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Abstract 13 
Tumor heterogeneity is thought to be a major barrier to successful cancer treatment due to the presence 14 
of drug resistant clonal lineages. However, identifying the characteristics of such lineages that underpin 15 
resistance to therapy has remained challenging. Here we utilize clonal transcriptomics with WILD-seq; 16 
Wholistic Interrogation of Lineage Dynamics by sequencing, in mouse models of triple-negative breast 17 
cancer (TNBC) to understand response and resistance to therapy, including BET bromodomain 18 
inhibition and taxane-based chemotherapy. This analysis revealed oxidative stress protection by NRF2 19 
as a major mechanism of taxane resistance and led to the discovery that our tumor models are 20 
collaterally sensitive to asparagine deprivation therapy using the clinical stage drug L-asparaginase 21 
after frontline treatment with docetaxel. In summary, clonal transcriptomics with WILD-seq identifies 22 
mechanisms of resistance to chemotherapy that are also operative in patients and pin points asparagine 23 
bioavailability as a druggable vulnerability of taxane resistant lineages.  24 
 25 
Introduction 26 
Intra-tumoral heterogeneity (ITH) is thought to underlie tumor progression and resistance to therapy by 27 
providing a reservoir of phenotypically diverse clonal lineages on which selective pressures from the 28 
microenvironment or therapeutic intervention exert their effects (Bhang et al., 2015; Turajlic & Swanton, 29 
2016). Inference of clonal composition from bulk sequencing has elucidated the breadth of ITH across 30 
tumor types and suggests that often rare pre-existing clones can resist therapy-induced killing to drive 31 
relapse (Dentro et al., 2021; Ding et al., 2012; Gerlinger et al., 2012; Jamal-Hanjani et al., 2014; Landau 32 
et al., 2013). However, such methods are limited by their inability to characterize such resistant clones 33 
beyond genotype and how their properties change over time and in response to therapy. Recently, 34 
several lineage tracing approaches have emerged that are able to link clonal identity with gene 35 
expression by utilizing expressed genetic barcodes that are read-out by single cell RNA sequencing 36 
(Biddy et al., 2018; Gutierrez et al., 2021; Quinn et al., 2021; Simeonov et al., 2021; Weinreb et al., 37 
2020; Yang et al., 2022). These powerful methods allow deconvolution of complex mixtures of clones 38 
while simultaneously providing a gene expression profile of those cells that can indicate the pathways 39 
on which they depend. However, to date in solid tumors these technologies have mostly been used to 40 
study drug response in vitro (Gutierrez et al., 2021; Oren et al., 2021) or metastatic dissemination in 41 
vivo (Quinn et al., 2021; Simeonov et al., 2021; Yang et al., 2022) and have not been utilized to study 42 
therapeutic response in immune-competent models. 43 
A thorough understanding of the biomarkers of sensitivity and mechanisms of resistance to 44 
chemotherapy is essential if we are to improve patient outcomes. Most existing combination cancer 45 
therapies are not rationally designed but were instead empirically optimized to avoid overlapping 46 
toxicities. More recently alternative therapeutic strategies have emerged including synthetic lethality, 47 
drug synergy (Al-Lazikani et al., 2012; O’Neil et al., 2017) and collateral sensitivity (Mueller et al., 2021; 48 
Pluchino et al., 2012; Zhao et al., 2016) that aim to leverage selective vulnerabilities of tumor cells while 49 
minimizing toxicity. Of particular promise is collateral sensitivity, in which as a tumor becomes resistant 50 
to one drug it comes at the cost of sensitivity to a second drug. Since many modern clinical trials occur 51 
in the context of neo-adjuvant chemotherapy, the identification of frontline therapy-induced collateral 52 
sensitivities to second line therapy would have the potential to be rapidly translated into improved 53 
outcomes for patients.  54 
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Here we develop WILD-seq (Wholistic Interrogation of Lineage Dynamics by sequencing), an 55 
accessible and adaptable platform for lineage tracing at the single-cell transcriptomic level that 56 
facilitates in vivo analysis of clonal dynamics and apply it to the study of syngeneic triple negative breast 57 
cancer (TNBC) mouse models. Our optimized pipeline ensures recurrent representation of clonal 58 
lineages across animals and samples, facilitating analysis of clonal dynamics under the selective 59 
pressure of therapeutic intervention. Importantly, analysis of response of TNBC models to frontline 60 
taxane-based chemotherapy revealed an enrichment of clones with high levels of NRF2 signaling, 61 
implicating defense against oxidative damage as a major determinant of resistance to chemotherapy. 62 
Building on the work of others (LeBoeuf et al., 2020) we show that these NRF2-high, taxane-resistant, 63 
lineages are collaterally sensitive to asparagine deprivation with L-asparaginase and that they adapt to 64 
this second line intervention by up-regulating de novo asparagine synthesis through asparagine 65 
synthetase (Asns). Together these data indicate that high levels of NRF2 signaling, which is also 66 
observed in patients following neo-adjuvant chemotherapy, promotes both resistance to chemotherapy 67 
and sensitivity to asparagine deprivation and warrant the exploration of L-asparaginase as a therapeutic 68 
modality in solid tumors.  69 
 70 
Results 71 
 72 
Establishment of an expressed barcode system to simultaneously detect clonal lineage and 73 
gene expression. 74 
WILD-seq uses a lentiviral library to label cells with an expressed, heritable barcode that enables 75 
identification of clonal lineage in conjunction with single cell RNA sequencing. The WILD-seq construct 76 
comprises a zsGreen transcript which harbours in its 3’ untranslated region (UTR) a barcode consisting 77 
of two 12 nucleotide variable regions separated by a constant linker (Fig. 1a). Each variable region is 78 
separated from any other sequence in the library by a Hamming distance of 5 to allow for library 79 
preparation and sequencing error correction and our library contains over 1.5 million unique barcodes. 80 
The barcode is appropriately positioned relative to the polyadenylation signal to ensure its capture and 81 
sequencing by standard oligo-dT single cell sequencing platforms. 82 
The standard WILD-seq pipeline is illustrated in Figure 1b. A heterogeneous cell line is transduced with 83 
a barcode library at low multiplicity of infection (MOI) to ensure that each cell receives a maximum of 84 
one barcode. An appropriate size pool of barcoded clones is selected and stabilized in culture. 85 
Empirically, we have found a pool established from 750 individual clones works well to provide effective 86 
representation of the diversity within the cell lines used herein while also enabling recurrent 87 
representation of the same clones across animals and experiments. Once stabilized in culture, the pool 88 
of WILD-seq clones can be analyzed directly by single cell sequencing or injected into a recipient animal 89 
for in vivo tumor growth. WILD-seq single cell sequencing libraries can be prepared using a standard 90 
oligo-dT based protocol and addition of an extra PCR amplification step can be used to increase 91 
coverage of the barcode region and aid cell lineage assignment. 92 
We first established a WILD-seq clonal pool from the mouse 4T1 cell line, a triple negative mammary 93 
carcinoma model that can be orthotopically implanted into the mammary fat pad of a BALB/c syngeneic 94 
host, which we have previously shown to be heterogeneous with distinct sub-clones having unique 95 
biological properties (Wagenblast et al., 2015). We performed single cell sequencing of the in vitro 96 
WILD-seq pool (Fig. 1c) and in vivo tumors derived from this clonal pool (Fig. 1d). Over the course of 97 
our studies, we injected multiple cohorts of mice with our WILD-seq 4T1 pool as detailed in 98 
Supplementary Table 1, some of which were subjected to a specific drug regime. All tumors were 99 
harvested at humane endpoint, as determined by tumor volume unless otherwise stated and 100 
immediately dissociated for single cell sequencing.  101 
For the purpose of characterising the baseline properties of our clones, we performed an in-depth 102 
transcriptomic analysis of all tumors from untreated and vehicle-treated animals. A WILD-seq barcode 103 
and thereby clonal lineage could be unambiguously assigned to 30-60% of cells per sample within the 104 
presumptive tumor cell/mammary epithelial cell cluster. 132 different WILD-seq barcodes were 105 
observed in vitro and in total 94 different WILD-seq barcodes were observed across our in vivo tumor 106 
samples. Our in vivo tumor samples comprised both tumor cells and host cells of the tumor 107 
microenvironment including cells of the innate and adaptive immune system, enabling simultaneous 108 
profiling of the tumor and its microenvironment (Fig. 1d). Clustering was performed after removal of 109 
reads mapping to the WILD-seq vector, to avoid any influence of the WILD-seq transcript on clustering, 110 
and the WILD-seq barcode assignment subsequently overlaid onto these data. The tumor cell clusters 111 
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were clearly identifiable by the high expression of the barcode transcript. Occasionally a barcode was 112 
observed in cells which clustered according to their transcriptome outside of the main tumor cluster. 113 
Since this could be the result of sequencing or technical error causing a mismatch between the WILD-114 
seq barcode and the cell of origin, only barcoded cells that clustered within the main tumor/mammary 115 
epithelium cell cluster were included in our analysis. 116 
We reproducibly observed the same clonal populations across animals and independent experiments 117 
which is critical to our ability to examine the effects of different interventions and treatments (Fig. 1d, 118 
1e). The relative abundance of clones was similar in tumors grown in NOD scid gamma (NSG) 119 
immunodeficient and BALB/c immunocompetent mice but was drastically different to that found in the 120 
in vitro cell pool from which they were established (Fig. 1e, Supplementary Table 2), suggesting that 121 
clones that show greatest fitness in cell culture do not necessarily show fitness in vivo. Therefore, in 122 
vitro clonal lineage tracking experiments are likely to capture a different collection of clones and have 123 
the potential to identify sensitive or resistance clones that are not represented in vivo. Pseudo-bulk 124 
analysis of the major clonal lineages revealed that the composition of the tumor microenvironment has 125 
a dramatic effect on the transcriptome of the tumor cells for all clones (Fig. 1f). Comparison of in vitro 126 
culture, tumors from NSG mice, and tumors from BALB/c mice by principal component analysis (PCA), 127 
showed clear separation of the tumor cells depending on their environment, with differences in 128 
interferon gamma signaling, TNF-alpha signaling, and cell cycle being most prominent between cells 129 
grown in vivo and in vitro (PC1, Fig. 1g). Differences in gene expression between tumors growing in 130 
immunocompetent and immunodeficient hosts were related to changes in the expression of 131 
extracellular matrix proteins and changes in interferon gamma and Il-2 signaling, consistent with the 132 
differences in T-cell abundance (PC2, Fig. 1g). These data highlight the importance of the host immune 133 
system in sculpting the transcriptome and provide cautionary context for the analysis of tumor gene 134 
expression in immune-compromised hosts. Although there were large differences between clonal gene 135 
expression patterns across hosts the clones showed consistent differences in gene expression across 136 
all settings, reflective of intrinsic clonal properties, with the biggest variation in gene expression across 137 
the clones being related to their position along the epithelial-mesenchymal transition (EMT) axis (PC3, 138 
Fig. 1g). In particular, Clone 679 is the most distinct and the most mesenchymal of the clones. 139 
To further characterize the major clones in our tumors, we performed gene set expression analysis 140 
using AUCell (Aibar et al., 2017) to identify pathways that are enriched in cells of a specific clonal 141 
lineage. Analysis was performed across four independent experiments each with three vehicle-treated 142 
animals and for the majority of clones we were able to identify distinct gene expression signatures that 143 
were reproducible across animals and experiments (Fig. 1h, Supplementary Table 4, Supplementary 144 
Table 5).  145 
Simultaneous detection of changes in clonal abundance, gene expression, and tumor 146 
microenvironment in response to BET bromodomain inhibition with WILD-seq. 147 
Having established that we can repeatedly observe the same clonal lineages and their gene expression 148 
programs across animals and experiments, we next sought to perturb the system. We chose the BET 149 
bromodomain inhibitor JQ1 for our proof-of-principle experiments to assess the ability of the WILD-seq 150 
