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 2 

Abstract 38 

A central goal of genetics is to define the relationships between genotypes and phenotypes. 39 

High-content phenotypic screens such as Perturb-seq (pooled CRISPR-based screens with single-40 

cell RNA-sequencing readouts) enable massively parallel functional genomic mapping but, to date, 41 

have been used at limited scales. Here, we perform genome-scale Perturb-seq targeting all 42 

expressed genes with CRISPR interference (CRISPRi) across >2.5 million human cells and present 43 

a framework to power biological discovery with the resulting genotype-phenotype map. We use 44 

transcriptional phenotypes to predict the function of poorly-characterized genes, uncovering new 45 

regulators of ribosome biogenesis (including CCDC86, ZNF236, and SPATA5L1), transcription 46 

(C7orf26), and mitochondrial respiration (TMEM242). In addition to assigning gene function, 47 

single-cell transcriptional phenotypes allow for in-depth dissection of complex cellular phenomena 48 

– from RNA processing to differentiation. We leverage this ability to systematically identify the 49 

genetic drivers and consequences of aneuploidy and to discover an unanticipated layer of stress-50 

specific regulation of the mitochondrial genome. Our information-rich genotype-phenotype map 51 

reveals a multidimensional portrait of gene function and cellular behavior. 52 

  53 
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 3 

Main Text  54 

Mapping the relationship between genetic changes and their phenotypic consequence is 55 

critical to understanding gene and cellular function. This mapping is traditionally carried out in 56 

either of two ways. A phenotype-centric, “forward genetic” approach reveals the genetic changes 57 

that drive a phenotype of interest. Conversely, a gene-centric, “reverse genetic” approach catalogs 58 

the diverse phenotypes caused by a defined genetic change.  59 

Recent technological developments have advanced both forward and reverse genetic 60 

efforts (1). CRISPR-Cas tools now enable the deletion, mutation, repression, or activation of genes 61 

with ease (2). In forward genetic screens, CRISPR-Cas systems can be used to generate cells with 62 

diverse genetic perturbations. This pool of perturbed cells can then be subjected to a selective 63 

pressure, with phenotypes assigned to genetic perturbations by sequencing. Forward genetic 64 

screens provide powerful tools for the identification of cancer dependencies, essential cellular 65 

machinery, differentiation factors, and suppressors of genetic diseases (3–6). In parallel, dramatic 66 

improvements in molecular phenotyping now allow for single-cell readouts of epigenetic, 67 

transcriptomic, proteomic, and imaging information (7). Applied to reverse genetics, single-cell 68 

profiling can refine the understanding of how select genetic perturbations affect cell types and cell 69 

states. 70 

However, both phenotype-centric and gene-centric approaches suffer conceptual and 71 

technical limitations. Pooled forward genetic screens typically use low-dimensional phenotypes 72 

(e.g., growth, marker gene expression, drug resistance) for selection. The use of simple phenotypes 73 

can conflate genes acting via different mechanisms, requiring extensive follow-up studies to 74 

disentangle genetic pathways (8). Additionally, in forward genetics, serendipitous discovery is 75 

constrained by the prerequisite of selecting phenotypes prior to screening. On the other hand, while 76 

reverse genetic approaches enable the study of multidimensional and complex phenotypes, they 77 

have typically been restricted in scale to rationally chosen targets, limiting the ability to make 78 

systematic comparisons. 79 

Single-cell CRISPR screens present a solution to these problems. These screens 80 

simultaneously read out the genetic perturbation and high-dimensional phenotype of individual 81 

cells in a pooled screening format, thus combining the throughput of forward genetic screens with 82 

the rich phenotypes of reverse genetics. While these approaches initially focused on transcriptomic 83 

phenotypes (e.g., Perturb-seq, CROP-seq) (9–13), technical advances have enabled their 84 

application to epigenetic (14), imaging (15), or multimodal phenotypes (16–18). From these rich 85 
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data, it is possible to identify genetic perturbations that cause a specific behavior as well as to 86 

catalog the spectrum of phenotypes associated with each genetic perturbation. Despite the promise 87 

of single-cell CRISPR screens, their use has generally been limited to studying at most a few 88 

hundred genetic perturbations, typically chosen with a bias towards predefined biological 89 

questions. 90 

We reasoned that there would be unique value to genome-scale single-cell CRISPR 91 

screens. For example, while the number of perturbations scales linearly with experimental cost, 92 

the number of pairwise comparisons in a screen—and thus its utility for unsupervised classification 93 

of gene function—scales quadratically. Similarly, in large-scale screens, the diversity of 94 

perturbations allows one to explore the range of cell states that can be revealed by rich phenotypes. 95 

Additionally, as many human genes are well-characterized, these genes serve as natural controls 96 

to anchor the interpretation of observations in comprehensive datasets. Finally, genome-scale 97 

experiments could help address fundamental biological questions, such as what fraction of genetic 98 

changes elicit global transcriptional phenotypes and how transcriptional programs are rewired 99 

between cell types, with implications for understanding the organizing principles of cellular 100 

systems (19). 101 

Here we perform the first genome-scale Perturb-seq screens. We use a compact, 102 

multiplexed CRISPR interference (CRISPRi) library to assay thousands of loss-of-function genetic 103 

perturbations with single-cell RNA-sequencing (scRNA-seq) in chronic myeloid leukemia (K562) 104 

and retinal pigment epithelial (RPE1) cell lines. Leveraging the scale and diversity of these 105 

perturbations across >2.5 million cells, we show that Perturb-seq can be used to study numerous 106 

complex cellular phenotypes—from RNA splicing to differentiation to chromosomal instability—107 

in a single screen. We demonstrate how the interpretability of scRNA-seq phenotypes enables the 108 

discovery of gene function and extensively validate our findings with orthogonal experiments. 109 

Finally, we invert our analysis to focus on regulatory networks rather than genetic perturbations 110 

and uncover unanticipated stress-specific regulation of the mitochondrial genome. In sum, we use 111 

Perturb-seq to reveal a multidimensional portrait of cellular behavior, gene function, and 112 

regulatory networks that advances the goal of creating comprehensive genotype-phenotype maps. 113 

 114 

 115 

 116 

 117 
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 5 

Results 118 

 119 

A multiplexed CRISPRi strategy for genome-scale Perturb-seq 120 

 121 

Perturb-seq uses scRNA-seq to concurrently read out the CRISPR single-guide RNAs 122 

(sgRNA) (i.e., genetic perturbation) and transcriptome (i.e., high-dimensional phenotype) of single 123 

cells in a pooled format (Fig. 1A). To enable genome-scale Perturb-seq, we considered key 124 

parameters that would increase scalability and data quality, such as the genetic perturbation 125 

modality and sgRNA library. 126 

Although Perturb-seq is compatible with a range of CRISPR-based perturbations including 127 

knockout (10–12), knockdown (CRISPRi) (9), or activation (CRISPRa) (20), we elected to use 128 

CRISPRi for several reasons. First, CRISPRi allows the efficacy of the genetic perturbation, 129 

knockdown, to be directly measured from scRNA-seq. Exploiting this feature allowed us to target 130 

each gene in our library with a single element and empirically exclude unperturbed genes from 131 

downstream analysis. Second, CRISPRi tends to yield more homogeneous genetic perturbation 132 

than nuclease-based CRISPR knockout, which can generate a subset of cells bearing active in-133 

frame indels (21). The relative homogeneity of CRISPRi limits selection for unperturbed cells, 134 

especially when studying essential genes. Third, unlike nuclease-based gene knockout, CRISPRi 135 

does not lead to activation of the DNA damage response which can alter cell state and 136 

transcriptional signatures (22). 137 

To improve scalability, we optimized our CRISPRi sgRNA libraries.  To maximize 138 

