. Adult C57BL/6 460 

(Charles River Laboratories) mice of either sex (11 females, 8 males) were used in all experiments.  461 

 462 

Surgical procedures 463 

All surgical procedures were conducted under Ketamine/Xylazine anesthesia. After induction of 464 

anesthesia, the surgical site was cleaned and subcutaneously injected with bupivacaine (2.5 mg/mL). 465 

Pressure injections of approximately 150 nL of AAV2-hSyn-ChR2-mCherry were stereotaxically targeted 466 

to the left pontine nuclei (-4.0 mm anterior-posterior, -0.5 mm medial-lateral, -5.4 mm dorsal-ventral, 467 

measured from bregma) and animals were allowed to recover for a minimum of 8 weeks to ensure 468 

expression in mossy fiber terminals in the cerebellar cortex. Custom made aluminum head plates were 469 

affixed to the skull centered on bregma with luting (3M) and dental acrylic (Teet’s cold cure).  Optical 470 

fibers (105 micron core diameter, Thor Labs) attached to a ceramic ferrule (1.25 mm, Thor Labs) were 471 

implanted into the primary fissure, between Lob 4/5 and Simplex (-6.25 mm anterior-posterior, 1.9 mm 472 

medial-lateral, measured from bregma) at a depth of 1.2 mm13. For recording experiments, a craniotomy 473 

was made medial to the fiber placement and a recording chamber was secured with dental acrylic as 474 

previously described75. 475 

 476 

Behavioral task  477 

Animals were allowed a minimum of 2 days of recovery after head fixation surgery, then were food 478 

restricted to 80-90% of their baseline weight for reach training. Mice were habituated to the headfixed 479 

apparatus by presenting food pellets (20 mg, BioServ #F0163) that could be retrieved with their tongue, 480 

then pellets were progressively moved further from the mouth until animals began reaching for food. 481 

Pellets were positioned to the right of the animal to encourage reaching with the right forelimb and moved 482 

to a consistent position specific to each mouse ~1.2 – 2.5 cm from reach start. Sessions lasted until 483 

animals successfully retrieved 20 pellets or until 30 minutes had elapsed, whichever came first. Mice 484 

were trained for a minimum of 15 days and were considered fully trained once they could successfully 485 

retrieve 50% of pellets 3 days in a row.  486 

 487 

Kinematic tracking and closed-loop optogenetic stimulation 488 
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Hand position was tracked in real time using an infrared-based machine-vision motion-capture system 489 

(6 Optitrack Slim3U Cameras mounted with LED ring arrays, Motive software) at 120 frames-per-second 490 

as previously described2. Cameras were positioned in front and to the right of the animal and focused 491 

on the approximately 8 cm3 spatial volume that covered the reach area of the right forelimb. 1-mm 492 

diameter retroreflective markers were used for camera calibration and affixed to the mouse hand for 493 

kinematic tracking. A custom-built calibration wand and ground plane were used to set position and 494 

orientation of the cameras in Optitrack Motive software. Camera calibration was refined monthly to 495 

account for any drift of the cameras over time. Calibrations that reported a mean triangulation error <0.05 496 

mm were considered passes. The spatial origin was set to be at the center of the bar where mice placed 497 

their hand during rest. Spatial blocking and camera detection thresholds were adjusted to prevent 498 

erroneous tracking of minimally infrared-reflective objects.  499 

     Real-time hand positions were streamed into MATLAB (2018a) with a latency under 1 ms. Custom-500 

written MATLAB code was used to detect when the hand passed a positional threshold 1-cm outward 501 

from the bar where the mice rested their hand then send a ‘go’ signal to an Arduino microcontroller (Uno) 502 

which triggered a laser with TTL pulses. To ensure low-latency closed-loop stimulation we used an open-503 

source C++ dynamic link library76 edited to reflect the parameters of laser stimulation (50-ms stimulation, 504 

100 Hz, 2-ms train). This system has a closed-loop latency of 9.5 ms from the time of threshold crossing 505 

(120 fps camera frame rate, 0.5 ± 0.1 ms (mean ± SD) MATLAB-Arduino communication). Hand 506 

positions and stimulation times were streamed into MATLAB and saved for post-processing.  507 

 508 

Kinematic analysis 509 

All kinematic analysis was performed using custom-written MATLAB code. First, erroneously tracked 510 

objects were removed using a nearest neighbor analysis, which assessed the closest markers in 511 

subsequent frames and removed others, to produce a single positional trajectory of the hand marker 512 

over time. Any dropped frames where the marker was not detected were interpolated over, then data 513 

were filtered using a 2nd-order low-pass Butterworth filter (10 Hz)77 using MATLAB’s zero-phase filter 514 

function “filtfilt”. Last, interpolated points were removed such that the filtered marker positional data 515 

reflected only data captured during the experimental session.  516 

     To segment continuous data into reaches, we found instances of the marker passing the 1-cm 517 

positional threshold in the outward direction and clipped 10-s segments centered on this time point. We 518 

defined outreach as the segment of this data from the time before threshold crossing that the hand 519 

exceeded 2 cm/s in outward and upward velocity to the time after threshold crossing where the hand 520 

