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Abstract

Alterations of metabolic pathways in cancer have been investigated for many years, beginning way before the
discovery of the role of oncogenes and tumor suppressors, and the last few years have witnessed a renewed
interest in this topic. Large-scale molecular and clinical data on tens of thousands of samples allow us today
to tackle the problem from a general point of view.

Here we show that transcriptomic profiles of tumors can be exploited to define metabolic cancer subtypes, which
can be systematically investigated for association with other molecular and clinical data. We find thousands
of significant associations between metabolic subtypes and molecular features such as somatic mutations,
structural variants, epigenetic modifications, protein abundance and activation; and with clinical/phenotypic
data including survival probability, tumor grade, and histological types.

Our work provides a methodological framework and a rich database of statistical associations, accessible from
metaminer.unito.it, that will contribute to the understanding of the role of metabolic alterations in cancer
and to the development of precision therapeutic strategies.

Introduction

The last few years have witnessed a renewed interest in the metabolism of cancer, with the reprogramming
of energy metabolism by cancer cells having been recently added, together with immune evasion, to the
fundamental oncogenic processes collected under the heading of “Hallmarks of Cancer” [1].

Today, next-generation sequencing and other high-throughput techniques provide us with the unprecedented
opportunity to take the study of the role of metabolic alterations in cancer progression to a new level,
complementing the in-depth study of specific instances of metabolic changes with unbiased assessments of
cancer metabolism and its relationship with the other hallmarks. In particular the TCGA project provides us
with a systematic repository of genomic, epigenomic, transcriptomic, and clinical data on tens of thousands
of samples of many tumor types. For example, a recent study [2] demonstrated the close relationship between
patterns of copy-number alterations and metabolic phenotypes. Another study [3] showed the clinical relevance
of metabolic pathways, as reflected by gene expression profiles of metabolic genes, to patient survival.

In this work we undertake a systematic analysis of the associations between metabolic profiles of human
tumors and their molecular and clinical features. Our aim is to underline the role of metabolism in precision


mailto:emoiso@mit.edu
mailto:paolo.provero@unito.it
https://metaminer.unito.it
https://doi.org/10.1101/2021.12.16.472974
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.16.472974; this version posted January 3, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

cancer medicine, by showing that metabolic profiling can classify tumors into classes that are significantly
different in both their molecular-level features (somatic mutations, structural genomic variants, epigenetic
modifications) and in their clinical aspects (survival probability, tumor grade, histological type). While
intrinsically correlative in nature, this analysis can serve as a guide to mechanistic studies linking metabolism
to other molecular features, and to the exploration of precision therapeutic approaches informed by tumor
metabolism.

While, ideally, such a study should be based on direct assays of metabolite abundance in primary tumors,
these are not yet available on a large scale. Therefore we use transcriptomic profiles of tens of thousands of
samples of many tumor types as a proxy of metabolomic assays to classify them into metabolic subtypes. We
then systematically correlate such subtypes with molecular and clinical data using appropriate statistical
tests, thus generating a database of thousands of associations.

Results

Transcriptome-based classification of tumors into metabolic subtypes

For each tumor type with transcriptomic data available from the TCGA, and for each metabolic pathway
defined as a set of genes by annotation databases such as KEGG [4,5], Reactome [6], and the Gene Ontology
[7,8], we divided the patients into metabolic subtypes by clustering the samples using the expression profiles
of the genes belonging to the pathway. Fig. 1 shows the KEGG pathways used in the analysis and the genes
assigned to each pathway as a bipartite network.
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Figure 1: The KEGG pathways (red squares) used to cluster tumor samples and the respective genes
(grey triangles) represented as a bipartite network. The size of the squares is proportional to the number of
associated genes.

Compared to differential expression analyses used e.g. in [3], clustering by metabolic pathways correctly
takes into account the fact that the genes associated to a pathway are often involved in either anabolic or
catabolic processes. Therefore the activation of the pathway in a subset of patients is typically reflected by
the transcriptional activation of the former and repression of the latter. For example, in Fig. 2, we show the
clustering of low-grade glioma samples based on the “arachidonic acid metabolism” KEGG pathway: Each
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cluster is characterized by both up- and downregulated genes, a structure that would not be captured by
simple differential expression of the pathway genes as a whole.
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Figure 2: Clustering of low-grade glioma patients using the genes involved in arachidonic metabolism
according to KEGG. Only the 20 genes most differentially expressed between the two clusters are shown.