CRISPRi efficacy, we used multiplexed CRISPRi libraries in which each construct contains two 139 

distinct sgRNAs targeting the same gene (table S1-S3; see Methods) (13). To avoid low 140 

representation of sgRNAs targeting essential genes, we performed preliminary growth screens and, 141 

during library synthesis, overrepresented constructs that caused strong growth defects (fig. S1A-142 

D). 143 

Next, we devised a three-pronged Perturb-seq screening approach encompassing multiple 144 

timepoints and cell types (Fig. 1A). As a primary cell line, we studied chronic myeloid leukemia 145 

(CML) K562 cells engineered to express the CRISPRi effector protein dCas9-KRAB (23). In this 146 

cell line, we performed two Perturb-seq screens: one targeting all expressed genes sampled at day 147 

8 after transduction (n=9,866 genes; n=10,673 total perturbations; some genes have multiple 148 

independent transcripts) and another targeting common essential genes, which was sampled at day 149 
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6 after transduction (n=2,057 genes; n=2,176 total perturbations). As a secondary cell line, we used 150 

RPE1 cells engineered to express dCas9 fused to a KRAB domain derived from the gene ZIM3, 151 

which was recently shown to yield improved transcriptional repression compared to the KOX1-152 

derived KRAB domain used in previous CRISPRi experiments (24). In contrast to K562 cells, 153 

RPE1 cells are a non-cancerous retinal pigment epithelial cell line that are hTERT-immortalized, 154 

near-euploid, adherent, and p53-positive. In RPE1 cells, we performed a screen targeting common 155 

essential genes plus a subset of nonessential genes that produced phenotypes in K562 cells sampled 156 

at day 7 after transduction (n=2,393 genes; n=2,549 total perturbations).  157 

We conducted these three screens with 10x Genomics droplet-based 3’ scRNA-seq and 158 

direct sgRNA capture (13). After sequencing and read alignment, we performed sgRNA 159 

identification and removed any cells bearing sgRNAs targeting different genes, which are an 160 

expected byproduct of lentiviral recombination between sgRNA cassette or doublet encapsulation 161 

during scRNA-seq. In total, we obtained >2.5 million high-quality cells with a median coverage 162 

of >100 cells per perturbation (fig. S1 E-G; table S4-S6). We observed a median target knockdown 163 

of 85.5% in K562 cells and 91.6% in RPE1 cells (Fig. 1B), confirming both the efficacy of our 164 

CRISPRi libraries and the fidelity of sgRNA assignment (13). The difference in performance 165 

between these cell lines was likely due to the use of the optimized ZIM3-derived KRAB domain 166 

in the RPE1 cells, suggesting that future efforts would benefit from improved CRISPRi efficacy.  167 

 168 

A robust computational framework to detect transcriptional phenotypes 169 

 170 

The scale of our experiment provided a unique opportunity to ask what fraction of genetic 171 

perturbations cause a transcriptional phenotype, a preliminary requirement for inferring gene 172 

function. Significant transcriptional phenotypes can take many forms, ranging from altered 173 

occupancy of a given cell state to focused changes in the expression level of a small number of 174 

target genes. To contend with this diversity, we created a robust framework capable of detecting 175 

transcriptional changes between groups of cells in our data. Our experimental design included 176 

many control cells bearing diverse non-targeting sgRNAs. These allow for internal z-normalization 177 

of expression measurements, and we found that this procedure corrected for batch effects that 178 

resulted from parallelized scRNA-seq and sequencing (fig. S2). As Perturb-seq captures single-179 

cell genetic perturbation identities in a pooled format, we can use statistical approaches that treat 180 

each cell as an independent experimental sample. In general, we chose to use conservative, non-181 
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parametric statistical tests to detect transcriptional changes rather than making specific 182 

assumptions about the underlying distribution of gene expression levels. 183 

First, we examined global transcriptional changes using a permuted energy distance test 184 

(see Methods). We compared cells bearing each genetic perturbation to non-targeting control cells 185 

at the level of principal components (approximating global transcriptional features like cell state 186 

and gene expression programs). Relative to a permuted null distribution, this test asks whether 187 

cells carrying a given genetic perturbation could have been drawn from the control population. By 188 

this metric, we found that 2,987 of 9,608 genetic perturbations targeting a primary transcript 189 

(31.1%) compared to 11 of 585 non-targeting controls (1.9%) caused a significant transcriptional 190 

phenotype in K562 cells.  191 

While sensitive, the energy distance test assays global shifts in expression without 192 

providing insight into which specific transcripts are altered. To detect individual differentially 193 

expressed genes, we applied the Anderson-Darling (AD) test to compare the distribution of 194 

expression levels for each gene in cells bearing each genetic perturbation against control cells. 195 

Importantly, the AD test is sensitive to transcriptional changes in a subset of cells, enabling us to 196 

find differences even when phenotypes have incomplete penetrance. With the AD test, we found 197 

2,935 of 9,608 genetic perturbations targeting a primary transcript (30.5%) compared to 12 of 585 198 

non-targeting controls (2.1%) caused >10 differentially expressed genes in K562 cells. These 199 

results were well-correlated between time points and cell types (fig. S3A,B; tables S4-S6) and 200 

concordant with the energy distance test (78.7% concordance by Jaccard index).  201 

We then explored features of genetic perturbations that predict a transcriptional phenotype. 202 

We found that the strength of the transcriptional response was correlated with the strength of the 203 

growth defect (Spearman’s rho = –0.51) with 86.6% of essential genetic perturbations (gamma < 204 

–0.1) leading to a significant transcriptional response in K562 cells (Fig. 1C; fig. S3C,D). A 205 

substantial number of genetic perturbations that cause a transcriptional phenotype nonetheless 206 

have a negligible growth phenotype (n=771; fig. S3E), indicating that many genetic perturbations 207 

influence cell state but not growth or survival. We also found that highly expressed genes were 208 

more likely to produce transcriptional phenotypes (Spearman’s rho = 0.42) (fig. S3C).  209 

Considering that some of our genetic perturbations did not yield strong on-target 210 

knockdown, our estimate of the fraction of genetic perturbations that cause a transcriptional 211 

phenotype is likely to be a lower bound. While a fraction of phenotypes may result from off-target 212 

effects, an advantage of Perturb-seq is the ability to directly detect potential off-target activities 213 
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such as the knockdown of neighboring genes. Consistent with earlier studies (25), we found that 214 

~7.5% of perturbations caused significant knockdown of a neighboring gene in K562 cells, but 215 

neighbor gene knockdown was not enriched in genetic perturbations with a negligible growth 216 

defect that produced a transcriptional phenotype (fig. S4). Taken together, these results present a 217 

coherent picture where knockdown of a significant fraction of expressed genes causes a 218 

transcriptional response. 219 

 220 

Annotating gene function from transcriptional phenotypes 221 

 222 

Previous Perturb-seq screens have focused on targeted sets of genetic perturbations that are 223 

often related biologically, such as genes identified in forward genetic screens. Our large-scale 224 

screen targeting all expressed genes in K562 cells presented a unique opportunity to assess how 225 

well transcriptional phenotypes can resolve gene function when used in an unbiased manner. 226 

We focused on a subset of 1,973 perturbations that had strong transcriptional phenotypes 227 