stopped moving in the positive outward direction (outward velocity < 0 cm/s). Occasionally, the marker 521 

would become obscured behind the pellet holder during reach or spurious detection of the nose would 522 
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jump the marker position to the nose and be detected as a reach. Therefore, to prevent against analyzing 523 

reaches that had large segments of data missing, any threshold crossings where the marker dropped 524 

greater than 25% of points between the start and end of outreach were not considered for further 525 

analysis. 526 

     Reach velocity and acceleration were calculated using the numerical gradient between position 527 

timepoints in each dimension. To produce aligned reach position curves, we interpolated data at 10 ms 528 

centered on the time the hand passed the 1 cm positional threshold crossing in outward direction. The 529 

effect of stimulation was assessed by measuring changes in stimulation and washout reaches (early, 530 

middle, and late) relative to the last 5 baseline reaches in the 50-ms interval following the end of 531 

stimulation. To assess the unadapted effect of stimulation or washout, early reaches were defined as 532 

the first reach in each block; middle and late reaches were the middle 5 and last 5 reaches of reach 533 

block, respectively. To align random-stimulation position reaches, we found the positional threshold of 534 

stimulation on each reach, then aligned stimulation reaches and baseline reaches to the time they 535 

crossed this boundary during outreach, averaged across reaches, then measured the difference in these 536 

curves, yielding the stimulation-aligned positional difference between end baseline and stimulation 537 

reaches. For washout reaches in random-position stimulation experiments, reaches were aligned to the 538 

time of the threshold crossing at 1 cm such that the aftereffect could be compared to fixed-position 539 

stimulation experiments. To account for varying effects of stimulation seen across animals (hypermetric 540 

and hypometric movements), the direction of positional change in early stimulation reaches relative to 541 

baseline for each animal in random- or fixed-position stimulation experiments was defined as the positive 542 

direction and the opposing direction as negative for that animal in each paradigm, allowing us to group 543 

data across animals with diverging effects. To assess the time course of stimulation effects within 544 

individual animals, we measured differences in position at each timepoint between the early stimulation 545 

reaches and baseline reaches using a Wilcoxon signed rank test.  546 

 547 

Electrophysiology recording procedure 548 

Craniotomies were made over the cerebellum ipsilateral to the reaching arm of in fully trained animals. 549 

A custom-made recording chamber was implanted over the craniotomy, the brain was covered with 550 

triple-antibiotic cream (Globe), and the recording chamber was sealed with Quik-sil silicone (World 551 

Precision Instruments) such that it could be preserved for multiple recordings.  552 

 553 

Single electrode recordings 554 

Single-electrode recordings were performed with 3-5 MOhm platinum/tungsten optrodes (Thomas 555 

Recording). Once animals were headfixed, the electrode was targeted to -6.25 mm anterior-posterior, 556 
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1.9 mm medial-lateral (measured from bregma) then lowered into the brain up to a depth of 1.8 mm with 557 

a motorized micromanipulator (Newport Motion Controller, Model 861). Signals were band-pass filtered 558 

at 300-5000 Hz, amplified with a MultiClamp 700A amplifier (Axon Instruments), then digitized (CED 559 

Power3 1401) and recorded with Spike2 software (CED). Once a putative PC was isolated, the brain 560 

tissue was allowed to relax for 15 minutes. Cell sorting was performed offline using Psort78. 561 

      562 

Neuropixel recordings 563 

Neuropixels were lowered into the brain using a motorized micromanipulator (Sensapex uMp 564 

micromanipulator). Once the electrode shank spanned the putative PC layer, the tissue was allowed to 565 

relax for 15 minutes. Electrophysiology data was acquired using an OpenEphys system (https://open-566 

ephys.org/gui). Data were sorted offline in Kilosort279 and manually curated in phy 567 

(https://github.com/cortex-lab/phy).  568 

 569 

Neural data analysis 570 

Following sorting, isolated units were analyzed offline using custom-written MATLAB code. In well-571 

isolated single-electrode units, simple spikes and identifiable Cspks were sorted using Psort. To identify 572 

Cspks in Neuropixel recordings, we cross-correlated cells with high firing rates in the cortex with adjacent 573 

low-firing-rate clusters and looked for the presence of a Cspk-aligned simple spike pause and 574 

characteristic simple spike and Cspk waveforms. In many cells Cspks could not be identified across the 575 

length of the experiment. In these cases, we identified PCs based on cortical location and 576 

electrophysiological criteria using the firing rate, CV2, and median absolute difference from the median 577 

interspike interval (MAD)80. Cerebellar cortical cells with a firing rate > 40 spikes/s, CV2 > 0.20, MAD < 578 

0.008 were labeled as PCs (Fig. S2). Using these metrics we were able to positively identify 94.9% of 579 

Cspk identified cells. We visualized these metrics in a 2-dimensional space using the tSNE function in 580 

MATLAB (parameters: distance = ‘euclidean’, exaggeration = 4, perplexity = 30, learning rate = 5000). 581 

