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Abstract

Tumor heterogeneity is thought to be a major barrier to successful cancer treatment due to the presence
of drug resistant clonal lineages. However, identifying the characteristics of such lineages that underpin
resistance to therapy has remained challenging. Here we utilize clonal transcriptomics with WILD-seq;
Wholistic Interrogation of Lineage Dynamics by sequencing, in mouse models of triple-negative breast
cancer (TNBC) to understand response and resistance to therapy, including BET bromodomain
inhibition and taxane-based chemotherapy. This analysis revealed oxidative stress protection by NRF2
as a major mechanism of taxane resistance and led to the discovery that our tumor models are
collaterally sensitive to asparagine deprivation therapy using the clinical stage drug L-asparaginase
after frontline treatment with docetaxel. In summary, clonal transcriptomics with WILD-seq identifies
mechanisms of resistance to chemotherapy that are also operative in patients and pin points asparagine
bioavailability as a druggable vulnerability of taxane resistant lineages.

Introduction

Intra-tumoral heterogeneity (ITH) is thought to underlie tumor progression and resistance to therapy by
providing a reservoir of phenotypically diverse clonal lineages on which selective pressures from the
microenvironment or therapeutic intervention exert their effects (Bhang et al., 2015; Turajlic & Swanton,
2016). Inference of clonal composition from bulk sequencing has elucidated the breadth of ITH across
tumor types and suggests that often rare pre-existing clones can resist therapy-induced killing to drive
relapse (Dentro et al., 2021; Ding et al., 2012; Gerlinger et al., 2012; Jamal-Hanjani et al., 2014; Landau
et al., 2013). However, such methods are limited by their inability to characterize such resistant clones
beyond genotype and how their properties change over time and in response to therapy. Recently,
several lineage tracing approaches have emerged that are able to link clonal identity with gene
expression by utilizing expressed genetic barcodes that are read-out by single cell RNA sequencing
(Biddy et al., 2018; Gutierrez et al., 2021; Quinn et al., 2021; Simeonov et al., 2021; Weinreb et al.,
2020; Yang et al., 2022). These powerful methods allow deconvolution of complex mixtures of clones
while simultaneously providing a gene expression profile of those cells that can indicate the pathways
on which they depend. However, to date in solid tumors these technologies have mostly been used to
study drug response in vitro (Gutierrez et al., 2021; Oren et al., 2021) or metastatic dissemination in
vivo (Quinn et al., 2021; Simeonov et al., 2021; Yang et al., 2022) and have not been utilized to study
therapeutic response in immune-competent models.

A thorough understanding of the biomarkers of sensitivity and mechanisms of resistance to
chemotherapy is essential if we are to improve patient outcomes. Most existing combination cancer
therapies are not rationally designed but were instead empirically optimized to avoid overlapping
toxicities. More recently alternative therapeutic strategies have emerged including synthetic lethality,
drug synergy (Al-Lazikani et al., 2012; O’'Neil et al., 2017) and collateral sensitivity (Mueller et al., 2021;
Pluchino et al., 2012; Zhao et al., 2016) that aim to leverage selective vulnerabilities of tumor cells while
minimizing toxicity. Of particular promise is collateral sensitivity, in which as a tumor becomes resistant
to one drug it comes at the cost of sensitivity to a second drug. Since many modern clinical trials occur
in the context of neo-adjuvant chemotherapy, the identification of frontline therapy-induced collateral
sensitivities to second line therapy would have the potential to be rapidly translated into improved
outcomes for patients.
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Here we develop WILD-seq (Wholistic Interrogation of Lineage Dynamics by sequencing), an
accessible and adaptable platform for lineage tracing at the single-cell transcriptomic level that
facilitates in vivo analysis of clonal dynamics and apply it to the study of syngeneic triple negative breast
cancer (TNBC) mouse models. Our optimized pipeline ensures recurrent representation of clonal
lineages across animals and samples, facilitating analysis of clonal dynamics under the selective
pressure of therapeutic intervention. Importantly, analysis of response of TNBC models to frontline
taxane-based chemotherapy revealed an enrichment of clones with high levels of NRF2 signaling,
implicating defense against oxidative damage as a major determinant of resistance to chemotherapy.
Building on the work of others (LeBoeuf et al., 2020) we show that these NRF2-high, taxane-resistant,
lineages are collaterally sensitive to asparagine deprivation with L-asparaginase and that they adapt to
this second line intervention by up-regulating de novo asparagine synthesis through asparagine
synthetase (Asns). Together these data indicate that high levels of NRF2 signaling, which is also
observed in patients following neo-adjuvant chemotherapy, promotes both resistance to chemotherapy
and sensitivity to asparagine deprivation and warrant the exploration of L-asparaginase as a therapeutic
modality in solid tumors.

Results

Establishment of an expressed barcode system to simultaneously detect clonal lineage and
gene expression.

WILD-seq uses a lentiviral library to label cells with an expressed, heritable barcode that enables
identification of clonal lineage in conjunction with single cell RNA sequencing. The WILD-seq construct
comprises a zsGreen transcript which harbours in its 3’ untranslated region (UTR) a barcode consisting
of two 12 nucleotide variable regions separated by a constant linker (Fig. 1a). Each variable region is
separated from any other sequence in the library by a Hamming distance of 5 to allow for library
preparation and sequencing error correction and our library contains over 1.5 million unique barcodes.
The barcode is appropriately positioned relative to the polyadenylation signal to ensure its capture and
sequencing by standard oligo-dT single cell sequencing platforms.

The standard WILD-seq pipeline is illustrated in Figure 1b. A heterogeneous cell line is transduced with
a barcode library at low multiplicity of infection (MOI) to ensure that each cell receives a maximum of
one barcode. An appropriate size pool of barcoded clones is selected and stabilized in culture.
Empirically, we have found a pool established from 750 individual clones works well to provide effective
representation of the diversity within the cell lines used herein while also enabling recurrent
representation of the same clones across animals and experiments. Once stabilized in culture, the pool
of WILD-seq clones can be analyzed directly by single cell sequencing or injected into a recipient animal
for in vivo tumor growth. WILD-seq single cell sequencing libraries can be prepared using a standard
oligo-dT based protocol and addition of an extra PCR amplification step can be used to increase
coverage of the barcode region and aid cell lineage assignment.

We first established a WILD-seq clonal pool from the mouse 4T1 cell line, a triple negative mammary
carcinoma model that can be orthotopically implanted into the mammary fat pad of a BALB/c syngeneic
host, which we have previously shown to be heterogeneous with distinct sub-clones having unique
biological properties (Wagenblast et al., 2015). We performed single cell sequencing of the in vitro
WILD-seq pool (Fig. 1c) and in vivo tumors derived from this clonal pool (Fig. 1d). Over the course of
our studies, we injected multiple cohorts of mice with our WILD-seq 4T1 pool as detailed in
Supplementary Table 1, some of which were subjected to a specific drug regime. All tumors were
harvested at humane endpoint, as determined by tumor volume unless otherwise stated and
immediately dissociated for single cell sequencing.

For the purpose of characterising the baseline properties of our clones, we performed an in-depth
transcriptomic analysis of all tumors from untreated and vehicle-treated animals. A WILD-seq barcode
and thereby clonal lineage could be unambiguously assigned to 30-60% of cells per sample within the
presumptive tumor cell/mammary epithelial cell cluster. 132 different WILD-seq barcodes were
observed in vitro and in total 94 different WILD-seq barcodes were observed across our in vivo tumor
samples. Our in vivo tumor samples comprised both tumor cells and host cells of the tumor
microenvironment including cells of the innate and adaptive immune system, enabling simultaneous
profiling of the tumor and its microenvironment (Fig. 1d). Clustering was performed after removal of
reads mapping to the WILD-seq vector, to avoid any influence of the WILD-seq transcript on clustering,
and the WILD-seq barcode assignment subsequently overlaid onto these data. The tumor cell clusters
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112 were clearly identifiable by the high expression of the barcode transcript. Occasionally a barcode was
113 observed in cells which clustered according to their transcriptome outside of the main tumor cluster.
114 Since this could be the result of sequencing or technical error causing a mismatch between the WILD-
115 seq barcode and the cell of origin, only barcoded cells that clustered within the main tumor/mammary
116  epithelium cell cluster were included in our analysis.

117  We reproducibly observed the same clonal populations across animals and independent experiments
118 which is critical to our ability to examine the effects of different interventions and treatments (Fig. 1d,
119  1e). The relative abundance of clones was similar in tumors grown in NOD scid gamma (NSG)
120  immunodeficient and BALB/c immunocompetent mice but was drastically different to that found in the
121  in vitro cell pool from which they were established (Fig. 1e, Supplementary Table 2), suggesting that
122 clones that show greatest fitness in cell culture do not necessarily show fitness in vivo. Therefore, in
123 vitro clonal lineage tracking experiments are likely to capture a different collection of clones and have
124 the potential to identify sensitive or resistance clones that are not represented in vivo. Pseudo-bulk
125  analysis of the major clonal lineages revealed that the composition of the tumor microenvironment has
126  a dramatic effect on the transcriptome of the tumor cells for all clones (Fig. 1f). Comparison of in vitro
127  culture, tumors from NSG mice, and tumors from BALB/c mice by principal component analysis (PCA),
128  showed clear separation of the tumor cells depending on their environment, with differences in
129  interferon gamma signaling, TNF-alpha signaling, and cell cycle being most prominent between cells
130 grown in vivo and in vitro (PC1, Fig. 1g). Differences in gene expression between tumors growing in
131 immunocompetent and immunodeficient hosts were related to changes in the expression of
132 extracellular matrix proteins and changes in interferon gamma and 1I-2 signaling, consistent with the
133 differences in T-cell abundance (PC2, Fig. 1g). These data highlight the importance of the host immune
134 system in sculpting the transcriptome and provide cautionary context for the analysis of tumor gene
135 expression in immune-compromised hosts. Although there were large differences between clonal gene
136  expression patterns across hosts the clones showed consistent differences in gene expression across
137 all settings, reflective of intrinsic clonal properties, with the biggest variation in gene expression across
138  the clones being related to their position along the epithelial-mesenchymal transition (EMT) axis (PC3,
139  Fig. 1g). In particular, Clone 679 is the most distinct and the most mesenchymal of the clones.

