

1 Seeing the future: predictive control in neural models of ocular
2 accommodation
3

4 Jenny C. A. Read¹, Christos Kaspiris-Rousellis¹, Toby S. Wood², Bing Wu³, Björn N.S.
5 Vlaskamp³, Clifton M. Schor⁴

6 1. Biosciences Institute, Newcastle University, NE2 4HH

7 2. School of Mathematics, Statistics & Physics, Newcastle University, NE1 7RU

8 3. Quantified Experience, Magic Leap Inc

9 4. School of Optometry, University of California at Berkeley

10

11 **Abstract**

12 Ocular accommodation is the process of adjusting the eye's crystalline lens so as to bring the
13 retinal image into sharp focus. The major stimulus to accommodation is therefore retinal
14 defocus, and in essence, the job of accommodative control is to send a signal to the ciliary
15 muscle which will minimize the magnitude of defocus. In this paper, we first provide a tutorial
16 introduction to control theory to aid vision scientists without this background. We then present
17 a unified model of accommodative control that explains properties of the accommodative
18 response for a wide range of accommodative stimuli. Following previous work, we conclude
19 that most aspects of accommodation are well explained by dual integral control, with a "fast"
20 or "phasic" integrator enabling response to rapid changes in demand, which hands over control
21 to a "slow" or "tonic" integrator which maintains the response to steady demand. Control is
22 complicated by the sensorimotor latencies within the system, which delay both information
23 about defocus and the accommodation changes made in response, and by the sluggish response
24 of the motor plant. These can be overcome by incorporating a Smith predictor, whereby the
25 system predicts the delayed sensory consequences of its own motor actions. For the first time,
26 we show that critically-damped dual integral control with a Smith predictor accounts for
27 adaptation effects as well as for the gain and phase for sinusoidal oscillations in demand. In
28 addition, we propose a novel proportional-control signal to account for the power spectrum of
29 accommodative microfluctuations during steady fixation, which may be important in hunting
30 for optimal focus, and for the nonlinear resonance observed for low-amplitude, high-frequency
31 input. Complete Matlab/Simulink code implementing the model is provided at
32 <https://doi.org/10.25405/data.ncl.14945550>.

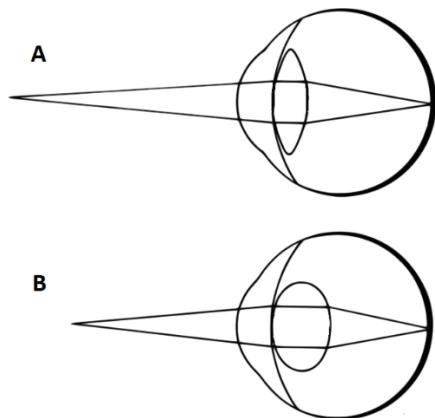
33

34 **Introduction**

35 Accommodation refers to the ability of the eye to change its focus between near and far
36 distances, so as to ensure that images remain in sharp focus at the fovea across a wide range of
37 object distances. This is achieved by changes in the convexity of the intra-ocular lens, brought
38 about by contraction of the ciliary muscle (Figure 1). To focus on distant objects, the ciliary
39 muscle is relaxed, the lens curvature and thus its optical power is minimal; to focus on near
40 objects, the ciliary muscle contracts, the lens curvature increases and so does its optical power.
41 Accommodation is usually controlled by the brain as an unconscious reflexive process.

42

43



44

45 *Figure 1. (A) Accommodating on a distant object. When the ciliary muscle is slack, tension in the suspensory zonules is released*
46 *and the intra-ocular crystalline lens flattens, enabling distant objects to appear in focus on the retina (for an emmetropic*
47 *eye). Light from a nearby object, such as shown, is therefore out of focus. (B) Accommodating on a nearby object. The ciliary*
48 *muscle has contracted, increasing the curvature of the lens (blue arrows) in order to bring nearby objects into focus. Not to*
49 *scale. Image: Pearson Scott Foresman, public domain.*

50

51 A full understanding of this process requires a knowledge of (i) the optical and biomechanical
52 properties of the eye; (ii) how the required accommodative response is derived from retinal and
53 extra-retinal cues; and (iii) the neural signals controlling the ciliary muscle to bring about this
54 response. In this paper, we concentrate on the third of these.

55

56 We begin by discussing the basic structure of models of neural control of accommodation. A
57 key goal of this section is to provide a clear review of the subject, introducing concepts and
58 summarizing previous work in a way which is accessible to vision scientists without a

59 background in classical control theory. Accordingly, this section incorporates a tutorial to bring
60 such readers up to speed.

61
62 The core of accommodative control is a negative feedback loop attempting to null the error
63 between accommodative demand, i.e. the accommodation at which the fixated object will be
64 in sharp focus, and response, i.e. the accommodation actually adopted. Such feedback loops
65 are vulnerable to instabilities caused by the finite latencies within the control system. A well-
66 established strategy for avoiding such instabilities is to predict the eye's response to a motor
67 command. This requires an "efference copy" of the signal sent to the ocular plant, along with
68 an internal or "forward" model of the plant, enabling the system to predict the response to the
69 motor signal. Control can then be based on the predicted future input, rather than the currently
70 sensed input, effectively removing the effect of the latencies. We consider the particular form
71 known as a Smith predictor (Abe & Yamanaka, 2003; Miall et al., 1993; Smith, 1957), designed
72 for closed-loop control of systems with long delays in the feedback. Predictive models stand in
73 contrast to classical models which do not take account of the sensory consequences of the
74 body's own motor actions.

75
76 Armed with this background, we next discuss the evidence that accommodation uses a Smith
77 predictor, and examine empirical constraints on the model parameters. We aim to produce a
78 model which can account for behavior in both steady-state and smooth tracking, including
79 accommodative lag/lead, adaptation, critical damping, and Bode plots of gain and phase.
80 (Extending the model to reproduce dynamics of the step response (Bharadwaj & Schor, 2005,
81 2006; Schor & Bharadwaj, 2004, 2006) will be covered in a subsequent paper.)

82
83 This analysis leads us to conclude that accommodative control most likely incorporates a
84 predictor, in order to avoid instabilities due to the sensorimotor latency. By "predictor", we
85 mean a forward model to predict the effect of commanded accommodation changes on the
86 visual input. The evidence that the system predicts changes in stimulus demand is equivocal,
87 and our model simply assumes that demand does not change over the timescale of the latency.

88
89 We conclude that accommodation can be modelled successfully as a predictive system with
90 integral control, but that there are fairly tight constraints on the gain and time-constant of the
91 integral controller in order for the system to be consistent with empirical data for step and

92 smooth tracking. Following previous work, we add a slow, second-order integral controller to
93 account for adaptation effects, and show that care is required when using this dual-control with
94 predictive models.

95

96 Most accommodation models omit noise, but noise provides important constraints on model
97 structure and parameters. Predictive models can end up amplifying internal noise when the
98 defocus signal is removed e.g. by viewing through pinholes, which is not observed empirically.
99 Avoiding these resonances places further constraints on model parameters. An important
100 contribution of this paper is that our model explicitly includes noise.

101

102 Noise also accounts naturally for the fluctuations seen in steady-state accommodation. These
103 are often called microfluctuations although they are actually quite substantial at around $\pm 0.5\text{D}$,
104 exceeding the depth of field (Campbell et al., 1959a; Charman & Heron, 1988, 2015; Kotulak
105 & Schor, 1986b). The source and purpose of these is unclear: as well as noise, they may reflect
106 disturbances from the intraocular pulse, mechanical resonances within the ocular plant,
107 deliberate attempts at “hunting” in order to find the best point of focus, and/or fluctuating input
108 from other influences on accommodation (Charman & Heron, 1988, 2015; Collins et al., 1995;
109 Denieul, 1982; Gray et al., 1993b).

110

111 In normal viewing, the power spectrum of microfluctuations typically shows a pronounced
112 peak at around 2Hz. This peak is much weaker when viewing through pinhole pupils, where
113 link between accommodation and image quality is cut (“open-loop”). This may be because in
114 bright viewing conditions, where the pupil stops down and depth of focus is large,
115 microfluctuations are of no assistance in improving vision, and might even cause ocular fatigue.
116 In our model, we are able to reproduce this behavior by including an additional control signal
117 which is driven directly by sensed defocus and *not* by the output of the Smith predictor.

118

119 Putting these different components together results in a model where accommodation is
120 controlled by the sum of four separate neural signals. The model has a total of ten parameters
121 (Table 2), most of which are quite tightly constrained by the data. In the Results section, we
122 present simulations demonstrating that this model can account simultaneously for a wide range
123 of observations.

124

125

126

127 **Methods**

128 **Accommodation as a linear, time-invariant negative feedback control system**

129

130 “*A complex system that works is invariably found to have evolved from a simple system that*
131 *worked. A complex system designed from scratch never works and cannot be patched up to*
132 *make it work. You have to start over with a working simple system.*” – *Gall’s Law* (Gall, 1977).

133

134 In the spirit of Gall’s Law, we begin with the simplest possible conceptual model of
135 accommodation (Figure 2). Viewed as a whole, the model has one input, *accommodative*
136 *demand*, corresponding to the vergence of light rays from the object we wish to look at. This
137 is measured in diopters; the demand in diopters corresponds to the reciprocal of the distance in
138 metres from the eye. For an infinitely far object, the demand is 0D; for an object at 50cm, the
139 demand is 2D.

140

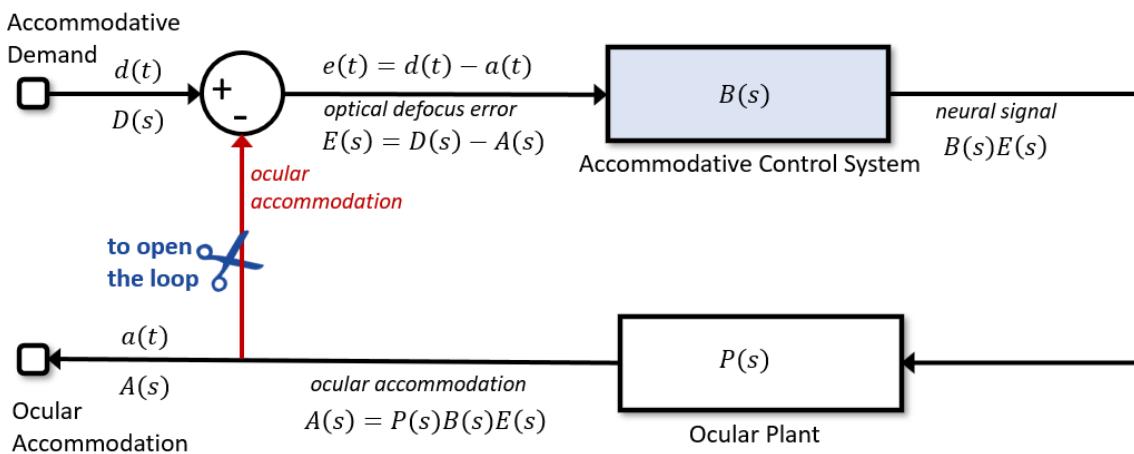
141 The model also has one output, *ocular accommodation*. When the eye is correctly
142 accommodated, the accommodation will be equal to the demand so that the image is in focus
143 on the posterior receptor layer of the retina. *Defocus* is the difference between the
144 accommodative demand and the ocular accommodation, all measured in diopters. It acts as an
145 error signal to the model. As discussed in the Introduction, we assume that defocus is a single,
146 signed value which is somehow computed by the visual system from the retinal image (e.g.
147 using blur, higher-order aberrations, longitudinal chromatic aberration (Burge & Geisler, 2011;
148 Cholewiak et al., 2018; Fincham, 1951; Kruger et al., 1993; Seidemann & Schaeffel, 2002;
149 Wilson et al., 2002)) and represented as a neural error signal; how this is achieved is beyond
150 the scope of this paper. In our sign convention, positive defocus error means that the eye is not
151 accommodating enough, i.e. the eye is focusing on a point more distant than the object of
152 interest, so the ocular image is focused behind the retina. Positive defocus error should
153 therefore stimulate an increase of accommodation. The accommodative control system takes
154 the defocus error as input and uses it to compute a neural control signal (blue block in Figure
155 2). This neural signal is then fed into the ocular plant block in Figure 2. This block,
156 corresponding physiologically to the ciliary muscle, lens and other components, converts the
157 neural signal into the optical power of the lens, i.e. the ocular accommodation. This in turn

158 affects the defocus error, since defocus is demand minus accommodation. The accommodative
 159 control system is designed to adjust accommodation so as to minimise the defocus error signal
 160 (Toates, 1972). Thus, this is a negative feedback system.

161
 162 In any negative feedback system, one faces the question of how to choose the control signal so
 163 as to minimize the error. One obvious form of error correction is to make the corrective signal
 164 proportional to the error. For example, a very simple form of automotive cruise control might
 165 make acceleration proportional to the difference between the current and the desired speed.
 166 Other widely-used possibilities are to integrate the error over time, or to anticipate changes by
 167 including a term scaling with the derivative. Together, control systems of this type are called
 168 PID (proportional-integral-derivative) controllers.