Instantaneous firing rates for PCs were calculated by taking the inverse of the ISI between spikes, 582 

convolving with a 20-ms gaussian, then sampling at 10-ms intervals. In Neuropixel recording adaptation 583 

experiments we analyzed reach modulated PCs, defined as exhibiting a firing rate change during the 584 

reach epoch ≥ 1 standard deviation of the mean firing rate of the cell. Cell recordings from the baseline 585 

(unstimulated) block from cerebellar stimulation experiments during reach were included in the datasets 586 

in Figures 1 and 2. For analysis of pooled population firing rate data in Figure 1, we normalized reaches 587 

by velocity for each session, and binned them into velocity quintiles. Thus, each cell was equally 588 

represented across all velocity quintiles.  To find the magnitude of the firing rate decrease in grouped 589 

population PC data, we found the minimum value of the population firing rate traces for each percentile 590 
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bin within the peri-reach window (-500 ms to +500 from threshold crossing). We found the time of firing 591 

rate suppression by measuring the point at which each trace decreased firing by 50% from peak to nadir 592 

in this peri-reach window. We characterized early Cspks as those that occurred within 500 ms before 593 

reach onset, corresponding to roughly the time of Cspk elevation seen across cells (Fig. 2a). Late Cspks 594 

were characterized as those that occurred during outreach or the 500 ms window after the end of 595 

outreach. 596 

     In pontocerebellar stimulation experiments, to assure that observed simple spike adaptation was not 597 

the result of changing unit isolation across the experiment, we assessed unit stability with two metrics: 598 

waveform correlation and unit displacement across the experiment81. To assess waveform correlation, 599 

we isolated the template waveforms for each unit on the electrode with the greatest spike amplitude and 600 

the 32 surrounding electrodes (33 total). We averaged 1000 randomly selected spike waveforms for 601 

each channel from the baseline block and the washout block, concatenated waveform templates across 602 

the 33 channels, then correlated the concatenated waveforms from the baseline and washout blocks 603 

(Pearson correlation). As a shuffled control, we correlated concatenated templates from neighboring 604 

units in the baseline and washout block. Neighboring units were defined as those whose 32 surrounding 605 

electrodes overlapped with the unit of interest. PCs whose across experiment waveform correlation did 606 

not exceed the 99th percentile (0.76) of the across-unit shuffled control correlation were excluded from 607 

further analysis.  608 

     To assess cell displacement across the experiment we calculated the position of unit (𝑥, 𝑦) using 609 

 610 

(𝑥, 𝑦) = (
∑ 𝑥𝑖𝑎𝑖

2𝑁
𝑖=1

∑ 𝑎𝑖
2𝑁

𝑖=1

,
∑ 𝑦𝑖𝑎𝑖

2𝑁
𝑖=1

∑ 𝑎𝑖
2𝑁

𝑖=1

) 611 

 612 

where 𝑁 is the number of electrodes, 𝑥𝑖 and 𝑦𝑖 are the lateral and upward position of the electrode, and 613 

𝑎𝑖 is the peak-to-peak spike waveform amplitude on the ith electrode. Unit displacement was defined as 614 

the Euclidean distance between unit positions in the baseline and washout blocks. As a shuffled control, 615 

the displacement between neighboring units (as defined above) across the experiment was calculated. 616 

PCs whose displacement was above the 1st percentile (2.36 m) of shuffled control were excluded from 617 

further analysis.   618 

 619 

LASSO regression 620 

To quantify the variance of PC simple spike firing rate that could be explained by reach kinematics, we 621 

used least absolute shrinkage and selection operator (LASSO) regression36. LASSO has the advantage 622 

of performing both regressor selection and regularization, producing a sparse model of many correlated 623 
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kinematic regressors. 23 kinematic variables were used as regressors, including position, velocity, and 624 

acceleration in the upward, outward, and lateral directions, speed, unsigned acceleration, with each 625 

velocity and acceleration term additionally broken into positive and negative components. A full list of 626 

regressors is included in Fig. S3.  Data for each reach were clipped into 2-s segments centered at the 627 

time of a 1-cm threshold crossing in the outward direction. Regression was performed using a custom-628 

written MATLAB code using the “lasso” function. All kinematic data were standardized to have a mean 629 

of 0 and a variance of 1, and regression was performed with a 10-fold cross validation to avoid overfitting. 630 

To find the appropriate offset of firing rate and kinematics, instantaneous simple spike firing rates for 631 

each reach were offset by lags from 0 ms to -300 ms (firing rate leading kinematics) in 10-ms steps. The 632 

lag that minimized the mean squared error (MSE) of the regression was selected for each cell. To 633 

calculate the variance of firing rate explained, the predicted firing rates from the best fit regression were 634 

calculated from the kinematic data and compared to empirical data. R2 was calculated using: 635 

 636 

𝑅2 = 1 −
𝑆𝑆𝑟𝑒𝑠

𝑆𝑆𝑡𝑜𝑡
 637 

 638 

where 𝑆𝑆𝑟𝑒𝑠 is the sum of squared residuals and 𝑆𝑆𝑡𝑜𝑡 is the total sum of squares.  639 

     For the spike shuffled control, spike times on individual trials were shuffled in time so that each reach 640 

epoch had the same mean firing rate, then converted to instantaneous firing rates as described above. 641 