To perform the clustering we used partitioning around medoids (PAM) [9], a more robust method compared
to k-means [10] with respect to the presence of outliers. Cluster silhouette analysis allowed an unsupervised
choice of the number of clusters. A total of 345 metabolic gene sets were used, as described in the Methods,
on 38 tumor classes, thus performing a total of 13110 clusterings. In the majority of cases (9654, 73.6%)
the samples were subdivided into k = 2 clusters, while in other cases we obtained up to 10 clusters. These
clusters will be referred to as “metabolic subtypes.” The tumor types analyzed with the number of samples
for which expression data were available are shown in Table 1.

Table 1: Number of samples used for each tumor class.

ID Tumor__type Samples
ACC Adrenocortical Carcinoma 79
BLCA Bladder Urothelial Carcinoma 408
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1D Tumor_ type Samples
BRCA Breast Invasive Carcinoma 1093
CESC Cervical Squamous Cell Carcinoma and 304
Endocervical Adenocarcinoma
CHOL Cholangiocarcinoma 36
COAD Colon Adenocarcinoma 285
COADREAD (= COAD + READ) 379
DLBC Lymphoid Neoplasm Diffuse Large B-cell 48
Lymphoma
ESCA Esophageal Carcinoma 184
GBM Glioblastoma Multiforme 153
GBMLGG (= GBM + LGG) 669
HNSC Head and Neck Squamous Cell Carcinoma 520
KICH Kidney Chromophobe 66
KIPAN (= KICH + KIRC + KIRP) 889
KIRC Kidney Renal Clear Cell Carcinoma 533
KIRP Kidney Renal Papillary Cell Carcinoma 290
LAML Acute Myeloid Leukemia 173
LGG Brain Lower Grade Glioma 516
LIHC Liver Hepatocellular Carcinoma 371
LUAD Lung Adenocarcinoma 515
LUNG (= LUAD + LUSC) 1016
LUSC Lung Squamous Cell Carcinoma 501
MESO Mesothelioma 87
oV Ovarian Serous Cystadenocarcinoma 303
PAAD Pancreatic Adenocarcinoma 178
PCPG Pheochromocytoma and Paraganglioma 179
PRAD Prostate Adenocarcinoma 497
READ Rectum Adenocarcinoma 94
SARC Sarcoma 259
SKCM Skin Cutaneous Melanoma 103
STAD Stomach Adenocarcinoma 415
STES (= STAD + ESCA) 599
TGCT Testicular Germ Cell Tumors 150
THCA Thyroid Carcinoma 501
THYM Thymoma 120
UCEC Uterine Corpus Endometrial Carcinoma 176
ucs Uterine Carcinosarcoma 57
UVM Uveal Melanoma 80

It is worth asking whether different metabolic gene sets cluster the patients of the same tumor in significantly
different ways. To answer this question we computed the normalized mutual information between the cluster
assignments obtained in each tumor with each metabolic gene set. The results are shown in Fig. 3, and
suggest that, in most cases, different metabolic gene sets cluster tumor patients in clearly distinct ways.

Associations between metabolic subtypes and molecular and clinical features

We then proceeded to systematically explore the statistical associations between metabolic subtypes and
several molecular and clinical features of the corresponding tumors, classified into 9 variable classes. Statistical
tests appropriate to the nature of the variables describing such features were chosen as described in the
Methods. Bonferroni correction was applied separately to each variable type but to all tumor types together.
Thus, for example, the Bonferroni correction for the association with miRNA expression takes into account
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Figure 3: A: Normalized mutual information between clusterings of samples using KEGG metabolic gene
sets. B, C, D: examples of tumor types with low, intermediate, and high mutual information.
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all tests of association between all miRNAs and all metabolic gene sets across all tumor types. The molecular

and phenotypic variables considered are shown in the following table:

Table 2: Molecular and phenotypic variables analyzed for association
with metbolic subtypes

class description type
CNA Copy number alterations molecular
Methylation Global DNA methylation molecular
miRNA microRNA expression molecular
Mutations Specific point mutations molecular
Gene Mutations Gene-level mutations molecular
RPPA Protein expression molecular
Clinical Clinical and histologic parameters phenotypic
0OS Overall survival phenotypic
RFS Recurrence-free survival phenotypic