140  To further characterize the major clones in our tumors, we performed gene set expression analysis
141  using AUCell (Aibar et al., 2017) to identify pathways that are enriched in cells of a specific clonal
142 lineage. Analysis was performed across four independent experiments each with three vehicle-treated
143 animals and for the majority of clones we were able to identify distinct gene expression signatures that
144 were reproducible across animals and experiments (Fig. 1h, Supplementary Table 4, Supplementary
145  Table 5).

146 Simultaneous detection of changes in clonal abundance, gene expression, and tumor
147 microenvironment in response to BET bromodomain inhibition with WILD-seq.

148 Having established that we can repeatedly observe the same clonal lineages and their gene expression
149 programs across animals and experiments, we next sought to perturb the system. We chose the BET
150 bromodomain inhibitor JQ1 for our proof-of-principle experiments to assess the ability of the WILD-seq
151 system to simultaneously measure changes in clonal abundance, gene expression and the tumor
152 microenvironment that occur following therapeutic intervention. JQ1 competitively binds to acetylated
153 lysines, displacing BRD4 and thereby repressing transcription at specific loci. A large number of studies
154 have indicated that BET inhibitors may be beneficial in the treatment of hematological malignancies
155 and solid tumors including breast cancer, possibly by inhibiting certain key proto-oncogenes such as
156  MYC (G. Jiang et al., 2020).

157  Treatment of our 4T1 WILD-seq tumor-bearing mice with JQ1 caused an initial suppression of tumor
158 growth but with only a small overall effect on time to humane endpoint (Fig. 2a). Tumors treated with
159  JQ1 or vehicle alone were harvested at endpoint, dissociated and subjected to single cell sequencing
160  (Fig. 2b). Two independent experiments were performed, each with 3 mice per condition.

161  We first explored whether JQ1 had any effect on the tumor microenvironment. The most striking
162 difference we observed was a change in abundance among the cells belonging to the T-cell
163 compartment. To analyze this further, we computationally extracted these cells from the single cell data,
164 reclustered them and performed differential abundance testing using Milo (Fig. 2c). Milo detects sets of
165 cells that are differentially abundant between conditions by modeling counts of cells in neighborhoods
166  of a KNN graph (Dann et al., 2021). When applied to our reclustered T-cells, Milo identified a significant
167 decrease in abundance in cytotoxic T-cells, as identified by their expression of Cd8a and Cd8b1,
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168 following JQ1 treatment. A significant change was observed in both of our experiments although the
169  magnitude of the effect was greater in experiment A.

170  We next examined the effect of JQ1 treatment on the transcriptome of the tumor cells. Differential
171 expression analysis was performed for each clonal lineage and experiment independently. As expected,
172 given its mode of action, we identified significant down-regulation of a wide range of genes with
173 consistent changes across clonal lineages (Fig 2d, supplementary table 6). Among the repressed
174  genes, were a number of genes related to interferon (IFN) signaling and antigen processing and
175 presentation (Fig. 2d, 2e), including GBP2 which is strongly induced by IFN gamma, the MHC class I
176 protein, Cd74, and B2m, a component of the MHC class | complex. JQ1 has previously been reported
177  to directly inhibit transcription of IFN-response genes (Gibbons et al., 2019; Gusyatiner et al., 2021)
178 suggesting this may be due to the direct action of JQ1 within our tumor cells, however JQ1-dependent
179  changes to the tumor microenvironment may also influence these expression pathways.

180 Our barcoded 4T1 clones showed varied sensitivity to JQ1, with treatment causing reproducible
181  changes to clonal proportions within the tumor (Fig. 2f, 2g, Supplementary Table 2). In particular, one
182 of the most abundant clones, clone 473, is highly sensitive to JQ1 treatment. In contrast, 3 clones were
183 identified as being the most resistant to JQ1 treatment, clones 93, 439 and 264. These clones which
184  together make up less than 5% of the tumor in vehicle treated mice constitute on average 12.8% of the
185 JQ1-treated tumors. To examine baseline transcriptomic signatures of JQ1-sensitivity and resistance,
186  we identified gene sets whose expression in vehicle-treated tumors was highly correlated with response
187  (Figs. 2h, 2i, Supplementary Table 7). Interestingly, interferon signaling which is significantly attenuated
188 in our JQ1-treated tumors is highly correlated with sensitivity to JQ1, suggesting a possible higher
189 dependence of the sensitive clones on these pathways. Conversely resistance is associated with higher
190 levels of unfolded protein response and mTOR signaling consistent with a known role of mTOR-
191 mediated autophagy in resistance to JQ1 (Luan et al., 2019), and cytotoxic synergy between
192  PI3K/mTOR inhibitors and BET inhibitors (Lee et al., 2015; Stratikopoulos et al., 2015).

193 Clonal transcriptomic correlates of response and resistance to taxane chemotherapy in the 4T1
194  mammary carcinoma model.

195 Our studies with JQ1 exemplify the ability of the WILD-seq system to simultaneously measure in vivo
196 the effect of therapeutic intervention on clonal dynamics, gene expression and the tumor
197 microenvironment. However, we were interested in using our system to investigate a chemotherapeutic
198  agent currently in use in the clinic. We therefore treated our 4T1 WILD-seq tumor-bearing mice with
199 docetaxel as a representative taxane, a class of drugs which are routinely used to treat triple negative
200 breast cancer patients. As with JQ1, docetaxel treatment resulted in an initial, modest reduction in tumor
201  growth followed by relapse (Fig. 3a). Comparison of vehicle and docetaxel (DTX) treated tumors
202 revealed differential response of clonal lineages to treatment (Figs. 3b, 3c, 3d, Supplementary Table 2)
203  with clone 679 being the most resistant and clone 238 the most sensitive to chemotherapy.

204  Correlating the clones’ baseline transcriptomic profiles with response to docetaxel, revealed a major
205 role for EMT in modulating sensitivity and resistance to taxane-based therapy. The 4T1 clones which
206 are most sensitive to docetaxel are characterized by high expression of E-Cadherin regulated genes
207 and low Zeb1 activity consistent with a more epithelial phenotype (Figs. 3e, 3f, Supplementary Table
208 8). These observations are in agreement with previous studies that have implicated EMT, and its
209 associated endowment of cancer stem cell-like characteristics, as a mechanism of resistance to
210 cytotoxic chemotherapies like docetaxel in cell culture and patients (Bhola et al., 2013; Creighton et al.,
211 2009; Gupta et al., 2009). Resistance to docetaxel was correlated with up-regulation of multiple gene
212 sets (Figs. 3e, 3f, Supplementary Table 8). This included genes whose expression is elevated in non-
213 responders to docetaxel in human breast cancer patients (Honma et al., 2008) demonstrating the
214 relevance of findings arising from this approach. Interestingly, we also identify metabolic reprogramming
215 as a potential mechanism of docetaxel resistance with higher expression of genes related to glycogen
216 and glutathione metabolism being correlated with resistance to docetaxel (Fig, 3e).

217 Clonal transcriptomic signatures of response and resistance to taxane chemotherapy in the
218  D2A1 mammary carcinoma model.

219  To explore the general applicability of WILD-seq to other models, we utilized a second triple negative
220 mammary carcinoma model, D2A1-m2 (hereafter referred to as D2A1). Similar to the 4T1 cell line, this
221  line was derived from a mouse mammary tumor in a BALB/c mouse and can be orthotopically implanted
222 into the mammary fat pad of immunocompetent, syngeneic hosts (Jungwirth et al., 2017).
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223 We established a WILD-seq D2A1 clonal pool by transducing the D2A1 cell line with our WILD-seq
224 barcode library. These barcoded cells were orthotopically implanted into a cohort of mice, half of which
225 were treated with docetaxel, while the remaining animals received vehicle alone. Docetaxel treatment
226 caused an initial reduction in tumor growth with subsequent relapse (Fig. 4a). We performed single cell
227 RNA sequencing of three tumors per condition and assigned the tumor cells to a distinct clonal lineage
228 based on the presence of the WILD-seq barcode (Fig. 4b). In total 103 different WILD-seq barcodes
229  were observed in vivo with a dramatic shift in relative clonal abundance on docetaxel treatment (Fig.
230  4d, Supplementary Table 3). Unlike our 4T1 breast cancer model, variation between clonal lineages
231 was no longer dominated by the EMT status of the clones and all clones exhibited a more
232 mesenchymal-like phenotype consistent with the fact that this was a subline of D2A1 selected for its
233 metastatic properties (Fig. 4c). This provides us with a distinct yet complementary system to investigate
234 chemotherapy resistance with the potential to reveal alternative mechanisms than EMT status.

235 We identified 3 clones which were acutely sensitive to docetaxel, clones 118, 2874 and 1072. Together
236  these constitute on average 37% of the vehicle-treated tumors but only 1.3% of the docetaxel-treated
237  tumors (Fig. 4d). To understand the properties of these clones, we analyzed the baseline gene
238 expression characteristics of clones in vehicle-treated tumors. The gene expression of cells from a
239 clone of interest was compared to all tumor cells to which a WILD-seq barcode could be assigned from
240  the same sample, and clonal signatures identified that were significantly enriched across animals.
241 Specific gene expression signatures were identifiable for all clones analyzed, some of which were
242 unique to a single clone while others overlapped across the sensitive clones (Fig. 4e, Supplementary
243 Table 9, Supplementary Table 10). For example, clone 1072 shows elevated levels of expression of
244  cell cycle related pathways, such as E2F-target genes (Fig 4f), indicating that aberrant cell cycle control
245 in these cells that could increase their susceptibility to an antimitotic cancer drug (Fig. 4f), interestingly
246 high levels of E2F-targets have recently been shown to be associated with response to chemotherapy
247  in breast cancer patients (Sammut et al., 2021).

