

1 **Short prokaryotic Argonautes provide defence against incoming mobile genetic
2 elements through NAD⁺ depletion**

3 Mindaugas Zaremba^{1*}, Donata Dakineviciene¹, Edvardas Golovinas¹, Evelina Zagorskaitė¹, Edvinas
4 Stankunas^{1†}, Anna Lopatina^{2‡}, Rotem Sorek², Elena Manakova¹, Audrone Ruksenaite¹, Arunas
5 Silanskas¹, Simona Asmontas¹, Algirdas Grybauskas¹, Ugne Tylenyte¹, Edvinas Jurgelaitis¹, Rokas
6 Grigaitis^{1#}, Kęstutis Timinskas¹, Česlovas Venclovas¹, Virginijus Siksnys^{1*}

7

8 ¹Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, LT-10257,
9 Vilnius, Lithuania.

10 ²Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel.

11 ^{*}To whom correspondence should be addressed. Tel: +370-5-2234357; Fax: +370-5-2234367;
12 Email: zare@ibt.lt. Correspondence may also be addressed to Virginijus Siksnys. Tel: +370-5-
13 2234359; Fax: +370-5-2234367; Email: siksnys@ibt.lt.

14 The first 4 authors contributed equally to this manuscript.

15 Present address: [†]Edvinas Stankunas, Max F. Perutz Laboratories, Medical University of Vienna,
16 Vienna Biocenter (VBC), Dr. Bohr-Gasse 9/3, 1030 Vienna, Austria.

17 [‡]Anna Lopatina, Division of Microbial Ecology, Department of Microbiology and Ecosystem
18 Science, Center for Microbiology and Environmental Systems Science, University of Vienna,
19 Vienna, Austria.

20 [#]Rokas Grigaitis, VU LSC-EMBL Partnership for Genome Editing Technologies, Life Sciences
21 Center, Vilnius University, Saulėtekio av. 7, LT-10257, Vilnius, Lithuania.

22

23

24 **Argonaute (Ago) proteins are found in all three domains of life. The so-called long Agos are**
25 **composed of four major domains (N, PAZ, MID, and PIWI) and contribute to RNA silencing**
26 **in eukaryotes (eAgos) or defence against invading mobile genetic elements in prokaryotes**
27 **(pAgos). The majority (~60%) of pAgos identified bioinformatically are shorter (comprised**
28 **of only MID and PIWI domains) and are typically associated with Sir2, Mrr or TIR domain-**
29 **containing proteins. The cellular function and mechanism of short pAgos remain enigmatic.**
30 **Here, we show that *Geobacter sulfurreducens* short pAgo and the NAD⁺-bound Sir2-protein**
31 **form a stable heterodimeric complex. The GsSir2/Ago complex presumably recognizes**
32 **invading plasmid or phage DNA and activates the Sir2 subunit, which triggers endogenous**
33 **NAD⁺ depletion and cell death, and prevents the propagation of invading DNA. We**
34 **reconstituted NAD⁺ depletion activity *in vitro* and showed that activated GsSir2/Ago complex**
35 **functions as a NADase that hydrolyses NAD⁺ to ADPR. Thus, short Sir2-associated pAgos**
36 **provide defence against phages and plasmids and underscores the diversity of mechanisms of**
37 **prokaryotic Agos.**

38

39 Being at the core of RNA interference eAgos are involved in the regulation of gene expression,
40 silencing of mobile genome elements, and defence against viruses^{1,2}. The best-studied hAgo2 uses
41 small RNA molecules as guides for target RNA recognition, and eAgos are similar both structurally
42 and mechanistically²⁻⁵. Monomeric eAgos are composed of four major N, PAZ
43 (Piwi/Argonaute/Zwille), MID (Middle), and PIWI (P-element Induced Wimpy testis) domains
44 (Fig. 1A) and share a bilobed structure, where the N- and C-terminal lobes are formed by conserved
45 N/PAZ and MID/PIWI domains, respectively⁴⁻⁷. The N-domain acts as a wedge that separates guide
46 and target strands^{3,7}, while the MID and PAZ domains bind, respectively, the 5'- and 3'-terminus of
47 the guide RNA, located between the N- and C-terminal lobes^{4,6}. eAgos can slice target RNA
48 through endonucleolytic cleavage by the PIWI domain or inhibit translation through RNA binding
49 by the catalytically inactive eAgos that may also trigger RNA decay by auxiliary cellular
50 nucleases^{2,4,5}.

51 pAgos are quite widespread and are present in 9% of sequenced bacterial and 32% of archaeal
52 genomes⁶. To date, more than ~1000 pAgos have been identified bioinformatically, revealing a
53 striking diversity. Moreover, pAgos are often associated with additional putative nucleases,
54 helicases, and DNA binding proteins that are not linked to eAgos⁸. pAgos are divided into full-
55 length or long pAgos (~40%) sharing conserved N, PAZ, MID, and PIWI domain architecture with
56 eAgos, and short pAgos (~60%) composed only of MID and PIWI domains (Fig. 1A)^{8,9}. Long
57 pAgos are relatively well-characterized both structurally and functionally^{10,11} and, similarly to
58 eAgos, contain either catalytically active or inactive PIWI domain. Some long pAgos with the
59 catalytically active PIWI, as exemplified by CbAgo and TtAgo, use DNA guides to target and
60 cleave DNA providing defence against invading phages or plasmids, or contributing to chromosome
61 segregation after replication, respectively¹²⁻¹⁴. Meanwhile, long RsAgo with an inactive PIWI
62 domain guided by small RNA is thought to mobilize an unknown cellular nuclease(s) for
63 degradation of invading plasmids and mobile genetic elements^{9,15}. Interestingly, long KmAgo can
64 use both DNA and RNA guides to target DNA and RNA *in vitro*, albeit with different
65 efficiencies^{16,17}. In contrast to long pAgos, all short pAgos possess a catalytically inactive PIWI
66 domain and are typically associated with proteins containing a domain initially thought to be
67 analogous to PAZ (APAZ)¹⁸. Subsequently, however, it was proposed that APAZ may actually be
68 homologous to the N-terminal domains (N and L1) of Ago^{11,19}. APAZ-containing proteins are often
69 fused to Sir2 (Silent informator regulator 2), Mrr nucleases or TIR (Toll-Interleukin-1 Receptor)
70 domains^{8,18}. About half of all identified short pAgos are associated or fused into a single-chain

71 protein with Sir2-APAZ proteins⁸. The Sir2 domain-containing proteins are widely distributed in all
72 domains of life and perform protein deacetylation or ADP-ribosylation functions using NAD⁺ as a
73 co-factor^{20,21}. Particularly, bacterial Sir2 proteins are involved in many cellular processes including
74 transcription, translation, carbon and nitrogen metabolism, virulence and resistance to stress²¹.
75 Despite the fact that short pAgos, half of which are associated with Sir2 proteins, make up the
76 majority of all pAgos, their function in the cell and *in vitro* remains to be established.

77 **Results**

78 In this study, we aimed to explore whether short pAgos can act as prokaryotic defence systems
79 against viruses or plasmids. To this end, we selected two short pAgos, GsSir2/Ago from *Geobacter*
80 *sulfurreducens* and CcSir2/Ago from *Caballeronia cordobensis*, each encoded in a putative operon
81 together with a Sir2 domain protein, and PgSir2-Ago from *Paraburkholderia graminis*, representing
82 a fusion of Sir2 and pAgo (Fig. 1A). The coding regions of the Sir2 and pAgo proteins in
83 GsSir2/Ago and CcSir2/Ago systems overlap by 11 and 8 bp, respectively, indicating that they
84 belong to the same operon (Supplementary Text). Next, we engineered heterologous *E. coli* cells by
85 cloning GsSir2/Ago and CcSir2/Ago genes, or a single gene, encoding PgSir2-Ago into pBAD
86 expression vectors under a P_{BAD} promoter (Supplementary Table 1) and challenged them with
87 phages or plasmids.

88 **Sir2/Ago systems provide defence against phages.** To test whether the GsSir2/Ago system
89 provides defence against phages, we challenged *E. coli* host carrying the GsSir2/Ago system with a
90 set of six *E. coli* phages spanning four morphological families including *Podoviridae* (T7),
91 *Siphoviridae* (lambda-vir, SECphi27, SECphi18), *Myoviridae* (T4) and *Microviridae* (SECphi17, a
92 ssDNA phage) (Supplementary Table 1). We measured the efficiency of plating (EOP) of these
93 phages with and without L-arabinose induction of the GsSir2/Ago system. The system showed
94 protection against two out of six phages – lambda-vir (~100-fold) and SECphi27 (~1000-fold) (Fig.
95 1C).

96 To probe the role of individual Sir2 and Ago proteins in antiviral defence, we engineered *E. coli*
97 cells, carrying mutant variants of either the Sir2 or the Ago protein of the GsSir2/Ago system and
98 performed small drop plaque assays using the lambda-vir and SECphi27 phages. In Sir2 variants,
99 the highly-conserved D230 residue, presumably involved in NAD⁺ binding was replaced by alanine
100 (Extended Data Fig. 1C)¹⁸. Phage challenge assay revealed that the D230A mutation completely
101 abolished defence against both phages (Fig. 1D). The Ago protein is catalytically inactive due to the
102 active site mutations in the PIWI domain, therefore, to obtain a binding-deficient Ago variant, we
103 fused a bulky 29 aa His₆-StrepII-His₆-tag (HSH-tag) at the C-terminus that is important for nucleic
104 acid binding in other Agos^{3,6,8,22}. We found that Ago C-terminal modification abolished protection
105 from both phages (Fig. 1D). Thus, both the Sir2 and the Ago proteins are required for protection
106 against phages by the GsSir2/Ago system.

107 Additionally, we probed the ability of homologous CcSir2/Ago and PgSir2-Ago systems to restrict
108 lambda-vir and SECphi27 phages (Fig. 1E). After L-arabinose induction, the PgSir2-Ago system
109 showed ~500-fold protection against lambda phage and ~400-fold against SECphi27, while
110 CcSir2/Ago system showed ~1000-fold protection against lambda and no protection against
111 SECphi27 phage. Thus, homologous Sir2/Ago systems from three phylogenetically distant bacteria
112 showed protection against phage infection, albeit with different efficiency and specificity.

113 Next, *E. coli* MG1655 cells either lacking or containing the GsSir2/Ago system were infected in
114 liquid culture with lambda phage at a multiplicity of infection (MOI) 0.05, 0.5 and 5 (Fig. 1F). At

115 high MOI where, on average, a single bacterial cell is infected by a single phage, the culture
116 collapses, while at low MOI the culture survives. This phenotype implies that GsSir2/Ago-mediated
117 defence triggers cell death approximately at the same time when the phage-induced lysis occurs.

118 **Sir2/Ago systems interfere with plasmid transformation.** Further, to test whether heterologous
119 expression of the GsSir2/Ago, CcSir2/Ago and PgSir2-Ago systems in *E. coli* cells (strains BL21-
120 AI and DH10B) provides a barrier for plasmid transformation, four plasmids (pCDF, pCOLA,
121 pACYC184, and pRSF) with different *ori* regions and copy numbers were used in a plasmid
122 interference assay (Supplementary Table 1, Fig. 2, and Extended Data Fig. 2). We found that
123 GsSir2/Ago system prevented only pCDF plasmid transformation reducing its efficiency nearly
124 ~100-fold (Fig. 2B). Next, we tested pCDF transformation efficiency in *E. coli* cells expressing the
125 GsSir2/Ago mutants (Fig. 2C). Both Sir2 D230A mutation and pAgo HSH-tag modification that
126 impaired phage restriction also abolished plasmid interference making cells permissive for pCDF
127 plasmid transformation (Fig. 2C). CcSir2/Ago system like GsSir2/Ago provided resistance only for
128 pCDF plasmid transformation (Extended Data Fig. 2B) while cells carrying the single-chain PgSir2-
129 Ago system was permissive for transformation of all four plasmids (Extended Data Fig. 2B).

130 Interestingly, although the GsSir2/Ago system in *E. coli* interfered with the pCDF plasmid
131 transformation, pCOLA plasmid that differs mainly in the *ori* region and antibiotic resistance gene
132 was permissive. To test whether the *ori* region determines differences in the transformation
133 efficiency between pCDF and pCOLA plasmids, we swapped the *ori* sequences of pCDF and
134 pCOLA (Fig. 2D). The pCDF plasmid with ColA *ori* instead of CloDF13 became permissive in *E.*
135 *coli* cells expressing the GsSir2/Ago system, whereas transformation of pCOLA plasmid bearing
136 CloDF13 *ori* instead of ColA *ori* was prevented. These results indicate that CloDF13 *ori* is a key
137 element that controls plasmid transformation efficiency in *E. coli* cells expressing GsSir2/Ago
138 system.

139 The plasmid interference by the GsSir2/Ago system could be due to either the plasmid entry
140 exclusion, replication inhibition or plasmid degradation. To eliminate the possible role of the
141 plasmid entry barriers on the pCDF plasmid transformation efficiency, we engineered heterologous
142 *E. coli* cells carrying two plasmids: pBAD plasmid providing carbenicillin (Cb) resistance and
143 expressing GsSir2/Ago (or its mutants) under control of P_{BAD} inducible promoter and the pCDF
144 plasmid providing streptomycin (Str) resistance, and tested cell viability in the presence or absence
145 of the inducer. In this case, the pCDF plasmid is already in the cell and provides streptomycin
146 resistance, however antibiotic resistance should be lost if the plasmid is restricted after GsSir2/Ago
147 expression. In the absence of induction, cell viability of *E. coli* cells carrying wt GsSir2/Ago (or its
148 mutants) and an empty pBAD vector (Extended Data Fig. 2E) was identical. In the presence of the
149 inducer the viability of cells expressing the wt GsSir2/Ago system, but not its mutants, significantly
150 decreased (Fig. 2E), indicating that GsSir2/Ago interferes with the pCDF plasmid already present in
151 the cell. Notably, a decrease in cell viability is observed in *E. coli* BL21-AI cells (Tc-resistant)
152 without the cell selection for Str and Cb resistance. It cannot be excluded that upon recognition of
153 pCDF the GsSir2/Ago system becomes activated and triggers cell death. A similar cell death
154 phenotype triggered by the GsSir2/Ago has been observed during phage infection in liquid cultures
155 (Fig. 1F). Taken together, these data show that the GsSir2/Ago system acts as a defence system
156 against phages and plasmids via cell death or suicidal mechanism.

157 **Short pAgo and Sir2 form a stable heterodimeric complex.** To characterize the Sir2/Ago
158 systems biochemically, we aimed to express individual Sir2 and Ago proteins in *E. coli*. The GsSir2
159 and CcSir2 proteins (but not PgSir2-Ago) were expressed and purified by chromatography (Fig. 3A
160 and Extended Data Fig. 3). The N-terminal His₆-tagged GsSir2 and CcSir2 proteins co-expressed
161 with Ago proteins co-purified on the Ni²⁺-affinity column (Extended Data Fig. 3), indicating that

162 Sir2 and pAgo proteins form a stable complex. We failed to express Sir2 and Ago proteins
163 individually, suggesting that they form an obligatory Sir2/Ago complex. Sir2/Ago complex.
164 Functionally compromised GsSir2(D230A)/Ago and GsSir2/Ago-HSH variants also formed a
165 complex indicating that while the introduced mutations abolished the activity *in vivo*, they did not
166 affect the protein complex structure (Fig. 2C, Extended Data Fig. 3C). Further analysis of the
167 oligomeric state of GsSir2/Ago and CcSir2/Ago complexes in solution using SEC-(MALS), mass
168 photometry and small-angle X-ray scattering (SAXS) showed that heterodimeric complexes are
169 formed in the wide range of protein concentrations (from 20 nM to 6.5 μ M) (Fig. 3B-D, and
170 Extended Data Fig. 4). According to the SAXS data, the heterodimeric GsSir2/Ago complex
171 acquires a notably asymmetric shape (Fig. 3D, Extended Data Fig. 4, Supplementary Table 3) that
172 is consistent with a structural model of the heterodimer (Supplementary Text). In summary, the
173 results show that pAgos and associated Sir2 proteins encoded by a single operon form a stable
174 heterodimeric complex.

175 **Sir2/Ago prefers an RNA guide to bind a DNA target.** Long pAgos use ssDNA and/or ssRNA
176 guides to recognize their complementary DNA and/or RNA targets¹⁰. To establish guide preference
177 of Gs and Cc Sir2/Ago, we analysed by EMSA binding of single- or double-stranded DNA or RNA
178 (Extended Data Fig. 6). Both Sir2/Ago heterodimers showed a strong preference for ssDNA and
179 ssRNA binding. RNA/DNA heteroduplex was bound with an intermediate affinity, while dsRNA or
180 dsDNA showed only weak binding (Extended Data Fig. 6A-B,E, Table 1). Interestingly, neither the
181 5'-terminal phosphate nor the 3'-OH end or Mg²⁺ ions were required for ssDNA binding as both Gs
182 and Cc complexes bound the circular ssDNA and linear oligonucleotides with similar affinity
183 (Extended Data Fig. 6A-B). As expected, Gs and Cc Sir2/Ago containing the inactivated PIWI
184 domains showed no cleavage activity for any NA substrate tested (Extended Data Fig. 6F). In
185 summary, EMSA experiments suggest that *in vitro* ssRNA or ssDNA are preferable GsSir2/Ago
186 guides.

187 Next, we analysed ssDNA or ssRNA target binding by the binary GsSir2/Ago complexes pre-
188 loaded with either ssRNA or ssDNA guides. In a separate set of experiments, reaction mixture also
189 contained heparin, a competitor of nucleic acid binding (Fig. 4A, Table 1). The binary GsSir2/Ago-
190 ssRNA complex showed ~10-fold better binding to the ssDNA than ssRNA, and heparin addition
191 had only a little effect (~4-fold decrease) on binding affinity in this case. The GsSir2/Ago-ssDNA
192 binary complex bound to the matching ssDNA target with affinity similar to the GsSir2/Ago-
193 ssRNA binary complex, however, heparin addition abolished binding (Extended Data Fig. 6A and
194 D). Furthermore, the binary GsSir2/Ago-ssRNA complex bound to the complementary ssDNA
195 target ~200-fold better than apo-GsSir2/Ago bound pre-annealed gRNA/tDNA heteroduplex
196 indicating that GsSir2/Ago requires binding of the RNA guide first to interact with the DNA target
197 (Fig. 4A, Table 1). The binding affinity of the functionally compromised *in vivo*
198 GsSir2(D230A)/Ago mutant was similar to the wt, while the binding affinity of the GsSir2/Ago-
199 HSH mutant was slightly (~7-fold) weaker (Fig. 4A, Extended Data Fig. 6C, Table 1). Charge
200 reversal mutations of positively charged residues that are involved in the interactions with the guide
201 and target NAs according to the GsSir2/Ago model abolished both the target NA binding and the
202 pCDF plasmid interference (Extended Data Fig. 2F and G, Extended Data Fig. 3B and Extended
203 Data Fig. 6C). Taken together, our data suggest that GsSir2/Ago uses ssRNA as a guide for the
204 recognition of a ssDNA target.

205 To identify NAs, bound by GsSir2/Ago *in vivo*, we purified the GsSir2/Ago-NA complex from *E.*
206 *coli* transformed with the pBAD_GsSir2/Ago expression vector and the pCDF target plasmid,
207 extracted NAs and subjected them to sequencing. Subsequent analysis revealed that GsSir2/Ago is
208 associated with small (predominantly 21 nt) RNAs with or without the 5'-phosphate (Fig. 4B and
209 C). Differently from other Argonaute proteins that show base selectivity for the first nucleotide at

210 the 5'-end of the guide^{13-15,23}, GsSir2/Ago-associated small RNAs show preference for the 5'-AU
211 dinucleotide (Fig. 4D). This preference is more pronounced for small RNAs containing 5'-
212 phosphate, implying that GsSir2/Ago uses as a guide small RNAs containing the 5'-AU
213 dinucleotide. Most co-purified small RNAs (~95%) matched the *E. coli* genome, whereas the
214 smaller fraction (~5%) originated from the pBAD_GsSir2/Ago and pCDF plasmids (Supplementary
215 File 1). Interestingly, small plasmid-borne RNAs that matched CloDF13 and ColE1 *ori* regions of
216 corresponding plasmids, were noticeably enriched (Fig. 4E). Taken together, RNA-seq data suggest
217 that GsSir2/Ago could use small 5'-AU-RNAs originating from the invader transcripts (e.g., pCDF
218 *ori* region) as guides to target the invaders' DNA.