For the reach shuffled control, reaches were assigned to firing rates recorded on different reaches. For 642 

both controls regressions were performed at the lag that minimized the MSE for empirical data and 643 

repeated 100 times; R2 values of each shuffled control were taken as the average of these 100 644 

regressions. To assess the unique contribution of individual kinematic regressors to the fraction of 645 

variance explained in the empirical data regression, each regressor was time shuffled independently 646 

and regressions were repeated. The change in R2 value between the regressor shuffled regression 647 

compared to the complete empirical data model is the fraction of unique contribution to total variance 648 

explained for each kinematic variable42.  649 

 650 

Cerebellar model 651 

The cerebellar model in the paper was derived from a previously published model66 and written using 652 

custom code in Python. A major difference between our paper’s model and the cited model is the 653 

assumption of a continuous temporal input of parallel fiber activity distributed across a hypothetical 400-654 

ms movement, rather than a single parallel fiber input trial over trial. The model PC was fed 1000 parallel 655 

fibers that positively modulated the PC firing rate and 1000 MLIs that negatively modulated the PC firing 656 
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rate, which were each active for 15 ms during a 400-ms interval, mimicking hypothesized temporal basis 657 

sets produced by the granule cell layer82–84. In the absence of perturbation these populations were 658 

perfectly balanced leading to no changes of PC firing from trial to trial. PC firing at time t on the nth trial 659 

was calculated as the sum of the weighted contribution of all parallel fibers and MLIs at time t: 660 

 661 

𝑃𝐶𝑛(𝑡) =  𝑃𝐶0(𝑡) + ∑ 𝑤𝑛
𝑖 𝑃𝐹𝑛

𝑖(𝑡)

1000

𝑖

− ∑ 𝑀𝐿𝐼𝑛
𝑖 (𝑡)

1000

𝑖

   662 

 663 

Here, 𝑤𝑛
𝑖  is the weight of parallel fiber i on the nth trial and PC0 is the baseline firing rate of the PC.  664 

Parallel fibers weights were subject to a learning rule based on deviations of the PC firing rate 665 

from trial to trial. Weights were adjusted following each trial according to two parameters: the probability 666 

of a Cspk as a function of trial error 𝛽𝑃(𝐶𝑆|𝐸𝑛) where 𝛽 (0.15) dictates the strength of synaptic 667 

depression in response to a Cspk, and a decay term, 𝛼𝑃𝐹 (0.95), that relaxes parallel fiber weights back 668 

to their initial value 𝑤0
𝑖 : 669 

 670 

𝑤𝑛+1
𝑖 =  𝑤𝑛

𝑖 − (1 − 𝛼𝑃𝐹)(𝑤𝑛
𝑖 − 𝑤0

𝑖 ) − 𝛽𝑃(𝐶𝑆(𝑡)|𝐸𝑛(𝑡)) if 𝑃𝐹𝑖(𝑡) > 0 671 

 672 

The probability of a Cspk is a function of t, where positive deviations in the PC rate from baseline at time 673 

t lead to elevation of Cspks rates from baseline leading to LTD and negative deviations of PC rate lead 674 

to reduction of Cspk rates from baseline levels, leading to LTP85. Specifically, the error at time 𝑡 (𝐸𝑛 (𝑡)) 675 

was used to calculate the probability of a Cspk at each time in the movement interval: 676 

 677 

𝑃(𝐶𝑆(𝑡)|𝐸𝑛(𝑡)) =  
𝑎

1+𝑒−𝜏𝐸𝑛(𝑡)
−

𝑎

2
 678 

 679 

To obtain values for the parameters 𝑎 and 𝜏, we fit a curve to the change in position of early, middle, 680 

and late stimulated reaches in fixed-position stimulation experiments, then took the derivative of this 681 

curve to obtain the error correction (trial-over-trial positional change) for a given error magnitude.  682 

     We ran the simulations mimicking the experimental block structure used for empirical data, including 683 

a baseline block with no perturbation, an experimental block with a perturbation on every trial, and a 684 

washout block with the perturbation removed. For net positive perturbation trials, we added activity to a 685 

random subset of 150 parallel fibers and 50 MLIs at t = 200 ms for 50 ms that, when combined, drove 686 

an increase of 60 simple spikes/second in PCs at their initial weights (Fig 7). For net negative 687 

perturbation trials, we added activity to a random subset of 50 parallel fibers and 150 MLIs at t = 200 ms 688 
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for 50 ms that drove a net decrease 60 simple spikes/second in PCs (Fig. S9). For each simulation, after 689 

20 perturbation trials, the perturbation was removed, and the model was run for an additional 20 washout 690 

trials. To simulate random-position perturbation experiments, the time of perturbation was changed on 691 

every trial.  692 

 693 

Statistical analysis and data presentation 694 

Data reported in the manuscript reflect statistical summaries from each animal across multiple sessions. 695 