(>50 differentially expressed genes by AD test) (Fig. 2A). Because related perturbations could 228 

have different magnitudes of effect, we used the correlation between mean expression profiles as 229 

a scale-invariant metric of similarity.  230 

To assess the extent to which correlated mean expression profiles between genetic 231 

perturbations indicated common function, we compared our results to two curated sources of 232 

biological relationships. First, among the 1,973 targeted genes, there were 327 protein complexes 233 

from the CORUM 3.0 database with at least two thirds of the complex members present, 234 

representing 14,165 confirmed protein-protein interactions (26). The corresponding expression 235 

profile correlations were markedly stronger (median correlation 0.61) than the background 236 

distribution of all possible gene pairs (median correlation 0.10) (Fig. 2B). Second, we compared 237 

the correlation between genetic perturbations to the STRING database of known and predicted 238 

protein-protein interactions, which had scores for 243,558 of the possible gene-gene relationships 239 

within our dataset (27). High STRING scores, reflecting high-confidence interacting proteins, 240 

were also strongly associated with high expression correlations (Fig. 2C). 241 

We next performed an unbiased search for global structure to group similar perturbations 242 

within the dataset. We identified 64 discrete clusters based on strong intra-cluster correlations and 243 

annotated their function using CORUM, STRING, and manual searches. To visualize the dataset, 244 
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we constructed a minimum distortion embedding that places genes with correlated expression 245 

profiles close to each other in the plane and labeled the location of gene clusters (Fig. 2D). 246 

Both the clusters and the embedding showed clear organization by biological function 247 

spanning a diverse array of different processes including: chromatin modification; transcription; 248 

mRNA splicing, capping, polyadenylation, and turnover; nonsense-mediated decay; translation; 249 

post-translational modification, trafficking, and degradation of proteins; central metabolism; 250 

mitochondrial transcription and translation; DNA replication; cell division; microRNA biogenesis; 251 

and major signaling pathways active in K562 cells such as BCR-ABL and mTOR (table S7). We 252 

further annotated the embedding visualization by labeling CORUM complexes and STRING 253 

clusters whose members were placed in nearby positions, revealing structure at finer resolution 254 

such as identifying the SMN complex, exon junction complex, U6 snRNP, and methylosome 255 

within the spliceosome and the association of ribosome biogenesis factors with the 40S ribosomal 256 

subunit. 257 

In our dataset, we identified many poorly annotated genes whose perturbation led to similar 258 

transcriptional responses to genes of known function, naturally predicting a role for the 259 

uncharacterized genes. To orthogonally test a subset of these predictions, we selected ten poorly 260 

annotated genes whose perturbation response correlated (r>0.6) with subunits and biogenesis 261 

factors of either the large or small subunit of the cytosolic ribosome, which formed distinct clusters 262 

in our data (fig. S5A). This included genes that had no previous association with ribosome 263 

biogenesis (CCDC86, CINP, SPATA5L1, ZNF236, C1orf131) as well as genes that had not been 264 

associated with functional defects in a particular subunit (SPOUT1, TMA16, NOPCHAP1, ABCF1, 265 

and NEPRO). We used CRISPRi to target these genes in K562 cells and looked for evidence of 266 

ribosome biogenesis defects by assessing the ratio of 28S to 18S rRNA by Bioanalyzer 267 

electrophoresis. Knockdown of nine of the ten candidate factors led to substantial defects in 268 

ribosome biogenesis, with the exception of ABCF1 (Fig. 2E). In every case, the affected ribosomal 269 

subunit corresponded to the Perturb-seq clustering across two independent sgRNAs. While this 270 

study was in progress, another group used cryo-EM to identify C1orf131 as a core structural 271 

component of the pre-A1 small subunit processome, complementing our functional evidence (28). 272 

This validation suggests that many poorly characterized genes can be assigned functional roles 273 

through Perturb-seq, although a subset of these relationships might be explained by indirect or off-274 

target effects (fig. S5B,C). 275 
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In total, these results show that transcriptional phenotypes revealed by Perturb-seq have 276 

utility beyond studying gene regulation or transcriptional programs, and can serve as valuable tools 277 

for resolving and interrogating many central processes in cell biology.  278 

 279 

Delineating functional modules of the Integrator complex 280 

 281 

In general, perturbations to members of known protein complexes produced similar 282 

transcriptional phenotypes in our dataset. Therefore, we were surprised by the wide spectrum of 283 

transcriptional responses to knockdown of subunits of Integrator, a metazoan-specific essential 284 

nuclear complex with roles in small nuclear RNA (snRNA) biogenesis and transcription 285 

termination at paused RNA polymerase II (Fig. 3A) (29). Each of the fourteen core subunits of 286 

Integrator was targeted in our experiment, allowing us to systematically compare their 287 

transcriptional phenotypes in K562 and RPE1 cells (Fig. 3B; fig. S6A). INTS1, INTS2, INTS5, 288 

INTS7, and INTS8 formed a tight cluster which weakly correlated with INTS6 and INTS12. 289 

Separately, INTS3, INTS4, INTS9, and INTS11 clustered together alongside splicing regulators 290 

involved in snRNP assembly and the tri-snRNP. Finally, INTS10, INTS13, and INTS14 formed 291 

another discrete cluster together with C7orf26, an uncharacterized gene.  292 

These distinct functional modules mirror the architecture of the Integrator complex 293 

observed in recent structures (30, 31). The INTS1-2-5-7-8 functional module contained the 294 

subunits identified as the structural shoulder and backbone of Integrator. The INTS3-4-9-11 295 

functional module contained the subunits identified as the structural cleavage module (as well as 296 

INTS3 which was not resolved). While INTS10, INTS13, and INTS14 were not resolved in the 297 

recent cryo-EM Integrator structures, these subunits have been identified as a stable biochemical 298 

subcomplex (32, 33). 299 

Integrator is an essential and well-studied complex, so we were intrigued by the robust 300 

clustering of the uncharacterized gene C7orf26 with Integrator subunits 10, 13, and 14. To explore 301 

this, we tested whether loss of C7orf26 impacted the abundance of Integrator subunits. CRISPRi-302 

based depletion of C7orf26 destabilized INTS10 in K562 cells, confirming either a regulatory or 303 

protein-level relationship (Fig. 3C). Next, we checked for a biochemical interaction between these 304 

proteins. Pulldown of His-INTS10 from cell lysates recovered endogenous C7orf26 alongside 305 

INTS13 and INTS14 (Fig. 3D). Additionally, overexpression of C7orf26 with INTS10, INTS13, 306 

and INTS14 enabled the purification of a stable INTS10-13-14-C7orf26 complex by size-307 
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exclusion chromatography (Fig. 3E; fig. S6B and fig. S7). We also detected a physical interaction 308 

between the Drosophila C7orf26 orthologue and fly Integrator in S2 cells and observed co-309 

essentiality between C7orf26 and INTS10, INTS13, INTS14 in the Cancer Dependency Map, 310 

suggesting that this relationship is conserved across species and cell types (fig. S8). Together, these 311 

results suggest that C7orf26 is a core subunit of a novel INTS10-13-14-C7orf26 Integrator module. 312 

We sought to better understand the distinct transcriptional phenotypes induced by 313 

knockdown of INTS10-13-14-C7orf26 compared to the shoulder/backbone and cleavage modules. 314 

Comparison of the genes differentially expressed between modules did not reveal function in an 315 

obvious way (fig. S6C,D), perhaps owing to the late time point assayed in our experiment. We 316 

next explored the canonical role of Integrator in snRNA biogenesis. As mature snRNAs are not 317 

captured in 3’ scRNAs-seq, we monitored changes in global splicing as a proxy for snRNA 318 

biogenesis defects. In our Perturb-seq data, we quantified changes in splicing by comparing the 319 

ratio of intronic (unspliced) to exonic (spliced) reads for each gene. Validating our approach, 320 

depletion of known splicing factors as well as subunits of the cleavage and shoulder/backbone 321 

modules led to gross splicing defects (Fig. 3F). By contrast, depletion of subunits of the INTS10-322 

13-14-C7orf26 module did not cause a substantial splicing defect. To directly test the effect of the 323 