248  Three clones robustly increased their relative abundance within the tumor following docetaxel
249  treatment, clones 1197, 751 and 1240, which despite making up less than 1% of the vehicle-treated
250  tumors together constituted more than 20% of the docetaxel-treated tumors (Fig. 4d). Due to the low
251 abundance of cells in vehicle-treated samples, cells belonging to all 3 clones were pooled to analyse
252 their baseline gene expression profiles (Fig. 4g). Among the gene sets differentially expressed between
253 resistant and sensitive clones, were a number of breast cancer amplicons indicating that there may be
254 specific copy number variations associated with these clones (Figs. 4g, 4h). However single cell DNA
255 sequencing data would be required to confirm the presence of specific genetic traits within our clones.
256 Interestingly, gains in 8g24 (Han et al., 2010), 20q11 (Voutsadakis, 2021) and loss of 16q (Hoglander
257 et al., 2018) have previously been reported to be associated with resistance to taxane-based
258 chemotherapy in agreement with our findings. Highly upregulated within all 3 of our resistant clones
259  were genes related to the NRF2 pathway, even in the absence of docetaxel treatment (Figs. 4g, 4h).
260 NRF2 activation has been linked to cancer progression and metastasis and has been suggested to
261 confer resistance to chemotherapy (Homma et al., 2009; T. Jiang et al., 2010; Konstantinopoulos et al.,
262  2011; Romero et al., 2017; Shibata et al., 2008; Singh et al., 2006).

263 Delineating the contribution of clonal abundance to gene expression changes upon drug
264  treatment.

265 Prior to the advent of single cell sequencing, the majority of studies relied on bulk RNA-seq or
266 microarray analysis of gene expression to interrogate the effect of chemotherapeutic interventions.
267  While informative, these studies cannot differentiate between changes in bulk gene expression that
268 arise due to clonal selection and changes that are induced within a clonal lineage as the result of drug
269  exposure. Even with single cell sequencing, definitive identification of the same clonal population across
270  treatment conditions is impractical. Our method alleviates these difficulties by enabling the direct
271 comparison of clones of the same lineage under different conditions.

272 To examine the relative contribution of clonal selection and transcriptional reprogramming to changes
273 in gene expression upon chemotherapy, we compared analysis of gene expression within each clone
274  individually to a combined analysis of all pooled tumor cells (Fig. 5, Supplementary Table 11).
275  Consistent with their mode of action, docetaxel had relatively little effect on the transcriptome of
276  individual clones while JQ1 caused substantial changes to the transcriptome predominantly down-
277 regulating gene expression. Genes were identified under all treatments that were altered within the
278  tumor as a whole but as a result of clonal selection rather than intra-clonal changes in gene expression,
279  with the biggest effects being observed with docetaxel treatment in D2A1 tumors, in agreement with
280  this condition inducing the largest changes in relative clonal abundance. To confirm that changes in
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281 gene expression detected in bulk tumor analysis but not the clonal analysis could be attributed to
282 differences in clonal sensitivity to chemotherapy, we analyzed baseline expression of these genes
283 across the major clonal populations (Fig. 5b). As expected, we found that genes up-regulated only in
284 bulk tumor analysis had significantly higher expression in clones resistant to chemotherapy (that
285 increase in abundance with treatment) and genes only down-regulated in bulk tumor analysis had
286  significantly lower expression in these resistant clonal lineages.

287  Among the genes that change in expression within the tumor as a whole as a result of clonal selection
288 upon docetaxel treatment, we identified a number of genes related to glutathione synthesis and
289  conjugation including Mgst2, Esd and Gclm, that may endow resistant clones with greater ability to
290 resolve reactive oxygen species (ROS) induced by docetaxel (Alexandre et al., 2007). Of note, we also
291 observed that in 4T1 tumors, Epcam was significantly reduced in expression in the bulk tumor but was
292 not changed within the individual clonal populations. This suggests that rather than inducing an EMT
293 within the tumor cells, docetaxel is selecting clones of a pre-existing more mesenchymal phenotype.

294  Convergent WILD-seq analysis across models identifies redox defense as a mediator of taxane
295 resistance and amino asparagine deprivation as a means to target resistant clones.

296  Toexamine if there were any shared mechanisms of taxane resistance across our 4T1 and D2A1 WILD-
297 seq clones, we looked for genes that were enriched in resistant clonal lineages in both models. We
298 identified 47 overlapping resistance genes (Fig. 6a, Supplementary Table 12). These genes were
299 significantly enriched in pathways related to resolution of oxidative stress including the NRF2 pathway
300  and glutathione-mediated detoxification (Fig. 6b).

301 Importantly, these genes were also enriched in human patients following combined anthracycline and
302 taxane-based therapy, highlighting the potential clinical significance of our findings (Fig. 6¢c). Gene
303 expression data from a previously published study with paired pre-neo adjuvant chemotherapy (NAC)
304  core needle biopsies and post-chemotherapy surgical samples (Vera-Ramirez et al., 2013) was re-
305 analyzed using GSVA (Hanzelmann et al., 2013) to determine the effect of chemotherapy on a gene
306 set composed of our 47 shared resistance genes (Fig. 6¢) as well as NRF2-targets as determined by
307  ChIP enrichment analysis (CHEA) (Lachmann et al., 2010) (Fig. 6d). Expression of both these gene
308 sets was significantly increased after chemotherapy, which our data would suggest is the result of
309 outgrowth of resistant clonal lineages with increased propensity to withstand taxane-induced oxidative
310  stress.

311 Given these findings, we hypothesized that combining taxane-based chemotherapy with a drug
312 specifically targeting resistant clones with high Nrf2 signaling would provide a highly effective treatment
313 regime. To test this hypothesis, we leveraged the finding that tumors with constitutively active Nrf2, due
314  to mutation in the negative regulator Keap1, have metabolic vulnerabilities that arise from their high
315  antioxidant production (Romero et al., 2017), including dependency of glutamine (Romero et al., 2017)
316 and a general dependency on exogenous non-essential amino acids (NEAA) including asparagine
317 (LeBoeuf et al., 2020). This metabolic dependency can be targeted therapeutically by L-asparaginase
318  (ASNase from E.coli), which is used in the clinical management of acute lymphoblastic leukemia (ALL)
319 (Batool et al., 2016), and catalyzes the conversion asparagine to aspartic acid and ammonia (Chan et
320  al, 2019).

321 To ascertain whether docetaxel resistant clones were collaterally sensitive to ASNase, we treated D2A1
322 WILD-seq tumors initially with docetaxel to select for resistant clones and then began daily treatment
323  with L-asparaginase one week later. This dosing regime was chosen as we found that with the dose of
324  docetaxel used in this study co-administration of the 2 drugs or treatment with ASNase immediately
325  following docetaxel was poorly tolerated. As shown in Figure 6e, treatment with ASNase arrested tumor
326  growth and led to a ~40% increase in time to endpoint (relative to vehicle) in this highly aggressive
327 model, although the tumors did acquire resistance and regrew after approximately one week of
328 treatment. Importantly, ASNase alone had no significant effect on tumor growth, indicative of a
329 docetaxel-induced effect (Fig. 6f). To determine the response of individual clonal lineages to ASNase
330 treatment, we performed single cell sequencing on vehicle treated tumors (day 21), as well as docetaxel
331 treated tumors before the start of ASNase treatment (day 21) and after 4 doses of ASNase (day 25).
332  As before, our docetaxel-resistant clones, 751, 1197 and 1240, which have high levels of Nrf2 signaling
333  all exhibited a dramatic increase in their abundance with docetaxel treatment (Fig. 6g). Excitingly,
334  clones 751 and 1197 were sensitive to ASNase returning to baseline levels. Clone 1240 decreased in
335 abundance in 2 of the 3 mice analyzed so is likely to also be sensitive to ASNase but more data is
336 required to confirm its response. As predicted, our Nrf2-high resistant clones were selectively targeted
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337 by amino acid deprivation as other clones such as 2323 were unchanged in their relative abundance
338  (Fig. 69).

339  To confirm the mechanism of action of L-asparaginase and identify potential mechanisms of resistance
340 to this drug that might cause the relapse observed, we analyzed the transcriptomic effects of ASNase
341 administration. Genes which consistently changed in expression after ASNase treatment across clonal
342  lineages are shown in Figure 6h. Many of the genes found to be differentially expressed in our tumor
343 cells following L-asparaginase treatment are either directly related to protein synthesis (Eif3c, Gars,
344 Eif3g, Eif5a) or are consistent with changes in gene expression reported in cell lines following amino
345 acid deprivation including Atf5, Atf3, Jun, Fos, Egr1 and Asns (Fu et al., 2011; Pan et al., 2003;
346  Pohjanpelto & Holtta, 1990; Shan et al., 2010). Of specific interest is the up-regulation of asparagine
347 synthetase (Asns) which catalyzes the de novo biosynthesis of L-asparagine from L-aspartate. In acute
348  lymphoblastic leukemia (ALL), low levels of ASNS resulting in a dependence on extra-cellular
349 asparagine are considered an important biomarker for L-asparaginase treatment. Moreover, the
350 importance of ASNS overexpression in conferring asparaginase resistance has been well documented
351 and is frequently seen in ALL patients that develop drug-resistant forms of the disease following
352  treatment with ASNase (reviewed in (Richards & Kilberg, 2006)). In our experiments, this adaptation to
353 asparaginase is observed across all clones analyzed suggesting a general resistance mechanism and
354  supporting the clinical utility of an Asns inhibitor, if one were to be developed, as third line treatment in
355  this context.