219 **The GsSir2/Ago complex binds NAD⁺ and causes its depletion.** Computational analysis of Sir2
220 domains showed that they possess a conserved NAD⁺-binding pocket (Extended Data Fig. 1C and
221 Extended Data Fig. 5). To determine whether Sir2 domains can indeed bind endogenous NAD⁺,
222 purified GsSir2/Ago and CcSir2/Ago complexes were heat-treated, protein aggregates removed by
223 centrifugation, and the supernatant analysed by MS-HPLC (Fig. 5 and Extended Data Fig. 7). The
224 quantitative analysis showed that both the GsSir2/Ago and CcSir2/Ago complexes co-purified with
225 bound endogenous NAD⁺ in approx. 1:1 molar (Sir2:NAD⁺) ratio (Fig. 5A, Extended Data Fig. 3,
226 Extended Data Fig. 7). However, in the case of the functionally inactive GsSir2(D230A)/Ago
227 mutant, only 0.6% of all complexes were NAD⁺-bound indicating that the mutation severely
228 compromised NAD⁺ binding by the Sir2 domain (Fig. 5A). NAD⁺ binding by the GsSir2 subunit
229 and the similarity of the GsSir2 to the N-terminal NADase of the ThsA protein from the anti-phage
230 Thoeris system²⁴ prompted us to investigate the level of endogenous NAD⁺ in the presence of the
231 induced GsSir2/Ago system and its target pCDF plasmid. In these experiments the corresponding *E.*
232 *coli* cells were lysed, proteins were removed, and the amount of NAD⁺ in the supernatant was
233 examined by MS-HPLC. When the wt GsSir2/Ago expression was induced in the presence of pCDF
234 plasmid, NAD⁺ was depleted (~120-fold decrease), whereas in the case of the functionally inactive
235 GsSir2(D230A)/Ago and GsSir2/Ago-HSH mutants the level of endogenous NAD⁺ was similar to
236 that of the empty pBAD vector (Fig. 5B, Extended Data Fig. 7). It should be noted that a significant
237 ~30-fold decrease of the NAD⁺ level was observed when the wt GsSir2/Ago expression was
238 induced even in the absence of pCDF suggesting that the heterologously expressed system may be
239 toxic to the cells resulting in their slower growth (Fig. 5B, Extended Data Fig. 7). To test the
240 hypothesis that the activated GsSir2/Ago system similarly to the Thoeris anti-phage system depletes
241 the endogenous NAD⁺ through hydrolysis or cyclization, we attempted to identify possible products
242 (ADPR, cADPR, AMP, cAMP, ADP, cADP, nicotinamide, and adenine) using MS-HPLC albeit
243 without success. It is possible that NAD⁺ conversion products were not detected since in the cell
244 they were processed to other reaction intermediates or due to ion suppression during MS analysis of
245 the cell lysates.

246 Next, we investigated whether the NAD⁺ depletion activity detected in cells could be reconstituted
247 *in vitro*. To this aim we mixed the binary GsSir2/Ago-gRNA complex with ssDNA and monitored
248 NAD⁺ concentration using a commercial kit (Fig. 5C). We found that NAD⁺ concentration
249 decreased when wt GsSir2/Ago-gRNA complex was added to the complementary ssDNA target,
250 however, no changes were observed in the case of non-complementary ssDNA. Mutations in the
251 Sir2 domain (D230A) or the APAZ/Ago part (GsSir2/Ago-HSH, GsSir2^{APAZ}/Ago and
252 GsSir2/Ago^{PIWI} mutants) compromised NAD⁺ depletion (Fig. 5C). MS analysis revealed that
253 GsSir2/Ago-gRNA complex in the presence of the complementary ssDNA hydrolyses NAD⁺ to
254 ADPR (Fig. 5D,E) similarly to the Thoeris anti-phage system²⁴. Taken together, these results
255 demonstrate that GsSir2/Ago functions as a NADase that becomes activated upon target DNA
256 binding.

258 **Discussion**

259 Association of Sir2-like domains with short pAgo proteins has been identified bioinformatically in
260 the pioneering Makarova et al. paper¹⁸. It has been speculated that Sir2-domain proteins can act as
261 nucleases, however, the structure and function of Sir2 proteins so far have not been elucidated.
262 Here, we show that the APAZ-containing Sir2 and short pAgo proteins form a heterodimeric
263 complex (Fig. 3) similarly as in the case of a short pAgo and a Mrr nuclease domain-containing
264 protein²⁵. Furthermore, our structure modelling results show that the APAZ region of Sir2 proteins
265 shares similarity with the N, L1 and L2 domains of canonical Agos substantiating previous
266 sequence-based predictions^{11,19}. At the same time, Sir2 proteins entirely lack the PAZ domain (Fig.
267 1A, Extended Data Fig. 5A). Thus, apparently both split and single-chain Sir2/Ago systems evolved
268 from long pAgos by the loss of the PAZ domain and acquisition of the Sir2 domain.

269 Next, we provide the experimental evidence that the Sir2/Ago complex functions as a defence
270 system against invading phages and plasmids (Fig. 1 and Fig. 2). Intriguingly, plasmid interference
271 assay using four plasmids with different replicons (Extended Data Fig. 2) revealed that GsSir2/Ago
272 system prevents transformation only of the pCDF plasmid that contains CloDF13 *ori* (Fig. 2),
273 suggesting that GsSir2/Ago may recognize specific replicon elements or structures. Indeed, *ori*
274 swap between pCDF and permissive pCOLA plasmid made the latter sensitive to GsSir2/Ago
275 interference. We show here that GsSir2/Ago co-purifies from *E. coli* cells together with small
276 (predominantly 21 nt long) RNAs that preferentially contain the 5'-AU dinucleotide (Fig. 4B-D).
277 Interestingly, a fraction of small RNAs that originates from pCDF CloDF13 and pBAD ColE1 *ori*
278 regions is enriched (Fig. 4E). ColE1-like origins, including CloDF13, use two small RNAs (RNAI
279 and RNAII) for priming of the replication that involves the R-loop intermediate²⁶⁻²⁸. It is tempting
280 to speculate that GsSir2/Ago is able to bind nucleic acids of different length (Fig. 4B,C) and
281 preferentially binds *ori*-associated small RNAs that can be subjected to further processing by
282 cellular RNases to produce ~21 nt gRNAs similarly to long RsAgo that shares an inactivated PIWI
283 domain with GsSir2/Ago¹⁵.

284 We further show that *in vitro* the reconstituted wt GsSir2/Ago-gRNA complex becomes activated
285 after binding the complementary DNA target and triggers NAD⁺ hydrolysis generating ADPR (Fig.
286 5C-E). It is likely, that in the *E. coli* cells the APAZ/Ago part in the GsSir2/Ago complex guided by
287 the *ori*-associated RNA guides could bind to the complementary plasmid or phage DNA target
288 activating the Sir2 effector domain that depletes endogenous NAD⁺ leading to the cell death,
289 thereby restricting plasmid and phage propagation (Fig. 5F, Supplementary text, the accompanying
290 paper by Garb et al., 2021²⁹). A similar anti-phage defence mechanism based on NAD⁺ exhaustion
291 has been shown for the Thoeris and the Pycsar systems, CBASS (Cyclic Oligonucleotide-Based
292 Signaling System) and DSR (Defense-Associated Sirtuins)²⁹⁻³¹. In the Thoeris system of *Bacillus*
293 *cereus* MSX-D12, the Sir2 domain is similar to that of the GsSir2/Ago system and performs the
294 hydrolysis of NAD⁺ to ADPR and nicotinamide³¹ like the GsSir2/Ago system. Further structural
295 and biochemical studies are underway to establish the structure of the heterodimeric Sir2/Ago
296 complex and the mechanism of Sir2 domain activation that triggers NAD⁺ hydrolysis.

297 **Methods**

298 **Oligonucleotides used in this work.** All synthetic DNA oligonucleotides used for cloning and site-
299 specific mutagenesis were purchased from Metabion (Germany) and are listed in Supplementary
300 Table 2.

301 **Cloning and mutagenesis.** A whole operon of the GsSir2/Ago system, composed of the Sir2
302 (GSU1360, NP_952413.1) and Ago (GSU1361, NP_952414.1) encoding genes, was amplified by
303 PCR from the genomic DNA of *Geobacter sulfurreducens* Caccavo (ATCC No. 51573, LGC
304 Standards cat#51573D-5) using the oligonucleotides MZ-239 and MZ-240 (Supplementary Table
305 2), respectively. The resulting DNA fragment was digested by Eco31I (ThermoFisher cat#FD0293)
306 and XhoI (ThermoFisher cat#FD0694) and cloned into pBAD/HisA expression vector
307 (ThermoFisher cat#V43001) pre-cleaved with NheI (ThermoFisher cat#FD0973) and XhoI and
308 dephosphorylated using FastAP (ThermoFisher cat#EF0651). The D230A mutant of the GsSir2
309 protein was produced by QuikChange Site-Directed Mutagenesis³² using respective mutagenic
310 oligonucleotides (Supplementary Table 2). To generate the GsAgo protein containing a bulky His₆-
311 StrepII-His₆-tag (HSH-tag, 29 aa.: LEGHHHHHHSSWSHPQFEKGVEGHHHHH) a whole
312 operon of the GsSir2/Ago system was amplified by PCR from the genomic DNA using the
313 oligonucleotides MZ-325 and MZ-326 (Supplementary Table 2), respectively. The resulting DNA
314 fragment was digested by Eco31I and XhoI cloned into pBAD24 vector through NcoI/XhoI sites to
315 generate pBAD24-HSH expression vector. The GsSir2/Ago mutants (GsSir2^{APAZ}/Ago,
316 GsSir2/Ago^{MID} and GsSir2/Ago^{PIWI}) of the putative surface of the interaction with nucleic acids
317 were designed based on the GsSir2/Ago structural model (see, Supplementary methods) changing
318 positively charged residues that are structurally equivalent to the RsAgo residues involved in the
319 interaction with the guide and the target to negatively charged residues in the corresponding
320 domains (APAZ: R440E/R442E/R517E/R525E/R528E/R531E, MID:
321 K155E/H166E/K170E/K207E, PIWI: R269E/K270E/H310E/K441E). The surface mutants were
322 obtained using whole gene synthesis and cloning service provided by Twist Bioscience.

323 A PgSir2-Ago gene (BgramDRAFT_6510, WP_052303232.1) was amplified by PCR from the
324 genomic DNA of *Paraburkholderia graminis* C4D1M (ATCC No. 700544) purchased from LGC
325 Standards (UK) using the oligonucleotides MZ-915 and MZ-916 (Supplementary Table 2),
326 respectively. The resulting DNA fragment was digested by BveI (ThermoFisher cat#FD1744) and
327 HindIII (ThermoFisher cat#FD0504) and ligated into pBAD24 expression vector precleaved with
328 NcoI and HindIII and dephosphorylated using FastAP.

329 The *E. coli* codon optimized genes (IDT Codon Optimization Tool) encoding the Sir2
330 (WP_053571900.1) and Ago (WP_053571899.1) of the CcSir2/Ago system (from *Caballeronia*
331 *cordobensis*, NCBI taxon_id 1353886) were synthesized and cloned into pBAD/HisA expression
332 vector by Twist Bioscience. The CcSir2 protein contains at its N-terminus a His₆-tag that can be
333 cleaved by TEV protease. For purification of the CcSir2/Ago complex, a TwinStrep-tag (35 aa.:
334 MGGSAWSHPQFEKGGSGGSGGSAWSHPQFEKGS) was additionally fused to the N-
335 terminus of the CcSir2 protein already containing a His₆-tag.

336 To swap *ori* regions between pCOLA and pCDF plasmids the DNA fragments containing ColA and
337 CloDF13 *ori* were amplified by PCR using the oligonucleotides MZ-1217/MZ-1218 and MZ-
338 1230/MZ-123, respectively (Supplementary Table 2). The resulting DNA fragments were digested
339 by NheI and XbaI (ThermoFisher cat#FD0684) and ligated into pCOLA and pCDF vectors
340 precleaved with NheI and XbaI and dephosphorylated using FastAP.

341 To swap streptomycin resistance for kanamycin in the pCDF plasmid, plasmids pCDF and pCOLA
342 were cleaved with NheI and Eco81I (ThermoFisher cat#FD0374) and isolated using a runView
343 electrophoresis system (Cleaver Scientific). The purified fragments were then ligated into pCDF to
344 yield a pCDF_Kn plasmid.

345 All gene sequences were confirmed by sequencing; links to DNA and protein sequences are
346 presented in Supplementary Table 1.

347 **Phage restriction assay.** *E. coli* MG1655 (ATCC 47076) cells carrying pBAD plasmids expressing
348 wt or mutated Sir2/Ago systems were used for phage infection assays as described below. Whole-
349 plasmid sequencing was applied to all transformed *E. coli* clones to verify the integrity of the
350 system and lack of mutations, as described before³³.

351 *E. coli* phages (T4, T7, lambda-vir) were kindly provided by U. Qimron. Phages SECphi17,
352 SECphi18 and SECphi27 were isolated by the Sorek lab as described before³⁴. Small drop plaque
353 assay was performed as described by Mazzocco et al.³⁵. Overnight culture of *E. coli* bacteria was
354 diluted 1:100 in MMB medium (LB + 0.1 mM MnCl₂ + 5 mM MgCl₂ + 5 mM CaCl₂) supplied with
355 0.1% L-arabinose for expression induction. Bacterial cultures were incubated at 37 °C until early
356 log phase (OD₆₀₀ = 0.3), and 500 µl of bacteria were mixed with 25 ml of MMB agar (LB + 0.1 mM
357 MnCl₂ + 5 mM MgCl₂ + 5 mM CaCl₂ + 0.5% agar + 0.1% L-arabinose) and poured into the square
358 Petri dish. Serial dilutions of phage lysate in MMB were dropped on top of cell lawn. After the
359 drops dried up, plates were incubated at room temperature for 24 hours. Efficiency of plating (EOP)
360 was determined via comparison of phage lysate titer on control bacteria and bacteria containing the
361 Argonaute system with and without induction with L-arabinose.

362 Liquid culture phage infection experiments were performed as described previously by Ofir et al.³³.
363 After overnight incubation, the liquid suspension of pAgo-lacking and pAgo-containing *E. coli* cells
364 were diluted 1:100 in MMB medium supplied with 0.2% L-arabinose and dispensed into a 96-well
365 plate by 180-µl volume. Plates were incubated at 37 °C until the early log phase (OD₆₀₀ = 0.3), then
366 20 µl of phage lysate was added to each well in multiplicity of infection 5, 0.5, or 0.05, and each
367 experiment was performed in three replicates. Optical density measurements at a wavelength
368 600 nm were taken every 15 min using a TECAN Infinite 200 plate reader.

369 **Plasmid interference assay.** *E. coli* BL21-AI and DH10B strain cells were pre-transformed with
370 pBAD/HisA plasmid encoding a GsSir2/Ago (either wild-type or mutant variants), CcSir2/Ago or
371 PgSir2-Ago - under the control of araBAD promoter. After 2 hours of induction with either 0.01%
372 (w/v) (CcSir2/Ago) or 0.1% (GsSir2/Ago and PgSir2-Ago) L-arabinose at 37 °C 200 RPM, cells
373 were heat-shock transformed with pCDF (pCDF_Kn in the case of PgSir2-Ago in DH10B),
374 pCOLA, pACYC184 or pRSF plasmids. After recovery, cells were either serially diluted and
375 aliquots spotted on selection medium or undiluted suspensions spread on selection medium and
376 CFUs counted manually. In parallel, viability and over-expression of pAgo-containing *E. coli* cells
377 were monitored using serial dilutions and Western blot, respectively.

378 In separate experiments, *E. coli* BL21-AI strain cells were heat-shock transformed with both
379 GsSir2/Ago operon-encoding pBAD/HisA construct and pCDF plasmid. Protein expression in
380 selected double transformants was then induced by the addition of L-Ara (final concentration of
381 0.1% (w/v)) into liquid LB culture. After a 2-hour induction at 37 °C 200 RPM, optical density
382 (OD₆₀₀) equalized, cultures were serially diluted and aliquots were spotted on a selection medium
383 containing different antibiotics.

384 **Expression and purification of GsSir2/Ago complexes.** For GsSir2/Ago protein expression *E.*
385 *coli* DH10B strain was transformed with a respective plasmid (Supplementary Table 1). Cells were
386 grown at 37 °C in LB medium in the presence of 50 µg/ml ampicillin until OD₆₀₀ = 0.7 was
387 reached. Then, the temperature was decreased to 16 °C and proteins were expressed for 16 h by
388 adding 0.2% w/v L-arabinose. Next, harvested cells were disrupted by sonication in buffer A
389 (20 mM Tris-HCl (pH 8.0 at 25 °C), 500 mM NaCl, 2 mM phenylmethylsulfonyl fluoride, 5 mM 2-
390 mercaptoethanol), and cell debris was removed by centrifugation. GsSir2/Ago complexes were
391 purified to >90% homogeneity by chromatography through HisTrap HP chelating, HiTrap Heparin
392 HP and HiLoad Superdex 200 columns (GE Healthcare). Purified proteins were stored at -20 °C in

393 a buffer containing 20 mM Tris-HCl (pH 8.0 at 25 °C), 200 mM KCl, 1 mM DTT and 50% v/v
394 glycerol. The identity of the purified proteins was confirmed by mass spectrometry. Protein
395 concentrations were determined from OD₂₈₀ measurements using the theoretical extinction
396 coefficients calculated with the ProtParam tool available at <http://web.expasy.org/protparam/>.
397 GsSir2/Ago complex concentrations are expressed in terms of heterodimer. The GsSir2/Ago^{MID}
398 surface mutant could not be purified due to its poor expression.

399 **Antibodies used in this work.** For Western blot analysis of target proteins, the following
400 antibodies were used: 6x-His Tag monoclonal antibody (ThermoFisher, cat. #MA1-21315, RRID
401 AB_557403, Lot # WE323793, clone HIS.H8); Goat anti-Mouse IgG (H+L) Secondary Antibody,
402 AP conjugated (ThermoFisher, cat. #31320, RRID AB_228304, Lot # VH311913, polyclonal).

403 **SEC-(MALS) and mass photometry.** Size-exclusion chromatography of GsSir2/Ago complexes
404 was carried out at room temperature using Superdex 200 10/300 GL column (GE Healthcare) pre-
405 equilibrated with a buffer (20 mM Tris-HCl (pH 8.0 at 25 °C), 500 mM NaCl). A calibration curve
406 was generated by measuring the elution volumes of a series of standard proteins of known
407 molecular mass (Bio-Rad). The molecular masses of pAgos complexes were calculated by
408 interpolating their elution volume onto the calibration curve. SEC-MALS of GsSir2/Ago and
409 CcSir2/Ago complexes was performed at room temperature using Superdex 200 10/300 GL column
410 (GE Healthcare) pre-equilibrated with a buffer (20 mM Tris-HCl (pH 8.0 at 25 °C), 500 mM NaCl,
411 0.03% NaN₃, 1 mM DTT), at 0.4 ml/min flow rate. Sample concentrations were 6 μM and 6.5 μM
412 for GsSir2/Ago and CcSir2/Ago, respectively. The light scattering signals were monitored on a
413 miniDawn TREOS II detector, concentrations of protein samples were measured using an Optilab
414 T-rEX refractive index detector (Wyatt Technologies). Data were analysed in Astra software (Wyatt
415 Technologies) using dn/dc value of 0.185 mL/g. Mass photometry of the GsSir2/Ago complex was
416 performed using a Refeyn OneMP system (Refeyn). The protein complex was diluted to 20 nM in a
417 buffer containing 20 mM Tris-HCl pH 8.0, 500 mM NaCl before measurement.

418 **Small-angle X-ray scattering (SAXS) analysis.** The synchrotron SAXS data were collected at
419 beamline P12 operated by EMBL Hamburg at the PETRA III storage ring (DESY, Hamburg,
420 Germany)³⁶. GsSir2/Ago sample in the storage buffer was transferred into the sample buffer
421 (20 mM Tris-HCl pH7.5, 200 mM NaCl, 5 mM MgCl₂, 2 mM β-mercaptoethanol) using gel-
422 filtration NAP column (GE Healthcare) and concentrated by ultrafiltration to 1.2, 1.3, 1.6 and 5.5
423 mg/ml concentrations. The data were collected at the wavelength of 0.124 nm and the distance to
424 the detector (Pilatus 2M, Dectris) was set to 3 m. Samples in the sample changer were kept at
425 10 °C, capillary temperature was set to 20 °C. Twenty frames exposed 0.045 sec were averaged for
426 each concentration. The s-range of collected data was from 0.0133796 to 3.7925 nm⁻¹. The data
427 were analysed using programs of ATSAS 2.8.4 (r10552) suite³⁷. Data were normalized to an
428 absolute scale with water as standard. As the data collected for the sample with a concentration of
429 1.22 mg/ml were noisy at higher s (Extended Data Fig. 4), and higher concentration data showed
430 more aggregation at low s, we used a merged dataset produced with PRIMUS³⁸. Scattering data
431 were parameterized and indirectly Fourier transformed with GNOM³⁹. Structural parameters of
432 this dataset are summarized in Supplementary Table 3. Dimensionless Kratky plot in Extended Data
433 Fig. 4 was calculated as described previously⁴⁰. The *ab initio* models were calculated by
434 GASBOR⁴¹ software. Molecular mass estimations of apo GsSir2/Ago complex in solution assessed
435 by ATSAS tools (DATVC, DATMW) and server SAXSMoW (<http://saxs.ifsc.usp.br/>)⁴² are
436 presented in the Supplementary Table 3.

437 **Nucleic acid binding assay.** The oligonucleotide substrates (Supplementary Table 2) were 5'-
438 labelled with [γ -³²P]ATP (PerkinElmer) and T4 polynucleotidyl kinase (PNK) (ThermoFisher
439 cat#EK0031). The 3'-labelled substrate was prepared with [α -³²P]cordycepin-5'-triphosphate

440 (Hartmann Analytics) and terminal deoxynucleotidyl transferase. An aliquot of the 3'-labelled
441 substrate was subsequently phosphorylated with cold ATP and T4 PNK to obtain a 3' [α -
442 ^{32}P]cordycepin-labelled oligonucleotide containing 5'-phosphate. Annealing was performed in the
443 PNK reaction buffer supplemented with 50 mM EDTA at 2 μM total single-stranded
444 oligonucleotide concentration. Circular ssDNA substrate was prepared by circularisation of 5'- ^{32}P
445 labelled TK-49 using CircLigase II (Lucigen cat#CL9021K), according to manufacturer
446 recommendations, and purified from a denaturing PAA gel (21% 29:1 acrylamide/bis-acrylamide in
447 TBE supplemented with 8 M urea) by phenol-chloroform extraction, precipitated in 96 % ethanol
448 with 0.45 M sodium acetate, washed with 75% ethanol, and resuspended in water.

