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Abstract

A central goal of genetics is to define the relationships between genotypes and phenotypes.
High-content phenotypic screens such as Perturb-seq (pooled CRISPR-based screens with single-
cell RNA-sequencing readouts) enable massively parallel functional genomic mapping but, to date,
have been used at limited scales. Here, we perform genome-scale Perturb-seq targeting all
expressed genes with CRISPR interference (CRISPRi) across >2.5 million human cells and present
a framework to power biological discovery with the resulting genotype-phenotype map. We use
transcriptional phenotypes to predict the function of poorly-characterized genes, uncovering new
regulators of ribosome biogenesis (including CCDC86, ZNF236, and SPATAS5LI), transcription
(C70rf26), and mitochondrial respiration (TMEM?242). In addition to assigning gene function,
single-cell transcriptional phenotypes allow for in-depth dissection of complex cellular phenomena
— from RNA processing to differentiation. We leverage this ability to systematically identify the
genetic drivers and consequences of aneuploidy and to discover an unanticipated layer of stress-
specific regulation of the mitochondrial genome. Our information-rich genotype-phenotype map

reveals a multidimensional portrait of gene function and cellular behavior.
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Main Text

Mapping the relationship between genetic changes and their phenotypic consequence is
critical to understanding gene and cellular function. This mapping is traditionally carried out in
either of two ways. A phenotype-centric, “forward genetic” approach reveals the genetic changes
that drive a phenotype of interest. Conversely, a gene-centric, “reverse genetic” approach catalogs
the diverse phenotypes caused by a defined genetic change.

Recent technological developments have advanced both forward and reverse genetic
efforts (/). CRISPR-Cas tools now enable the deletion, mutation, repression, or activation of genes
with ease (2). In forward genetic screens, CRISPR-Cas systems can be used to generate cells with
diverse genetic perturbations. This pool of perturbed cells can then be subjected to a selective
pressure, with phenotypes assigned to genetic perturbations by sequencing. Forward genetic
screens provide powerful tools for the identification of cancer dependencies, essential cellular
machinery, differentiation factors, and suppressors of genetic diseases (3—6). In parallel, dramatic
improvements in molecular phenotyping now allow for single-cell readouts of epigenetic,
transcriptomic, proteomic, and imaging information (7). Applied to reverse genetics, single-cell
profiling can refine the understanding of how select genetic perturbations affect cell types and cell
states.

However, both phenotype-centric and gene-centric approaches suffer conceptual and
technical limitations. Pooled forward genetic screens typically use low-dimensional phenotypes
(e.g., growth, marker gene expression, drug resistance) for selection. The use of simple phenotypes
can conflate genes acting via different mechanisms, requiring extensive follow-up studies to
disentangle genetic pathways (8). Additionally, in forward genetics, serendipitous discovery is
constrained by the prerequisite of selecting phenotypes prior to screening. On the other hand, while
reverse genetic approaches enable the study of multidimensional and complex phenotypes, they
have typically been restricted in scale to rationally chosen targets, limiting the ability to make
systematic comparisons.

Single-cell CRISPR screens present a solution to these problems. These screens
simultaneously read out the genetic perturbation and high-dimensional phenotype of individual
cells in a pooled screening format, thus combining the throughput of forward genetic screens with
the rich phenotypes of reverse genetics. While these approaches initially focused on transcriptomic
phenotypes (e.g., Perturb-seq, CROP-seq) (9-13), technical advances have enabled their
application to epigenetic (/4), imaging (/5), or multimodal phenotypes (/6—18). From these rich
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86  data, it is possible to identify genetic perturbations that cause a specific behavior as well as to
87  catalog the spectrum of phenotypes associated with each genetic perturbation. Despite the promise
88  of single-cell CRISPR screens, their use has generally been limited to studying at most a few
89  hundred genetic perturbations, typically chosen with a bias towards predefined biological
90  questions.
91 We reasoned that there would be unique value to genome-scale single-cell CRISPR
92  screens. For example, while the number of perturbations scales linearly with experimental cost,
93  the number of pairwise comparisons in a screen—and thus its utility for unsupervised classification
94  of gene function—scales quadratically. Similarly, in large-scale screens, the diversity of
95  perturbations allows one to explore the range of cell states that can be revealed by rich phenotypes.
96  Additionally, as many human genes are well-characterized, these genes serve as natural controls
97  to anchor the interpretation of observations in comprehensive datasets. Finally, genome-scale
98  experiments could help address fundamental biological questions, such as what fraction of genetic
99  changes elicit global transcriptional phenotypes and how transcriptional programs are rewired
100  between cell types, with implications for understanding the organizing principles of cellular
101  systems (/9).
102 Here we perform the first genome-scale Perturb-seq screens. We use a compact,
103 multiplexed CRISPR interference (CRISPR1i) library to assay thousands of loss-of-function genetic
104  perturbations with single-cell RNA-sequencing (scRNA-seq) in chronic myeloid leukemia (K562)
105 and retinal pigment epithelial (RPE1) cell lines. Leveraging the scale and diversity of these
106  perturbations across >2.5 million cells, we show that Perturb-seq can be used to study numerous
107  complex cellular phenotypes—from RNA splicing to differentiation to chromosomal instability—
108  in a single screen. We demonstrate how the interpretability of sScRNA-seq phenotypes enables the
109  discovery of gene function and extensively validate our findings with orthogonal experiments.
110  Finally, we invert our analysis to focus on regulatory networks rather than genetic perturbations
111  and uncover unanticipated stress-specific regulation of the mitochondrial genome. In sum, we use
112 Perturb-seq to reveal a multidimensional portrait of cellular behavior, gene function, and
113 regulatory networks that advances the goal of creating comprehensive genotype-phenotype maps.
114
115
116
117
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118 Results

119

120 A multiplexed CRISPRi strategy for genome-scale Perturb-seq

121

122 Perturb-seq uses scRNA-seq to concurrently read out the CRISPR single-guide RNAs

123 (sgRNA) (i.e., genetic perturbation) and transcriptome (i.e., high-dimensional phenotype) of single
124 cells in a pooled format (Fig. 1A). To enable genome-scale Perturb-seq, we considered key
125  parameters that would increase scalability and data quality, such as the genetic perturbation
126  modality and sgRNA library.

127 Although Perturb-seq is compatible with a range of CRISPR-based perturbations including
128  knockout (/0-12), knockdown (CRISPRi) (9), or activation (CRISPRa) (20), we elected to use
129  CRISPRI for several reasons. First, CRISPRi allows the efficacy of the genetic perturbation,
130 knockdown, to be directly measured from scRNA-seq. Exploiting this feature allowed us to target
131  each gene in our library with a single element and empirically exclude unperturbed genes from
132 downstream analysis. Second, CRISPRIi tends to yield more homogeneous genetic perturbation
133 than nuclease-based CRISPR knockout, which can generate a subset of cells bearing active in-
134 frame indels (27). The relative homogeneity of CRISPRi limits selection for unperturbed cells,
135  especially when studying essential genes. Third, unlike nuclease-based gene knockout, CRISPRi
136  does not lead to activation of the DNA damage response which can alter cell state and
137  transcriptional signatures (22).

138 To improve scalability, we optimized our CRISPRi sgRNA libraries. To maximize
139  CRISPRI efficacy, we used multiplexed CRISPRIi libraries in which each construct contains two
140  distinct sgRNAs targeting the same gene (table S1-S3; see Methods) (13). To avoid low
141  representation of sgRNAs targeting essential genes, we performed preliminary growth screens and,
142 during library synthesis, overrepresented constructs that caused strong growth defects (fig. S1A-
143 D).

144 Next, we devised a three-pronged Perturb-seq screening approach encompassing multiple
145  timepoints and cell types (Fig. 1A). As a primary cell line, we studied chronic myeloid leukemia
146  (CML) K562 cells engineered to express the CRISPRi effector protein dCas9-KRAB (23). In this
147  cell line, we performed two Perturb-seq screens: one targeting all expressed genes sampled at day
148 8 after transduction (n=9,866 genes; n=10,673 total perturbations; some genes have multiple

149  independent transcripts) and another targeting common essential genes, which was sampled at day
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150 6 after transduction (n=2,057 genes; n=2,176 total perturbations). As a secondary cell line, we used
151  RPE1 cells engineered to express dCas9 fused to a KRAB domain derived from the gene ZIM3,
152 which was recently shown to yield improved transcriptional repression compared to the KOXI-
153  derived KRAB domain used in previous CRISPRi experiments (24). In contrast to K562 cells,
154  RPEI] cells are a non-cancerous retinal pigment epithelial cell line that are hTERT-immortalized,
155  near-euploid, adherent, and p53-positive. In RPEI cells, we performed a screen targeting common
156  essential genes plus a subset of nonessential genes that produced phenotypes in K562 cells sampled
157  atday 7 after transduction (n=2,393 genes; n=2,549 total perturbations).

158 We conducted these three screens with 10x Genomics droplet-based 3’ scRNA-seq and
159  direct sgRNA capture (/3). After sequencing and read alignment, we performed sgRNA
160  identification and removed any cells bearing sgRNAs targeting different genes, which are an
161  expected byproduct of lentiviral recombination between sgRNA cassette or doublet encapsulation
162  during scRNA-seq. In total, we obtained >2.5 million high-quality cells with a median coverage
163 of >100 cells per perturbation (fig. S1 E-G; table S4-S6). We observed a median target knockdown
164  of 85.5% in K562 cells and 91.6% in RPE1 cells (Fig. 1B), confirming both the efficacy of our
165  CRISPRI libraries and the fidelity of sgRNA assignment (/3). The difference in performance
166  between these cell lines was likely due to the use of the optimized ZIM3-derived KRAB domain
167  inthe RPE1 cells, suggesting that future efforts would benefit from improved CRISPRIi efficacy.
168

169 A robust computational framework to detect transcriptional phenotypes

170

171 The scale of our experiment provided a unique opportunity to ask what fraction of genetic
172 perturbations cause a transcriptional phenotype, a preliminary requirement for inferring gene
173 function. Significant transcriptional phenotypes can take many forms, ranging from altered
174  occupancy of a given cell state to focused changes in the expression level of a small number of
175  target genes. To contend with this diversity, we created a robust framework capable of detecting
176  transcriptional changes between groups of cells in our data. Our experimental design included
177  many control cells bearing diverse non-targeting sgRNAs. These allow for internal z-normalization
178  of expression measurements, and we found that this procedure corrected for batch effects that
179  resulted from parallelized scRNA-seq and sequencing (fig. S2). As Perturb-seq captures single-
180  cell genetic perturbation identities in a pooled format, we can use statistical approaches that treat

181  each cell as an independent experimental sample. In general, we chose to use conservative, non-
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182  parametric statistical tests to detect transcriptional changes rather than making specific
183  assumptions about the underlying distribution of gene expression levels.

184 First, we examined global transcriptional changes using a permuted energy distance test
185  (see Methods). We compared cells bearing each genetic perturbation to non-targeting control cells
186 at the level of principal components (approximating global transcriptional features like cell state
187  and gene expression programs). Relative to a permuted null distribution, this test asks whether
188  cells carrying a given genetic perturbation could have been drawn from the control population. By
189  this metric, we found that 2,987 of 9,608 genetic perturbations targeting a primary transcript
190  (31.1%) compared to 11 of 585 non-targeting controls (1.9%) caused a significant transcriptional
191  phenotype in K562 cells.