356 In summary, these data support the notion that WILD-seq can identify causal mechanisms of drug
357  resistance in vivo, that can be leveraged to inform new combination therapies. Since the redox defense
358  signatures we identified are detectable in patients after neo-adjuvant chemotherapy (NAC), one can
359 envisage an approach whereby patients receiving NAC have the surgical tumor specimen profiled for
360 NRF2 gene signatures and those with high levels receive a post-operative course of L-asparaginase.

361 Discussion

362  Tumor heterogeneity is thought to underlie drug resistance through the selection of clonal lineages that
363 can preferentially survive therapy. However, identifying the features of such lineages, so that they can
364 be targeted therapeutically, has been challenging due the lack of understanding of their molecular
365 characteristics and the lack of animal models to prospectively test therapeutic interventions and
366  combinations thereof. To overcome these challenges, we utilized WILD-seq, a system that leverages
367 expressed barcodes, population bottle necking, syngeneic mouse models and single cell RNA-seq to
368 link clonal lineage to the transcriptome. Among the existing methods for coupling lineage tracing with
369 single cell transcriptomic profiling, the majority use either lentiviral delivery of a genetic barcode similar
370  to that used here or CRISPR/Cas9-mediate mutations for clonal lineage identification (Biddy et al.,
371  2018; Gutierrez et al., 2021; Quinn et al., 2021; Simeonov et al., 2021; Weinreb et al., 2020). We chose
372  to avoid CRISPR/Cas9-based lineage labeling as induction of DNA damage could have an impact on
373 the transcriptome and the sensitivity of the cells to therapeutic agents (Haapaniemi et al., 2018; L. Jiang
374  etal., 2021). Our approach is unique in that we purposefully bottleneck our clonal population to achieve
375  abalance between maximizing clonal diversity and minimizing variation in clonal representation across
376  replicate animals and experiments. It is this feature that allows us to robustly call clonal gene expression
377  signatures and differential clonal abundance before and after therapeutic intervention and it is this in
378 turn that allows us to identify relevant drug resistance mechanisms in vivo.

379  We find that the abundance of clones in cell culture and in vivo differ greatly, with the most abundant
380  clones in vitro being lowly represented in vivo and vice versa thus providing a cautionary note when
381  analyzing drug response in vitro. Moreover, WILD-seq of 4T1 tumors revealed that the relative immune
382 competence of the host profoundly sculpts the transcriptome of clonal lineages and, as exemplified by
383 JQ1, therapeutic interventions can impact the tumor microenvironment and its interaction with tumor
384  cells, effects that would be missed in vitro and in immunocompromised hosts. We utilized WILD-seq to
385 analyze sensitivity and resistance to taxane chemotherapy in two syngeneic, triple negative, mammary
386  carcinoma models highlighting both known and new pathways of resistance (Marine et al., 2020).
387 Resistance to cancer therapies can arise due to clonal selection or through adaptive reprograming of
388 the epigenome and transcriptome of individual clones. Our data with docetaxel treatment in 4T1 and
389  D2A1indicate that over the time frames we have examined clonal selection is the dominant force driving
390 resistance to chemotherapy with gene expression signatures, such as EMT and Nrf2 signaling, being
391 present in clones at baseline that are then selected for during therapy. However, depending on the
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392 mode of action of specific drugs, transcriptional reprogramming may also induce therapeutic resistance
393  and such mechanisms can also be effectively identified with the WILD-seq platform. Indeed, up-
394 regulation of Asns, detected across clonal lineages after L-asparaginase provides an example of de
395  novo acquisition of a resistance phenotype.

396  Applying WILD-seq to examine docetaxel response across two TNBC models afforded the opportunity
397  tooverlap resistance genes for the same drug across models and remove model-specific effects. These
398 analyses uncovered a critical role for redox defense in docetaxel resistance that also appears to be
399 operative in human breast cancer patients after chemotherapy. Having identified a primary cause of
400 resistance, we next sought to explore the possibility of collateral sensitivity. Collateral sensitivity, first
401  described for antibiotics (Imamovic & Sommer, 2013; Pluchino et al., 2012; Roemhild & Andersson,
402  2021) is the phenomenon by which resistance to one drug comes at the cost of sensitivity to a second
403 drug. In the context of cancer and taxanes, collateral sensitivity has the distinct advantage over other
404  therapeutic strategies of maintaining the initial first line therapy and only modifying subsequent
405 therapies. We took advantage of previous findings linking constitutive Nrf2 signaling, via Keap1 loss, to
406 a dependency on exogenous non-essential amino acids (LeBoeuf et al., 2020) and thereby sensitivity
407  to L-asparaginase. Application of L-asparaginase led to an initial cessation of tumor growth followed by
408 regrowth 6 days later. WILD-seq of docetaxel treated tumors before and after L-asparaginase treatment
409 confirmed the specific suppression of Nrf2 high clones and also revealed a compensatory, clone
410  agnostic, up-regulation of asparagine synthetase (Asns), which likely drives relapse in these tumors
411  given the importance of ASNS to L-asparaginase resistance in ALL (Richards & Kilberg, 2006).
412  Interestingly, we have previously shown that asparagine bioavailability regulates EMT and metastatic
413 progression in breast cancer models (Knott et al., 2018). Thus, asparagine deprivation, which has not
414 been extensively explored in breast cancer, may present multiple benefits to patients and the utility of
415 L-asparaginase, a clinical stage drug, in this setting warrants further investigation.

416  This study highlights the challenges of tackling tumor heterogeneity therapeutically. Even though we
417 can effectively suppress the induction of docetaxel resistant clones by administration of L-asparaginase
418  the tumors still adapt to this intervention and regrow, most likely due to transcriptionally shifting their
419 metabolism towards de novo asparagine synthesis. Nevertheless, hope still remains since there are
420 only three avenues by which cells can supply themselves with asparagine (1) uptake of extra-cellular
421 asparagine which is effectively shut-off by ASNase (2) de novo synthesis through Asns or (3) catabolism
422 of existing proteins. If we could effectively force tumors to depend on synthesis through Asns, we could
423 then deprive them of that additional dependency if Asns-directed therapeutics were to be developed.
424  This concept of steering clonal evolution with drugs towards a predictable and irreconcilable,
425 therapeutically targetable, dependency may provide a general approach to achieving durable
426  therapeutic responses for which tractable models of tumor evolution, such as those described here, are
427  essential predictive components.

428
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Methods

Cell lines and culture

The mouse mammary tumor cell lines 4T1 (ATCC) and D2A1-m2 (kind gifted from Clare Isacke’s lab)
and the 293FT (Thermo Fisher Scientific) packaging cell line for virus production were cultivated in
DMEM high glucose (Gibco), supplemented with 10% heat-inactivated fetal bovine serum (Gibco) and
50 U/mL penicillin-streptomycin (Gibco).

Virus production

The WILD-seq library was packaged using 293FT lentivirus packaging cells. Cells were plated on 15
cm adherent tissue culture plates (Corning) one day before transfection at a confluency of ~70%.
Lentiviral particles were produced by co-transfecting 293FT cells with the transfer plasmid and standard
third-generation packaging vectors pMDL (12.5 ug), CMV-Rev (6.25 ug) and VSV-G (9 ug) using the
calcium-phosphate transfection method (Invitrogen). The transfection mixture was added to the
packaging cells along with 100 mM chloroquine (Sigma-Aldrich). After 16-18 h, media was replaced for
fresh growth media. Viral supernatant was collected 48 h after transfection and filtered through a 45um
filter. The viral supernatant was applied directly to cells or stored at 4°C for short-term storage or -80°C
for long-term storage. When necessary, virus was concentrated using ultracentrifugation. Lentiviral titre
was determined by serial dilutions and measurements of fluorescence via flow cytometry.
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723  WILD-seq library design and cloning

724  The pHSWS lentiviral backbone was constructed using a four-way Gibson Assembly (NEB) by inserting
725 a reverse expression cassette, consisting of a PGK promoter, the zsGreen ORF, a cloning site for high-
726 diversity barcode libraries and a synthetic polyA signal, into an empty pCCL-c-MNDU3-X backbone
727 (#81071 Addgene). To generate the WILD-seq library, a barcode cassette was introduced at the cloning
728  site within the pHSW8 lentiviral backbone, using PCR (Q5 High-Fidelity DNA Polymerase, NEB) and
729 Gibson Assembly (NEB), such that it is expressed within the 3’'UTR of the zsGreen transcript.

730

Name Sequence

Assembly Fwd 5-AAACTCTTGAGTGAACTCCAGTGATTTTGAACCAAGCGATTCAAAGTTCT-3
Assembly Rev 5'-ccttgccctgaTAACTGGAGGCAGTAATTTACAGCCATGCGCTCGTTTAC-3
BarcodeOligo Fwd 5-TGAACCAAGCGATTCAAAGTTCTATCCGNNNNNNNNNNNNtgcatcggttaaccgatgca-3’
BarcodeOligo_Rev 5-ATGCGCTCGTTTACTATACGATNNNNNNNNNNNNtgcatcggttaaccgatgca-3’

732 The barcode library was designed by generating 12 nt variable sequences using the R package
733 DNABarcodes (Buschmann, 2017) and a set Hamming distance of 5. The resulting pool of sequences
734  was then purchased as a custom oligo pool (Twist Bioscience). Reverse complement oligos
735 (BarcodeOligo_Fwd/Rev) each containing a specific PCR handle, a 12-bp variable region and 20-bp
736  constant linker were annealed and amplified by PCR for 20 cycles (using Assembly Fwd/Rev primers).
737  The amplified barcode library was column purified (Gel extraction kit, Qiagen) and the vector backbone
738 was prepared by digestion with Swal (NEB). WILD-seq barcodes were inserted into the lentiviral vector
739 backbone through Gibson Assembly (NEB), concentrated and transformed into 10b electrocompetent
740  E.coli cells (NEB).