INTS10-13-14-C7orf26 module on snRNA biogenesis, we used PRO-seq to probe the positioning 324 

of active RNA-polymerase. These data confirmed that extended knockdown of the cleavage and 325 

backbone/shoulder modules, but not INTS10, INTS13, or C7orf26, caused a dramatic increase in 326 

transcriptional readthrough past the 3’ cleavage site of snRNAs (Fig. 3G). In addition, the PRO-327 

seq data confirmed that loss of the INTS10-13-14-C7orf26 module causes a transcriptional 328 

phenotype distinct from other modules (fig. S6E). 329 

In sum, our results show that INTS10-13-14-C7orf26 represents a functionally and 330 

biochemically distinct module of the Integrator complex, and we propose that C7orf26 be renamed 331 

INTS15 for future studies (Fig. 3H). Although Integrator has been subjected to extensive structural 332 

analyses, it has been difficult to resolve the INTS10-13-14 components in relation to the rest of 333 

the complex. Inclusion of C7orf26 may facilitate future structural efforts. Broadly, this example 334 

highlights the utility of high-dimensional functional phenotypes for the unsupervised classification 335 

of protein complex subunits into functional modules.  336 

 337 

 338 

 339 
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Data-driven definition of transcriptional programs 340 

 341 

While clustering can organize genetic perturbations into pathways or complexes, it does 342 

not reveal the functional consequences of perturbations. To globally summarize the genotype-343 

phenotype relationships in our dataset, we: (i) clustered genes into expression programs based on 344 

their co-regulation across perturbations; (ii) clustered perturbations with strong phenotypes based 345 

on their transcriptional profiles (as described above); and (iii) computed the average activity of 346 

each gene expression program within each perturbation cluster (Fig. 4A,B; fig. S9A; table S7,S8; 347 

see Methods). This map uncovered many known gene expression programs associated with genetic 348 

perturbations, including upregulation of proteasomal subunits due to proteosome dysfunction (34), 349 

activation of NFkB signaling upon loss of ESCRT proteins (35), downregulation of growth-related 350 

genes in response to essential genetic perturbations, and upregulation of the cholesterol 351 

biosynthesis pathway in response to defects in vesicular trafficking (36). Beyond these large-scale 352 

relationships, we could also score the effects of individual genetic perturbations on different 353 

expression programs. For example, our analysis delineated the canonical branches of the cellular 354 

stress response into the independently regulated Unfolded Protein Response (UPR) and Integrated 355 

Stress Response (ISR) (Fig. 4C) (9). The ISR was highly activated by loss of mitochondrial 356 

proteins, aminoacyl-tRNA synthetases, and translation initiation factors, whereas the UPR was 357 

activated by loss of ER-resident chaperones and translocation machinery. Collectively, this 358 

analysis establishes the ability of Perturb-seq to learn regulatory circuits by leveraging the 359 

variability of responses across perturbations. 360 

Interestingly, our unbiased clustering uncovered many perturbations that drove the 361 

expression of markers of erythroid or myeloid differentiation, consistent with the known 362 

multilineage potential of K562 cells (Fig. 4D) (37). The scale of our experiment allowed us to 363 

comprehensively search for genes whose modulation promotes cellular differentiation, an 364 

application of major interest in both developmental and cancer biology. As expected, loss of 365 

central regulators of erythropoiesis (GATA1, LDB1, LMO2, and KDM1A) caused myeloid 366 

differentiation, whereas knockdown of BCR-ABL and its downstream adaptor GAB2 induced 367 

erythroid differentiation (38). Surprisingly, loss of a number of common essential genes (i.e., 368 

essential across cell lines in the Cancer Dependency Map) also caused expression of either myeloid 369 

(e.g., Integrator subcomplex) or erythroid (e.g., NuRD complex, DNA replication machinery) 370 

markers. Next, we investigated the differentiation effect of selectively essential genes, which could 371 
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be promising targets for differentiation therapy, analogous to ongoing efforts for KDM1A (39, 372 

40). We observed that loss of PTPN1, a tyrosine phosphatase selectively essential in K562 cells, 373 

drove myeloid differentiation. While inhibitors of PTPN1 have been developed for use in diabetes 374 

and certain cancers (41), to our knowledge they have not been tested as a differentiation therapy. 375 

Remarkably, in targeted experiments, we found that knockdown of PTPN1 and KDM1A in 376 

combination caused a substantial increase in differentiation and growth defect compared to either 377 

single genetic perturbation, suggesting that these targets act via different cellular mechanisms (Fig. 378 

4E; fig. S9B). These results highlight the utility of rich phenotypes for understanding 379 

differentiation as well as nominating promising therapeutic targets or combinations. 380 

 381 

Hypothesis-driven study of composite phenotypes 382 

 383 

We next recognized that our scRNA-seq readout could be used to study phenotypes that 384 

integrate data from across the transcriptome and, therefore, would be difficult to study in 385 

traditional forward genetic screens. Examples of these “composite phenotypes” include total 386 

cellular RNA content and the fraction of RNA derived from transposable elements (TE). We found 387 

numerous composite phenotypes under strong genetic control, with highly reproducible effects 388 

across screen replicates and cell types (Fig. 4F). In the specific case of TE regulation, two major 389 

classes of perturbations increased the fraction of TE RNA by affecting broad classes of elements 390 

including Alu, L1, and MIR (Fig. 4G; fig. S9C). First, loss of subunits of the exosome led to a 391 

substantial increase in the fraction of TE RNA, suggesting that transcripts deriving from TEs might 392 

be preferentially degraded. Second, loss of the CPSF cleavage and polyadenylation complex and 393 

parts of the Integrator complex produced a similar phenotype, suggesting that many of the TE 394 

RNAs observed in K562 cells may be derived from failure of normal transcription termination.  395 

Turning to total RNA content (Fig. 4H), we found that loss of many essential regulators of 396 

S-phase and mitosis increased the RNA content of cells. This is consistent with the observation 397 

that cells tend to increase their size, and thus their RNA content, as they progress through the cell 398 

cycle (fig. S9D), so perturbations that arrest cells in later cell cycle stages yield increased total 399 

RNA content on average. By contrast, loss of essential transcriptional machinery, including 400 

general transcription factors, the Mediator complex, and transcription elongation factors, 401 

decreased total RNA content. In sum, these analyses show that genome-scale Perturb-seq enables 402 
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hypothesis-driven exploration of complex cellular features that are challenging to study through 403 

other means.  404 

 405 

Exploring genetic drivers and consequences of aneuploidy in single-cells 406 

 407 

As Perturb-seq is a single-cell assay, it enables the study of cell-to-cell heterogeneity in 408 

response to genetic perturbations. We reasoned that systematically exploring sources of 409 

heterogeneity could reveal insights into phenotypes that are missed in bulk or averaged 410 

measurements. 411 

To assess the penetrance of perturbation-induced phenotypes, we first applied SVD-based 412 

leverage scores as a metric of single-cell phenotypic magnitude (see Methods). In this formulation, 413 

leverage scores quantify how outlying each perturbed cell’s transcriptome is relative to non-414 

targeting control cells without assuming that perturbations drive a single axis of variation. 415 

Supporting this approach, we found that mean leverage scores for each genetic perturbation were 416 

correlated with the number of differentially expressed genes (fig. S10A, Spearman’s rho = 0.71), 417 

and reproducible across the day 6 and day 8 K562 experiments (fig. S10B, Spearman’s rho = 0.79). 418 

To quantify the degree of heterogeneity in response to genetic perturbations, we then scored 419 

perturbations by the variation in single-cell leverage scores (Fig. 5A; see Methods). Comparing 420 

leverage scores across subunits of large essential complexes, we observed evidence for both 421 

biological (e.g., subcomplex function or dosage imbalance) and technical (e.g., selection to escape 422 

toxic perturbations) sources of phenotypic variation in response to genetic perturbations (fig. 423 