system to simultaneously measure changes in clonal abundance, gene expression and the tumor 151 
microenvironment that occur following therapeutic intervention. JQ1 competitively binds to acetylated 152 
lysines, displacing BRD4 and thereby repressing transcription at specific loci. A large number of studies 153 
have indicated that BET inhibitors may be beneficial in the treatment of hematological malignancies 154 
and solid tumors including breast cancer, possibly by inhibiting certain key proto-oncogenes such as 155 
MYC (G. Jiang et al., 2020). 156 
Treatment of our 4T1 WILD-seq tumor-bearing mice with JQ1 caused an initial suppression of tumor 157 
growth but with only a small overall effect on time to humane endpoint (Fig. 2a). Tumors treated with 158 
JQ1 or vehicle alone were harvested at endpoint, dissociated and subjected to single cell sequencing 159 
(Fig. 2b). Two independent experiments were performed, each with 3 mice per condition. 160 
We first explored whether JQ1 had any effect on the tumor microenvironment. The most striking 161 
difference we observed was a change in abundance among the cells belonging to the T-cell 162 
compartment. To analyze this further, we computationally extracted these cells from the single cell data, 163 
reclustered them and performed differential abundance testing using Milo (Fig. 2c). Milo detects sets of 164 
cells that are differentially abundant between conditions by modeling counts of cells in neighborhoods 165 
of a KNN graph (Dann et al., 2021). When applied to our reclustered T-cells, Milo identified a significant 166 
decrease in abundance in cytotoxic T-cells, as identified by their expression of Cd8a and Cd8b1, 167 
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following JQ1 treatment. A significant change was observed in both of our experiments although the 168 
magnitude of the effect was greater in experiment A. 169 
We next examined the effect of JQ1 treatment on the transcriptome of the tumor cells. Differential 170 
expression analysis was performed for each clonal lineage and experiment independently. As expected, 171 
given its mode of action, we identified significant down-regulation of a wide range of genes with 172 
consistent changes across clonal lineages (Fig 2d, supplementary table 6). Among the repressed 173 
genes, were a number of genes related to interferon (IFN) signaling and antigen processing and 174 
presentation (Fig. 2d, 2e), including GBP2 which is strongly induced by IFN gamma, the MHC class II 175 
protein, Cd74, and B2m, a component of the MHC class I complex. JQ1 has previously been reported 176 
to directly inhibit transcription of IFN-response genes (Gibbons et al., 2019; Gusyatiner et al., 2021) 177 
suggesting this may be due to the direct action of JQ1 within our tumor cells, however JQ1-dependent 178 
changes to the tumor microenvironment may also influence these expression pathways.  179 
Our barcoded 4T1 clones showed varied sensitivity to JQ1, with treatment causing reproducible 180 
changes to clonal proportions within the tumor (Fig. 2f, 2g, Supplementary Table 2). In particular, one 181 
of the most abundant clones, clone 473, is highly sensitive to JQ1 treatment. In contrast, 3 clones were 182 
identified as being the most resistant to JQ1 treatment, clones 93, 439 and 264. These clones which 183 
together make up less than 5% of the tumor in vehicle treated mice constitute on average 12.8% of the 184 
JQ1-treated tumors. To examine baseline transcriptomic signatures of JQ1-sensitivity and resistance, 185 
we identified gene sets whose expression in vehicle-treated tumors was highly correlated with response 186 
(Figs. 2h, 2i, Supplementary Table 7). Interestingly, interferon signaling which is significantly attenuated 187 
in our JQ1-treated tumors is highly correlated with sensitivity to JQ1, suggesting a possible higher 188 
dependence of the sensitive clones on these pathways. Conversely resistance is associated with higher 189 
levels of unfolded protein response and mTOR signaling consistent with a known role of mTOR-190 
mediated autophagy in resistance to JQ1 (Luan et al., 2019), and cytotoxic synergy between 191 
PI3K/mTOR inhibitors and BET inhibitors (Lee et al., 2015; Stratikopoulos et al., 2015). 192 
Clonal transcriptomic correlates of response and resistance to taxane chemotherapy in the 4T1 193 
mammary carcinoma model. 194 
Our studies with JQ1 exemplify the ability of the WILD-seq system to simultaneously measure in vivo 195 
the effect of therapeutic intervention on clonal dynamics, gene expression and the tumor 196 
microenvironment. However, we were interested in using our system to investigate a chemotherapeutic 197 
agent currently in use in the clinic. We therefore treated our 4T1 WILD-seq tumor-bearing mice with 198 
docetaxel as a representative taxane, a class of drugs which are routinely used to treat triple negative 199 
breast cancer patients. As with JQ1, docetaxel treatment resulted in an initial, modest reduction in tumor 200 
growth followed by relapse (Fig. 3a). Comparison of vehicle and docetaxel (DTX) treated tumors 201 
revealed differential response of clonal lineages to treatment (Figs. 3b, 3c, 3d, Supplementary Table 2) 202 
with clone 679 being the most resistant and clone 238 the most sensitive to chemotherapy. 203 
Correlating the clones’ baseline transcriptomic profiles with response to docetaxel, revealed a major 204 
role for EMT in modulating sensitivity and resistance to taxane-based therapy. The 4T1 clones which 205 
are most sensitive to docetaxel are characterized by high expression of E-Cadherin regulated genes 206 
and low Zeb1 activity consistent with a more epithelial phenotype (Figs. 3e, 3f, Supplementary Table 207 
8). These observations are in agreement with previous studies that have implicated EMT, and its 208 
associated endowment of cancer stem cell-like characteristics, as a mechanism of resistance to 209 
cytotoxic chemotherapies like docetaxel in cell culture and patients (Bhola et al., 2013; Creighton et al., 210 
2009; Gupta et al., 2009). Resistance to docetaxel was correlated with up-regulation of multiple gene 211 
sets (Figs. 3e, 3f, Supplementary Table 8). This included genes whose expression is elevated in non-212 
responders to docetaxel in human breast cancer patients (Honma et al., 2008) demonstrating the 213 
relevance of findings arising from this approach. Interestingly, we also identify metabolic reprogramming 214 
as a potential mechanism of docetaxel resistance with higher expression of genes related to glycogen 215 
and glutathione metabolism being correlated with resistance to docetaxel (Fig, 3e). 216 
Clonal transcriptomic signatures of response and resistance to taxane chemotherapy in the 217 
D2A1 mammary carcinoma model. 218 
To explore the general applicability of WILD-seq to other models, we utilized a second triple negative 219 
mammary carcinoma model, D2A1-m2 (hereafter referred to as D2A1). Similar to the 4T1 cell line, this 220 
line was derived from a mouse mammary tumor in a BALB/c mouse and can be orthotopically implanted 221 
into the mammary fat pad of immunocompetent, syngeneic hosts (Jungwirth et al., 2017). 222 
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We established a WILD-seq D2A1 clonal pool by transducing the D2A1 cell line with our WILD-seq 223 
barcode library. These barcoded cells were orthotopically implanted into a cohort of mice, half of which 224 
were treated with docetaxel, while the remaining animals received vehicle alone. Docetaxel treatment 225 
caused an initial reduction in tumor growth with subsequent relapse (Fig. 4a). We performed single cell 226 
RNA sequencing of three tumors per condition and assigned the tumor cells to a distinct clonal lineage 227 
based on the presence of the WILD-seq barcode (Fig. 4b). In total 103 different WILD-seq barcodes 228 
were observed in vivo with a dramatic shift in relative clonal abundance on docetaxel treatment (Fig. 229 
4d, Supplementary Table 3). Unlike our 4T1 breast cancer model, variation between clonal lineages 230 
was no longer dominated by the EMT status of the clones and all clones exhibited a more 231 
mesenchymal-like phenotype consistent with the fact that this was a subline of D2A1 selected for its 232 
metastatic properties (Fig. 4c). This provides us with a distinct yet complementary system to investigate 233 
chemotherapy resistance with the potential to reveal alternative mechanisms than EMT status. 234 
We identified 3 clones which were acutely sensitive to docetaxel, clones 118, 2874 and 1072. Together 235 
these constitute on average 37% of the vehicle-treated tumors but only 1.3% of the docetaxel-treated 236 
tumors (Fig. 4d). To understand the properties of these clones, we analyzed the baseline gene 237 
expression characteristics of clones in vehicle-treated tumors. The gene expression of cells from a 238 
clone of interest was compared to all tumor cells to which a WILD-seq barcode could be assigned from 239 
the same sample, and clonal signatures identified that were significantly enriched across animals. 240 
Specific gene expression signatures were identifiable for all clones analyzed, some of which were 241 
unique to a single clone while others overlapped across the sensitive clones (Fig. 4e, Supplementary 242 
Table 9, Supplementary Table 10). For example, clone 1072 shows elevated levels of expression of 243 
cell cycle related pathways, such as E2F-target genes (Fig 4f), indicating that aberrant cell cycle control 244 
in these cells that could increase their susceptibility to an antimitotic cancer drug (Fig. 4f), interestingly 245 
high levels of E2F-targets have recently been shown to be associated with response to chemotherapy 246 
in breast cancer patients (Sammut et al., 2021). 247 
Three clones robustly increased their relative abundance within the tumor following docetaxel 248 
treatment, clones 1197, 751 and 1240, which despite making up less than 1% of the vehicle-treated 249 
tumors together constituted more than 20% of the docetaxel-treated tumors (Fig. 4d). Due to the low 250 
abundance of cells in vehicle-treated samples, cells belonging to all 3 clones were pooled to analyse 251 
their baseline gene expression profiles (Fig. 4g). Among the gene sets differentially expressed between 252 
resistant and sensitive clones, were a number of breast cancer amplicons indicating that there may be 253 
specific copy number variations associated with these clones (Figs. 4g, 4h). However single cell DNA 254 
sequencing data would be required to confirm the presence of specific genetic traits within our clones. 255 
Interestingly, gains in 8q24 (Han et al., 2010), 20q11 (Voutsadakis, 2021) and loss of 16q (Höglander 256 
et al., 2018) have previously been reported to be associated with resistance to taxane-based 257 
chemotherapy in agreement with our findings. Highly upregulated within all 3 of our resistant clones 258 
were genes related to the NRF2 pathway, even in the absence of docetaxel treatment (Figs. 4g, 4h). 259 
NRF2 activation has been linked to cancer progression and metastasis and has been suggested to 260 
confer resistance to chemotherapy (Homma et al., 2009; T. Jiang et al., 2010; Konstantinopoulos et al., 261 
2011; Romero et al., 2017; Shibata et al., 2008; Singh et al., 2006). 262 
Delineating the contribution of clonal abundance to gene expression changes upon drug 263 
treatment. 264 
Prior to the advent of single cell sequencing, the majority of studies relied on bulk RNA-seq or 265 
microarray analysis of gene expression to interrogate the effect of chemotherapeutic interventions. 266 
While informative, these studies cannot differentiate between changes in bulk gene expression that 267 
arise due to clonal selection and changes that are induced within a clonal lineage as the result of drug 268 
exposure. Even with single cell sequencing, definitive identification of the same clonal population across 269 
treatment conditions is impractical. Our method alleviates these difficulties by enabling the direct 270 
comparison of clones of the same lineage under different conditions. 271 
To examine the relative contribution of clonal selection and transcriptional reprogramming to changes 272 
in gene expression upon chemotherapy, we compared analysis of gene expression within each clone 273 
individually to a combined analysis of all pooled tumor cells (Fig. 5, Supplementary Table 11). 274 
Consistent with their mode of action, docetaxel had relatively little effect on the transcriptome of 275 
individual clones while JQ1 caused substantial changes to the transcriptome predominantly down-276 
regulating gene expression. Genes were identified under all treatments that were altered within the 277 
tumor as a whole but as a result of clonal selection rather than intra-clonal changes in gene expression, 278 
with the biggest effects being observed with docetaxel treatment in D2A1 tumors, in agreement with 279 
this condition inducing the largest changes in relative clonal abundance. To confirm that changes in 280 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 10, 2022. ; https://doi.org/10.1101/2021.12.09.471927doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.09.471927
http://creativecommons.org/licenses/by/4.0/


