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Abstract  

Cellular responses to stress can cause a similar change in some facets of fitness even if the stresses 

are different. Lactose as a sole carbon source for Escherichia coli is an established example: too little 

causes starvation while excessive lactose import causes toxicity as a side-effect. In an E. coli strain that is 

robust to osmotic and ionic differences in growth media, B REL606, the rate of antibiotic-tolerant 

persister formation is elevated in both starvation-inducing and toxicity-inducing concentrations of lactose 

in comparison to less stressful intermediate concentrations. Such similarities between starvation and 

toxification raise the question of how much the global stress response stimulon differs between them. We 

hypothesized that a common stress response is conserved between the two conditions, but that a previous-

ly shown threshold driving growth rate heterogeneity in a lactose-toxifying medium would reveal that the 

growing fraction of cells in that medium to be missing key stress responses that curb growth. To test this, 

we performed RNA-seq in three representative conditions for differential expression analysis. In compari-

son to nominally unstressed cultures, both stress conditions showed global shifts in gene expression, with 

informative similarities and differences. Functional analysis of pathways, gene ontology terms, and clus-

ters of orthogonal groups revealed signatures of overflow metabolism, membrane component shifts, and 

altered cytosolic and periplasmic contents in toxified cultures. Starving cultures showed an increased ten-

dency toward stringent response-like regulatory signatures. Along with other emerging evidence, our re-

sults show multiple possible pathways to stress responses, persistence, and possibly other phenotypes. 

These results suggest a set of overlapping responses that drives emergence of stress-tolerant phenotypes 

in diverse conditions. 
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1. Introduction 

Fitness and survival of a single-celled species across diverse environments incur classic trade-offs be-

tween metabolic costs and improvement of survival probability: an effective response in one environment 

may incur penalties in another. Mesophilic bacteria have adapted to life in intermediate conditions where 

several dimensions of the cellular environment can readily cause stress, such as excessively high or low 

temperatures, acidity, nutrients, osmotic pressure, chemical concentrations, and so on. In the lifecycle of 

an enteric bacterium, drastic changes arise within and between the host and in natura conditions. 

One such stress is antibiotics. The widespread use of antibiotics to treat livestock for enhanced meat 

production as well as the rise of antibiotic-resistant bacterial strains in medical contexts lends the question 

practical importance. Genetic resistance may also have an important relationship with transient antibiotic 

 

Figure 1. Fitness in a mesophilic microbe and the lac operon of Escherichia coli specifically. a. 

There is an envelope of survivable conditions in mesophilic bacteria. The volume labeled 

“Growth Rate-Optimized” denotes conditions to which the microbes are well-adapted for fast 

growth. In the peripheral volume, “Stress Survival-Optimized” (e.g., the stringent response and 

bet-hedging), the combination of environment and response improves colony survival but not 

growth rate. b. The mechanism to perturb fitness in this study is titration of lactose as a sole car-

bon source in minimal media. Lactose processing involves intrinsic physiological costs and may 

cause downstream toxicity in certain conditions via the Leloir pathway (galactose processing; 

not shown). 
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tolerance: persistence may allow resistance to evolve more quickly (3, 4), though this hypothesis has been 

contested. Multiple mechanisms induce persister formation (5-9), including starvation or loss of metabolic 

activity (10-14).  

We previously demonstrated that excessively high or low lactose concentrations (as a sole carbon 

source) can predispose populations of bacteria derived from a strain of Escherichia coli, B REL606, to 

lowered death rates in antibiotics (15). Varying the concentration of lactose in a minimal medium drives a 

non-monotonic relationship with the exponential growth rate in culture, with a fast-growth plateau at 

intermediate concentrations (15). Lactose has established toxic effects on E. coli cultures, often attributed 

to membrane depolarization via excessive proton symport with lactose through the permease LacY, a 

member of the major facilitator superfamily of permeases (16-18). In B REL606, toxic lactose levels 

create a heterogeneous population dynamic with a chance of fast-growing cells to enter growth arrest, yet 

both starving and toxified cultures exhibit increased stress tolerance (15, 19; Fig. 2). Growth-arrested 

cells represent a persister-prone subpopulation in both conditions such that the toxified culture has the 

effect of a bet-hedging dynamic with average population growth rate sacrificed in favor of stress tolerance 

in a minority of the population. Does the global transcriptional program of stress responses have overall 

similarities between these conditions, or are key alternate pathways activated? The mechanisms for these 

conflicting stresses to attain a similar phenotype are unknown. 
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We interrogated this system with the bulk (population-level) RNA-seq under the hypothesis that a 

common stress response is conserved between starvation and toxicity. While making use of bioinformatic, 

biochemical, and physiological data about specific mechanisms, we avoided presuming that any particular 

mechanism was at work beyond 

the proven phenomena arising 

in these culture conditions. We 

cultured E. coli in low, inter-

mediate, and high concentra-

tions of lactose minimal medi-

um, grew them to mid-

exponential phase, and harvest-

ed biomass from each culture 

for bulk RNA-seq. The result-

ing transcriptional profiles were 

subjected to differential expres-

sion analysis with the interme-

diate lactose concentration as 

the reference condition. 

2. Results 

2.1. Slowed killing rate in 

starving and toxified E. coli 

cultures 

Re-analysis of our previ-

ously measured timecourse of 

exponential-phase E. coli treat-

�dose�: ��, 
, �, �� 

�0.1�: ��0.0149675, 5.71624, �5.40263, 0.189278� 

�1.5�: �0.00427562, 7.13623, �6.91445, 0.072367� 

�50�: ��0.0161676, 4.99618, �4.53027, 0.101607� 

 

Figure 2. The killing rate of an E. coli B strain in ampicillin is 

lowest in starving and toxified culture conditions. a. Surviving 

fractions in low, intermediate, and high lactose conditions after 

ampicillin treatment (100 mg/ml) during mid-exponential phase 

(mean � standard deviation, N = 3; final point in 1.5 mg/ml, N = 

1). Data from (2) were fit to a mixed linear-exponential model 

� � � � � 
 ��� � � � with r2 as reported in the figure. b. Time 

derivative �
��

��
 of the statistical model parameterized for each fit 

in panel a shows a lowered killing rate for both starving and 

toxified cultures between approximately 7 and 40 hours post-

treatment. Model fit parameters: 
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ed with ampicillin demonstrates a lowered rate of death in starving and toxified cultures (Fig. 2). To con-

firm this, we fitted the data to a mixed linear-exponential statistical model in logarithmic coordinates on 

the y axis: � � � � � 
 ��� � � �. All three parameters were fit with low error ( � ! 0.99). Taking the 

time derivative of the statistical model revealed the estimated rate of killing for each culture condition 

(Fig. 2b): highest in non-stressful conditions. Thus, both the starving and toxified cultures are prone to 

produce higher levels of antibiotic tolerance than less stressful intermediate conditions. 

2.2. Differential gene expression analysis reveals growth-mediated shifts in lac operon expression, 

toxin-antitoxin responses, and global regulator responses 

To analyze gene expression profiles, we purified total RNA from early-mid-exponential cell culture 

in different lactose concentrations. We mapped sequencing reads to the reference genome E. coli B 

REL606 NC_012967.1 (20) with kallisto (21) and subsequently analyzed the count data using DESeq2 in 

R (22) with subsequent processing in Python. Setting the moderate lactose concentration (2.5 mg/ml) 

condition as the reference, we defined differentially expressed genes (DEGs) in starvation (lactose conc. 

0.1 mg/ml) and toxified (lactose conc. 50 mg/ml) conditions as genes with an adjusted p-value (false de-

tection rate; FDR) of below 0.05 and a log2 fold change (LFC) greater than 1 (Figure 3). 
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In Figure 3a, the base mean is the normalized mean expression level for each gene in all replicates in 

the culture condition. The standard errors from the shrunken log2 fold change to corresponding maximum-

likelihood estimates are well controlled (Figure 3c). They aligned well for a proper size factor calculation. 

Overlaying the differential expression log2 fold change shows that the starving cultures had wider log2 

fold changes, suggesting a more extensive regulon, and perhaps more severe stress, compared to toxified 

cultures. This result is consistent with our previous results (15) and the model shown in Figure 1, where 

cells have a higher death rate under low lactose compared to toxic lactose conditions.  