169
 170 In reality, of course, defocus is not the only visual cue to accommodation (Heath, 1956b;
 171 Maddox, 1893). One additional component that we discuss below and include in our models is
 172 the system's bias towards a particular baseline or resting accommodation (see (Rosenfield et
 173 al., 1993a) for a review). Factors which for simplicity we neglect in this paper include pictorial
 174 cues to distance, sensed proximity and crosslinks from the vergence system. However, defocus
 175 is the only visual cue which is itself altered by accommodation, and thus the cue intrinsic to
 176 the negative feedback loop.

177



178
 179
 180 *Figure 2. Conceptual model of accommodation. There is a feedback loop, whereby the output (accommodation) affects the*
 181 *input to the control system. The blocks labelled Accommodative Control System and Ocular Plant are shown here as “black*
 182 *boxes” which take inputs and yield outputs, without showing how the output is computed. Their transfer functions are $B(s)$*

183 and $P(s)$ respectively. The input to the overall system is the accommodative demand, reflecting the distance of the fixated
184 object, and the output is the ocular accommodation, i.e. where the eye is focused. Defocus error is the difference between
185 these, demand minus accommodation. Signals are shown in the time-domain, e.g. $d(t)$, and as Laplace transforms, e.g. $D(s)$.
186 When the system is driven in “open-loop” mode, the connection shown in red is effectively severed at the scissors icon, so that
187 the input to the Accommodative Control system becomes independent of ocular accommodation.

188

189

190 Modelling neural signals as if they were in diopters

191 In this initial part of the paper we will keep the discussion as general as possible, without
192 committing to a particular model of the Ocular Plant or Accommodative Control System blocks
193 shown in Figure 2. However, one detail is worth noting. Without loss of generality we will set
194 the overall gain of the plant to 1, meaning that it passes a constant signal unchanged. In reality,
195 the neural signal is encoded in spikes per second, and the output of the ocular plant is
196 accommodation in diopters. There must therefore be a gain or conversion factor within the
197 neural signal which converts spikes per second into diopters, taking into account the
198 biomechanical gain of the plant (Gamlin et al., 1994). Without loss of generality, we can fold
199 this conversion factor into our neural signals. Thus by setting the plant gain to 1, we represent
200 all the neural signals in the model as if they were diopters. This makes them particularly simple
201 to interpret.

202

203 Closed-loop versus open-loop

204 The model shown in Figure 2 is “closed-loop”: that is, the input to the accommodative control
205 system (defocus error) is affected by its output (ocular accommodation). As discussed, this
206 forms a negative feedback loop, in which increases in defocus error stimulate changes in
207 accommodation that in turn reduce defocus error.

208

209 If we use the scissors shown in Figure 2 to cut the connection shown in red, we obtain the
210 equivalent open-loop system, in which the output of the system has no effect on its defocus
211 error. It might seem impossible to cut the connection in this way in the living eye, but in fact
212 all that is required to examine the open-loop mode is to make the optical error signal
213 independent of the accommodative response. There are two main ways in which this can be
214 done. First, by measuring accommodation and optically adding the current accommodation
215 state onto the current input demand. The eye’s own optics then effectively remove
216 accommodation, so that the error signal forming the input to the visual system is simply the

217 demand applied by the experimenter, independent of the accommodative response. A positive
218 non-zero open-loop error signal continues to stimulate increases of the accommodation
219 response until it reaches saturation, reminiscent of a dog chasing its tail.

220

221 Alternatively, the optical error signal can be set to zero by using a pinhole pupil. Through small
222 pinholes, objects appear slightly blurred due to diffraction, but critically, this blur is virtually
223 independent of the stimulus accommodative demand or the ocular accommodation. Pinholes
224 do not cause a “dog chasing tail” accommodative response; rather accommodation tends to
225 assume its resting state. This suggests that the visual system experiences images seen through
226 pinholes as having zero defocus. Thus, viewing through pinholes is a special case of open-loop
227 in which the input is effectively clamped to zero regardless of output. As we shall see,
228 examining a system in open-loop mode can produce valuable information about its function.

229

230

231

232

233 **Primer on control system theory**

234 At this point, we note that vision scientists may not be familiar with the classical control
235 systems approach taken in this paper. This section aims to provide a bare-bones introduction
236 to enable such readers to follow subsequent sections. Table 1 provides a reference for all the
237 symbols used throughout the paper.

238

239 *Linear time-invariant (LTI) systems and the Laplace domain*

240 Linear systems are those whose outputs for a linear combination of inputs are the same as a
241 linear combination of individual responses to those inputs. For example, in Figure 2, if the
242 system were linear, then if demand timecourse $d_1(t)$ elicited accommodation response $a_1(t)$,
243 and demand $d_2(t)$ elicited $a_2(t)$, the response to a new demand made up of a weighted sum of
244 these two timecourses, $w_1d_1(t)+w_2d_2(t)$ would be $w_1a_1(t)+w_2a_2(t)$. A time-invariant system is
245 one where the same input, delayed by a time T , will always elicit the same response, also
246 delayed by a time T . Thus if demand $d_1(t)$ elicited accommodation response $a_1(t)$, demand $d_1(t-T)$
247 would elicit accommodation response $a_1(t-T)$.

248

249 Where a system is both linear and time-invariant (LTI), its response can be analysed using
250 Laplace transforms of the variables. The Laplace transform turns integral and differential

251 equations into polynomial equations which are much easier to solve. Time-domain functions
252 are converted into Laplace-domain functions of a complex frequency variable s . We assume
253 that all signals are zero for times before $t=0$, and write the Laplace transform of a signal $f(t)$ as
254 $F(s)$, where

255

256

$$F(s) = \int_0^\infty dt f(t)e^{-st}$$

257

Equation 1

258 We will adopt the convention where, when a lower-case variable represents a function of time
259 t , the corresponding upper-case denotes its Laplace transform as a function of s . The Laplace
260 transform is closely related to the Fourier transform with which vision scientists are typically
261 more familiar, with s representing a complex version of angular temporal frequency: $s=j\omega$
262 (where we use j for the square root of -1 throughout).

263

264 In a circuit diagram like Figure 2, the effect of an LTI block is simply to reweight the amplitude,
265 and/or shift the phase, of each frequency in the input. This means that each LTI block can be
266 written simply in terms of its complex *transfer function* $H(s)$. As discussed in more detail
267 below, a transfer function $H(s)$ is a kind of gain, since it is the ratio of the output to the input,
268 for each frequency s . For example, consider a transport delay block, whose effect is to delay
269 the input signal by a latency T , and which thus shifts the phase of each frequency. If the input
270 signal is $i(t)$, the output after delay is $o(t) = i(t-T)$. Substituting this into Equation 1, we find
271 that

272

$$O(s) = \int_0^\infty dt o(t)e^{-st} = \int_0^\infty dt i(t-T)e^{-st} = \int_{-T}^\infty dt i(t)e^{-st-sT} = e^{-sT}I(s)$$

273

Equation 2

274 where we used the fact that $i(t)=0$ for $t<0$. Thus, the transfer function of a transport delay block
275 is $H(s)=\exp(-sT)$. Constant signals are unaffected ($H(0)=1$); time-varying signals undergo a
276 shift in phase proportional to their temporal frequency.

277

278 Integrating by parts, and using the assumption that $f(0)=0$, we see that

279

$$\int_0^\infty dt \frac{df}{dt} e^{-st} = s \int_0^\infty dt f(t)e^{-st} = sF(s)$$

280 and so the Laplace transform of a derivative is just s times the Laplace transform of the original
281 function. This means that differentiation can be represented very simply in Laplace space by
282 multiplication by s , and integration by $1/s$.

283

284 In LTI systems, one can do algebra on the Laplace transforms in the usual way. The transfer
285 function for several LTI systems in parallel is the sum of the individual transfer functions,
286 while the transfer function for several LTI systems in series is the product of the transfer
287 functions for the individual systems.

288

289 *A mathematical trick to handle rest focus*

290 When viewing through pinholes, although the demand is zero, accommodation tends not to be
291 zero but to converge on a “rest focus”, a_{RF} , generally of around 1.4D (Leibowitz & Owens,
292 1978; Rosenfield et al., 1993b), which is the value we shall assume for our model. A similar
293 default focus is also observed in darkness. To account for this, we assume that the
294 accommodative control system adds onto the signal computed from defocus a constant “bias”
295 signal. Because we have normalized neural signals to be expressed in diopters, setting this bias
296 signal equal to the rest focus ensures that accommodation returns to the rest focus if the defocus
297 error is clamped at zero.

298

299 This bias signal leads to a small complication, because it technically violates the assumption
300 that all signals are zero for $t \leq 0$. To handle this, we express both accommodation and demand
301 relative to the rest focus. We define $A(s)$ to be the Laplace transform, not of accommodation
302 itself, but of accommodation relative to rest focus, $a(t)-a_{RF}$. Similarly $D(s)$ is the Laplace
303 transform of demand relative to rest focus, $d(t)-a_{RF}$. With this trick, we can then analyse the
304 system in the Laplace domain as if there were no bias signal ($a_{RF}=0$), and at the end simply add
305 a_{RF} back on to demand and accommodation when we move back to the time domain. All the
306 analyses in this paper use this approach.

307

308 *Open- and closed-loop transfer functions*

309 Where accommodation is driven in open-loop mode (imagine Figure 2 after the scissors have
310 cut), we have

311
$$A(s) = P(s)B(s)D(s)$$

312 where $B(s)$ is the transfer function representing the brain’s accommodative control system and
313 $P(s)$ that representing the ocular plant. As described in the previous section, $A(s)$ and $D(s)$ are

314 the Laplace transforms of accommodation and demand relative to rest focus. The open-loop
315 transfer function relating output $A(s)$ (accommodation) to input $D(s)$ (demand) is thus

$$316 \quad H_{open}(s) = \frac{A(s)}{D(s)} = P(s)B(s)$$

317 *Equation 3*

318

319

320 In closed-loop mode (Figure 2 with no scissors), the input to the accommodative control system
321 is defocus error, $E(s) = D(s) - A(s)$. We therefore now have

$$322 \quad A(s) = H_{open}(s)[D(s) - A(s)]$$

323 and thus derive the closed-loop transfer function:

$$324 \quad H_{closed}(s) = \frac{H_{open}(s)}{1 + H_{open}(s)}$$

325 *Equation 4*

326 where

$$327 \quad A(s) = H_{closed}(s)D(s)$$

328 *Equation 5*

329 This relationship between the open- and closed-loop transfer functions is a standard result for
330 a feedback loop like the one in Figure 2.

331

332 *Steady-state response, accommodative lag and lead*

333 LTI theory shows that the steady-state response is obtained by evaluating the system at $s=0$
334 (zero frequency). So, if we apply a constant demand d_{ss} in closed-loop mode, Equation 5
335 becomes

$$336 \quad A(0) = H_{closed}(0)D(0)$$

337 *Equation 6*

338 where $D(0) = d_{ss} - a_{RF}$ and $A(0) = a_{ss} - a_{RF}$ (recalling that accommodation and demand are defined
339 relative to rest focus a_{RF}). From Equation 4, we can write $H_{closed}(0)$ in terms of $H_{open}(0)$. It
340 will be convenient to introduce the notation G_{open} for $H_{open}(0)$, i.e. the open-loop steady-state
341 gain of the system. Putting this together with Equation 4 and Equation 6, we find that
342 accommodation will eventually be

$$343 \quad a_{ss} = a_{RF} + \frac{G_{open}}{1 + G_{open}}(d_{ss} - a_{RF})$$

344

Equation 7

345 The steady-state defocus error is

$$346 \quad d_{ss} - a_{ss} = \frac{d_{ss} - a_{RF}}{1 + G_{open}}$$

347

Equation 8

348 Equation 8 shows that – regardless of the control system or plant – the defocus error will be
349 zero when the demand is equal to the rest focus. This is natural enough, since the rest focus is
350 the value to which the system is biased.

351

352 However, for other demands, the steady-state error is not zero. When the demand is nearer than
353 the rest focus, the accommodative response remains further than the demand, a situation
354 referred to as accommodative lag. Conversely when demand is further than rest,
355 accommodation is nearer than demand; this is accommodative lead.

356

357 Importantly, the amount of the error depends on the steady-state open-loop gain G_{open} . This
358 demonstrates an important property of negative-feedback systems which attempt to minimise
359 error: small error requires high open-loop gain. Since we have set the gain of the plant to 1
360 (without loss of generality, as noted above), the gain G_{open} is set entirely by the brain's
361 accommodative control system. Empirically, accommodation reaches around 80%-90% of the
362 demand when the demand is far from the rest focus. From Equation 4, we have

$$363 \quad \frac{a_{ss} - a_{RF}}{d_{ss} - a_{RF}} = \frac{G_{open}}{1 + G_{open}}$$

364 so the observation that accommodation is around 80-90% of demand implies that
365 $G_{open}/(1+G_{open})$ is around 0.8-0.9, and in turn that G_{open} must be in the range 4-9.

366

367 *Gain and phase of response to sinusoidal inputs*

368 A property of any LTI system is that (after initial onset transients have died away) its response
369 to a sinusoidal input is a sinusoidal output, with a gain and phase reflecting the transfer function
370 of the system. Specifically, if the closed-loop transfer function is $H_{closed}(s)$, then if
371 accommodative demand is a sinusoidal function of time, the accommodative response will also
372 be a sinusoid with the same temporal frequency f . The amplitude of the response will be the
373 amplitude of the demand multiplied by the gain at that frequency, $g(f)$, and the phase will be
374 delayed by $\phi(f)$. We will use lower-case $g(f)$ to denote the gain of a system at a particular

375 temporal frequency f , and upper-case $G=g(0)$ to denote the steady-state gain, as we did above
376 for G_{open} . According to a standard result of LTI theory, the gain and phase-delay of an LTI
377 system at frequency f can be obtained from the complex number represented by its transfer
378 function $H(s)$ evaluated at $s=2\pi jf$. The gain $g(f)$ is the magnitude of the complex number
379 $H(2\pi jf)$ and the phase-delay $\phi(f)$ is its phase.