 6 

gene expression detected in bulk tumor analysis but not the clonal analysis could be attributed to 281 
differences in clonal sensitivity to chemotherapy, we analyzed baseline expression of these genes 282 
across the major clonal populations (Fig. 5b). As expected, we found that genes up-regulated only in 283 
bulk tumor analysis had significantly higher expression in clones resistant to chemotherapy (that 284 
increase in abundance with treatment) and genes only down-regulated in bulk tumor analysis had 285 
significantly lower expression in these resistant clonal lineages. 286 
Among the genes that change in expression within the tumor as a whole as a result of clonal selection 287 
upon docetaxel treatment, we identified a number of genes related to glutathione synthesis and 288 
conjugation including Mgst2, Esd and Gclm, that may endow resistant clones with greater ability to 289 
resolve reactive oxygen species (ROS) induced by docetaxel (Alexandre et al., 2007). Of note, we also 290 
observed that in 4T1 tumors, Epcam was significantly reduced in expression in the bulk tumor but was 291 
not changed within the individual clonal populations. This suggests that rather than inducing an EMT 292 
within the tumor cells, docetaxel is selecting clones of a pre-existing more mesenchymal phenotype. 293 
Convergent WILD-seq analysis across models identifies redox defense as a mediator of taxane 294 
resistance and amino asparagine deprivation as a means to target resistant clones.  295 
To examine if there were any shared mechanisms of taxane resistance across our 4T1 and D2A1 WILD-296 
seq clones, we looked for genes that were enriched in resistant clonal lineages in both models. We 297 
identified 47 overlapping resistance genes (Fig. 6a, Supplementary Table 12). These genes were 298 
significantly enriched in pathways related to resolution of oxidative stress including the NRF2 pathway 299 
and glutathione-mediated detoxification (Fig. 6b). 300 
Importantly, these genes were also enriched in human patients following combined anthracycline and 301 
taxane-based therapy, highlighting the potential clinical significance of our findings (Fig. 6c). Gene 302 
expression data from a previously published study with paired pre-neo adjuvant chemotherapy (NAC) 303 
core needle biopsies and post-chemotherapy surgical samples (Vera-Ramirez et al., 2013) was re-304 
analyzed using GSVA (Hänzelmann et al., 2013) to determine the effect of chemotherapy on a gene 305 
set composed of our 47 shared resistance genes (Fig. 6c) as well as NRF2-targets as determined by 306 
ChIP enrichment analysis (CHEA) (Lachmann et al., 2010) (Fig. 6d). Expression of both these gene 307 
sets was significantly increased after chemotherapy, which our data would suggest is the result of 308 
outgrowth of resistant clonal lineages with increased propensity to withstand taxane-induced oxidative 309 
stress. 310 
Given these findings, we hypothesized that combining taxane-based chemotherapy with a drug 311 
specifically targeting resistant clones with high Nrf2 signaling would provide a highly effective treatment 312 
regime. To test this hypothesis, we leveraged the finding that tumors with constitutively active Nrf2, due 313 
to mutation in the negative regulator Keap1, have metabolic vulnerabilities that arise from their high 314 
antioxidant production (Romero et al., 2017), including dependency of glutamine (Romero et al., 2017) 315 
and a general dependency on exogenous non-essential amino acids (NEAA) including asparagine 316 
(LeBoeuf et al., 2020). This metabolic dependency can be targeted therapeutically by L-asparaginase 317 
(ASNase from E.coli), which is used in the clinical management of acute lymphoblastic leukemia (ALL) 318 
(Batool et al., 2016), and catalyzes the conversion asparagine to aspartic acid and ammonia (Chan et 319 
al., 2019).  320 
To ascertain whether docetaxel resistant clones were collaterally sensitive to ASNase, we treated D2A1 321 
WILD-seq tumors initially with docetaxel to select for resistant clones and then began daily treatment 322 
with L-asparaginase one week later. This dosing regime was chosen as we found that with the dose of 323 
docetaxel used in this study co-administration of the 2 drugs or treatment with ASNase immediately 324 
following docetaxel was poorly tolerated. As shown in Figure 6e, treatment with ASNase arrested tumor 325 
growth and led to a ~40% increase in time to endpoint (relative to vehicle) in this highly aggressive 326 
model, although the tumors did acquire resistance and regrew after approximately one week of 327 
treatment. Importantly, ASNase alone had no significant effect on tumor growth, indicative of a 328 
docetaxel-induced effect (Fig. 6f). To determine the response of individual clonal lineages to ASNase 329 
treatment, we performed single cell sequencing on vehicle treated tumors (day 21), as well as docetaxel 330 
treated tumors before the start of ASNase treatment (day 21) and after 4 doses of ASNase (day 25). 331 
As before, our docetaxel-resistant clones, 751, 1197 and 1240, which have high levels of Nrf2 signaling 332 
all exhibited a dramatic increase in their abundance with docetaxel treatment (Fig. 6g). Excitingly, 333 
clones 751 and 1197 were sensitive to ASNase returning to baseline levels. Clone 1240 decreased in 334 
abundance in 2 of the 3 mice analyzed so is likely to also be sensitive to ASNase but more data is 335 
required to confirm its response. As predicted, our Nrf2-high resistant clones were selectively targeted 336 
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by amino acid deprivation as other clones such as 2323 were unchanged in their relative abundance 337 
(Fig. 6g). 338 
To confirm the mechanism of action of L-asparaginase and identify potential mechanisms of resistance 339 
to this drug that might cause the relapse observed, we analyzed the transcriptomic effects of ASNase 340 
administration. Genes which consistently changed in expression after ASNase treatment across clonal 341 
lineages are shown in Figure 6h. Many of the genes found to be differentially expressed in our tumor 342 
cells following L-asparaginase treatment are either directly related to protein synthesis (Eif3c, Gars, 343 
Eif3g, Eif5a) or are consistent with changes in gene expression reported in cell lines following amino 344 
acid deprivation including Atf5, Atf3, Jun, Fos, Egr1 and Asns (Fu et al., 2011; Pan et al., 2003; 345 
Pohjanpelto & Hölttä, 1990; Shan et al., 2010). Of specific interest is the up-regulation of asparagine 346 
synthetase (Asns) which catalyzes the de novo biosynthesis of L-asparagine from L-aspartate. In acute 347 
lymphoblastic leukemia (ALL), low levels of ASNS resulting in a dependence on extra-cellular 348 
asparagine are considered an important biomarker for L-asparaginase treatment. Moreover, the 349 
importance of ASNS overexpression in conferring asparaginase resistance has been well documented 350 
and is frequently seen in ALL patients that develop drug-resistant forms of the disease following 351 
treatment with ASNase (reviewed in (Richards & Kilberg, 2006)). In our experiments, this adaptation to 352 
asparaginase is observed across all clones analyzed suggesting a general resistance mechanism and 353 
supporting the clinical utility of an Asns inhibitor, if one were to be developed, as third line treatment in 354 
this context. 355 
In summary, these data support the notion that WILD-seq can identify causal mechanisms of drug 356 
resistance in vivo, that can be leveraged to inform new combination therapies. Since the redox defense 357 
signatures we identified are detectable in patients after neo-adjuvant chemotherapy (NAC), one can 358 
envisage an approach whereby patients receiving NAC have the surgical tumor specimen profiled for 359 
NRF2 gene signatures and those with high levels receive a post-operative course of L-asparaginase. 360 
Discussion 361 
Tumor heterogeneity is thought to underlie drug resistance through the selection of clonal lineages that 362 
can preferentially survive therapy. However, identifying the features of such lineages, so that they can 363 
be targeted therapeutically, has been challenging due the lack of understanding of their molecular 364 
characteristics and the lack of animal models to prospectively test therapeutic interventions and 365 
combinations thereof. To overcome these challenges, we utilized WILD-seq, a system that leverages 366 
expressed barcodes, population bottle necking, syngeneic mouse models and single cell RNA-seq to 367 
link clonal lineage to the transcriptome. Among the existing methods for coupling lineage tracing with 368 
single cell transcriptomic profiling, the majority use either lentiviral delivery of a genetic barcode similar 369 
to that used here or CRISPR/Cas9-mediate mutations for clonal lineage identification (Biddy et al., 370 
2018; Gutierrez et al., 2021; Quinn et al., 2021; Simeonov et al., 2021; Weinreb et al., 2020). We chose 371 
to avoid CRISPR/Cas9-based lineage labeling as induction of DNA damage could have an impact on 372 
the transcriptome and the sensitivity of the cells to therapeutic agents (Haapaniemi et al., 2018; L. Jiang 373 
et al., 2021). Our approach is unique in that we purposefully bottleneck our clonal population to achieve 374 
a balance between maximizing clonal diversity and minimizing variation in clonal representation across 375 
replicate animals and experiments. It is this feature that allows us to robustly call clonal gene expression 376 
signatures and differential clonal abundance before and after therapeutic intervention and it is this in 377 
turn that allows us to identify relevant drug resistance mechanisms in vivo.  378 
We find that the abundance of clones in cell culture and in vivo differ greatly, with the most abundant 379 
clones in vitro being lowly represented in vivo and vice versa thus providing a cautionary note when 380 
analyzing drug response in vitro. Moreover, WILD-seq of 4T1 tumors revealed that the relative immune 381 
competence of the host profoundly sculpts the transcriptome of clonal lineages and, as exemplified by 382 
JQ1, therapeutic interventions can impact the tumor microenvironment and its interaction with tumor 383 
cells, effects that would be missed in vitro and in immunocompromised hosts. We utilized WILD-seq to 384 
analyze sensitivity and resistance to taxane chemotherapy in two syngeneic, triple negative, mammary 385 
carcinoma models highlighting both known and new pathways of resistance (Marine et al., 2020). 386 
Resistance to cancer therapies can arise due to clonal selection or through adaptive reprograming of 387 
the epigenome and transcriptome of individual clones. Our data with docetaxel treatment in 4T1 and 388 
D2A1 indicate that over the time frames we have examined clonal selection is the dominant force driving 389 
resistance to chemotherapy with gene expression signatures, such as EMT and Nrf2 signaling, being 390 
present in clones at baseline that are then selected for during therapy. However, depending on the 391 
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mode of action of specific drugs, transcriptional reprogramming may also induce therapeutic resistance 392 
and such mechanisms can also be effectively identified with the WILD-seq platform. Indeed, up-393 
regulation of Asns, detected across clonal lineages after L-asparaginase provides an example of de 394 
novo acquisition of a resistance phenotype. 395 
Applying WILD-seq to examine docetaxel response across two TNBC models afforded the opportunity 396 
to overlap resistance genes for the same drug across models and remove model-specific effects. These 397 
analyses uncovered a critical role for redox defense in docetaxel resistance that also appears to be 398 
operative in human breast cancer patients after chemotherapy. Having identified a primary cause of 399 
resistance, we next sought to explore the possibility of collateral sensitivity. Collateral sensitivity, first 400 
described for antibiotics (Imamovic & Sommer, 2013; Pluchino et al., 2012; Roemhild & Andersson, 401 
2021) is the phenomenon by which resistance to one drug comes at the cost of sensitivity to a second 402 
drug. In the context of cancer and taxanes, collateral sensitivity has the distinct advantage over other 403 
therapeutic strategies of maintaining the initial first line therapy and only modifying subsequent 404 
therapies. We took advantage of previous findings linking constitutive Nrf2 signaling, via Keap1 loss, to 405 
a dependency on exogenous non-essential amino acids (LeBoeuf et al., 2020) and thereby sensitivity 406 
to L-asparaginase. Application of L-asparaginase led to an initial cessation of tumor growth followed by 407 
regrowth 6 days later. WILD-seq of docetaxel treated tumors before and after L-asparaginase treatment 408 
confirmed the specific suppression of Nrf2 high clones and also revealed a compensatory, clone 409 
agnostic, up-regulation of asparagine synthetase (Asns), which likely drives relapse in these tumors 410 
given the importance of ASNS to L-asparaginase resistance in ALL (Richards & Kilberg, 2006). 411 
Interestingly, we have previously shown that asparagine bioavailability regulates EMT and metastatic 412 
progression in breast cancer models (Knott et al., 2018). Thus, asparagine deprivation, which has not 413 
been extensively explored in breast cancer, may present multiple benefits to patients and the utility of 414 
L-asparaginase, a clinical stage drug, in this setting warrants further investigation. 415 
This study highlights the challenges of tackling tumor heterogeneity therapeutically. Even though we 416 
can effectively suppress the induction of docetaxel resistant clones by administration of L-asparaginase 417 
the tumors still adapt to this intervention and regrow, most likely due to transcriptionally shifting their 418 
metabolism towards de novo asparagine synthesis. Nevertheless, hope still remains since there are 419 
only three avenues by which cells can supply themselves with asparagine (1) uptake of extra-cellular 420 
asparagine which is effectively shut-off by ASNase (2) de novo synthesis through Asns or (3) catabolism 421 
of existing proteins. If we could effectively force tumors to depend on synthesis through Asns, we could 422 
then deprive them of that additional dependency if Asns-directed therapeutics were to be developed. 423 
This concept of steering clonal evolution with drugs towards a predictable and irreconcilable, 424 
therapeutically targetable, dependency may provide a general approach to achieving durable 425 
therapeutic responses for which tractable models of tumor evolution, such as those described here, are 426 
essential predictive components.  427 
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Methods 703 
 704 
Cell lines and culture 705 
The mouse mammary tumor cell lines 4T1 (ATCC) and D2A1-m2 (kind gifted from Clare Isacke’s lab) 706 
and the 293FT (Thermo Fisher Scientific) packaging cell line for virus production were cultivated in 707 
DMEM high glucose (Gibco), supplemented with 10% heat-inactivated fetal bovine serum (Gibco) and 708 
50 U/mL penicillin-streptomycin (Gibco). 709 
 710 
Virus production 711 
The WILD-seq library was packaged using 293FT lentivirus packaging cells. Cells were plated on 15 712 
cm adherent tissue culture plates (Corning) one day before transfection at a confluency of ~70%. 713 
Lentiviral particles were produced by co-transfecting 293FT cells with the transfer plasmid and standard 714 
third-generation packaging vectors pMDL (12.5 µg), CMV-Rev (6.25 µg) and VSV-G (9 µg) using the 715 
calcium-phosphate transfection method (Invitrogen). The transfection mixture was added to the 716 
packaging cells along with 100 mM chloroquine (Sigma-Aldrich). After 16-18 h, media was replaced for 717 
fresh growth media. Viral supernatant was collected 48 h after transfection and filtered through a 45µm 718 
filter. The viral supernatant was applied directly to cells or stored at 4°C for short-term storage or -80°C 719 
for long-term storage. When necessary, virus was concentrated using ultracentrifugation. Lentiviral titre 720 
was determined by serial dilutions and measurements of fluorescence via flow cytometry.  721 
 722 
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WILD-seq library design and cloning 723 
The pHSW8 lentiviral backbone was constructed using a four-way Gibson Assembly (NEB) by inserting 724 
a reverse expression cassette, consisting of a PGK promoter, the zsGreen ORF, a cloning site for high-725 
diversity barcode libraries and a synthetic polyA signal, into an empty pCCL-c-MNDU3-X backbone 726 
(#81071 Addgene). To generate the WILD-seq library, a barcode cassette was introduced at the cloning 727 
site within the pHSW8 lentiviral backbone, using PCR (Q5 High-Fidelity DNA Polymerase, NEB) and 728 
Gibson Assembly (NEB), such that it is expressed within the 3’UTR of the zsGreen transcript.  729 
 730 