 

Figure 3. Comparison of differential expression profiles between starving and toxified 

cultures, both relative to a nominally lower-stress condition. a. Base mean number of 

reads. b. Mean fold change of each gene sorted by FDR from lowest to highest (Gene In-

dex). Dashed lines indicate > 2-fold change in expression compared to intermediate-

lactose cultures. c. Standard error of the fold change mean between biological replicates. 

N = 7 biological replicates for starving cultures, 9 for toxified cultures, and 9 for inter-

mediate lactose cultures. d. Volcano plot reveals the extent of differential expression. 

Dashed lines indicate thresholds for meeting the criterion for significant differential ex-

pression: > 2-fold change and false detection rate (FDR) < 0.05.  

a b

c d

log

10 

FD

R 
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Out of 4490 genes in the genome, 1845 DEGs were upregulated and 1145 DEGs were downregulated 

in starvation, while 1755 DEGs were upregulated and 830 DEGs were downregulated in toxified cultures. 

Clustering of differentially expressed genes revealed that starving cells and toxified cultures have over-

lapping, but not identical, regulons (Figure 4a). Genes that were either upregulated or downregulated are 

color-coded points in Figure 4b. Many regulated genes trend toward equal differential expression (near 

the � � " line), but the data reiterate here the observation that starving cultures have a larger set of gene 

 

Figure 4. Fold change of genes in starving cultures versus toxified cultures relative to 

the intermediate baseline. a. DEGs clustering based on the log2 fold changes for each 

gene, where toxified cell profile behaves quite different from starved cells. b. Points are 

genes color-coded based on which conditions have significant fold change (FC). NS, 

non-significant. 
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expression changes than toxified cultures1. 

Expression of the lac operon is a natural question in experiments where the quantity of lactose in cul-

tures is varied. The E. coli strain used here lacks a functional lactose regulator (LacI), an intentional 

choice to disentangle the downstream consequences of lactose processing without the added complication 

of lac operon gene regulation. Because the lacI gene has a point mutation, detected transcripts encoding 

LacI were non-functional (Figure 5). Growth in lactose minimal medium requires lac operon expression 

in any case (Figure 1b). Any apparent differential expression of lac operon gene products is attributable to 

the following remaining factors (23): silencing by H-NS and MarA, activation by CRP-cAMP, σ70-

activated promoters, and effects on mRNA concentrations by differential loss from either growth or a 

shift in mRNA degradation. The particular strain we used also expresses a recombinant GFP constitutive-

ly, which we have previously exploited as an optical proxy for growth rate because slower-growing cells 

accumulate GFP and become brighter (15, 19). 

Following the steps of lactose processing is informative to see the difference between molecular gene 

regulation and the consequences of fitness, growth, and selection on gene expression in culture. LacY is 

the lactose permease, transferring extracellular lactose across the inner membrane into the cytoplasm (Fig. 

1b). The starved cells contain substantially increased expression of LacY mRNA, suggesting that surviv-

ing cells in the culture have increased lactose uptake. In toxified cultures, lacY is not differentially ex-

pressed, suggesting relaxed selection for high lactose permease levels. The gene lacZ encodes β-

galactosidase, the catabolic enzyme that directly assimilates lactose into the metabolic network. lacZ is 

downregulated in toxified cultures, which may reflect the fact that most cells in the toxified culture ran-

domly avoided toxicity by lowered lactose assimilation. Galactose degradation (the Leloir pathway) is di-

rectly downstream of lactose degradation by β-galactosidase, and UDP-galactose and galactose-phosphate 
                                                       

1Practical constraints prevented our study from creating a distance metric for how quantitative changes in lactose 
correspond to quantitative changes in gene expression beyond the cases shown here. Interpretations are thus careful-
ly limited to categorical comparisons between the culture states rather than quantitative shifts of gene expression 
from changes in lactose concentration. 
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intermediates in the Leloir pathway can cause stress and reduce cell growth (24, 25). Differential expres-

sion of lacA has unclear functional consequences and may simply reflect co-expression with lacZ and 

lacY from the operon. 

We next explored differential expression of global regulators of growth rate: toxin-antitoxin systems 

(Fig. 5b) and transcriptional regulators (Fig. 5c). With gene annotation matching (see Methods), we found 

a total of 15 toxin-antitoxin (TA) modules existing in the B REL606 strain of E. coli. Among these TA 

modules, starving cultures exhibited activation of 6, including ygiT-mqsR, YhfG-Fic, Xre-HipA, yeeUV, 

ghoTS and hokE-lexA. Interestingly, ygiT-mqsR, yeeUV, and ghoTS are also upregulated in toxified cul-

tures, while the other 3 TA systems show upregulated toxin genes. Knockouts of the global regulators in 

Fig. 5c result in at least a 10-fold decrease in persister formation (26). In starving cultures, 6 global regu-

lators out of 9 are downregulated, including stress response regulator genes dnaKJ, DNA protection-

related regulator genes hupAB, a folate-dependent enzyme inhibitor gene ygfA, and persister cell for-

mation regulator gene yigB. Though the recombination-related regulator genes ihfAB are upregulated, 

suggesting a possible higher mutation rate, dksA is also upregulated; the latter’s product can promote 

DNA recombination repair (27). The product of dksA is also an rRNA repressor that mediates stress re-

sponses and inhibits DnaK. Thus, we observe a pattern of gene regulation with counterbalancing effects 

that may be consistent with phenotypic decisions being made post-translationally. In toxified cultures, 

ihfB and the chemotaxis signaling genes cheZ and cheY were upregulated. 
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Figure 5. Differential expression log2 fold changes of reference genes in starving and toxified cultures 

establishes a baseline reference for persister-prone conditions. a. lactose operon activities. In this 

strain, the lacI gene is present but non-functional because of a mutation. As a result, the lac operon is 

expressed constitutively, as is the inserted gfp gene. FC, fold change. SEM, standard error of the mean. 

N = 7 for starving cultures, 8 for toxified cultures, and 8 for intermediate lactose cultures. **: FDR < 

0.001; *: FDR < 0.05. b. Toxin-antitoxin systems. c. Global regulator genes and chemotaxis signal 

transduction related genes (cheZ and cheY). 
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2.3 Stress responses regulated by sigma factors 

Transcription initiation for E. coli promoters requires sigma (σ) factors, subunits of RNA polymerase 

(RNAP) (28), making them global regulators of responsiveness to the environment. Individual promoters 

typically respond to specific σ factors. Six σ factors are known in E. coli B REL606. σ28 (RpoF/FliA), the 

flagellar synthesis sigma factor in E. coli strain K-12 MG1655, is missing in REL606 and σ19 (FecI), the 

ferric citrate sigma factor regulating iron transport and metabolism, is present but does not have any anno-

tated gene regulatory roles in RegulonDB (29). To understand how σ factors regulate cellular responses to 

environmental stimuli, we explored their differential expression between lactose concentrations and that 

of their regulated genes as log2 fold changes (LFC2). 

 

Our results show a significant decrease in σ70 (rpoD) in toxified, but not starving, cultures (Fig. 6c,d). 

This σ factor initiates transcription in a set of approximately 1723 genes involving cell proliferation-

 

Figure 6. Regulation of σ factors differ in response to starvation and toxification. a. Percentage of dif-

ferentially expressed genes (DEGs) in each σ factor regulon. b. The number (#) of genes annotated to 

be regulated by each σ factor. c, d. Differential expression (log2 fold change) of the σ factors and their 

regulons in c. starving and d. toxified cultures. The size of the pie chart reflects the DEG percentage 

regulated by each sigma factor. LFC2, log2 fold change. 

a b

c d
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related behavior such as substrate uptake, DNA replication, membrane synthesis, and ribosome produc-

tion (23). About half of the genes initiated by σ70 were downregulated in both toxified and starving condi-

tions, suggesting an overlapping regulon between the stress responses in starved and toxified cultures. 

σ38 (rpoS), the sigma factor associated with the stringent response, does not appear to be differentially 

expressed on average in starving or toxified cultures, yet a plurality of genes regulated by σ38 is 

upregulated in both conditions as compared to growth-optimized lactose concentrations. This observation 

is consistent with σ38 regulation arising from sigma factor competition, especially in toxified cultures. The 

ratio of σ70
 to σ38 in toxified cultures is consistent with this model as well. (p)ppGpp is involved in both 

production and activity of σ38 (30). The (p)ppGpp synthases, relA and spoT, are downregulated in both 

starving and toxified cultures. This is not necessarily inconsistent with the presence of the stringent re-

sponse, as (p)ppGpp is known to exhibit a transient increase early in the stringent response, possibly be-

fore we sampled the cultures for RNA-seq (31). 