192 While sensitive, the energy distance test assays global shifts in expression without
193  providing insight into which specific transcripts are altered. To detect individual differentially
194  expressed genes, we applied the Anderson-Darling (AD) test to compare the distribution of
195  expression levels for each gene in cells bearing each genetic perturbation against control cells.
196  Importantly, the AD test is sensitive to transcriptional changes in a subset of cells, enabling us to
197  find differences even when phenotypes have incomplete penetrance. With the AD test, we found
198 2,935 0f 9,608 genetic perturbations targeting a primary transcript (30.5%) compared to 12 of 585
199  non-targeting controls (2.1%) caused >10 differentially expressed genes in K562 cells. These
200  results were well-correlated between time points and cell types (fig. S3A,B; tables S4-S6) and
201  concordant with the energy distance test (78.7% concordance by Jaccard index).

202 We then explored features of genetic perturbations that predict a transcriptional phenotype.
203  We found that the strength of the transcriptional response was correlated with the strength of the
204  growth defect (Spearman’s rho = —0.51) with 86.6% of essential genetic perturbations (gamma <
205 —0.1) leading to a significant transcriptional response in K562 cells (Fig. 1C; fig. S3C,D). A
206  substantial number of genetic perturbations that cause a transcriptional phenotype nonetheless
207  have a negligible growth phenotype (n=771; fig. S3E), indicating that many genetic perturbations
208 influence cell state but not growth or survival. We also found that highly expressed genes were
209  more likely to produce transcriptional phenotypes (Spearman’s rho = 0.42) (fig. S3C).

210 Considering that some of our genetic perturbations did not yield strong on-target
211  knockdown, our estimate of the fraction of genetic perturbations that cause a transcriptional
212 phenotype is likely to be a lower bound. While a fraction of phenotypes may result from off-target

213 effects, an advantage of Perturb-seq is the ability to directly detect potential off-target activities
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214 such as the knockdown of neighboring genes. Consistent with earlier studies (25), we found that
215 ~7.5% of perturbations caused significant knockdown of a neighboring gene in K562 cells, but
216  neighbor gene knockdown was not enriched in genetic perturbations with a negligible growth
217  defect that produced a transcriptional phenotype (fig. S4). Taken together, these results present a
218  coherent picture where knockdown of a significant fraction of expressed genes causes a

219  transcriptional response.

220

221  Annotating gene function from transcriptional phenotypes

222

223 Previous Perturb-seq screens have focused on targeted sets of genetic perturbations that are

224  often related biologically, such as genes identified in forward genetic screens. Our large-scale
225  screen targeting all expressed genes in K562 cells presented a unique opportunity to assess how
226  well transcriptional phenotypes can resolve gene function when used in an unbiased manner.

227 We focused on a subset of 1,973 perturbations that had strong transcriptional phenotypes
228  (>50 differentially expressed genes by AD test) (Fig. 2A). Because related perturbations could
229  have different magnitudes of effect, we used the correlation between mean expression profiles as
230  ascale-invariant metric of similarity.

231 To assess the extent to which correlated mean expression profiles between genetic
232 perturbations indicated common function, we compared our results to two curated sources of
233 biological relationships. First, among the 1,973 targeted genes, there were 327 protein complexes
234  from the CORUM 3.0 database with at least two thirds of the complex members present,
235  representing 14,165 confirmed protein-protein interactions (26). The corresponding expression
236  profile correlations were markedly stronger (median correlation 0.61) than the background
237  distribution of all possible gene pairs (median correlation 0.10) (Fig. 2B). Second, we compared
238  the correlation between genetic perturbations to the STRING database of known and predicted
239  protein-protein interactions, which had scores for 243,558 of the possible gene-gene relationships
240  within our dataset (27). High STRING scores, reflecting high-confidence interacting proteins,
241  were also strongly associated with high expression correlations (Fig. 2C).

242 We next performed an unbiased search for global structure to group similar perturbations
243 within the dataset. We identified 64 discrete clusters based on strong intra-cluster correlations and

244  annotated their function using CORUM, STRING, and manual searches. To visualize the dataset,
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245  we constructed a minimum distortion embedding that places genes with correlated expression
246  profiles close to each other in the plane and labeled the location of gene clusters (Fig. 2D).

247 Both the clusters and the embedding showed clear organization by biological function
248  spanning a diverse array of different processes including: chromatin modification; transcription;
249  mRNA splicing, capping, polyadenylation, and turnover; nonsense-mediated decay; translation;
250  post-translational modification, trafficking, and degradation of proteins; central metabolism;
251  mitochondrial transcription and translation; DNA replication; cell division; microRNA biogenesis;
252  and major signaling pathways active in K562 cells such as BCR-ABL and mTOR (table S7). We
253  further annotated the embedding visualization by labeling CORUM complexes and STRING
254  clusters whose members were placed in nearby positions, revealing structure at finer resolution
255  such as identifying the SMN complex, exon junction complex, U6 snRNP, and methylosome
256  within the spliceosome and the association of ribosome biogenesis factors with the 40S ribosomal
257  subunit.

258 In our dataset, we identified many poorly annotated genes whose perturbation led to similar
259  transcriptional responses to genes of known function, naturally predicting a role for the
260  uncharacterized genes. To orthogonally test a subset of these predictions, we selected ten poorly
261  annotated genes whose perturbation response correlated (#>0.6) with subunits and biogenesis
262  factors of either the large or small subunit of the cytosolic ribosome, which formed distinct clusters
263  in our data (fig. S5A). This included genes that had no previous association with ribosome
264  biogenesis (CCDC86, CINP, SPATASLI, ZNF236, Clorfl31) as well as genes that had not been
265  associated with functional defects in a particular subunit (SPOUTI, TMA16, NOPCHAPI,ABCF1,
266 and NEPRO). We used CRISPRI to target these genes in K562 cells and looked for evidence of
267 ribosome biogenesis defects by assessing the ratio of 28S to 18S rRNA by Bioanalyzer
268  electrophoresis. Knockdown of nine of the ten candidate factors led to substantial defects in
269  ribosome biogenesis, with the exception of ABCFI (Fig. 2E). In every case, the affected ribosomal
270  subunit corresponded to the Perturb-seq clustering across two independent sgRNAs. While this
271  study was in progress, another group used cryo-EM to identify Clorfl31 as a core structural
272 component of the pre-A1 small subunit processome, complementing our functional evidence (28).
273 This validation suggests that many poorly characterized genes can be assigned functional roles
274  through Perturb-seq, although a subset of these relationships might be explained by indirect or off-
275  target effects (fig. S5B,C).
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276 In total, these results show that transcriptional phenotypes revealed by Perturb-seq have
277  utility beyond studying gene regulation or transcriptional programs, and can serve as valuable tools

278  for resolving and interrogating many central processes in cell biology.

279

280  Delineating functional modules of the Integrator complex

281

282 In general, perturbations to members of known protein complexes produced similar

283  transcriptional phenotypes in our dataset. Therefore, we were surprised by the wide spectrum of
284  transcriptional responses to knockdown of subunits of Integrator, a metazoan-specific essential
285 nuclear complex with roles in small nuclear RNA (snRNA) biogenesis and transcription
286  termination at paused RNA polymerase II (Fig. 3A) (29). Each of the fourteen core subunits of
287  Integrator was targeted in our experiment, allowing us to systematically compare their
288  transcriptional phenotypes in K562 and RPEI cells (Fig. 3B; fig. S6A). INTSI, INTS2, INTSS,
289  INTS7, and INTSS formed a tight cluster which weakly correlated with INTS6 and INTSI2.
290  Separately, INTS3, INTS4, INTSY, and INTS11 clustered together alongside splicing regulators
291  involved in snRNP assembly and the tri-snRNP. Finally, INTS10, INTS13, and INTS14 formed
292  another discrete cluster together with C70rf26, an uncharacterized gene.

293 These distinct functional modules mirror the architecture of the Integrator complex
294  observed in recent structures (30, 31). The INTS1-2-5-7-8 functional module contained the
295  subunits identified as the structural shoulder and backbone of Integrator. The INTS3-4-9-11
296  functional module contained the subunits identified as the structural cleavage module (as well as
297  INTS3 which was not resolved). While INTS10, INTS13, and INTS14 were not resolved in the
298  recent cryo-EM Integrator structures, these subunits have been identified as a stable biochemical
299  subcomplex (32, 33).

300 Integrator is an essential and well-studied complex, so we were intrigued by the robust
301  clustering of the uncharacterized gene C70rf26 with Integrator subunits 10, 13, and 14. To explore
302  this, we tested whether loss of C70rf26 impacted the abundance of Integrator subunits. CRISPRi-
303  based depletion of C70rf26 destabilized INTS10 in K562 cells, confirming either a regulatory or
304  protein-level relationship (Fig. 3C). Next, we checked for a biochemical interaction between these
305  proteins. Pulldown of His-INTS10 from cell lysates recovered endogenous C70rf26 alongside
306 INTSI13 and INTS14 (Fig. 3D). Additionally, overexpression of C7orf26 with INTS10, INTS13,
307 and INTS14 enabled the purification of a stable INTS10-13-14-C70rf26 complex by size-

10
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308  exclusion chromatography (Fig. 3E; fig. S6B and fig. S7). We also detected a physical interaction
309  between the Drosophila C70rf26 orthologue and fly Integrator in S2 cells and observed co-
310  essentiality between C70rf26 and INTS10, INTS13, INTS14 in the Cancer Dependency Map,
311  suggesting that this relationship is conserved across species and cell types (fig. S8). Together, these
312 results suggest that C7orf26 is a core subunit of a novel INTS10-13-14-C70rf26 Integrator module.
313 We sought to better understand the distinct transcriptional phenotypes induced by
314 knockdown of INTS10-13-14-C70rf26 compared to the shoulder/backbone and cleavage modules.
315  Comparison of the genes differentially expressed between modules did not reveal function in an
316  obvious way (fig. S6C,D), perhaps owing to the late time point assayed in our experiment. We
317  next explored the canonical role of Integrator in snRNA biogenesis. As mature snRNAs are not
318  captured in 3’ scRNAs-seq, we monitored changes in global splicing as a proxy for snRNA
319  biogenesis defects. In our Perturb-seq data, we quantified changes in splicing by comparing the
320 ratio of intronic (unspliced) to exonic (spliced) reads for each gene. Validating our approach,
321  depletion of known splicing factors as well as subunits of the cleavage and shoulder/backbone
322  modules led to gross splicing defects (Fig. 3F). By contrast, depletion of subunits of the INTS10-
323 13-14-C7o0rf26 module did not cause a substantial splicing defect. To directly test the effect of the
324  INTS10-13-14-C70rf26 module on snRNA biogenesis, we used PRO-seq to probe the positioning
325  of active RNA-polymerase. These data confirmed that extended knockdown of the cleavage and
326  backbone/shoulder modules, but not IN7S10, INTS13, or C70rf26, caused a dramatic increase in
327  transcriptional readthrough past the 3’ cleavage site of snRNAs (Fig. 3G). In addition, the PRO-
328 seq data confirmed that loss of the INTS10-13-14-C70rf26 module causes a transcriptional
329  phenotype distinct from other modules (fig. SOE).