Name Sequence 
Assembly_Fwd 5’-AAACTCTTGAGTGAACTCCAGTGATTTTGAACCAAGCGATTCAAAGTTCT-3’ 
Assembly_Rev 5’-ccttgccctgaTAACTGGAGGCAGTAATTTACAGCCATGCGCTCGTTTAC-3’ 
BarcodeOligo_Fwd 5’-TGAACCAAGCGATTCAAAGTTCTATCCGNNNNNNNNNNNNtgcatcggttaaccgatgca-3’ 
BarcodeOligo_Rev 5’-ATGCGCTCGTTTACTATACGATNNNNNNNNNNNNtgcatcggttaaccgatgca-3’ 

 731 
The barcode library was designed by generating 12 nt variable sequences using the R package 732 
DNABarcodes (Buschmann, 2017) and a set Hamming distance of 5. The resulting pool of sequences 733 
was then purchased as a custom oligo pool (Twist Bioscience). Reverse complement oligos 734 
(BarcodeOligo_Fwd/Rev) each containing a specific PCR handle, a 12-bp variable region and 20-bp 735 
constant linker were annealed and amplified by PCR for 20 cycles (using Assembly_Fwd/Rev primers). 736 
The amplified barcode library was column purified (Gel extraction kit, Qiagen) and the vector backbone 737 
was prepared by digestion with SwaI (NEB). WILD-seq barcodes were inserted into the lentiviral vector 738 
backbone through Gibson Assembly (NEB), concentrated and transformed into 10b electrocompetent 739 
E.coli cells (NEB).  740 
 741 
Bottlenecking strategy and characterisation of WILD-seq pools  742 
4T1 or D2A1-m2 cells were infected with WILD-seq library at low MOI (~ 0.2-0.3). Two days after 743 
infection, the desired number of zsGreen positive cells, ranging from 10 to 1250 cells, were collected 744 
and cultured for two weeks to allow for the pool of clones to stabilize. Different pooling strategies were 745 
tested, the ultimate WILD-seq pool was generated from three independent pools each established from 746 
250 sorted cells, maintained separately and mixed in equal proportions immediately prior to injection.  747 
 748 
Library complexity analysis 749 
WILD-seq barcodes of the lentiviral library were amplified using a one-step PCR protocol. 1 ng plasmid 750 
was used as template in four separate PCR reactions to account for PCR biases and errors. All 751 
reactions were pooled, concentrated and purified on a column and then sequenced on one lane of 752 
HiSeq4000. Reads that contained the WILD-seq barcode motif were identified and extracted from the 753 
FASTQ files. Detected WILD-seq barcode were filtered based on a 90th percentile cut-off. The resulting 754 
whitelist was further filtered for barcodes that contain the common linker region.  755 
 756 
Whitelist generation of WILD-seq barcodes 757 
To generate a comprehensive whitelist of expressed barcodes in each pool, RNA was extracted from 758 
WILD-seq transduced cells (High Pure RNA isolation kit, Roche) and reverse transcribed using the 759 
Superscript IV reverse transcription kit (Invitrogen) and a target site-specific primer with a unique 760 
molecular identifier (UMI) and an Illumina sample index. cDNA was amplified by PCR (Q5 High-Fidelity 761 
DNA Polymerase, NEB) using primers (RTWhitelist_Fwd/Rev) containing Illumina-compatible adapters. 762 
Alternatively, 1 µg of gDNA was extracted from WILD-seq transduced cells (Blood&Cell Culture DNA 763 
Kit, Qiagen) and the barcode amplified by PCR using primers containing Illumina-compatible adapters 764 
(gDNAWhitelist_Fwd/Rev). PCR products were purified via gel extraction (Qiagen) and quantified by 765 
Qubit. The library was sequenced on an Illumina MiSeq with a custom sequencing primer for Read1 766 
(CustomRead1). 767 
 768 

Name Sequence 
RT Primer 5’-CAAGCAGAAGACGGCATACGAGATNNNNNNGTGACTGGAG 

TTCAGACGTGTGCTCTTCCGATCTNNNNNNNNCAAGCGATTCAAAGTTCTATCCG-3’ 
RTWhitelist_Rev 5’-CAAGCAGAAGACGGCATACGA-3’ 
RTWhitelist_Fwd 5’-AATGATACGGCGACCACCGAGATCTACACCAGCAGTATGCATG 