742 Bottlenecking strategy and characterisation of WILD-seq pools

743 4T1 or D2A1-m2 cells were infected with WILD-seq library at low MOI (~ 0.2-0.3). Two days after
744 infection, the desired number of zsGreen positive cells, ranging from 10 to 1250 cells, were collected
745 and cultured for two weeks to allow for the pool of clones to stabilize. Different pooling strategies were
746  tested, the ultimate WILD-seq pool was generated from three independent pools each established from
747 250 sorted cells, maintained separately and mixed in equal proportions immediately prior to injection.

749  Library complexity analysis

750  WILD-seq barcodes of the lentiviral library were amplified using a one-step PCR protocol. 1 ng plasmid
751 was used as template in four separate PCR reactions to account for PCR biases and errors. All
752 reactions were pooled, concentrated and purified on a column and then sequenced on one lane of
753 HiSeq4000. Reads that contained the WILD-seq barcode motif were identified and extracted from the
754 FASTQ files. Detected WILD-seq barcode were filtered based on a 90™ percentile cut-off. The resulting
755  whitelist was further filtered for barcodes that contain the common linker region.

757  Whitelist generation of WILD-seq barcodes

758 To generate a comprehensive whitelist of expressed barcodes in each pool, RNA was extracted from
759  WILD-seq transduced cells (High Pure RNA isolation kit, Roche) and reverse transcribed using the
760 Superscript 1V reverse transcription kit (Invitrogen) and a target site-specific primer with a unique
761 molecular identifier (UMI) and an lllumina sample index. cDNA was amplified by PCR (Q5 High-Fidelity
762  DNA Polymerase, NEB) using primers (RTWhitelist_Fwd/Rev) containing lllumina-compatible adapters.
763 Alternatively, 1 ug of gDNA was extracted from WILD-seq transduced cells (Blood&Cell Culture DNA
764 Kit, Qiagen) and the barcode amplified by PCR using primers containing lllumina-compatible adapters
765 (gDNAWhitelist Fwd/Rev). PCR products were purified via gel extraction (Qiagen) and quantified by
766  Qubit. The library was sequenced on an lllumina MiSeq with a custom sequencing primer for Read1
767  (CustomRead1).

768

Name Sequence

RT Primer 5-CAAGCAGAAGACGGCATACGAGATNNNNNNGTGACTGGAG
TTCAGACGTGTGCTCTTCCGATCTNNNNNNNNCAAGCGATTCAAAGTTCTATCCG-3’

RTWhitelist Rev 5-CAAGCAGAAGACGGCATACGA-3’

RTWhitelist_Fwd 5-AATGATACGGCGACCACCGAGATCTACACCAGCAGTATGCATG
CGCTCGTTTACTATACGAT-3’

gDNAWhitelist_Fwd 5-AATGATACGGCGACCACCGAGATCTACACCAGCAGTATGCATGC
GCTCGTTTACTATACGAT-3

gDNAWAhitelist_Rev 5-CAAGCAGAAGACGGCATACGAGATNNNNNNGTGACT
GGAGTTCAGACGTGTGCTCTTCCGATCCAAGCGATTCAAAGTTCTATCCG-3’

CustomRead1 Primer 5-CCAGCAGTATGCATGCGCTCGTTTACTATACGAT-3’
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Reads from the RT-PCR barcode library that contained the WILD-seq barcode motif were identified and
the number of unique UMIs supporting each barcode was calculated. If barcode sequences amplified
from gDNA were also available an additional filtering step was included and any barcodes not also
detected in the gDNA library excluded from the whitelist. Based on UMI counts, the top 90" percentile
of detected barcodes were taken and collapsed for PCR and sequencing errors using hierarchical
clustering and combining sequences with a Hamming distance less than 5.

Single cell library preparation

Tumor tissues were collected, minced and dissociated using the gentleMACS Octo Dissociator (Miltenyi
Biotec) and the relevant kit (Tumor Dissociation Kit mouse). Tissues were process into single cell
suspensions following manufacturer’s instructions and filtered through 70 pym filters (Miltenyi) to remove
any remaining larger particles from single cell suspension after dissociation. The cell suspension was
concentrated and filtered again through a 70 um filter. Three million live cells were sorted based on live-
dead staining with propidium iodide to remove dead cells and debris, pelleted and resuspended in 1
mL phosphate-buffered saline with 0.04% bovine serum albumin (Sigma Aldrich). Cells were counted
with a hemocytometer to ensure accurate concentration. The final single cell suspension was diluted
as required and NGS libraries were prepared using Chromium Single Cell 3' Reagent Kit (v3.1
Chemistry Dual Index, user guide reference: CG000315) with no modifications.

Enrichment library preparation
To enrich for WILD-seq barcodes, the amplified cDNA libraries were further amplified with WILD-seq-
specific primers containing lllumina-compatible adapters and sample indices:

Name Sequence

Enrich Fwd | 5-AATGATACGGCGACCACCGAGATCTACACNNNNNNNNNNACACTCTTTCCCTACACGACGCTC-3'

Enrich Rev | 5-CAAGCAGAAGACGGCATACGAGATNNNNNNNNNNGTGACTGGAGTTCAGACGTGTGCTCTTC
- CGATCTCAGCCATGCGCTCGTTTACTATAC-3'

“N” denotes sample indices

1 uL amplified cDNA library was used as template in a 29-cycle PCR reaction using KAPA HiFi HotStart
ReadyMix (Roche). To avoid possible PCR-induced library biases, six reactions were run in parallel. All
reactions were combined, purified by columns (Gel purification kit, Qiagen) and quantified by Qubit.
Gene expression libraries and barcode enrichment libraries were pooled in an approximately 10:1 molar
ratio and libraries were sequenced on the NovaSeq platform (lllumina).

Animals and in vivo dosing

All mouse experiments were performed under the Animals (Scientific Procedures) Act 1986 in
accordance with UK Home Office licenses (Project License # PAD85403A) and approved by the Cancer
Research UK (CRUK) Cambridge Institute Animal Welfare and Ethical Review Board. Female six to
eight week-old BALB/c were purchased from The Charles River Laboratory. 60,000 tumor cells were
resuspended in 50 pL of a 1:1 mixture of PBS and growth-factor reduced Matrigel (Corning). All
orthotopic injections were performed into the fourth mammary gland. Primary tumor volume was
measured using the formula V=0.5(LxW?), in which W is the with and L is length of the primary tumor.

Tumor-bearing mice were treated with either vehicle or with different drugs from seven days post
transplantation. All drugs were administered via intraperitoneal injection. For JQ1 treatment, animals
were dosed 75 mg/kg JQ1 (dissolved in DMSO and diluted 1:10 in 10% B-cyclodextrin) 5 days/week (5
consecutive days followed by 2 days off) until tumors reached endpoint. For docetaxel treatment,
animals were dosed at 12.5 mg/kg docetaxel (dissolved in 1:1 mixture of ethanol and Kolliphor and
diluted 1:4 in saline) 3 times/week, except when L-asparaginase was to be administered concurrently
and then the dose was reduced to 10 mg/kg. For L-asparaginase treatment, mice were administered
100 pL of 60 U L-asparagine (Abcam) diluted in saline. Vehicle-treated mice were sacrificed 21 days
post tumor transplantation and treated animals were sacrificed when tumor volumes reached that of
vehicle treated animals at 21 days unless otherwise stated.

scRNA-seq analysis

scRNA-seq libraries generated by the 10X Chromium platform were processed using CellRanger
version 3.0.1. Reads were aligned to a custom reference genome that was created by adding the
sequence of the zsGreen-WILD-seq barcode transgene as a new chromosome to the mm10 mouse

16


https://doi.org/10.1101/2021.12.09.471927
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.09.471927; this version posted June 10, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

825 genome. The gene expression matrices generated were then analyzed with the Seurat R package
826 (Stuart et al., 2019) using a standard pipeline. Briefly, datasets were first filtered based on the number
827 of unique genes detected per cell (typical accepted range 200-10000 genes) and the percentage of
828 reads that map to the mitochondrial genome (< 12 %). Reads which mapped to the zsGreen-WILD-seq
829  barcode transgene were removed from the count matrix to prevent these driving cell clustering.
830 Normalisation was performed using sctransform, including cell cycle regression. Differential abundance
831  of cell subtypes was performed using Milo (Dann et al., 2021).

833  Clonal barcode assignment to single cell data

834  Extraction of WILD-seq barcodes from scRNA-seq data: Reads mapping to the zsGreen-WILD-seq
835 barcode transgene and containing the full barcode sequence (20nt constant linker with a 12 nt variable
836  region on either side) were extracted from the BAM file produced by Cell Ranger and mapped using
837 Bowtie to a whitelist of barcodes expressed in the WILD-seq cell pool. A WILD-seq clonal barcode was
838 assigned to a cell if there were at least 2 independent reads which matched the barcode to the cell and
839 more than 50% of barcode mapped reads from the cell supported the assignment.

841 Extraction of WILD-seq barcodes from PCR enrichment data: Reads from the PCR barcode enrichment
842  were processed separately using the UMI-tools to extract 10X cell barcodes and UMIs from the raw
843 read files. The sequence corresponding to the full barcode sequence (20nt constant linker with a 12 nt
844  variable region on either side) was extracted from each read and then mapped to the WILD-seq clonal
845 barcode whitelist using Bowtie. A WILD-seq clonal barcode was assigned to a cell if there were at least
846 10 UMIs which matched the barcode to the cell and at least twice as many UMIs supporting this
847  assignment compared to the next best.