S10C-F). 424 

Intriguingly, many genes implicated in chromosome segregation were among the top 425 

drivers of heterogeneity, including TTK, SPC25, and DSN1 (Fig. 5B) (42). We hypothesized that 426 

the extreme transcriptional variability caused by these genetic perturbations might result from 427 

acute changes in the copy number of individual chromosomes due to mitotic mis-segregation. To 428 

explore this, we used inferCNV (43) to estimate single-cell DNA copy number along the genome 429 

by quantifying the change in moving average gene expression compared to control cells. 430 

Consistent with our hypothesis, knockdown of TTK, a core component of the spindle assembly 431 

checkpoint (44), led to dramatic changes in estimated DNA copy number in both intrinsically 432 

aneuploid K562 and near euploid RPE1 cells (Fig. 5C; fig. S11A). Specifically, in RPE1 cells, we 433 

found that 61/80 (76%) of TTK knockdown cells had evidence of karyotypic changes compared to 434 
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274/13140 (2%) of unperturbed cells. Notably, TTK knockdown cells bore highly variable 435 

karyotypes due to the stochastic gain or loss of chromosomes, accounting for the phenotypic 436 

heterogeneity observed in these cells (Fig. 5C). 437 

An important advantage of the rich data provided by Perturb-seq is the ability to dissect 438 

not only perturbation-phenotype associations but also relationships between cellular phenotypes. 439 

We were curious how chromosomal instability (CIN) would affect cell cycle progression in 440 

euploid, p53-positive RPE1 cells versus constitutively aneuploid, p53-deficient K562 cells. 441 

Expanding our analysis to all cells in our experiment independent of genetic perturbation, we found 442 

that RPE1 cells with abnormal karyotypes tended to arrest in G1 or G0 of the cell cycle (G1 or G0 443 

fraction 0.68 for abnormal karyotype vs. 0.44 for stable karyotype), while K562 cells with altered 444 

karyotypes had less significant shifts in cell cycle occupancy (Fig. 5D,E). Within the population 445 

of RPE1 cells bearing a chromosomal loss, the likelihood of cell cycle arrest directly depended on 446 

the magnitude of karyotypic abnormality (fig. S11B). Additionally, we observed that cells with 447 

the most severe karyotypic changes—those bearing both chromosomal gains and losses—had 448 

marked upregulation of the ISR (Fig. 5F and fig. S11C). These results are consistent with models 449 

in which cell cycle checkpoints are activated by the secondary consequences of aneuploidy (e.g., 450 

DNA damage or proteostatic stress) rather than changes in chromosome number per se (45, 46). 451 

Finally, we looked across all perturbations to systematically identify genetic drivers of 452 

CIN. We assigned a score to each perturbation based on the average magnitude of induced 453 

karyotypic abnormalities. Validating our approach, we found that CIN scores were strongly 454 

correlated across K562 and RPE1 cell lines (r=0.69) and identified many known regulators of 455 

chromosomal segregation, including components of the spindle assembly checkpoint, centromere, 456 

and NDC80 complex (Fig. 5G). Remarkably, we uncovered CIN regulators with diverse cellular 457 

roles, from cytoskeletal components to DNA repair machinery (Fig. 5H; table S4-S6). While many 458 

of these genes have previously been associated with chromosomal instability through targeted 459 

studies, the scale and single-cell resolution of Perturb-seq allowed us to identify numerous genetic 460 

drivers of CIN in a single experiment. This analysis also shows the potential of single-cell CRISPR 461 

screens to dissect phenotypes that were not predefined endpoints of the experiment.  462 

 463 

 464 

 465 

 466 
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Discovery of stress-specific regulation of the mitochondrial genome 467 

 468 

Mitochondria arose from the engulfment and endosymbiotic evolution of an ancestral 469 

alphaproteobacterium by the precursor to eukaryotic cells (47). While the vast majority (~99%) of 470 

mitochondrially-localized proteins are encoded in the nuclear genome, mitochondria contain a 471 

small (~16.6 kilobase) remnant of their ancestral genome encoding 2 rRNAs, 22 tRNAs, and 13 472 

protein-coding genes in humans. An open question is how the nuclear and mitochondrial genomes 473 

coordinate their expression to cope with mitochondrial stress (48). The scale of our experiment 474 

provided a unique opportunity to investigate this question. 475 

We began by comparing the nuclear transcriptional responses to CRISPRi-based depletion 476 

of nuclear-encoded mitochondrial genes (i.e., mitochondrial perturbations). We found that 477 

mitochondrial perturbations elicited relatively homogeneous nuclear transcriptional responses, 478 

illustrated by well-correlated transcriptional phenotypes across mitochondrial perturbations (Fig. 479 

6A and fig. S12A). While there was some variation in the magnitude of transcriptional responses 480 

(e.g., proteostatic injury drove an especially strong ISR activation), nuclear transcriptional 481 

responses generally failed to discriminate genetic perturbations by function. Although this result 482 

was broadly consistent with recent literature that has highlighted the role of the ISR as response to 483 

mitochondrial stress (49–53), the lack of functional specificity of the transcriptional response was 484 

puzzling in light of: (i) the multifaceted roles of mitochondria in diverse processes such as 485 

respiration, intermediary metabolism, iron-sulfur cluster biogenesis, and apoptosis and (ii) the 486 

high-resolution separation of cytosolic perturbations by transcriptional response in our data 487 

described above.  488 

In contrast to the nuclear transcriptional response, we observed that the expression of 489 

mitochondrially encoded genes was highly variable between different mitochondrial perturbations 490 

(Fig. 6B; fig. S12B,C,D). When we clustered mitochondrial perturbations based solely on 491 

expression levels of the 13 mitochondrially encoded genes, a remarkably intricate and coherent 492 

pattern emerged: the clustering separated perturbations to Complex I, Complex IV, Complex III, 493 

Complex V (ATP synthase), the mitochondrial large ribosomal subunit, the mitochondrial small 494 

ribosomal subunit, chaperones/import machinery, and RNA processing factors (Fig. 6C; fig. 495 

S12E). To quantitatively support this observation, we trained a random forest classifier to 496 

distinguish cells with perturbations to different mitochondrial complexes and found that the 497 

mitochondrial transcriptome was far more predictive than the nuclear transcriptome 498 
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(mitochondrial accuracy 0.64; nuclear accuracy: 0.25) (fig. S12F). We then visualized the gene 499 

expression signatures of a subset of representative perturbations (Fig. 6D). The coregulation of 500 

mitochondrial genes tended to reflect function, with the exception of the bicistronic mRNAs 501 

ND4L/ND4 and ATP8/ATP6 (54). However, we did not identify a simple logic to explain the 502 

connection between genetic perturbations to their observed transcriptional consequences. While 503 

previous studies have described distinct regulation of the mitochondrial genome in response to 504 

specific perturbations [notably, related to loss of complex III and complex IV assembly factors 505 

(55, 56)], our data generalize this phenomenon to a comprehensive set of stressors.  506 

Next, we wanted to shed light on the mechanistic basis for this unappreciated complexity 507 

of mitochondrial genome responses. Given its singular origin, the mitochondrial genome is 508 

expressed by unique processes (Fig. 7A) (57). Mitochondrially encoded genes are transcribed as 509 

part of three polycistronic transcripts punctuated by tRNAs. These transcripts are then processed 510 

into rRNAs and mRNAs by tRNA excision, and individual mRNAs can be polyadenylated, 511 

expressed, or degraded. This complex system limits the potential for distinct transcriptional control 512 

but presents multiple opportunities for post-transcriptional regulation. To identify modes of 513 

perturbation-elicited differential expression, we examined the distribution of Perturb-seq reads 514 

along the mitochondrial genome (Fig. 7B). As our scRNA-seq used poly-A selection, most reads 515 

aligned to the 3’ ends of mRNAs. To validate the utility of this position-based analysis, we 516 

confirmed that knockdown of known regulators of mitochondrial transcription (TEFM) and RNA 517 

degradation (PNPT1) led to major shifts in the position of reads along the mitochondrial genome. 518 