330 In sum, our results show that INTS10-13-14-C70rf26 represents a functionally and
331  biochemically distinct module of the Integrator complex, and we propose that C70rf26 be renamed
332 INTSI5 for future studies (Fig. 3H). Although Integrator has been subjected to extensive structural
333 analyses, it has been difficult to resolve the INTS10-13-14 components in relation to the rest of
334 the complex. Inclusion of C70rf26 may facilitate future structural efforts. Broadly, this example
335  highlights the utility of high-dimensional functional phenotypes for the unsupervised classification
336  of protein complex subunits into functional modules.

337

338

339
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340  Data-driven definition of transcriptional programs

341

342 While clustering can organize genetic perturbations into pathways or complexes, it does
343  not reveal the functional consequences of perturbations. To globally summarize the genotype-
344  phenotype relationships in our dataset, we: (i) clustered genes into expression programs based on
345  their co-regulation across perturbations; (ii) clustered perturbations with strong phenotypes based
346  on their transcriptional profiles (as described above); and (iii) computed the average activity of
347  each gene expression program within each perturbation cluster (Fig. 4A,B; fig. S9A; table S7,S8S;
348  see Methods). This map uncovered many known gene expression programs associated with genetic
349  perturbations, including upregulation of proteasomal subunits due to proteosome dysfunction (34),
350  activation of NFkB signaling upon loss of ESCRT proteins (35), downregulation of growth-related
351 genes in response to essential genetic perturbations, and upregulation of the cholesterol
352  biosynthesis pathway in response to defects in vesicular trafficking (36). Beyond these large-scale
353  relationships, we could also score the effects of individual genetic perturbations on different
354  expression programs. For example, our analysis delineated the canonical branches of the cellular
355  stress response into the independently regulated Unfolded Protein Response (UPR) and Integrated
356  Stress Response (ISR) (Fig. 4C) (9). The ISR was highly activated by loss of mitochondrial
357  proteins, aminoacyl-tRNA synthetases, and translation initiation factors, whereas the UPR was
358 activated by loss of ER-resident chaperones and translocation machinery. Collectively, this
359 analysis establishes the ability of Perturb-seq to learn regulatory circuits by leveraging the
360 variability of responses across perturbations.

361 Interestingly, our unbiased clustering uncovered many perturbations that drove the
362  expression of markers of erythroid or myeloid differentiation, consistent with the known
363  multilineage potential of K562 cells (Fig. 4D) (37). The scale of our experiment allowed us to
364  comprehensively search for genes whose modulation promotes cellular differentiation, an
365 application of major interest in both developmental and cancer biology. As expected, loss of
366  central regulators of erythropoiesis (GATAI, LDBI, LMOZ2, and KDMIA) caused myeloid
367  differentiation, whereas knockdown of BCR-ABL and its downstream adaptor GAB2 induced
368 erythroid differentiation (38). Surprisingly, loss of a number of common essential genes (i.e.,
369  essential across cell lines in the Cancer Dependency Map) also caused expression of either myeloid
370  (e.g., Integrator subcomplex) or erythroid (e.g., NuRD complex, DNA replication machinery)

371  markers. Next, we investigated the differentiation effect of selectively essential genes, which could
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372 be promising targets for differentiation therapy, analogous to ongoing efforts for KDM1A (39,
373  40). We observed that loss of PTPN1, a tyrosine phosphatase selectively essential in K562 cells,
374  drove myeloid differentiation. While inhibitors of PTPN1 have been developed for use in diabetes
375  and certain cancers (4/), to our knowledge they have not been tested as a differentiation therapy.
376  Remarkably, in targeted experiments, we found that knockdown of PTPNI and KDMIA in
377  combination caused a substantial increase in differentiation and growth defect compared to either
378  single genetic perturbation, suggesting that these targets act via different cellular mechanisms (Fig.
379  4E; fig. S9B). These results highlight the utility of rich phenotypes for understanding
380  differentiation as well as nominating promising therapeutic targets or combinations.

381

382  Hypothesis-driven study of composite phenotypes

383

384 We next recognized that our scRNA-seq readout could be used to study phenotypes that
385 integrate data from across the transcriptome and, therefore, would be difficult to study in
386  traditional forward genetic screens. Examples of these “composite phenotypes” include total
387  cellular RNA content and the fraction of RNA derived from transposable elements (TE). We found
388  numerous composite phenotypes under strong genetic control, with highly reproducible effects
389  across screen replicates and cell types (Fig. 4F). In the specific case of TE regulation, two major
390 classes of perturbations increased the fraction of TE RNA by affecting broad classes of elements
391  including Alu, L1, and MIR (Fig. 4G; fig. S9C). First, loss of subunits of the exosome led to a
392  substantial increase in the fraction of TE RNA, suggesting that transcripts deriving from TEs might
393  be preferentially degraded. Second, loss of the CPSF cleavage and polyadenylation complex and
394  parts of the Integrator complex produced a similar phenotype, suggesting that many of the TE
395  RNAs observed in K562 cells may be derived from failure of normal transcription termination.
396 Turning to total RNA content (Fig. 4H), we found that loss of many essential regulators of
397  S-phase and mitosis increased the RNA content of cells. This is consistent with the observation
398  that cells tend to increase their size, and thus their RNA content, as they progress through the cell
399  cycle (fig. S9D), so perturbations that arrest cells in later cell cycle stages yield increased total
400 RNA content on average. By contrast, loss of essential transcriptional machinery, including
401  general transcription factors, the Mediator complex, and transcription elongation factors,

402  decreased total RNA content. In sum, these analyses show that genome-scale Perturb-seq enables
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403  hypothesis-driven exploration of complex cellular features that are challenging to study through
404  other means.

405

406  Exploring genetic drivers and consequences of aneuploidy in single-cells

407

408 As Perturb-seq is a single-cell assay, it enables the study of cell-to-cell heterogeneity in
409 response to genetic perturbations. We reasoned that systematically exploring sources of
410  heterogeneity could reveal insights into phenotypes that are missed in bulk or averaged
411  measurements.

412 To assess the penetrance of perturbation-induced phenotypes, we first applied SVD-based
413  leverage scores as a metric of single-cell phenotypic magnitude (see Methods). In this formulation,
414  leverage scores quantify how outlying each perturbed cell’s transcriptome is relative to non-
415  targeting control cells without assuming that perturbations drive a single axis of variation.
416  Supporting this approach, we found that mean leverage scores for each genetic perturbation were
417  correlated with the number of differentially expressed genes (fig. SI0A, Spearman’s rho = 0.71),
418  andreproducible across the day 6 and day 8 K562 experiments (fig. S10B, Spearman’s tho =0.79).
419  To quantify the degree of heterogeneity in response to genetic perturbations, we then scored
420  perturbations by the variation in single-cell leverage scores (Fig. SA; see Methods). Comparing
421  leverage scores across subunits of large essential complexes, we observed evidence for both
422  biological (e.g., subcomplex function or dosage imbalance) and technical (e.g., selection to escape
423 toxic perturbations) sources of phenotypic variation in response to genetic perturbations (fig.
424 S10C-F).

425 Intriguingly, many genes implicated in chromosome segregation were among the top
426  drivers of heterogeneity, including 77K, SPC25, and DSNI (Fig. 5B) (42). We hypothesized that
427  the extreme transcriptional variability caused by these genetic perturbations might result from
428  acute changes in the copy number of individual chromosomes due to mitotic mis-segregation. To
429  explore this, we used inferCNV (43) to estimate single-cell DNA copy number along the genome
430 by quantifying the change in moving average gene expression compared to control cells.
431  Consistent with our hypothesis, knockdown of 77K, a core component of the spindle assembly
432 checkpoint (44), led to dramatic changes in estimated DNA copy number in both intrinsically
433 aneuploid K562 and near euploid RPEI cells (Fig. 5C; fig. S11A). Specifically, in RPEI cells, we
434 found that 61/80 (76%) of TTK knockdown cells had evidence of karyotypic changes compared to
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435  274/13140 (2%) of unperturbed cells. Notably, 77K knockdown cells bore highly variable
436  karyotypes due to the stochastic gain or loss of chromosomes, accounting for the phenotypic
437  heterogeneity observed in these cells (Fig. 5C).

438 An important advantage of the rich data provided by Perturb-seq is the ability to dissect
439  not only perturbation-phenotype associations but also relationships between cellular phenotypes.
440  We were curious how chromosomal instability (CIN) would affect cell cycle progression in
441  euploid, p53-positive RPE1 cells versus constitutively aneuploid, p53-deficient K562 cells.
442  Expanding our analysis to all cells in our experiment independent of genetic perturbation, we found
443  that RPE1 cells with abnormal karyotypes tended to arrest in G1 or GO of the cell cycle (G1 or GO
444  fraction 0.68 for abnormal karyotype vs. 0.44 for stable karyotype), while K562 cells with altered
445  karyotypes had less significant shifts in cell cycle occupancy (Fig. 5D,E). Within the population
446  of RPE1 cells bearing a chromosomal loss, the likelihood of cell cycle arrest directly depended on
447  the magnitude of karyotypic abnormality (fig. S11B). Additionally, we observed that cells with
448  the most severe karyotypic changes—those bearing both chromosomal gains and losses—had
449  marked upregulation of the ISR (Fig. 5F and fig. S11C). These results are consistent with models
450  in which cell cycle checkpoints are activated by the secondary consequences of aneuploidy (e.g.,
451  DNA damage or proteostatic stress) rather than changes in chromosome number per se (43, 46).
452 Finally, we looked across all perturbations to systematically identify genetic drivers of
453  CIN. We assigned a score to each perturbation based on the average magnitude of induced
454  karyotypic abnormalities. Validating our approach, we found that CIN scores were strongly
455  correlated across K562 and RPE1 cell lines (=0.69) and identified many known regulators of
456  chromosomal segregation, including components of the spindle assembly checkpoint, centromere,
457  and NDC80 complex (Fig. 5G). Remarkably, we uncovered CIN regulators with diverse cellular
458  roles, from cytoskeletal components to DNA repair machinery (Fig. S5H; table S4-S6). While many
459  of these genes have previously been associated with chromosomal instability through targeted
460  studies, the scale and single-cell resolution of Perturb-seq allowed us to identify numerous genetic
461  drivers of CIN in a single experiment. This analysis also shows the potential of single-cell CRISPR
462  screens to dissect phenotypes that were not predefined endpoints of the experiment.

463

464

465

466

15


https://doi.org/10.1101/2021.12.16.473013
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.16.473013; this version posted May 28, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

467  Discovery of stress-specific regulation of the mitochondrial genome

468

469 Mitochondria arose from the engulfment and endosymbiotic evolution of an ancestral
470  alphaproteobacterium by the precursor to eukaryotic cells (47). While the vast majority (~99%) of
471  mitochondrially-localized proteins are encoded in the nuclear genome, mitochondria contain a
472 small (~16.6 kilobase) remnant of their ancestral genome encoding 2 rRNAs, 22 tRNAs, and 13
473  protein-coding genes in humans. An open question is how the nuclear and mitochondrial genomes
474  coordinate their expression to cope with mitochondrial stress (48). The scale of our experiment
475  provided a unique opportunity to investigate this question.