In the following, to limit redundancy, we focus on the results obtained with the KEGG annotation database
(a total of 99621 significant associations). Figure 4A shows the distribution of these associations among tumor
types. Note that the number of significant associations for a given tumor type will depend in general on the
number of available samples: indeed the Spearman correlation coefficient between number of associations and
number of samples is 0.755. In Figure 4B we show the number of associations by KEGG metabolic pathway,
suggesting a particular relevance of the metabolism of aminoacids and fatty acids in classifying tumors into
classes characterized by different molecular and/or clinical characteristics.
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Recurrent associations

Of particular interest are recurrent associations, that is associations that are statistically significant in more
than one tumor type (not considering the tumor types built from the union of smaller types, such as LUNG,
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KIPAN; etc.).

We found a total of 14937 such recurrent associations. Table 3 shows the most recurrent associations for each
class of clinical and molecular variables. Notably, the only variable classes with no recurrent associations are
point mutations: All the 45 associations with specific mutations and the 102 associations with gene-level
mutations are specific of a single tumor type.
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Table 3: Top recurrent associations for each class of variables

Variable Metabolism Number of associations Tumors associated
miRNA: hsa-mir-222 INOSITOL 12 BLCA, BRCA, CESC,
PHOSPHATE HNSC, KIRC, LGG, LIHC,
LUAD, SARC, STAD,
TGCT, THCA
Methylation GLYCEROLIPID 10 BLCA, CESC, COAD,
HNSC, LGG, PCPG, SARC,
TGCT, THCA, THYM
Methylation INOSITOL 10 BLCA, COAD, KIRP, LGG,
PHOSPHATE LIHC, LUAD, PCPG,
TGCT, THCA, THYM
Methylation PHENYLALANINE 10 BLCA, CESC, COAD, LGG,
LIHC, LUAD, OV, PCPG,
SARC, TGCT
Methylation PURINE 10 BLCA, CESC, KIRP, LIHC,
LUAD, PCPG, SARC,
TGCT, THCA, THYM
Clinical: histological type TYROSINE 8 BRCA, ESCA, LGG, PCPG,
SARC, THCA, THYM,
UCEC
RPPA: CCNB1|Cyclin Bl PURINE 7 BLCA, BRCA, KIRC, KIRP,
LUAD, TGCT, THYM
CNA: chrl7pl2 FATTY ACID 6 COAD, KIRP, LGG, OV,
PAAD, TGCT
CNA: chrl7qll GLYCEROLIPID 6 BRCA, LGG, LUSC, SARC,
TGCT, THYM
CNA: chrl7q21 GLYCEROLIPID 6 BRCA, HNSC, LGG, LUSC,
TGCT, THYM
CNA: chr3p INOSITOL 6 BLCA, BRCA, ESCA,
PHOSPHATE KIRC, LUSC, UVM
CNA: chr3pl4 INOSITOL 6 BLCA, BRCA, ESCA,
PHOSPHATE KIRC, LUSC, UVM
CNA: chr3p21 ARGININE AND 6 BRCA, ESCA, KIRC,
PROLINE PRAD, SARC, THYM
CNA: chr3p21 INOSITOL 6 BLCA, BRCA, ESCA,
PHOSPHATE KIRC, LUSC, UVM
CNA: chr3q PURINE 6 BRCA, ESCA, HNSC,
LUSC, UCEC, UVM
CNA: chr3q24 PURINE 6 BRCA, ESCA, HNSC,
LUSC, UCEC, UVM
CNA: chr3q25 PURINE 6 BRCA, ESCA, HNSC,
LUSC, UCEC, UVM
CNA: chr3q26 PURINE 6 BRCA, ESCA, HNSC,
LUSC, UCEC, UVM
CNA: chr3q27 PURINE 6 BRCA, ESCA, HNSC,
LUSC, UCEC, UVM
CNA: chr3q28 FATTY ACID 6 BRCA, ESCA, HNSC, LGG,
LUAD, LUSC
CNA: chr3q28 PURINE 6 BRCA, ESCA, HNSC,
LUSC, UCEC, UVM
CNA: chr3q29 FATTY ACID 6 BRCA, ESCA, HNSC, LGG,

LUAD, LUSC
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Variable Metabolism Number of associations Tumors associated
CNA: chr3q29 PURINE 6 BRCA, ESCA, HNSC,
LUSC, UCEC, UVM
(ON) PROPANOATE 2 KIRC, LGG
(O)) PURINE 2 ACC, KIRC
0S PYRIMIDINE 2 ACC, LGG
(ON) SPHINGOLIPID 2 KIRC, LGG

Figure 5 shows the expression of microRNA miR-22 in the clusters of breast cancer and lung adenocarcinoma
patients obtained with the genes associated to inositol phopsphate metabolism.