σ54 (rpoN) stimulates transcription initiation in 136 genes involving nutrient limitation such as nitro-

gen assimilation, substrate-specific transport systems, and utilization of alternative carbon and energy 

sources. Most genes in the σ54 regulon are downregulated in both starving and toxified cultures, despite 

σ54 itself being downregulated or not significantly differentially expressed in starving and toxified cul-

tures. The best-characterized mechanism for σ54 interactions with σ38 is through the glutamate-dependent 

acid resistance (GDAR) system (gadE, gadA, gadBC) (32). σ54 is described as a repressor for GDAR sys-

tem, while σ38 is annotated as an activator.  

σ24, driving responses to heat shock and other stresses on the membrane and periplasmic proteins, is 

downregulated on average in toxified cultures but is not significantly regulated in starvation here. σ24 is 

required for transcription of degP, a gene coding for a protease that degrades abnormal proteins in the 

periplasm (33). Downregulation of σ24 may result in less DegP protease, causing accumulation of DegP 

targets. Such accumulation is associated with increased membrane resilience, which is relevant because 
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one of the factors thought to stabilize this strain of E. coli in toxified cultures is resistance to osmotic 

stress caused by excessive lactose import (see Discussion). 

In all, downregulation of σ70 may drive a stimulon associated with σ38- and σ54-compatible promoters. 

The majority of genes regulated by σ38 and σ54 encode stress responses in both nutrient scarcity and condi-

tions of over-abundance. However, sigma factor log2 fold changes are not always consistent with the 

dominant trend of gene differential expression, which we interpret to mean that post-translational interac-

tions drive part of the response and that additional regulatory factors play a role in the responses of E. coli 

to starving and toxified conditions. 

As starvation and toxicity are both intertwined with metabolism, we performed metabolic pathway 

gene set enrichment analysis in peripheral (Section 2.4) and central (Section 2.5) metabolism. We used 

the normalized enrichment score (NES), a statistic that reflects the degree that a pathway is overrepre-

sented at the top or bottom of a ranked list of genes (Methods Section 4.5). An overview of our pathway 

enrichment analysis is presented in Figure S2. 

2.4 Peripheral metabolic pathway gene set enrichment analysis 

2.4.1 Pathway regulatory similarities between starving and toxified cultures 

Gene set enrichment analysis calculates trends for defined gene sets. The similarity of pathway regu-

lation was calculated using rank correlations (Spearman’s ρ) with differential gene expression profiles 

(see Methods Section 4.5.1). 

Figure S3 shows the correlation between pathway regulation in starvation and toxicity. Each node in 

Figure S3 represents a pathway, with a total of 362 pathways annotated in E. coli B REL606. Nodes are 

connected by metabolite edges as annotated in EcoCyc. We found that most metabolic pathways are ei-

ther similarly regulated or have no correlation between treatments. We observed conserved regulatory 

pathways for persister-prone phenotypes, including central metabolic pathways such as the pentose phos-

phate pathway, chorismate biosynthesis I, glycolysis I, and the superpathway of glyoxylate bypass and 

TCA. Glycolysis is the hub node for the pathway network with similarly regulated pathways linking to 
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glycolysis with degree 1 node distances. Statistically significant oppositely regulated pathways are rare. 

The only oppositely regulated pathway with statistical significance is tetrahydrofolate (FH4) biosynthesis, 

which is upregulated in starvation but downregulated in toxicity. FH4 biosynthesis produces vitamin B9 

(folic acid), a cofactor leading to the biosynthesis of methionine, purines, thymidylate and pantothenate.  
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Figure 7a. Pathway enrichment score graph representation for pathway ontology in starvation condition. The upregulated 

pathways are shown in blue, and downregulated pathways are shown in red. The pathway ontology annotation is from 

EcoCyc The pathway ontology annotation is from EcoCyc (1). 
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Figure 7b. Pathway enrichment analysis graph representation for pathway ontology in toxic condition. The upregulated 

pathways are shown in blue, and downregulated pathways are shown in red. The pathway ontology annotation is from 

EcoCyc (1). 
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2.4.2. Common enriched pathways in persister-prone phenotypes 

Among 362 enriched pathways, 44 were upregulated in starvation and toxification, 69 were 

downregulated in starvation and toxification, 14 were uniquely upregulated in starvation, 31 pathways 

were uniquely downregulated in starvation, 12 pathways were uniquely upregulated in toxification, and 

25 pathways were uniquely downregulated in toxification. Detailed pathway enrichment analysis results 

can be found in Supplementary Tables S1-S6. Figure 7 shows the pathway hierarchy structure based on 

EcoCyc annotations. The directed edges point to the parent pathway which is often consisted of multiple 

pathways to form superpathways. In Figure 7 we mapped the normalized enrichment score calculated 

with FGSEA (34) onto the pathway hierarchy graph. The result is many clustered enriched pathways. The 

top 3 clusters in Figure 7 are (1) the superpathway of chorismate metabolism, (2) amino acid biosynthesis, 

and (3) the superpathway of histidine, purine, and pyrimidine biosynthesis. 

Chorismate is the principal precursor for the aromatic amino acids, such as tryptophan, tyrosine, and 

phenylalanine (35). Downregulation of chorismate biosynthesis can introduce aromatic amino acid starva-

tion (this may occur in both toxication and starvation according to the enrichment profile). Menaquinol-8, 

ubiquinol-8, tetrahydrofolate biosynthesis, and enterobactin biosynthesis are not differentially regulated 

compared to the cultures with intermediate lactose concentration (chorismate metabolism provides essen-

tial compounds for those pathways). The quinone pool is essential for E. coli adapting to different oxida-

tive conditions and maintaining proper redox- and phosphoryl-transfer reactions to form the core of cellu-

lar energetics (36). Biosynthesis of ubiquinone is reported to accumulate pathway intermediates (37, 38) 

with the effect of improving osmotic stress-tolerance. 

We found that 17 out of 20 amino acid biosynthesis pathways are downregulated in persister-prone 

phenotypes accompanying upregulated amino acid degradation pathways (Table S2.). Alanine and argi-

nine biosynthesis are uniquely downregulated in toxification, while asparagine is uniquely downregulated 

in starvation, implying lower NAD synthesis (39) and likely resulting in lower energy levels. Amino acid 

starvation can lead to accumulation of uncharged tRNAs that enter the ribosomal A site, halting transla-
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tion (40). We observe downregulated tRNA charging in both toxicity and starvation. The pyrimidine, pu-

rine and pyridine nucleotide synthesis-related pathways are downregulated in both starvation and toxicity 

except for phosphoribosylpyrophosphate (PRPP) biosynthesis II, which provides PRPP as a pivotal meta-

bolic precursor to pyrimidine, purine, and pyridine nucleotide synthesis. Other downregulated pathways 

include sulfate assimilation downstream of cysteine biosynthesis, lipid A, lipopolysaccharide (LPS) and 

peptidoglycan biosynthesis, spermidine biosynthesis, UDP-glucose biosynthesis, and cytochrome bo oxi-

dase electron transfer pathways from proline succinate. 

Upregulated pathways have a sparser network structure (Table S1). Among 44 commonly upregulated 

pathways, 30 are degradation pathways targeting amino acids, other carbon sources, and electron transfer-

related metabolites, such as L-ascorbate (vitamin C) and putrescine. Broadly upregulated nutrient assimi-

lation pathways reflect supervening carbon source uptake and balancing energetic electron transfer. Other 

upregulated pathways enhance cellular fitness through energy metabolism, overflow metabolism, and 

membrane component regulation. In both persister-prone conditions of this study, the pyruvate oxidation 

pathway is upregulated; this pathway generates the transmembrane potential for constructing respiratory 

chains consisting of pyruvate oxidase, ubiquinone-8, and the cytochrome bd complex (41). Thiamine 

diphosphate biosynthesis I produces cofactor vitamin B1, which plays a fundamental role in energy me-

tabolism. Trehalose pathway upregulation affects the osmotic stress response, notably present in both 

stress conditions. In response to acetate and osmotic pressure, the arsenate efflux pump, GDAR system, 

and aerobic utilization of acetate are upregulated. GDP-L-fucose biosynthesis I produces LPS components 

in the membrane, and membrane structure may be further stabilized by enrichment in putrescine biosyn-

thesis III, which is the precursor for spermidine biosynthesis.  