For electrophysiological data, each neuron was treated as an independent sample. All data were tested 696 

for normality with the Kolmogorov-Smirnov test to choose the appropriate statistical analysis. All t-tests 697 

mentioned in the manuscript were two-sided, unless stated otherwise. In box and whisker plots, the box 698 

displays the median and 25th and 75th percentiles and the whiskers extend to the max and min of the 699 

data, with the mean is displayed as a dot in the box.  700 

     Effect sizes for parametric tests were estimated using Cohen’s d. For datasets with fewer than 50 701 

samples, the Cohen’s d value was corrected for small sample size by multiplying by 702 

(
𝑁 − 3

𝑁 − 2.25
) (√

𝑁 − 2

𝑁
) 703 

 704 

where N is the number of samples. Effect sizes for non-parametric tests were estimated by calculating 705 

r defined as 706 

 707 

(
𝑍

√𝑁
) 708 

 709 

where Z is the Z statistic and N is the number of samples. 710 

 711 

Code and data availability 712 

The code for cerebellar model can be found at github.com/dycala. Data used to make each of the figures 713 

is included in the supplementary materials. Analysis code and other data are available upon reasonable 714 

request to the authors.  715 
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Figure 1. Net population activity in Purkinje cells predicts reach velocity.  
a. Schematic diagram of conceptual framework and experimental paradigm. Predictions computed by the cerebellum are 

hypothesized to be learned through reweighting of cerebellar inputs, including copies of motor commands, instructed by 
changes in climbing fiber activity. PCs of the deep central sulcus were recorded with either single electrodes or Neuropixel 
probes while the reaching hand was tracked in real-time with high-speed cameras.  

b. Kinematic regressors in multilinear LASSO regression were used to model firing rates on individual reaches across sessions.  
c. Examples of 3 PCs fit with LASSO regression. Top: trial-averaged empirical and LASSO predicted firing rates. Bottom: outward 

position and velocity aligned to firing rate at optimal lag (meanSEM). 
d. Modest single-trial R2 for single cells in empirical, reach shuffled, and spike shuffled LASSO regressions (Box plot shows 

median line +/- 25%tiles, center dot is mean, whiskers are 10-90%).  
e. Absolute model error (empirical vs predicted, across outward, upward and lateral positions) as a function of reach position. 

Stable error suggests continuous encoding of reach kinematics across reach epoch. Positions binned at 0.1 cm.  
f. During reach (kinematics, green), PCs group roughly into cells that increase firing rate (red) and cells that decrease firing rate 

(blue), aligned to the time the hand passed ‘threshold’, 1-cm in the outward direction.  
g. Simple spike firing rate modulation during reaches grouped by reach speed. Cells that increase (red) and decrease (blue) firing 

rate both showed lower firing rates during faster reaches. 
h. Pooling all PCs reveals net firing rate suppression that scales with reach velocity percentile. Top: Binned reach velocities 

associated with recordings. Bottom: Net PC population firing rate change for each reach velocity bin. 
i. Magnitude of net firing rate suppression in total PC population as a function of outward velocity. Firing rate during the 

suppression in population activity was strongly negatively related to reach velocity (meanSEM). 
j. Time of population suppression is intermediate between peak outward acceleration and peak outward velocity, preceding 

deceleration. Plot relates the median timing of reach start, peak outward acceleration, peak outward velocity, and peak outward 

deceleration to the time of population simple spike suppression for each reach velocity bin shown in i (meanSEM). 
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Figure 2. Reaches with Cspks have erroneous kinematics and elevated simple spike rates.  
a. Cspks are positively modulated in the 500 ms before reach before dropping close to baseline values. Top: Mean velocity of 

reaches with Cspks recorded. Bottom: PETH of Cspk activity relative to the time of threshold crossing (meanSEM, asterisk 
indicates p < 0.05 for post-hoc Dunnett’s multiple comparisons test with mean Cspk firing rate). 

b. Positional profiles from an example session separated into reaches with (red) and without Cspks (black) during or shortly after 

outreach (meanSEM).  
c. Endpoint of reaches relative to session median in the outward and upward directions (top) and outward and lateral directions 

(bottom) for trials with and without Cspks. Large red or grey dot indicates mean and SEM from Cspk and non-Cspk reaches. 
d. Session endpoints relative to session median for Cspk and non-Cspk reaches for each recorded cell with Cspks during or after 

outreach (n = 58 cells). Grey line links Cspk endpoint average with non-Cspk endpoint average for an individual session with 
the recorded cell. Left: outward and upward endpoint position. Right: outward and lateral endpoint position.  

e. Reach endpoints on Cspk trials were significantly further from session median compared to non-Cspk trials.  
f. Peak outward velocity was not significantly different between Cspk and non-Cspk trials. 

g. PC simple spikes (Sspk) on Cspk and non-Cspk trials aligned to threshold crossing (meanSEM). 
h. PC simple spike (Sspk) rates were significantly higher during outreach in trials with Cspks (n = 58 cells).  
i. Ratio of simple spike rate to outward velocity was significantly higher during outreach in trials with Cspks. 
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j. Simple spike rate aligned to the time a Cspks, or simple spikes aligned to the same time relative to threshold crossing on the 

previous trial showed simple spike increases shortly before the Cspk (meanSEM).  
k. Quantification of simple spike rates in the 100 ms before a Cspk on a Cspk trial or a the previous/next trial aligned to the same 

time of the Cspk relative to threshold crossing. 