476 We began by comparing the nuclear transcriptional responses to CRISPRi-based depletion
477  of nuclear-encoded mitochondrial genes (i.e., mitochondrial perturbations). We found that
478  mitochondrial perturbations elicited relatively homogeneous nuclear transcriptional responses,
479  illustrated by well-correlated transcriptional phenotypes across mitochondrial perturbations (Fig.
480  6A and fig. S12A). While there was some variation in the magnitude of transcriptional responses
481  (e.g., proteostatic injury drove an especially strong ISR activation), nuclear transcriptional
482  responses generally failed to discriminate genetic perturbations by function. Although this result
483  was broadly consistent with recent literature that has highlighted the role of the ISR as response to
484  mitochondrial stress (49—53), the lack of functional specificity of the transcriptional response was
485  puzzling in light of: (i) the multifaceted roles of mitochondria in diverse processes such as
486  respiration, intermediary metabolism, iron-sulfur cluster biogenesis, and apoptosis and (ii) the
487  high-resolution separation of cytosolic perturbations by transcriptional response in our data
488  described above.

489 In contrast to the nuclear transcriptional response, we observed that the expression of
490  mitochondrially encoded genes was highly variable between different mitochondrial perturbations
491  (Fig. 6B; fig. S12B,C,D). When we clustered mitochondrial perturbations based solely on
492  expression levels of the 13 mitochondrially encoded genes, a remarkably intricate and coherent
493  pattern emerged: the clustering separated perturbations to Complex I, Complex IV, Complex III,
494  Complex V (ATP synthase), the mitochondrial large ribosomal subunit, the mitochondrial small
495  ribosomal subunit, chaperones/import machinery, and RNA processing factors (Fig. 6C; fig.
496  S12E). To quantitatively support this observation, we trained a random forest classifier to
497  distinguish cells with perturbations to different mitochondrial complexes and found that the

498  mitochondrial transcriptome was far more predictive than the nuclear transcriptome

16


https://doi.org/10.1101/2021.12.16.473013
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.16.473013; this version posted May 28, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

499  (mitochondrial accuracy 0.64; nuclear accuracy: 0.25) (fig. S12F). We then visualized the gene
500 expression signatures of a subset of representative perturbations (Fig. 6D). The coregulation of
501  mitochondrial genes tended to reflect function, with the exception of the bicistronic mRNAs
502  ND4L/ND4 and ATP8/ATP6 (54). However, we did not identify a simple logic to explain the
503  connection between genetic perturbations to their observed transcriptional consequences. While
504  previous studies have described distinct regulation of the mitochondrial genome in response to
505  specific perturbations [notably, related to loss of complex III and complex IV assembly factors
506 (55, 56)], our data generalize this phenomenon to a comprehensive set of stressors.

507 Next, we wanted to shed light on the mechanistic basis for this unappreciated complexity
508  of mitochondrial genome responses. Given its singular origin, the mitochondrial genome is
509  expressed by unique processes (Fig. 7A) (57). Mitochondrially encoded genes are transcribed as
510  part of three polycistronic transcripts punctuated by tRNAs. These transcripts are then processed
511 into rRNAs and mRNAs by tRNA excision, and individual mRNAs can be polyadenylated,
512 expressed, or degraded. This complex system limits the potential for distinct transcriptional control
513  but presents multiple opportunities for post-transcriptional regulation. To identify modes of
514  perturbation-elicited differential expression, we examined the distribution of Perturb-seq reads
515  along the mitochondrial genome (Fig. 7B). As our scRNA-seq used poly-A selection, most reads
516 aligned to the 3’ ends of mRNAs. To validate the utility of this position-based analysis, we
517  confirmed that knockdown of known regulators of mitochondrial transcription (7EFM) and RNA
518  degradation (PNPT1I) led to major shifts in the position of reads along the mitochondrial genome.
519 By contrast, many of the perturbation-specific responses discovered in the present study appeared
520 to cause shifts in the relative abundance of mRNAs rather than gross shifts in positional
521  alignments. To determine whether the observed mitochondrial genome responses reflected
522  regulation of the total level of mitochondrial mRNAs or specific regulation of mRNA
523  polyadenylation, we performed a bulk RNA-sequencing experiment with no poly-A selection. We
524  observed perturbation-specific changes in the level of total RNA similar to those measured by
525  scRNA-seq (cophenetic correlation r=0.79; Fig. 7C). Given the complexity of the observed
526  responses, we propose that there are likely to be multiple mechanisms that impact the levels of the
527  various mitochondrially encoded transcripts in response to different stressors.

528 Finally, we asked whether we could use the detailed clustering produced by the
529  mitochondrial genome to predict gene function. Knockdown of an unannotated gene, TMEM242,

530  produced a transcriptional signature resembling loss of ATP synthase in both K562 and RPE1 cells
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531  (Fig. 7D; fig. S12G). Supporting this relationship, the top five co-essential genes with TMEM242
532 were components of ATP synthase in the Cancer Dependency Map. Using a Seahorse assay, we
533  further confirmed that basal respiration was decreased in TMEM?242 knockdown cells (Fig. 7E).
534  While this work was in progress, another group used a biochemical approach to show that
535  TMEM?242 physically interacts with ATP synthase subunits and regulates ATP synthase complex
536  assembly in cells (58). Together, these experiments discover a novel factor required for ATP
537  synthase activity and point to the precision of mitochondrial genome regulation.

538

539  Discussion

540

541 Single-cell CRISPR screens represent an emerging tool to generate rich genotype-
542  phenotype maps. However, to date, their use has been limited to the study of preselected genes
543  focused on discrete, predefined biological questions. Here, we perform genome-scale single-cell
544  CRISPR screens using Perturb-seq and demonstrate how these screens enable data-driven
545  dissection of a breadth of complex biological phenomena. Reflecting on this study, we highlight
546  key biological insights and derive principles to guide future discoveries from rich genotype-
547  phenotype maps.

548 A primary aim of large-scale functional screens is to organize genes into pathways or
549  complexes. To this end, we used Perturb-seq to perform high-resolution clustering of genetic
550  perturbations. From a single assay, we recapitulated thousands of known relationships while also
551  assigning new, experimentally validated roles to genes involved in ribosome biogenesis or
552 translation (CCDC86, CINP, SPATASLI1, ZNF236, Clorfl31, SPOUTI, TMA16, NOPCHAPI,
553  NEPRO), transcription (C70rf26), and respiration (TMEM?242). However, other large-scale
554  experimental techniques, such as protein-protein interaction mapping, genetic interaction
555  mapping, and co-essentiality analysis, similarly group genes or proteins by function. How then are
556  single-cell CRISPR screens distinct?

557 We argue that these screens are particularly powerful because of the intrinsic
558 interpretability of comprehensive genotype-phenotype maps, enabling in-depth dissection of the
559  functional consequences of genetic perturbations that impinge on many distinct aspects of cell
560  biology. Of particular note is the ability to use the information-rich readouts to study complex,
561  composite phenotypes, which are difficult to measure by other modalities. These composite

562  phenotypes can be created in a data-driven (e.g., deriving transcriptional programs) or hypothesis-
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563  driven manner (e.g., measuring intron/exon ratios to study splicing), resulting in an enormous
564  breadth of measured phenotypes. In the case of scRNA-seq, we show that it measures not only
565  features such as differential gene expression and the activity of critical transcriptional programs,
566  but also RNA splicing and processing, expression of transposable elements, differentiation,
567  transcriptional heterogeneity, cell cycle progression, and chromosomal instability. Once a
568 phenotype is defined, the genotype-phenotype map can be used to explore its genetic
569  underpinnings, in a manner analogous to a forward genetic screen, as well as its relationship to
570  other cellular phenotypes.

571 An illustrative example of this process is our study of chromosomal instability. Based on
572  aninitial observation of heterogeneous responses to specific perturbations, we suspected that some
573 cells carried genetically-induced chromosomal gains or losses. In a hypothesis-driven manner, we
574  then used our rich phenotypic data to discover a large collection of perturbations—which were
575  only loosely connected by clustering on average transcriptional phenotypes—that promote
576  chromosomal instability. Importantly, the single-cell nature of our Perturb-seq data also allowed
577  us to explore the relationship between karyotypic changes and other phenotypes, including cell
578  cycle progression and stress induction. While aneuploidy is an important hallmark of most cancers,
579 it has not been easy to study with traditional genetic screens as it requires both a single-cell and
580  multimodal readout. In future work, this platform could be used to investigate interactions between
581  genetic perturbations and specific karyotypes, karyotype-dependent stress responses, or the
582  temporal evolution of karyotypes (59).

583 Genetic perturbations can push cells into extreme states that are not observed in
584  unperturbed cells. Because composite phenotypes can be generated and explored without being
585  preregistered at the time of data collection, rich genotype-phenotype maps provide a powerful
586  resource for the discovery of new cellular behaviors. Using this ability, we discovered a remarkable
587  degree of stress-specific changes in the expression of mitochondrially encoded transcripts. It was
588  only possible to appreciate the functional specificity of this regulation by pairing a defined set of
589  mitochondrial perturbations with a high-dimensional readout. This discovery suggests a
590  framework to explain how cells cope with diverse insults to mitochondria: a general nuclear
591  response is layered over perturbation-specific changes in the expression level of mitochondrially
592  encoded genes (Fig. 7F). Building on this observation, we can ask new questions about the
593  mitochondrial stress response. The transcriptional changes we observed may reflect adaptive

594  responses or, alternatively, complex patterns of dysfunction owing to disruption of the intricate
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595  system of mitochondrial gene expression. Understanding how and in what contexts this regulation
596 is adaptive may have important implications for diseases associated with mitochondrial stress. An
597  intriguing additional question is whether individual mitochondria are able to regulate their
598  expression autonomously. Combined with the nuanced responses observed here, this would
599  support and substantially extend the “co-location for redox regulation” (CoRR) hypothesis which
600  holds that the endosymbiotically derived mitochondrial genome has been retained through
601  evolution to enable localized regulation of mitochondrial gene expression (60).

602 A final theme emerging from our work is the flexibility of single-cell CRISPR screens
603  compared to other functional genomic approaches. Because these screens extract rich information
604  from each cell in a pooled format, they require only a fraction of the number of cells used by other
605  approaches and thus are well suited to the study of iPSC-derived cells and in vivo samples. As
606  technologies for single-cell, multimodal phenotyping advance, single-cell screens will continue to
607  become more powerful. At present, the major limitation of single-cell CRISPR screens is cost.
608  Careful experimental designs, such as multiplexed libraries or compressed sensing (67), together
609  with advances in single-cell phenotyping (62, 63) and DNA sequencing promise to greatly increase
610  the scale of these experiments. To this point, we concluded our work by sequencing our genome-
611  scale K562 libraries on a lower-cost, ultra-high throughput sequencing platform developed by
612  Ultima Genomics, generating results equivalent to those sequenced on Illumina instruments (fig.
613  S13).

614 In sum, our study presents a blueprint for the construction and analysis of rich genotype-
615  phenotype maps to serve as a driving force for the systematic exploration of genetic and cellular

616  function.
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Materials and Methods
A complete description of our Material and Methods is found in the Supplementary Material
online. This includes methods experimental methods related to Perturb-seq screens and

functional experiments, as well as computational methods detailing all data analysis.

References and Notes

1. J. G. Camp, R. Platt, B. Treutlein, Mapping human cell phenotypes to genotypes with single-
cell genomics. Sci New York N Y. 365, 1401-1405 (2019).