849  WILD-seq barcode assignment: The WILD-seq clonal barcode assignment from these 2 pipelines was
850  then compared. If the assignment from the transcriptomic analysis and the PCR enrichment analysis
851 were in agreement the barcode was assigned. On the rare occasion the assignment didn’t match a
852 clonal barcode was not assigned. If a cell was assigned a WILD-seq barcode by only one method, a
853 further more stringent filtering step was included. For WILD-seq barcodes assigned only from the 10X
854  scRNA-seq dataset but not the PCR-enrichment, the minimum number of UMIs required to support the
855 assignment was increased to 5 and for WILD-seq barcodes assigned only from the PCR-enrichment
856  but not the 10X scRNA-seq dataset, the minimum number of UMIs required to support the assignment
857  was increased to 30.

859  Differential gene expression

860  Differential gene expression was determined using the FindMarkers function in Seurat with a Wilcoxon
861 rank sum test to identify differentially expressed genes. For differential expression of groups of genes,
862  we used the AUCell R package (Aibar et al., 2017) which enables analysis of the relative expression of
863 a gene set (i.e. gene signature or pathway) across all the cells in single-cell RNA-seq data using the
864  “Area Under the Curve” (AUC) to calculate the enrichment of the input geneset within the expressed
865  genes for each cell. An AUCell score was calculated for each tumor cell for every gene set in the
866 MSigDB C2 collection (Liberzon et al., 2011; Subramanian et al., 2005) that contained more than 20
867 genes with detectable expression in our data. AUCell scores were compared across clones or
868  conditions using a Wilcoxon rank sum test and p-values were adjusted for multiple comparison using
869  the Benjamini-Hochberg correction method.

871 To generate baseline transcriptomic signatures for each clone in vehicle-treated tumors, comparisons
872  were made between the clone of interest and all assigned tumor cells from the same sample (in the
873 case of D2A1 tumors) or the same experiment (in the case of 4T1 tumors). Samples/experiments were
874 included if they contained at least 20 cells assigned to the clone of interest. To define consistently
875 enriched/depleted signatures, p-values from comparisons within each sample/experiment were
876  combined using the Fisher's method.

878  Patient data analysis

879 Microarray gene expression data was downloaded from GSE28844 (Vera-Ramirez et al., 2013). A
880 single probe for each gene was selected based on the highest median expression. Gene set expression
881  per patient sample was calculated using GSVA (Hanzelmann et al., 2013).
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Figure 1. Establishment of an expressed barcode system to simultaneously detect clonal
lineage and gene expression from single cells in vivo.

a. Lentiviral construct design. A PGK promoter drives expression of a transcript encoding zsGreen
harboring a WILD-seq barcode sequence in the 3’'UTR. A spacer sequence and polyadenylation signal
ensure that that the barcode is detectable as part of a standard oligo dT single cell RNA library
preparation and sequencing pipeline. The barcode cassette comprises 2 distinct 12 nucleotide barcode
sequences separated by a constant 20 nucleotide linker region. The library of barcode sequences was
designed with Hamming distance 5 to allow for sequencing error correction. b. Schematic of WILD-
seq method. Tumor cells are infected with the WILD-seq lentiviral library and an appropriate size
population of zsGreen positive cells isolated, each of which will express a single unique WILD-seq
barcode. This WILD-seq barcoded, heterogenous cell pool is then subjected to an intervention of
interest (such as in vivo treatment of the implanted pool with a therapeutic agent) and subsequently
analyzed by single cell RNA sequencing using the 10X Genomics platform. An additional PCR
amplification step is included that specifically enriches for the barcode sequence to increase the number
of cells to which a WILD-seq barcode can be conclusively assigned. c. scRNA-seq of in vitro 4T1
WILD-seq cell pool. UMAP plot of in vitro cultured 4T1 WILD-seq cells. Cells for which a WILD-seq
clonal barcode is identified are shown as dark grey or colored spots. Cells which belong to five selected
clonal lineages are highlighted. d. scRNA-seq of 4T1 WILD-seq tumors. UMAP plots of vehicle-
treated 4T1 WILD-seq tumors generated by injecting the 4T1 WILD-seq pool into the mammary fatpad
of BALB/c mice. Four independent experiments were performed each involving injection into 3 separate
host animals. Six animals from experiments A and B received vehicle 1 (10% DMSO, 0.9% B-
cyclodextrin) and six animals from experiments C and D received vehicle 2 (12.5% ethanol, 12.5%
Kolliphor). e. Clonal representation. Proportion of tumor cells assigned to each clonal lineage based
on the WILD-seq barcode (n = 1 for in vitro cultured cells, n = 6 for tumors from NSG mice, n = 12 for
vehicle-treated tumors from BALB/c mice). Selected clones from the most abundant lineages are
plotted. Data represents mean £ SEM. f. Principal component analysis of clonal transcriptomes.
Pseudo-bulk analysis was performed by summing counts for all tumor cells expressing the same WILD-
seq clonal barcode within an independent experiment. For in vivo tumor samples each point represents
the combined cells from 3 animals. Principal component analysis of normalized pseudo-bulk count data
showed separation of samples by origin with PC1 and PC2 and separation by clonality with PC3. g.
Transcriptomic programs associated with principal components. The top/bottom 50 gene loadings
of PC1, PC2 and PC3 were analyzed using Enrichr (Chen et al., 2013; Kuleshov et al., 2016; Xie et al.,
2021). h. Clonal transcriptomic signatures from vehicle-treated BALB/c tumors. An AUCell score
(Aibar et al., 2017) enrichment was calculated for each clone and for each experiment by comparing
cells of a specific clonal lineage of interest to all assigned tumor cells within the same experiment. All
gene sets which showed consistent and statistically significant enrichment in one of the six most
abundant clones across experiments are illustrated.
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Figure 2. Simultaneous detection of changes in clonal abundance, gene expression, and tumor
microenvironment in response to BET bromodomain inhibition with WILD-seq.

a. Tumor growth curves with JQ1 treatment. 4T1 WILD-seq tumors were treated with the BET
bromodomain inhibitor JQ1 or vehicle from 7 days post-implantation until endpoint (n = 4 mice per
condition). Data represents mean + SEM. b. scRNA-seq of JQ1-treated 4T1 WILD-seq tumors.
UMAP plots of vehicle- or JQ1-treated 4T1 WILD-seq tumors. Combined cells from 2 independent
experiments, each with 3 mice per condition are shown. Cells for which a WILD-seq clonal barcode is
identified are shown as dark grey or colored spots. Cells which belong to four selected clonal lineages
are highlighted. c. JQ1-treatment results in a reduction in Cd8+ tumor-associated T-cells. Cells
belonging to the T-cell compartment were computationally extracted from the single cell data and
reclustered. Upper panels show combined UMAP plots from experiments A and B with Cd8a expression
per cell illustrated enabling identification of the Cd8+ T cell cluster. Lower panels show neighborhood
graphs of the results from differential abundance testing using Milo (Dann et al., 2021). Colored nodes
represent neighbourhoods with significantly different cell numbers between conditions (FDR < 0.05)
and the layout of nodes is determined by the position of the neighborhood index cell in the UMAP panel
above. Experiments A and B were analyzed separately due to differences in cell numbers. d.
Differential gene expression between JQ1- and vehicle-treated tumor cells. Single cell heatmap
of expression for genes which are significantly and consistently down-regulated across clonal lineages
(combined fisher p-value < 0.05 and mean logFC < -0.2 for both experiments).1600 cells are
represented (400 per experiment/condition), grouped according to their clonal lineage. e. Differential
gene set expression between JQ1 and vehicle-treated tumor cells. Median AUCell score per
experiment/condition for selected gene sets. The 5 clonal lineages with the highest representation
across experiments are shown. f. Clonal representation. Proportion of tumor cells assigned to each
clonal lineage in experiment A based on the WILD-seq barcode (n = 3 tumors per condition). Clones
which make up at least 2% of the assigned tumor cells under at least one condition are plotted. The
most sensitive clone 473 is highlighted in blue and the most resistant clones 93, 439, 264 are highlighted
in red. Data represents mean + SEM. g. Clonal response to JQ1-treatment. Log: fold change in clonal
proportions upon JQ1 treatment across experiments A and B. Fold change was calculated by
comparing each JQ1-treated sample with the mean of the 3 corresponding vehicle-treated samples
from the same experiment. p-value calculated by one-sample t-test vs a theoretical mean of 0. Data
represents mean + SEM. h. and i. Correlation of JQ1-response with baseline clonal transcriptomic
signatures. Clonal gene set enrichment scores for vehicle-treated tumors were calculated by
comparing cells of a specific clonal lineage of interest to all assigned tumor cells within the same
experiment. Correlation between these scores and JQ1-treatment response (mean log: fold change
clonal proportion JQ1 vs vehicle) was then calculated for each gene set. Selected gene sets with the
highest positive or negative correlation values (Pearson correlation test) are shown. A positive
correlation indicates a higher expression in resistant clones, whereas a negative correlation indicates
a higher expression in sensitive clones. Resistant clonal lineages identified by barcodes 93, 264 and
439 were combined for the purpose of this analysis to have enough cells for analysis within the vehicle-
treated samples.
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Figure 3. Clonal transcriptomic correlates of response and resistance to taxane chemotherapy
in the 4T1 mammary carcinoma model.