2.4.3. Uniquely enriched pathways in starvation 

Pathways uniquely upregulated in starvation (Table S3) include nutrient assimilation from metabo-

lites mannitol, D-arabinose, acetoin, glycerol, glycolate, glyoxylate, trehalose, and fatty acids. The argi-

nine-dependent acid resistance pathway was also observed.  
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Though downregulation (Table S4) of the Leloir pathway may be beneficial to reduce UDP-glucose-

induced toxification, it may also limit production of α-D-glucopyranose-1-phosphate, a precursor for syn-

thesis of the outer membrane LPS component O-antigen. Despite O-antigen synthesis precursor UDP-α-

D-glucuronate biosynthesis being upregulated, biosynthesis of O-antigen building blocks from precursors 

including α-D-glucopyranose-1-phosphate and sugars L-rhamnose, and dTDP-N-acetylyiosamine are spe-

cifically downregulated in starvation. 

Downregulation of glutathione biosynthesis and redox reaction III may play a role in redox balance 

and defense against reactive oxygen species. 

Several other pathways uniquely downregulated in starvation suggest a trend toward energy conserva-

tion: downregulation of lipoate metabolism, the pentose phosphate bypass, sedoheptulose bisphosphate 

metabolism, thiamine precursor biosynthesis, nucleotide precursor biosynthesis, and several acyl-CoA de-

rivatives. 

Finally, asparagine biosynthesis pathways are uniquely downregulated in starvation, with unclear 

functional significance. 

2.4.4. Pathways specifically enriched in toxicity (Table S5) 

Two pathways forming the E. coli anaerobic respiratory chain are upregulated: the formate-to-

dimethyl sulfoxide electron transfer pathway and nitrate reduction III, implying increased proton-motive 

force across the cytoplasmic membrane (42-45). We observed upregulation of taurine degradation IV, 

which provides alternative sulfur under sulfate starvation induced by cysteine starvation (we note that our 

culture conditions are similar to those often used with this E. coli strain in the LTEE: Davis minimal me-

dium containing supplemented lactose and thiamine (46) without amino acid supplementation). Several 

sugar degradation pathways are uniquely upregulated in toxicity, suggesting a possible carbon source al-

ternative for N-acetyl-galactosamine (GalNAc), D-galactosamine (GalN), D-malate, L-rhamnose, and 

galactitol. Other enriched pathways are mostly fermentation metabolic pathways.  
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The superpathway of fatty acid biosynthesis initiation is uniquely downregulated in toxified condi-

tions (Table S6). Related pathways such as fatty acid elongation, palmitoleate biosynthesis, and cis-

vaccenate biosynthesis are also uniquely downregulated. Fatty acids are key building blocks for phospho-

lipid components of cell membranes and are determinants of intracellular communication where 

palmitoleate is a common unsaturated fatty acid. Farnesyl pyrophosphate (FPP) biosynthesis is 

downregulated, possibly implying less membrane attachment in posttranslational modifications.  

2.5. Gene set enrichment analysis of central metabolism  

To complete the analysis of regulated metabolic pathways in starvation and toxicity, we mapped dif-

ferential expression to central metabolism (Fig. 9). As the culture conditions in this study demand that the 

initial entry to central metabolism occurs via lactose degradation, we define central metabolism herein to 

be composed of the lactose degradation pathway, pentose phosphate pathway, glycolysis, Entner-

Doudoroff shunt, TCA cycle, and the glyoxylate bypass. As galactose is a direct product of lactose degra-

dation, we included the Leloir pathway (galactose degradation I) as well. 

In starvation, the glycolysis pathway is mostly downregulated except for one gene encoding a phos-

phate transfer reaction. Components of glycolysis are more consistently upregulated in toxicity. The 

Entner-Doudoroff shunt linking glycolysis to the TCA cycle is regulated oppositely between starving and 

toxified cultures. The shunt is upregulated in starvation, possibly providing paths to alternative metabo-

lites. Though the TCA cycle is largely downregulated in both conditions, the glyoxylate cycle is 

upregulated by various degrees in both starvation and toxicity. The glyoxylate cycle is a bypass for the 

TCA cycle to skip steps that remove CO2, thus conserving carbon intermediates during growth (47-49). 

The pathway is repressed during growth on glucose, and induced by growth on acetate, the byproduct of 

overflow metabolism.  
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Figure 9. Differential expression (log2 fold changes) of genes encoding central metabolism in a starving and b toxified cul-

tures.  
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3. Discussion 

Variation in fitness-relevant environmental properties affects cellular gene expression patterns in 

quantitative and qualitative ways. Our previous demonstration that an excess of a required nutrient drives 

the formation of antibiotic tolerance (15) provided an opportunity to re-evaluate the nature of integrated 

microbial stress responses. This phenomenon appears to arise from the robust nature of the cell wall in B 

strains of E. coli, which permits survival in adverse osmotic conditions (50). We were specifically able to 

enrich antibiotic-tolerant cells in conditions both below and in excess of optimal concentrations for lac-

tose as the sole carbon source (Fig. 1). We created such conditions in batch culture to test hypotheses 

about the nature of antibiotic tolerance in E. coli: what kind of signal may predispose cells to stress toler-

ance, and do conditions that could be described as “opposite” of each other from osmotic, nutrient con-

centration, and media toxicity perspectives induce similar or largely different responses? 

We conceptualized analysis of the stress response by analogy to a statistical model, with linearly in-

dependent (normalized) stress response components ��  and interactions ���  between components ��  and �� 

such that a given response � is independent from � if ��� � 0. The integrated response can then be charac-

terized by Ξ � ∑ ��� �∑ ������  (eliding coefficients because we assume normalization between the com-

ponents). The integrated response Ξ is a high-dimensional vector describing the phenotype. Independence 

between components may arise in some contexts and not others – we did not presume to comprehensively 

describe this space in our study, but rather to sample from it for exploration of the specific nature of stress 

responses. Nonzero interaction terms may arise from several sources, including pleiotropic effects (e.g., 

temperature or growth rate), co-expression (operon membership, transcriptional co-regulation, etc), and 

catalysis or synthesis of metabolites with broad effects (amino acids, nucleotides, tRNAs, etc). 

Single cell dynamics play an important role in physiology and have a strong effect on lactose-toxified 

cultures. In the E. coli strain used in this study, a threshold drives toxicity to arrest growth in a subset of 

cells while subthreshold cells maintain growth. Thus, the results presented here represent an average 

across the subthreshold growing cells and the growth-arrested toxified subpopulation. The subthreshold 
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subpopulation comprises approximately 10 percent of the entire population (15). This quantity arises from 

exponential growth of sub-threshold cells causing them to quickly overtake the population. 

We exploited extensive mechanistic knowledge about the direct effects of pathways to interpret tran-

scriptional signatures. Targeted experiments to further test other aspects of responses, such as post-

translational effects, are beyond the scope of this study. Our results recapitulated previous interpretations 

of pathway analysis in stress but added crucial new results that broaden some, and narrow other, key in-

terpretations. This study focused on the nature of the average gene expression in cultures known to be en-

riched for persister cells, but with no specific selection for them. In a following study, we will present an 

analysis of persister cells in the starving and toxified conditions that survived antibiotic treatment. 

3.1. Lactose toxicity-induced persistence may arise via a combination of overflow metabolism and 

Leloir pathway intermediates 

One hypothesis for non-starving persistence is that metabolic toxicity is induced by critical proteomic 

concentrations. Galactose degradation I (the Leloir pathway) is directly downstream of lactose degrada-

tion by β-galactosidase and may accumulate UDP-galactose and galactose-phosphate intermediates caus-

ing stress and loss of growth. With high metabolic rates, E. coli (and virtually every other species) under-

goes a metabolic shift from primarily aerobic metabolism to incomplete oxidation of metabolites, includ-

ing ATP synthesis (51). The cause seems to be linked to proteomic optimization, as anaerobic ATP syn-

thesis requires a smaller fraction of the proteome to synthesize an equivalent amount of ATP at the cost of 

more sugar (52). The smaller proteome allows for higher growth rates due to the reduced size of the nec-

essary metabolome, allowing more transcriptional/translational machinery to be devoted to ribosome syn-

thesis (52, 53). 