449 For EMSA experiments, appropriate substrates and proteins were pre-diluted to 2x the final binding
450 reaction concentration in 40 mM Tris-acetate (pH 8.3 at 23 °C), 1 mM EDTA (TAE, Invitrogen
451 cat#24710-030), supplemented with 5 mM magnesium acetate, 0.1 mg/ml BSA, 1 mM DTT, and
452 10% glycerol. The binding reactions were conducted by mixing equal volumes of enzyme and
453 radiolabelled substrate. In all cases, final binding reactions contained 0.1 nM of radiolabelled
454 substrate at 0-2 nM (0; 0.02; 0.05; 0.1; 0.2; 0.5; 1; 2) or 0-500 nM (0; 5; 10; 20; 50; 100; 200; 500)
455 of GsSir2/Ago and CcSir2/Ago complexes. Three independent replicates were performed. For
456 clarity, only EMSA gels obtained using low protein concentrations (0-2 nM) were shown, while for
457 calculations of high K_d values EMSA data obtained using high protein concentrations (0-500 nM)
458 were used.

459 Binding experiments for the binary GsSir2/Ago complex were conducted by first pre-mixing 5'-
460 phosphorylated ssRNA or ssDNA guide with the equimolar GsSir2/Ago complex in the same buffer
461 as above. The binary GsSir2/Ago:NA guide complex was then diluted to 2x final reaction
462 concentration (in respect to guide) in the same buffer and mixed with a complementary 5'- ^{32}P -target
463 oligonucleotide in the presence or absence of 67 ng/ μl heparin sodium salt (SigmaAldrich cat#).
464 The final reaction contained 10 pM target NA and 0, 0.02, 0.05, 0.1, 0.2 0.5, and 1 nM of
465 GsSir2/Ago:NA guide complex. Control (Cg*) contained 0.1 nM GsSir2/Ago:NA guide complex
466 with the guide labelled with [γ - ^{32}P]ATP and 10 pM unlabeled target NA. Three independent
467 replicates were performed.

468 The binding reaction mixtures were analysed by electrophoretic mobility shift assay (EMSA) in a
469 PAA gel (8% 29:1 acrylamide/bis-acrylamide in TAE). The electrophoresis TAE buffer was
470 supplemented with 5 mM magnesium acetate. Radiolabelled substrates were detected and quantified
471 using a phosphor imager. The results were analysed with OptiQuant and OriginPro software. The
472 K_d was calculated from the following formula:

$$473 S_{NB} = A1 + \frac{\frac{100}{S_0} \left(\left(S_0 \cdot \frac{(100-A1)}{100} \right) - E_0 - K_D + \sqrt{\left(S_0 \cdot \left(\frac{100-A1}{100} \right) + E_0 + K_D \right)^2 - 4S_0 \cdot \left(\frac{100-A1}{100} \right) \cdot E_0} \right)}{2}$$

474 where S_{NB} – unbound substrate, nM; S_0 – initial substrate concentration, nM; E_0 – initial protein
475 complex concentration, nM; K_d – dissociation constant, A1 – nonbinding fraction of substrate, %.

476 **Nucleic acid extraction and analysis.** To obtain GsSir2/Ago-bound nucleic acids, *E. coli* DH10B
477 was transformed with pBAD/HisA_TwinStrep_TEV_GsSir2/Ago and pCDF_Kn plasmids
478 (Supplementary Table 1). Cells were grown at 37 °C in LB medium in the presence of 50 $\mu\text{g/ml}$
479 ampicillin and 25 $\mu\text{g/ml}$ kanamycin until $\text{OD}_{600} = 0.7$ was reached. Then, expression was induced
480 by adding 0.1% w/v L-arabinose, and cells were harvested after 2 h. Cells were disrupted using B-
481 PER Bacterial Protein Extraction Reagent (ThermoFisher cat#78248) containing 6 mg/ml

482 lysozyme. The GsSir2/Ago-NA complex was purified as described above, instead, all buffer
483 solutions contained 100 mM NaCl.

484 To extract nucleic acids co-purified with the GsSir2/Ago complex, 800 μ L of Roti-
485 phenol/chloroform/isoamyl alcohol (Carl-Roth cat#A156) was added to the 800 μ L of purified
486 protein-NA fractions in 5PRIME Phase Lock Gel tubes (Quantabio cat#733-2477). The upper
487 aqueous phase was isolated and 0.1 volumes of 1 M sodium acetate, 3 volumes of 100% ethanol
488 and 10 μ L glycogen (ThermoFisher cat#R0561) were added. This mixture was vortexed briefly and
489 incubated at -20 °C for 20 hours. Samples were centrifuged for 20 min and the supernatant was
490 removed from the pellet. The pellet was washed with cold (-20 °C) 70% ethanol. The pellets
491 containing the copurified nucleic acids were dried for 20 min at room temperature, and pellets were
492 resuspended in 30 μ L water (free of nucleases).

493 Co-purified nucleic acids were dephosphorylated with FastAP Thermosensitive Alkaline
494 Phosphatase (ThermoFisher cat# EF0651) and [γ -32P]-ATP (PerkinElmer) labelled with T4
495 polynucleotide kinase (PNK) (ThermoFisher cat#EK0031). Labelled nucleic acids were incubated
496 with nucleases (ThermoFisher DNase I cat#18047019, RNase A/T1 cat# EN0551) for 30 min at
497 37 °C. After nuclease treatment, samples were mixed with RNA Gel Loading Dye (ThermoFisher
498 cat# R0641), heated for 5 min at 95 °C and resolved on 20% denaturing (8 M Urea) polyacrylamide
499 gels. The molecular weight marker used for RNA size identification was Decade Marker System
500 (Ambion cat#AM7778) and 22 nt long RNA oligonucleotide. Radioactivity was captured from gels
501 using phosphor screens and imaged using a Typhoon FLA 7000 laser-scanner (GE Healthcare).

502 In a control sample, a total RNA from induced cells was extracted using SPLIT RNA Extraction Kit
503 (Lexogen cat#008). Then rRNA was removed using RiboCop for Gram-negative Bacteria (Lexogen
504 cat#126).

505 **RNA sequencing and analysis.** Half of extracted RNA was treated with T4 PNK (ThermoFisher
506 cat#EK0031) according to the protocol of the manufacturer. Then T4 PNK treated and untreated
507 RNA samples were converted to DNA libraries using Small RNA-Seq Library Prep Kit (Lexogen
508 cat#052). Concentration and quality of libraries were measured with Qubit Fluorometer
509 (ThermoFisher) and 2100 Bioanalyzer (Agilent).

510 Both libraries were sequenced using Illumina MiniSeq sequencing with single-end reads and 75 bp
511 read length. Single-end reads were processed by trimming adapters with AdapterRemoval v2.3.0⁴³.
512 Then the processed reads were aligned to the *E. coli* str. K12 substrain DH10B genome (GenBank:
513 CP000948.1) and the additional pBAD/HisA_TwinStrep_TEV_GsSir2/Ago, pCDF_Kn plasmids
514 (Supplementary Table 1) using BWA-MEM v0.7.17⁴⁴. In order not to filter out shorter reads during
515 the alignment process, aligned reads with MAPQ values greater or equal to 15 were chosen. FastQC
516 v0.11.8⁴⁵ was used for read quality control and SAMtools v1.7⁴⁶ – for indexing, sorting and
517 analysing alignment files. A custom script (fragmentation-bias.jl) in combination with Weblogo
518 v3.7.4⁴⁷ were used to produce nucleotide frequency plots. The custom script had to be implemented
519 to ensure that only aligned reads would be used for nucleotide frequency analysis. Gene enrichment
520 analysis was performed with bedtools v2.26.0⁴⁸ and FPKM_count.py v4.0.0 of RSeqQC package⁴⁹.
521 IGV v2.5.2⁵⁰ was mainly used to inspect and visualise read coverage along the genomes. Control
522 DNA library of a total RNA was prepared using CORALL Total RNA-Seq Library Prep Kit
523 (Lexogen cat#095). Concentration and quality of the library was measured with Qubit Fluorometer
524 (ThermoFisher) and 2100 Bioanalyzer (Agilent) according to the protocol of the manufacturer.

525 Control DNA library was sequenced using Illumina NextSeq sequencing with pair-end reads and
526 75 bp read length. The read processing, alignment and alignment analysis were analogous to those
527 samples from Illumina MiniSeq sequencing.

528 **Preparation of *E. coli* cells for NAD⁺ quantification.** Overnight cultures of single colonies of *E.*
529 *coli* DH10B strain harbouring a pBAD-His construct with either wt GsSir2/Ago or mutant system
530 (GsSir2/Ago-HSH or GsSir2(D230A)/Ago), or empty vector (negative control) were diluted and
531 grown in LB broth (BD) supplemented with respective antibiotics (50 µg/ml ampicillin and
532 25 µg/ml streptomycin) at 37 °C until they reached OD₆₀₀ of 0.4–0.5. Cell cultures were either
533 induced to express the protein or not (control samples). L-Ara (0.1% final concentration) was added
534 to induce protein expression. Induced and non-induced cultures were harvested 2 hours later. The
535 cultures were normalized to OD₆₀₀ of approximately 0.7 and the pellet from 1 mL of culture
536 suspension was stored at -80 °C until further analysis. All cell pellets were lysed by adding B-PER
537 solution (Thermofisher Scientific) supplemented with 6 mg/ml lysozyme (62971, Fluka) for 20 min
538 at room temperature while gently rocking (Multi Bio 3D Mini-Shaker, Biosan). Cell debris was
539 removed by centrifugation and metabolites were isolated by phenol:chloroform:isoamyl alcohol
540 (PCI) (25:24:1, v/v/v) extraction. Metabolites were stored at -20 °C until MS-HPLC analysis.
541 Additionally, the endogenous NAD⁺ concentration was estimated using NAD/NADH Quantitation
542 Kit (Sigma Aldrich, cat# MAK037) from four independent measurements.

543 ***In vitro* NADase assay.** Reaction mixtures with a volume of 25 µL were prepared with the
544 following final concentrations: 0.5 µM GsSir2/Ago or mutant complex, 50 µM NAD⁺, 1× Tango
545 buffer (33 mM Tris-acetate (pH 7.9 at 37 °C), 10 mM magnesium acetate, 66 mM potassium
546 acetate, 0.1 mg/ml BSA, ThermoScientific, cat#BY5), 1 mM DTT, 0.5 µM 5'P-RNA guide (TF-A)
547 and/or 0.5 µM ssDNA (MZ-949 or MZ-589) (Supplementary Table 2). Reactions with RNA guide
548 were preincubated for 15 min at 37 °C, then ssDNA was added and the mixture was incubated for
549 1 h at 37 °C. 3 µL of each sample was used as input for the NAD/NADH Quantitation Kit (Sigma-
550 Aldrich, cat# MAK037) according to the instructions provided by the manufacturer. All
551 experiments were performed in triplicates. These samples were also used for mass spectrometry.

552 **Mass spectrometry of NAD⁺.** To quantitate NAD⁺ bound to GsSir2/Ago and CcSir2/Ago
553 complexes high-performance liquid chromatography-mass spectrometry/mass spectrometry (HPLC-
554 MS/MS) analysis was used. First, purified pAgos complexes were diluted to 5 µM in a buffer
555 containing 20 mM Tris-HCl (pH 8.0 at 25 °C), 200 mM NaCl. Then 20 µl of the solution was
556 incubated at 70 °C for 20 min and centrifuged for 30 min (16,100 g at 4 °C) to remove unfolded
557 proteins. The supernatants and NAD⁺ standards were analysed by Electrospray Ionization mass
558 spectrometry (ESI-MS) using an integrated HPLC/ESI-MS system (1290 Infinity, Agilent
559 Technologies/Triple Quadrupole 6410, Agilent Technologies), equipped with a Supelco
560 Discovery[®] HS C18 column (7.5 cm × 2.1 mm, 3 µm), Agilent Technologies. HPLC/ESI-MS/MS
561 was performed using two ion transitions to detect NAD⁺ in the samples: 662.1→540.1 and
562 662.1→426.0. Ion transition 662.1→540.1, as it is the most abundant, was used for the quantitative
563 analysis. Mobile phase A was 5 mM ammonium acetate in water, pH 7.0 and mobile phase B was
564 5 mM ammonium acetate in methanol, pH 7.0. The HPLC parameters were as follows: flow 0.25
565 ml/min; column temperature 30°C; 0-3 min, 0% B; 3-9 min, 0-40% B; 9-10 min, 40-100% B; 10-
566 13 min, 100% B. The MS was operated using negative electrospray ionisation at 2500 V, the gas
567 temperature was set to 300 °C, the fragmentor voltage was 135 V. Multiple reaction monitoring
568 (MRM) was used with a collision energy of 15 V to measure ion m/z 540.1 (ion transition
569 662.1→540.1) and also with a collision energy of 20 V to measure ion m/z 426.0 (ion transition
570 662.1→426.0).

571 To quantitate endogenous NAD⁺ HPLC-MS analysis was performed by Electrospray Ionization
572 mass spectrometry (ESI-MS) using an integrated HPLC/ESI-MS system (1290 Infinity, Agilent
573 Technologies/Q-TOF 6520, Agilent Technologies), equipped with a Supelco Discovery[®]HS C18
574 column (7.5 cm × 2.1 mm, 3 µm), Agilent Technologies. The samples were investigated in both
575 negative and positive ionization modes. For negative ionization mode, solvents A (5 mM
576 ammonium acetate in water pH 7.0) and B (5 mM ammonium acetate in methanol, pH 7.0) were
577 used. For positive ionization mode, solvents C (0,02% formic acid in water) and D (0,02% formic
578 acid in acetonitrile) were used. In both cases elution was performed with a linear gradient of
579 solvents at a flow rate of 0.3 ml/min at 30 °C as follows: 0–5 min, 0% B; 5–18 min, 20% B; 18–22
580 min, 100% B, 22–27 min 100% B. Ionization capillary voltage was set to 2500 V and fragmentor to
581 150V. A list of compounds that could be expected to be products of NAD⁺ hydrolysis and relative
582 m/z value is as follows: ADPR [M-H]⁻ m/z=558.0644, cADPR [M-H]⁻ m/z =540.0538, AMP [M-
583 H]⁻ m/z=346.0558, cAMP [M-H]⁻ m/z=328.0452, ADP [M-H]⁻ m/z=426.0221, cADP [M-H]⁻
584 m/z=408.0116, nicotinamide [M+H]⁺ m/z= 123.0553, adenine [M+H]⁺ m/z=136.0618. Only traces
585 of AMP and ADP were detected in all samples; other products from the list were absent.

586 NAD⁺ hydrolysis products generated by GsSir2/Ago *in vitro* were analysed as above. Using
587 negative ionization mode only accumulation of ADPR was detected.

588 **Data availability**

589 All data are available in the paper and the supplementary material. In addition, small and total RNA
590 sequencing data are available on the NCBI Sequence Read Archive under BioProject ID
591 PRJNA851009. SAXS data are available in the Small Angle Scattering Biological Data Bank
592 SASBDB under SASBDB ID SASDNH2: <https://www.sasbdb.org/project/1486/cuudir1lvf/>.
593 Plasmid sequences used in this work are available at <https://www.benchling.com>, with exact links
594 for each plasmid provided in Supplementary Table 1.

595 *Geobacter sulfurreducens*, *Caballeronia cordobensis*, and *Paraburkholderia graminis* genomes
596 (respective GenBank accessions: GCA_000210155.1, GCA_001544575.2 and GCA_000172415.1)
597 and all associated sequence and annotation data were obtained from NCBI
598 (<ftp://ftp.ncbi.nlm.nih.gov/genomes/Bacteria/>). Searches through Pfam (<http://pfam.xfam.org/>),
599 SwissProt (<https://www.expasy.org/resources/uniprotkb-swiss-prot>), and PDB
600 (<https://www.rcsb.org/>) databases were performed. PDB structures mentioned in this study: 5AWH,
601 4N41, 5UX0, 6LHX, 2H4F.

602 **Code availability**

603 The Julia script used to identify nucleotide frequency in the beginning of the aligned reads and
604 prepare input for Weblogo program is available at GitHub repository:
605 <https://github.com/agrybauskas/argonaute-bound-rna-manuscript>

606 **Acknowledgements**

607 We thank the Siksny laboratory members for their comments on the manuscript and fruitful
608 discussion. This work was supported by European Social Fund [09.3.3-LMT-K-712-01-0126 to
609 V.S.] under a grant agreement with the Research Council of Lithuania (LMTLT), the Israel Science
610 Foundation [grant ISF 296/21 to R.S.], and the Deutsche Forschungsgemeinschaft [SPP 2330, grant
611 464312965]. The authors thank Tomás de Garay at Refeyn Ltd. for the mass photometry
612 experiments. Funding for open access charge: Vilnius University.

613 **Author Contributions**

614 V.S. and M.Z. designed the study; K.T. and Č.V. performed bioinformatics and structural
615 modelling; A.L. performed the phage restriction experiments; E.S., D.D., E.G., S.A., U.T.
616 performed the plasmid transformation experiments; A.S. purified the proteins and performed the
617 SEC-(MALS) experiments; R.G. performed the SEC experiments; E.M. performed the SAXS
618 experiments; E.Z., E.G., D.D. and R.G. performed the EMSA experiments; E.Z. and E.J.
619 reconstituted the GsSir2/Ago-RNA complex and performed the biochemical analysis; A.G.
620 performed the RNA-seq analysis; A.R. performed the mass spectrometry analysis; D.D. performed
621 the NAD⁺ determination experiments *in vivo*; E.Z. performed the NAD⁺ hydrolysis experiments *in*
622 *vitro*; R.S., V.S. and M.Z. analysed the data; M.Z. wrote the initial manuscript with input from
623 E.G., R.S., V.S. and other authors. All authors approved the final version.

624 **Competing Interests statement**

625 VS is the chairman of CasZyme. R.S. is the scientific founder of BiomX and Ecophage.

626 The remaining authors declare no competing interests.

627 **Notes**

628 During the revision of this manuscript, a paper was published that shows plasmid-induced
629 degradation of NAD⁺ *in vivo* by short pAgo-associated TIR-APAZ systems (named SPARTA)⁵².
630 The paper also shows that expression of Sir2/Ago systems (named SPARSA) in *E. coli* triggers
631 NAD depletion.

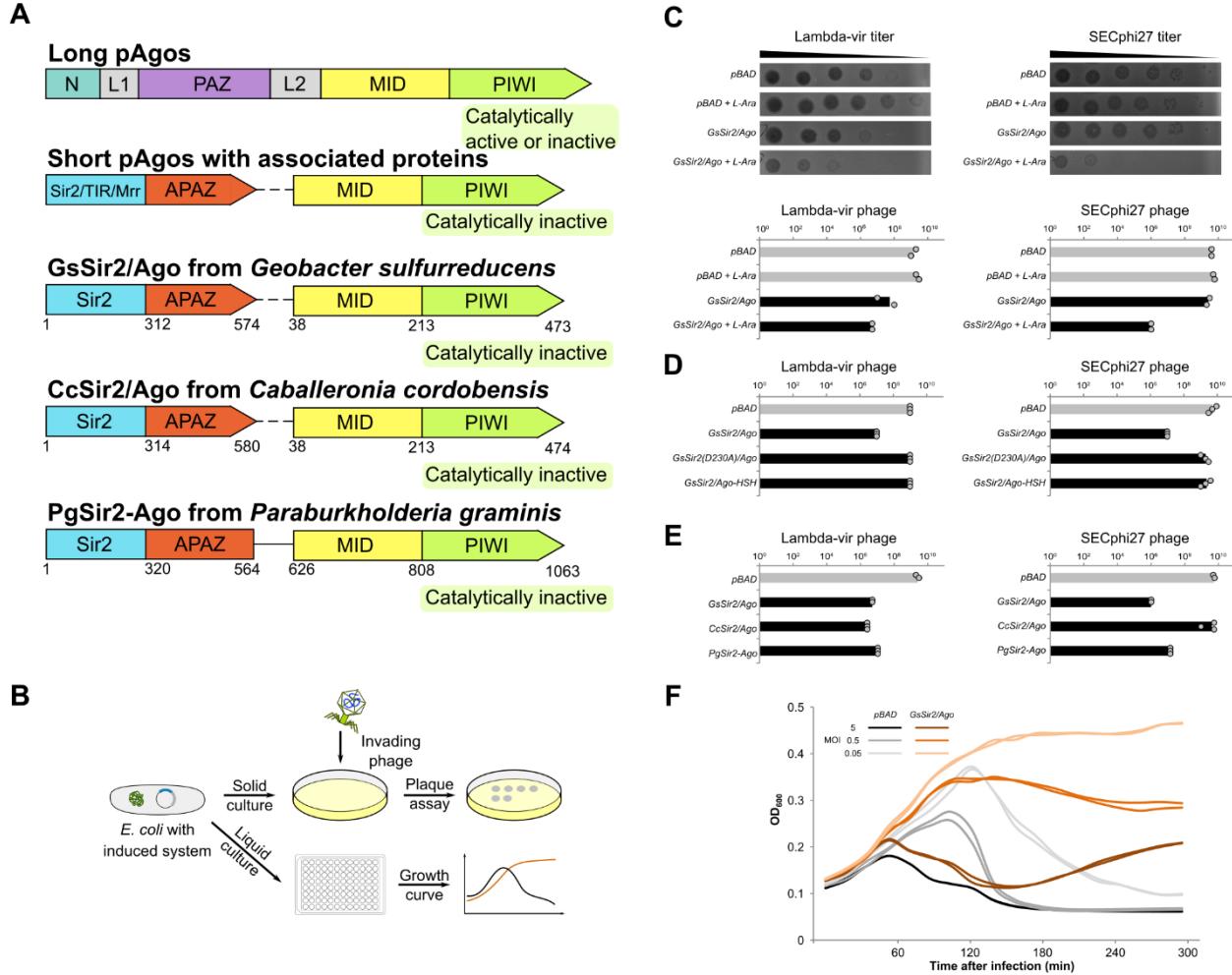
632

633 **Tables**

634 **Table 1. Nucleic acid binding by Sir2/Ago and their binary complexes pre-loaded with either ssRNA or ssDNA**
635 **guides.** K_d values (averages \pm standard deviation of three independent replicates) were calculated from EMSA data.
636 Some binding experiments were performed in the presence of heparin (indicated).