2. J. G. Doench, Am I ready for CRISPR? A user’s guide to genetic screens. Nat Rev Genet. 19,
67-80 (2018).

3. N. J. Kramer, M. S. Haney, D. W. Morgens, A. Jovici¢, J. Couthouis, A. Li, J. Ousey, R. Ma,
G. Bieri, C. K. Tsui, Y. Shi, N. T. Hertz, M. Tessier-Lavigne, J. K. Ichida, M. C. Bassik, A. D.
Gitler, CRISPR—Cas9 screens in human cells and primary neurons identify modifiers of

C90RF72 dipeptide-repeat-protein toxicity. Nat Genet. 50, 603—612 (2018).

4. A. Tsherniak, F. Vazquez, P. G. Montgomery, B. A. Weir, G. Kryukov, G. S. Cowley, S. Gill,
W. F. Harrington, S. Pantel, J. M. Krill-Burger, R. M. Meyers, L. Ali, A. Goodale, Y. Lee, G.
Jiang, J. Hsiao, W. F. J. Gerath, S. Howell, E. Merkel, M. Ghandi, L. A. Garraway, D. E. Root,
T. R. Golub, J. S. Boehm, W. C. Hahn, Defining a Cancer Dependency Map. Cell. 170, 564-
576.e16 (2017).

5. T. Wang, K. Birsoy, N. W. Hughes, K. M. Krupczak, Y. Post, J. J. Wei, E. S. Lander, D. M.
Sabatini, Identification and characterization of essential genes in the human genome. Science.

350, 1096-1101 (2015).

6. E. Wang, H. Zhou, B. Nadorp, G. Cayanan, X. Chen, A. H. Yeaton, S. Nomikou, M. T.
Witkowski, S. Narang, A. Kloetgen, P. Thandapani, N. Ravn-Boess, A. Tsirigos, I. Aifantis,

Surface antigen-guided CRISPR screens identify regulators of myeloid leukemia differentiation.

Cell Stem Cell. 28, 718-731.e6 (2021).

7. T. Stuart, R. Satija, Integrative single-cell analysis. Nat Rev Genet. 20, 257-272 (2019).

21


https://doi.org/10.1101/2021.12.16.473013
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.16.473013; this version posted May 28, 2022. The copyright holder for this preprint (which

645
646

647
648
649
650

651
652
653
654

655
656
657

658
659
660

661
662
663
664

665
666
667
668

669
670

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

8. L. Przybyla, L. A. Gilbert, A new era in functional genomics screens. Nat Rev Genet, 1-15
(2021).

9. B. Adamson, T. M. Norman, M. Jost, M. Y. Cho, J. K. Nuiiez, Y. Chen, J. E. Villalta, L. A.
Gilbert, M. A. Horlbeck, M. Y. Hein, R. A. Pak, A. N. Gray, C. A. Gross, A. Dixit, O. Parnas, A.
Regev, J. S. Weissman, A Multiplexed Single-Cell CRISPR Screening Platform Enables
Systematic Dissection of the Unfolded Protein Response. Cell. 167, 1867-1882.e21 (2016).

10. A. Dixit, O. Parnas, B. Li, J. Chen, C. P. Fulco, L. Jerby-Arnon, N. D. Marjanovic, D.
Dionne, T. Burks, R. Raychowdhury, B. Adamson, T. M. Norman, E. S. Lander, J. S. Weissman,
N. Friedman, A. Regev, Perturb-Seq: Dissecting Molecular Circuits with Scalable Single-Cell
RNA Profiling of Pooled Genetic Screens. Cell. 167, 1853-1866.e17 (2016).

11. D. A. Jaitin, A. Weiner, 1. Yofe, D. Lara-Astiaso, H. Keren-Shaul, E. David, T. M. Salame,
A. Tanay, A. van Oudenaarden, I. Amit, Dissecting Immune Circuits by Linking CRISPR-
Pooled Screens with Single-Cell RNA-Seq. Cell. 167, 1883-1896.e15 (2016).

12. P. Datlinger, A. F. Rendeiro, C. Schmidl, T. Krausgruber, P. Traxler, J. Klughammer, L. C.
Schuster, A. Kuchler, D. Alpar, C. Bock, Pooled CRISPR screening with single-cell
transcriptome readout. Nat Methods. 14, 297-301 (2017).

13.J. M. Replogle, T. M. Norman, A. Xu, J. A. Hussmann, J. Chen, J. Z. Cogan, E. J. Meer, J.
M. Terry, D. P. Riordan, N. Srinivas, I. T. Fiddes, J. G. Arthur, L. J. Alvarado, K. A. Pfeiffer, T.
S. Mikkelsen, J. S. Weissman, B. Adamson, Combinatorial single-cell CRISPR screens by direct
guide RNA capture and targeted sequencing. Nat Biotechnol. 38, 954-961 (2020).

14. A. J. Rubin, K. R. Parker, A. T. Satpathy, Y. Qi, B. Wu, A. J. Ong, M. R. Mumbach, A. L. Ji,
D. S. Kim, S. W. Cho, B. J. Zarnegar, W. J. Greenleaf, H. Y. Chang, P. A. Khavari, Coupled
Single-Cell CRISPR Screening and Epigenomic Profiling Reveals Causal Gene Regulatory
Networks. Cell. 176, 361-376.e17 (2019).

15. D. Feldman, A. Singh, J. L. Schmid-Burgk, R. J. Carlson, A. Mezger, A. J. Garrity, F. Zhang,
P. C. Blainey, Optical Pooled Screens in Human Cells. Cell. 179, 787-799.e17 (2019).

22


https://doi.org/10.1101/2021.12.16.473013
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.16.473013; this version posted May 28, 2022. The copyright holder for this preprint (which

671
672
673
674

675
676
677
678
679

680
681
682
683

684
685

686
687
688

689
690
691
692

693
694

695
696

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

16. E. P. Mimitou, A. Cheng, A. Montalbano, S. Hao, M. Stoeckius, M. Legut, T. Roush, A.
Herrera, E. Papalexi, Z. Ouyang, R. Satija, N. E. Sanjana, S. B. Koralov, P. Smibert, Multiplexed
detection of proteins, transcriptomes, clonotypes and CRISPR perturbations in single cells. Nat

Methods. 16, 409412 (2019).

17. C. J. Frangieh, J. C. Melms, P. I. Thakore, K. R. Geiger-Schuller, P. Ho, A. M. Luoma, B.
Cleary, L. Jerby-Arnon, S. Malu, M. S. Cuoco, M. Zhao, C. R. Ager, M. Rogava, L. Hovey, A.
Rotem, C. Bernatchez, K. W. Wucherpfennig, B. E. Johnson, O. Rozenblatt-Rosen, D.
Schadendorf, A. Regev, B. Izar, Multimodal pooled Perturb-CITE-seq screens in patient models

define mechanisms of cancer immune evasion. Nat Genet. 53, 332-341 (2021).

18. E. Papalexi, E. P. Mimitou, A. W. Butler, S. Foster, B. Bracken, W. M. Mauck, H.-H.
Wessels, Y. Hao, B. Z. Yeung, P. Smibert, R. Satija, Characterizing the molecular regulation of
inhibitory immune checkpoints with multimodal single-cell screens. Nat Genet. 53, 322-331

(2021).

19. A. Tanay, A. Regev, Scaling single-cell genomics from phenomenology to mechanism.

Nature. 541, 331-338 (2017).

20. T. M. Norman, M. A. Horlbeck, J. M. Replogle, A. Y. Ge, A. Xu, M. Jost, L. A. Gilbert, J. S.
Weissman, Exploring genetic interaction manifolds constructed from rich single-cell phenotypes.

Science. 365, 786793 (2019).

21. A. H. Smits, F. Ziebell, G. Joberty, N. Zinn, W. F. Mueller, S. Clauder-Miinster, D.
Eberhard, M. F. Savitski, P. Grandi, P. Jakob, A.-M. Michon, H. Sun, K. Tessmer, T.
Biirckstiimmer, M. Bantscheff, L. M. Steinmetz, G. Drewes, W. Huber, Biological plasticity
rescues target activity in CRISPR knock outs. Nat Methods. 16, 1087-1093 (2019).

22. E. Haapaniemi, S. Botla, J. Persson, B. Schmierer, J. Taipale, CRISPR—Cas9 genome editing
induces a p53-mediated DNA damage response. Nat Med. 24, 927-930 (2018).

23. L. A. Gilbert, M. A. Horlbeck, B. Adamson, J. E. Villalta, Y. Chen, E. H. Whitehead, C.
Guimaraes, B. Panning, H. L. Ploegh, M. C. Bassik, L. S. Qi, M. Kampmann, J. S. Weissman,

23


https://doi.org/10.1101/2021.12.16.473013
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.16.473013; this version posted May 28, 2022. The copyright holder for this preprint (which

697
698

699
700

701
702
703

704
705
706

707
708
709
710

711
712

713
714

715
716

717
718
719

720
721

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Genome-Scale CRISPR-Mediated Control of Gene Repression and Activation. Cell. 159, 647—
661 (2014).

24. N. Alerasool, D. Segal, H. Lee, M. Taipale, An efficient KRAB domain for CRISPRi
applications in human cells. Nat Methods. 17, 1093—1096 (2020).

25.J. Rosenbluh, H. Xu, W. Harrington, S. Gill, X. Wang, F. Vazquez, D. E. Root, A. Tsherniak,
W. C. Hahn, Complementary information derived from CRISPR Cas9 mediated gene deletion
and suppression. Nat Commun. 8, 15403 (2017).

26. M. Giurgiu, J. Reinhard, B. Brauner, I. Dunger-Kaltenbach, G. Fobo, G. Frishman, C.
Montrone, A. Ruepp, CORUM: the comprehensive resource of mammalian protein complexes—

2019. Nucleic Acids Res. 47, D559-D563 (2019).

27. D. Szklarczyk, A. L. Gable, D. Lyon, A. Junge, S. Wyder, J. Huerta-Cepas, M. Simonovic,
N. T. Doncheva, J. H. Morris, P. Bork, L. J. Jensen, C. von Mering, STRING v11: protein—
protein association networks with increased coverage, supporting functional discovery in

genome-wide experimental datasets. Nucleic Acids Res. 47, D607-D613 (2019).

28. S. Singh, A. V. Broeck, L. Miller, M. Chaker-Margot, S. Klinge, Nucleolar maturation of the

human small subunit processome. Science. 373, eabj5338 (2021).

29. N. Kirstein, H. G. D. Santos, E. Blumenthal, R. Shiekhattar, The Integrator complex at the
crossroad of coding and noncoding RNA. Curr Opin Cell Biol. 70, 37-43 (2021).

30. L. Fianu, Y. Chen, C. Dienemann, O. Dybkov, A. Linden, H. Urlaub, P. Cramer, Structural
basis of Integrator-mediated transcription regulation. Science. 374, 883—887 (2021).

31. H. Zheng, Y. Qi, S. Hu, X. Cao, C. Xu, Z. Yin, X. Chen, Y. Li, W. Liu, J. Li, J. Wang, G.
Wei, K. Liang, F. X. Chen, Y. Xu, Identification of Integrator-PP2A complex (INTAC), an RNA
polymerase II phosphatase. Sci New York N Y. 370 (2020), doi:10.1126/science.abb5872.

32. M. M. Pfleiderer, W. P. Galej, Structure of the catalytic core of the Integrator complex. Mol
Cell. 81, 1246-1259.e8 (2021).