We found that toxic culture conditions that produce persister cells have apparent utilization of the 

Entner-Doudoroff shunt, which connects pyruvate to phosphoenolpyruvate, thus linking to the glyoxylate 

cycle and downregulation of the enzymes responsible for oxaloacetate and acetyl-CoA entering the citric 

acid cycle, consistent with cells undergoing overflow metabolism. As the only carbon source initially pre-
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sent in the medium is lactose, GalE fluctuation may lead to UDP-Galactose toxicity (24), and indeed, 

galE is downregulated in high-lactose antibiotic-tolerant cells, but not significantly differentially ex-

pressed in untreated cultures. 

3.2. Different phenotypes may arise from sigma factor competition 

Regulation of stress responses in bacteria is generally considered to be robust to a variety of con-

ditions. Despite being exposed to opposite stresses, we showed that differential expression of genes in 

starvation and toxicity is positively correlated. This may be due to leaky expression of genes in the differ-

ent loci on the genome or generalized stress responses. As expected, regulated differentially expressed 

genes have wider fold change distributions compared to constitutively expressed genes and more genes 

are regulated in starvation than toxicity. We found that the global proliferation regulator σ70 is 

downregulated in toxification, potentially reducing lac operon expression independently of LacI. As 

genes regulated by σ38 are mostly upregulated in starving and toxified cultures, our results are consistent 

with the sigma factor balance leaning toward σ38. The nutrient limitation-responsive sigma factor σ54 is 

downregulated in starving cells, aiding glutamate-dependent acid resistance (GDAR). In toxified condi-

tions, downregulation of σ70 is drastic, moving the sigma factor competition balance towards σ38. Though 

σ54 is not downregulated, GDAR is again upregulated in toxified cells. Thus, nutrient-poor and nutrient-

rich conditions both stress the cells with clear regulatory responses that overlap. 

3.3 Non-transcriptional and undetected factors at play in stress-responsive gene expression 

Survivorship bias, as opposed to targeted transcriptional regulation, may play a role in the ob-

served transcriptome profiles obtained from stressed cells. Noisy gene expression dynamics creates a dis-

tribution of cell states, including some in sub-optimal transcriptional states. With exponential population 

growth, fitter cells quickly overtake the population and dominate the measured transcriptional signal. Fur-

thermore, it was impractical to examine every possible transcriptional function. Some that we did not em-

phasize, such as prophage induction, may play an uncharcterized role in distinguishing responses to di-
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vergent stresses. Thus, studies of subpopulations and deeper targeted analysis may further clarify the

overall similarities between divergent stresses. 

 

 
 
3.4 Summary 

The relationship between bacterial responses to divergent stresses contains four primary compo-

nents: (i-ii) specific responses to each of the two stresses, (iii) a common stress-responsive regulon, and

(iv) noise or functionally irrelevant responses. Overlapping responses include transcripts relating to nutri-

ent assimilation, tRNA charging, and utilization of the glyoxylate bypass while condition-specific re-

sponses make sense in terms of unique properties of the stress in question (Fig. 10). 

 

Figure 10. Overlapping and condition-specific stimulons in divergent stress responses of an E. coli strain. 
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4. Materials and Methods 

4.1. Persister Enriched RNA-Seq Experiments 

E. coli B REL606 lacI- transformed with Tn7::PlacO1GFP(KanR) was inoculated in LB medium 

from a -80�C bacterial stock and grown for 16 hours in a 37�C shaking incubator. The LB culture was 

then resuspended (1:1000) into 5mL of Davis Minimal medium (DM; Difco) supplemented with thiamine 

and one of three lactose concentrations (0.1 mg/mL, 2.5 mg/mL, and 50 mg/mL). The cultures were al-

lowed to acclimatize for 24 hours before being resuspended (1:1000) into 5mL of the same Davis Mini-

mal medium and lactose concentration. Cultures were grown long enough to provide enough biomass for 

RNA-seq after antibiotic treatment (8 hours in 2.5 mg/mL lactose, 10 hours in 50 mg/mL lactose, and 12 

hours in 0.1 mg/mL lactose). After the initial growth phase, 1.5 mL cell culture aliquots were subjected to 

RNA isolation according to the following procedure. 

Cell cultures were pelleted in a microcentrifuge (10,000 G for 2 minutes), washed in PBS buffer 

twice, resuspended in 500 μL of RNA-Later (ThermoFisher) and stored in at -20�C for up to one week. 

RNA isolation was performed using Direct-Zol (Zymo) and TRIzol reagent (ThermoFisher) and stored in 

a -80�C freezer overnight. Isolated RNA was ribo-depleted using RiboZero (Illumina) with ethanol 

washing to precipitate the RNA. Library preparation was completed using NEBNext Ultra II Directional 

RNA Library Prep Kit for Illumina (New England Biolabs) and sequenced using MiSeq v3 Paired End 

150 bp (Illumina). Data are available from NCBI project number PRJNA938933. 

4.2. RNA-seq sequence alignment and genome annotation with Ecocyc and RegulonDB 

RNA transcript quantification was performed using kallisto (21) with reference genome 

NC_012967.1 (20) and 10 bootstrap samples. Functional interpretations used Ecocyc (Ver. 23.1) (54) and 

RegulonDB (55). Lacking extensive annotation of gene regulation in REL606, we used the K-12 

MG1655 strain annotation based on gene names and gene product similarities. 
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4.3. Differential Expression Analysis 

We used R package DESeq2 (56) for gene differential expression analysis. The RNA transcription 

quantification data were first clustered to isolate outlier replicates using principal component analysis 

(PCA) (Figure S2). Two samples with a high number of missing transcripts were dropped from subse-

quent analysis. To confirm reproducible outcomes of sample treatment, hierarchical clustering using the 

Wald significance test was performed on all samples; sample treatment was retrieved perfectly (Figure 

S1).  

The DESeq2 pipeline includes size factor estimation, dispersion estimation, and DEG tests. Low-

count RNA quantifications are noisy and may decrease the sensitivity of DEGs detection (57). Size fac-

tors were calculated with a subset of control genes: non-regulated genes according to RegulonDB (55) 

with expression higher than a threshold (10) across all replicates. Setting transcriptome quantification 

from the moderate lactose condition, we applied the adaptive-T prior shrinkage estimator "apeglm" and 

used Wald significance tests for detecting DEGs and obtaining the log2 fold changes (LFC2). 

4.4. Metabolic pathway enrichment analysis 

4.4.1. Enrichment analysis by FGSEA 

At the time of analysis, there were 368 pathways in EcoCyc for B REL606. 6 pathways that are not 

apparently regulated by gene products were discarded. Pathway enrichment was analyzed using FGSEA 

(58). Differentially expressed genes were pre-ranked by their log2 fold change. Pathway gene sets were 

defined with reference to the EcoCyc database. The pre-ranked gene data and pathway gene sets were 

then processed by the fgseaMultilevel function to obtain final results. Minimum gene set size was set to 3 

with 200 bootstrap replicates. The threshold for pathway significance was 0.05. 
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Pathways in Figure 7 are linked by key metabolites and their flow direction. The pathway ontology in 

Figure 7 is annotated in the Ecocyc database. The pathway link and pathway ontology was extracted from 

EcoCyc and visualized with Cytoscape (59). 

4.4.2. Pathway regulatory mechanism similarity 

To calculate the similarity between pathway regulation in different conditions, we used Spearman’s ρ 

rank correlation between the differential expression profile for each pathway. The similarity score for 

cases where all gene enrichment in a pathway are of the same direction is set to 1. 

Metabolic pathway visualization used the Python package Escher (60). 

4.5. Code availability 

Analysis code is available at https://github.com/jcjray/ecoli_divergent_stress_pipeline 
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Supplementary Figures 

 

Figure S1. Data quality verification. a. PCA analysis for the transcriptome profile. b. hierarchical clustering using Wald signifi-

cance. The clustering recapitulated treatment conditions. 