380

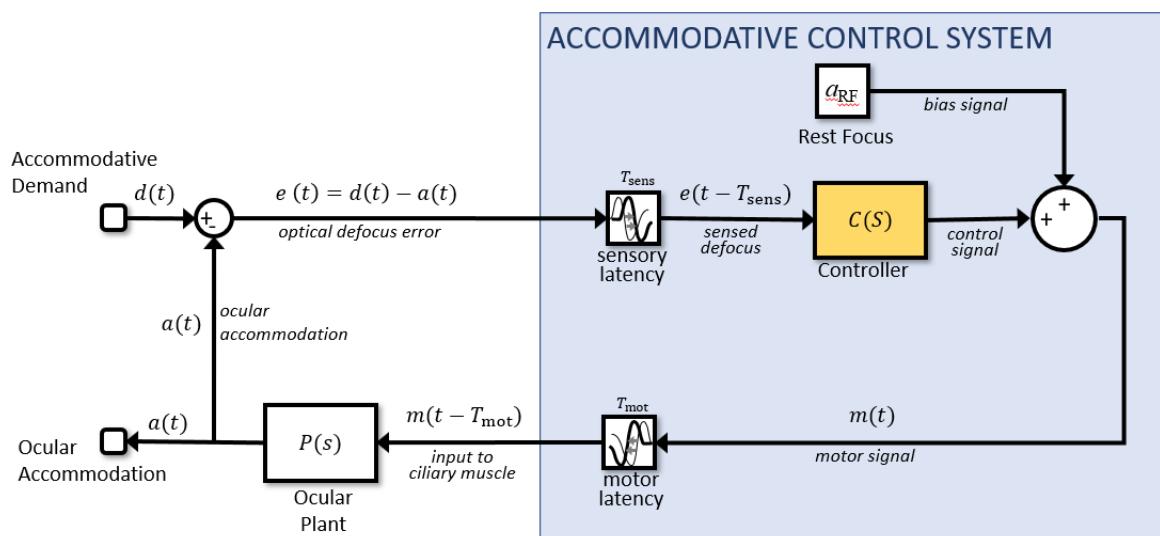
381 Sometimes below for brevity we will refer to “the gain” of an LTI operator, without specifying
382 a frequency. In this case, we mean its steady-state gain. For example, when we refer to “the
383 gain” of a low-pass filter, we mean the ratio of its steady-state output to a constant input.

384

385 [Sensorimotor latencies: a problem for control](#)

386 These preliminaries out of the way, we now consider different possibilities for the contents of
387 the blue block labelled Accommodative Control System in Figure 2. We begin by expanding
388 this block as shown in Figure 3. We now explicitly include the rest focus signal discussed
389 above. But critically, Figure 3 now also shows the system’s latency, which we have divided
390 into two parts. The first is an afferent-sensory latency, representing the time taken for
391 information about the retinal image to travel up the optic nerve and for the brain to compute a
392 signed estimate of defocus, for example using longitudinal chromatic aberration or higher-
393 order aberrations. The second is an efferent-motor latency, representing the time taken for the
394 resultant neural signal to travel from the Edinger-Westphal nucleus down the IIIrd cranial
395 nerve, relay in the ciliary ganglion and reach the ciliary muscle. The motor latency is reduced
396 by the fact that the axons from the ciliary ganglion to the ciliary muscle are myelinated,
397 unusually for postganglionic axons of the autonomous nervous system (Tamm & Lütjen-
398 Drecoll, 1996; Warwick, 1954). The sensory and motor latencies have been estimated as
399 $T_{\text{sens}} \sim 200\text{ms}$ and $T_{\text{mot}} \sim 100\text{ms}$ respectively (Gamlin et al., 1994; Schor et al., 1999; D. Wilson,
400 1973), and we will fix the values in our model at these values. In Figure 3, these latencies are
401 shown within the Accommodative Control System, i.e. the brain, but the model functioning is
402 unchanged if, for example, part of the motor latency occurs at a neuromuscular junction in the
403 eye, or indeed if both latencies are merged into a single block.

404



405

406

407 *Figure 3. Expanding the conceptual model shown in Figure 2 so as to show the rest focus and sensorimotor latencies. This is*
 408 *the same circuit diagram, but the block labelled Accommodative Control System has here been expanded to explicitly show*
 409 *the constant bias signal accounting for the rest focus, and the latencies. There is a sensory latency T_{sens} before the retinal*
 410 *defocus signal reaches the controller, and a further motor latency T_{mot} before the neural signal reaches the plant.*

411

412 Latencies are a potentially serious problem for any control system. In the block diagram shown
 413 in Figure 3, we can see that the defocus error only becomes available to the block marked
 414 Controller after the sensory latency. The controller therefore operates not on $e(t)$, but $e(t - T_{sens})$:
 415 the retinal defocus as it was a time T_{sens} ago. This in turn reflects the accommodation due to the
 416 neural signal sent up to a time $T_{sens} + T_{mot}$ ago. Thus, the system suffers an overall latency of T_{lat}
 417 $= T_{sens} + T_{mot}$. This can easily lead to overshoots and “ringing”: oscillations in accommodation
 418 as the system is driven beyond the correct value by the out-of-date error signal.

419

420 Overshoots and ringing due to an out-of-date error signal would be seen with the response to
 421 step changes in demand, but in fact the second-order dynamics already indicate that LTI models
 422 do not suffice to account for the response to large step changes; accommodative control seems
 423 to have special mechanisms for these which are beyond the scope of this paper (Bharadwaj &
 424 Schor, 2005, 2006; Schor & Bharadwaj, 2004, 2005). However, an out-of-date error signal
 425 would also affect the response to sinusoidal oscillations in demand which we will concentrate
 426 on in this paper.

427

428 Empirically, accommodation shows a low-pass response: gain is greatest in the steady-state,
429 and decreases monotonically with temporal frequency (Charman & Heron, 2000; Krishnan et
430 al., 1973; Kruger & Pola, 1986; Ohtsuka & Sawa, 1997; Stark et al., 1965). However, it is
431 challenging to achieve this with the circuit diagram shown in Figure 3 and a Controller block
432 which is simply a PID controller. Because of the latency, the system can easily end up out of
433 phase, so that the changes in accommodation actually enhance the defocus rather than reducing
434 it, as intended. This shows up as resonances or local peaks in the gain function, making it non-
435 monotonic. This is not observed empirically.

436

437 [Overcoming latencies with a predictive control system: the Smith Predictor](#)
438 The solution seems to be that the visual system actually bases its neural control not on the
439 currently available sensed value of retinal defocus, but on its internal prediction of the *future*
440 retinal defocus. That is, whereas in Figure 3 the controller operates on the sensed defocus,
441 which due to the sensory latency actually represents defocus as it was some time in the past, in
442 a predictive model the controller operates on the predicted *future* defocus (Smith, 1957). Figure
443 4 shows how Figure 3 can be modified so that the input to the controller is predicted future
444 defocus. Defocus is the difference between the stimulus accommodative demand and the ocular
445 accommodation, so predicting future defocus requires a prediction both of demand and
446 accommodation.

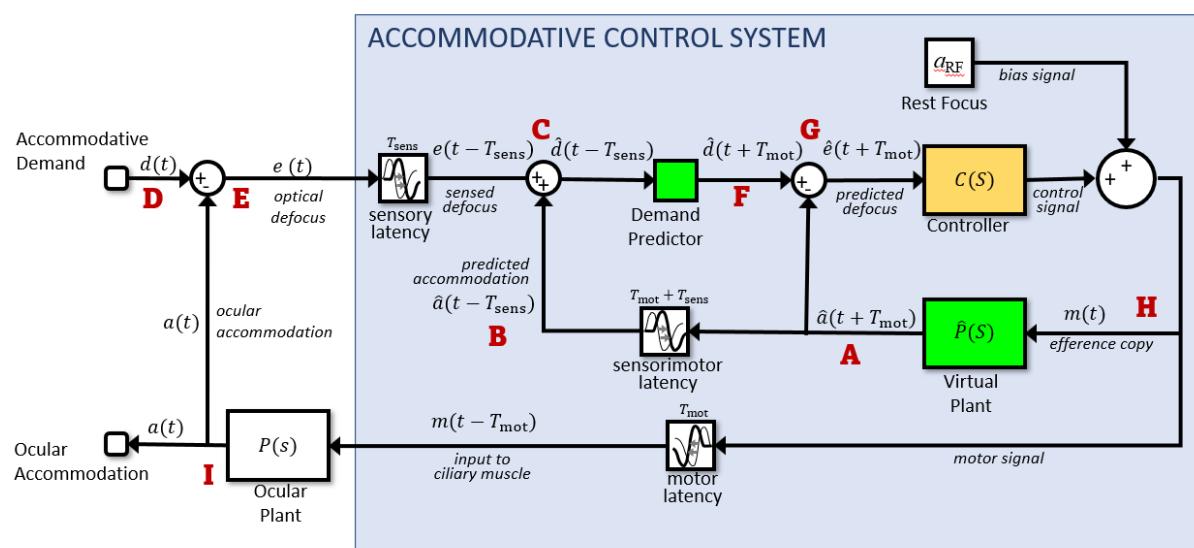
447

448 The brain is in principle able to predict accommodation perfectly up to future times less than
449 the motor latency, simply based on the signals it has already sent to the accommodative plant.
450 (Campbell & Westheimer, 1960; Hung et al., 2002; Krishnan et al., 1973; Schor & Bharadwaj,
451 2004; Stark et al., 1965; Sun et al., 1989) To do this, the visual system must effectively have
452 its own internal model of the ocular plant, represented by the *Virtual Plant* block in Figure 4.
453 Such internal models are referred to as *forward models* in control systems theory. We assume
454 that the motor latency T_{mot} largely represents delays in transmitting the control signal from the
455 brain to the eye. We assume that the virtual plant is located in the brain close to where the
456 neural control signal is generated, and thus has access to this signal with negligible delay.
457 Accordingly, the output of the virtual plant is *predicted future accommodation*, i.e. the value
458 that ocular accommodation will have at a time T_{mot} in advance of the present. We write this
459 predicted future accommodation as $\hat{a}(t+T_{\text{mot}})$: the predicted accommodation at a time T_{mot} in
460 the future, where the circumflex indicates that this is an *estimate* of the future accommodation.
461 Since the accommodation up to a time T_{mot} into the future is controlled by neural signals already

462 sent by the brain, this estimate can in principle be perfect. It should be affected only by noise,
 463 and by any inaccuracies in the virtual plant as a model of the ocular plant. In the model we
 464 present here, neither of these apply and so the prediction of future accommodation is indeed
 465 perfect.

466

467



468

469 *Figure 4. Predictive control. Compare with Figure 3: the Controller block has been replaced with a more complex system*
 470 *including two predictive blocks (green) as well as the original Controller block (yellow). The prediction helps avoid instability*
 471 *due to the sensorimotor latencies. To predict accommodation, the model includes a Virtual Plant block (forward model) to*
 472 *compute what accommodation will be a time T_{mot} in the future, i.e. after the motor latency. If the forward model is accurate,*
 473 *this can in principle predict accommodation perfectly up to $t+T_{mot}$, since accommodation is under the system's own control.*
 474 *To predict demand at time T_{mot} into the future, the model uses a Demand Predictor block. This requires extrapolating demand*
 475 *at time $T_{lat}=T_{sens}+T_{mot}$ beyond the last available estimate. This is unlikely to be entirely accurate, since demand can reflect*
 476 *changes in the outside world, beyond the system's control. Red labels indicate locations referred to in the text.*

477

478 Predicting stimulus demand is more challenging, since in general this reflects the motion of
 479 objects in the outside world. Nevertheless, several studies (Campbell & Westheimer, 1960;
 480 Charman & Heron, 2000; Krishnan et al., 1973; Phillips et al., 1972; Stark et al., 1965) have
 481 suggested that the accommodation system, like vergence and other motor systems (Erkelens,
 482 2011; Rashbass & Westheimer, 1961), may be capable of predicting sufficiently regular input.
 483 For example, if the demand is a square wave, jumping between two values with a constant
 484 period, accommodation develops a very short latency or even changes in anticipation (Krishnan
 485 et al., 1973). How or whether this prediction is achieved is beyond the scope of this paper; it
 486 may be performed by the cerebellum (Ohtsuka & Sawa, 1997; Popa & Ebner, 2019) or it may

487 not actually occur (Águila-Carrasco & Marín-Franch, 2021; Otero et al., 2019). The different
488 possibilities can be modelled with the *Demand Predictor* block (Figure 4). This takes as its
489 input what demand is estimated to have been at time T_{sens} in the past, $\hat{d}(t - T_{\text{sens}})$, and gives
490 as output what it estimates demand will be at time T_{mot} in the future, $\hat{d}(t + T_{\text{mot}})$. That is, it
491 extrapolates its input into the future by a time corresponding to the entire sensorimotor latency,
492 $T_{\text{lat}} = T_{\text{mot}} + T_{\text{sens}}$. In this paper, our model Demand Predictor block will simply pass its input on
493 unchanged, effectively assuming that the demand will stay at its current value. This is probably
494 a reasonable assumption, since in many natural viewing situations, accommodative demand
495 probably often changes rather little over the timescale of T_{lat} . A future model could incorporate
496 a more elaborate form of prediction, e.g. taking account of stimulus periodicity, but that is
497 beyond the scope of this paper.