By contrast, many of the perturbation-specific responses discovered in the present study appeared 519 

to cause shifts in the relative abundance of mRNAs rather than gross shifts in positional 520 

alignments. To determine whether the observed mitochondrial genome responses reflected 521 

regulation of the total level of mitochondrial mRNAs or specific regulation of mRNA 522 

polyadenylation, we performed a bulk RNA-sequencing experiment with no poly-A selection. We 523 

observed perturbation-specific changes in the level of total RNA similar to those measured by 524 

scRNA-seq (cophenetic correlation r=0.79; Fig. 7C). Given the complexity of the observed 525 

responses, we propose that there are likely to be multiple mechanisms that impact the levels of the 526 

various mitochondrially encoded transcripts in response to different stressors. 527 

Finally, we asked whether we could use the detailed clustering produced by the 528 

mitochondrial genome to predict gene function. Knockdown of an unannotated gene, TMEM242, 529 

produced a transcriptional signature resembling loss of ATP synthase in both K562 and RPE1 cells 530 
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(Fig. 7D; fig. S12G). Supporting this relationship, the top five co-essential genes with TMEM242 531 

were components of ATP synthase in the Cancer Dependency Map. Using a Seahorse assay, we 532 

further confirmed that basal respiration was decreased in TMEM242 knockdown cells (Fig. 7E). 533 

While this work was in progress, another group used a biochemical approach to show that 534 

TMEM242 physically interacts with ATP synthase subunits and regulates ATP synthase complex 535 

assembly in cells (58). Together, these experiments discover a novel factor required for ATP 536 

synthase activity and point to the precision of mitochondrial genome regulation.  537 

 538 

Discussion 539 

 540 

Single-cell CRISPR screens represent an emerging tool to generate rich genotype-541 

phenotype maps. However, to date, their use has been limited to the study of preselected genes 542 

focused on discrete, predefined biological questions. Here, we perform genome-scale single-cell 543 

CRISPR screens using Perturb-seq and demonstrate how these screens enable data-driven 544 

dissection of a breadth of complex biological phenomena. Reflecting on this study, we highlight 545 

key biological insights and derive principles to guide future discoveries from rich genotype-546 

phenotype maps. 547 

A primary aim of large-scale functional screens is to organize genes into pathways or 548 

complexes. To this end, we used Perturb-seq to perform high-resolution clustering of genetic 549 

perturbations. From a single assay, we recapitulated thousands of known relationships while also 550 

assigning new, experimentally validated roles to genes involved in ribosome biogenesis or 551 

translation (CCDC86, CINP, SPATA5L1, ZNF236, C1orf131, SPOUT1, TMA16, NOPCHAP1, 552 

NEPRO), transcription (C7orf26), and respiration (TMEM242). However, other large-scale 553 

experimental techniques, such as protein-protein interaction mapping, genetic interaction 554 

mapping, and co-essentiality analysis, similarly group genes or proteins by function. How then are 555 

single-cell CRISPR screens distinct?  556 

We argue that these screens are particularly powerful because of the intrinsic 557 

interpretability of comprehensive genotype-phenotype maps, enabling in-depth dissection of the 558 

functional consequences of genetic perturbations that impinge on many distinct aspects of cell 559 

biology. Of particular note is the ability to use the information-rich readouts to study complex, 560 

composite phenotypes, which are difficult to measure by other modalities. These composite 561 

phenotypes can be created in a data-driven (e.g., deriving transcriptional programs) or hypothesis-562 
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driven manner (e.g., measuring intron/exon ratios to study splicing), resulting in an enormous 563 

breadth of measured phenotypes. In the case of scRNA-seq, we show that it measures not only 564 

features such as differential gene expression and the activity of critical transcriptional programs, 565 

but also RNA splicing and processing, expression of transposable elements, differentiation, 566 

transcriptional heterogeneity, cell cycle progression, and chromosomal instability. Once a 567 

phenotype is defined, the genotype-phenotype map can be used to explore its genetic 568 

underpinnings, in a manner analogous to a forward genetic screen, as well as its relationship to 569 

other cellular phenotypes. 570 

An illustrative example of this process is our study of chromosomal instability. Based on 571 

an initial observation of heterogeneous responses to specific perturbations, we suspected that some 572 

cells carried genetically-induced chromosomal gains or losses. In a hypothesis-driven manner, we 573 

then used our rich phenotypic data to discover a large collection of perturbations—which were 574 

only loosely connected by clustering on average transcriptional phenotypes—that promote 575 

chromosomal instability. Importantly, the single-cell nature of our Perturb-seq data also allowed 576 

us to explore the relationship between karyotypic changes and other phenotypes, including cell 577 

cycle progression and stress induction. While aneuploidy is an important hallmark of most cancers, 578 

it has not been easy to study with traditional genetic screens as it requires both a single-cell and 579 

multimodal readout. In future work, this platform could be used to investigate interactions between 580 

genetic perturbations and specific karyotypes, karyotype-dependent stress responses, or the 581 

temporal evolution of karyotypes (59). 582 

Genetic perturbations can push cells into extreme states that are not observed in 583 

unperturbed cells. Because composite phenotypes can be generated and explored without being 584 

preregistered at the time of data collection, rich genotype-phenotype maps provide a powerful 585 

resource for the discovery of new cellular behaviors. Using this ability, we discovered a remarkable 586 

degree of stress-specific changes in the expression of mitochondrially encoded transcripts. It was 587 

only possible to appreciate the functional specificity of this regulation by pairing a defined set of 588 

mitochondrial perturbations with a high-dimensional readout. This discovery suggests a 589 

framework to explain how cells cope with diverse insults to mitochondria: a general nuclear 590 

response is layered over perturbation-specific changes in the expression level of mitochondrially 591 

encoded genes (Fig. 7F). Building on this observation, we can ask new questions about the 592 

mitochondrial stress response. The transcriptional changes we observed may reflect adaptive 593 

responses or, alternatively, complex patterns of dysfunction owing to disruption of the intricate 594 
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system of mitochondrial gene expression. Understanding how and in what contexts this regulation 595 

is adaptive may have important implications for diseases associated with mitochondrial stress. An 596 

intriguing additional question is whether individual mitochondria are able to regulate their 597 

expression autonomously. Combined with the nuanced responses observed here, this would 598 

support and substantially extend the “co-location for redox regulation” (CoRR) hypothesis which 599 

holds that the endosymbiotically derived mitochondrial genome has been retained through 600 

evolution to enable localized regulation of mitochondrial gene expression (60). 601 

A final theme emerging from our work is the flexibility of single-cell CRISPR screens 602 

compared to other functional genomic approaches. Because these screens extract rich information 603 

from each cell in a pooled format, they require only a fraction of the number of cells used by other 604 

approaches and thus are well suited to the study of iPSC-derived cells and in vivo samples. As 605 

technologies for single-cell, multimodal phenotyping advance, single-cell screens will continue to 606 

become more powerful. At present, the major limitation of single-cell CRISPR screens is cost. 607 

Careful experimental designs, such as multiplexed libraries or compressed sensing (61), together 608 

with advances in single-cell phenotyping (62, 63) and DNA sequencing promise to greatly increase 609 

the scale of these experiments. To this point, we concluded our work by sequencing our genome-610 

scale K562 libraries on a lower-cost, ultra-high throughput sequencing platform developed by 611 

Ultima Genomics, generating results equivalent to those sequenced on Illumina instruments (fig. 612 

S13).  613 

In sum, our study presents a blueprint for the construction and analysis of rich genotype-614 

phenotype maps to serve as a driving force for the systematic exploration of genetic and cellular 615 

function.   616 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 28, 2022. ; https://doi.org/10.1101/2021.12.16.473013doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.16.473013
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