a. Tumor growth curves with docetaxel treatment. 4T1 WILD-seq tumors were treated with
docetaxel or vehicle (12.5% ethanol, 12.5% Kolliphor) from 7 days post-implantation for 2 weeks (n =5
mice per condition). Dosing regimen was 12.5 mg/Kg docetaxel three times per week. Data represents
mean + SEM. b. scRNA-seq of docetaxel-treated 4T1 WILD-seq tumors. UMAP plots of vehicle- or
docetaxel-treated 4T1 WILD-seq tumors. Combined cells from 2 independent experiments, each with
3 mice per condition are shown. Cells for which a WILD-seq clonal barcode is identified are shown as
dark grey or colored spots. Cells which belong to three selected clonal lineages are highlighted. c.
Clonal representation. Proportion of tumor cells assigned to each clonal lineage in experiment C
based on the WILD-seq barcode (n = 3 tumors per condition). Clones which make up at least 2% of the
assigned tumor cells under at least one condition are plotted. The most sensitive clone 238 is
highlighted in blue and the most resistant clone 679 is highlighted in red. Data represents mean + SEM.
d. Clonal response to docetaxel-treatment. Log: fold change in clonal proportions upon docetaxel
treatment across experiments C and D. Fold change was calculated by comparing each docetaxel-
treated sample with the mean of the 3 corresponding vehicle-treated samples from the same
experiment. p-values calculated by one-sample t-test vs a theoretical mean of 0. Data represents mean
+ SEM. e. and f. Correlation of docetaxel-response with baseline clonal transcriptomic
signatures. Clonal gene set enrichment scores for vehicle-treated tumors were calculated by
comparing cells of a specific clonal lineage of interest to all assigned tumor cells within the same
experiment. Correlation between these scores and docetaxel-treatment response (mean logz fold
change clonal proportion docetaxel vs vehicle) was then calculated for each gene set. Selected gene
sets with the highest positive or negative correlation values (Pearson correlation test) are shown. A
positive correlation indicates a higher expression in resistant clones, whereas a negative correlation
indicates a higher expression in sensitive clones.
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Figure 4. Clonal transcriptomic signatures of response and resistance to taxane chemotherapy
in the D2A1 mammary carcinoma model. a. D2A1 WILD-seq tumor growth curves with docetaxel
treatment. D2A1 WILD-seq tumors were treated with docetaxel or vehicle from 7 days post-
implantation for 2 weeks (n = 5 vehicle-treated mice, n = 4 docetaxel-treated mice). Data represents
mean + SEM. b. scRNA-seq of docetaxel-treated D2A1 WILD-seq tumors. UMAP plots of vehicle-
treated D2A1 WILD-seq D2A1 tumors and reclustered barcoded-tumor cells from vehicle- and
docetaxel-treated tumors. Combined cells from 3 mice per condition are shown. Cells for which a WILD-
seq clonal barcode is identified are shown as dark grey or colored spots. Cells which belong to five
selected clonal lineages are highlighted. c. Comparison of EMT status of major 4T1 and D2A1 WILD-
seq clones. Violin plot of AUCell scores from vehicle-treated tumor cells generated using the
HOLLERN_EMT_BREAST_TUMOR_DN (Hollern et al., 2018) gene set, a set of genes that have low
expression in murine mammary tumors of mesenchymal histology. 4T1 WILD-seq clones exhibit varying
levels of expression of this geneset whereas D2A1 WILD-seq clones have consistently low levels of
expression of these genes. d. Clonal representation. Proportion of tumor cells assigned to each clonal
lineage based on the WILD-seq barcode (n = 3 tumors per condition). Clones which make up at least
2% of the assigned tumor cells under at least one condition are plotted. The most sensitive clones to
docetaxel treatment 118, 2874 and 1072 are highlighted in blue and the most resistant clones 1240,
1197 and 751 are highlighted in red. Data represents mean + SEM. e. Clonal transcriptomic
signatures from vehicle-treated tumors. Heatmap of median AUCell scores per sample for each of
the five most abundant clones. All gene sets which showed consistent and statistically significant
enrichment (combined fisher p-value < 0.01 & mean logz enrichment > 0.1) in at least one of these
clones are illustrated. f. Selected gene sets whose expression is associated with sensitivity to
docetaxel. Median AUCell scores per sample for each of the five most abundant clones is plotted. g.
Transcriptomic signatures associated with resistance to docetaxel. For vehicle-treated tumors,
resistant clonal lineages identified by barcodes 1197, 751 and 1240 were combined to have enough
cells for analysis. Gene sets with significantly enriched expression in these resistant clones in vehicle-
treated tumors were determined (adjusted p-value < 0.01 & logz enrichment > 0.1). A heatmap of
median AUCell scores per clone, per condition of these resistance-associated gene sets is plotted. h.
Selected gene sets whose expression is enriched or depleted in resistant clones. Median AUCell
scores per clone, per sample are plotted for samples with at least 20 cells per clone. Due to changes
in clonal abundance with treatment some clones can only be assessed under vehicle- or docetaxel-
treated conditions.
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Figure 5. Delineating the contribution of clonal abundance to gene expression changes upon
drug treatment. a. Comparison of differential gene expression analysis in bulk tumor cells and
intra-clonal changes in gene expression. Differential gene expression was performed for all
barcoded tumor cells irrespective of clonal lineage comparing chemotherapy-treated and vehicle-
treated cells (bulk tumor cell analysis). Alternatively differential gene expression was performed for
each individual clone separately and the results combined to identify genes which robustly undergo
intra-clonal changes in expression (analysis by clone). Whereas bulk tumor cell analysis will identify
changes in overall gene expression due to both changes in clonal abundance and changes within the
cells, analysis by clone enables us to delineate exclusively induced cellular changes in gene
expression. Logz fold change in expression as determined by each of these analysis methods is plotted.
Genes with significant changes in expression with chemotherapy (p-value < 0.05, logFC <-0.2 or > 0.2)
are highlighted based on the method under which they were identified. Genes identified as significantly
changing by one method only met neither logFC nor p-value cutoffs in the alternative method. b.
Changes in gene expression that are identified by bulk tumor cell analysis only can attributed
to changes in clonal abundance. The expression of genes which were identified as differential
expressed after chemotherapy only in the bulk tumor cell analysis was assessed across clonal lineages
at baseline. Baseline gene enrichment for each clone was determined as described previously by
comparing cells of a specific clonal lineage to all barcoded tumor cells within the same vehicle-treated
sample or experiment. Gene enrichment values for all genes with differential expression only in the bulk
tumor cell analysis were plotted. As expected, genes down-regulated in bulk analysis have lower
expression in resistant clones, whereas genes up-regulated in bulk analysis are enriched in resistant
clones. p-values represent a one sample t-test vs a theoretical mean of 0.
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Figure 6. Taxane-resistant clones have elevated NRF2 signaling and are sensitive to asparagine
deprivation. a. Overlap of genes associated with resistance between the D2A1 and 4T1 WILD-
seq models. 4T1 resistance genes were defined as those that were significantly enriched in resistant
clone 679 but not in sensitive clone 238 (p < 0.05). D2A1 resistance genes were defined as those that
were significantly enriched in combined resistant clones 1240, 751 and 1197 but not in sensitive clones
118, 2874 or 1072 (p < 0.05). In all cases, resistance genes were defined from vehicle treated tumors
b. Gene set enrichment analysis of common resistance genes. Gene set enrichment was
performed using Enrichr for the human orthologs of the 47 common resistance genes identified in Fig.
6a. Adjusted p-values for a subset of significant gene sets are plotted. c. Expression of our identified
resistance genes is increased in human breast tumors following taxane-based chemotherapy.
Expression of our 47 common resistance genes was assessed in human breast cancer samples taken
before and after taxane-based neoadjuvant chemotherapy (GSE28844). GSVA enrichment scores for
our gene set was calculated for samples from 28 patients for which matched pre- and post-treatment
gene expression data were available. Patients received one of three taxane-containing treatment
regimens; Regimen A: Epirubicin 90 mg/m2-Cyclophosphamide 600 mg/m?, 3 cycles bi-weekly and
Paclitaxel 150 mg/m2-Gemcitabine 2500 mg/m?, 6 cycles bi-weekly + weekly Herceptin 4 mg/Kg during
the first week, 2 mg/Kg for the remaining 11 cycles. Regimen B: Doxorubicin 60 mg/m2-Pemetrexed
500 mg/m?, 4 cycles tri-weekly and Docetaxel 100 mg/m?, 4 cycles tri-weekly. Regimen C: Doxorubicin
60 mg/m?-Cyclophosphamide 600 mg/m?, 4 cycles tri-weekly and Docetaxel 100 mg/m?, 4 cycles tri-
weekly. Expression of our common resistance gene set was significantly increased after chemotherapy
in human samples. p-value calculated by paired t-test. d. NRF2-target genes are upregulated in
human patients following neoadjuvant chemotherapy. GSVA enrichment scores for NRF2-target
genes (NFE2L2 CHEA consensus CHIP-targets) were calculated for samples from 28 patients in the
GSE28844 dataset for which pre- and post-treatment gene expression data were available. p-values
calculated by paired t-test. e. Docetaxel-resistant tumors are collaterally sensitive to L-
asparaginase. D2A1 WILD-seq tumors were treated with 3 doses of 12.5 mg/kg docetaxel (days 7,9,11
post-implantation) and 1 dose of 10 mg/kg docetaxel (day 14 post-implantation). From day 21 mice
were treated daily with L-asparaginase. Arrows indicate timepoints of tumor collection for single-cell
sequencing. Measurements are combined from 2 independent experiments. Due to sample collection
at timepoints indicated the number of animals is reduced beyond this. Vehicle n = 15 mice, docetaxel n
= 14 mice (reduced to 5 mice after day 21), docetaxel + L-asparaginase n = 13 mice (reduced to 4 mice
from day 25). In addition, 2 mice reached humane endpoint (due to weight loss following docetaxel
treatment but prior to administration of L-asparaginase) one in the DTX only arm at day 18 and one in
the DTX+L-Asp arm at day 21. Data represents mean + SEM. f. L-asparaginase alone does not affect
tumor growth. D2A1 WILD-seq tumors were treated with L-asparaginase or vehicle for 5 consecutive
days from day 14 post-implantation. n = 10 mice per condition. Data represents mean + SEM. g.
Taxane-resistant clones are sensitive to L-asparaginase. Relative clonal abundance in vehicle-
treated (day 21), docetaxel-treated (day 21) and docetaxel and L-asparaginase-treated (day 25) D2A1
WILD-seq tumors is shown for 3 taxane-resistant clones (751, 1197, 1240) and 1 neutral clone (2323).
Clonal proportions were calculated from single cell sequencing data of 3 tumors per condition. Data
represents mean + SEM. h. Gene expression changes in tumor cells after L-asparaginase
treatment. Heatmap for genes which are most significantly and consistently differentially expressed
across clonal lineages after treatment with L-asparaginase. 2400 cells are represented (400 per
sample), grouped according to clonal lineage.
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Description of supplementary tables

Supplementary Table 1. Overview of single cell RNA-seq samples generated.