 

 
Figure 3. Adaptation to mossy fiber stimulation during reach. 
a. Headfixed mice expressing ChR2 in pontocerebellar mossy fibers were trained to reach for food pellets while the hand was 

tracked with high-speed cameras. On laser trials, light directed to cerebellar primary fissure through an implanted fiber was 
triggered in closed loop after the hand crossed a plane 1 cm outward from reach start position. Bottom: Perturbation 
schedule followed canonical adaptation structure, with a baseline (no-stimulation) block, stimulation block with stimulation 
on every reach, followed by a washout block with stimulation omitted. 

b. Hand position 100 ms after threshold crossing in the first stimulated (blue) and washout (red) reaches heading to the target 
(white), after Guo et al. (2021).  

c. Hand position during baseline (grey), compared to hand position measured across the adaptation and washout blocks in an 

example mouse (n = 20 sessions; meanSEM). Blue shading denotes the time of mossy fiber stimulation.  
d. Summary of stimulation-induced kinematic effects, which decay over the adaptation block and show opposing aftereffects. 

Baseline subtracted hand position, rectified relative to the direction of kinematic effect of stimulation, is shown for reaches 
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in the early (first reach), middle (middle 5), and late (last 5) phases for both stimulation (blue) and washout (red) blocks (N=5 

mice; 104 sessions; meanSEM). 
e. Summary of adaptation effects across animals and sessions. Relative change in outward position was assessed in the 50-

ms window following the end of stimulation. Asterisks indicate statistically significant differences between blocks (p values 
reported in main text; Box and whiskers denote median, 25%, 75%, max and min, circle indicates mean). 

f. Same as e, but with outward velocity assessed in the 50-ms following the start of stimulation.  
g. The magnitude and direction of early stimulation effect was related to aftereffects. Plot shows linear regression relating the 

magnitude of the early stimulation outward position effect and early washout outward position effect compared to baseline 
reaches. 
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Figure 4. PCs show electrophysiological correlates of behavioral adaptation over the stimulation and washout blocks. 
a. Mossy fibers were stimulated at threshold crossing during outreach while recording PCs with Neuropixel probes.  
b. Mossy fiber stimulation effect during reach of all reach-modulated PCs. The difference in simple spike rate during the stimulation 

window is compared to the same epoch during baseline reaches (n = 159 cells). Significant differences are denoted by the color 
map on the right.  

c. Population summary of activity of PCs firing rate adaptation over stimulation block for all PCs positively modulated by 

stimulation. Top: mean reach velocity for all sessions (meanSEM). Bottom: Average change in simple spike rates for the last 
5 baseline reaches (black) and the first 5 (cyan), middle 5 (light blue), and last 5 (dark blue) stimulated reaches. n = 17 cells. 

d. Same as in c but for the population of PCs negatively modulated by stimulation. n = 25 cells. 
e. Same as in c but measuring the magnitude of stimulation across stim increase and stim decrease cells. Here the effect of 

stimulation is measured in the direction of the initial stimulation effect, thus a positive deflection for stimulation increase cells 
means an increase in firing rate relative to baseline, and a positive deflection for stimulation decrease cells means a decrease 
in firing rate relative to baseline.  

f. Quantification of the data shown in e. (meanSEM). 
g. Population activity across all reach modulated cells. The first stimulated trial shows a negative deflection in net firing rate relative 

to baseline. Conversely, the first washout reach shows a net positive deflection. Grey box indicates the time of stimulation or 
analogous time in the washout block. 

h. Quantification of simple spike firing rates in the stimulation window for the data shown in g and the last 5 stimulated reaches 
and washout reaches. 
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Figure 5. Dissociation of adaptation and aftereffects with randomized stimulation position. 
a. Stimulation location during outreach was distributed pseudorandomly between 0.3 and 1.8 cm in the outward direction during 

the stimulation block. 
b. Examples of reaches stimulated at 5 different locations during outreach. Each stimulated reach is compared to the last 5 

baseline reaches of each session. The horizontal dashed line indicated the threshold crossing that triggered stimulation.  
c. Summary data of relative change in outward position for stimulation reaches in the early, middle, and late block. N=5 mice; 60 

sessions.  
d. Quantification of stimulation effect on outward position across adaption block. For each reach, the analysis window was the 50-

100 ms after stimulation onset aligned to the time of threshold crossing for each reach (inset). Quantification of aftereffects on 
outward position during washout block. Here, the analysis window is the 50-100 ms after crossing the 1-cm threshold for each 
reach – the same as the analysis in fixed-position stimulation experiments. 