Nucleic acid binding by Sir2/Ago			
Nucleic acid	K_d , nM		
	GsSir2/Ago	CcSir2/Ago	
ssDNA	0.033 \pm 0.016	0.138 \pm 0.007	
ssRNA	0.042 \pm 0.015	0.36 \pm 0.098	
circular ssDNA	0.072 \pm 0.018	0.18 \pm 0.068	
dsRNA/DNA	4.31 \pm 0.37	2.4 \pm 0.69	
dsDNA	51 \pm 20	330 \pm 87	
dsRNA	73 \pm 29	81 \pm 15	

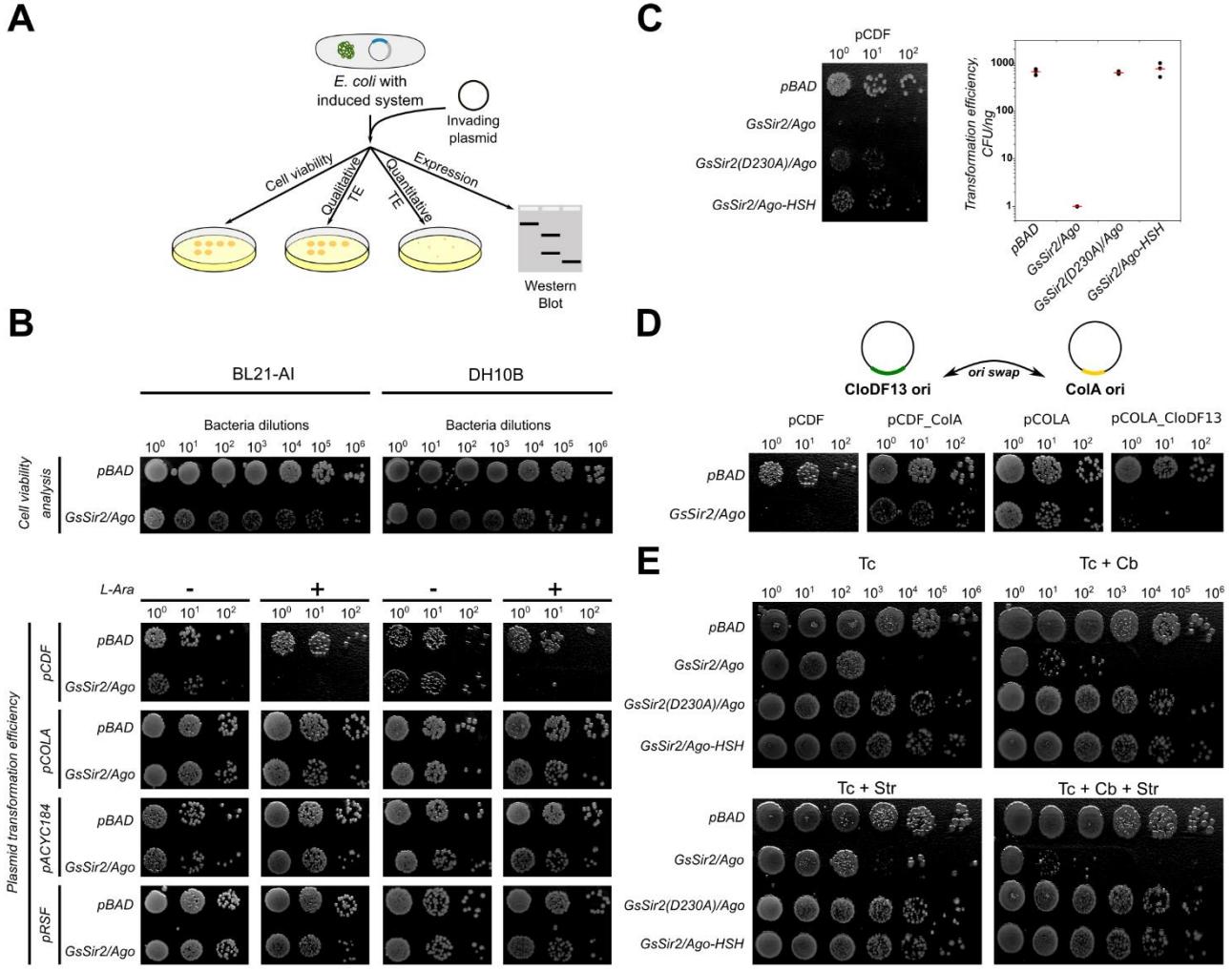
Nucleic acid binding by GsSir2/Ago-gRNA and GsSir2/Ago-gDNA complexes			
Guide	Target	K_d , nM	
		- Heparin	+ Heparin
ssRNA	ssDNA	0.020 \pm 0.008	0.079 \pm 0.007
	ssRNA	0.205 \pm 0.058	0.567 \pm 0.112
ssDNA	ssDNA	0.022 \pm 0.005	n.b.*
	ssRNA	0.252 \pm 0.114	n.b.*
ssRNA	nsp-ssDNA [#]	0.420 \pm 0.231	4.29 \pm 2.11


ssDNA binding by GsSir2/Ago-gRNA variants			
Mutant	K_d , nM		
	- Heparin	+ Heparin	
GsSir2(D230A)/Ago	0.038 \pm 0.013	0.140 \pm 0.057	
GsSir2/Ago-HSH	0.140 \pm 0.017	0.203 \pm 0.058	
GsSir2 ^{APAZ} /Ago	n.b.*	n.b.*	
GsSir2/Ago ^{PIWI}	n.b.*	n.b.*	

* No binding was detected under experimental conditions used.
A non-complementary ssDNA was used.

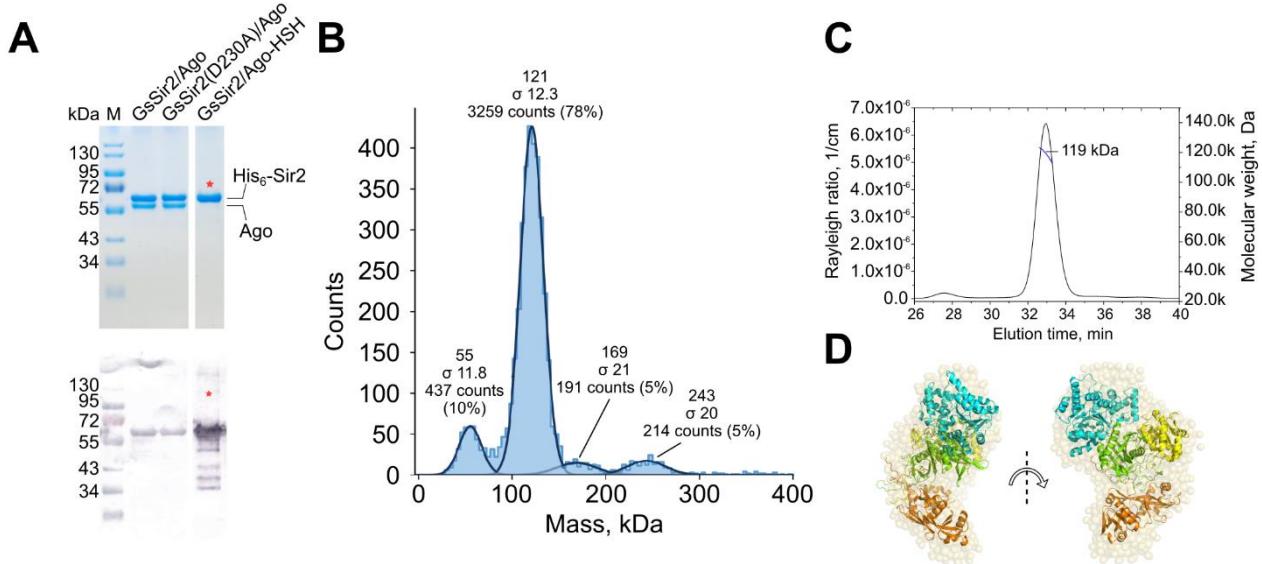
637

638


639 **Figures**

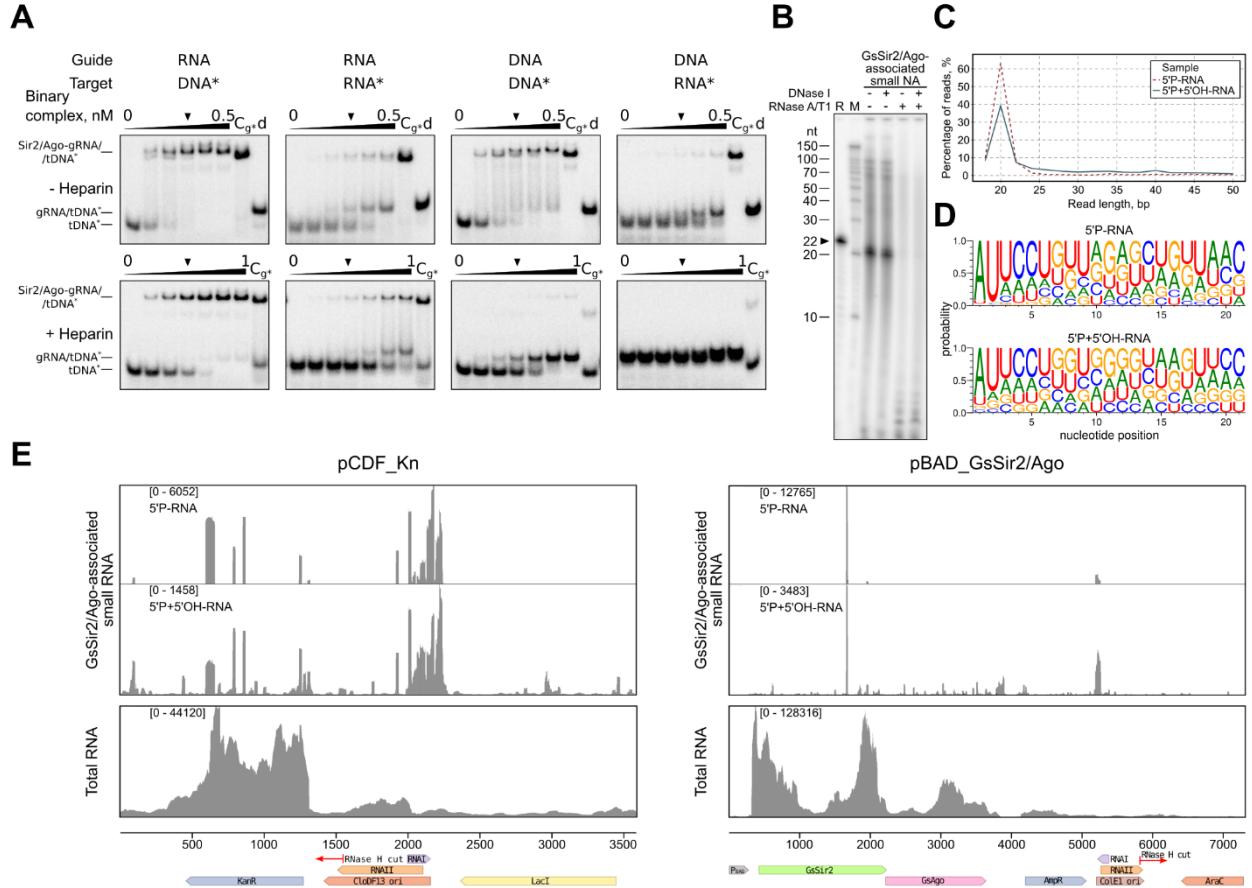
640

641 **Fig. 1. Sir2/Ago provide defence against phages.** **A**, Schematic representation of the subunit/domain composition of
642 different pAgo variants. Catalytically active pAgos contain a conserved catalytic DEDX tetrad that is mutated in
643 inactive pAgos. Catalytically inactive short pAgos lack the canonical PAZ domain, however, an accessory APAZ
644 domain is present in putative Sir2, TIR or Mrr proteins associated with short pAgos. MID indicates middle; L – linker
645 domain; N – N-terminal domain. Short pAgos from *G. sulfurreducens*, *C. cordobensis*, and *P. graminis* associated with
646 Sir2 protein were studied in this work. **B**, Schematic diagram of phage restriction assays. **C**, Efficiency of plating (EOP)
647 of lambda-vir and SECphi27 phages infecting *E. coli* cells with and without the GsSir2/Ago system. The bar graphs
648 show the number of p.f.u. as arithmetic means of two replicates in the absence and the presence of the inducer L-
649 arabinose (L-Ara), with individual data points superimposed. Grey bars represent EOP on pAgo-lacking cells and black bars – in pAgo-containing cells. Representative images of plaque assays are also presented. **D**, EOP of lambda-vir and
650 SECphi27 phages infecting the wt and mutant GsSir2/Ago systems in the presence of L-Ara. GsSir2(D230A)/Ago and
651 GsSir2/Ago-HSH are variants that contain D230A mutation in the Sir2 domain or (HSH-tag) on the C-terminus of
652 pAgo, respectively. The bar graphs show the number of p.f.u. as arithmetic means of three replicates, with individual
653 data points superimposed. Grey bars represent EOP on pAgo-lacking cells and black bars – in pAgo-containing cells. **E**,
654 EOP of lambda-vir and SECphi27 phages infecting pAgo-lacking cells and cells containing GsSir2/Ago, CcSir2/Ago
655 and PgSir2-Ago in the presence of L-Ara. The bar graphs show the number of p.f.u. as arithmetic means of three
656 replicates, with individual data points superimposed. Grey bars represent EOP on pAgo-lacking cells and black bars – in
657 pAgo-containing cells. **F**, Lambda phage infection in liquid cultures of *E. coli* cells containing the GsSir2/Ago system.
658 GsSir2/Ago-lacking (shown in grey) or GsSir2/Ago-containing (shown in orange) *E. coli* were infected at t=0 at
659 multiplicities of infection (MOI) of 0.05, 0.5 and 5. Each curve represents one individual replicate; two replicates for
660 each MOI are shown.


662

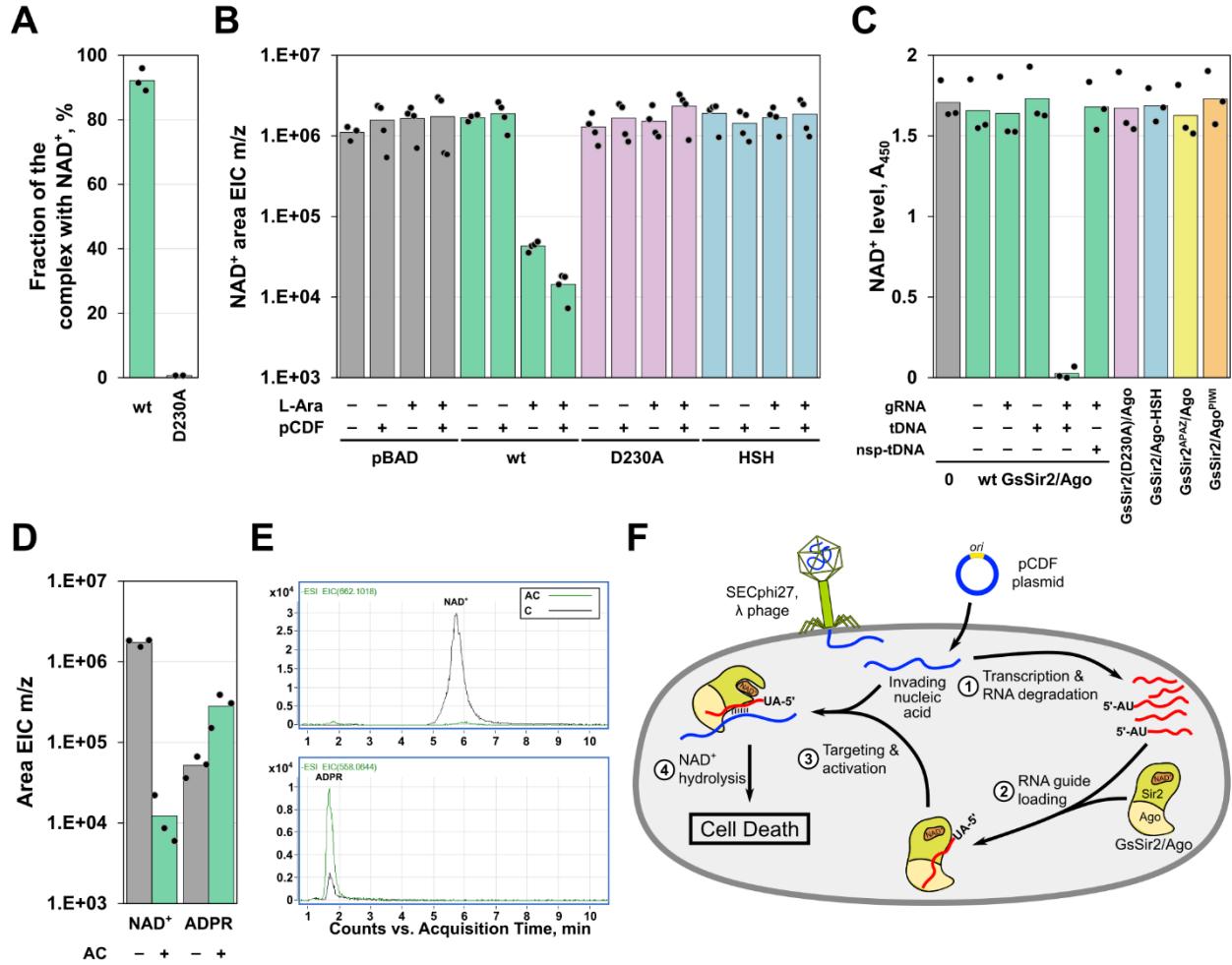
663

664 **Fig. 2. The GsSir2/Ago system interferes with plasmid transformation.** A, Schematic representation of the
665 experiment. B, Qualitative evaluation of plasmid transformation efficiency in *E. coli* cells carrying GsSir2/Ago system.
666 Top: comparison of cell viability in the presence or absence of plasmid-borne GsSir2/Ago expression. Bottom:
667 comparison of plasmid transformation efficiencies in the presence or absence of plasmid-borne GsSir2/Ago expression.
668 C, Left – comparison of pCDF transformation efficiency between cells expressing wt and mutant GsSir2/Ago
669 complexes; right - quantification of transformation efficiencies (three independent replicates, the red line represents
670 average transformation efficiency). D, Top - schematic representation of *ori* exchange between pCDF and pCOLA
671 plasmids; bottom - comparison of plasmid transformation efficiencies. pCDF, pCDF with CloDF13 *ori* exchanged with
672 ColA *ori* (pCDF_CoLA), pCOLA and pCOLA with ColA *ori* exchanged with CloDF13 *ori* (pCOLA_CloDF13)
673 plasmids were used for transformation of *E. coli* cells carrying GsSir2/Ago system. E, Cell viability in the absence of
674 antibiotics selection. In the case of the wt GsSir2/Ago system, the cell viability decreases on the plates even in the
675 absence of Cb and Str antibiotics suggesting that GsSir2/Ago in the presence of the pCDF plasmid triggers cell death.


676

677

Fig. 3. The GsSir2 and GsAgo proteins form a heterodimeric complex. **A**, Top – SDS PAGE of purified wt GsSir2/Ago, a D230A mutant, and C-terminal HSH tag-bearing GsSir2/Ago. Red star in the HSH-tagged sample lane marks an overlap of bands in the gel due to similar mass. Bottom – anti-His-tag Western blot of same samples. The red star shows the lane where the His-tag is on the C-terminus of Ago, rather than the N-terminus of Sir2. Two replicates. **B**, Mass photometry data of the GsSir2/Ago complex, with masses and respective particle population counts indicated. According to mass spectrometry of the purified GsSir2/Ago complex (Extended Data Fig. 3F), the molar mass of the GsSir2/Ago heterodimer is 121 kDa. **C**, SEC-MALS data of GsSir2/Ago, showing the chromatography peak and molar weight of the Sir2/Ago heterodimer. **D**, Semitransparent space-filling *ab initio* model of GsSir2/Ago calculated from SAXS data with a fitted-in AF GsSir2/Ago model in cartoon representation. Colour coding: Sir2 domain – cyan, APAZ – brown, MID – yellow, PIWI – green.


688

689

690 **Fig. 4. Nucleic acid binding by GsSir2/Ago *in vitro* and *in vivo*.** **A**, Binding of RNA or DNA targets by GsSir2/Ago
691 binary complexes pre-loaded with 5'-P-RNA or 5'-P-DNA guides. In EMSA experiments the pre-formed GsSir2/Ago
692 gRNA binary complex was mixed with a radiolabelled target strand indicated by the asterisk (see “Materials and
693 Methods” for the details). To show that no displacement of the guide by the target strand occurs under these
694 experimental conditions, a control (Cg*) experiment was performed where the guide, rather than the target, was
695 radioactively labelled. Only the pre-annealed RNA/DNA heteroduplex was loaded in the control lane “d”. Three
696 independent replicates performed. **B**, GsSir2/Ago co-purifies with small RNAs. Nucleic acids that co-purified with
697 GsSir2/Ago were, first, dephosphorylated, then, [γ -³²P]-ATP radiolabelled and treated with DNase I or RNase A/T1, or
698 both, and resolved on a denaturing polyacrylamide gel. R, control 22 nt RNA oligonucleotide; M, RNA ladder Decade
699 Marker System (Ambion). Three independent replicates performed. **C**, Length distribution of small RNA co-purified
700 with GsSir2/Ago as determined by sequencing. “5'-P-RNA” sample means that only small RNAs containing 5'-
701 phosphate were sequenced, while in “5'-P+5'OH-RNA” sample both 5'-phosphate or 5'-OH bearing small RNAs were
702 sequenced. **D**, Small RNAs associated with GsSir2/Ago show 5'-AU preference. **E**, Distribution of small RNAs co-
703 purified with GsSir2/Ago from the *E. coli* host carrying the pCDF_Kn target and pBAD_GsSir2/Ago expression
704 plasmids (above). IGV viewer representation of total RNA extracted from *E. coli* is shown below. Cartoons indicate
705 promoters (P_{BAD}), protein-coding genes (KanR, LacI, GsSir2, GsAgo, AmpR, AraC), plasmid ori (CloDF13, Cole1)
706 and their RNAI and RNAII transcripts. Red arrow shows RNase H cleavage site in RNAII required for initiation of
707 DNA strand synthesis during plasmid replication.