Specific examples

In the following we show some examples of associations, some confirming known results and some suggesting
new lines of investigation, especially in less widely studied tumor types.

TP53 mutations and glucose metabolism

Mutant TP53 has been shown to promote the Warburg effect, possibly the most notoriuos metabolic hallmark
of cancer, in breast and lung cancer cell lines [11]. Indeed clustering breast and lung tumors using the genes
associated to glucose metabolism according to REACTOME shows, in both cancer types, the appearance of
a cluster characterized by overexpression of several Warburg effect signature genes (such as GAPDH, PGKI1,
and PKM2) and by an enrichment in TP53 mutations (Fig. 6).

Pyruvate metabolism in thyroid cancer

The clustering of thyroid cancer samples according to the genes associated by KEGG to pyruvate metabolism
is shown in Fig. 7A. These 2 clusters show many significant differences in both clinical and molecular
parameters. In particular (Fig. 7B,C), the prevalence of BRAF and NRAS-mutated samples is strikingly
different in the two clusters, with all NRAS-mutated samples found in cluster 2 and the large majority of
BRAF-mutated samples found in cluster 1. The two clusters also strongly differ in the respective prevalence
of histological types.

Fatty acid metabolism in thymoma

Clustering of thymoma samples using the genes associated to fatty acid metabolism divides the samples
in two clusters (Fig. 8A) which largely overlap the known histological types (Fig. 8B) and differ in the
prevalence of a recurrent GTF2I mutation [12].

Analysis of cancer cell lines

We performed the same analysis on the cancer cell lines included in the cancer cell line encyclopedia [13].
These cell lines are classified in terms of TCGA tumor types (22 types are represented by a total of 723
CCLE cell lines). Within each tumor type, cell lines were clustered based on their transcriptomic data, using
the expression of the genes in the same metabolic gene sets used to cluster TCGA samples. The clusters
were then correlated with molecular and phenotypic data, including copy number alterations, specific point
mutations, gene-level mutations, protein expression, microRNA expression, and drug response data (IC50
values).

Since the number of cell lines in the CCLE is about one order of magnitude smaller that the number of
TCGA, samples, the power to detect significant associations is also much smaller. Nevertheless, we found 485
significant associations at a Bonferroni-corrected significance level of 0.05. For example, KEAP1 mutations
are associated with xenobiotic metabolism in both TCGA samples and CCLE cell lines (Fig. 9), in agreement
with the known role of the NRF2/KEAP1 pathway in the regulation of xenobiotic response [14]. Note that
KEAP1 mutations appear to be associated to the activation of the pathway, as observed in [15].
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Discussion

In this work we systematically analyzed cancer metabolic subtypes, defined through clustering of patients
using the transcription profiles of metabolic gene sets. These subtypes are highly specific of each individual
metabolism used to define the gene sets, and show a myriad of significant associations with both molecular
and phenotypic features of the tumors.

We present these associations as a resource for the community, available from metaminer.unito.it which we
believe will be useful in two related but distinct ways. One one hand, our results highlight the key role of
metabolic profiles in classifying individual patients in a way that is potentially useful to devise precision
treatments. This is particularly compelling for tumors for which no established classification exists, but in
which metabolic subtypes strongly associated with phenotypic characteristics can be found.

On the other hand, our results can help formulating hypotheses on the mechanisms underlying the associations
between metabolic subtypes on one hand and molecular and phenotypic features on the other, which can
then be experimentally tested in cell lines or organoids. For example, while both miR-222 (see e.g. [16] for a
recent review) and inositol phosphate metabolism [17,18] have been often associated to cancer progression,
their association, which recurs in a large number of tumor types, has not been previously reported to the
best of our knowledge, and deserves a mechanistic investigation.