24


https://doi.org/10.1101/2021.12.16.473013
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.16.473013; this version posted May 28, 2022. The copyright holder for this preprint (which

722
723
724

725
726
727

728
729
730
731
732

733
734

735
736
737

738
739

740
741
742
743

744
745
746
747
748

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

33. K. Sabath, M. L. Staubli, S. Marti, A. Leitner, M. Moes, S. Jonas, INTS10-INTS13-INTS14
form a functional module of Integrator that binds nucleic acids and the cleavage module. Nat

Commun. 11, 3422 (2020).

34. S. K. Radhakrishnan, C. S. Lee, P. Young, A. Beskow, J. Y. Chan, R. J. Deshaies,
Transcription Factor Nrfl Mediates the Proteasome Recovery Pathway after Proteasome

Inhibition in Mammalian Cells. Mol Cell. 38, 17-28 (2010).

35. A. Maminska, A. Bartosik, M. Banach-Orlowska, 1. Pilecka, K. Jastrzebski, D. Zdzalik-
Bielecka, 1. Castanon, M. Poulain, C. Neyen, L. Wolinska-Niziol, A. Torun, E. Szymanska, A.
Kowalczyk, K. Piwocka, A. Simonsen, H. Stenmark, M. Fiirthauer, M. Gonzalez-Gaitan, M.
Miaczynska, ESCRT proteins restrict constitutive NF-kB signaling by trafficking cytokine
receptors. Sci Signal. 9, ra8—ra8 (2016).

36.J. Luo, H. Yang, B.-L. Song, Mechanisms and regulation of cholesterol homeostasis. Nat Rev

Mol Cell Bio. 21, 225-245 (2020).

37.J. F. Leary, B. M. Ohlsson-Wilhelm, R. Giuliano, S. Labella, B. Farley, P. T. Rowley,
Multipotent human hematopoietic cell line K562: Lineage-specific constitutive and inducible

antigens. Leukemia Res. 11, 807-815 (1987).

38. S. H. Orkin, L. I. Zon, Hematopoiesis: An Evolving Paradigm for Stem Cell Biology. Cell.
132, 631-644 (2008).

39. L. Yu, G. Myers, C.-J. Ku, E. Schneider, Y. Wang, S. A. Singh, N. Jearawiriyapaisarn, A.
White, T. Moriguchi, R. Khoriaty, M. Yamamoto, M. G. Rosenfeld, J. Pedron, J. H. Bushweller,
K.-C. Lim, J. D. Engel, An erythroid-to-myeloid cell fate conversion is elicited by LSD1
inactivation. Blood. 138, 1691-1704 (2021).

40. T. Maes, C. Mascaro, 1. Tirapu, A. Estiarte, F. Ciceri, S. Lunardi, N. Guibourt, A. Perdones,
M. M. P. Lufino, T. C. P. Somervaille, D. H. Wiseman, C. Duy, A. Melnick, C. Willekens, A.
Ortega, M. Martinell, N. Valls, G. Kurz, M. Fyfe, J. C. Castro-Palomino, C. Buesa, ORY-1001, a
Potent and Selective Covalent KDM1A Inhibitor, for the Treatment of Acute Leukemia. Cancer
Cell. 33, 495-511.e12 (2018).

25


https://doi.org/10.1101/2021.12.16.473013
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.16.473013; this version posted May 28, 2022. The copyright holder for this preprint (which

749
750
751

752
753

754
755
756
757

758
759
760

761
762
763
764

765
766

767

768
769

770
771
772

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

41. B. Sharma, L. Xie, F. Yang, W. Wang, Q. Zhou, M. Xiang, S. Zhou, W. Lv, Y. Jia, L.
Pokhrel, J. Shen, Q. Xiao, L. Gao, W. Deng, Recent advance on PTP1B inhibitors and their
biomedical applications. Eur J Med Chem. 199, 112376 (2020).

42. A. Musacchio, E. D. Salmon, The spindle-assembly checkpoint in space and time. Nat Rev
Mol Cell Bio. 8, 379-393 (2007).

43. A. P. Patel, I. Tirosh, J. J. Trombetta, A. K. Shalek, S. M. Gillespie, H. Wakimoto, D. P.
Cahill, B. V. Nahed, W. T. Curry, R. L. Martuza, D. N. Louis, O. Rozenblatt-Rosen, M. L. Suva,
A. Regev, B. E. Bernstein, Single-cell RNA-seq highlights intratumoral heterogeneity in primary
glioblastoma. Science. 344, 1396-1401 (2014).

44, N. Jelluma, A. B. Brenkman, N. J. F. van den Broek, C. W. A. Cruijsen, M. H. J. van Osch,
S. M. A. Lens, R. H. Medema, G. J. P. L. Kops, Mps1 Phosphorylates Borealin to Control
Aurora B Activity and Chromosome Alignment. Cell. 132, 233-246 (2008).

45. S. Santaguida, A. Richardson, D. R. Iyer, O. M’Saad, L. Zasadil, K. A. Knouse, Y. L. Wong,
N. Rhind, A. Desai, A. Amon, Chromosome Mis-segregation Generates Cell-Cycle-Arrested

Cells with Complex Karyotypes that Are Eliminated by the Immune System. Dev Cell. 41, 638-
651.e5 (2017).

46. S. Santaguida, A. Amon, Short- and long-term effects of chromosome mis-segregation and

aneuploidy. Nat Rev Mol Cell Bio. 16, 473-485 (2015).

47.J. R. Friedman, J. Nunnari, Mitochondrial form and function. Nature. 505, 335-343 (2014).

48. P. M. Quirés, A. Mottis, J. Auwerx, Mitonuclear communication in homeostasis and stress.

Nat Rev Mol Cell Biology. 17, 213-26 (2016).

49. E. Mick, D. V. Titov, O. S. Skinner, R. Sharma, A. A. Jourdain, V. K. Mootha, Distinct
mitochondrial defects trigger the integrated stress response depending on the metabolic state of

the cell. Elife. 9, €49178 (2020).

26


https://doi.org/10.1101/2021.12.16.473013
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.16.473013; this version posted May 28, 2022. The copyright holder for this preprint (which

773
774
775

776
777

778
779
780

781
782
783

784
785
786

787
788
789

790
791
792

793
794

795
796
797

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

50. P. M. Quir6s, M. A. Prado, N. Zamboni, D. D’Amico, R. W. Williams, D. Finley, S. P. Gygi,
J. Auwerx, Multi-omics analysis identifies ATF4 as a key regulator of the mitochondrial stress

response in mammals. J Cell Biol. 216, 2027-2045 (2017).

51. C. Miinch, J. W. Harper, Mitochondrial unfolded protein response controls matrix pre-RNA
processing and translation. Nature. 534, 710-713 (2016).

52. E. Fessler, E.-M. Eckl, S. Schmitt, I. A. Mancilla, M. F. Meyer-Bender, M. Hanf, J.
Philippou-Massier, S. Krebs, H. Zischka, L. T. Jae, A pathway coordinated by DELEI relays
mitochondrial stress to the cytosol. Nature. 579, 433-437 (2020).

53. X. Guo, G. Aviles, Y. Liu, R. Tian, B. A. Unger, Y.-H. T. Lin, A. P. Wiita, K. Xu, M. A.
Correia, M. Kampmann, Mitochondrial stress is relayed to the cytosol by an OMA1-DELE1-HRI
pathway. Nature. 579, 427432 (2020).

54. T. R. Mercer, S. Neph, M. E. Dinger, J. Crawford, M. A. Smith, A.-M. J. Shearwood, E.
Haugen, C. P. Bracken, O. Rackham, J. A. Stamatoyannopoulos, A. Filipovska, J. S. Mattick,
The Human Mitochondrial Transcriptome. Cell. 146, 645-658 (2011).

55. R. Richter-Dennerlein, S. Oeljeklaus, 1. Lorenzi, C. Ronsor, B. Bareth, A. B. Schendzielorz,
C. Wang, B. Warscheid, P. Rehling, S. Dennerlein, Mitochondrial Protein Synthesis Adapts to
Influx of Nuclear-Encoded Protein. Cell. 167, 471-483.e10 (2016).

56. R. Salvatori, K. Kehrein, A. P. Singh, W. Aftab, B. V. Moéller-Hergt, 1. Forne, A. Imhof, M.
Ott, Molecular Wiring of a Mitochondrial Translational Feedback Loop. Mol Cell. 77, 887-
900.e5 (2020).

57. E. Kummer, N. Ban, Mechanisms and regulation of protein synthesis in mitochondria. Nat

Rev Mol Cell Bio. 22,307-325 (2021).

58.J. Carroll, J. He, S. Ding, 1. M. Fearnley, J. E. Walker, TMEM70 and TMEM?242 help to
assemble the rotor ring of human ATP synthase and interact with assembly factors for complex 1.

P Natl Acad Sci Usa. 118, €2100558118 (2021).

27


https://doi.org/10.1101/2021.12.16.473013
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.16.473013; this version posted May 28, 2022. The copyright holder for this preprint (which

798
799

800

801
802

803
804
805

806
807
808

809
810
811
812

813
814

815
816
817
818

819
820
821

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

59. U. Ben-David, A. Amon, Context is everything: aneuploidy in cancer. Nat Rev Genet. 21,
44-62 (2020).

60. J. F. Allen, The CoRR hypothesis for genes in organelles. J Theor Biol. 434, 50-57 (2017).

61. B. Cleary, L. Cong, A. Cheung, E. S. Lander, A. Regev, Efficient Generation of
Transcriptomic Profiles by Random Composite Measurements. Cell. 171, 1424-1436.e18 (2017).

62. P. Datlinger, A. F. Rendeiro, T. Boenke, M. Senekowitsch, T. Krausgruber, D. Barreca, C.
Bock, Ultra-high-throughput single-cell RNA sequencing and perturbation screening with
combinatorial fluidic indexing. Nat Methods. 18, 635—-642 (2021).

63. B. K. Martin, C. Qiu, E. Nichols, M. Phung, R. Green-Gladden, S. Srivatsan, R. Blecher-
Gonen, B. J. Beliveau, C. Trapnell, J. Cao, J. Shendure, An optimized protocol for single cell

transcriptional profiling by combinatorial indexing. Arxiv (2021).

64. M. Jost, Y. Chen, L. A. Gilbert, M. A. Horlbeck, L. Krenning, G. Menchon, A. Rai, M. Y.
Cho, J. J. Stern, A. E. Prota, M. Kampmann, A. Akhmanova, M. O. Steinmetz, M. E.

Tanenbaum, J. S. Weissman, Combined CRISPRi/a-Based Chemical Genetic Screens Reveal

that Rigosertib Is a Microtubule-Destabilizing Agent. Mol Cell. 68, 210-223.e6 (2017).

65. S. A. Lambert, A. Jolma, L. F. Campitelli, P. K. Das, Y. Yin, M. Albu, X. Chen, J. Taipale,
T. R. Hughes, M. T. Weirauch, The Human Transcription Factors. Cell. 172, 650-665 (2018).

66. M. A. Horlbeck, L. A. Gilbert, J. E. Villalta, B. Adamson, R. A. Pak, Y. Chen, A. P. Fields,
C.Y. Park, J. E. Corn, M. Kampmann, J. S. Weissman, Compact and highly active next-

generation libraries for CRISPR-mediated gene repression and activation. Elife. 5, e19760

(2016).