708

709

710 **Fig. 5. GsSir2/Ago binds and hydrolyses NAD^+ .** A, the D230A mutation within the Sir2 protein abolished NAD^+ binding. B, NAD^+ amounts in *E. coli* cells in the presence of the (non)induced wt and mutant GsSir2/Ago systems and in the presence and absence of the pCDF plasmids. NAD^+ amounts were estimated according to the EIC areas of NAD^+ (m/z 662.1018). pBAD – empty vector; wt – GsSir2/Ago; D230A – GsSir2(D230A)/Ago; HSH – GsSir2/Ago-HSH. C, NAD^+ depletion by GsSir2/Ago *in vitro*. The wt GsSir2/Ago or mutant complex (0.5 μM) was incubated with NAD^+ (50 μM) for 1 h at 37 °C (see experimental details in “Materials and Methods”). gRNA, 5'P-RNA guide; tDNA, target DNA complementary to the RNA guide; nsp-tDNA, ssDNA non-complementary to the RNA guide. D, NAD^+ hydrolysis by wt GsSir2/Ago *in vitro*. The binary GsSir2/Ago-gRNA complex (0.5 μM) was incubated with NAD^+ (50 μM) for 1 h at 37 °C in the presence of the complementary DNA target (0.5 μM). NAD^+ depletion and ADPR accumulation was analysed by MS according to the EIS of NAD^+ (m/z 662.1018) and ADPR (m/z 558.0644), respectively. AC, the activated wt GsSir2/Ago-gRNA/tDNA complex. E, Representative mass chromatograms of NAD^+ hydrolysis by wt GsSir2/Ago *in vitro* (as in D). C, a control sample without GsSir2/Ago; AC, the activated wt GsSir2/Ago-gRNA/tDNA complex. F, Putative model of GsSir2/Ago defence against mobile genetic elements. After lambda phage infection or pCDF plasmid transformation, GsSir2/Ago acquires small 5'-AU-RNAs originated from the invader transcripts (e.g., from pCDF *ori* region). The GsSir2/Ago binary complex, guided by small RNA, targets the invaders' complementary DNA, becomes activated and hydrolyses NAD^+ resulting in a cell death.

726

727

728 **References**

- 729 1. Kuhn, C. D. & Joshua-Tor, L. Eukaryotic Argonautes come into focus. *Trends Biochem. Sci.*
730 **38**, 263–271 (2013).
- 731 2. Pratt, A. J. & MacRae, I. J. The RNA-induced silencing complex: A versatile gene-silencing
732 machine. *J. Biol. Chem.* **284**, 17897–17901 (2009).
- 733 3. Sheu-Gruttaduria, J. & MacRae, I. J. Structural Foundations of RNA Silencing by
734 Argonaute. *J. Mol. Biol.* **429**, 2619–2639 (2017).
- 735 4. Olina, A. V., Kulbachinskiy, A. V., Aravin, A. A. & Esyunina, D. M. Argonaute Proteins and
736 Mechanisms of RNA Interference in Eukaryotes and Prokaryotes. *Biochem.* **83**, 483–497
737 (2018).
- 738 5. Hutvagner, G. & Simard, M. J. Argonaute proteins: Key players in RNA silencing. *Nat. Rev.
739 Mol. Cell Biol.* **9**, 22–32 (2008).
- 740 6. Swarts, D. C. *et al.* The evolutionary journey of Argonaute proteins. *Nat. Struct. Mol. Biol.*
741 **21**, 743–753 (2014).
- 742 7. Kwak, P. B. & Tomari, Y. The N domain of Argonaute drives duplex unwinding during
743 RISC assembly. *Nat. Struct. Mol. Biol.* **19**, 145–151 (2012).
- 744 8. Ryazansky, S., Kulbachinskiy, A. & Aravin, A. A. The Expanded Universe of Prokaryotic
745 Argonaute Proteins. *MBio* **9**, 1–20 (2018).
- 746 9. Hegge, J. W., Swarts, D. C. & Van Der Oost, J. Prokaryotic argonaute proteins: Novel
747 genome-editing tools? *Nat. Rev. Microbiol.* **16**, 5–11 (2018).
- 748 10. Lisitskaya, L., Aravin, A. A. & Kulbachinskiy, A. DNA interference and beyond: structure
749 and functions of prokaryotic Argonaute proteins. *Nat. Commun.* **9**, 1–12 (2018).
- 750 11. Willkomm, S., Makarova, K. S. & Grohmann, D. DNA silencing by prokaryotic Argonaute
751 proteins adds a new layer of defense against invading nucleic acids. *FEMS Microbiol. Rev.*
752 **42**, 376–387 (2018).
- 753 12. Kuzmenko, A. *et al.* DNA targeting and interference by a bacterial Argonaute nuclease.
754 *Nature* (2020) doi:10.1038/s41586-020-2605-1.
- 755 13. Swarts, D. C. *et al.* DNA-guided DNA interference by a prokaryotic Argonaute. *Nature* **507**,
756 258–261 (2014).
- 757 14. Jolly, S. M. *et al.* *Thermus thermophilus* Argonaute Functions in the Completion of DNA
758 Replication. *Cell* **182**, 1545–1559.e18 (2020).
- 759 15. Olovnikov, I., Chan, K., Sachidanandam, R., Newman, D. K. & Aravin, A. A. Bacterial
760 Argonaute Samples the Transcriptome to Identify Foreign DNA. *Mol. Cell* **51**, 594–605
761 (2013).
- 762 16. Liu, Y. *et al.* A programmable omnipotent Argonaute nuclease from mesophilic bacteria
763 *Kurthia massiliensis*. *Nucleic Acids Res.* 1–12 (2021) doi:10.1093/nar/gkaa1278.

764 17. Kropocheva, E., Kuzmenko, A., Aravin, A. A., Esyunina, D. & Kulbachinskiy, A. A
765 programmable pAgo nuclease with universal guide and target specificity from the mesophilic
766 bacterium *Kurthia massiliensis*. *Nucleic Acids Res.* **1**, 1–28 (2021).

767 18. Makarova, K. S., Wolf, Y. I., van der Oost, J. & Koonin, E. V. Prokaryotic homologs of
768 Argonaute proteins are predicted to function as key components of a novel system of defense
769 against mobile genetic elements. *Biol. Direct* **4**, 29 (2009).

770 19. Burroughs, A. M., Ando, Y. & Aravind, L. New perspectives on the diversification of the
771 RNA interference system: Insights from comparative genomics and small RNA sequencing.
772 *Wiley Interdiscip. Rev. RNA* **5**, 141–181 (2014).

773 20. North, B. J. & Verdin, E. Protein family review Sirtuins: Sir2-related NAD-dependent
774 protein deacetylases Gene organization and evolutionary history. *Genome Biol.* **5**, 224
775 (2004).

776 21. Gallego-Jara, J. *et al.* Bacterial Sirtuins Overview: An Open Niche to Explore. *Frontiers in*
777 *Microbiology* vol. 12 (2021).

778 22. Wang, Y., Sheng, G., Juranek, S., Tuschl, T. & Patel, D. J. Structure of the guide-strand-
779 containing argonaute silencing complex. *Nature* **456**, 209–213 (2008).

780 23. Frank, F., Sonenberg, N. & Nagar, B. Structural basis for 5'-nucleotide base-specific
781 recognition of guide RNA by human AGO2. *Nature* **465**, 818–822 (2010).

782 24. Ka, D., Oh, H., Park, E., Kim, J. H. & Bae, E. Structural and functional evidence of bacterial
783 antiphage protection by Thoeris defense system via NAD⁺ degradation. *Nat. Commun.* **11**,
784 1–8 (2020).

785 25. Kim, S., Jung, Y. & Lim, D. Argonaute system of *Kordia jejudonensis* is a heterodimeric
786 nucleic acid-guided nuclease. *Biochem. Biophys. Res. Commun.* **525**, 755–758 (2020).

787 26. Dasgupta, S., Masukata, H. & Tomizawa, J. ichi. Multiple mechanisms for initiation of
788 ColE1 DNA replication: DNA synthesis in the presence and absence of ribonuclease H. *Cell*
789 **51**, 1113–1122 (1987).

790 27. del Solar, G., Giraldo, R., Ruiz-Echevarria, M. J., Espinosa, M. & Diaz-Orejas, R.
791 Replication and Control of Circular Bacterial Plasmids. *Microbiol. Mol. Biol. Rev.* **62**, 434–
792 464 (1998).

793 28. Selzer, G., Som, T., Itoh, T. & Tomizawa, J. ichi. The origin of replication of plasmid p15A
794 and comparative studies on the nucleotide sequences around the origin of related plasmids.
795 *Cell* **32**, 119–129 (1983).

796 29. Garb, J. *et al.* Multiple phage resistance systems inhibit infection via SIR2-dependent NAD⁺
797 depletion. *bioRxiv* 2021.12.14.472415 (2021) doi:10.1101/2021.12.14.472415.

798 30. Tal, N. *et al.* Cyclic CMP and cyclic UMP mediate bacterial immunity against phages. *Cell*
799 **184**, 5728–5739.e16 (2021).

800 31. Ofir, G. *et al.* Antiviral activity of bacterial TIR domains via immune signalling molecules.
801 *Nature* **600**, 116–120 (2021).

802 32. Zheng, L., Baumann, U. & Reymond, J. L. An efficient one-step site-directed and site-
803 saturation mutagenesis protocol. *Nucleic Acids Res.* **32**, (2004).

804 33. Ofir, G. *et al.* DISARM is a widespread bacterial defence system with broad anti-phage
805 activities. *Nat. Microbiol.* **3**, 90–98 (2018).

806 34. Doron, S. *et al.* Systematic discovery of antiphage defense systems in the microbial
807 pangenome. *Science* (80-.). **359**, eaar4120 (2018).

808 35. Mazzocco, A., Waddell, T. E., Lingohr, E. & Johnson, R. P. Enumeration of Bacteriophages
809 Using the Small Drop Plaque Assay System. *Methods Mol. Biol.* 81–85 (2009)
810 doi:10.1007/978-1-60327-164-6_9.

811 36. Blanchet, C. E. *et al.* Versatile sample environments and automation for biological solution
812 X-ray scattering experiments at the P12 beamline (PETRA III, DESY). *J. Appl. Crystallogr.*
813 **48**, 431–443 (2015).

814 37. Franke, D., Petoukhov, M. V., Konarev, P. V. & Panjkovich, A. ATSAS 2.8: a comprehensive
815 data analysis suite for small-angle scattering from macromolecular solutions. *J. Appl.*
816 *Crystallogr.* 1212–1225 (2017) doi:10.1107/S1600576717007786.

817 38. Konarev, P. V., Volkov, V. V., Sokolova, A. V., Koch, M. H. J. & Svergun, D. I. PRIMUS -
818 a Windows-PC based system for small-angle scattering data analysis. *J. Appl. Crystallogr.*
819 **36**, 1277–1282 (2003).

820 39. Svergun, D. I. Determination of the regularization parameter in indirect-transform methods
821 using perceptual criteria. *J. Appl. Crystallogr.* **25**, 495–503 (1992).

822 40. Durand, D. *et al.* NADPH oxidase activator p67phox behaves in solution as a multidomain
823 protein with semi-flexible linkers. *J. Struct. Biol.* **169**, 45–53 (2010).

824 41. Svergun, D. I., Petoukhov, M. V. & Koch, M. H. J. Determination of domain structure of
825 proteins from x-ray solution scattering. *Biophys. J.* **80**, 2946–2953 (2001).

826 42. Fischer, H., De Oliveira Neto, M., Napolitano, H. B., Polikarpov, I. & Craievich, A. F.
827 Determination of the molecular weight of proteins in solution from a single small-angle X-
828 ray scattering measurement on a relative scale. *J. Appl. Crystallogr.* **43**, 101–109 (2010).

829 43. Schubert, M., Lindgreen, S. & Orlando, L. AdapterRemoval v2: rapid adapter trimming,
830 identification, and read merging. *BMC Res. Notes* **9**, 88 (2016).

831 44. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform.
832 *Bioinformatics* **25**, 1754–1760 (2009).

833 45. Andrews, S. & others. FastQC: a quality control tool for high throughput sequence data.
834 (2010).

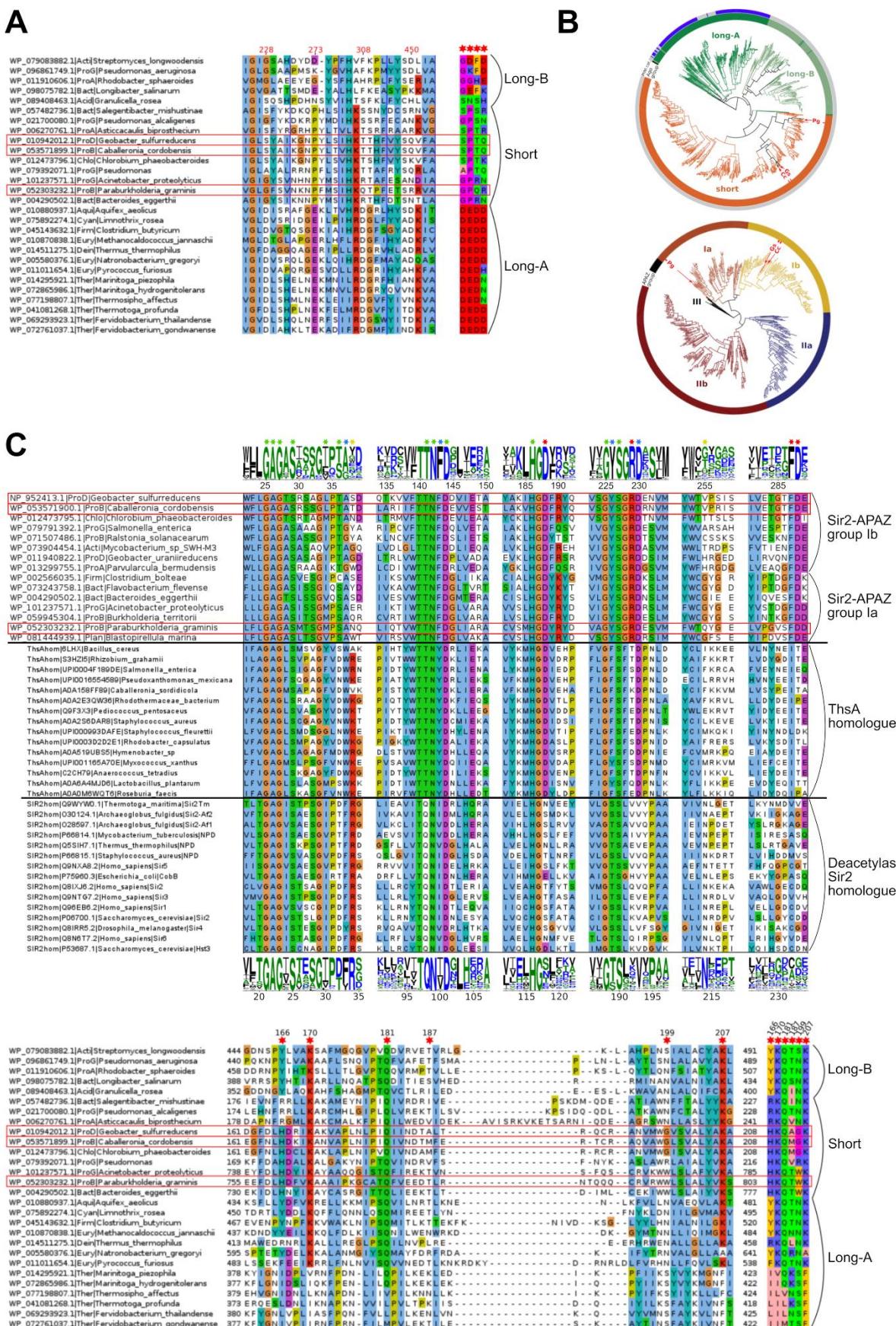
835 46. Li, H. *et al.* The Sequence Alignment/Map format and SAMtools. *Bioinformatics* **25**, 2078–
836 2079 (2009).

837 47. Crooks, G. E., Hon, G., Chandonia, J.-M. & Brenner, S. E. WebLogo: A Sequence Logo
838 Generator. *Genome Res.* **14**, 1188–1190 (2004).

839 48. Quinlan, A. R. BEDTools: The Swiss-Army Tool for Genome Feature Analysis. *Curr.*
840 *Protoc. Bioinforma.* **47**, 11.12.1–11.12.34 (2014).

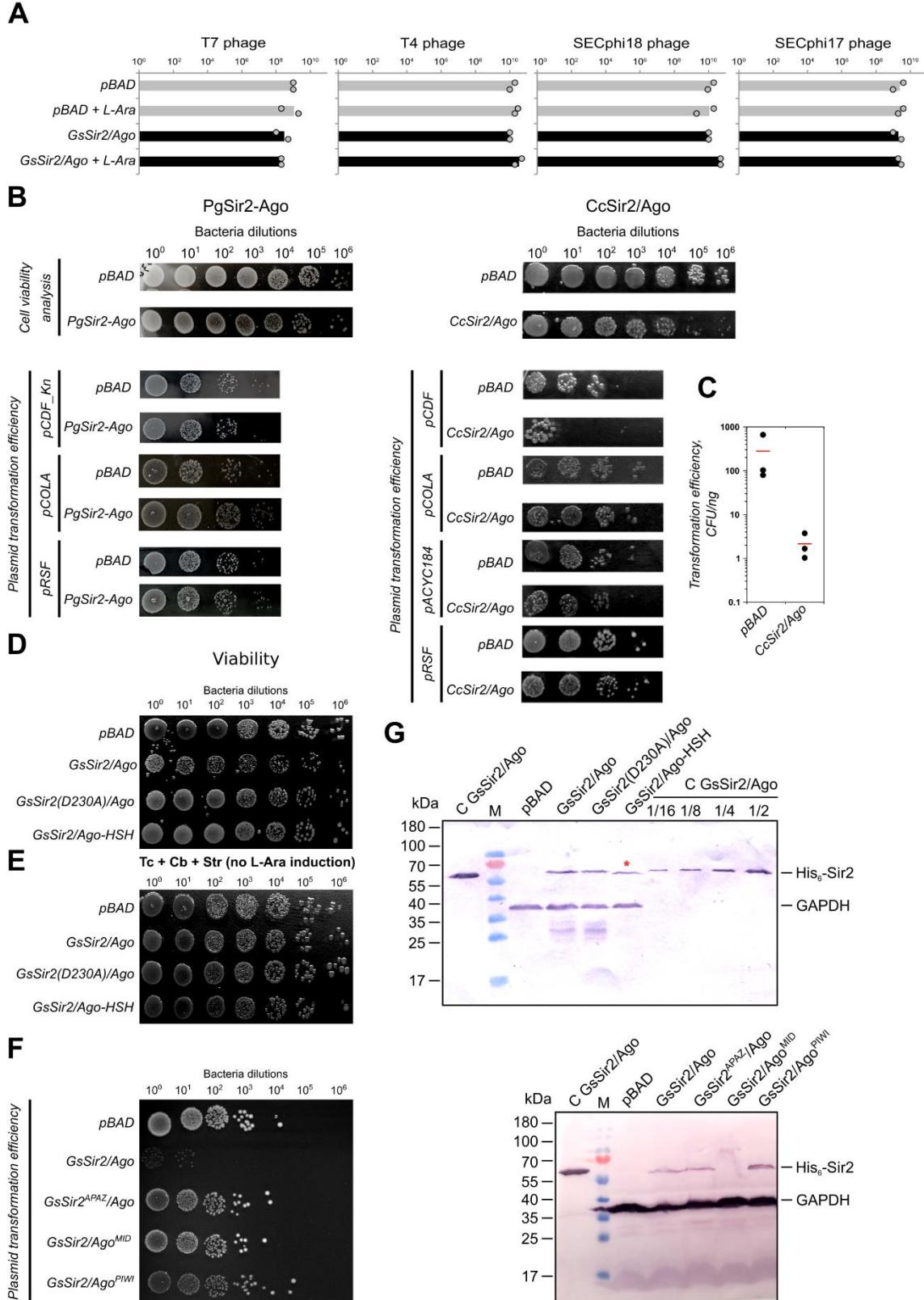
841 49. Wang, L., Wang, S. & Li, W. RSeQC: quality control of RNA-seq experiments.
842 *Bioinformatics* **28**, 2184–2185 (2012).

843 50. Thorvaldsdottir, H., Robinson, J. T. & Mesirov, J. P. Integrative Genomics Viewer (IGV):
844 high-performance genomics data visualization and exploration. *Brief. Bioinform.* **14**, 178–
845 192 (2013).


846 51. Kaya, E. *et al.* A bacterial Argonaute with noncanonical guide RNA specificity. *Proc. Natl.*
847 *Acad. Sci. U. S. A.* **113**, 4057–4062 (2016).

848 52. Koopal, B. *et al.* Short prokaryotic Argonaute systems trigger cell death upon detection of
849 invading DNA. *Cell* **185**, 1–16 (2022).