498

499 Having introduced the key elements of the predictive model – the virtual plant and the demand
500 predictor – we now discuss how it works. To help with this, we have annotated the signals in
501 Figure 4 and marked some reference points with red letters. Let’s start at A with the output of
502 the virtual plant. As we saw above, this represents the brain’s prediction of what ocular
503 accommodation will be at time T_{mot} in the future: $\hat{a}(t + T_{\text{mot}})$. Our model brain uses this
504 predicted future accommodation in two ways. First (B), the model brain delays this predicted-
505 accommodation signal by the total sensorimotor latency to obtain $\hat{a}(t - T_{\text{sens}})$, an estimate of what
506 the ocular accommodation was at a time T_{sens} in the past. Thus, the predictive model actually
507 uses an internal estimate of *past* accommodation as well as of future accommodation. The point
508 of doing this is to match the latency of the defocus signal. The input to the whole system is
509 accommodative demand, $d(t)$ (label D). In the eye (label E), the ocular accommodation $a(t)$ is
510 optically subtracted from $d(t)$ to yield the error signal $e(t)$, the optical defocus at time t . Ideally,
511 this is what the accommodation control should be based on, but due to the sensory latency T_{sens} ,
512 the brain only has access to the delayed signal, $e(t - T_{\text{sens}})$, representing the defocus at a time T_{sens}
513 in the past. At the signal combination labelled C, the brain adds its estimate of past
514 accommodation, $\hat{a}(t - T_{\text{sens}})$, back onto this delayed defocus signal $e(t - T_{\text{sens}})$, in order to obtain
515 an estimate of what the demand was at a time T_{sens} in the past: $\hat{d}(t - T_{\text{sens}}) = e(t - T_{\text{sens}}) +$
516 $\hat{a}(t - T_{\text{sens}})$. This demand signal is fed into the Demand Predictor block, which uses it to make
517 a guess at what the demand will be at a time T_{mot} in the future: $\hat{d}(t + T_{\text{mot}})$ (label F).

518

519 Now, the brain makes its second use of predicted future ocular accommodation, this time
520 without applying any delay. At the signal combination labelled G, it subtracts the predicted
521 accommodation $\hat{a}(t + T_{mot})$ from the predicted demand $\hat{d}(t + T_{mot})$ to obtain the predicted
522 future defocus error: $\hat{e}(t + T_{mot}) = \hat{d}(t + T_{mot}) - \hat{a}(t + T_{mot})$. This predicted future defocus
523 is what is fed into the yellow Controller block and used to compute the neural control signal
524 driving accommodation. It is this use of predicted future defocus which makes this a predictive
525 model, as compared to the model shown in Figure 3.

526

527 As noted above, a constant bias is added on to the output of the controller, which accounts for
528 the non-zero resting focus. We call the result $m(t)$ (label H). This is the actual motor signal sent
529 to the ocular plant, with a latency T_{mot} , which results in the ocular accommodation $a(t)$ (label
530 I). An efference copy of the same motor signal is also sent to be the input of the virtual plant.
531 The output of the virtual plant is, of course, the predicted future accommodation that we began
532 with (A), so we have now followed the signals around the whole of the inner and outer loops.

533

534 In summary, then, although the input to the accommodative control system as a whole is the
535 sensed *current* defocus (Figure 2), in a predictive model the input to the accommodative
536 controller itself is the predicted *future* defocus. With this modification, PID-type controllers
537 can now work well and avoid the instabilities associated with an out-of-date error signal.

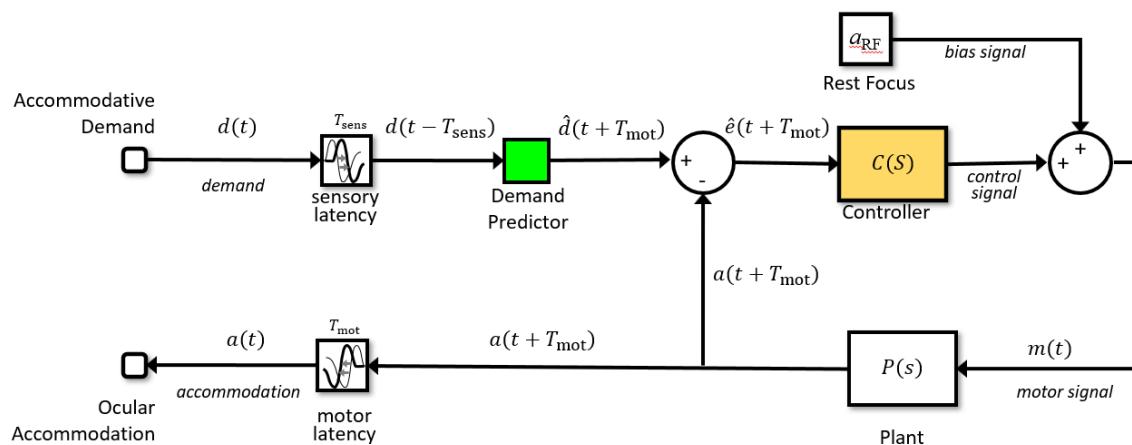
538

539 Simplified representation of the predictive control system

540 It is useful to note that, if the virtual plant is a perfect simulation of the physical plant, the
541 predictive control system shown in Figure 4 is mathematically equivalent to the much simpler
542 form shown in Figure 5. This form can appear confusing, because it shows accommodation
543 being subtracted from the stimulus demand *after* the sensory latency (even though some of the
544 sensory delay represents the optic nerve and cortical processing) and *before* the motor latency
545 (even though that represents processes before accommodation). The reader is invited to trace
546 the signals around Figure 4 and Figure 5, and verify that provided $\hat{a}(t) = a(t)$, the same inputs
547 are fed into the same blocks and so the results must be the same. Figure 5 provides a visual
548 picture of what is being achieved by the predictive control: it effectively shifts the latencies
549 outside the control loop. This diagram holds whatever the demand predictor does. If the
550 demand predictor were able to predict future demand perfectly, it would cancel out the latencies
551 and the system would behave as if there were no latencies. But even if the demand predictor

merely assumes demand stays constant, as in our model, it still makes the control immune to the destabilising effect of latencies. The effect of latencies is now only to delay the response. The response to any stimulus is exactly the same as for a system with perfect prediction of demand, just occurring later in time (see Appendix and Table 3). Thus although predicting the sensory input enables a more rapid response, predicting one's own motor response suffices to ensure stability.

558



559

560

561 *Figure 5. Simplified version of the model shown in Figure 4. This “non-causal” model structure is not physiological and cannot*
 562 *be mapped onto “brain” and “eye” like the predictive physiological model in Figure 4. For example, here the single block*
 563 *labelled “Plant” is used to represent both the physical plant in the eye and the virtual plant modelled in the brain. However,*
 564 *as shown by the annotated signals, it is mathematically equivalent to the physiological model in Figure 4, provided that the*
 565 *Virtual Plant block is a perfect simulation of the Ocular Plant.*

566

567

568

569 A specific model of accommodative control

570 So far we have deliberately kept the discussion very general, without committing to a particular
 571 choice of transfer function for either the ocular plant or the Controller block which converts
 572 defocus into a neural signal to the plant. In this section, we develop and justify a more specific
 573 model of accommodative control. We discuss plausible assumptions and constraints on both
 574 the forms of these transfer functions, and their particular parameters.

575 Ocular plant

576 The Ocular Plant block in Figure 2-Figure 5 converts the motor neural control signal m into
 577 accommodation a . Physiologically, this block corresponds to the following components. The

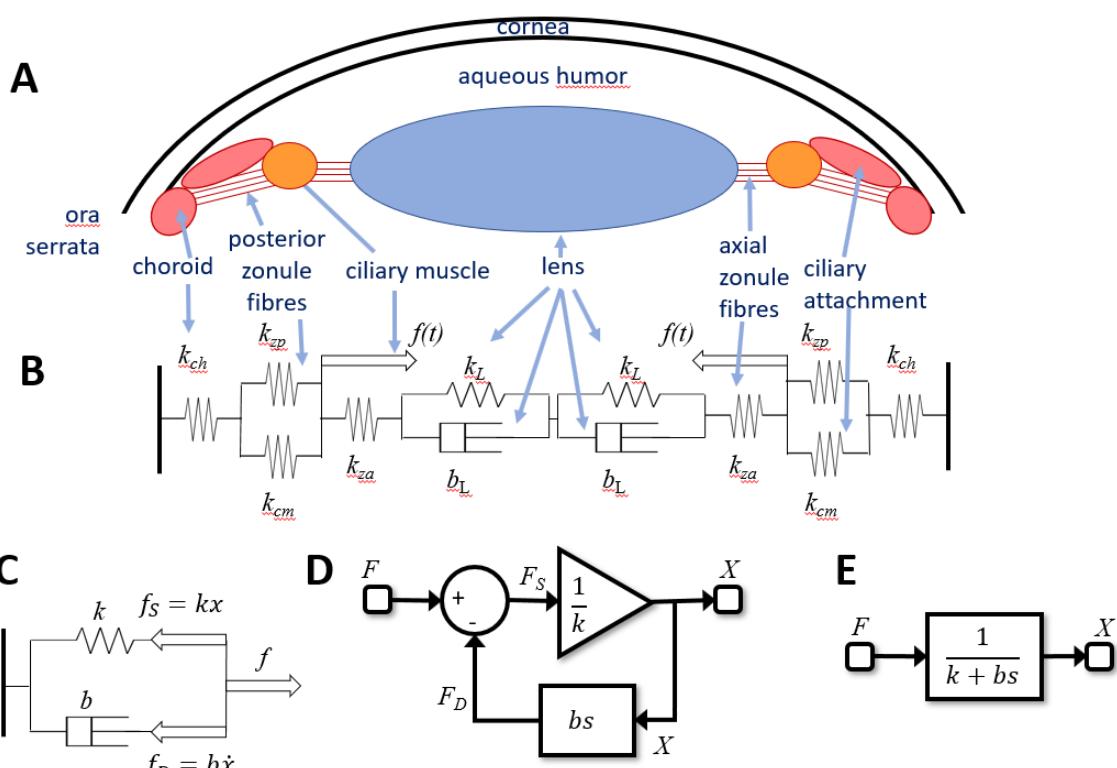
578 ocular lens is held in an elastic capsule between the anterior and posterior chambers of the eye.
579 It is tethered along its equator by elastic suspensory ligaments or zonules. The axial zonules
580 pass from the lens equator to the inner margin of the ciliary muscle, while the posterior zonules
581 pass from the ciliary muscle back to the choroid at the ora serrata, the junction between the
582 choroid and the ciliary body. The lens is flattened by the elastic tension under which it is held
583 by the zonules, and becomes more spherical – and so more optically powerful – when its
584 extension is reduced by the constriction of the ciliary muscle. Figure 6A shows a diagram of
585 this arrangement. Figure 6B shows a simplified biomechanical model (Beers & van der Heijde,
586 1994, 1996; Schor & Bharadwaj, 2005; Wang & Pierscionek, 2019). The zonules, choroid and
587 ciliary attachment are represented as springs. The lens is represented by a Voigt model, in
588 which a spring is in parallel with a dashpot or damper. The springs are modelled according to
589 Hooke’s law, i.e. they exert a force proportional to their extension. The dashpot exerts a force
590 proportional to the rate of change of its extension, modelling the viscosity of the lens and
591 capsule. The whole system is subject to the force f exerted by the ciliary muscle, which is set
592 by the neural signal sent by the accommodative control system. We assume that the optical
593 power of the lens is proportional to the extension of the spring/dashpot modeling the lens.
594 Since by Newton’s laws the forces must sum to zero at every point, the system shown in Figure
595 6B represents a set of simultaneous equations; for example at the junction between the axial
596 zonules and the lens, we have

$$597 \quad k_L x_L + b_L \dot{x}_L = k_{za} x_{za}$$

598 where x_L , x_{za} are the extensions of the lens and of the axial zonules respectively, k their spring
599 constants and b_L the viscosity of the lens. Using the constraint that the sum of all the extensions
600 must be constant, we can go through and solve the simultaneous equations for the lens
601 extension x_L . If we do so, the result is the same as for the simplified system shown in Figure
602 6C, with a dashpot and a single spring, now representing the combined elasticity of all the
603 component elements. The value of the full model is that the elasticity of the different tissues
604 can be measured independently. This is important if one wants to model age-dependence
605 (Schor & Bharadwaj, 2005), since these vary differently with age, but the collapsed model is
606 obviously much simpler to work with.