 21 

Materials and Methods 617 

A complete description of our Material and Methods is found in the Supplementary Material 618 

online. This includes methods experimental methods related to Perturb-seq screens and 619 

functional experiments, as well as computational methods detailing all data analysis.  620 
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Figure 1: Genome-scale Perturb-seq via multiplexed CRISPRi. (A) Schematic experimental 
strategy. A multiplexed CRISPRi sgRNA library was used to knock down all expressed genes (in 
K562 cells) or all common essential genes (in RPE1 and K562 cells). Cells were transcriptionally 
profiled using droplet-based single-cell RNA-sequencing, with genetic perturbations assigned to 
cells by direct capture and sequencing of sgRNAs. (B) On-target knockdown statistics. Cumulative 
density plot of on-target knockdown, for n=9,464 target genes in K562 cells (red) and n=2,333 
target genes in RPE1 cells (blue).  (C) Comparing growth phenotype versus the number of 
differentially expressed genes (DEGs) for each multiplexed guide pair in K562 cells. Growth 
phenotypes are reported as the log2 guide enrichment per cell doubling (gamma). DEGs were 
determined using a two-sample Anderson-Darling test compared against non-targeting guides, and 
a pseudocount of 1 was added to the number of DEGs before log10 transformation. Dots are colored 
by Energy distance as either permutation significant (purple) or not significant (grey). The growth 
phenotype and number of DEGs are anticorrelated (Spearman’s rho=-0.51). 
  
 
 
  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 28, 2022. ; https://doi.org/10.1101/2021.12.16.473013doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.16.473013
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