CGCTCGTTTACTATACGAT-3’ 
gDNAWhitelist_Fwd 5’-AATGATACGGCGACCACCGAGATCTACACCAGCAGTATGCATGC 

GCTCGTTTACTATACGAT-3’ 
gDNAWhitelist_Rev 5’-CAAGCAGAAGACGGCATACGAGATNNNNNNGTGACT 

GGAGTTCAGACGTGTGCTCTTCCGATCCAAGCGATTCAAAGTTCTATCCG-3’ 
CustomRead1 Primer 5’-CCAGCAGTATGCATGCGCTCGTTTACTATACGAT-3’ 
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 769 
 770 
Reads from the RT-PCR barcode library that contained the WILD-seq barcode motif were identified and 771 
the number of unique UMIs supporting each barcode was calculated. If barcode sequences amplified 772 
from gDNA were also available an additional filtering step was included and any barcodes not also 773 
detected in the gDNA library excluded from the whitelist. Based on UMI counts, the top 90th percentile 774 
of detected barcodes were taken and collapsed for PCR and sequencing errors using hierarchical 775 
clustering and combining sequences with a Hamming distance less than 5. 776 
  777 
Single cell library preparation 778 
Tumor tissues were collected, minced and dissociated using the gentleMACS Octo Dissociator (Miltenyi 779 
Biotec) and the relevant kit (Tumor Dissociation Kit mouse). Tissues were process into single cell 780 
suspensions following manufacturer’s instructions and filtered through 70 µm filters (Miltenyi) to remove 781 
any remaining larger particles from single cell suspension after dissociation. The cell suspension was 782 
concentrated and filtered again through a 70 µm filter. Three million live cells were sorted based on live-783 
dead staining with propidium iodide to remove dead cells and debris, pelleted and resuspended in 1 784 
mL phosphate-buffered saline with 0.04% bovine serum albumin (Sigma Aldrich). Cells were counted 785 
with a hemocytometer to ensure accurate concentration. The final single cell suspension was diluted 786 
as required and NGS libraries were prepared using Chromium Single Cell 3' Reagent Kit (v3.1 787 
Chemistry Dual Index, user guide reference: CG000315) with no modifications. 788 
 789 
Enrichment library preparation 790 
To enrich for WILD-seq barcodes, the amplified cDNA libraries were further amplified with WILD-seq-791 
specific primers containing Illumina-compatible adapters and sample indices: 792 
 793 

Name Sequence 
Enrich_Fwd 5’-AATGATACGGCGACCACCGAGATCTACACNNNNNNNNNNACACTCTTTCCCTACACGACGCTC-3’ 

Enrich_Rev 5’-CAAGCAGAAGACGGCATACGAGATNNNNNNNNNNGTGACTGGAGTTCAGACGTGTGCTCTTC 
CGATCTCAGCCATGCGCTCGTTTACTATAC-3’ 

“N” denotes sample indices 

 794 
1 µL amplified cDNA library was used as template in a 29-cycle PCR reaction using KAPA HiFi HotStart 795 
ReadyMix (Roche). To avoid possible PCR-induced library biases, six reactions were run in parallel. All 796 
reactions were combined, purified by columns (Gel purification kit, Qiagen) and quantified by Qubit. 797 
Gene expression libraries and barcode enrichment libraries were pooled in an approximately 10:1 molar 798 
ratio and libraries were sequenced on the NovaSeq platform (Illumina). 799 
 800 
Animals and in vivo dosing 801 
All mouse experiments were performed under the Animals (Scientific Procedures) Act 1986 in 802 
accordance with UK Home Office licenses (Project License # PAD85403A) and approved by the Cancer 803 
Research UK (CRUK) Cambridge Institute Animal Welfare and Ethical Review Board. Female six to 804 
eight week-old BALB/c were purchased from The Charles River Laboratory. 60,000 tumor cells were 805 
resuspended in 50 µL of a 1:1 mixture of PBS and growth-factor reduced Matrigel (Corning). All 806 
orthotopic injections were performed into the fourth mammary gland. Primary tumor volume was 807 
measured using the formula V=0.5(LxW2), in which W is the with and L is length of the primary tumor.  808 
 809 
Tumor-bearing mice were treated with either vehicle or with different drugs from seven days post 810 
transplantation. All drugs were administered via intraperitoneal injection. For JQ1 treatment, animals 811 
were dosed 75 mg/kg JQ1 (dissolved in DMSO and diluted 1:10 in 10% β-cyclodextrin) 5 days/week (5 812 
consecutive days followed by 2 days off) until tumors reached endpoint. For docetaxel treatment, 813 
animals were dosed at 12.5 mg/kg docetaxel (dissolved in 1:1 mixture of ethanol and Kolliphor and 814 
diluted 1:4 in saline) 3 times/week, except when L-asparaginase was to be administered concurrently 815 
and then the dose was reduced to 10 mg/kg. For L-asparaginase treatment, mice were administered 816 
100 µL of 60 U L-asparagine (Abcam) diluted in saline. Vehicle-treated mice were sacrificed 21 days 817 
post tumor transplantation and treated animals were sacrificed when tumor volumes reached that of 818 
vehicle treated animals at 21 days unless otherwise stated. 819 
 820 
scRNA-seq analysis 821 
scRNA-seq libraries generated by the 10X Chromium platform were processed using CellRanger 822 
version 3.0.1. Reads were aligned to a custom reference genome that was created by adding the 823 
sequence of the zsGreen-WILD-seq barcode transgene as a new chromosome to the mm10 mouse 824 
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genome. The gene expression matrices generated were then analyzed with the Seurat R package 825 
(Stuart et al., 2019) using a standard pipeline. Briefly, datasets were first filtered based on the number 826 
of unique genes detected per cell (typical accepted range 200-10000 genes) and the percentage of 827 
reads that map to the mitochondrial genome (< 12 %). Reads which mapped to the zsGreen-WILD-seq 828 
barcode transgene were removed from the count matrix to prevent these driving cell clustering. 829 
Normalisation was performed using sctransform, including cell cycle regression. Differential abundance 830 
of cell subtypes was performed using Milo (Dann et al., 2021).  831 
 832 
Clonal barcode assignment to single cell data 833 
Extraction of WILD-seq barcodes from scRNA-seq data: Reads mapping to the zsGreen-WILD-seq 834 
barcode transgene and containing the full barcode sequence (20nt constant linker with a 12 nt variable 835 
region on either side) were extracted from the BAM file produced by Cell Ranger and mapped using 836 
Bowtie to a whitelist of barcodes expressed in the WILD-seq cell pool. A WILD-seq clonal barcode was 837 
assigned to a cell if there were at least 2 independent reads which matched the barcode to the cell and 838 
more than 50% of barcode mapped reads from the cell supported the assignment. 839 
 840 
Extraction of WILD-seq barcodes from PCR enrichment data: Reads from the PCR barcode enrichment 841 
were processed separately using the UMI-tools to extract 10X cell barcodes and UMIs from the raw 842 
read files. The sequence corresponding to the full barcode sequence (20nt constant linker with a 12 nt 843 
variable region on either side) was extracted from each read and then mapped to the WILD-seq clonal 844 
barcode whitelist using Bowtie. A WILD-seq clonal barcode was assigned to a cell if there were at least 845 
10 UMIs which matched the barcode to the cell and at least twice as many UMIs supporting this 846 
assignment compared to the next best. 847 
 848 
WILD-seq barcode assignment: The WILD-seq clonal barcode assignment from these 2 pipelines was 849 
then compared. If the assignment from the transcriptomic analysis and the PCR enrichment analysis 850 
were in agreement the barcode was assigned. On the rare occasion the assignment didn’t match a 851 
clonal barcode was not assigned. If a cell was assigned a WILD-seq barcode by only one method, a 852 
further more stringent filtering step was included. For WILD-seq barcodes assigned only from the 10X 853 
scRNA-seq dataset but not the PCR-enrichment, the minimum number of UMIs required to support the 854 
assignment was increased to 5 and for WILD-seq barcodes assigned only from the PCR-enrichment 855 
but not the 10X scRNA-seq dataset, the minimum number of UMIs required to support the assignment 856 
was increased to 30. 857 
 858 
Differential gene expression 859 
Differential gene expression was determined using the FindMarkers function in Seurat with a Wilcoxon 860 
rank sum test to identify differentially expressed genes. For differential expression of groups of genes, 861 
we used the AUCell R package (Aibar et al., 2017) which enables analysis of the relative expression of 862 
a gene set (i.e. gene signature or pathway) across all the cells in single-cell RNA-seq data using the 863 
“Area Under the Curve” (AUC) to calculate the enrichment of the input geneset within the expressed 864 
genes for each cell. An AUCell score was calculated for each tumor cell for every gene set in the 865 
MSigDB C2 collection (Liberzon et al., 2011; Subramanian et al., 2005) that contained more than 20 866 
genes with detectable expression in our data. AUCell scores were compared across clones or 867 
conditions using a Wilcoxon rank sum test and p-values were adjusted for multiple comparison using 868 
the Benjamini-Hochberg correction method.  869 
 870 
To generate baseline transcriptomic signatures for each clone in vehicle-treated tumors, comparisons 871 
were made between the clone of interest and all assigned tumor cells from the same sample (in the 872 
case of D2A1 tumors) or the same experiment (in the case of 4T1 tumors). Samples/experiments were 873 
included if they contained at least 20 cells assigned to the clone of interest.  To define consistently 874 
enriched/depleted signatures, p-values from comparisons within each sample/experiment were 875 
combined using the Fisher’s method. 876 
 877 
Patient data analysis 878 
Microarray gene expression data was downloaded from GSE28844 (Vera-Ramirez et al., 2013). A 879 
single probe for each gene was selected based on the highest median expression. Gene set expression 880 
per patient sample was calculated using GSVA (Hänzelmann et al., 2013). 881 
 882 
 883 
 884 
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Figure 1. Establishment of an expressed barcode system to simultaneously detect clonal 
lineage and gene expression from single cells in vivo. 
a. Lentiviral construct design. A PGK promoter drives expression of a transcript encoding zsGreen 
harboring a WILD-seq barcode sequence in the 3’UTR. A spacer sequence and polyadenylation signal 
ensure that that the barcode is detectable as part of a standard oligo dT single cell RNA library 
preparation and sequencing pipeline. The barcode cassette comprises 2 distinct 12 nucleotide barcode 
sequences separated by a constant 20 nucleotide linker region. The library of barcode sequences was 
designed with Hamming distance 5 to allow for sequencing error correction. b. Schematic of WILD-
seq method.  Tumor cells are infected with the WILD-seq lentiviral library and an appropriate size 
population of zsGreen positive cells isolated, each of which will express a single unique WILD-seq 
barcode. This WILD-seq barcoded, heterogenous cell pool is then subjected to an intervention of 
interest (such as in vivo treatment of the implanted pool with a therapeutic agent) and subsequently 
analyzed by single cell RNA sequencing using the 10X Genomics platform. An additional PCR 
amplification step is included that specifically enriches for the barcode sequence to increase the number 
of cells to which a WILD-seq barcode can be conclusively assigned. c. scRNA-seq of in vitro 4T1 
WILD-seq cell pool.  UMAP plot of in vitro cultured 4T1 WILD-seq cells. Cells for which a WILD-seq 
clonal barcode is identified are shown as dark grey or colored spots. Cells which belong to five selected 
clonal lineages are highlighted. d. scRNA-seq of 4T1 WILD-seq tumors. UMAP plots of vehicle-
treated 4T1 WILD-seq tumors generated by injecting the 4T1 WILD-seq pool into the mammary fatpad 
of BALB/c mice. Four independent experiments were performed each involving injection into 3 separate 
host animals. Six animals from experiments A and B received vehicle 1 (10% DMSO, 0.9% β-
cyclodextrin) and six animals from experiments C and D received vehicle 2 (12.5% ethanol, 12.5% 
Kolliphor). e. Clonal representation. Proportion of tumor cells assigned to each clonal lineage based 
on the WILD-seq barcode (n = 1 for in vitro cultured cells, n = 6 for tumors from NSG mice, n = 12 for 
vehicle-treated tumors from BALB/c mice). Selected clones from the most abundant lineages are 
plotted. Data represents mean ± SEM.  f. Principal component analysis of clonal transcriptomes. 
Pseudo-bulk analysis was performed by summing counts for all tumor cells expressing the same WILD-
seq clonal barcode within an independent experiment. For in vivo tumor samples each point represents 
the combined cells from 3 animals. Principal component analysis of normalized pseudo-bulk count data 
showed separation of samples by origin with PC1 and PC2 and separation by clonality with PC3. g. 
Transcriptomic programs associated with principal components. The top/bottom 50 gene loadings 
of PC1, PC2 and PC3 were analyzed using Enrichr (Chen et al., 2013; Kuleshov et al., 2016; Xie et al., 
2021). h. Clonal transcriptomic signatures from vehicle-treated BALB/c tumors. An AUCell score 
(Aibar et al., 2017) enrichment was calculated for each clone and for each experiment by comparing 
cells of a specific clonal lineage of interest to all assigned tumor cells within the same experiment. All 
gene sets which showed consistent and statistically significant enrichment in one of the six most 
abundant clones across experiments are illustrated. 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 10, 2022. ; https://doi.org/10.1101/2021.12.09.471927doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.09.471927
http://creativecommons.org/licenses/by/4.0/