607 In control theory, a spring can be viewed as an LTI element converting an input, force, into an
608 output, extension. The transfer function mapping force to extension is thus simply the inverse
609 of its spring constant k , i.e. its compliance. A dashpot is similar, but since the force is
610 proportional to the rate of change of extension, the transfer function mapping extension to force

611 is bs , where b is the viscosity and s represents differentiation (see primer above). In this way,
612 the simple biomechanical model shown in Figure 6C can be represented by the block diagram
613 in Figure 6D, or even more succinctly by the transfer function in Figure 6E. This is the transfer
614 function of a first-order low-pass temporal filter with time-constant $\tau_{\text{plant}}=b/k$, also known as a
615 leaky integrator. This, then, is the function mapping ciliary muscle force to lens extension.
616



617
618 *Figure 6. A: Diagram of the anatomical structures relevant to accommodation. B: Representation as a biomechanical model,*
619 *consisting of a set of elastic springs (spring constant k) and dashpots (viscosity b). The posterior zonule fibres and ciliary*
620 *attachment are assumed to be in parallel, so their extensions are equal. C: Minimal model which is mathematically equivalent*
621 *to the full model shown in B. The parameters k and b are functions of the original parameters. The thick arrows mark forces.*
622 *As well as the ciliary muscle force, we now have the force in the spring, f_s , and in the dashpot, f_D . D: Control theory block*
623 *diagram equivalent to the simple model in C. For example, at the summation block, we have the force balance $F_s=F-F_D$; at the*
624 *gain block, we have $X=F_s/k$; in the feedback loop we have $F_D=bsX$. E: Single transfer function equivalent to the block diagram*
625 *shown in D. This is a leaky integrator, with time-constant $\tau_{\text{plant}}=b/k$.*

626
627 We now make two further simplifying assumptions : (1) that the brain is able to command
628 ciliary muscle force directly, so that the motor signal sent to the plant from the brain can be
629 regarded as proportional to ciliary muscle force, and (2) that optical power is proportional to
630 lens extension. With these assumptions, then, the entire ocular plant block mapping neural
631 signal to accommodation can be regarded at least roughly as a leaky integrator (Beers & van

632 der Heijde, 1994, 1996; Ejiri et al., 1969; Wang & Pierscionek, 2019). We therefore model the
633 transfer function of the plant as

634
$$P(s) = \frac{1}{1 + \tau_{plant}s}$$

635 *Equation 9*

636 where empirically τ_{plant} is around 0.156s for young eyes (Schor & Bharadwaj, 2006). In this
637 paper, we will take this value as a given. As noted above, we can assume without loss of
638 generality that the steady-state gain is 1.

639

640 [Controller](#)

641 We now come to a key decision: the choice of transfer function for the Controller, $C(s)$. As
642 noted above, in industrial control systems, controllers typically have proportional, integral and
643 derivative (PID) terms, with transfer functions which scale as constant, $1/s$ or s respectively.

644 We can rule out pure proportional control, since with $P(s)$ as given in Equation 9, making $C(s)$
645 constant means that the system tracks rapid sinusoidal oscillations far better than human
646 accommodation. For example, $C(s)=5$ results in a realistic steady-state gain of 83% (Equation
647 7), but the gain remains >50% out to frequencies as high as 8Hz, far higher than observed (see
648 Figure 7 below). Derivative terms do not affect steady-state error, but improve stability and
649 avoid overshoot. They also enable rapid response to rapid changes. However, they can be
650 problematic in the presence of noise. Previous work by Schor and Bharadwaj (Bharadwaj &
651 Schor, 2006; Schor & Bharadwaj, 2004, 2006) suggests that the accommodative system has a
652 distinct “pulse” mechanism for responding to sudden large changes in accommodation such as
653 occur when we change from looking at a distant to a near object, which cannot be modelled by
654 an LTI system and which are beyond the scope of this paper. Furthermore, many of the benefits
655 of derivative control are already achieved by our use of a forward model to predict future
656 demand. We therefore do not include a derivative term. This leaves us with the integral term.
657 A pure integral controller has a transfer function proportional to $1/s$, and thus infinite gain at
658 $s=0$. This is desirable since it eliminates steady-state error, but it also means that errors can
659 accumulate; also as noted, the human accommodation does not seem to completely eliminate
660 steady-state error. We can account for this by modelling the controller as a leaky integrator,
661 following Krishnan and Stark (1975):

662
$$C(s) = \frac{G_{fast}}{1 + s\tau_{fast}}$$

663 *Equation 10*

664 where G_{fast} is the steady-state gain and τ_{fast} the time-constant. The subscript “fast” is to
665 distinguish this from a slow integrator which we shall introduce below. A leaky integrator acts
666 like a pure integral controller over short timescales ($s\tau \gg 1$), and like a pure proportional
667 controller over long timescales ($s\tau \ll 1$), thus combining aspects of both. We noted above that
668 accommodative lead/lag suggests the steady-state gain must be in the range 4-9. We somewhat
669 arbitrarily chose $G_{\text{fast}}=8$.

670

671 Gain for sinusoidal input: sub-critical damping

672 With both the plant and the controller being leaky integrators, and with a predictive control
673 system, the closed-loop gain is that of a damped harmonic oscillator (Equation 19, Appendix).
674 The behavior of this system can be summarized by its natural frequency and damping
675 coefficient ζ , both of which depend on the parameters $G_{\text{fast}}, \tau_{\text{fast}}, \tau_{\text{plant}}$ (Equation 20). If the
676 damping coefficient ζ is too low, the maximum gain is observed for a non-zero resonance
677 frequency, and can even exceed 1. This does not agree with empirical observations of
678 accommodative response to sinewaves, which is low-pass (Charman & Heron, 2000; Kruger
679 & Pola, 1986; Ohtsuka & Sawa, 1997; Stark et al., 1965); Figure 7A. This indicates that ζ is at
680 least $1/\sqrt{2}$, not far below critical damping ($\zeta=1$) (Labhishetty & Bobier, 2017). Saccades have
681 a damping coefficient of around 0.7 (Bahill et al., 1975); systems with this value have minimum
682 settling time, i.e. they reach and remain within 5% of their final value most rapidly. We show
683 in the Appendix that obtaining $\zeta \sim 1/\sqrt{2}$ for a system with $G_{\text{fast}} \gg 1$ requires the time-constant of
684 the fast controller to be

685

$$\tau_{\text{fast}} = 2G_{\text{fast}}\tau_{\text{plant}}$$

686

Equation 11

687 Thus, with $\tau_{\text{plant}}=0.156\text{s}$ and $G_{\text{fast}}=8$, τ_{fast} must be at least 2.5s.

688

689 Phase for sinusoidal input: further evidence for predictive control

690 Empirically, up to $\sim 1\text{Hz}$ the phase delay of accommodation is very close to a linear function
691 of frequency, indicating a constant latency T_{delay} : $\phi = 2\pi f T_{\text{delay}}$ (Charman & Heron, 2000; Heron
692 et al., 1999; Kruger & Pola, 1986; Ohtsuka & Sawa, 1997; Wildt et al., 1974). The slope usually
693 corresponds to a delay of $\sim 0.5\text{s}$ (dashed lines in Figure 7BC), though there is considerable
694 variability between studies. Because 0.5s is close to the sensorimotor latency inferred from the
695 response to step changes, it is often therefore assumed that this phase slope must represent the

697 sensorimotor latency. However, this is not necessarily the case. First, the damped second-order
698 system formed by the ocular plant and the neural control imposes delays in addition to the
699 sensorimotor latencies. Second, if the brain predicts demand perfectly – at least theoretically
700 possible for a regular stimulus like a sinewave – then its phase delay becomes independent of
701 the sensorimotor latency (see Appendix).

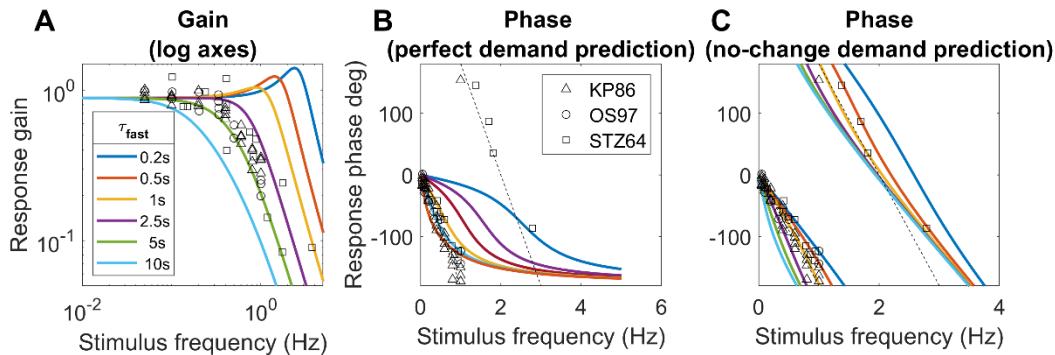
702

703 The time-constant of the fast integrator

704 Thus, together the gain and phase response of accommodation to sinusoidal oscillations in
705 demand place quite tight constraints on the time-constant of the fast integrator, τ_{fast} , given that
706 the time-constant of the plant is a biomechanical given, and the gain of the fast integrator is
707 already quite tightly constrained by the observed lead/lag following a change in demand.

708 Figure 7 illustrates this by comparing the theoretical gain and phase with different values of
709 τ_{fast} with empirical results from various subjects and studies. As noted, we can rule out $\tau_{\text{fast}} <$
710 2.5s because the gain is then too high at high frequencies. The gain data is probably best
711 described by $\tau_{\text{fast}} = 5$ s (green lines in Figure 7A), but this does not account for the phase data.
712 $\tau_{\text{fast}} = 5$ s in the perfect-prediction model gives phases which match empirical data up to around
713 0.5Hz, but at higher frequencies, empirical phase continues to increase roughly linearly,
714 implying a constant delay, whereas phase for the perfect prediction model asymptotes at 180°
715 (Figure 7B). Thus, we probably have to reject the perfect-prediction model (not surprising
716 given its idealised nature). The no-change prediction model is qualitatively in much better
717 agreement with the phase data, but then $\tau_{\text{fast}} = 5$ s predicts larger phases than are observed
718 (Figure 7C). The purple line shows the curve with minimum settling time, $\tau_{\text{fast}}=2.5$ s which
719 yields $\zeta \sim 1/\sqrt{2}$. This is in reasonable agreement with both gain and phase data, assuming simple
720 no-change demand prediction, and we therefore adopt this value in the rest of the paper.

721



722

723

724

725 *Figure 7. Constraints on the time-constant of the fast integrator. Coloured lines show the gain and phase predicted for a*
726 *predictive model with leaky-integral control, Table 3, with $P(s)$ given by Equation 9 with $\tau_{plant}=0.156s$, and $C(s)$ given by*
727 *Equation 10 with $G_{fast}=8$ and different choices of τ_{fast} . The phase is shown (B) for a model capable of predicting demand*
728 *perfectly, or (C) for the “no-change” model which simply assumes demand will continue at its instantaneous value; both of*
729 *these have the gain shown in A. Symbols show empirical results from Kruger and Pola (1986), Ohtsuka and Sawa (1997), and*
730 *Stark et al (1965). The dashed line in the phase plots corresponds to a constant latency of 0.5s, close to what is observed.*
731 *Code to generate this figure is in Fig_TimeConstraints.m.*

732

733 Adaptation and dual control

734 Another distinctive feature of accommodation is that it adapts after prolonged exposure to the
735 same demand. This can be revealed by using pinholes to place the system in open-loop mode.
736 As we have seen, in this situation, accommodation returns to the resting focus. After short
737 periods of stimulation, this happens rapidly, in a few seconds. However, after long periods of
738 exposure to a particular demand, the return happens over a much longer time period, sometimes
739 several minutes. This cannot be accounted for with the leaky-integral control proposed so far.
740 However, it can be explained by positing a dual control system in which a fast, or phasic, neural
741 integrator controls changes in response amplitude and a slow, or tonic, neural integrator
742 maintains the response amplitude (Khosroyani & Hung, 2002; Schor, 1979a; Schor et al., 1986;
743 Sun & Stark, 1990).

744

745 The fast integrator is the one we have considered so far, which responds to error signals
746 computed from negative feedback. The slow integrator responds to the activity of the fast
747 neural integrator, and not directly to the error signal. As the name implies, the slow integrator
748 has a long time constant, which means that it has little effect on the response to rapid changes
749 in demand, so our previous discussion of the responses to sinusoids is not invalidated by its
750 addition. With this arrangement, the transfer function of the Controller becomes

751

$$752 C(s) = \frac{G_{fast}}{s\tau_{fast} + 1} \left(1 + \frac{G_{slow}}{s\tau_{slow} + 1} \right)$$

753

Equation 12

754

755

756 The steady-state open-loop gain of the system is therefore

757
$$G_{open} = G_{fast}(1 + G_{slow})$$

758 *Equation 13*

759 Figure 8 shows the non-predictive control system of Figure 3 after the addition of this second,
760 slow integrator, since it is easier to appreciate its operation in a non-predictive system. Suppose
761 the system starts from rest, with demand and accommodation both equal to the rest focus, so
762 that the defocus error and the outputs of the fast and slow integrators are both zero and the
763 neural signal sent to the plant is simply the bias signal, maintaining it at the rest focus. Suppose
764 the demand then makes a step change to a nearer value, d_0 . This in turn makes the defocus error
765 non-zero, which begins to charge up the fast integrator. The output of the fast integrator
766 increases the neural control signal above the bias value, altering accommodation so as to reduce
767 the error. It also begins to charge up the slow integrator. Thus, over short timescales, the neural
768 signal controlling accommodation is set mainly by the output of the fast integrator. However,
769 over long timescales, the slow integrator takes over. The ratio of the slow to fast steady-state
770 contributions is equal to the gain of the slow integrator (Schor, 1979b; Schor et al., 1986); for
771 example, with our value $G_{slow}=5$, steady-state accommodation is 83% due to the slow integrator
772 and 17% due to the fast integrator.