Supplementary Table 2. Number and proportion of tumor cells assigned to each clonal barcode
for all 4T1 WILD-seq sample.

Supplementary Table 3. Number and proportion of tumor cells assigned to each clonal barcode
for all D2A1 WILD-seq sample.

Supplementary Table 4. 4T1 WILD-seq baseline gene enrichment signatures for major clones.
Differential gene expression analysis was performed for each clone by comparing cells from a clonal
lineage of interest to all assigned tumor cells within the same experiment. Only vehicle-treated samples
were included in the analysis. Experiments were included in the analysis if they contained at least 20
cells assigned to the clone and clones were analyzed if they were represented by at least 20 cells in at
least 3 of the 4 experiments. Differential gene expression was performed using Seurat FindMarkers
function and Wilcoxon Rank Sum test. Fisher's method was used to combine p-values from separate
experiments. Analysis for each clone is provided as a separate tab.

Supplementary Table 5. 4T1 WILD-seq baseline gene set enrichment signatures for major
clones. Differential gene set expression analysis was performed for each clone by comparing cells
from a clonal lineage of interest to all assigned tumor cells within the same experiment. All gene sets
from the Molecular Signatures Database C2 curated gene set collection were included in the analysis
that contained more than 20 genes detectable in our single cell data. Only vehicle-treated samples were
included in the analysis. Experiments were included in the analysis if they contained at least 20 cells
assigned to the clone and clones were analyzed if they were represented by at least 20 cells in at least
3 of the 4 experiments. Gene set expression analysis was performed using AUCell and differential
expression was calculated using Wilcoxon Rank Sum test. Tables show median AUCell score per
experiment for each gene set, enrichment in AUCell score relative to all assigned tumor cells within the
same experiment (logz(median AUCell score clone of interest/median AUCell score all clones)) and
adjusted p-value from Wilcoxon Rank Sum test of AUCell scores from clone of interest vs AUCell scores
from all assigned tumors cells from the same experiment. Fisher's method was used to combine p-
values from separate experiments. Analysis for each clone is provided as a separate tab. A final tab
‘Data_for_Fig1h’ provides the matrix of AUCell enrichment values used for the heatmap plotted in figure
1h compiled from individual analyses.

Supplementary Table 6. Differential expression analysis JQ1 vs Vehicle. Differential gene
expression analysis was performed by comparing cells from the same clonal lineage treated with JQ1
or vehicle within the same experiment. Five clones were included in the analysis (clones 350, 473, 537,
606 and 684) for which there were at least 20 cells per condition across both experiments. Fisher's
method was used to combine p-values from different clones within the same experiment. Gene level
differential expression was performed using Seurat FindMarkers function and Wilcoxon Rank Sum test.
These data are provided under the ‘FindMarkers_JQ1vsVeh'’ tab. Gene set level differential expression
was performed using AUCell and differential expression was calculated using Wilcoxon Rank Sum test.
These data are provided under the ‘AUCell_JQ1vsVeh' tab. The ‘Median_norm_AUCell_Scores’ tab
provides a summary of the median normalised AUCell scores for each clone, condition and experiment
used in the preparation of figure 2e. Normalization to enable comparison across separate experiments
was performed by dividing by the median AUCell score for all vehicle-treated tumor cells assigned to
any clonal lineage from the same experiment.

Supplementary Table 7. Correlation of clonal gene expression with JQ1 response. To determine
genes and gene sets whose expression correlates with JQ1 response, the correlation between baseline
gene and geneset enrichment values for the major clones as defined in supplementary tables 4 and 5
and the log fold change in clonal abundance between JQ1 and vehicle-treated samples was calculated
using the Pearson correlation test. The Pearson correlation coefficient is provided for each gene and
gene set.

Supplementary Table 8. Correlation of clonal gene expression with docetaxel response. To
determine genes and gene sets whose expression correlates with docetaxel response, the correlation
between baseline gene and geneset enrichment values for the major clones as defined in
supplementary tables 4 and 5 and the log fold change in clonal abundance between JQ1 and vehicle-
treated samples was calculated using the Pearson correlation test. The Pearson correlation coefficient
is provided for each gene and gene set.
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Supplementary Table 9. D2A1 WILD-seq baseline gene enrichment signatures for major clones.
Differential gene expression analysis was performed for each clone by comparing cells from a clonal
lineage of interest to all assigned tumor cells within the same sample. Only vehicle-treated samples
were included in the analysis. Clones were included in the analysis if there were at least 20 cells
assigned to that clone in all three vehicle samples (DV1, DV2 and DV3). Differential gene expression
was performed using Seurat FindMarkers function and Wilcoxon Rank Sum test. Fisher's method was
used to combine p-values from separate samples. Analysis for each clone is provided as a separate
tab. In addition, analysis is included for the combined resistant clones 751 1197 and 1240. Due to their
low representation in vehicle-treated samples cells assigned to these clones from all three vehicle-
treated samples were combined for gene expression analysis and compared to all assigned tumor cells
from the three samples.

Supplementary Table 10. D2A1 WILD-seq baseline gene set enrichment signatures for major
clones. Differential gene set expression analysis was performed for each clone by comparing cells
from a clonal lineage of interest to all assigned tumor cells within the same sample. All gene sets from
the Molecular Signatures Database C2 curated gene set collection were included in the analysis that
contained more than 20 genes detectable in our single cell data. Only vehicle-treated samples were
included in the analysis. Clones were included in the analysis if there were at least 20 cells assigned to
that clone in all three vehicle samples (DV1, DV2 and DV3). Gene set expression analysis was
performed using AUCell and differential expression was calculated using Wilcoxon Rank Sum test.
Tables show median AUCell score per sample for each gene set, enrichment in AUCell score relative
to all assigned tumor cells within the same experiment (logz(median AUCell score clone of
interest/median AUCell score all clones)) and adjusted p-value from Wilcoxon Rank Sum test of AUCell
scores from clone of interest vs AUCell scores from all assigned tumors cells from the same sample.
Fisher's method was used to combine p-values from separate samples. Analysis for each clone is
provided as a separate tab. In addition, analysis is included for the combined resistant clones 751 1197
and 1240. Due to their low representation in vehicle-treated samples cells assigned to these clones
from all three vehicle-treated samples were combined for gene expression analysis and compared to
all assigned tumor cells from the three samples. The tab ‘Data for Figde and 4f provides the matrix of
median AUCell scores used for the heatmap plotted in figure 4e compiled from individual analyses. The
tab ‘Data for Figdh’ provides median AUCell scores per sample for clones of interest for all samples
and conditions where at least 20 cells per clone were present. Selected data from this table was plotted
in figure 4h.

Supplementary Table 11. Comparison of differential gene expression analysis in bulk tumor
cells and intra-clonal changes in gene expression. For each treatment condition (docetaxel/D2A1,
docetaxel/4T1 and JQ1/4T1) differential expression analysis was performed between barcoded tumor
cells from drug-treated and vehicle-treated animals from the same experiment. Analysis was performed
either by using cells from a single clonal lineage (analysis by clone) or all barcoded tumor cells
irrespective of clonal lineage (bulk tumor cell analysis). Differential gene expression was performed
using Seurat FindMarkers function and Wilcoxon Rank Sum test. Logz fold change and adjusted p-
value are provided for each comparison. For the analysis by clone, the mean logFC of all individual
clonal comparisons is given (mean.logFC.clonal) and Fisher's method was used to combine p-values
(fisher.combined.pvalue.clonal). Genes were classified as significantly changed in clonal analysis only,
bulk analysis only or both analysis methods based on significance cutoffs of p-value < 0.05 and logFC
<-0.2 or > 0.2. Genes identified as significantly changing by one method only met neither logFC nor p-
value cutoffs in the alternative method. For analysis of WILD-seq 4T1 data, analysis was performed
separately for the 2 experiments and genes had to meet significance cutoffs in both experiments.

Supplementary Table 12. Overlap of docetaxel resistance markers in 4T1 and D2A1 cell lines.
4T1 resistance genes were defined as those that were significantly enriched in resistant clone 679 but
not in sensitive clone 238 (p < 0.05). D2A1 resistance genes were defined as those that were
significantly enriched in combined resistant clones 1240, 751 and 1197 but not in sensitive clones
118, 2874 or 1072 (p < 0.05). Overlap of these lists revealed 47 common genes. These are listed
along with their human orthologs.

Supplementary Table 13. Number and proportion of tumor cells assigned to each clonal
barcode for docetaxel and L-asparaginase combination experiment.

Supplementary Table 14. Differential expression analysis for L-Asparaginase treatment.
Differential gene expression analysis was performed by comparing cells from the same clonal lineage
between each DTX+Asp sample and the combined DTX only samples. To ensure there were
sufficient cells across all samples, five major clones (118, 1240, 2323, 2874 and 2991) were included
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in the analysis. Differential expression analysis was performed using Seurat FindMarkers function and
Wilcoxon Rank Sum test. Fisher's method was used to combine p-values from different clones within
the same comparison. When selecting genes of interest, mean fold change between DTX+Asp
samples and vehicle (also calculated on a per clone basis using abundant clones) was used as an
additional cutoff and is included in the table. The most significantly and consistently differentially
expressed genes are indicated in the final column ‘Meets.cutoffs?’.
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