Indeed the correlative nature of our results is the most obvious limitation of our results, and of all results
obtained by the retrospective analysis of primary tumors.

Methods

Data
TCGA data

All TCGA data (release 2016_02_ 28) were obtained from the Broad TCGA GDAC site (https://gdac.broad
institute.org/), by means of firehose get, version: 0.4.1. The gene expression data clustered to generate the
metabolic subtypes were the normalized gene-level TPMs obtained with RSEM.

Copy number data were obtained from the segmented data using the cghMCR [19], DNAcopy [20], and
CNTools [21] Bioconductor packages. The cghMCR package allows the calculation of segment gain or loss
(SGOL) from segmented data, by means of a modified version of the GISTIC algorithm. The segment function
of the DNAcopy package is used to segment the normalized data so that chromosome regions with the same
copy number have the same segment mean values. Then, using the getRS function from CNTools, the data
returned by segment are organized in a matrix format. Finally the SGOL function of cghMCR is used to
compute gene-level SGOL scores for genes by calculating the sum (parameter method) of all the positive and
negative values, respectively above and below a set threshold (0.5, -0.5). Finally, SGOL scores for all genes
included in each Broad Institute positional gene set were averaged to obtain the SGOL score of each region.

Genome-wide DNA methylation was obtained from the gene-level summarized Human Methylome 450k data,
as provided by GDAC, then summed over all genes to associate a global DNA methylation value to each
sample. miRNA expression was obtained from the Illumina HiSeq data as deposited in GDAC. Specific point
mutations for each sample were obtained from the “mutation packager oncotated calls” provided by GDAC,
considering only non-synonymous mutations. For gene-level mutations, a sample was considered as mutated
in a gene if it carried one or more specific point mutations associated to the gene.

Protein expression data (RPPA) were obtained from the corresponding files annotated with gene names from
the GDAC site. Survival and other clinical data were obtained from the “Tier 1 clinical pick” files available
from GDAC.

CCLE data

Gene expression data of 723 cell lines associated to one of the TCGA tumor types were obtained, as gene-level
TPMs computed with RSEM, from the CCLE web site. We also retrieved from the CCLE web site the
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following data to be correlated to metabolic subtypes:

e gene-level copy number data: the absolute score provided by CCLE was processed with the same steps
used for the SGOL score reported for the TCGA data to obtain region-based copy number data

o miRNA expression data (which were log-transformed for display in the figures)
 somatic mutation data (also here we considered only non-synonymous mutations)
e IC50 values for the available drugs

« metabolite levels

Metabolic gene sets

Gene sets were obtained from the ¢2. KEGG, ¢c2. REACTOME, ¢5.BP and Hallmark MSigDB v5.2 collections.
Metabolic gene sets were defined as those whose name matched the string “metabol” but not the string
“regul” (to include only gene sets directly involved in metabolic pathways rather than in their regulation). In
this way we obtained 345 metabolic gene sets (41, 35, 265, and 4 for the c2. KEGG, ¢2. REACTOME, c5.BP,
and Hallmark collections, respectively).

Generation of metabolic clusters

For each tumor type and each metabolic gene set, the patients were divided into metabolic subtypes using
partition around medoid (PAM) clustering [9] on the Spearman rank correlation coefficient-based distance
matrix obtained from the expression of the genes in the gene set. The number of clusters (the maximum
being set at 10) generated by each metabolic gene set was based on optimizing the average silhouette width.
The normalized mutual information between two clusterings of the same patients based on different gene sets
was computed with the R package infotheo [22], using the entropy of the empirical probability distribution
and normalizing to the geometric mean of the entropies. Genes differentially expressed among clusters were
identified using a Kruskal-Wallis test: the top 20 genes by P-value are shown in the heatmaps.

Statistical tests of association

The statistical tests used for establishing the association between each clinical/molecular feature and metabolic
subtypes depend on the type of variable describing the feature. The metabolic subtype is always a categorical
variable indicating the cluster membership of each patient.