773
774 Now suppose that pinholes are applied, making the defocus error zero regardless of
775 accommodation. In this non-predictive model, after a delay corresponding to the sensory
776 latency, the signal entering the fast integrator instantaneously drops to zero, and the fast
777 integrator begins to discharge. As the fast integrator discharges, accommodation drops rapidly,
778 with a decay time corresponding to τ_{fast} . When the signal from the fast integrator has dropped
779 far enough, the slow integrator begins to discharge as well, resulting in a second, slower decay
780 of accommodation, with a time constant corresponding to τ_{slow} . Thus, after a long period of
781 exposure, there is an initial rapid drop as the proportion of accommodation due to the fast
782 integrator, initially $1/(G_{slow}+1)$, decays rapidly, but then a much longer decay as the dominant
783 component due to the slow integrator decays slowly.

784
785 The slow integrator also increases the overall steady-state gain and thus reduces the steady-
786 state error. Using Equation 13 and Equation 7, the steady-state accommodative response is
787

788
$$a_{ss} = a_{RF} + \frac{G_{fast}(1 + G_{slow})}{1 + G_{fast}(1 + G_{slow})} (d_{ss} - a_{RF})$$

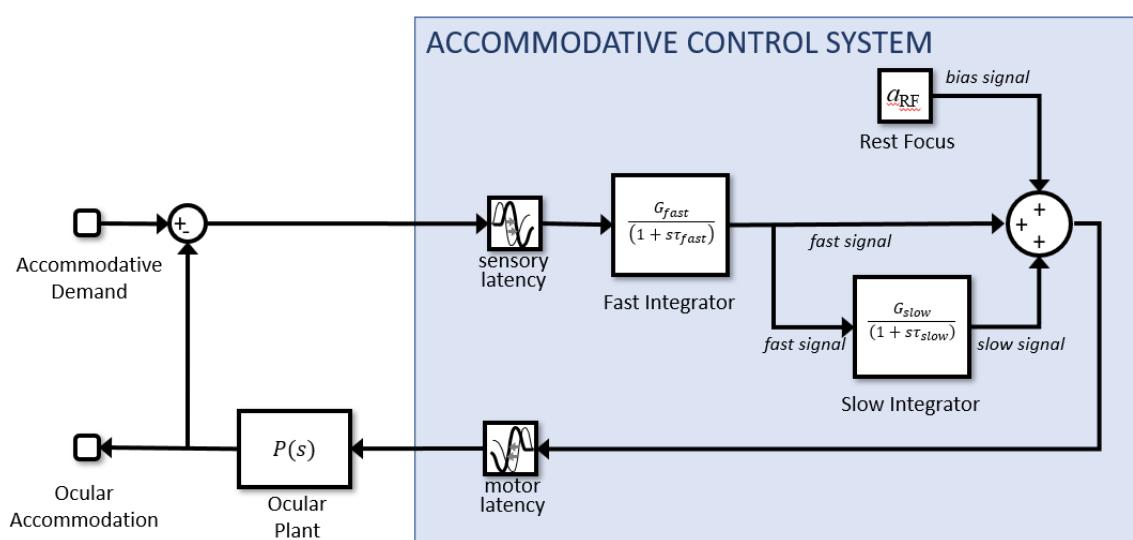
789

Equation 14

790 where with $G_{\text{fast}}=8$, $G_{\text{slow}}=5$ the gain term is 0.98, compared to 0.89 with only the fast
 791 integrator. Thus, following a step-change in demand, the model response rises rapidly to around
 792 90% of the demand, and then over the next tens of second rises more slowly to approach the
 793 demand exactly. Thus, the gain of the slow integrator cannot be made too large (say, much
 794 larger than 5) without eliminating the ability of the model to account for accommodative lead
 795 and lag.

796

797



798

799

800 *Figure 8. Non-predictive model incorporating dual (fast+slow) control. The slow integrator can be added to predictive models*
 801 *in the same way, but its effect is then much more complicated.*

802

803 With predictive control, there is an additional subtlety which also places an upper bound on
 804 G_{slow} . In such systems, the fast integrator is driven not by retinal defocus directly, but by the
 805 estimated future defocus (Figure 4). This does *not* immediately drop to zero when pinholes are
 806 applied. When the system is made open-loop by setting $d(t)=a(t)$, the input to the fast integrator
 807 becomes $a(t-T_{\text{sens}})-a(t+T_{\text{mot}})$ for the no-change prediction model. This becomes zero once
 808 accommodation has stabilized, but is finite while it decays. When the gain of the slow integrator
 809 is sufficiently large, this small error input is enough to keep the slow integrator high. This in
 810 turn keeps accommodation high and thus sustains the error signal. Accommodation creeps
 811 slowly down to the rest focus with a time-constant which, counter-intuitively, can be much

812 longer than any of the three time-constants of the system: τ_{plant} , τ_{fast} , τ_{slow} . This effect is
813 independent of exposure duration, so cannot account for the adaptation which the slow
814 integrator was introduced to explain. To avoid this effect and obtain a clear difference between
815 short and long exposure durations, we have found that G_{slow} needs to be less than around 10.
816 Here, we have set $G_{\text{slow}}=5$.

817

818

819 Microfluctuations and noise

820 A distinctive property of accommodative response is the relatively large fluctuations to which
821 it is subject in both open and closed loop. The power spectrum of open-loop accommodation
822 is roughly a straight line on log-log axes (Campbell et al., 1959b; Campbell & Westheimer,
823 1960; Stark et al., 1965), i.e. a power-law spectrum, $P=1/f^\alpha$. We model this by injecting white
824 noise onto the defocus signal prior to input to the neural controllers (Figure 10). White noise
825 has a flat power spectrum, but integration by the two integrators within the system (the neural
826 controller and the plant) converts it to a power-law spectrum, with an approximately Brownian
827 ($1/f^2$) spectrum.

828

829 Noise has often been omitted from models of accommodative control, presumably with the
830 rationale that once the correct noise-free response has been obtained, noise can always be added
831 later to simulate microfluctuations. However, this approach is unwise, because noise in fact
832 adds important constraints to the system. This is especially true with a predictive control
833 system, which can easily end up amplifying noise in the open-loop condition. Referring to
834 Figure 4, we see that a predictive control system contains not one but two feedback loops: one
835 via the eyes, and one internal to the brain, incorporating the virtual plant. Operating in open-
836 loop mode cuts the outer feedback loop, but leaves the internal feedback loop intact. Depending
837 on the coefficients, internal noise can easily resonate within this loop, creating a situation where
838 the power spectrum of open-loop accommodation has sharp peaks which do not occur in
839 closed-loop mode, since the outer feedback loop suppresses them in its effort to keep the error
840 zero. This is not observed empirically. The power of low frequencies does increase in open-
841 loop mode (Charman & Heron, 2015; Gray et al., 1993b), since without an error signal
842 accommodation performs a random walk around the rest focus, whereas it is kept close to the
843 demand in closed-loop mode. But we do not see an increase in the power of particular high-
844 frequencies, as would occur if internal noise were resonating within the internal feedback loop.

845

846 Fortunately, we find that the values we have already derived are consistent with these data. A
847 more underdamped system – say $G_{\text{fast}}=15$, $\tau_{\text{fast}}=2\text{s}$, which puts the damping coefficient ζ at 0.5
848 – does show unrealistic high-frequency resonances within the forward model feedback loop,
849 but our sub-critically-damped parameters $G_{\text{fast}}=8$, $\tau_{\text{fast}}=2.5\text{s}$, $\zeta=0.7$ already suppress the open-
850 loop resonance.

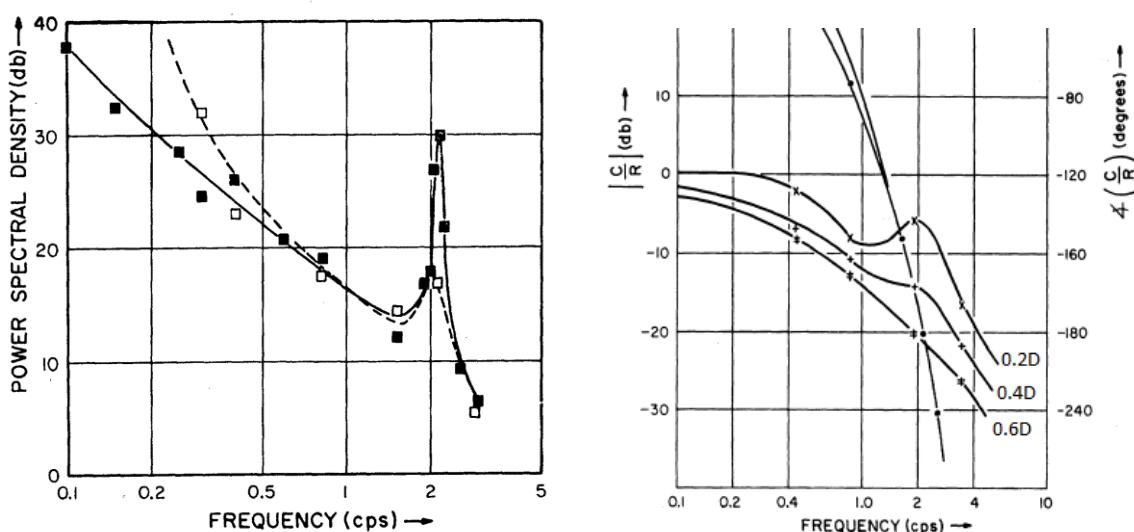
851

852 Explaining the closed-loop resonance seen for high frequencies at low amplitudes
853 In fact, several workers have found evidence for a resonance in closed-loop but *not* open-loop
854 mode. The first evidence comes from microfluctuations during steady fixation. Several workers
855 have found that the power-spectrum of closed-loop accommodation has a peak at around 2Hz
856 (Figure 9A). It is not always present, but when found is always *more* prominent in closed-loop
857 than open-loop accommodation. Although the location of this peak varies with heartrate,
858 suggesting the pulse as a possible source interacting with blood volume of the ciliary body
859 (Collins et al., 1995; Winn et al., 1990), the fact that it is higher in closed-loop conditions
860 suggests that the source must be amplified by a neural resonance within the outer feedback
861 loop.

862

863 Furthermore, the same resonance is assumed to be responsible for another puzzling
864 observation, relating to gain with sinusoidal stimuli. In our discussion around Figure 7, we
865 emphasized the lowpass nature of the gain response. This is true at high amplitudes, but for
866 low-amplitude oscillations in demand, the curves become non-monotonic, with an increase in
867 gain at around 2Hz (Figure 9B). Ockham's Razor suggests this reflects the same closed-loop
868 resonance causing the ~2Hz peak in microfluctuations. However, the dependence on amplitude
869 indicates that this resonance must be caused by a nonlinear mechanism, since for a linear
870 system gain is independent of stimulus amplitude.

871



872
873 *Figure 9. Evidence for a resonance at around 2Hz in accommodative control. (A) Figure 5 from Stark et al 1965 (Stark et al.,*
874 *1965), replotted empirical results from Campbell et al 1959 (Campbell et al., 1959b), showing the power spectrum of*
875 *accommodation under closed-loop (solid) and open-loop (pinhole, dashed) conditions. (B) Empirical results from Figure 4 of*
876 *Stark et al 1965, showing gain for sinusoidal oscillations of three different amplitudes (0.2D, 0.4D, 0.6D). Gain is expressed in*
877 *decibels (left axis): 0dB corresponds to an amplitude gain of 1, -10dB to 0.32, -20dB to 0.1, -30 to 0.03.*

878
879 Resonances observed in closed- but not open-loop mode immediately suggest a control system
880 lacking the predictor we have argued for so far. Non-predictive control is prone to closed-loop
881 instabilities in systems with latencies, like accommodation. This occurs in the outer feedback
882 loop via the eye, when the accommodation change designed to null out defocus arrives out of
883 phase due to the latency and ends up enhancing the defocus which cause it. Predictive control
884 avoids these closed-loop instabilities, but if the prediction is imperfect, it can be vulnerable to
885 open-loop resonances due a similar effect occurring via the internal feedback loop driven by
886 the efference copy. (For a mathematical justification of these statements, see the Appendix,
887 specifically the discussion around Equation 15, Equation 16 and Equation 18.)
888

889 Thus to explain both the power spectrum of microfluctuations, and the non-linear resonance in
890 the response to sinusoidal demand, we postulate an additional signal controlling
891 accommodation. This is proportional to small amplitudes of the current defocus, not the
892 estimated future defocus, and is thus not predictive. (This signal is, however, included within
893 the efference copy used to estimate future defocus within the predictive control system, as
894 shown in Figure 10). Because this signal is non-predictive, it is prone to closed-loop
895 instabilities. But for the same reason, it avoids open-loop resonances which can occur within a
896 predictive system.