e. Same as d but instead quantifying of outward velocity in the stimulus window, and aftereffects in the 50 ms after crossing the 
1-cm threshold for each reach.   
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Figure 6. A cerebellar model accounts for adaptation and aftereffect dissociation. 
a. Schematic diagram of the temporal cerebellar-learning model. The model input is a population of 2000 cells, divided 

into 2 balanced populations of 1000 parallel fibers and 1000 interneurons, activated during a brief window during a 
simulated 400-ms movement. The output of the PC module that receives this information is compared to the input in 
the cerebellar nuclei. At equilibrium, the 2 populations are perfectly balanced (parallel fibers cause net activation of the 
PC, and the interneurons cause a net decrease; bottom) and the PC module outputs an activity curve (Gaussian that 
mimics the firing rate suppression observed in empirical data) that spans the movement. Positive deviations from this 
curve (errors) lead to mismatch in the nuclei and subsequent activation of the inferior olive, which reduces the weights 
of parallel fibers active shortly before the error. To simulate optogenetic perturbation experiments (bar-code like pattern 
at 200 ms), a step of activity was added to a subset of parallel fibers and interneurons for 50 ms in the center of the 
movement (fixed stim) or randomized across the block (random stim).  Note that stimulation can either activate a cell 
twice (e.g. parallel fiber 1257, *) or overlap with endogenous activity (e.g. 1490, #), and non-stimulated neurons can 
be endogenously active during the stimulus window (e.g. 1561, arrow). 

b. PC simple spike activity during the stimulation block (top, blue) and washout block (bottom, red) showing progressively 
adapting response magnitudes during the adaptation block and progressively decaying aftereffects during washout. 

c. Parallel fiber weight changes at the end of the fixed-position stimulation block. Top: change in weights of “artificially” 
stimulated and non-stimulated parallel fibers plotted by time of endogenous activation. Bottom: heatmap of parallel 
fiber weight changes on top and unchanged interneurons on bottom. Note population weight change concentrated at 
time of stimulation, seen in both artificially stimulated and unstimulated fibers during stimulation epoch. 

d. Comparison of model output to empirical observations for fixed-position stimulus conditions (Fig.3). Model closely 
matches behavioral adaptation.   

e. Same as b but here the stimulation window is randomized across the reach.  
f. Same as c but for random position stimulation experiments. Note the absence of clustered weight changes in 

unstimulated parallel fibers. 

g. Comparison of model output to empirical observations for random-position stimulus conditions (Fig.5) showing that 
both model and empirical observations show adaptation but not directional aftereffects.   
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Figure S1. Reach tracking and reach performance over sessions. 
a. The right hand was tracked with high-speed cameras as mice reached upwards and outwards towards a food pellet. Positional 

outreach trajectories from a single session viewed are shown from a lateral (left) or bottom-up (right) vantage point with traces 
colored by the magnitude of outward velocity. 

b. Mice were trained for a minimum of 15 days on the reaching task. Pellet retrieval success was tracked throughout training for 
each mouse, mean is shown in red (n = 19 mice). 

c. Quantification of success rate on day 1 of training and day 15. 
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Figure S2. PC identification by firing rate characteristics. 
a. Cerebellar recordings using single electrodes were first anatomically targeted to cerebellar cortex. If a recorded cell had visible 

Cspks they were classified as PCs. Otherwise, if cells had a firing rate > 40 Hz, a median absolute difference firing rate from the 
median interspike interval (MAD) < 0.008, and a CV2 > 0.2, they were classified as PCs80. 

b. Neuropixel-recorded single units were cross correlated with nearby (<200 microns) low firing rate (<5 Hz) single units. If this 
cross correlation exhibited the characteristic firing rate pause seen in PC simple spikes after a Cspk, these units were classified 
as the simple spikes and Cspks of a single PC. If no pause was seen, cells that exhibited the same firing rate, MAD, and CV2 
profile described in a were classified as PCs.  

c. Example simple spike pause aligned to the time of a Cspk from a Neuropixel recording. 
d. Embedding MAD, CV2, and FR into a two-dimensional space using tSNE shows two distinct clusters, one corresponding largely 

to cells that were identified using the criteria in a and b and the other corresponding to other cells (n = 1268 sorted cells).  

 
 
 
 
 
 
 
 
 
 
 
 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 31, 2022. ; https://doi.org/10.1101/2021.12.17.473247doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.17.473247
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

 

Figure S3.  Lasso regression details. 
a. Schematic of lasso regressions. 23 kinematic variables were regressed against firing rate at different lags from 0 to -300 ms. 

The lag that minimized the mean squared error (MSE) of the regressions was selected. 
b. Peak modulation time of all cells across all reaches (n = 11806 trials, 465 cells).  
c. Optimal lags of the LASSO regression for each cell.  
d. Fraction of the unique contribution to total variance explained for each regressor.  

e. Fraction of regressions with each variable selected. 
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Figure S4.  Kinematic and simple spike correlates of early Cspks.  

a. Cspks in the 500 ms before reach onset were not associated with differences in target error as assessed with euclidean 
distance form session median compared to non-Cspk trials.  