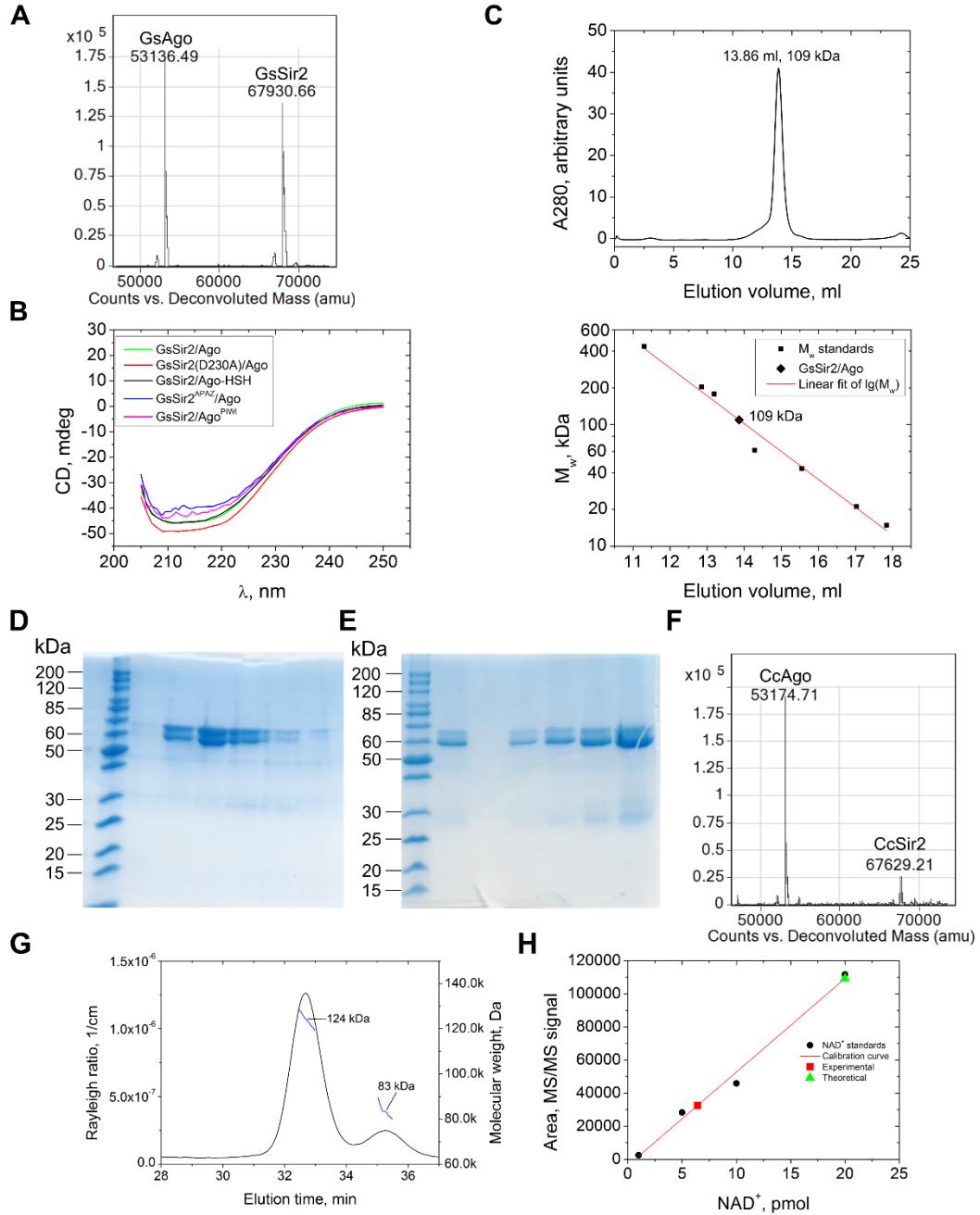
850


851

852 Extended data figures

854 **Extended Data Fig. 1. Bioinformatic analysis.** **A**, PIWI catalytic tetrad DEDX alignment. The 4 catalytic residues
855 (red numbers indicate positions of corresponding GsAgo positions) are shown in 4 motifs of ± 3 positions. The motifs
856 are separated by vertical blue lines. Sequence names consist of the following: NCBI sequence ID, abbreviated phylum
857 (e.g., 'ProG' – gamma-proteobacteria) and organism name. **B**, Top - a circular phylogenetic tree was generated
858 according to supplementary data provided with Ryazansky et al.⁸ Long-A pAgo variants are coloured in green
859 (truncated variants without the PAZ domain, light green), long-B pAgo proteins are light green (truncated variants
860 without PAZ, green), and short pAgo proteins are orange. pAgo proteins containing the catalytic tetrad DEDX in their
861 PIWI domain are indicated in blue on the outer circle; pAgos with inactivated PIWI domain are indicated in light grey
862 on the outer circle. pAgo proteins of the GsSir2/Ago, CcSir2/Ago and PgSir2-Ago systems are indicated by 'Gs', 'Cc'
863 and 'Pg', respectively. Bottom - Circular phylogenetic tree of APAZ domains. The circular phylogenetic tree of the five
864 groups of APAZ domains was generated using APAZ domain alignments from Ryazansky et al.⁸ supplementary file 7.
865 **C**, Top - Combined alignment of Sir2 domains. Alignment consists of 3 parts, separated by horizontal black lines. In the
866 top part, the Sir2 domain sequences of the GsSir2, CcSir2, PgSir2-Ago and homologues are shown. Logos above depict
867 the conservation of Sir2 domains of Ia and Ib groups. The indicated position numbers correspond to the GsSir2
868 sequence. In the bottom part, homologues (sirtuins) of catalytically active *Thermotoga maritima* Sir2 (TmSir2)
869 deacetylase are shown. Logos below indicate the conservation of these homologues. The position numbers correspond
870 to the TmSir2 sequence. Sequences of six motifs that include all positions that form the NAD⁺-binding pocket, as seen
871 in the TmSir2 structure (PDB ID 2H4F) are shown. Sequence names for the top alignment consist of sequence ID,
872 abbreviated phylum and organism name. Sequence names for bottom alignment all start with "Sir2hom" followed by
873 sequence ID, organism name and short protein name (based on annotation). Stars above the logos indicate residues in
874 the NAD⁺-binding pocket of canonical sirtuins (e.g., TmSir2) that are also conserved. Star colours indicate conservation
875 between the two groups: green – conserved in both canonical sirtuins and GsSir2-like; blue – conserved in both groups,
876 but different; yellow – conserved only in canonical sirtuins; red – conserved only in GsSir2-like proteins. In the middle,
877 alignment of ThsA homologues with Sir2 domains. Bottom - MID domain alignment. Red stars indicate positions of
878 amino acids involved in the binding of the 5'-P end of the guide nucleic acid. The numbering above corresponds to the
879 GsAgo sequence. Additionally, concatenated alignment of just the 6 indicated positions is shown on the right. The three
880 sequences of interest are indicated with red rectangles. Numbers on the left and right of the alignment indicate the first
881 and last positions in the alignment for each sequence.

882

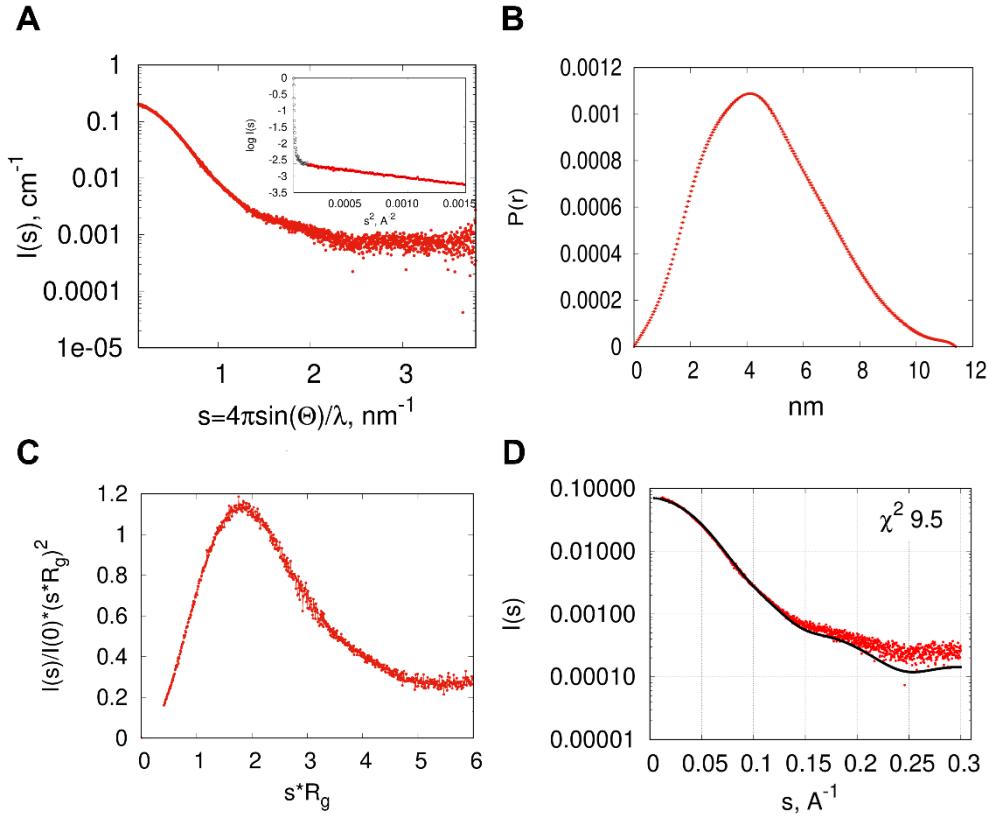


883

884 **Extended Data Fig. 2. *In vivo* characterization of Sir2/Ago systems.** A, Efficiency of plating (EOP) of 4 phages
 885 infecting *E. coli* cells with and without the GsSir2/Ago system from *Geobacter sulfurreducens*, where the GsSir2/Ago
 886 system exhibits no defence activity. The x-axis represents the number of p.f.u. Shown are the means of two replicates in

887 the absence and in the presence of the inducer L-arabinose (L-Ara), with individual datapoints superimposed. Grey bars
888 represent efficiency of plating (EOP) on pAgo-lacking cells and black bars are EOP in pAgo-containing cells. **B**, Left -
889 qualitative characterization of plasmid restriction capabilities of PgSir2-Ago system in *E. coli* strain DH10B. Top: com-
890 parison of cell viability in the presence or absence of plasmid-borne PgSir2-Ago expression. Bottom: com-
891 parison of plasmid transformation efficiencies in the presence or absence of plasmid-borne PgSir2-Ago expression. Right -
892 qualitative characterization of plasmid restriction capabilities of CcSir2/Ago system in *E. coli* strain BL20-AI: top -
893 com-
894 parison of cell viability in the presence or absence of plasmid-borne CcSir2/Ago expression. Bottom - com-
895 parison of plasmid transformation efficiencies in the presence or absence of plasmid-borne CcSir2/Ago expression. **C**,
896 Quantification of transformation efficiencies for pCDF plasmid with CcSir2/Ago system (three independent replicates,
897 the red line represents average transformation efficiency). **D**, Cell viability control of BL21-AI, expressing GsSir2/Ago
898 and mutants. **E**, Control for Fig. 2E – cells contain the pCDF plasmid, however, expression of the GsSir2/Ago system is
899 not induced. **F**, Qualitative evaluation of pCDF plasmid transformation efficiency in *E. coli* cells carrying GsSir2/Ago
900 mutants (GsSir2^{APAZ}/Ago, GsSir2/Ago^{MID} and GsSir2/Ago^{PIWI}) of the putative surface of the interaction with nucleic
901 acids. **G**, Expression analysis of GsSir2/Ago assayed by Western blot. Top: semiquantitative Western blot of the wt
902 GsSir2/Ago complex and its mutants. Numbers above the lanes indicate which part of control protein amount is loaded.
903 The red star shows the lane where the His-tag is on the C-terminus of Ago, rather than the N-terminus of Sir2. GAPDH,
904 loading control. Bottom: Expression analysis of GsSir2/Ago mutants of the putative surface of the interaction with
nucleic acids. Three replicates.

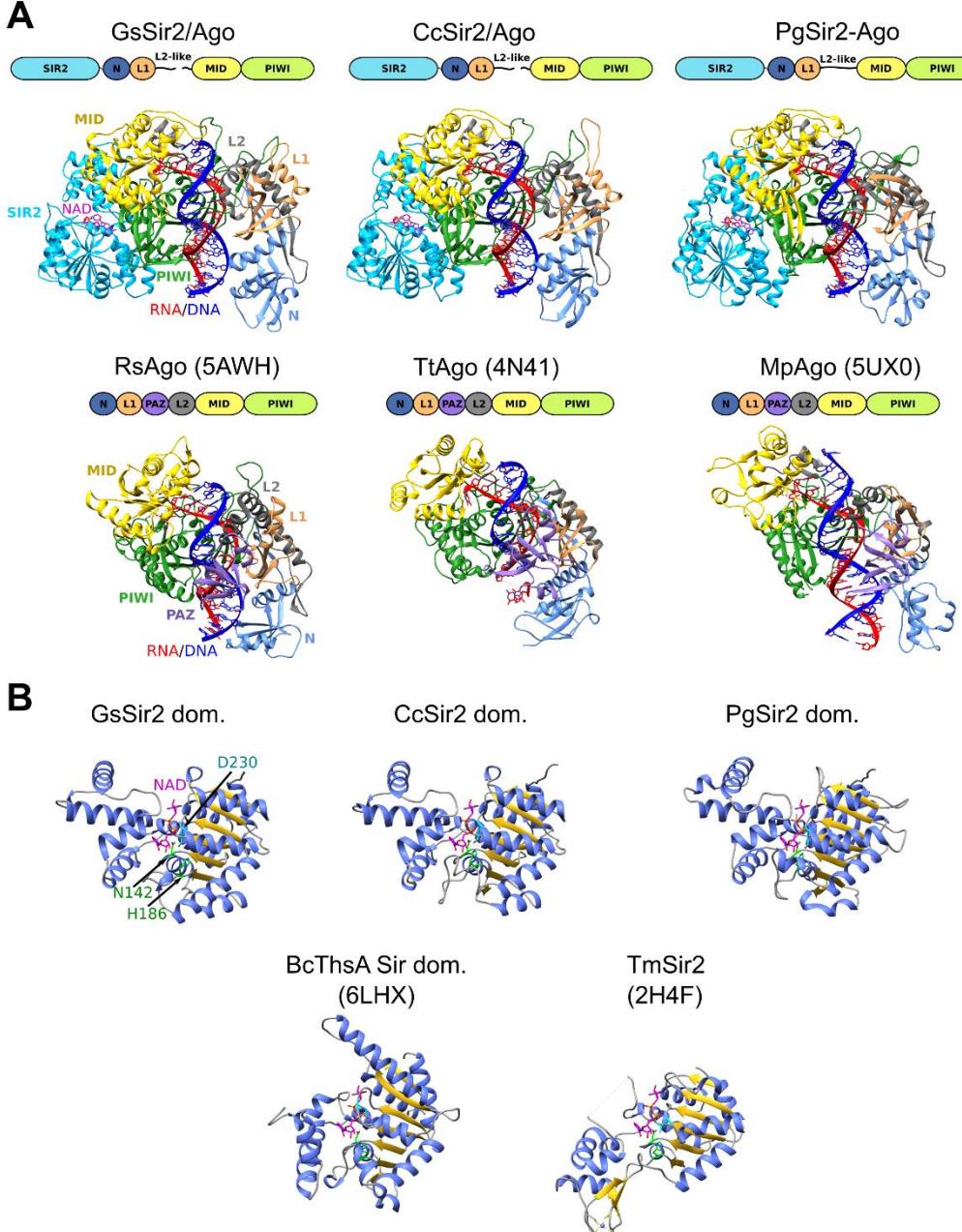
905



906

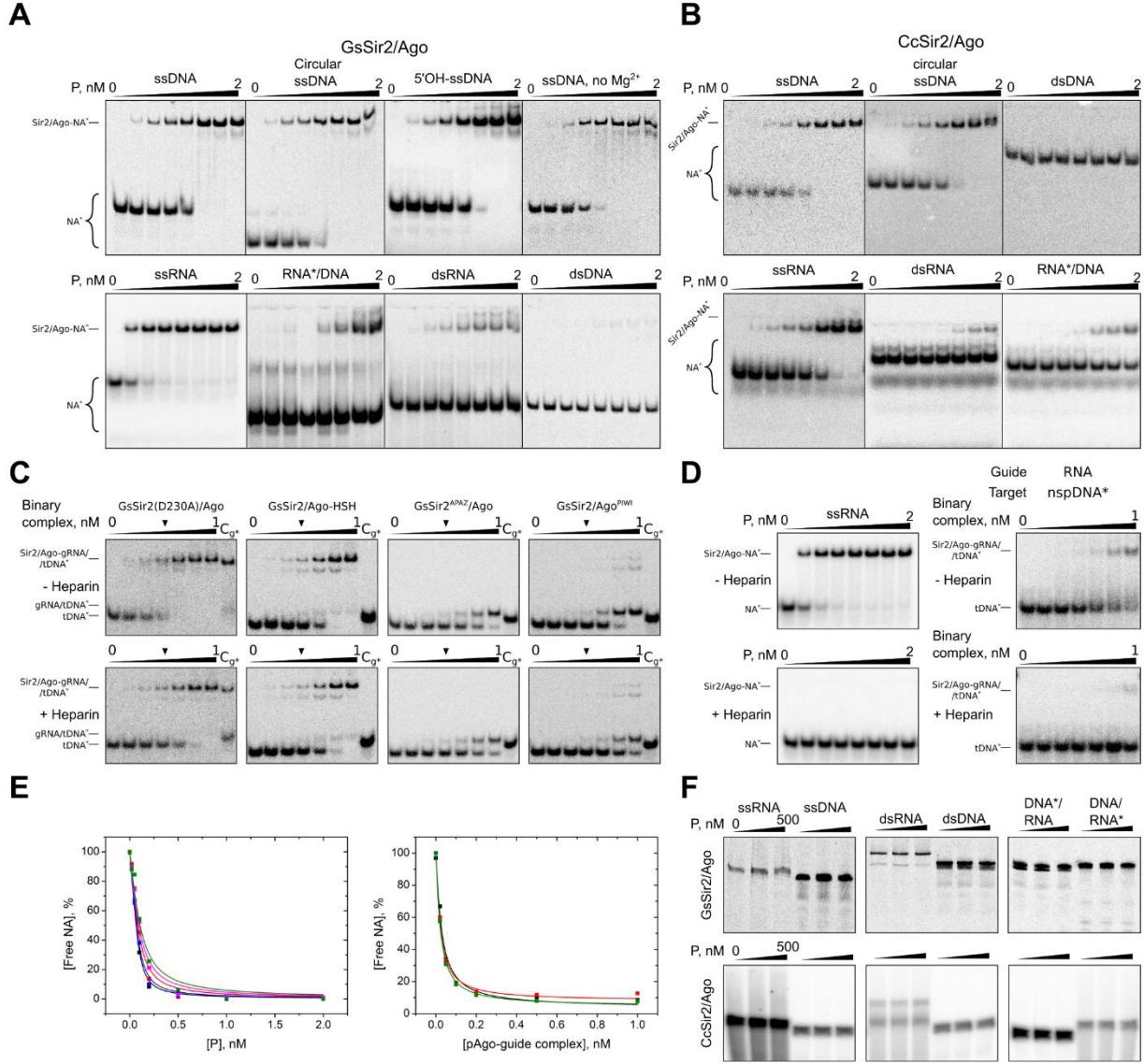
907 **Extended Data Fig. 3. Purification and characterization of Sir2/Ago complexes.** **A**, MS analysis of wt GsSir2/Ago
 908 complex. The theoretical M_w of the GsSir2 and GsAgo proteins (without 1st Met) are 67929.51 Da and 53135.61 Da,
 909 respectively. **B**, CD spectra of wt GsSir2/Ago and mutants. Mutant spectra are similar to that of a natively folded
 910 protein. **C**, Size-exclusion chromatography of wt GsSir2/Ago, showing elution volume and comparing to mass
 911 standards. According to mass spectrometry of the purified GsSir2/Ago complex, the molar mass of the GsSir2/Ago
 912 heterodimer is 121 kDa. **D**, SDS-PAGE analysis of fractions containing the CcSir2/Ago complex eluted from Heparin
 913 column. Densitometric inspection shows that Sir2 and Ago proteins are in the ratio ~1:1. Single replicate. **E**, SDS-
 914 PAGE analysis of the CcSir2/Ago stock after dialysis against a storage buffer. Various amounts of the stock solution
 915 were loaded on the gel. Densitometric inspection shows that Sir2 and Ago proteins are in the ratio ~0.3:1. Single
 916 replicate. **F**, MS analysis of the CcSir2/Ago complex. The experimental masses (53174.71 Da and 67629.21 Da)
 917 are close to the theoretical molecular masses of the Ago protein (53173.91 Da) and the Sir2 protein with the truncated tag at
 918 the N terminus (67626.24 Da). **G**, SEC-MALS analysis of the CcSir2/Ago complex. The experimental mass of 124 kDa
 919 is close to the theoretical molecular mass of the CcSir2/Ago heterodimer (121 kDa). **H**, MS/MS calibration curve of
 920 NAD⁺ standard (marked in black) and the observed amount of NAD⁺ (marked in red) in the CcSir2/Ago complex
 921 (20 pmol according to the Ago protein). The discrepancy between the expected amount of NAD⁺ (20 pmol, marked in

922 green) and the actual amount (6.45 pmol, marked in red) was due to the decrease of the Sir2 protein in the CcSir2/Ago
923 preparation (see **E**).