67. N. D. Elrod, T. Henriques, K.-L. Huang, D. C. Tatomer, J. E. Wilusz, E. J. Wagner, K.
Adelman, The Integrator Complex Attenuates Promoter-Proximal Transcription at Protein-

Coding Genes. Mol Cell. 76, 738-752.e7 (2019).

28


https://doi.org/10.1101/2021.12.16.473013
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.16.473013; this version posted May 28, 2022. The copyright holder for this preprint (which

822
823
824

825
826

827
828

829
830
831

832
833
834
835

836
837

838
839

840

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

68. K.-L. Huang, D. Jee, C. B. Stein, N. D. Elrod, T. Henriques, L. G. Mascibroda, D. Baillat, W.
K. Russell, K. Adelman, E. J. Wagner, Integrator Recruits Protein Phosphatase 2A to Prevent
Pause Release and Facilitate Transcription Termination. Mo/ Cell. 80, 345-358.e9 (2020).

69. A. P. Anderson, X. Luo, W. Russell, Y. W. Yin, Oxidative damage diminishes mitochondrial
DNA polymerase replication fidelity. Nucleic Acids Res. 48, 817829 (2020).

70. K. A. Reimer, C. A. Mimoso, K. Adelman, K. M. Neugebauer, Co-transcriptional splicing
regulates 3’ end cleavage during mammalian erythropoiesis. Mol Cell. 81, 998-1012.e7 (2021).

71. Z. Xie, A. Bailey, M. V. Kuleshov, D. J. B. Clarke, J. E. Evangelista, S. L. Jenkins, A.
Lachmann, M. L. Wojciechowicz, E. Kropiwnicki, K. M. Jagodnik, M. Jeon, A. Ma’ayan, Gene
Set Knowledge Discovery with Enrichr. Curr Protoc. 1, €90 (2021).

72.J. He, I. A. Babarinde, L. Sun, S. Xu, R. Chen, J. Shi, Y. Wei, Y. Li, G. Ma, Q. Zhuang, A.
P. Hutchins, J. Chen, Identifying transposable element expression dynamics and heterogeneity
during development at the single-cell level with a processing pipeline scTE. Nat Commun. 12,

1456 (2021).

73. P. Ma, M. W. Mahoney, B. Yu, A Statistical Perspective on Algorithmic Leveraging. Arxiv
(2013).

74. R. Satija, J. A. Farrell, D. Gennert, A. F. Schier, A. Regev, Spatial reconstruction of single-
cell gene expression data. Nat Biotechnol. 33, 495-502 (2015).

29


https://doi.org/10.1101/2021.12.16.473013
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.16.473013; this version posted May 28, 2022. The copyright holder for this preprint (which

841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Acknowledgements: We thank S. Vazquez, L. Gilbert, F. Urnov, C. Cotta-Ramusino, V.
Sankaran, K. Loh, W. Allen, B. Do, P. Hsu, F. Diehl, C. Jan, J. Replogle, D. Phizicky, and all
members of the Weissman and Norman labs for helpful discussions. We thank Jorge Dinis and
the Innovative Genomics Institute for critical administrative and scientific support. We also
thank: the UCSF Center for Advanced Technology, Eric Chow, and Delsy Martinez for
sequencing and access to FACS machines; the Whitehead Institute Flow Cytometry Core and
Kathy Daniels for access to FACS machines; the Whitehead Institute Genome Technology Core
for support with bulk RNA-seq library preparation and rRNA bioanalyzers; and the Harvard

Nascent Transcriptomics Core for support with PRO-seq library preparation.

Author contributions: JMR, RAS, TMN, and JSW were responsible for the conception, design,
and interpretation of the experiments and wrote the manuscript. JMR led the Perturb-seq screens.
JMR and TMN led the Perturb-seq data analysis. RAS led the functional studies. ANP generated
and validated the ZIM3 CRISPRi RPE1 cell line and optimized Perturb-seq protocols across cell
lines. JAH assisted with data interpretation and analysis. AL designed the interactive web
visualization. AG produced preliminary data for Perturb-seq across cell lines. EJW and LM
performed and supervised Drosophila Integrator biochemistry. KA supervised PRO-seq library
preparation. GY, NI, FO, and DL sequenced libraries on the Ultima Genomics platform. JLB and
MJ cloned pJB108 and validated the ZIM3 KRAB domain. JMR and RAS helped obtain funding

for experiments. All authors provided feedback on the manuscript.

Funding: Research reported in this publication was supported by:

Defense Advanced Research Projects Agency (DARPA) grant HR0011-19-2-0007 (JSW)
National Institutes of Health (NIH) Centers of Excellence in Genomic Science (CEGS) (JSW)
Howard Hughes Medical Institute (JSW)

Chan Zuckerberg Initiative (JSW)

NIH grant 1DP2 GM140925-01 (TMN)

NIH grant RO0-GM 130964 (MJ)

NIH grant RO1-GM 134539 (EJW, KA)

Fannie and John Hertz Foundation Fellowship (RAS)

NSF Graduate Research Fellowship (RAS)

NIH grant F31-NS115380 (JMR)

30


https://doi.org/10.1101/2021.12.16.473013
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.16.473013; this version posted May 28, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

873

874  Competing interests: JMR consults for Maze Therapeutics and is a consultant for and equity
875  holder in Waypoint Bio. RAS consults for Maze Therapeutics. KA is a consultant for Syros

876  Pharmaceuticals, is on the SAB of CAMP4 Therapeutics, and received research funding from
877  Novartis not related to this work. MJ consults for Maze Therapeutics and Gate Bioscience. TMN
878  consults for Maze Therapeutics. JSW declares outside interest in 5 AM Venture, Amgen,

879  Chroma Medicine, KSQ Therapeutics, Maze Therapeutics, Tenaya Therapeutics, Tessera

880  Therapeutics and Third Rock Ventures. The Regents of the University of California with RAS,
881  TMN, MJ, and JSW as inventors have filed patent applications related to CRISPRi/a screening
882  and Perturb-seq.

883

884  Data and materials availability: Raw sequencing data will be deposited into SRA. An interactive
885  data browser including processed, downloadable single-cell and pseudobulk populations will be
886  made available upon publication. Our previously published analytic framework for Perturb-seq

887  analysis is available at https:/github.com/thomasmaxwellnorman/Perturbseq GI. Scripts for

888  guide assignment are available at https://github.com/josephreplogle/guide calling. Additional
889  code related to specific analyses will be made available on github upon publication.

890

891  Supplementary Materials:

892  Materials and Methods

893  Figs. S1to S13

894  Tables S1 to S9

31


https://doi.org/10.1101/2021.12.16.473013
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.16.473013; this version posted May 28, 2022. The copyright holder for this preprint (which

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Multiplexed CRISPRI
sgRNA library

Droplet-based scRNA-seq - ’ Cluster to summarize
with direct guide capture Cells with linked genetic expression programs and

Cells expressing perturbation identity perturbation phenotypes

dCas9-KRAB Qﬁi%}@

.'I’.. I'r.d"..q,.ﬁll
Bz i == \ vu-bie AN &

~ &

Composite phenotypes
* RNA splicing
« Total RNA content

@@ :C; @ la 0 S - 1 h'f | :;"r".‘."‘.“.'r
9% 8% @ B AT Moty
@ —— 50 — ; — I :

Gene expression
1

’:

O Genome-wide

© K562 —» S Ee— -
8@ %6 targeting all expressed 'fﬂtzéﬁ,g'"'on cells after
genes (n=9,867)

O
8% K562 + median >100 cells per * Transposable elements
Essential-wide perturbation + Chromosomal instability
targeting all common . « Cell |
RPE1 essential genes (n=2,285) | * median ~10,000 UMIs =TT - é cyele . .
per cell » Mitochondrial expression
_ Cluster perturbations to
define gene function
C

1.0 .
Z 0.8 S 3 i
S Cell type (‘3 Energy distance
g ] Lelltype R
° 0.6 - K562 g 5 ° not)s(;%:lflcant
o <
5 04 - = RPE1 5 ® p=b.
=} : —
€ 2 14
3 - €
O 02 ] 5

OO ’ 1 v 1 v T r T v 1 O- J — - J ll. T

0 0.2 0.4 0.6 0.8 1 -0.6 -0.4 -0.2 0.0
On-target knockdown (fraction mRNA remaining) Growth phenotype (gamma)

Figure 1: Genome-scale Perturb-seq via multiplexed CRISPRIi. (A) Schematic experimental
strategy. A multiplexed CRISPRi sgRNA library was used to knock down all expressed genes (in
K562 cells) or all common essential genes (in RPE1 and K562 cells). Cells were transcriptionally
profiled using droplet-based single-cell RNA-sequencing, with genetic perturbations assigned to
cells by direct capture and sequencing of sgRNAs. (B) On-target knockdown statistics. Cumulative
density plot of on-target knockdown, for n=9,464 target genes in K562 cells (red) and n=2,333
target genes in RPE1 cells (blue). (C) Comparing growth phenotype versus the number of
differentially expressed genes (DEGs) for each multiplexed guide pair in K562 cells. Growth
phenotypes are reported as the log> guide enrichment per cell doubling (gamma). DEGs were
determined using a two-sample Anderson-Darling test compared against non-targeting guides, and
a pseudocount of 1 was added to the number of DEGs before logio transformation. Dots are colored
by Energy distance as either permutation significant (purple) or not significant (grey). The growth
phenotype and number of DEGs are anticorrelated (Spearman’s rtho=-0.51).
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Figure 2: Data-driven inference of gene function from transcriptional phenotypes. (A)
Schematic of analysis. To examine the ability of transcriptional phenotypes to assign gene

function, we analyzed 1973 genetic perturbations that elicited strong responses. Perturbations

were compared and clustered using the correlation of gene expression across 2319 highly
variable genes. (B) Expression profile correlations among genes in curated complexes. 327

protein complexes from the CORUM3.0 database have at least two thirds of complex subunits
within the dataset. Plot compares the distribution of pairwise expression profile correlations

among genes in complexes vs. all possible gene-gene pairs. (C) Comparing expression profile

correlations to predicted protein-protein interactions from STRING. 243,558 gene-gene

relationships within the dataset are scored within STRING. The relationships were sorted into 6
equally spaced bins based on expression profile correlation. Plot shows kernel density estimates

of STRING scores within each bin. (D) Minimum distortion embedding of dataset. Each dot

represents a genetic perturbation, arranged so that perturbations with correlated expression