Uba52
Tpm3-rs7

Tnnt2
Tnc

Tmsb10
Tmem132a

Syt8
Sult2b1

Snrpg
Slc15a3

Rpl35
Rpl29
Rpl27

Podnl1
Pmepa1

Pdgfb
Moxd1
Mmp9

Mmp13
Ly6e
Ly6a

Igfbp7
Ifi47

Hspa8
H2-T22
H2-Q7
H2-Q4

H2-Eb1
H2-DMb2
H2-DMb1

H2-DMa
H2-Ab1

H2-Aa
H19

Gstp1
Gbp4
Gbp3
Gbp2
Fbln2

Fam3c
Erh

Eef1g
Cxcl16
Col7a1

Cldn3
Chst2
Cd74
Bst2
B2m

AW112010
Ass1

Arpp19
Arl4c

Anxa3
Acsbg1

-2
-1
0
1
2

Expression

23
8

Vehicle JQ1

Clone93 26
4
35

0
43

9
47

3 53
7

60
6
67

9
68

4
other58

4 23
8

93 26
4

35
0 43

9 47
3 58

4
67

9
68

4
other53

7
60

6

a

Figure 2. WILD-seq

-10 -5 0 5 10 -10 -5 0 5 10

-10

-5

0

5

10

UMAP_1

U
M

A
P

_2

Vehicle JQ1

no barcode
other

439
473
679

Clone
264

T Cells

Tumor/Mammary
Epithelium

UMAP_1

b

-4

0

4

-8 -4 0 4
UMAP_1

U
M

AP
_2

Vehicle

-4

0

4

-8 -4 0 4
UMAP_1

U
M

AP
_2

C
d8a

JQ1

Nhood size
30
40
50
60

-4

0

4

logFC

overlap size
10
20
30
40

Nhood size
30
40
50

overlap size
10
20
30

-2.0

-1.5

-1.0

-0.5

0.0
logFC

Differential expression JQ1 vs Vehicle
Experiment A

Differential expression JQ1 vs Vehicle
Experiment B

Reclustered T cells
c d

350 473 537 606 684
0.0

0.5

1.0

1.5

2.0
SANA_RESPONSE_TO_IFNG_UP

350 473 537 606 684
0.6

0.8

1.0

1.2
KEGG_ANTIGEN_PROCESSING_AND_PRESENTATION

350 473 537 606 684
0.7

0.8

0.9

1.0

1.1
REACTOME_PROTEIN_UBIQUITINATION

350 473 537 606 684
0.0

0.5

1.0

1.5
BROWNE_INTERFERON_RESPONSIVE_GENES

Vehicle
JQ1

N
or

m
al

iz
ed

 A
U

C
el

l S
co

re

N
or

m
al

iz
ed

 A
U

C
el

l S
co

re

N
or

m
al

iz
ed

 A
U

C
el

l S
co

re

Clone

Clone

Clone

Clone

N
or

m
al

iz
ed

 A
U

C
el

l S
co

re

e f

g

68
4

67
9

47
3

35
0

23
8

60
6

66
2 48 69

5
30

1
52

3 93 58
4

43
9

26
4

0.0

0.2

0.4

Clone

R
el

at
iv

e 
Pr

op
or

tio
ns

Vehicle
JQ1

Experiment A

Ex
pe

rim
en

ts
 A

 &
 B

-5 0 5

93
238
264
350
439
473
523
537
584
606
679
684

p = 0.0188

C
lo

ne

logFC clonal abundance
(JQ1 vs Vehicle)

-1.0 -0.5 0.0 0.5 1.0

REACTOME_PYROPTOSIS

BROWNE_INTERFERON_RESPONSIVE_GENES

DER_IFN_ALPHA_RESPONSE_UP

MOSERLE_IFNA_RESPONSE

RADAEVA_RESPONSE_TO_IFNA1_UP

EINAV_INTERFERON_SIGNATURE_IN_CANCER

SANA_RESPONSE_TO_IFNG_UP

DER_IFN_GAMMA_RESPONSE_UP

REACTOME_IRE1ALPHA_ACTIVATES_CHAPERONES

BIOCARTA_CREB_PATHWAY

CHOW_RASSF1_TARGETS_UP

REACTOME_MTORC1_MEDIATED_SIGNALLING

REACTOME_UNFOLDED_PROTEIN_RESPONSE_UPR

WP_ANGIOGENESIS

PID_IL8_CXCR1_PATHWAY

REACTOME_MTOR_SIGNALLING

Correlation with JQ1 resistance

h

-3 -2 -1 0 1 2 3
-0.15
-0.10
-0.05
0.00
0.05
0.10
0.15
0.20

G
en

e 
Se

t E
nr

ic
hm

en
t

REACTOME_MTOR_SIGNALLING

-3 -2 -1 0 1 2 3
-0.06
-0.04
-0.02
0.00
0.02
0.04
0.06
0.08

-3 -2 -1 0 1 2 3
-0.10

-0.05

0.00

0.05

0.10
REACTOME_PYROPTOSIS

-3 -2 -1 0 1 2 3
-0.5
-0.4
-0.3
-0.2
-0.1
0.0
0.1
0.2
0.3

BROWNE_INTERFERON_
RESPONSIVE_GENES

logFC clonal abundance
(JQ1 vs Vehicle)

G
en

e 
Se

t E
nr

ic
hm

en
t

G
en

e 
Se

t E
nr

ic
hm

en
t

G
en

e 
Se

t E
nr

ic
hm

en
t

logFC clonal abundance
(JQ1 vs Vehicle)

logFC clonal abundance
(JQ1 vs Vehicle)

logFC clonal abundance
(JQ1 vs Vehicle)

REACTOME_UNFOLDED_PROTEIN_
RESPONSE_UPR

R = -0.92
p = 0.0033

R = -0.93
p = 0.0019

R = 0.89
p = 0.0081

R = 0.92
p = 0.0038

Clone 473

Clones 
439+264+93

i

5 10 15 20 25
0

100

200

300

400

500

600

JQ1
Vehicle  

Tu
m

ou
r v

ol
um

e 
(m

m
3 )

Days post-implantation

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 10, 2022. ; https://doi.org/10.1101/2021.12.09.471927doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.09.471927
http://creativecommons.org/licenses/by/4.0/