« For continuous variables (microRNA expression, DNA methylation, CNA SGOL scores) we used Mann-
Whitney U test (Kruskal-Wallis for & > 2). In the case of microRNA expression, given the large number
of microRNAs with expression equal to zero in each sample, the expression data were rank-transformed
with random resolution of ties before the statistical test.

o For categorical variables (e.g. presence of a given mutation) we used Fisher’s exact test (x? test for
tables larger than 2 x 2, removing levels for which the expected count was less than 5)

o For survival (RFS or OS) we used the log-rank test. The test was not considered valid when the
expected number of events in any metabolic subtype was less than 5

Multiple testing

Bonferroni correction was applied separately to each variable type but to all tumor types together. Thus, for
example, the Bonferroni correction for the association with miRNA expression takes into account all tests of
association between all miRNAs and all metabolic gene sets across all tumor types. We chose to perform the
correction separately for the feature types because these contain very different numbers of variables (hundreds
of variables for miRNA expression and a single one for overall survival): Therefore an overall Bonferroni
correction would unduly penalize the variable types containing few variables.
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Data availablilty

The results of the analysis can be browsed interactively at https://metaminer.unito.it/.

Supplementary material

e Supplementary data 1: clustering of TCGA patients into metabolic subtypes.

o Supplementary data 2: associations between metabolic subtypes and molecular/phenotypic features in
TCGA.

e Supplementary data 3: clustering of CCLE cell lines into metabolic subtypes.

o Supplementary data 4: associations between metabolic subtypes and molecular/phenotypic features in
CCLE.

Acknowledgements

The results of this analysis are in whole or part based upon data generated by the TCGA Research Network:
https://www.cancer.gov/tcga. We would like to thank Davide Cittaro for insightful comments and discussions;
and Alessandro Greganti, Ivan Molineris, and Sergio Rabellino for IT support.

References

1. Hanahan D, Weinberg RA. Hallmarks of cancer: The next generation. Cell. 2011;144: 646-674.
doi:10.1016/j.cell.2011.02.013

2. Graham NA, Minasyan A, Lomova A, Cass A, Balanis NG, Friedman M, et al. Recurrent patterns of
DNA copy number alterations in tumors reflect metabolic selection pressures. Mol Syst Biol. 2017;13:
914. doi:10.15252/msb.20167159

3. Gaude E, Frezza C. Tissue-specific and convergent metabolic transformation of cancer correlates with
metastatic potential and patient survival. Nat Commun. 2016;7: 13041. doi:10.1038 /ncomms13041

4. Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28:
27-30. doi:10.1093 /nar/28.1.27

5. Kanehisa M, Sato Y, Furumichi M, Morishima K, Tanabe M. New approach for understanding genome
variations in KEGG. Nucleic Acids Res. 2019;47: D590-D595. doi:10.1093/nar/gky962

6. Fabregat A, Jupe S, Matthews L, Sidiropoulos K, Gillespie M, Garapati P, et al. The Reactome
Pathway Knowledgebase. Nucleic Acids Res. 2018;46: D649-D655. doi:10.1093/nar/gkx1132

7. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene Ontology: Tool for
the unification of biology. Nat Genet. 2000;25: 25-29. doi:10.1038/75556

8. The Gene Ontology Consortium. The Gene Ontology Resource: 20 years and still GOing strong.
Nucleic Acids Res. 2019;47: D330-D338. doi:10.1093/nar/gky1055

9. Kaufman L, Rousseeuw P. Clustering by means of Medoids. In: Dodge Y, editor. Statistical Data
Analysis Based on the L1 Norm and Related Methods. North-Holland; 1987. pp. 405-416.

10. Arbin N, Suhaimi NS, Mokhtar NZ, Othman Z. Comparative Analysis between K-Means and K-Medoids
for Statistical Clustering. 2015 3rd International Conference on Artificial Intelligence, Modelling and
Simulation (AIMS). IEEE; 2015. pp. 117-121. doi:10.1109/AIMS.2015.82

11. Zhang C, Liu J, Liang Y, Wu R, Zhao Y, Hong X, et al. Tumour-associated mutant p53 drives the
Warburg effect. Nat Commun. 2013;4: 2935. doi:10.1038 /ncomms3935

17


https://metaminer.unito.it/
https://www.cancer.gov/tcga
https://doi.org/10.1016/j.cell.2011.02.013
https://doi.org/10.15252/msb.20167159
https://doi.org/10.1038/ncomms13041
https://doi.org/10.1093/nar/28.1.27
https://doi.org/10.1093/nar/gky962
https://doi.org/10.1093/nar/gkx1132
https://doi.org/10.1038/75556
https://doi.org/10.1093/nar/gky1055
https://doi.org/10.1109/AIMS.2015.82
https://doi.org/10.1038/ncomms3935
https://doi.org/10.1101/2021.12.16.472974
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.16.472974; this version posted January 3, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