 33 

Figure 2: Data-driven inference of gene function from transcriptional phenotypes. (A) 
Schematic of analysis. To examine the ability of transcriptional phenotypes to assign gene 
function, we analyzed 1973 genetic perturbations that elicited strong responses. Perturbations 
were compared and clustered using the correlation of gene expression across 2319 highly 
variable genes. (B) Expression profile correlations among genes in curated complexes. 327 
protein complexes from the CORUM3.0 database have at least two thirds of complex subunits 
within the dataset. Plot compares the distribution of pairwise expression profile correlations 
among genes in complexes vs. all possible gene-gene pairs. (C) Comparing expression profile 
correlations to predicted protein-protein interactions from STRING. 243,558 gene-gene 
relationships within the dataset are scored within STRING. The relationships were sorted into 6 
equally spaced bins based on expression profile correlation. Plot shows kernel density estimates 
of STRING scores within each bin. (D) Minimum distortion embedding of dataset. Each dot 
represents a genetic perturbation, arranged so that perturbations with correlated expression 
profiles are nearby in the two dimensional embedding. Manual annotations (black labels) of 
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cluster function are placed near the median location of genes within the cluster. CORUM 
complexes or STRING clusters (green labels) are annotated when involved genes are nearby 
within the embedding. (E) Quantification of 28s to 18s rRNA ratio. Poorly characterized genes 
with Perturb-seq predicted roles in ribosome biogenesis were targeted by CRISPRi. The 28s/18s 
rRNA ratio was measured by Bioanalyzer electrophoresis in biological duplicate with two 
distinct sgRNAs per gene (green and blue; solid grey lines represent mean). Dotted grey lines 
represent two standard deviations above and below the mean of non-targeting controls. 
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Figure 3. (legend on next page) 
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Figure 3: Perturb-seq discovers a novel gene member and functional submodules of the 
Integrator complex. (A) Location of known Integrator complex members in the minimum 
distortion embedding. (B) Relationship between Integrator complex members and C7orf26 in 
K562 cells (top) and RPE1 cells (bottom). The heatmap displays the Pearson correlation between 
pseudobulk z-normalized gene expression profiles of Integrator complex members. Genetic 
perturbations are ordered by average linkage hierarchical clustering based on correlation in K562 
cells. Functional modules suggested by the clustering are highlighted. (C) Co-depletion of 
Integrator complex members. Individual Integrator complex members were depleted in CRISPRi 
K562 cells. Lysates were then probed for other module members by western blot.  (D) Co-
immunoprecipitation of endogenous C7orf26 with His-INTS10. HEK293T were transfected with 
His-INTS10 or INTS10. Cell lysates were affinity purified and select Integrator proteins were 
probed by western blot. (E) Purification of a INTS10-INTS13-INTS14-C7orf26 complex.  His-
INTS10, INTS13, INTS14, and C7orf26 were overexpressed in Expi293 cells, affinity purified, 
and separated via SEC. The INTS10-INTS13-INTS14-C7orf26 proteins co-fractionated as 
visualized by Western blotting. (F) Effects of Integrator modules on splicing from Perturb-seq 
data. Histogram (kernel density estimate) compares gene-level splicing scores. Splicing scores 
represent the change in the log2 ratio of total to unspliced reads for each gene relative to non-
targeting control guides. Representative genetic perturbations from Integrator modules as well as 
the spliceosome are shown colored by module. (G) Density of PRO-seq reads at the snRNA RNU1-
1 locus mapping actively engaged RNA polymerase II.  For each perturbation, densities are shown 
relative to the maximum read count in the locus. (H) Structure of the Integrator complex colored 
by functional modules revealed by Perturb-seq. The endonuclease (blue) and shoulder/backbone 
(orange) modules were obtained from the cryo-EM structure (31). The model of the newly 
discovered 10-13-14-C7orf26 module was built by docking the crystal structure of INTS13-
INTS14 (33) with an AlphaFold multimeric model of INTS10 and C7orf26. 
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Figure 4: Summarizing genotype-phenotype relationships with Perturb-seq. (A) Schematic 
of analysis. To produce a high-level summary of genotype-phenotype relationships in K562 cells, 
1973 genetic perturbations that elicited strong responses and 2319 highly variable genes were 
clustered using HDBSCAN after nonlinear embedding. Alternatively, composite phenotypes were 
derived from global metrics in a hypothesis-driven manner.  (B) Heatmap of the high-level 
genotype-phenotype map. The heatmap represents the mean z-scored expression for gene 
expression and perturbation clusters. For a subset of clusters, clustered are labelled with manual 
annotations (black labels) of cluster function along with example genes within the cluster (light 
gray labels). (C) Comparison of ISR and UPR scores for genetic perturbations. Scores were 
recovered from unbiased clustering of genes by genetic dependency, and manually annotated. (D) 
Comparison of erythroid and myeloid differentiation scores for genetic perturbations. Scores were 
recovered from unbiased clustering of genes by genetic dependency, and manually annotated. 
Genetic perturbations are colored to reflect cluster identity. (E) Expression of CD11b/ITGAM in 
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K562 cells upon knockdown of PTPN1 or KDM1A. CD11b was labelled by cell surface staining 
with anti-CD11b antibody and measured by flow cytometry. (F) Correlation of composite 
phenotypes across time points and cell types. Composite phenotypes were defined in a hypothesis-
driven manner. Fraction TE (repetitive and transposable element) represents the number of non-
intronic reads mapped to TEs over total, averaged over all cells bearing each perturbation (both 
collapsed on UMIs). Fraction mtRNA represents the mean number of reads mapped to 
mitochondrial genome protein-coding genes over total. Total RNA represents the mean total RNA 
content (number of UMIs). (G) Comparison of TE expression across time points. The mean 
fraction TE reads per perturbation is highly correlated across time points in K562 cells (r=0.79). 
Genetic perturbations are colored to reflect cluster identity. (H) Comparison of total RNA content 
across time points. Total RNA content per perturbation is highly correlated across time points in 
K562 cells (r=0.74). Genetic perturbations are colored to reflect cluster identity. 
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Figure 5: Exploring acute consequences and genetic drivers of aneuploidy in single-cells. (A) 
Schematic of heterogeneity statistic. Single-cell leverage scores quantify how outlying each cell is 
relative to non-targeting control cells by PCA. For each perturbation, heterogeneity of single-cell 
phenotypes is quantified as the standard deviation of leverage scores. (B) Identifying 
heterogeneous perturbations. Known regulators of chromosome segregation were among the 
perturbations with the highest single-cell heterogeneity (high variability of leverage scores), 
especially compared to their number of differentially expressed genes (based on Anderson-Darling 
test). (C) Heatmap of chromosomal copy number inference from Perturb-seq data. For all genes 
(expressed >0.05 UMI per cell), the log-fold change in expression is calculated with respect to the 
average of non-targeting control cells, and genes are ordered along the genome. A weighted 
moving average of 100 genes is used infer copy number changes (columns) in single-cells (rows) 
with noise and median filtering. 80 TTK knockdown RPE1 cells and 80 randomly sampled non-
targeting control RPE1 cells are shown. Cells are ordered by average linkage hierarchical 
clustering based on correlation of chromosomal copy number profiles. (D, E) Comparison of cell 
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cycle occupancy upon acute karyotypic changes. Abnormal karyotypic cells were defined as 
having ≥1 chromosome with evidence of changes in chromosomal copy number for >80% of the 
chromosomal length. For single-cells, cell-cycle positioning was inferred by UMAP dimension 
reduction on differential expression profiles of 199 selected cell-cycle regulated genes. Cell cycle 
occupancy is shown as a 2D kernel density estimate of a random subset of 1000 cells per 
karyotypic status. Approximate gates between cell cycle phases (G1 or G0; S; G2 or M) are shown 
as dotted lines, and the fraction of cells in each cell cycle phase are indicated. (F) Effect of 
chromosomal instability (CIN) on activation of the Integrated Stress Response (ISR). Histogram 
(kernel density estimate) compares the ISR score versus CIN status in RPE1 cells. CIN status is 
defined as evidence of gain or loss of chromosomal copy number for >80% of the chromosomal 
length, with 240,768 stable cells, 5,522 cells bearing chromosomal loss, 1987 cells bearing 
chromosomal gain, and 904 cells bearing gain and loss of chromosomes. ISR score is defined as 
the sum of z-normalized expression of ISR marker genes where increased values indicate stronger 
ISR activation. (G) Comparison of the effect of genetic perturbations on the CIN score across cell 
types. For each genetic perturbation, the CIN score is calculated as the mean single-cell sum of 
squared CIN values, z-normalized relative to non-targeting control perturbations. The CIN score 
is correlated across cell types (r=0.69). (H) Schematic of a subset of genetic perturbations that 
drive CIN. CIN drivers play diverse roles in mitosis, cell cycle regulation, and DNA repair. 
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Figure 6: Global organization of the transcriptional response to mitochondrial stress.  (A) 
Clustering mitochondrial perturbations by nuclear transcriptional response. CRISPRi enables 
knockdown of nuclear-encoded genes whose protein products are targeted to mitochondria 
(mitochondrial perturbations). Mitochondrial perturbations were annotated by MitoCarta3.0 and 
subset to those with a strong transcriptional phenotype (n=268 mitochondrial perturbations). Gene 
expression profiles were restricted to nuclear encoded genes which includes 99% of mitochondrial 
proteins. The heatmap displays the Pearson correlation between pseudobulk z-normalized gene 
expression profiles of mitochondrial perturbations in K562 cells. Genetic perturbations were 
clustered by HDBSCAN with a correlation metric. (B) Comparing variability in the mitochondrial 
transcriptome by perturbation localization. The mitochondrial genome encodes 13 protein-coding 
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genes. Genetic perturbations were grouped based on localization of their protein products as 
determined by the Human Protein Atlas. For each of these 13 mitochondrially encoded genes, the 
variance in pseudobulk z-normalized expression profiles was calculated between all perturbations 
with the same localization. Barplots represent the average across genes with 95% confidence 
interval obtained by bootstrapping. (C) Clustering mitochondrial perturbations by mitochondrial 
transcriptional response. Mitochondrial perturbations were annotated by MitoCarta3.0 and subset 
to those with a strong transcriptional phenotype as above (n=268 mitochondrial perturbations). 
Gene expression profiles were restricted to the 13 mitochondrial-encoded genes. The heatmap 
displays the Pearson correlation between pseudobulk z-normalized gene expression profiles of 
mitochondrial perturbations in K562 cells. Genetic perturbations are clustered by HDBSCAN with 
a correlation metric. Clusters were manually annotated. (D) Heatmap visualizing the mitochondrial 
genome transcriptional response to diverse mitochondrial stressors. The expression (log2 fold-
change relative to non-targeting controls) of the 13 mitochondrially encoded genes is shown for a 
subset of perturbations representative of different mitochondrial complexes or function. Neither 
the ISR score nor mean fraction of mitochondrial RNA (mtRNA) would allow for high-resolution 
clustering by function as provided by the mitochondrial genome response. Genetic perturbations 
and genes are ordered by average linkage hierarchical clustering with a correlation metric. 
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Figure 7: Investigating regulation of the mitochondrial genome in stress. (A) Schematic of 
the mitochondrial transcriptome. Each human cell contains many copies of the circular 16.6 kb 
mitochondrial genome distributed throughout the mitochondrial network. The human 
mitochondrial genome encodes 2 rRNAs, 22 tRNAs, and 13 protein-coding genes. Both the 
heavy (H) and light (L) strand of the genome are transcribed as polycistronic transcripts 
punctuated by tRNAs. Excision of tRNAs from transcripts generates nascent mRNA precursors 
(colored by complex membership). mRNA precursors can then be polyadenylated, stabilized, or 
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degraded.  (B) Density of Perturb-seq reads along the mitochondrial genome from select genetic 
perturbations. Reads are aligned to both the H-strand (dark grey) and L-strand (light grey). For 
each perturbation, densities are shown relative to the maximum read count in the locus. (C) 
Comparison of mitochondrial gene expression profiles between Perturb-seq and bulk RNA-seq. 
Heatmap displays log2-fold changes in expression of the 13 mitochondrial encoded genes 
(columns) for genetic perturbations (rows) in Perturb-seq and bulk RNA-seq data collected from 
K562 cells. Bulk RNA-seq was conducted to analyze total RNA (including non-polyadenylated 
RNA), with data representing the average of biological replicates. Genetic perturbations and 
genes are ordered by average linkage hierarchical clustering with a Euclidean distance metric. 
The profiles are strongly correlated (r=0.79, p<10-39). (D) Clustering of TMEM242 genetic 
perturbation based on the mitochondrial transcriptome. Genetic perturbations to members of 
ATP synthase and Complex I of the respiratory chain were compared to knockdown of 
TMEM242, a mitochondrial gene of unknown function. Gene expression profiles were restricted 
to the 13 mitochondrially encoded genes. The heatmap displays the Pearson correlation between 
pseudobulk z-normalized gene expression profiles of mitochondrial perturbations in K562 cells. 
Genetic perturbations are ordered by HDBSCAN with a correlation metric. (E) Effect of 
TMEM242 knockdown on mitochondrial respiration. A Seahorse analyzer was used to monitor 
oxygen consumption rate (OCR). The Mito Stress Test consists of sequential addition of 
oligomycin (an ATP synthase inhibitor that enables measurement of ATP-productive 
respiration), FCCP (an uncoupling agent that enables measurement of maximal respiratory 
capacity), and a mixture of rotenone and antimycin A (inhibitors of Complex I and Complex III, 
respectively, that enable measurement of non-mitochondrial respiration). Data is presented as 
average ± SEM, n=6. (F) Schematic diagram of mitochondrial stress response.  
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