Figure 2. Simultaneous detection of changes in clonal abundance, gene expression, and tumor 
microenvironment in response to BET bromodomain inhibition with WILD-seq. 
a. Tumor growth curves with JQ1 treatment. 4T1 WILD-seq tumors were treated with the BET 
bromodomain inhibitor JQ1 or vehicle from 7 days post-implantation until endpoint (n = 4 mice per 
condition). Data represents mean ± SEM. b. scRNA-seq of JQ1-treated 4T1 WILD-seq tumors. 
UMAP plots of vehicle- or JQ1-treated 4T1 WILD-seq tumors. Combined cells from 2 independent 
experiments, each with 3 mice per condition are shown. Cells for which a WILD-seq clonal barcode is 
identified are shown as dark grey or colored spots. Cells which belong to four selected clonal lineages 
are highlighted. c. JQ1-treatment results in a reduction in Cd8+ tumor-associated T-cells. Cells 
belonging to the T-cell compartment were computationally extracted from the single cell data and 
reclustered. Upper panels show combined UMAP plots from experiments A and B with Cd8a expression 
per cell illustrated enabling identification of the Cd8+ T cell cluster. Lower panels show neighborhood 
graphs of the results from differential abundance testing using Milo (Dann et al., 2021). Colored nodes 
represent neighbourhoods with significantly different cell numbers between conditions (FDR < 0.05) 
and the layout of nodes is determined by the position of the neighborhood index cell in the UMAP panel 
above. Experiments A and B were analyzed separately due to differences in cell numbers. d. 
Differential gene expression between JQ1- and vehicle-treated tumor cells. Single cell heatmap 
of expression for genes which are significantly and consistently down-regulated across clonal lineages 
(combined fisher p-value < 0.05 and mean logFC < -0.2 for both experiments).1600 cells are 
represented (400 per experiment/condition), grouped according to their clonal lineage. e. Differential 
gene set expression between JQ1 and vehicle-treated tumor cells. Median AUCell score per 
experiment/condition for selected gene sets. The 5 clonal lineages with the highest representation 
across experiments are shown. f. Clonal representation. Proportion of tumor cells assigned to each 
clonal lineage in experiment A based on the WILD-seq barcode (n = 3 tumors per condition). Clones 
which make up at least 2% of the assigned tumor cells under at least one condition are plotted. The 
most sensitive clone 473 is highlighted in blue and the most resistant clones 93, 439, 264 are highlighted 
in red. Data represents mean ± SEM. g. Clonal response to JQ1-treatment. Log2 fold change in clonal 
proportions upon JQ1 treatment across experiments A and B. Fold change was calculated by 
comparing each JQ1-treated sample with the mean of the 3 corresponding vehicle-treated samples 
from the same experiment. p-value calculated by one-sample t-test vs a theoretical mean of 0. Data 
represents mean ± SEM. h. and i. Correlation of JQ1-response with baseline clonal transcriptomic 
signatures. Clonal gene set enrichment scores for vehicle-treated tumors were calculated by 
comparing cells of a specific clonal lineage of interest to all assigned tumor cells within the same 
experiment. Correlation between these scores and JQ1-treatment response (mean log2 fold change 
clonal proportion JQ1 vs vehicle) was then calculated for each gene set. Selected gene sets with the 
highest positive or negative correlation values (Pearson correlation test) are shown. A positive 
correlation indicates a higher expression in resistant clones, whereas a negative correlation indicates 
a higher expression in sensitive clones. Resistant clonal lineages identified by barcodes 93, 264 and 
439 were combined for the purpose of this analysis to have enough cells for analysis within the vehicle-
treated samples. 
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Figure 3. Clonal transcriptomic correlates of response and resistance to taxane chemotherapy 
in the 4T1 mammary carcinoma model. 
a. Tumor growth curves with docetaxel treatment. 4T1 WILD-seq tumors were treated with 
docetaxel or vehicle (12.5% ethanol, 12.5% Kolliphor) from 7 days post-implantation for 2 weeks (n = 5 
mice per condition). Dosing regimen was 12.5 mg/Kg docetaxel three times per week. Data represents 
mean ± SEM. b. scRNA-seq of docetaxel-treated 4T1 WILD-seq tumors. UMAP plots of vehicle- or 
docetaxel-treated 4T1 WILD-seq tumors. Combined cells from 2 independent experiments, each with 
3 mice per condition are shown. Cells for which a WILD-seq clonal barcode is identified are shown as 
dark grey or colored spots. Cells which belong to three selected clonal lineages are highlighted. c. 
Clonal representation. Proportion of tumor cells assigned to each clonal lineage in experiment C 
based on the WILD-seq barcode (n = 3 tumors per condition). Clones which make up at least 2% of the 
assigned tumor cells under at least one condition are plotted. The most sensitive clone 238 is 
highlighted in blue and the most resistant clone 679 is highlighted in red. Data represents mean ± SEM. 
d. Clonal response to docetaxel-treatment. Log2 fold change in clonal proportions upon docetaxel 
treatment across experiments C and D. Fold change was calculated by comparing each docetaxel-
treated sample with the mean of the 3 corresponding vehicle-treated samples from the same 
experiment. p-values calculated by one-sample t-test vs a theoretical mean of 0. Data represents mean 
± SEM. e. and f. Correlation of docetaxel-response with baseline clonal transcriptomic 
signatures. Clonal gene set enrichment scores for vehicle-treated tumors were calculated by 
comparing cells of a specific clonal lineage of interest to all assigned tumor cells within the same 
experiment. Correlation between these scores and docetaxel-treatment response (mean log2 fold 
change clonal proportion docetaxel vs vehicle) was then calculated for each gene set. Selected gene 
sets with the highest positive or negative correlation values (Pearson correlation test) are shown. A 
positive correlation indicates a higher expression in resistant clones, whereas a negative correlation 
indicates a higher expression in sensitive clones. 
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Figure 4. Clonal transcriptomic signatures of response and resistance to taxane chemotherapy 
in the D2A1 mammary carcinoma model. a. D2A1 WILD-seq tumor growth curves with docetaxel 
treatment. D2A1 WILD-seq tumors were treated with docetaxel or vehicle from 7 days post-
implantation for 2 weeks (n = 5 vehicle-treated mice, n = 4 docetaxel-treated mice). Data represents 
mean ± SEM. b. scRNA-seq of docetaxel-treated D2A1 WILD-seq tumors. UMAP plots of vehicle-
treated D2A1 WILD-seq D2A1 tumors and reclustered barcoded-tumor cells from vehicle- and 
docetaxel-treated tumors. Combined cells from 3 mice per condition are shown. Cells for which a WILD-
seq clonal barcode is identified are shown as dark grey or colored spots. Cells which belong to five 
selected clonal lineages are highlighted. c. Comparison of EMT status of major 4T1 and D2A1 WILD-
seq clones. Violin plot of AUCell scores from vehicle-treated tumor cells generated using the 
HOLLERN_EMT_BREAST_TUMOR_DN (Hollern et al., 2018) gene set, a set of genes that have low 
expression in murine mammary tumors of mesenchymal histology. 4T1 WILD-seq clones exhibit varying 
levels of expression of this geneset whereas D2A1 WILD-seq clones have consistently low levels of 
expression of these genes. d. Clonal representation. Proportion of tumor cells assigned to each clonal 
lineage based on the WILD-seq barcode (n = 3 tumors per condition). Clones which make up at least 
2% of the assigned tumor cells under at least one condition are plotted. The most sensitive clones to 
docetaxel treatment 118, 2874 and 1072 are highlighted in blue and the most resistant clones 1240, 
1197 and 751 are highlighted in red. Data represents mean ± SEM. e. Clonal transcriptomic 
signatures from vehicle-treated tumors. Heatmap of median AUCell scores per sample for each of 
the five most abundant clones. All gene sets which showed consistent and statistically significant 
enrichment (combined fisher p-value < 0.01 & mean log2 enrichment > 0.1) in at least one of these 
clones are illustrated. f. Selected gene sets whose expression is associated with sensitivity to 
docetaxel. Median AUCell scores per sample for each of the five most abundant clones is plotted. g. 
Transcriptomic signatures associated with resistance to docetaxel. For vehicle-treated tumors, 
resistant clonal lineages identified by barcodes 1197, 751 and 1240 were combined to have enough 
cells for analysis. Gene sets with significantly enriched expression in these resistant clones in vehicle-
treated tumors were determined (adjusted p-value < 0.01 & log2 enrichment > 0.1). A heatmap of 
median AUCell scores per clone, per condition of these resistance-associated gene sets is plotted. h. 
Selected gene sets whose expression is enriched or depleted in resistant clones. Median AUCell 
scores per clone, per sample are plotted for samples with at least 20 cells per clone. Due to changes 
in clonal abundance with treatment some clones can only be assessed under vehicle- or docetaxel-
treated conditions. 
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Figure 5. Delineating the contribution of clonal abundance to gene expression changes upon 
drug treatment. a. Comparison of differential gene expression analysis in bulk tumor cells and 
intra-clonal changes in gene expression. Differential gene expression was performed for all 
barcoded tumor cells irrespective of clonal lineage comparing chemotherapy-treated and vehicle-
treated cells (bulk tumor cell analysis). Alternatively differential gene expression was performed for 
each individual clone separately and the results combined to identify genes which robustly undergo 
intra-clonal changes in expression (analysis by clone). Whereas bulk tumor cell analysis will identify 
changes in overall gene expression due to both changes in clonal abundance and changes within the 
cells, analysis by clone enables us to delineate exclusively induced cellular changes in gene 
expression. Log2 fold change in expression as determined by each of these analysis methods is plotted. 
Genes with significant changes in expression with chemotherapy (p-value < 0.05, logFC < -0.2 or > 0.2) 
are highlighted based on the method under which they were identified. Genes identified as significantly 
changing by one method only met neither logFC nor p-value cutoffs in the alternative method. b. 
Changes in gene expression that are identified by bulk tumor cell analysis only can attributed 
to changes in clonal abundance. The expression of genes which were identified as differential 
expressed after chemotherapy only in the bulk tumor cell analysis was assessed across clonal lineages 
at baseline. Baseline gene enrichment for each clone was determined as described previously by 
comparing cells of a specific clonal lineage to all barcoded tumor cells within the same vehicle-treated 
sample or experiment. Gene enrichment values for all genes with differential expression only in the bulk 
tumor cell analysis were plotted. As expected, genes down-regulated in bulk analysis have lower 
expression in resistant clones, whereas genes up-regulated in bulk analysis are enriched in resistant 
clones. p-values represent a one sample t-test vs a theoretical mean of 0. 
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Figure 6. WILD-seq
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Figure 6. Taxane-resistant clones have elevated NRF2 signaling and are sensitive to asparagine 
deprivation. a. Overlap of genes associated with resistance between the D2A1 and 4T1 WILD-
seq models. 4T1 resistance genes were defined as those that were significantly enriched in resistant 

clone 679 but not in sensitive clone 238 (p < 0.05). D2A1 resistance genes were defined as those that 

were significantly enriched in combined resistant clones 1240, 751 and 1197 but not in sensitive clones 

118, 2874 or 1072 (p < 0.05). In all cases, resistance genes were defined from vehicle treated tumors 

b. Gene set enrichment analysis of common resistance genes. Gene set enrichment was 

performed using Enrichr for the human orthologs of the 47 common resistance genes identified in Fig. 

6a. Adjusted p-values for a subset of significant gene sets are plotted. c. Expression of our identified 
resistance genes is increased in human breast tumors following taxane-based chemotherapy. 
Expression of our 47 common resistance genes was assessed in human breast cancer samples taken 

before and after taxane-based neoadjuvant chemotherapy (GSE28844). GSVA enrichment scores for 

our gene set was calculated for samples from 28 patients for which matched pre- and post-treatment 

gene expression data were available. Patients received one of three taxane-containing treatment 

regimens; Regimen A: Epirubicin 90 mg/m
2
-Cyclophosphamide 600 mg/m

2
, 3 cycles bi-weekly and 

Paclitaxel 150 mg/m
2
-Gemcitabine 2500 mg/m

2
, 6 cycles bi-weekly ± weekly Herceptin 4 mg/Kg during 

the first week, 2 mg/Kg for the remaining 11 cycles. Regimen B: Doxorubicin 60 mg/m
2
-Pemetrexed 

500 mg/m
2
, 4 cycles tri-weekly and Docetaxel 100 mg/m

2
, 4 cycles tri-weekly. Regimen C: Doxorubicin 

60 mg/m
2
-Cyclophosphamide 600 mg/m

2
, 4 cycles tri-weekly and Docetaxel 100 mg/m

2
, 4 cycles tri-

weekly. Expression of our common resistance gene set was significantly increased after chemotherapy 

in human samples. p-value calculated by paired t-test. d. NRF2-target genes are upregulated in 
human patients following neoadjuvant chemotherapy. GSVA enrichment scores for NRF2-target 

genes (NFE2L2 CHEA consensus CHIP-targets) were calculated for samples from 28 patients in the 

GSE28844 dataset for which pre- and post-treatment gene expression data were available. p-values 

calculated by paired t-test. e. Docetaxel-resistant tumors are collaterally sensitive to L-
asparaginase. D2A1 WILD-seq tumors were treated with 3 doses of 12.5 mg/kg docetaxel (days 7,9,11 

post-implantation) and 1 dose of 10 mg/kg docetaxel (day 14 post-implantation). From day 21 mice 

were treated daily with L-asparaginase. Arrows indicate timepoints of tumor collection for single-cell 

sequencing. Measurements are combined from 2 independent experiments. Due to sample collection 

at timepoints indicated the number of animals is reduced beyond this. Vehicle n = 15 mice, docetaxel n 

= 14 mice (reduced to 5 mice after day 21), docetaxel + L-asparaginase n = 13 mice (reduced to 4 mice 

from day 25). In addition, 2 mice reached humane endpoint (due to weight loss following docetaxel 

treatment but prior to administration of L-asparaginase) one in the DTX only arm at day 18 and one in 

the DTX+L-Asp arm at day 21. Data represents mean ± SEM. f. L-asparaginase alone does not affect 
tumor growth. D2A1 WILD-seq tumors were treated with L-asparaginase or vehicle for 5 consecutive 

days from day 14 post-implantation. n = 10 mice per condition. Data represents mean ± SEM. g. 
Taxane-resistant clones are sensitive to L-asparaginase. Relative clonal abundance in vehicle-

treated (day 21), docetaxel-treated (day 21) and docetaxel and L-asparaginase-treated (day 25) D2A1 

WILD-seq tumors is shown for 3 taxane-resistant clones (751, 1197, 1240) and 1 neutral clone (2323). 