 

 

Figure S2. Pathway enrichment analysis overview. The plot is color-coded for the similarity of pathway regulation between star-

vation and toxicity. The size of the circle represents pathway gene set size, and the location of the bubbles are the normalized en-

richment scores for each pathway. 
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Figure S3. Pathway regulatory correlations between starving and toxified cells. Blue dots show a conserved regulatory regime for 
both stresses, and red dots show oppositely regulated pathways. 
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Supplementary Tables 

Table S1. Pathways enriched in both starvation and toxification. Pathway ID and name are according to EcoCyc database annota-

tions, and normalized enrichment score is calculated using the R package fgsea. 

Pathway ID Name Gene 
Set Size 

Spearman 
correla-
tion 

Toxication 
NES 

Starvation 
NES 

PUTDEG-PWY putrescine degradation I 2 -1 1.48002492 4.65997042 
PWY0-1305 glutamate dependent acid resistance 2 -1 1.1859878 1.59212915 
PWY0-461 lysine degradation I 2 -1 1.35155215 1.83928035 
PWY0-1317 L-lactaldehyde degradation (aerobic) 2 -1 1.46805444 2.01581953 
THRDLCTCAT-PWY threonine degradation III (to 

methylglyoxal) 
2 -1 1.46828561 1.77182093 

PWY0-1280 ethylene glycol degradation 2 -1 2.32846128 2.44590459 
GLYCOLATEMET-PWY glycolate and glyoxylate degradation I 7 0.3214285

7 
1.88244895 1.86338914 

GLYCOL-GLYOXDEG-
PWY 

superpathway of glycol metabolism 
and degradation 

11 0.3644656
4 

1.88372208 2.02611816 

PWY0-42 2-methylcitrate cycle I 6 0.3714285
7 

1.69070836 2.03799995 

PWY-6961 L-ascorbate degradation II (bacterial, 
aerobic) 

9 0.8333333
3 

2.11098325 1.79204893 

PWY-6772 hydrogen production V 7 0.8571428
6 

1.88508666 1.77736595 

PWY0-301 L-ascorbate degradation I (bacterial, 
anaerobic) 

8 0.9523809
5 

1.83854381 1.72700654 

LYXMET-PWY L-lyxose degradation 7 0.9642857
1 

1.93769922 1.80519956 

THREONINE-DEG2-PWY threonine degradation II 2 1 1.25911262 1.90509234 
GLUCONSUPER-PWY D-gluconate degradation 2 1 1.702271 2.3647267 
PWY-66 GDP-L-fucose biosynthesis I (from 

GDP-D-mannose) 
2 1 2.99269776 2.42917244 

PWY0-661 PRPP biosynthesis II 2 1 2.88193561 1.72370551 
PWY-6894 thiamin diphosphate biosynthesis I (E. 

coli) 
2 1 2.70271621 2.35363775 

PWY-7181 pyrimidine deoxyribonucleosides deg-
radation 

2 1 1.15009838 1.93460402 

PWY0-1300 2-O-alpha-mannosyl-D-glycerate deg-
radation 

2 1 2.45899684 2.4412234 

2PHENDEG-PWY phenylethylamine degradation I 2 1 1.97359284 2.09844355 
PWY0-1309 chitobiose degradation 2 1 1.88736692 1.19095321 
TRESYN-PWY trehalose biosynthesis I 2 1 1.83677266 3.00331018 
PWY-7247 beta-D-glucuronide and D-glucuronate 

degradation 
2 1 1.82541516 1.60708482 

PWY-46 putrescine biosynthesis III 2 1 1.78260691 1.40424707 
PWY-6019 pseudouridine degradation 2 1 3.23424124 2.69738572 
XYLCAT-PWY xylose degradation I 2 1 2.34239671 3.07625823 
PWY0-1466 trehalose degradation VI (periplasmic) 2 1 1.70019343 4.27176029 
PWY0-1477 ethanolamine utilization 2 1 2.32607631 1.9938891 
GLUCARGALACTSUPER
-PWY 

superpathway of D-glucarate and D-
galactarate degradation 

5 1 1.85197625 1.98616611 

AST-PWY arginine degradation II (AST pathway) 5 1 1.67181348 2.15994831 
GLUCARDEG-PWY D-glucarate degradation I 4 1 1.69740595 1.84433906 
GALACTARDEG-PWY D-galactarate degradation I 4 1 1.69740595 1.89776655 
PWY0-541 cyclopropane fatty acid (CFA) biosyn-

thesis 
1 NC 1.49596218 1.94296286 
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TREDEGLOW-PWY trehalose degradation I (low 
osmolarity) 

1 NC 2.18675062 1.41455366 

PWY0-1315 L-lactaldehyde degradation (anaerobic) 1 NC 2.32846128 1.49622475 
PWY-6476 cytidylyl molybdenum cofactor bio-

synthesis 
1 NC 2.73758113 6.40687046 

TRYPDEG-PWY tryptophan degradation II (via py-
ruvate) 

1 NC 2.71945032 2.32442325 

PWY0-1306 L-galactonate degradation 1 NC 2.65064294 2.07270313 
PWY0-1313 acetate conversion to acetyl-CoA 1 NC 1.19407481 4.21849854 
PYRUVOX-PWY pyruvate oxidation pathway 1 NC 1.1743514 3.66245495 
PWY0-1527 curcumin degradation 1 NC 2.09016159 3.65971023 
PWY-4621 arsenate detoxification II 

(glutaredoxin) 
1 NC 1.39610105 1.14732764 

SORBDEG-PWY D-sorbitol degradation II 1 NC 1.25727254 1.08246131 
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Table S2. Pathways that are downregulated in both starvation and toxification. Pathway ID and name are according to EcoCyc 

database annotations, and normalized enrichment score is calculated using the R package fgsea. 

Pathway ID Name Gene Set 
Size 

Spearman corre-
lation 

Toxication 
NES 

Starvation 
NES 

PWY-6164 3-dehydroquinate biosynthesis I 4 0.2 -1.7170986 -1.6743143 
1CMET2-PWY formylTHF biosynthesis 13 0.21028159 -2.5127379 -2.2476814 
PWY0-1544 proline to cytochrome bo oxidase 

electron transfer 
5 0.3 -1.8036565 -2.0335072 

PWY-7221 guanosine ribonucleotides de novo 
biosynthesis 

4 0.4 -1.9758629 -1.7332184 

PWY-6123 inosine-5'-phosphate biosynthesis I 5 0.4 -2.2939608 -2.0663072 
SULFATE-CYS-
PWY 

superpathway of sulfate assimilation 
and cysteine biosynthesis 

14 0.40468084 -1.8650526 -2.3251339 

BRANCHED-
CHAIN-AA-SYN-
PWY 

superpathway of leucine, valine, and 
isoleucine biosynthesis 

16 0.54411886 -2.3907053 -2.3628305 

VALSYN-PWY valine biosynthesis 9 0.55064377 -1.9802507 -2.1931326 
DAPLYSINESYN-
PWY 

lysine biosynthesis I 11 0.57028521 -2.1073292 -1.9758616 

THRESYN-PWY threonine biosynthesis 7 0.57659998 -2.1819213 -2.2058568 
TRNA-
CHARGING-PWY 

tRNA charging 107 0.62366092 -4.4279593 -2.5551741 

PEPTIDOGLYCAN
SYN-PWY 

peptidoglycan biosynthesis I (meso-
diaminopimelate containing) 

17 0.68697631 -1.7201171 -1.9180572 

DENOVOPURINE2
-PWY 

superpathway of purine nucleotides 
de novo biosynthesis II 

21 0.68918484 -3.4673257 -2.8912608 

PWY-6387 UDP-N-acetylmuramoyl-
pentapeptide biosynthesis I (meso-
DAP-containing) 