b. No difference in peak outward velocity was observed between Cspks and non-Cspk trials. 
c. Simple spike firing rate in trials with early Cspk and non-Cspk trials.  
d. No difference in simple spike rate during outreach was seen in early Cspk trials compared with non-Cspk trials.  
e. No difference in simple spike rate per outward velocity was seen in early Cspk trials compared with non-Cspk trials. 
f. Simple spike firing aligned to the time of early Cspks compared to similarly aligned trials without early Cspk trials.  
g. No difference in simple spike rate in the 100 ms preceding early Cspks was seen compared to the similarly aligned previous 

or next trial.  
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Figure S5. Changes in PC firing during optogenetic stimulation of mossy fibers. 
a. Mossy fiber boutons expressing hSyn-ChR2-mCherry in the cerebellar cortex.  
b. Simple spike responses to mossy fiber stimulation. Left: examples of single-cell simple spike responses to mossy fiber 

stimulation. Right: quantification of simple spike responses to all recorded cells. Significance of differences are indicated by the 
color and corresponding p-value map. 

c. Cspk responses to mossy fiber stimulation. Left: PSTH of the population of recorded cells with Cspks binned at 50 ms. A single 
trace showing a Cspk after stimulation is shown above. Right: Quantification of Cspk probability in the 250 ms after stimulation 
and non-stimulated epochs for each cell.  
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Figure S6. Opsin expression for mice in behavioral experiments. 

a. Histological section showing ChR2-mCherry expression at the injection site in the left pontine nuclei (Pn: pontine nuclei; RtTg: 
reticulotegmental nuclei; PnO: pontine reticular nuclei, oral part; PnC: pontine reticular nuclei, caudal part). 

b. Contours of ChR2 expression in the pontine nuclei for mice used in behavioral experiments. 

c. Right cerebellum of the animal shown in a. Mossy fiber axons (grey arrow) and boutons (white arrow) can be seen expressing 
ChR2 in the cerebellar cortex. The approximate location of the optical fiber and recording site path are shown in white. 

d. Location of fiber placement in a representative section for animals used in behavioral experiments. 
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Figure S7. Fixed-position stimulation supplemental data 
a. Two example mice with differing effects of stimulation on early reaches in the stimulation block. To account for diverging effects 

we define the direction of deviation with stimulation as positive and the opposing direction as negative. 
b. Summary of the relative change in upward position for the same data shown in Fig. 3e. Relative change in upward position was 

assessed in the 50-ms window following the end of stimulation. 
c. Summary of the relative change in lateral position for the same data shown in Fig. 3e. 
d. Summary of the relative change in outward position for in the 50-ms window before stimulation. 
e. Stimulating with 635-nm light did not cause deviations in position or adaptation profiles.  
f. Stimulating while the mouse was awake with its hand at rest on the bar produced virtually no movement.  
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Figure S8. Assessing unit stability across recording sessions. 
a. Left: Waveforms templates detected on each Neuropixel electrode for a cell during baseline and during washout. Right: 

Histogram of waveform correlation of PCs across sessions (red) and of mismatched neighboring cells, across the session 
(shuffled control, grey). PCs with an across-session waveform correlation that fell below the 99th percentile of the shuffled control 
(dashed line) were excluded from further analysis.  

b. Left: Unit displacement for cells across a session. Baseline unit position is shown in grey and washout position is shown in red. 
Right: Histogram of unit displacement of PCs across sessions (red) and of mismatched neighboring cells, across the session 
(shuffled control, grey). PCs with an across-session displacement that fell below the 1st percentile of the shuffled control (dashed 
line) were excluded from further analysis.  
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Figure S9. Population simple spike and complex spike responses during fixed-position stimulation experiments.  
a. Same as data shown in Fig. 4g with the last 5 stimulated and washout reaches included. The initial stimulation and washout 

effects are reduced across the stimulation and washout blocks, respectively. 
b. Cspks analyzed during fixed position stimulation experiments for the baseline, stimulation, and washout blocks (n = 13 cells 

with sorted Cspks).  
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Figure S10. Temporal analysis of early washout effect for fixed-position and random-stimulation experiments.  
a. Analysis of fixed-position stimulation experiment early washout reaches in 50-ms time windows across the reach. Each window 

is shifted 10 ms from the adjacent time window. Aftereffect emerges around the time stimulation was delivered in the stimulation 
block.  

b. Same as a but for random-position stimulation experiments. Consistent aftereffects relative to baseline reaches do not emerge 
in any of the analyzed windows. 

 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 31, 2022. ; https://doi.org/10.1101/2021.12.17.473247doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.17.473247
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

 
 

 
Figure S11. Cerebellar model adaptation to a negative-going perturbation. 
a. Model as described in Fig. 6. In this case the number of stimulated MLIs is greater than the number of 

parallel fibers (bottom) leading to a net negative stimulation effect. Negative simple spike error lowers the 
probability of Cspks below baseline, leading to LTP (top).   

b. PC simple spike activity during the stimulation block and washout block of fixed-position stimulation as 
described in Fig. 6b. Here the stimulation reduces firing rate. 

c. Same as described in Fig. 6c. Here parallel fiber weight changes increase to compensate for the 
stimulation. Note that while not displayed the quantification of the adaptation is identical to the data 
displayed in Fig. 6d. 

d. Comparison of model output to empirical observations for fixed-position stimulus conditions (Fig.3). Model 
closely matches behavioral adaptation.   

e. Same as b. but here the stimulation window is randomized across the reach. Note that while not displayed 
the quantification of the adaptation is identical to the data displayed in Fig. 6d. 
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