Clonal proportions were calculated from single cell sequencing data of 3 tumors per condition. Data 

represents mean ± SEM. h. Gene expression changes in tumor cells after L-asparaginase 
treatment. Heatmap for genes which are most significantly and consistently differentially expressed 

across clonal lineages after treatment with L-asparaginase. 2400 cells are represented (400 per 

sample), grouped according to clonal lineage. 
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Description of supplementary tables 
Supplementary Table 1. Overview of single cell RNA-seq samples generated.  
Supplementary Table 2. Number and proportion of tumor cells assigned to each clonal barcode 
for all 4T1 WILD-seq sample.  
Supplementary Table 3. Number and proportion of tumor cells assigned to each clonal barcode 
for all D2A1 WILD-seq sample.  
Supplementary Table 4. 4T1 WILD-seq baseline gene enrichment signatures for major clones. 
Differential gene expression analysis was performed for each clone by comparing cells from a clonal 
lineage of interest to all assigned tumor cells within the same experiment. Only vehicle-treated samples 
were included in the analysis. Experiments were included in the analysis if they contained at least 20 
cells assigned to the clone and clones were analyzed if they were represented by at least 20 cells in at 
least 3 of the 4 experiments. Differential gene expression was performed using Seurat FindMarkers 
function and Wilcoxon Rank Sum test. Fisher’s method was used to combine p-values from separate 
experiments. Analysis for each clone is provided as a separate tab. 

Supplementary Table 5. 4T1 WILD-seq baseline gene set enrichment signatures for major 
clones. Differential gene set expression analysis was performed for each clone by comparing cells 
from a clonal lineage of interest to all assigned tumor cells within the same experiment. All gene sets 
from the Molecular Signatures Database C2 curated gene set collection were included in the analysis 
that contained more than 20 genes detectable in our single cell data. Only vehicle-treated samples were 
included in the analysis. Experiments were included in the analysis if they contained at least 20 cells 
assigned to the clone and clones were analyzed if they were represented by at least 20 cells in at least 
3 of the 4 experiments. Gene set expression analysis was performed using AUCell and differential 
expression was calculated using Wilcoxon Rank Sum test. Tables show median AUCell score per 
experiment for each gene set, enrichment in AUCell score relative to all assigned tumor cells within the 
same experiment (log2(median AUCell score clone of interest/median AUCell score all clones)) and 
adjusted p-value from Wilcoxon Rank Sum test of AUCell scores from clone of interest vs AUCell scores 
from all assigned tumors cells from the same experiment. Fisher’s method was used to combine p-
values from separate experiments. Analysis for each clone is provided as a separate tab. A final tab 
‘Data_for_Fig1h’ provides the matrix of AUCell enrichment values used for the heatmap plotted in figure 
1h compiled from individual analyses. 

Supplementary Table 6. Differential expression analysis JQ1 vs Vehicle. Differential gene 
expression analysis was performed by comparing cells from the same clonal lineage treated with JQ1 
or vehicle within the same experiment. Five clones were included in the analysis (clones 350, 473, 537, 
606 and 684) for which there were at least 20 cells per condition across both experiments. Fisher’s 
method was used to combine p-values from different clones within the same experiment. Gene level 
differential expression was performed using Seurat FindMarkers function and Wilcoxon Rank Sum test. 
These data are provided under the ‘FindMarkers_JQ1vsVeh’ tab. Gene set level differential expression 
was performed using AUCell and differential expression was calculated using Wilcoxon Rank Sum test. 
These data are provided under the ‘AUCell_JQ1vsVeh’ tab. The ‘Median_norm_AUCell_Scores’ tab 
provides a summary of the median normalised AUCell scores for each clone, condition and experiment 
used in the preparation of figure 2e. Normalization to enable comparison across separate experiments 
was performed by dividing by the median AUCell score for all vehicle-treated tumor cells assigned to 
any clonal lineage from the same experiment.  
Supplementary Table 7. Correlation of clonal gene expression with JQ1 response. To determine 
genes and gene sets whose expression correlates with JQ1 response, the correlation between baseline 
gene and geneset enrichment values for the major clones as defined in supplementary tables 4 and 5 
and the log fold change in clonal abundance between JQ1 and vehicle-treated samples was calculated 
using the Pearson correlation test. The Pearson correlation coefficient is provided for each gene and 
gene set. 

Supplementary Table 8. Correlation of clonal gene expression with docetaxel response. To 
determine genes and gene sets whose expression correlates with docetaxel response, the correlation 
between baseline gene and geneset enrichment values for the major clones as defined in 
supplementary tables 4 and 5 and the log fold change in clonal abundance between JQ1 and vehicle-
treated samples was calculated using the Pearson correlation test. The Pearson correlation coefficient 
is provided for each gene and gene set. 
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Supplementary Table 9. D2A1 WILD-seq baseline gene enrichment signatures for major clones. 
Differential gene expression analysis was performed for each clone by comparing cells from a clonal 
lineage of interest to all assigned tumor cells within the same sample. Only vehicle-treated samples 
were included in the analysis. Clones were included in the analysis if there were at least 20 cells 
assigned to that clone in all three vehicle samples (DV1, DV2 and DV3). Differential gene expression 
was performed using Seurat FindMarkers function and Wilcoxon Rank Sum test. Fisher’s method was 
used to combine p-values from separate samples. Analysis for each clone is provided as a separate 
tab. In addition, analysis is included for the combined resistant clones 751 1197 and 1240. Due to their 
low representation in vehicle-treated samples cells assigned to these clones from all three vehicle-
treated samples were combined for gene expression analysis and compared to all assigned tumor cells 
from the three samples. 

Supplementary Table 10. D2A1 WILD-seq baseline gene set enrichment signatures for major 
clones. Differential gene set expression analysis was performed for each clone by comparing cells 
from a clonal lineage of interest to all assigned tumor cells within the same sample. All gene sets from 
the Molecular Signatures Database C2 curated gene set collection were included in the analysis that 
contained more than 20 genes detectable in our single cell data. Only vehicle-treated samples were 
included in the analysis. Clones were included in the analysis if there were at least 20 cells assigned to 
that clone in all three vehicle samples (DV1, DV2 and DV3).  Gene set expression analysis was 
performed using AUCell and differential expression was calculated using Wilcoxon Rank Sum test. 
Tables show median AUCell score per sample for each gene set, enrichment in AUCell score relative 
to all assigned tumor cells within the same experiment (log2(median AUCell score clone of 
interest/median AUCell score all clones)) and adjusted p-value from Wilcoxon Rank Sum test of AUCell 
scores from clone of interest vs AUCell scores from all assigned tumors cells from the same sample. 
Fisher’s method was used to combine p-values from separate samples. Analysis for each clone is 
provided as a separate tab. In addition, analysis is included for the combined resistant clones 751 1197 
and 1240. Due to their low representation in vehicle-treated samples cells assigned to these clones 
from all three vehicle-treated samples were combined for gene expression analysis and compared to 
all assigned tumor cells from the three samples. The tab ‘Data for Fig4e and 4f’ provides the matrix of 
median AUCell scores used for the heatmap plotted in figure 4e compiled from individual analyses. The 
tab ‘Data for Fig4h’ provides median AUCell scores per sample for clones of interest for all samples 
and conditions where at least 20 cells per clone were present. Selected data from this table was plotted 
in figure 4h. 

Supplementary Table 11. Comparison of differential gene expression analysis in bulk tumor 
cells and intra-clonal changes in gene expression. For each treatment condition (docetaxel/D2A1, 
docetaxel/4T1 and JQ1/4T1) differential expression analysis was performed between barcoded tumor 
cells from drug-treated and vehicle-treated animals from the same experiment. Analysis was performed 
either by using cells from a single clonal lineage (analysis by clone) or all barcoded tumor cells 
irrespective of clonal lineage (bulk tumor cell analysis). Differential gene expression was performed 
using Seurat FindMarkers function and Wilcoxon Rank Sum test. Log2 fold change and adjusted p-
value are provided for each comparison. For the analysis by clone, the mean logFC of all individual 
clonal comparisons is given (mean.logFC.clonal) and Fisher’s method was used to combine p-values 
(fisher.combined.pvalue.clonal). Genes were classified as significantly changed in clonal analysis only, 
bulk analysis only or both analysis methods based on significance cutoffs of p-value < 0.05 and logFC 
< -0.2 or > 0.2. Genes identified as significantly changing by one method only met neither logFC nor p-
value cutoffs in the alternative method. For analysis of WILD-seq 4T1 data, analysis was performed 
separately for the 2 experiments and genes had to meet significance cutoffs in both experiments. 

Supplementary Table 12. Overlap of docetaxel resistance markers in 4T1 and D2A1 cell lines. 
4T1 resistance genes were defined as those that were significantly enriched in resistant clone 679 but 
not in sensitive clone 238 (p < 0.05). D2A1 resistance genes were defined as those that were 
significantly enriched in combined resistant clones 1240, 751 and 1197 but not in sensitive clones 
118, 2874 or 1072 (p < 0.05). Overlap of these lists revealed 47 common genes. These are listed 
along with their human orthologs. 

Supplementary Table 13. Number and proportion of tumor cells assigned to each clonal 
barcode for docetaxel and L-asparaginase combination experiment. 
Supplementary Table 14. Differential expression analysis for L-Asparaginase treatment. 
Differential gene expression analysis was performed by comparing cells from the same clonal lineage 
between each DTX+Asp sample and the combined DTX only samples. To ensure there were 
sufficient cells across all samples, five major clones (118, 1240, 2323, 2874 and 2991) were included 
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in the analysis. Differential expression analysis was performed using Seurat FindMarkers function and 
Wilcoxon Rank Sum test. Fisher’s method was used to combine p-values from different clones within 
the same comparison. When selecting genes of interest, mean fold change between DTX+Asp 
samples and vehicle (also calculated on a per clone basis using abundant clones) was used as an 
additional cutoff and is included in the table. The most significantly and consistently differentially 
expressed genes are indicated in the final column ‘Meets.cutoffs?’. 
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