897 To prevent the closed-loop instabilities from catastrophically destabilizing the response, we
898 clip this non-predictive signal at a low value, set to 0.15D in our model (i.e. signals larger than
899 0.15D in magnitude are set to $\pm 0.15D$ depending on their sign). This saturating value is chosen
900 simply because it gives a reasonable match to empirical results. It is low enough to ensure that
901 the signal does not change the behavior of the model in response to large changes in defocus.
902 However, it is large enough that the signal still produces a visible high-frequency peak in the
903 power spectrum of closed-loop microfluctuations and a high-frequency resonance in the
904 response to low-amplitude sinusoids (see Results).

905 This non-predictive saturating signal has other interesting effects on accommodation. Notably,
906 it facilitates a rapid response to small step stimuli, because non-predictive proportional signals
907 tend to react faster than predictive integral signals. For example, suppose demand suddenly
908 increases by 0.1D, causing an 0.1D step-change in defocus. The non-predictive proportional
909 control signal, with unit gain, requests the full 0.1D increase in accommodation. The fast
910 integrator begins responding at the same time, but due to its integral nature, its response ramps
911 up more gradually. Furthermore, because the non-predictive proportional signal uses the
912 current sensed defocus, rather than the predicted future defocus, it stays requesting the full
913 0.1D for at least 0.3s, until the sensorimotor latency has elapsed and the ocular plant starts to
914 respond and thus reduces the sensed defocus. In contrast, input to the fast integrator is estimated
915 future defocus, which begins to fall immediately based on the requested change to
916 accommodation (the predictive control system assumes that demand will stay at the new value,
917 but it predicts that defocus will fall because of the predicted accommodative response). So, the
918 input to the fast integrator begins to fall immediately from its initial peak of 0.1D, whereas the
919 input to the proportional controller stays at 0.1D until the sensorimotor latency has elapsed.
920 Thus for small step-changes in defocus, the non-predictive proportional signal enables a larger,
921 faster response. However, the saturation means that its effect is limited to small changes, with
922 the predictive-integral control dominating the response to large changes. Dynamics of larger
923 step responses are controlled with a pulse signal (Bharadwaj & Schor, 2005, 2006; Schor &
924 Bharadwaj, 2004, 2006) that will be added to this model in a subsequent paper.

925
926 Depth of focus
927 In principle, changes in defocus that are so small they produce no detectable change in the
928 retinal image, given the eye's optics, cannot drive accommodation. The smallest change in

929 defocus which produces a detectable change in accommodation is referred to as objective depth
930 of focus. This is typically much smaller than the subjective depth of focus, i.e. the smallest
931 change in defocus which produces a perceptible change in image quality (Kotulak & Schor,
932 1986a; Udlam et al., 1968; Yao et al., 2010). Depth of focus is often modelled as a deadzone
933 (e.g. (Khosroyani & Hung, 2002; Schor, 1979b)): the defocus signal is set to zero unless it
934 exceeds some threshold value corresponding to the objective depth of focus, say 0.2D. In such
935 models, the deadzone contributes to lags and leads of accommodation, since the error signal
936 vanishes once accommodation comes within the deadzone. However, this approach has a
937 number of drawbacks:

938 (i) It can result in unrealistic jumps, where a small change in demand pushes the defocus above
939 the threshold and thus elicits a disproportionately large response.

940 (ii) It produces a hysteresis effect, whereby accommodative lead and lag can depend on how
941 the demand is approached. For example, with a threshold of 0.2D, if the demand steps up from
942 1D to 2D, the effective defocus becomes zero once accommodation reaches 1.8D, so we get a
943 lag. But if demand steps down from 3D to 2D, effective defocus becomes zero once
944 accommodation reaches 2.2D, so we get a lead. This hysteresis is not typically observed, except
945 with extremely blurred images (Heath, 1956a) .

946 (iii) It reduces the gain of the response to low-amplitude oscillations. For example, consider a
947 slow oscillation ranging between 1D and 3D. Assume for simplicity that the closed-loop gain
948 of the system is 1, so that in the absence of a deadzone, the response would track demand
949 exactly. With a deadzone clipped at 0.2D, the response would range from 1.2D to 2.8D,
950 reducing the gain to 0.8. With a lower-amplitude oscillation where demand ranged from 1.5D
951 to 2.5D, the response would range from 1.7D to 2.3D, making the gain 0.6. With a still lower-
952 amplitude demand ranging from 1.7D to 2.3D, response would range from 1.9D to 2.1D,
953 making the gain 0.3. Yet this decrease in gain with decreasing amplitude is not observed. In
954 fact, accommodative gain tends to be smallest for high amplitudes, not for low amplitudes
955 (Stark et al., 1965, p. 196).

956 Furthermore, recent evidence has undermined the experimental support for the notion of a
957 deadzone. The accommodative system produces measurable responses to small amounts of
958 defocus which do not introduce perceptible blur (Kotulak & Schor, 1986a; Yao et al., 2010),
959 while the measured accommodative lags and leads may in fact maximize image quality rather
960 than reflecting a deadzone (Labhishetty et al., 2021). For all these reasons, we have chosen not
961 to include a defocus deadzone in our model. The objective depth of focus is adequately

962 accounted for here by the white noise we have added to the defocus signal, which effectively
963 swamps small changes. A more complete model would of course compute defocus from the
964 retinal images, and thus take into account that small changes in defocus are hard to detect
965 (Labhishetty et al., 2021).

966

967

968 Simulink implementation and summary of the model

969 Figure 10 shows the complete model as it appears in our Matlab Simulink implementation,
970 incorporating all the elements discussed above. The Simulink model has two inputs: (1)
971 “demand”, accommodative demand in diopters, and (2) “pinhole”, a binary signal which
972 conveys whether the eye is currently viewing through a pinhole or not. If pinholes are present,
973 the defocus signal is set to zero at the block labelled “Apply Pinhole”; otherwise it is set to the
974 optical defocus, i.e. demand minus accommodation. The defocus signal has white noise added
975 to it and is delayed by the sensory latency before reaching the “brain” module.

976

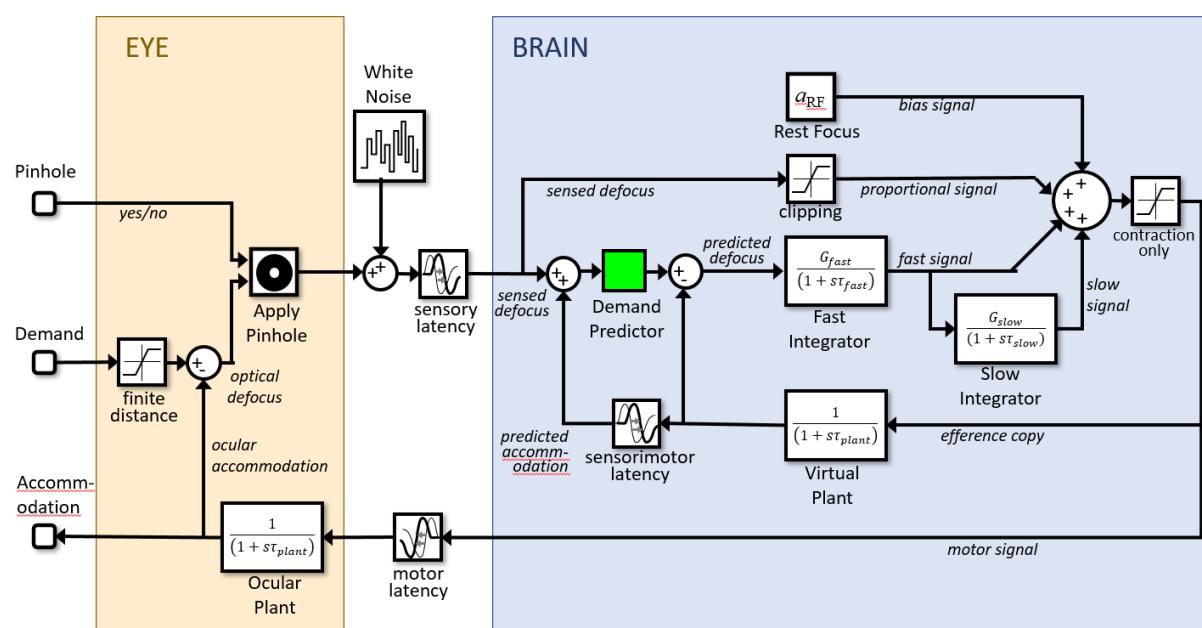
977 Here, four signals are combined to produce a neural signal which is delayed by the motor
978 latency before reaching the ocular plant. From top to bottom, these four signals are: (1) the
979 constant bias signal, which sets the rest focus; (2) the proportional signal, which is simply the
980 noisy defocus signal clipped at $\pm 0.15\text{D}$; (3) the signal from the fast integrator, which is driven
981 by the estimated future defocus; (4) the signal from the slow integrator, which is driven by the
982 fast integrator. One final detail not mentioned so far is that the neural signal is thresholded at
983 zero to ensure it is positive. This is visible in the diagram as the “saturation” block on the far
984 right, immediately after the four signals are combined. This accounts for the fact that the ciliary
985 muscle can only be commanded to contract, making the lens more convergent, or allowed to
986 relax. Negative values would effectively command the ocular lens to adopt a divergent form,
987 which is physically impossible.

988

989 As well as being sent down cranial nerve III to the eye, an efference copy of the neural signal
990 is directed to a virtual plant within the brain, which predicts the future accommodation. This in
991 turn is used to estimate the future defocus which drives the fast integrator. For completeness,
992 we have included a block labelled “Demand Predictor”, although in the current instantiation of
993 the model, this simply passes its input through unchanged.

994

995



996

997 *Figure 10. Block diagram of our final model (Simulink file AccommodationModel.slx), incorporating all the features discussed*
 998 *in the paper. The Simulink model has two inputs: (1) demand, and (2) whether or not the eye is viewing through a pinhole. It*
 999 *has one output: accommodation.*

1000

1001 Simulation details

1002 The next section shows simulation results for sine and step stimuli with this model. All
 1003 simulations were run in Simulink, Matlab R2020b, with a variable-step solver, automatic solver
 1004 selection and the default settings (relative tolerance 0.001 and max/min/initial step size and
 1005 absolute tolerance all set to “auto”). For plotting, we interpolated the output to obtain results
 1006 every millisecond. Note that this can give the impression of greater variability than in some
 1007 empirical results where accommodation may be measured at a much lower rate, e.g. 50Hz. To
 1008 obtain the velocity traces shown in Figure 16, we took the difference between successive
 1009 accommodation values to obtain the change per millisecond, then smoothed this within a
 1010 moving window of 10ms.

1011

1012 To obtain the model gain and phase in response to sinusoidal oscillations in demand, we ran
 1013 the model for 25 cycles of the specified frequency, then fitted a sinewave to the results using
 1014 Matlab’s Curve Fitting Toolbox. We fixed the frequency of the sinewave to the frequency of
 1015 the stimulus and fitted the three free parameters baseline, amplitude and phase (see code in

1016 Run_Sine.m). The amplitude and phase of the response were taken to be those of the fitted
1017 sinewave.

1018

1019 The simulation shows onset transients at its start point, as the integrators settle. In all cases, we
1020 therefore discarded the first few seconds of simulation time in order to exclude these transients.

1021

1022 Results

1023 The different elements of this model were motivated by different observations – the gain and
1024 phase to sinusoids; adaptation; power spectra of microfluctuations so on. Components such as
1025 the fast and slow integrator and the virtual plant have been proposed before for the
1026 accommodation step response (Schor & Bharadwaj, 2005), but to our knowledge never tested
1027 in combination for pursuit sinusoidal tracking (Schor & Kotulak, 1986) or adaptation (Schor,
1028 1979b), or with white noise and the feeding through of a clipped signal proportional to the
1029 current defocus. This combination is thus a novel contribution of this paper. We now
1030 demonstrate that this unified model can reproduce each of the observations that motivated its
1031 different components.

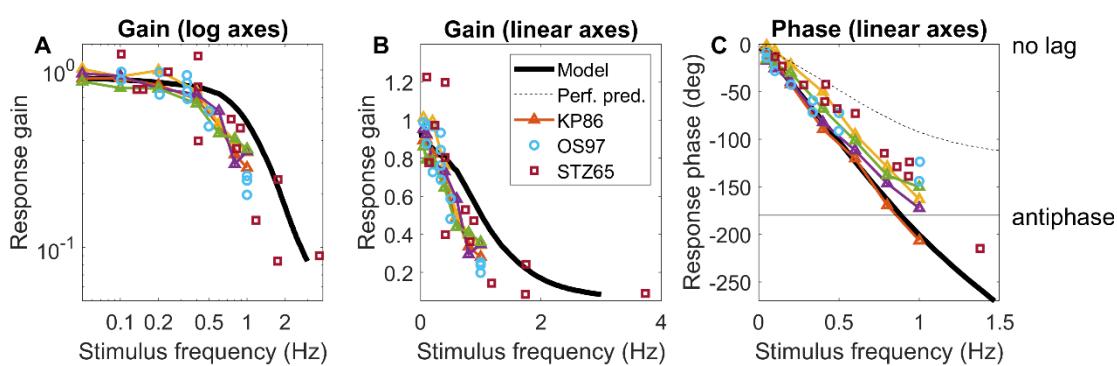
1032

1033 Response to sinusoidal demand

1034 Figure 11 shows the gain and phase of the model (heavy black line), compared with results
1035 from human subjects digitised from (Kruger & Pola, 1986; Ohtsuka & Sawa, 1997). This is of
1036 course similar to results already shown in Figure 7, but whereas those curves were obtained
1037 from mathematical formulae for a leaky integrator in a predictive control system, Figure 11 is
1038 obtained via Simulink simulation of the full four-signal model with noise. There is reasonable
1039 agreement in gain (Figure 11AB); both humans and model are low-pass. The main quantitative
1040 disagreement is that the “knee”, where the gain drops rapidly, typically occurs around 0.4Hz
1041 in humans and slightly later, around 0.6Hz, in the model. There is also good agreement in phase
1042 (Figure 11C). For comparison, the dashed black line shows the phase which would be obtained
1043 for a model with perfect demand prediction. This can be obtained from the phase of our model
1044 with “no change” demand prediction by subtracting the sensorimotor latency: $\phi_{\text{perfect}} = \phi_{\text{nochange}}$
1045 $- 360fT_{\text{sens}}$. The phase function of most human subjects agrees better with that of the no-change
1046 model rather than the perfect model, suggesting that these subjects had little ability to predict
1047 the oscillatory demand.