9 0.69488131 -1.8992943 -1.8886918 

PHESYN phenylalanine biosynthesis I 5 0.7 -1.89207 -1.8678241 
ECASYN-PWY enterobacterial common antigen bio-

synthesis 
11 0.7054586 -1.9152036 -2.1115153 

LEUSYN-PWY leucine biosynthesis 6 0.71428571 -2.1173865 -1.9587867 
PRPP-PWY superpathway of histidine, purine, 

and pyrimidine biosynthesis 
43 0.72091986 -3.5866655 -3.2680707 

PWY-6628 superpathway of phenylalanine bio-
synthesis 

16 0.7363165 -2.4289374 -2.510254 

ARO-PWY chorismate biosynthesis I 11 0.73973495 -1.941385 -2.1526856 
PWY0-781 aspartate superpathway 26 0.75367693 -2.6576584 -2.5798931 
COMPLETE-ARO-
PWY 

superpathway of phenylalanine, ty-
rosine, and tryptophan biosynthesis 

21 0.75932767 -2.6053657 -2.7188438 

PWY0-1335 NADH to cytochrome bo oxidase 
electron transfer 

17 0.76444213 -2.5689955 -2.4393504 

PWY-6126 superpathway of adenosine nucleo-
tides de novo biosynthesis II 

9 0.76666667 -2.3916299 -1.97031 

ALL-
CHORISMATE-
PWY 

superpathway of chorismate metabo-
lism 

52 0.77022278 -2.8102534 -2.5571267 

PWY-6629 superpathway of tryptophan biosyn-
thesis 

16 0.77309995 -2.2557452 -2.4093065 

P4-PWY superpathway of lysine, threonine 
and methionine biosynthesis I 

20 0.79094258 -2.4644023 -2.3595712 

PYRIDOXSYN-
PWY 

pyridoxal 5'-phosphate biosynthesis I 7 0.79282497 -1.992129 -1.9864921 

TYRSYN tyrosine biosynthesis I 4 0.8 -1.7577619 -1.6842574 
PWY0-1329 succinate to cytochrome bo oxidase 

electron transfer 
8 0.80511756 -1.9386191 -2.0145265 

PWY0-1479 tRNA processing 8 0.80995314 -2.214798 -1.9543398 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 7, 2023. ; https://doi.org/10.1101/2021.12.17.473201doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.17.473201
http://creativecommons.org/licenses/by/4.0/


LPSSYN-PWY superpathway of lipopolysaccharide 
biosynthesis 

20 0.81108643 -2.2741008 -2.1287715 

PWY0-845 superpathway of pyridoxal 5'-
phosphate biosynthesis and salvage 

9 0.8136762 -2.0845593 -2.0788978 

MET-SAM-PWY superpathway of S-adenosyl-L-
methionine biosynthesis 

11 0.83541781 -2.1197985 -2.0682583 

METSYN-PWY homoserine and methionine biosyn-
thesis 

10 0.83637445 -1.9654649 -2.0024894 

PWY-6125 superpathway of guanosine nucleo-
tides de novo biosynthesis II 

9 0.84519568 -2.3505158 -1.8166431 

KDO-
NAGLIPASYN-
PWY 

superpathway of (KDO)2-lipid A bi-
osynthesis 

16 0.88141026 -2.3873531 -2.0658268 

PWY-6277 superpathway of 5-aminoimidazole 
ribonucleotide biosynthesis 

6 0.88571429 -2.481489 -2.2668217 

PWY-6122 5-aminoimidazole ribonucleotide bi-
osynthesis II 

5 0.9 -2.2787075 -2.1128649 

PWY-6121 5-aminoimidazole ribonucleotide bi-
osynthesis I 

5 0.9 -2.3204882 -2.1098019 

PWY0-162 superpathway of pyrimidine 
ribonucleotides de novo biosynthesis 

11 0.90545284 -2.313524 -2.0679254 

GLUTAMINDEG-
PWY 

glutamine degradation I 9 0.91538573 -2.2115874 -1.9595464 

PWY-5686 UMP biosynthesis 8 0.9187082 -2.0578243 -1.8682132 
SER-GLYSYN-
PWY 

superpathway of serine and glycine 
biosynthesis I 

6 0.94112395 -1.8912768 -1.769186 

PWY-7343 UDP-glucose biosynthesis 2 1 -1.7850793 -1.699465 
PWY-6605 adenine and adenosine salvage II 2 1 -1.9327137 -3.38289 
HOMOSER-
THRESYN-PWY 

threonine biosynthesis from 
homoserine 

2 1 -1.9119924 -3.4803336 

MALATE-
ASPARTATE-
SHUTTLE-PWY 

aspartate degradation II 2 1 -1.7983406 -3.8467327 

PWY-5965 fatty acid biosynthesis initiation III 2 1 -1.4155951 -1.7037825 
PWY-2161 folate polyglutamylation 2 1 -1.7341271 -3.3131773 
PWY-901 methylglyoxal degradation II 2 1 -1.5556089 -1.6559264 
PWY-4381 fatty acid biosynthesis initiation I 2 1 -1.7069039 -1.4797282 
GLUTSYNIII-PWY glutamate biosynthesis III 3 1 -1.8900618 -1.8192044 
AMMASSIM-PWY ammonia assimilation cycle III 3 1 -1.8571243 -1.8192044 
PWY-7335 UDP-N-acetyl-alpha-D-

mannosaminouronate biosynthesis 
2 1 -1.4983814 -2.6058321 

GLUTAMINEFUM
-PWY 

glutamine degradation II 2 1 -2.8905575 -4.8939616 

PWY-7219 adenosine ribonucleotides de novo 
biosynthesis 

3 1 -1.7681931 -1.7327185 

GLUTSYN-PWY glutamate biosynthesis I 2 1 -2.8905575 -4.8939616 
THIOREDOX-PWY thioredoxin pathway 1 NC -1.651714 -3.7466738 
ASPARTATESYN-
PWY 

aspartate biosynthesis 1 NC -1.7983406 -3.8467327 

GLYSYN-PWY glycine biosynthesis I 1 NC -2.9459969 -5.7535018 
PWY-5785 di-trans,poly-cis-undecaprenyl phos-

phate biosynthesis 
1 NC -1.3916115 -2.277032 

PWY0-662 PRPP biosynthesis I 1 NC -2.9390604 -4.2513074 
SAM-PWY S-adenosyl-L-methionine biosynthe-

sis 
1 NC -1.9408047 -2.4097819 

PWY-6268 adenosylcobalamin salvage from 
cobalamin 

1 NC -1.1325597 -1.9376787 

KDOSYN-PWY KDO transfer to lipid IVA I 1 NC -1.1913758 -1.2113179 
PWY-6617 adenosine nucleotides degradation 

III 
1 NC -1.2055085 -1.717672 
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BSUBPOLYAMSY
N-PWY 

spermidine biosynthesis I 1 NC -1.9988552 -3.7014181 

GLNSYN-PWY glutamine biosynthesis I 1 NC -2.0239153 -4.9118033 
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Table S3. Pathways uniquely enriched in starvation. Pathway ID and name are according to EcoCyc database annotations, and 

normalized enrichment score is calculated using the R package fgsea. 

Pathway ID Name Gene Set 
Size 

Spearman cor-
relation 

Toxication 
NES 

Starvation 
NES 

FAO-PWY fatty acid beta-oxidation I 9 -0.0666667 0 2.22387757 

PWY-4261 glycerol degradation I 5 0.5 0 2.03254717 

PWY0-1182 trehalose degradation II (trehalase) 3 0.5 0 1.62706335 

PWY-6952 glycerophosphodiester degradation 6 0.71428571 0 1.79463742 

PWY0-381 glycerol and glycerophosphodiester degrada-
tion 

7 0.75678747 0 1.92648052 

GLYOXDEG-
PWY 

glycolate and glyoxylate degradation II 5 0.9 0 1.93846673 

PWY0-1299 arginine dependent acid resistance 2 1 0 1.19479501 

DARABCAT-
PWY 

D-arabinose degradation II 1 NC 0 1.26124042 

PWY-7346 UDP-alpha-D-glucuronate biosynthesis 
(from UDP-glucose) 

1 NC 0 2.0622656 

PWY0-1337 oleate beta-oxidation 1 NC 0 3.74727095 

MANNIDEG-
PWY 

mannitol degradation I 1 NC 0 3.20579409 

GLUAMCAT-
PWY 

N-acetylglucosamine degradation I 2 NC 0 1.21830745 

PWY-7179 purine deoxyribonucleosides degradation 2 NC 0 1.39473893 

PWY-6028 acetoin degradation 2 NC 0 1.47252358 
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Table S4. Pathways that are uniquely downregulated in starvation. Pathway ID and name are according to EcoCyc database an-
notations, and normalized enrichment score is calculated using the R package fgsea. 