12. Petrini I, Meltzer PS, Kim I-K, Lucchi M, Park K-S, Fontanini G, et al. A specific missense mutation
in GTF2I occurs at high frequency in thymic epithelial tumors. Nat Genet. 2014;46: 844-849.
doi:10.1038/ng.3016

13. Ghandi M, Huang FW, Jané-Valbuena J, Kryukov GV, Lo CC, McDonald ER, et al. Next-generation
characterization of the Cancer Cell Line Encyclopedia. Nature. 2019;569: 503-508. doi:10.1038/s41586-
019-1186-3

14. Motohashi H, Yamamoto M. Nrf2-Keap1 defines a physiologically important stress response mechanism.
Trends Mol Med. 2004;10: 549-557. doi:10.1016/j.molmed.2004.09.003

15. Gong M, Li Y, Ye X, Zhang L, Wang Z, Xu X, et al. Loss-of-function mutations in KEAP1 drive
lung cancer progression via KEAP1/NRF2 pathway activation. Cell Commun Signal. 2020;18: 98.
doi:10.1186/512964-020-00568-z

16. Ravegnini G, Cargnin S, Sammarini G, Zanotti F, Bermejo JL, Hrelia P, et al. Prognostic Role
of miR-221 and miR-222 Expression in Cancer Patients: A Systematic Review and Meta-Analysis.
Cancers (Basel). 2019;11. doi:10.3390/cancers11070970

17. Hakim S, Bertucci MC, Conduit SE, Vuong DL, Mitchell CA. Inositol polyphosphate phosphatases in
human disease. Curr Top Microbiol Immunol. 2012;362: 247-314. doi:10.1007/978-94-007-5025-8 12

18. Benjamin DI, Louie SM, Mulvihill MM, Kohnz RA, Li DS, Chan LG, et al. Inositol phosphate recycling
regulates glycolytic and lipid metabolism that drives cancer aggressiveness. ACS Chem Biol. 2014;9:
1340-1350. doi:10.1021/cb5001907

19. Zhang J, Feng B. cghMCR: Find chromosome regions showing common gains/losses. Bioconductor;
2020. Available: https://bioconductor.org/packages/release/bioc/html/cghMCR.html

20. Seshan VE, Olshen A. DNAcopy: DNA copy number data analysis. Bioconductor; 2020. Available:
https://bioconductor.org/packages/release/bioc/html/DNAcopy.html

21. Zhang J. CNTools: Convert segment data into a region by sample matrix to allow for other high level
computational analyses. Bioconductor; 2020. Available: https://bioconductor.org/packages/release/bi
oc/html/CNTools.html

22. Meyer PE. Infotheo: Information-Theoretic Measures. R package version 1.2.0: CRAN; 2014.

18


https://doi.org/10.1038/ng.3016
https://doi.org/10.1038/s41586-019-1186-3
https://doi.org/10.1038/s41586-019-1186-3
https://doi.org/10.1016/j.molmed.2004.09.003
https://doi.org/10.1186/s12964-020-00568-z
https://doi.org/10.3390/cancers11070970
https://doi.org/10.1007/978-94-007-5025-8_12
https://doi.org/10.1021/cb5001907
https://bioconductor.org/packages/release/bioc/html/cghMCR.html
https://bioconductor.org/packages/release/bioc/html/DNAcopy.html
https://bioconductor.org/packages/release/bioc/html/CNTools.html
https://bioconductor.org/packages/release/bioc/html/CNTools.html
https://doi.org/10.1101/2021.12.16.472974
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Abstract
	Introduction
	Results
	Transcriptome-based classification of tumors into metabolic subtypes
	Associations between metabolic subtypes and molecular and clinical features
	Recurrent associations
	Specific examples
	TP53 mutations and glucose metabolism
	Pyruvate metabolism in thyroid cancer
	Fatty acid metabolism in thymoma

	Analysis of cancer cell lines

	Discussion
	Methods
	Data
	TCGA data
	CCLE data
	Metabolic gene sets

	Generation of metabolic clusters
	Statistical tests of association
	Multiple testing


	Data availablilty
	Supplementary material

	Acknowledgements
	References