profiles are nearby in the two dimensional embedding. Manual annotations (black labels) of
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cluster function are placed near the median location of genes within the cluster. CORUM
complexes or STRING clusters (green labels) are annotated when involved genes are nearby
within the embedding. (E) Quantification of 28s to 18s rRNA ratio. Poorly characterized genes
with Perturb-seq predicted roles in ribosome biogenesis were targeted by CRISPRi. The 28s/18s
rRNA ratio was measured by Bioanalyzer electrophoresis in biological duplicate with two
distinct sgRNAs per gene (green and blue; solid grey lines represent mean). Dotted grey lines
represent two standard deviations above and below the mean of non-targeting controls.
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Figure 3: Perturb-seq discovers a novel gene member and functional submodules of the
Integrator complex. (A) Location of known Integrator complex members in the minimum
distortion embedding. (B) Relationship between Integrator complex members and C70rf26 in
K562 cells (top) and RPE1 cells (bottom). The heatmap displays the Pearson correlation between
pseudobulk z-normalized gene expression profiles of Integrator complex members. Genetic
perturbations are ordered by average linkage hierarchical clustering based on correlation in K562
cells. Functional modules suggested by the clustering are highlighted. (C) Co-depletion of
Integrator complex members. Individual Integrator complex members were depleted in CRISPRi
K562 cells. Lysates were then probed for other module members by western blot. (D) Co-
immunoprecipitation of endogenous C7orf26 with His-INTS10. HEK293T were transfected with
His-INTS10 or INTS10. Cell lysates were affinity purified and select Integrator proteins were
probed by western blot. (E) Purification of a INTS10-INTS13-INTS14-C70rf26 complex. His-
INTS10, INTS13, INTS14, and C70rf26 were overexpressed in Expi293 cells, affinity purified,
and separated via SEC. The INTS10-INTS13-INTS14-C70rf26 proteins co-fractionated as
visualized by Western blotting. (F) Effects of Integrator modules on splicing from Perturb-seq
data. Histogram (kernel density estimate) compares gene-level splicing scores. Splicing scores
represent the change in the logy ratio of total to unspliced reads for each gene relative to non-
targeting control guides. Representative genetic perturbations from Integrator modules as well as
the spliceosome are shown colored by module. (G) Density of PRO-seq reads at the snRNA RNU /-
1 locus mapping actively engaged RNA polymerase II. For each perturbation, densities are shown
relative to the maximum read count in the locus. (H) Structure of the Integrator complex colored
by functional modules revealed by Perturb-seq. The endonuclease (blue) and shoulder/backbone
(orange) modules were obtained from the cryo-EM structure (37). The model of the newly
discovered 10-13-14-C70rf26 module was built by docking the crystal structure of INTS13-
INTS14 (33) with an AlphaFold multimeric model of INTS10 and C70rf26.
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Figure 4: Summarizing genotype-phenotype relationships with Perturb-seq. (A) Schematic
of analysis. To produce a high-level summary of genotype-phenotype relationships in K562 cells,
1973 genetic perturbations that elicited strong responses and 2319 highly variable genes were
clustered using HDBSCAN after nonlinear embedding. Alternatively, composite phenotypes were
derived from global metrics in a hypothesis-driven manner. (B) Heatmap of the high-level
genotype-phenotype map. The heatmap represents the mean z-scored expression for gene
expression and perturbation clusters. For a subset of clusters, clustered are labelled with manual
annotations (black labels) of cluster function along with example genes within the cluster (light
gray labels). (C) Comparison of ISR and UPR scores for genetic perturbations. Scores were
recovered from unbiased clustering of genes by genetic dependency, and manually annotated. (D)
Comparison of erythroid and myeloid differentiation scores for genetic perturbations. Scores were
recovered from unbiased clustering of genes by genetic dependency, and manually annotated.
Genetic perturbations are colored to reflect cluster identity. (E) Expression of CD11b/ITGAM in
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K562 cells upon knockdown of PTPNI or KDMIA. CD11b was labelled by cell surface staining
with anti-CD11b antibody and measured by flow cytometry. (F) Correlation of composite
phenotypes across time points and cell types. Composite phenotypes were defined in a hypothesis-
driven manner. Fraction TE (repetitive and transposable element) represents the number of non-
intronic reads mapped to TEs over total, averaged over all cells bearing each perturbation (both
collapsed on UMIs). Fraction mtRNA represents the mean number of reads mapped to
mitochondrial genome protein-coding genes over total. Total RNA represents the mean total RNA
content (number of UMIs). (G) Comparison of TE expression across time points. The mean
fraction TE reads per perturbation is highly correlated across time points in K562 cells (+=0.79).
Genetic perturbations are colored to reflect cluster identity. (H) Comparison of total RNA content
across time points. Total RNA content per perturbation is highly correlated across time points in
K562 cells (+=0.74). Genetic perturbations are colored to reflect cluster identity.
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Figure 5: Exploring acute consequences and genetic drivers of aneuploidy in single-cells. (A)
Schematic of heterogeneity statistic. Single-cell leverage scores quantify how outlying each cell is
relative to non-targeting control cells by PCA. For each perturbation, heterogeneity of single-cell
phenotypes is quantified as the standard deviation of leverage scores. (B) Identifying
heterogeneous perturbations. Known regulators of chromosome segregation were among the
perturbations with the highest single-cell heterogeneity (high variability of leverage scores),
especially compared to their number of differentially expressed genes (based on Anderson-Darling
test). (C) Heatmap of chromosomal copy number inference from Perturb-seq data. For all genes
(expressed >0.05 UMI per cell), the log-fold change in expression is calculated with respect to the
average of non-targeting control cells, and genes are ordered along the genome. A weighted
moving average of 100 genes is used infer copy number changes (columns) in single-cells (rows)
with noise and median filtering. 80 77K knockdown RPE1 cells and 80 randomly sampled non-
targeting control RPEI cells are shown. Cells are ordered by average linkage hierarchical
clustering based on correlation of chromosomal copy number profiles. (D, E) Comparison of cell
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cycle occupancy upon acute karyotypic changes. Abnormal karyotypic cells were defined as
having >1 chromosome with evidence of changes in chromosomal copy number for >80% of the
chromosomal length. For single-cells, cell-cycle positioning was inferred by UMAP dimension
reduction on differential expression profiles of 199 selected cell-cycle regulated genes. Cell cycle
occupancy is shown as a 2D kernel density estimate of a random subset of 1000 cells per
karyotypic status. Approximate gates between cell cycle phases (G1 or GO; S; G2 or M) are shown
as dotted lines, and the fraction of cells in each cell cycle phase are indicated. (F) Effect of
chromosomal instability (CIN) on activation of the Integrated Stress Response (ISR). Histogram
(kernel density estimate) compares the ISR score versus CIN status in RPEI1 cells. CIN status is
defined as evidence of gain or loss of chromosomal copy number for >80% of the chromosomal
length, with 240,768 stable cells, 5,522 cells bearing chromosomal loss, 1987 cells bearing
chromosomal gain, and 904 cells bearing gain and loss of chromosomes. ISR score is defined as
the sum of z-normalized expression of ISR marker genes where increased values indicate stronger
ISR activation. (G) Comparison of the effect of genetic perturbations on the CIN score across cell
types. For each genetic perturbation, the CIN score is calculated as the mean single-cell sum of
squared CIN values, z-normalized relative to non-targeting control perturbations. The CIN score
is correlated across cell types (=0.69). (H) Schematic of a subset of genetic perturbations that
drive CIN. CIN drivers play diverse roles in mitosis, cell cycle regulation, and DNA repair.
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Figure 6: Global organization of the transcriptional response to mitochondrial stress. (A)
Clustering mitochondrial perturbations by nuclear transcriptional response. CRISPRi enables
knockdown of nuclear-encoded genes whose protein products are targeted to mitochondria
(mitochondrial perturbations). Mitochondrial perturbations were annotated by MitoCarta3.0 and
subset to those with a strong transcriptional phenotype (n=268 mitochondrial perturbations). Gene
expression profiles were restricted to nuclear encoded genes which includes 99% of mitochondrial
proteins. The heatmap displays the Pearson correlation between pseudobulk z-normalized gene
expression profiles of mitochondrial perturbations in K562 cells. Genetic perturbations were
clustered by HDBSCAN with a correlation metric. (B) Comparing variability in the mitochondrial
transcriptome by perturbation localization. The mitochondrial genome encodes 13 protein-coding
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genes. Genetic perturbations were grouped based on localization of their protein products as
determined by the Human Protein Atlas. For each of these 13 mitochondrially encoded genes, the
variance in pseudobulk z-normalized expression profiles was calculated between all perturbations
with the same localization. Barplots represent the average across genes with 95% confidence
interval obtained by bootstrapping. (C) Clustering mitochondrial perturbations by mitochondrial
transcriptional response. Mitochondrial perturbations were annotated by MitoCarta3.0 and subset
to those with a strong transcriptional phenotype as above (n=268 mitochondrial perturbations).
Gene expression profiles were restricted to the 13 mitochondrial-encoded genes. The heatmap
displays the Pearson correlation between pseudobulk z-normalized gene expression profiles of
mitochondrial perturbations in K562 cells. Genetic perturbations are clustered by HDBSCAN with
a correlation metric. Clusters were manually annotated. (D) Heatmap visualizing the mitochondrial
genome transcriptional response to diverse mitochondrial stressors. The expression (logz fold-
change relative to non-targeting controls) of the 13 mitochondrially encoded genes is shown for a
subset of perturbations representative of different mitochondrial complexes or function. Neither
the ISR score nor mean fraction of mitochondrial RNA (mtRNA) would allow for high-resolution
clustering by function as provided by the mitochondrial genome response. Genetic perturbations
and genes are ordered by average linkage hierarchical clustering with a correlation metric.
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Figure 7: Investigating regulation of the mitochondrial genome in stress. (A) Schematic of
the mitochondrial transcriptome. Each human cell contains many copies of the circular 16.6 kb
mitochondrial genome distributed throughout the mitochondrial network. The human
mitochondrial genome encodes 2 rRNAs, 22 tRNAs, and 13 protein-coding genes. Both the
heavy (H) and light (L) strand of the genome are transcribed as polycistronic transcripts
punctuated by tRNAs. Excision of tRNAs from transcripts generates nascent mRNA precursors
(colored by complex membership). mRNA precursors can then be polyadenylated, stabilized, or

43


https://doi.org/10.1101/2021.12.16.473013
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.16.473013; this version posted May 28, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

degraded. (B) Density of Perturb-seq reads along the mitochondrial genome from select genetic
perturbations. Reads are aligned to both the H-strand (dark grey) and L-strand (light grey). For
each perturbation, densities are shown relative to the maximum read count in the locus. (C)
Comparison of mitochondrial gene expression profiles between Perturb-seq and bulk RNA-seq.
Heatmap displays logz-fold changes in expression of the 13 mitochondrial encoded genes
(columns) for genetic perturbations (rows) in Perturb-seq and bulk RNA-seq data collected from
K562 cells. Bulk RNA-seq was conducted to analyze total RNA (including non-polyadenylated
RNA), with data representing the average of biological replicates. Genetic perturbations and
genes are ordered by average linkage hierarchical clustering with a Euclidean distance metric.
The profiles are strongly correlated (r=0.79, p<10-°). (D) Clustering of TMEM242 genetic
perturbation based on the mitochondrial transcriptome. Genetic perturbations to members of
ATP synthase and Complex I of the respiratory chain were compared to knockdown of
TMEM?242, a mitochondrial gene of unknown function. Gene expression profiles were restricted
to the 13 mitochondrially encoded genes. The heatmap displays the Pearson correlation between
pseudobulk z-normalized gene expression profiles of mitochondrial perturbations in K562 cells.
Genetic perturbations are ordered by HDBSCAN with a correlation metric. (E) Effect of
TMEM?242 knockdown on mitochondrial respiration. A Seahorse analyzer was used to monitor
oxygen consumption rate (OCR). The Mito Stress Test consists of sequential addition of
oligomycin (an ATP synthase inhibitor that enables measurement of ATP-productive
respiration), FCCP (an uncoupling agent that enables measurement of maximal respiratory
capacity), and a mixture of rotenone and antimycin A (inhibitors of Complex I and Complex III,
respectively, that enable measurement of non-mitochondrial respiration). Data is presented as
average = SEM, n=6. (F) Schematic diagram of mitochondrial stress response.
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