 

Pathway ID Name Gene 
Set Size 

Spearman 
correlation 

Toxication 
NES 

Starvation 
NES 

GLYCLEAV-PWY glycine cleavage 4 -0.2108185 0 -1.7444687 
BETSYN-PWY glycine betaine biosynthesis I (Gram-

negative bacteria) 
2 -1 0 -1.5956464 

PWYCQD-2 dTDP-N-acetylviosamine biosynthesis 6 0.13093073 0 -1.9469392 
OANTIGEN-PWY-1 O-antigen building blocks biosynthesis 

(E. coli) 
12 0.30623505 0 -2.2262838 

GALACTMETAB-
PWY 

galactose degradation I (Leloir pathway) 5 0.3354102 0 -1.8345093 

SO4ASSIM-PWY sulfate reduction I (assimilatory) 6 0.3927922 0 -2.1430812 
PYRUVDEHYD-
PWY 

pyruvate decarboxylation to acetyl CoA 3 0.5 0 -1.6142377 

PWY-5084 2-oxoglutarate decarboxylation to 
succinyl-CoA 

3 0.5 0 -1.6142377 

PWY-7315 dTDP-N-acetylthomosamine biosynthesis 6 0.50709255 0 -1.8100348 
PWY-7184 pyrimidine deoxyribonucleotides de novo 

biosynthesis I 
8 0.54802458 0 -1.7702754 

ILEUSYN-PWY isoleucine biosynthesis I (from threonine) 10 0.65229728 0 -2.0483919 
DTDPRHAMSYN-
PWY 

dTDP-L-rhamnose biosynthesis I 6 0.65465367 0 -1.9469392 

HOMOSERSYN-
PWY 

homoserine biosynthesis 4 0.73786479 0 -1.6251729 

TRPSYN-PWY tryptophan biosynthesis 5 0.82078268 0 -1.7667447 
ASPARAGINESYN-
PWY 

asparagine biosynthesis II 2 1 0 -1.9602794 

PWY-6890 4-amino-2-methyl-5-
diphosphomethylpyrimidine biosynthesis 

2 1 0 -1.0344595 

PWY0-1325 superpathway of asparagine biosynthesis 2 1 0 -1.9602794 
PWY-6700 queuosine biosynthesis 4 1 0 -1.6297352 
HISTSYN-PWY histidine biosynthesis 9 NC 0 -2.2452096 
PWY-7344 UDP-D-galactose biosynthesis 1 NC 0 -3.9647485 
PWY0-1517 sedoheptulose bisphosphate bypass 2 NC 0 -2.3330402 
PWY0-501 lipoate biosynthesis and incorporation I 2 NC 0 -1.1472346 
GLUTATHIONESY
N-PWY 

glutathione biosynthesis 2 NC 0 -1.4696166 

PWY0-1275 lipoate biosynthesis and incorporation II 2 NC 0 -1.3449008 
PWY-6618 guanine and guanosine salvage III 1 NC 0 -1.4832385 
PWY0-522 lipoate salvage I 1 NC 0 -1.3449008 
SALVPURINE2-
PWY 

xanthine and xanthosine salvage 1 NC 0 -2.0936911 

ASPARAGINE-
BIOSYNTHESIS 

asparagine biosynthesis I 1 NC 0 -2.1628747 

GLUT-REDOX-
PWY 

glutathione redox reactions II 1 NC 0 -1.2122565 

PWY0-1295 pyrimidine ribonucleosides degradation 2 NC 0 -1.4918647 
PWY-5340 sulfate activation for sulfonation 3 NC 0 -1.6277355 

 

 

  

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 7, 2023. ; https://doi.org/10.1101/2021.12.17.473201doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.17.473201
http://creativecommons.org/licenses/by/4.0/


Table S5. Pathways that are uniquely enriched in toxicity. Pathway ID and name are according to EcoCyc database annotations, 

and normalized enrichment score is calculated using the R package fgsea. 

Pathway ID Name Gene 
Set 
Size 

Spearman 
correlation 

Toxicity 
NES 

Starva-
tion NES 

PWYCQD-3 N-acetyl-galactosamine degradation 9 0.51666667 1.84151128 0 

PWYCQD-4 galactosamine degradation 8 0.66666667 1.9179961 0 
GALACTITOLCAT-
PWY galactitol degradation 5 0.7 1.59677363 0 

PWY0-1321 nitrate reduction III (dissimilatory) 12 0.8041958 1.90376903 0 
3-
HYDROXYPHENYLA
CETATE-
DEGRADATION-PWY 4-hydroxyphenylacetate degradation 8 0.88095238 1.73575101 0 

PWY0-1356 
formate to dimethyl sulfoxide elec-
tron transfer 9 0.88333333 1.69948976 0 

PWY-6690 
cinnamate and 3-hydroxycinnamate 
degradation to 2-oxopent-4-enoate 8 0.92857143 1.72900525 0 

HCAMHPDEG-PWY 

3-phenylpropanoate and 3-(3-
hydroxyphenyl)propanoate degrada-
tion to 2-oxopent-4-enoate 8 0.92857143 1.72900525 0 

PWY0-1277 

3-phenylpropionate and 3-(3-
hydroxyphenyl)propionate degrada-
tion 12 0.97022916 1.92679151 0 

RHAMCAT-PWY L-rhamnose degradation I 4 1 1.58032918 0 

PWY0-1465 D-malate degradation 1 NC 1.36929171 0 

PWY0-981 taurine degradation IV 1 NC 1.33115815 0 
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Table S6. Pathways that are uniquely downregulated in toxification condition. Pathway ID and name are consistent with EcoCyc 

database annotations, and normalized enrichment score is calculated with R package fgsea. 

Pathway ID Name Gene Set 
Size 

Spearman cor-
relation 

Toxication 
NES 

Starva-
tion NES 

PWY-5188 tetrapyrrole biosynthesis I (from gluta-
mate) 

10 0 -2.1828993 0 

PWY0-1061 superpathway of alanine biosynthesis 8 0.22094698 -1.8691385 0 
PWY0-881 superpathway of fatty acid biosynthesis I 

(E. coli) 
9 0.39167473 -2.4002279 0 

PWY0-862 cis-dodecenoyl biosynthesis 5 0.46169026 -1.9822633 0 
PWY-5989 stearate biosynthesis II (bacteria and 

plants) 
5 0.46169026 -1.9764809 0 

FASYN-ELONG-
PWY 

fatty acid elongation -- saturated 7 0.51887452 -2.1586643 0 

PWY-5973 cis-vaccenate biosynthesis 7 0.52357031 -2.0937013 0 
BIOTIN-
BIOSYNTHESIS-
PWY 

biotin biosynthesis I 11 0.54067025 -1.7848757 0 

PWY-5971 palmitate biosynthesis II (bacteria and 
plants) 

6 0.5768179 -1.9822633 0 

PWY-6284 superpathway of unsaturated fatty acids 
biosynthesis (E. coli) 

8 0.59971229 -2.0838521 0 

FASYN-INITIAL-
PWY 

superpathway of fatty acid biosynthesis in-
itiation (E. coli) 

4 0.63245553 -1.8415528 0 

PWY0-163 salvage pathways of pyrimidine 
ribonucleotides 

7 0.70418685 -1.8942574 0 

ARGSYN-PWY arginine biosynthesis I (via L-ornithine) 11 0.7723047 -1.7913983 0 
PWY0-166 superpathway of pyrimidine 

deoxyribonucleotides de novo biosynthesis 
(E. coli) 

12 0.80049837 -1.9230626 0 

TCA TCA cycle I (prokaryotic) 19 0.80158908 -1.7796264 0 
PWY-7220 adenosine deoxyribonucleotides de novo 

biosynthesis II 
6 0.94285714 -1.9280087 0 

PWY-7222 guanosine deoxyribonucleotides de novo 
biosynthesis II 

6 0.94285714 -1.9280087 0 

GLUTDEG-PWY glutamate degradation II 2 1 -1.7983406 0 
PWY0-1534 hydrogen sulfide biosynthesis I 2 1 -1.7983406 0 
PWY-5123 trans, trans-farnesyl diphosphate biosyn-

thesis 
2 1 -1.2644685 0 

PWY0-1221 putrescine degradation II 4 1 -1.7084731 0 
PWY0-1021 alanine biosynthesis III 2 NC -1.8282391 0 
ALANINE-SYN2-
PWY 

alanine biosynthesis II 2 NC -1.0738934 0 

PWY0-1433 tetrahydromonapterin biosynthesis 2 NC -1.4665294 0 
PWY-5783 octaprenyl diphosphate biosynthesis 1 NC -1.1969374 0 
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