924

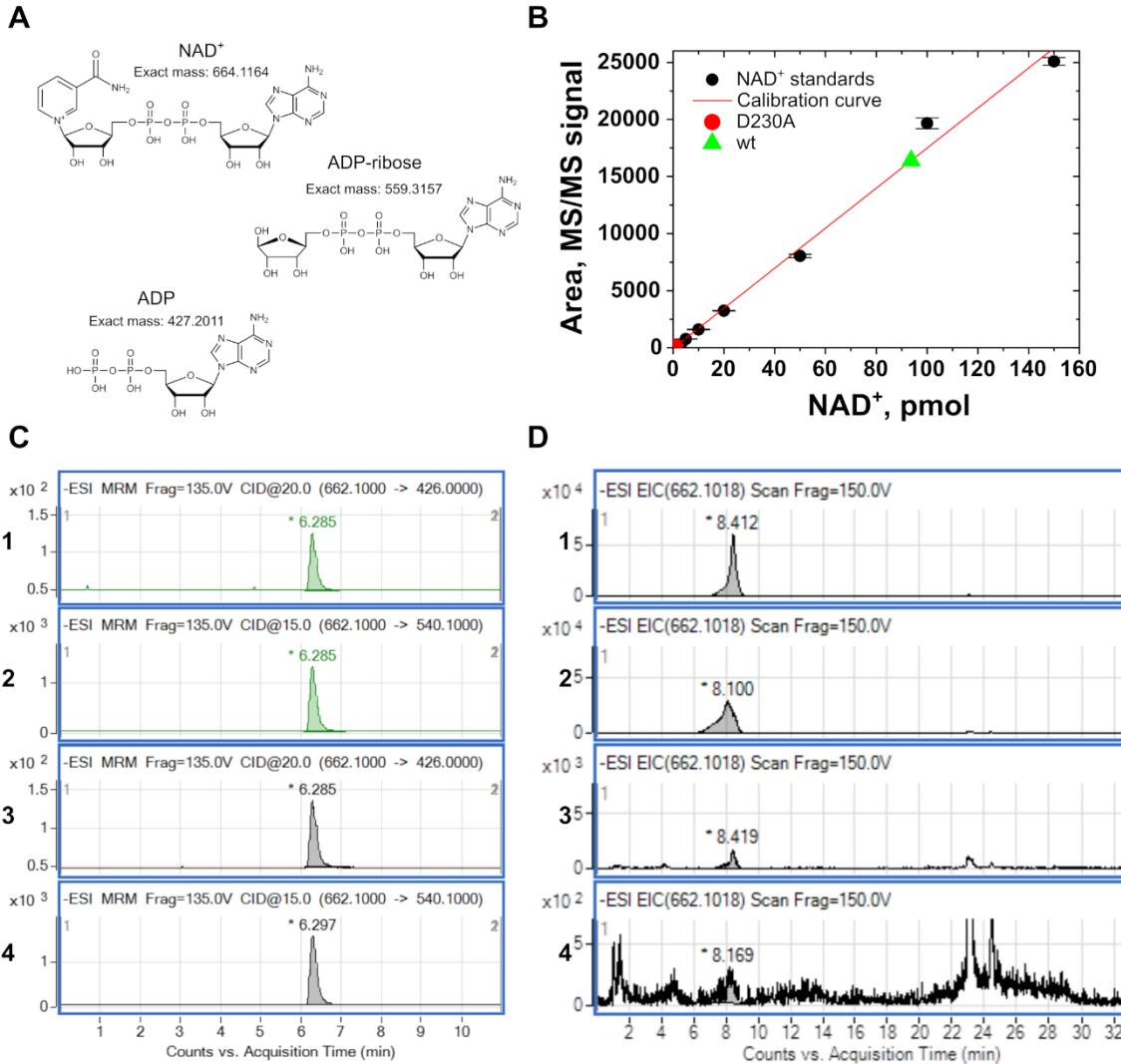
925

926 **Extended Data Fig. 4. SAXS data.** **A**, Scattering data on an absolute scale. Linear Guinier plot of the initial part of the
927 scattering curve is in the insert. Points cut from the further processing are shown with empty black symbols. **B**, Kratky
928 plot, normalized by R_g and $I(0)$ parameters. **C**, Pair distance distribution function. **D**, CRYSTAL Fit of the scattering
929 curve calculated from the GsSir2/Ago AlphaFold model (black curve) with SAXS data (red points).


930

931

932 **Extended Data Fig. 5. Structural analysis.** **A**, Comparison of GsSir2/Ago, CcSir2/Ago and PgSir2-Ago AlphaFold
933 models with the X-ray structures of long pAgos. Structures are coloured by domains, schematic domain architecture is
934 given above each structure. Guide RNA and target DNA strands are coloured red and blue, respectively. PDB ID codes
935 for long pAgo structures are given in parentheses. RsAgo represents long-B group, TtAgo – longA group of long pAgos
936 (based on Ryazansky et al. classification⁸). MpAgo has a distinct OH-type MID domain that is specific to 5'-OH instead
937 of phosphate (MID domain classification – Ryazansky et al.⁸, MpAgo MID domain biochemical assay - Kaya et al.⁵¹).
938 In Sir2/Ago models the N, L1 and L2-like domains previously identified as the APAZ domain correspond to the
939 analogous domains of long pAgos. **B**, Gs, Cc and Pg Sir2 structural models (cut from full-length models) compared to
940 canonical Sir2 deacetylase TmSir2 and the Sir2 domain of Thoeris defence system protein ThsA. Structures are
941 coloured based on secondary structure. Positions corresponding to ThsA Sir2 N112 and H152 are indicated in green.
942 These residues have been shown to be critical for NAD⁺ hydrolysis in ThsA²⁴. GsSir2 D230 and corresponding
943 positions in other structures are indicated in cyan. NAD⁺ was also superimposed on the ThsA Sir2 structure from
944 TmSir2.


945

946

947 **Extended Data Fig. 6. EMSA and nucleic acid cleavage experiments.** **A-B**, Binding of single- and double-stranded
 948 oligonucleotides by wt GsSir2/Ago and wt CcSir2/Ago, respectively. A radiolabelled strand indicated by the asterisk.
 949 **C**, Binding of complementary DNA targets by GsSir2/Ago binary complexes pre-loaded with RNA guide containing
 950 5'-phosphate terminus in the presence or absence of heparin. To show that no displacement of the radiolabelled guide
 951 by the target strand is observed, a control (Cg*) equivalent to the experimental lane marked by a black triangle, but with
 952 the guide, rather than the target, bearing the radioactive label, was performed. **D**, Control EMSA experiments of ssRNA
 953 guide binding by wt GsSir2/Ago (left) and non-complementary DNA target binding by the binary wt GsSir2/Ago-gRNA
 954 complex in the presence and absence of heparin. **E**, Representative binding fit curves of several independent
 955 replicates used to calculate K_d of ssRNA guide binding by wt GsSir2/Ago (left) and of target DNA binding by wt
 956 GsSir2/Ago-gRNA complex (right). **F**, (No) cleavage activity of various DNA and RNA oligonucleotides by wt
 957 GsSir2/Ago and wt CcSir2/Ago. Reaction products were resolved on a 21% denaturing polyacrylamide gel. In
 958 heteroduplexes, the asterisk indicates the radiolabelled strand. For panels **A-D** and **F**, at least three independent
 959 replicates were performed for each experiment.

960

961

962 **Extended Data Fig. 7. The GsSir2/Ago complex binds NAD⁺ and causes its depletion.** **A**, Two ion transitions were
963 used to detect NAD⁺ in the analysed samples: 662.1→540.1 and 662.1→426.0. **B**, MS/MS calibration curve of NAD⁺
964 standard (marked in black, two replicates) and the observed amount of NAD⁺ in two samples: 93.7 pmol in the wt
965 GsSir2/Ago sample (marked in green), 0.7 pmol in the sample D230A (marked in red). Black dots represent the means
966 of two replicates and error bars are the standard deviation. **C**, Detection of NAD⁺. Comparison of the extracted LC-
967 MS/MS chromatograms: ion transition 662.1→426.0 of wt GsSir2/Ago sample (panel 1) and NAD⁺ standard (panel 3);
968 ion transition 662.1→540.1 of wt GsSir2/Ago sample (panel 2) and NAD⁺ standard (panel 4). Green curves - wt
969 GsSir2/Ago sample, grey curves – NAD⁺ standard. **D**, Mass chromatogram. For NAD⁺ detection, an extracted ion
970 current (EIC) for [M-H]⁻ m/z = 662.1018 was used. The comparison of EIC signals shows that the amount of NAD⁺ in
971 the samples of the non-induced GsSir2/Ago system in the absence (panel 1) and presence (panel 2) of pCDF plasmid is
972 almost the same, while a significant decrease is observed in the sample of the induced GsSir2/Ago system in the
973 absence of pCDF plasmid (panel 3) and only traces of NAD⁺ are detected in the presence of pCDF plasmid (panel 4).

974

975 **Short prokaryotic Argonautes provide defence against incoming mobile genetic
976 elements through NAD⁺ depletion**

977 Mindaugas Zaremba^{1*}, Donata Dakineviciene¹, Edvardas Golovinas¹, Evelina Zagorskaitė¹, Edvinas
978 Stankunas^{1†}, Anna Lopatina^{2‡}, Rotem Sorek², Elena Manakova¹, Audrone Ruksenaite¹, Arunas
979 Silanskas¹, Simonas Asmontas¹, Algirdas Grybauskas¹, Ugne Tylenyte¹, Edvinas Jurgelaitis¹, Rokas
980 Grigaitis^{1#}, Kęstutis Timinskas¹, Česlovas Venclovas¹, Virginijus Siksnys^{1*}

981

982 **Supplementary Information**

983

984 Contains Supplementary Note, Supplementary Methods, Supplementary References, and 3
985 Supplementary Tables

986

987 **Supplementary Note 1**

988 **Bioinformatic analysis of the selected Sir2/Ago systems.** Closer inspection of the genomic
989 neighbourhood of the selected pAgos showed that no other conserved operons are formed with the
990 pAgo genes. However, the observed enrichment of putative restriction endonucleases, mobile
991 genetic elements (e.g. transposases, integrases) and toxin-antitoxin systems in the neighbourhood of
992 the GsAgo and CcAgo genes indicates that they could be a part of so-called bacterial defence
993 islands¹. All three systems have MID-PIWI domains, characteristic of Agos, but their PIWI
994 domains are catalytically inactive (Fig. 1A). Importantly, this derived feature is shared with the
995 evolutionary closest group of long pAgos (Extended Data Fig. 1C). Although overall sequence
996 similarity between the MID-PIWI regions of selected systems (Gs, Cc and Pg) and long pAgos is
997 rather low (~15-20% sequence identity), their MID domains do have conserved residues associated
998 with binding of the 5'-end of the guide strand² (Extended Data Fig. 1E). The conserved motif of
999 MID domains of all three systems is of the HK-type, which is more similar to the 5'-P-end binding
1000 motif present in long pAgos such as RsAgo or TtAgo than to the 5'-OH-end binding motif found,
1001 for example, in MpAgo². Unlike long pAgos, short pAgos lack the PAZ domain and are rather
1002 associated with an APAZ (analogue of PAZ) domain (Fig. 1A)³. By phylogeny of the APAZ
1003 domain region, PgSir2-Ago belongs to Ia, and GsSir2/Ago and CcSir2/Ago to Ib groups,
1004 respectively (Extended Data Fig. 1B)². The sequences of Sir2 domains associated with the three
1005 studied pAgos are similar to canonical sirtuins³, and also have an identifiable signature of a putative
1006 NAD⁺-binding pocket (Extended Data Fig. 1C). Yet there are many differences from canonical
1007 sirtuins, and the identified conserved amino acid positions found only in pAgo-associated Sir2
1008 domains suggest that these domains might have a function different from the typical deacetylase
1009 activity of sirtuins (Extended Data Fig. 1C). pAgos-associated Sir2 domains also show similarities
1010 to NADase domains of ThsA proteins from the Thoeris anti-phage systems (Extended Data Fig.
1011 1C)^{4,5}.

1012 **GsSir2/Ago complex resembles long PAZ-free pAgos containing an additional effector
1013 domain.** To get an insight into the 3D structure of GsSir2/Ago and the other two systems, we used
1014 AlphaFold⁶ to generate corresponding structural models. Based on high AlphaFold confidence
1015 values (pLDDT>87; pTM>0.82) and favourable VoroMQA⁷ statistical energy scores (>0.53) the
1016 models for all three systems might be expected to be of comparable quality with experimental
1017 structures. Consistent with clear homology between the three systems the corresponding models
1018 showed close structural similarity with each other (Extended Data Fig. 5). Therefore, we focus only
1019 on the GsSir2/Ago complex. In this complex, the Sir2 and Ago subunits bind together to form a
1020 structure similar to that of a single-chain long pAgo protein such as RsAgo (Extended Data Fig. 5).
1021 Based just on a structural similarity search against PDB, GsSir2/Ago appears to be most similar to
1022 the TtAgo structure classified as a long-A pAgo². Another close structural match is RsAgo, a
1023 member of long-B pAgos². GsAgo shares 17% identical residues with both TtAgo and RsAgo.
1024 However, since RsAgo, just like short pAgo proteins, has a catalytically inactive PIWI domain, a
1025 comparison of GsSir2/Ago with RsAgo might be biologically more relevant.

1026 The APAZ part of the GsSir2 chain is structurally similar to the combination of N, L1 and L2
1027 domains of RsAgo (similarity to the N domain has been already proposed earlier^{8,9}). However, the
1028 L2 linker domain in GsSir2/Ago corresponds to the two fragments, C-terminus of Sir2 and N-
1029 terminus of Ago. Importantly, the PAZ domain, required for the 3'-end recognition of the guide
1030 strand in long pAgos, is missing from the GsSir2/Ago structure altogether. Additionally,
1031 GsSir2/Ago has a smaller N domain than long pAgos, which could also alter nucleic acid binding.
1032 PIWI and MID domains are structurally similar to corresponding RsAgo domains. Notably,
1033 GsSir2/Ago has a longer loop (residues 268-272) compared to the corresponding region in RsAgo.

1034 This loop shows some steric overlap with the copied-in RNA/DNA duplex, but presumably, its
1035 conformation may adjust to accommodate RNA/DNA heteroduplex. The loop contains two
1036 positively charged residues (R269, K270) that might be involved in the binding of the nucleic acid
1037 backbone.

1038 In the structural model, the N-terminal Sir2 domain of the GsSir2 protein is attached to the C-
1039 terminal domain corresponding to the N-terminal region of a long pAgo through a long linker. In
1040 effect, the two domains of GsSir2 are positioned at the opposite extremes of the complex (Sir2
1041 domain is bound to the PIWI domain whereas the C-terminal domain is bound to the MID domain).
1042 Sir2 domain of GsSir2/Ago is structurally similar to canonical Sir2 proteins suggesting it could bind
1043 NAD⁺ in a similar way. However, the overall structurally closest homolog is the Sir2 domain of the
1044 ThsA protein from the Thoeris defence system⁵ (Extended Data Fig. 5). The ThsA residues, N112
1045 and H152, shown to be essential for NAD⁺ hydrolysis have their counterparts in GsSir2 (N142 and
1046 H186). Interestingly, the loop containing H186 in different GsSir2/Ago models displays some
1047 conformational heterogeneity hinting at possible flexibility, which might be relevant for the activity
1048 regulation. Conservation of these two positions is also observed in other Sir2 homologs (Extended
1049 Data Fig. 1C). On the other hand, the GsSir2 D230 residue shown here to be important for NAD⁺
1050 hydrolysis is conserved in ThsA Sir2 domain, but not in the canonical Sir2 proteins (e.g., V193 in
1051 TmSir2). In the AF2 structural model, the NAD⁺-bound Sir2 active site is hidden at the interface
1052 between the MID and PIWI domains. One may assume that binding of the complementary DNA
1053 target by the binary GsSir2/Ago-gRNA complex triggers a conformational change that opens and
1054 activates the Sir2 active site resulting in NAD⁺ hydrolysis.

1055 **The activated GsSir2/Ago depletes NAD⁺ enzymatically.** Our results show that wt GsSir2/Ago
1056 tightly interacts with NAD⁺ (Fig. 5A, Extended Data Fig. 7). Therefore, there is a theoretical
1057 possibility that the NAD⁺ depletion in *E. coli* cells expressing the GsSir2/Ago system might be
1058 related to its tight binding by the activated GsSir2/Ago complex. However, this assumption can be
1059 ruled out based on our approximate calculations of relative levels of the GsSir2/Ago protein and
1060 NAD⁺ molecules in *E. coli* cells. According to our semiquantitative Western Blot analysis
1061 (Extended Data Fig. 2G), the GsSir2/Ago concentration (~1 μM) is more than ~1000-fold lower
1062 than that of NAD⁺ (~2.5 mM), which is in the range of the published NAD⁺ concentrations (~0.6-8
1063 mM)¹⁰. Therefore, the activated GsSir2/Ago complex should act enzymatically to deplete such a
1064 large excess of NAD⁺.

1065 **Supplementary methods**

1066 **Sequences analysis.** Lists of pAgo homologues and associated APAZ domains were retrieved from
1067 supplementary data of the Ryazansky et al. article². *Thermotoga maritima* Sir2 homologues were
1068 collected from the SwissProt database¹¹ using BLAST¹² (1e-5 e-value cutoff). Full-length sequences
1069 were retrieved from NCBI. *Bacillus cereus* ThsA (PDB ID 6LHX) homologues were collected
1070 using BLAST from UniRef50¹³ database (1e-10 e-value cutoff). To remove other Sir2 homologues,
1071 these sequences were clustered with CLANS¹⁴. The cluster separated at p=1e-70 was selected as the
1072 representative ThsA group. Fragmented ThsA sequences and sequences missing one of the domains
1073 were discarded. Multiple sequence alignments were generated using MAFFT (l-INS-i mode for
1074 high accuracy)¹⁵. Jalview¹⁶ was used for multiple sequence alignment analysis, cutting and
1075 visualization. Sequence motif visualization was done using WebLogo 3 server¹⁷. Construction of
1076 combined multiple sequence alignment of GsSir2, TmSir2 and ThsA homologues was guided by
1077 the alignments between GsSir2, TmSir2 and BsThsA sequences obtained using the HHpred
1078 server¹⁸.

1079 **Phylogenetic tree construction.** The phylogenetic trees were constructed with FastTree¹⁹ using the
1080 WAG model of amino acid substitution²⁰ and the gamma model of rate heterogeneity. Prior to
1081 phylogenetic analysis, multiple sequence alignment positions containing more than 50% gaps were
1082 removed using trimAl²¹. Phylogenetic tree visualization was done with iTOL²².

1083 **Genomic neighbourhood analysis.** For genomic neighbourhood analysis, the *Geobacter*
1084 *sulfurreducens*, *Caballeronia cordobensis*, and *Paraburkholderia graminis* genomes (respective
1085 GenBank accessions: GCA_000210155.1, GCA_001544575.2 and GCA_000172415.1) and all
1086 associated sequence and annotation data were obtained from NCBI
1087 (<ftp://ftp.ncbi.nlm.nih.gov/genomes/Bacteria/>). Genes in the neighbourhood of each pAgo (10
1088 upstream and 10 downstream) were identified based on available genome annotations. To refine
1089 available functional annotations of these genes, searches through Pfam²³ and PDB databases were
1090 performed using the HHpred server¹⁸.

1091 **Expression and purification of CcSir2/Ago complex.** Expression vector constructs of the
1092 CcSir2/Ago system were used to transform *E. coli* BL21(DE3) strain. Transformed bacteria were
1093 grown at 37 °C in LB medium in the presence of 50 µg/ml ampicillin until OD₆₀₀ = 0.7 was
1094 reached. Then, the medium was cooled to 16 °C temperature and proteins were expressed for 16 h
1095 by adding 0.1% w/v L-arabinose. Harvested cells were disrupted by sonication in buffer A (20 mM
1096 Tris-HCl (pH 8.0 at 25 °C), 1.0 M NaCl, 2 mM phenylmethylsulfonyl fluoride, 5 mM 2-
1097 mercaptoethanol), and cell debris was removed by centrifugation. TwinStrep-CcSir2/Ago complex
1098 was purified to > 90% homogeneity by chromatography through Strep-Tactin XT Superflow (Iba),
1099 HiLoad Superdex 200, HiTrap Heparin HP columns (GE Healthcare). Purified proteins were stored
1100 at -20 °C in a buffer containing 20 mM Tris-HCl (pH 8.0 at 25 °C), 500 mM NaCl, 2 mM DTT and
1101 50% v/v glycerol. The identity of the purified proteins was confirmed by mass spectrometry.
1102 Protein concentrations were determined from OD₂₈₀ measurements using the theoretical extinction
1103 coefficients calculated with the ProtParam tool available at <http://web.expasy.org/protparam/>.
1104 TwinStrep-CcSir2/Ago complex concentrations are expressed in terms of heterodimer.

1105 **CD analysis.** To test whether the introduced mutations have an effect on secondary structures of the
1106 GsSir2/Ago, CD spectra of the proteins were recorded. Protein samples (5 µM of heterodimer) were
1107 prepared in 200 µl of the buffer (10 mM Tris-HCl (pH 8.0 at 25 °C), 50 mM NaCl). The circular
1108 dichroism spectra were recorded in triplicate with Jasco J-815 CD spectrometer (Jasco, Easton,
1109 MD) using a 1 mm quartz cuvette at a scanning speed of 50 nm/min from 200 to 250 nm. The
1110 temperature of samples was controlled at 25 °C using a Jasco temperature control device.

1111 **Construction and analysis of Sir2/Ago structural models.** Structural models were generated
1112 using the AlphaFold method⁶ implemented as ColabFold²⁴, an online Google Colaboratory
1113 notebook. For modelling, the ‘AlphaFold2_advanced’ notebook
1114 (colab.research.google.com/github/sokrypton/ColabFold/blob/main/beta/AlphaFold2_advanced.ipynb) was used.
1115 GsSir2/Ago and CcSir2/Ago complexes were modelled as heterodimers, whereas the
1116 Pg sequence representing a fusion of Sir2 and a short pAgo (PgSir2-Ago) was modelled as a
1117 monomer. The modelling pipeline was run with default parameters except for the multiple sequence
1118 alignment (MSA) pairing, which was set to ‘paired+unpaired’. The best-of-five model in each case
1119 was selected using VoroMQA⁷. Structure similarity searches of models/domains against PDB were
1120 performed using Dali²⁵. Structure analysis and visualization was performed using UCSF Chimera²⁶.
1121 Putative binding sites of Sir2/Ago complexes were investigated by simply copying the RNA/DNA
1122 duplex and NAD⁺ from RsAgo (PDB ID: 5AWH) and TmSir2 (PDB ID: 2H4F) structures
1123 correspondingly after their superposition onto structural models. No attempts to remove possible
1124 clashes between protein models and either RNA/DNA or NAD⁺ were made.

1125 **Nucleic acid cleavage assay.** The same linear oligonucleotides used for EMSA (Supplementary
1126 Table 2) were given as substrates for nucleic acid cleavage assay. To raise the total substrate
1127 concentration, 5'-³²P radiolabelled oligonucleotides were mixed with appropriate cold 5'P-
1128 oligonucleotides at a ratio of 1:4 of hot:cold, and diluted to a working concentration of 100 nM in
1129 reaction buffer (33 mM Tris-acetate, pH 7.9, supplemented with 10 mM magnesium acetate, 66 mM
1130 potassium acetate, 0.1 mg/ml BSA, 5 mM DTT). Protein dilutions were made using the same
1131 reaction buffer to 2x final reaction concentration. Protein complexes and nucleic acids were mixed
1132 in final concentrations of 50 nM NAs and 0, 50 or 500 nM protein, incubated for 1 hour at 25 °C.
1133 The reaction was stopped with the addition of 2x 95% formamide dye and incubating for 5 min at
1134 95 °C. Reaction products were resolved by denaturing PAA gel electrophoresis (21% 29:1
1135 acrylamide/bis-acrylamide in TBE (89 mM Tris, 89 mM boric acid, 2 mM EDTA), supplemented
1136 with 8 M urea), visualised with a phosphor imager and analysed in OptiQuant software.

1137

1138

1139 **Supplementary tables**

1140 **Supplementary Table 1. Strains, bacteriophages, plasmids, and proteins used in this work**

Bacterial strains (<i>Escherichia coli</i>)	Details	Source or reference, links
MG1655	F λ <i>ilvG rfb-50 rph-1</i>	Blattner, F. <i>et al.</i> ²⁸
BL21-AI	F <i>ompT hsdS_B (r_B m_B) gal dcm araB::T7RNAP-tetA</i>	Bhawsinghka, N. <i>et al.</i> ²⁹
DH10B	F <i>mcrA Δ(mrr-hsdRMS-mcrBC) Φ80dlacZΔM15 ΔlacX74 endA1 recA1 deoR Δ(ara,leu)7697 araD139 galU galK nupG rpsL λ</i>	Grant, S.G.N. <i>et al.</i> ³⁰
Bacteriophages (<i>Escherichia coli</i>)		
T7	NC_001604.1	Udi Qimron; Kulczyk, A. & Richardson, C.C. ³¹
lambda-vir	NC_001416.1	Udi Qimron; Casjens, S.R. & Hendrix, R.W. ³²
SECphi27	LT961732.1	Sorek lab collection; Doron, S. <i>et al.</i> ⁴
SECphi18	LT960607.1	Sorek lab collection; Doron, S. <i>et al.</i> ⁴
T4	AF158101.6	Udi Qimron; Yap, M.L. & Rossmann, M.G. ³³
SECphi17	LT960609.1	Sorek lab collection; Doron, S. <i>et al.</i> ⁴
Plasmids		
pBAD/HisA	Bacterial expression vector, carrying a pBR322 replicon and ampicillin resistance, provides an N-terminal His ₆ tag for expressed proteins, ~40 copies/cell.	ThermoFisher cat#V43001. Tolia, N.H. & Joshua-Tor, L. ³⁴ https://benchling.com/s/seq-tfRnXVmwmGJqYnXmsDw?m=slm-gnSb1LLWrQibTPl2ibbs
pBAD24	Bacterial expression vector, carrying pBR322/ColE1 and F1 replicons, and ampicillin resistance gene, ~40 copies/cell.	Guzman, L.M <i>et al.</i> ³⁵ https://benchling.com/s/seq-zaoDsxfoymWz0CD0HSEI?m=slm-ALGNMJ5F3aprLKyOrHOK
pBAD24-HSH	pBAD24 vector with an HSH affinity tag before the rrnB terminator. Used to fuse the tag on target protein C-terminus, ~40 copies/cell.	Guzman, L.M <i>et al.</i> ³⁵
pCDF	Bacterial vector carrying a CloDF13 replicon, <i>lacI</i> gene and streptomycin/spectinomycin resistance gene, 20-40 copies/cell.	Tolia, N.H. & Joshua-Tor, L. ³⁴ https://benchling.com/s/seq-B4oyRce17nWdhFpsWmGx?m=slm-SrF4zHJbfnBfIhrG49jP
pCDF_Kn	pCDF vector, carrying kanamycin resistance instead of the canonical streptomycin, 20-40 copies/cell.	In-house construct. ³⁴ https://benchling.com/s/seq-7KKOFJrtBzzCbjA4MN3L?m=slm-Ez8cisdT8LtXDMNSNslr
pCOLA	Bacterial vector with a ColA origin of replication, harbours kanamycin resistance gene, 20-40 copies/cell.	Tolia, N.H. & Joshua-Tor, L. ³⁴ https://benchling.com/s/seq-dtqZ232iXhuGqGiyZR0a?m=slm-hLBjqu72mbC0yEKKFKeu
pACYC184	Bacterial vector carrying p15A origin of replication and tetracycline resistance gene, 10-12 copies/cell.	Tolia, N.H. & Joshua-Tor, L. ³⁴ https://benchling.com/s/seq-Rz0xd8JhIeZa1vwsFx7c?m=slm-5rwfx80s5z1sp04YeEbJ
pRSF	Bacterial vector carrying the RSF1030 replicon, <i>lacI</i> gene and kanamycin resistance gene, >100 copies/cell.	Tolia, N.H. & Joshua-Tor, L. ³⁴ https://benchling.com/s/seq-7C0lDtWUXncuAQyKn19F?m=slm-wTVKOxRQQYAFly1CXJET
pCDF_ColA	pCDF plasmid with its <i>ori</i> site replaced with the <i>ori</i> site from a pCOLA plasmid.	In-house construct. ³⁴ https://benchling.com/s/seq-yXHSYIuEhIy5tKTDgHmb?m=slm-PQajuJX3EDmQqYnXow9k
pCOLA_CloDF13	pCOLA plasmid with its <i>ori</i> site replaced with the <i>ori</i> site from a pCDF plasmid.	In-house construct. ³⁴ https://benchling.com/s/seq-PGM8cj3vsbJ2foudD4gS?m=slm-CUFdjaxo5BVO2rDYjI9w

pBAD/HisA_GsSir2/Ago	Bacterial expression vector with Sir2 and Ago genes from <i>G. sulfurreducens</i> .	https://benchling.com/s/seq-6CDMPX5NCY2UZSExH9YR?m=slm-sDqlpXnJdAHVagPVIDcR
pBAD/HisA_GsSir2(D230A)/Ago	Bacterial expression vector with a D230A mutational variant of Sir2 and Ago genes from <i>G. sulfurreducens</i> .	https://benchling.com/s/seq-8xPH4KTJbHyGjfhzx2KS?m=slm-SNhTzzHe0Wen4MPLBNoA
pBAD24_GsSir2/Ago-HSH	Bacterial expression vector with Sir2 and Ago genes from <i>G. sulfurreducens</i> , with an HSH affinity tag on Ago protein C-terminus.	https://benchling.com/s/seq-kZi2cWwSY2P2Gc2wV6AF?m=slm-CFvHs1oLhUQY5NcM3MyU
pBAD/HisA_TwinStr-ep_TEV_GsSir2/Ago	Bacterial expression vector with an N-terminal His ₆ -TwinStrep-TEV-carrying Sir2 and an Ago protein gene from <i>G. sulfurreducens</i> .	https://benchling.com/s/seq-1tCIsHyBFY7ba7Urmul?m=slm-v7BRSSk20CZ8e94uXn9p
pBAD/HisA_TEV_CcSir2/Ago	Bacterial expression vector with an N-terminal His ₆ -TEV-carrying Sir2 and an Ago protein gene from <i>C. cordobensis</i> .	https://benchling.com/s/seq-3YCAQfAp34mRvXctlpkb?m=slm-6GkVFazYraa8IXQCYF6r
pBAD/HisA_TwinStr-ep_TEV_CcSir2/Ago	Bacterial expression vector with an N-terminal His ₆ -TwinStrep-TEV-carrying Sir2 and an Ago protein gene from <i>C. cordobensis</i> .	https://benchling.com/s/seq-uHOLRoSabse4I5PN5jR5?m=slm-EcbYQvycbLNVXc7uEVte
pBAD24_PgSir2-Ago	Bacterial expression vector with a Sir2-Ago fused protein gene from <i>P. graminis</i> .	https://benchling.com/s/seq-oLr3DRxdEfJR2W7tWNdP?m=slm-qAwOAwDnuHTQaaINYEQ

1142 **Supplementary Table 2. Oligonucleotides used in this work.**

Oligonucleotide	Sequence (5'->3' direction)	Description
Oligonucleotides used for cloning, mutagenesis and controls		
MZ-239	GCTGATGGTCTCGCTAGCATGGATGTCTTAAGTACAATGAGTTTAC	Forward primer for the amplification of the GsSir2/Ago operon.
MZ-240	CTGATTCTCGAGTTACATAAAAAACCGATAATCATATATTCGTTAAC	Reverse primer for amplification of the GsSir2/Ago operon.
MZ-351	GTGGTCGTGCTGAAAATGTTATGACTATGCTTC	Mutagenic primer (top strand) for the D230A mutation within the GsSir2 protein.
MZ-352	GTCATAACATTTCAGCACGACCACTATAGCC	Mutagenic primer (bottom strand) for the D230A mutation within the GsSir2 protein.
MZ-325	GCTGATGGTCTCGCATGGATGTCTTAAGTACAATGAGTTTAC	Forward primer for the amplification of the GsSir2/Ago operon.
MZ-326	TGATGCTCGAGCATAAAAAACCGATAATCATATATTCGTTAAC	Reverse primer for the amplification of the GsSir2/Ago operon.
MZ-915	TGATTACCTGCTTAGCATGCATAATCGCGCTGCTTGCAAACG	Forward primer for the amplification of the PgSir2-Ago gene.
MZ-916	TGATTAAGCTTACATAAACAGACGGTAATCGTACGAGTGGTC	Reverse primer for the amplification of the PgSir2-Ago gene.
MZ-1217	GAAATCTTAGAGTGATGGTGTGGGAATCC	Forward primer for the amplification of the COLA <i>ori</i> .
MZ-1218	AGTGATGGTGTGGGAATCC	Reverse primer for the amplification of the COLA <i>ori</i> .
MZ-1230	AAATAGCTAGCTCACTCGGTC	Forward primer for the amplification of the CDF <i>ori</i> .
MZ-1231	GAAATCTAGAGCGGTTCACTAG	Reverse primer for the amplification of the CDF <i>ori</i> .
TS-48	CAUGCUGCAGGUCGACUCUAG	22 nt RNA oligonucleotide used as a control analysing GsSir2/Ago-associated nucleic acids.
Oligonucleotides used for EMSA and cleavage experiments		
ssRNA (TF-A)	AUAAUGGUUUCUUAGACGUCGUUUUAGAGCUGUGUUGUUUCG	42 nt RNA oligonucleotide
ssDNA (TK-49)	ATAATGGTTCTTAGACGTCGTTTAGAGCTGTGTTGTTCG	42 nt DNA oligonucleotide, sequence identical to TF-A, only DNA.
ssDNA (MZ-949)	CGAAACAAACACAGCTCTAAACGACGTCTAAGAAACCATTAT	42 nt DNA oligonucleotide, complementary to TF-A and TK-49
nsp-ssDNA (MZ-589)	GGAGATGGGAAGTCATTAGATGTAGAACTTGAATGGCAACGG	42 nt DNA oligonucleotide, non-complementary to TF-A
ssRNA (MZ-1185)	CGAAACAAACACAGCUCUAAAACGACGUCUAAGAAACCAUUAU	42 nt RNA oligonucleotide, complementary to TF-A and TK-49
dsRNA	5' -AUAAUGGUUUCUUAGACGUCGUUUUAGAGCUGUGUUGUUCG-3' 3' -UAUUACCAAAGAACUUCGUCAGAAAAUCUCGACACAACAAAGC-5'	TF-A annealed to MZ-1185
dsDNA	5' -ATAATGGTTCTTAGACGTCGTTTAGAGCTGTGTTGTTCG-3' 3' -TATTACCAAAGAACUUCGACGACACAACAAAGC-5'	TK-49 annealed to MZ-949
RNA/DNA	5' -AUAAUGGUUUCUUAGACGUCGUUUUAGAGCUGUGUUGUUCG-3' 3' -TATTACCAAAGAACUUCGACGACACAACAAAGC-5'	TF-A annealed to MZ-949

1143

1144

1145 **Supplementary Table 3. Parameters of the SAXS data.**

<i>Reciprocal space parameters</i>	<i>Merged SAXS normalized against water scattering merged data</i>
s min (nm ⁻¹) as in Guinier range	0.1116200
Guinier range (points) used for Guinier analysis	48 to 170
Rg, by Guinier analysis / AUTORG, nm	3.61 / 3.61±0.034
I(0) AUTORG, (cm ⁻¹)	0.0734±0.00022
Rg*s by Guinier analysis	1.33281
<i>Molecular Mass estimations out of SAXS data, kDa</i>	
PRIMUS Qp	107.9
PRIMUS Vc	99.7
PRIMUS Size&Shape	125.3
PRIMUS Absolute scale	101.1
PRIMUS Bayesian inference	101.1
SAXSMoW server, v2.1	124.8
<i>Real-space parameters (GNOM)</i>	
s range (nm ⁻¹) used in GNOM	0.1116 to 3.2449
Dmax as parameter in GNOM / DATCLASS / SHANUM, nm	11.4 / 12.3 / 13.4
Rg real GNOM / DATPOROD, nm	3.579±0.005044 / 3.58
I(0) real GNOM / DATPOROD, (cm ⁻¹)	0.07277±0.0001016 / 0.0728
Porod volume DATPOROD (nm ³)	185.06
SASDB ID	SASDNH2

1146

1147

1148 **Supplementary references**

- 1149 1. Koonin, E. V & Makarova, K. S. CRISPR-Cas: an adaptive immunity system in prokaryotes.
1150 *F1000 Biol. Rep.* **1**, 1–6 (2009).
- 1151 2. Ryazansky, S., Kulbachinskiy, A. & Aravin, A. A. The Expanded Universe of Prokaryotic
1152 Argonaute Proteins. *MBio* **9**, 1–20 (2018).
- 1153 3. Makarova, K. S., Wolf, Y. I., van der Oost, J. & Koonin, E. V. Prokaryotic homologs of
1154 Argonaute proteins are predicted to function as key components of a novel system of
1155 defense against mobile genetic elements. *Biol. Direct* **4**, 29 (2009).
- 1156 4. Doron, S. *et al.* Systematic discovery of antiphage defense systems in the microbial
1157 pangenome. *Science (80-).* **359**, eaar4120 (2018).
- 1158 5. Ka, D., Oh, H., Park, E., Kim, J. H. & Bae, E. Structural and functional evidence of bacterial
1159 antiphage protection by Thoeris defense system via NAD⁺ degradation. *Nat. Commun.* **11**,
1160 1–8 (2020).
- 1161 6. Jumper, J. *et al.* Highly accurate protein structure prediction with AlphaFold. *Nature* **596**,
1162 583–589 (2021).
- 1163 7. Olechnovič, K. & Venclovas, Č. VoroMQA web server for assessing three-dimensional
1164 structures of proteins and protein complexes. *Nucleic Acids Res.* **47**, W437–W442 (2019).
- 1165 8. Willkomm, S., Makarova, K. S. & Grohmann, D. DNA silencing by prokaryotic Argonaute
1166 proteins adds a new layer of defense against invading nucleic acids. *FEMS Microbiol. Rev.*
1167 **42**, 376–387 (2018).
- 1168 9. Burroughs, A. M., Ando, Y. & Aravind, L. New perspectives on the diversification of the RNA
1169 interference system: Insights from comparative genomics and small RNA sequencing. *Wiley
1170 Interdiscip. Rev. RNA* **5**, 141–181 (2014).
- 1171 10. Zhou, Y. *et al.* Determining the Extremes of the Cellular NAD(H) Level by Using an
1172 *Escherichia coli* NAD⁺-Auxotrophic Mutant. *Appl. Environ. Microbiol.* **77**, 6133–6140
1173 (2011).
- 1174 11. Boutet, E. *et al.* UniProtKB/Swiss-Prot, the Manually Annotated Section of the UniProt
1175 KnowledgeBase: How to Use the Entry View. *Methods Mol. Biol.* **1374**, 23–54 (2016).
- 1176 12. Altschul, S. F. *et al.* Gapped BLAST and PSI-BLAST: a new generation of protein database
1177 search programs. *Nucleic Acids Res.* **25**, 3389–3402 (1997).
- 1178 13. Suzek, B. E., Wang, Y., Huang, H., McGarvey, P. B. & Wu, C. H. UniRef clusters: a
1179 comprehensive and scalable alternative for improving sequence similarity searches.
1180 *Bioinformatics* **31**, 926–932 (2015).
- 1181 14. Frickey, T. & Lupas, A. CLANS: a Java application for visualizing protein families based on
1182 pairwise similarity. *Bioinformatics* **20**, 3702–3704 (2004).
- 1183 15. Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7:
1184 improvements in performance and usability. *Mol. Biol. Evol.* **30**, 772–780 (2013).
- 1185 16. Waterhouse, A. M., Procter, J. B., Martin, D. M. A., Clamp, M. & Barton, G. J. Jalview
1186 Version 2-a multiple sequence alignment editor and analysis workbench. *Bioinformatics* **25**,

1187 1189–1191 (2009).

1188 17. Crooks, G. E., Hon, G., Chandonia, J.-M. & Brenner, S. E. WebLogo: A Sequence Logo
1189 Generator. *Genome Res.* **14**, 1188–1190 (2004).

1190 18. Zimmermann, L. *et al.* A Completely Reimplemented MPI Bioinformatics Toolkit with a New
1191 HHpred Server at its Core. *J. Mol. Biol.* **430**, 2237–2243 (2018).

1192 19. Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2--approximately maximum-likelihood
1193 trees for large alignments. *PLoS One* **5**, e9490 (2010).

1194 20. Whelan, S. & Goldman, N. A general empirical model of protein evolution derived from
1195 multiple protein families using a maximum-likelihood approach. *Mol. Biol. Evol.* **18**, 691–699
1196 (2001).

1197 21. Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: a tool for automated
1198 alignment trimming in large-scale phylogenetic analyses. *Bioinformatics* **25**, 1972–1973
1199 (2009).

1200 22. Letunic, I. & Bork, P. Interactive tree of life (iTOL) v3: an online tool for the display and
1201 annotation of phylogenetic and other trees. *Nucleic Acids Res.* **44**, W242-5 (2016).

1202 23. Finn, R. D. *et al.* The Pfam protein families database: towards a more sustainable future.
1203 *Nucleic Acids Res.* **44**, D279-85 (2016).

1204 24. Mirdita, M., Ovchinnikov, S. & Steinegger, M. ColabFold - Making protein folding accessible
1205 to all. *bioRxiv* 2021.08.15.456425 (2021).

1206 25. Holm, L. DALI and the persistence of protein shape. *Protein Sci.* **29**, 128–140 (2020).

1207 26. Pettersen, E. F. *et al.* UCSF Chimera--a visualization system for exploratory research and
1208 analysis. *J. Comput. Chem.* **25**, 1605–1612 (2004).

1209 27. Kaya, E. *et al.* A bacterial Argonaute with noncanonical guide RNA specificity. *Proc. Natl.*
1210 *Acad. Sci. U. S. A.* **113**, 4057–4062 (2016).

1211 28. Blattner, F. R. *et al.* The Complete Genome Sequence of Escherichia coli K-12. *Science*
1212 (80-). **277**, 1453–1462 (1997).

1213 29. Bhawsinghka, N., Glenn, K. F., Schaaper, R. M. & Rasko, D. Complete Genome Sequence
1214 of Escherichia coli BL21-AI. *Microbiol. Resour. Announc.* **9**, e00009-20 (2020).

1215 30. Grant, S. G. N., Jesseet, J., Blooms, F. R. & Hanahan, D. Differential plasmid rescue from
1216 transgenic mouse DNAs into Escherichia coli methylation-restriction mutants. *Proc. Natl.*
1217 *Acad. Sci. U. S. A.* **87**, 4645–4649 (1990).

1218 31. Kulczyk, A. W. & Richardson, C. C. *The Replication System of Bacteriophage T7. Enzymes*
1219 vol. 39 (Elsevier Inc., 2016).

1220 32. Casjens, S. R. & Hendrix, R. W. Bacteriophage lambda: Early pioneer and still relevant.
1221 *Virology* **479–480**, 310–330 (2015).

1222 33. Yap, M. L. & Rossmann, M. G. Structure and function of bacteriophage T4. *Future Microbiol.*
1223 **9**, 1319–1337 (2014).

1224 34. Tolia, N. H. & Joshua-Tor, L. Strategies for protein coexpression in Escherichia coli. *Nat.*

1225 *Methods* **3**, 55–64 (2006).

1226 35. Guzman, L. M., Belin, D., Carson, M. J. & Beckwith, J. Tight regulation, modulation, and
1227 high-level expression by vectors containing the arabinose PBAD promoter. *J. Bacteriol.* **177**,
1228 4121–4130 (1995).

1229

1230

1231