1048

1049



1050

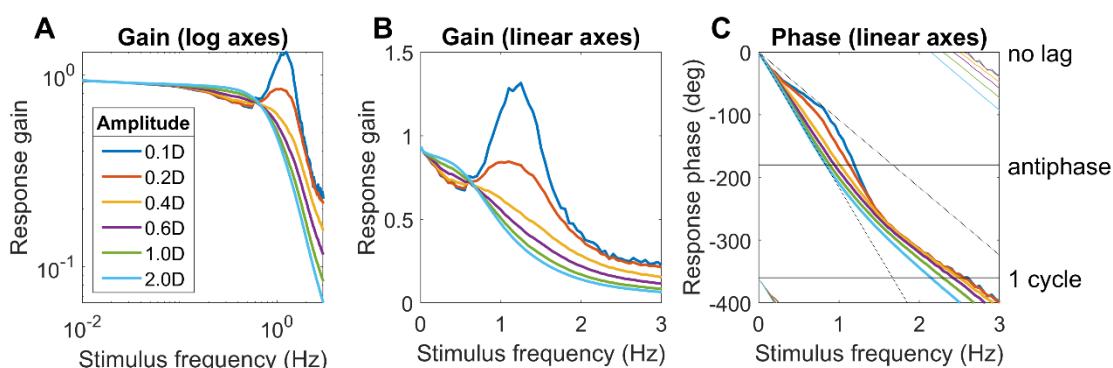
1051

1052 *Figure 11. Gain and phase of the model response to sinusoidal demand, compared to empirical results. A,B: Gain plotted on*
1053 *linear and log axes. C: Phase plotted on linear axes. The heavy black line is the response of the model in Figure 10 with the*
1054 *parameters given in Table 2. The dashed black phase line shows the phase which would be obtained by a model capable of*
1055 *perfectly predicting the sinusoidal oscillation in demand. Triangles show empirical results for four human subjects, digitised*
1056 *from Kruger and Pola (Kruger & Pola, 1986), using the data with white light and defocus cue only. Circles are for a further*
1057 *four subjects, digitised from Ohtsuka and Sawa (Ohtsuka & Sawa, 1997), using only their control subjects. In (Kruger & Pola,*
1058 *1986) and in the model, the demand oscillated between 1D and 3D, i.e. the amplitude of the sinusoid was 1D and its mean*
1059 *value was 2D. In (Ohtsuka & Sawa, 1997), the amplitude was 1.5D and its mean value is not stated. Code to generate this*
1060 *figure is in Fig_CompareGainPhase.m. Run_Sine.m must be run first to generate the model data.*

1061

1062 Figure 11 was for sinusoidal demand oscillations with an amplitude of 1D. Of course, the gain
1063 and phase of a linear system are independent of amplitude. However, our model is nonlinear
1064 due to the saturation of the non-predictive proportional signal. Figure 12 shows the gain and
1065 phase in the same format as Figure 11, but for different amplitudes of oscillation around a 2D
1066 baseline. The green lines are for the 1D amplitude shown in Figure 11, but for lower amplitudes
1067 the gain and phase start to deviate significantly from these results. Most strikingly, there is a
1068 resonance at 1.2Hz where the gain actually goes above 1 for the smallest oscillations ($\pm 0.1D$).
1069 This represents the instability caused by the non-predictive proportional signal. Since this
1070 signal is clipped at $\pm 0.15D$, it has a significant effect only for low-amplitude oscillations.

1071



1072

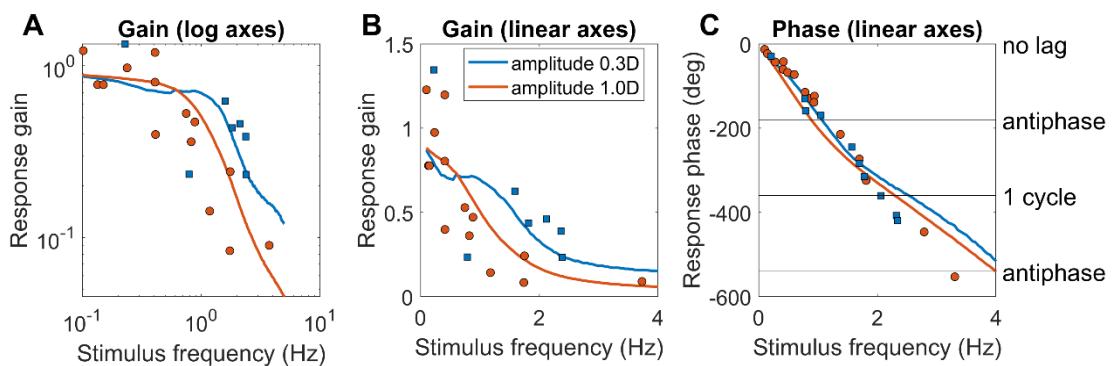
1073

1074 *Figure 12. Model gain and phase as a function of amplitude. The green curves (1D) are what was shown in Figure 11, but we*
 1075 *see that the behaviour at low amplitudes is quite different, with a resonance at 1.2Hz. Code to generate this figure is in*
 1076 *Fig_Sine.m. Run_Sine.m must be run first to generate the model data.*

1077

1078 This effect is qualitatively in agreement with the low-frequency resonance reported by Stark et
 1079 al. (1965), which led them to conclude that human accommodative control must include a
 1080 nonlinearity. Digitized data from Stark et al. (1965) is replotted in Figure 13, along with the
 1081 response of the model. The model does not reproduce the strong dip in gain at 0.8Hz for an
 1082 amplitude of 0.3D (blue point in Figure 13A), but apart from that, the agreement is quite good.
 1083 In particular, it accounts for the key observation that gain is quite high, around 0.5, for 0.3D-
 1084 amplitude oscillations at around 2Hz, whereas gain is much lower, around 0.1, for higher
 1085 amplitude oscillations at this frequency.

1086



1087

1088

1089 *Figure 13. Symbols are digitised data from Figure 3 of Stark, Takahashi & Zames (Stark et al., 1965). These are measured*
 1090 *gain and phase for one subject, for amplitudes of 0.3D (blue) and 1D (orange). The curves are model gains and phase for*
 1091 *these amplitudes, about a baseline of 2D. Code to generate this figure is in Fig_StarkTakahashiZames.m.*
 1092 *Run_StarkTakahashiZames.m must be run first to generate the model data.*

1093

1094 Limiting tracking frequency

1095 When asking what are the fastest changes that can be tracked by accommodation, it is important
1096 to consider phase as well as gain. Figure 12C and Figure 13C showed that the phase of the
1097 response relative to demand increases with frequency, reaching 180 degrees at a frequency of
1098 around 1Hz. When this occurs, the demand and response are in antiphase, and the error is
1099 greater than the stimulus. Interestingly, if the response gain were zero, then the error for the
1100 180 deg phase delay would be smaller than if the gain were 1.0. It is therefore of interest to
1101 ask how the gain and phase changes affect the model's defocus error for demand oscillations
1102 of different amplitude and frequency. We quantify this using the mean absolute defocus error.
1103 The defocus error is the difference between demand and accommodation at any time; absolute
1104 defocus error is the rectified version of this waveform, and mean absolute defocus is the
1105 average value of this over time: $\langle |d(t) - a(t)| \rangle$, where $d(t) = D_{mean} + D_{amp}(\sin 2\pi ft)$.

1106

1107 The heavy curves in Figure 14A show how mean absolute defocus error varies with amplitude
1108 and frequency of sinusoidal demand. In each case, the peak error is just below 1Hz, when the
1109 response is 180° out of phase with the demand (Figure 12C). The error increases with demand
1110 amplitude, even though for frequencies below the peak, the gain (i.e. the ratio of response to
1111 demand) is closer to 1 for larger amplitudes (Figure 12AB).

1112

1113 The aim of accommodative control is to track demand so as to minimize defocus error,
1114 but the phase-delay means that for sufficiently high frequencies, this aim would be better
1115 achieved by simply keeping accommodation fixed at the mean demand, i.e. by having a
1116 response gain of 0, rather than attempting to track oscillations in demand about this baseline.
1117 The dashed lines in Figure 14A shows this *zero-gain tracking error*, i.e. the mean absolute
1118 defocus error which would be achieved if accommodation stayed at the steady-state value
1119 elicited by the mean demand ($D_{mean}=2D$ in this example). Because the amplitude of zero gain
1120 tracking error depends only on the input amplitude, the error is independent of temporal
1121 frequency of the sine input. Since the static accommodative lag is small, the zero-gain steady-
1122 state response is also close to 2D. So the mean zero-gain error is approximately the average
1123 value of $|D_{amp}(\sin 2\pi ft)|$, or $2D_{amp}/\pi$, where D_{amp} is the amplitude of the demand oscillations
1124 about the 2D baseline.

1125

1126 We define the *limiting tracking frequency* to be the frequency at which the actual gain
1127 and phase-delay of the accommodative response produces the same error as would be achieved
1128 with zero gain. This is where the zero-gain tracking error is first equal to the actual error,
1129 marked with a cross x in Figure 15A. For frequencies lower than this limit, the oscillation in
1130 accommodative response is helpful, i.e. it tracks the oscillations in demand with a phase delay
1131 low enough to reduce the mean defocus error below the zero-gain tracking error. However for
1132 frequencies above the limit marked with a cross, the oscillatory response is out of phase and
1133 ends up making mean defocus error larger than if accommodation simply remained constant at
1134 the baseline value.

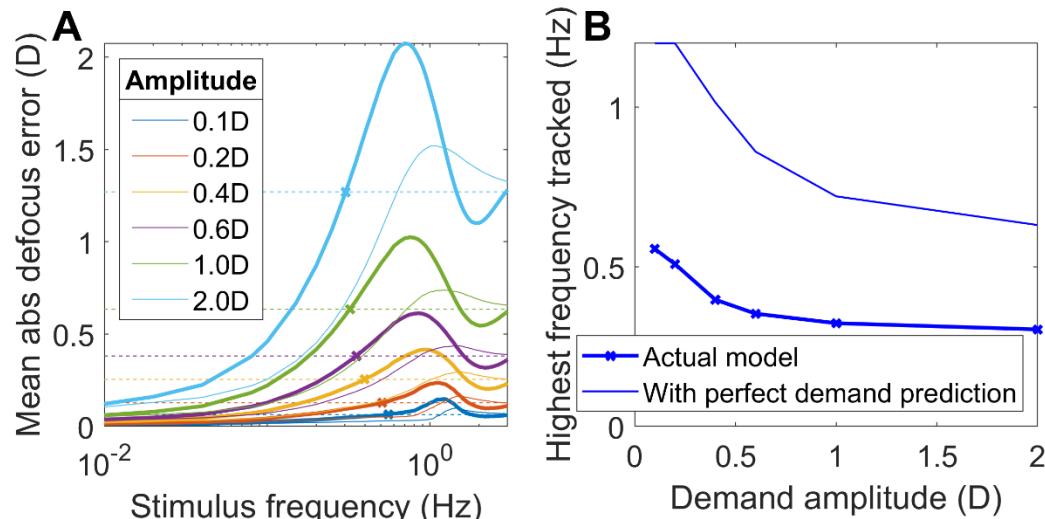
1135

1136 Because of the nonlinearity represented by the saturating non-predictive proportional
1137 signal, this limiting-tracking frequency depends on amplitude, as shown in Figure 14B. For
1138 large-amplitude oscillations in demand, accommodation can track only up to around 0.4Hz.
1139 We saw above that the non-predictive proportional signal enables a more rapid response to
1140 small changes. This is shown in Figure 14B by the increase in limiting tracking frequency for
1141 low-amplitude oscillations.

1142

1143 Using the result that perfect demand prediction would reduce the phase by the sensorimotor
1144 latency, we can also infer what these curves would be for a model with perfect demand
1145 prediction but with the same plant and same leaky-integral controller. These are shown with
1146 the light curves in Figure 14AB. Perfect demand prediction does reduce the error and increase
1147 the limiting tracking frequency, but not dramatically, because of limits imposed by the time
1148 constants of the plant and of the fast integrator.

1149



1150

1151

1152 *Figure 14. (A) Mean absolute defocus error for sinusoidal demand oscillations of different frequencies and amplitudes about*
1153 *a 2D baseline. The heavy curves show $|d(t)-a(t)|$ for our model with its observed gain and phase; the light curves are those*
1154 *inferred for a model with perfect demand prediction. The dashed lines show the expected high-frequency limit, i.e. the mean*
1155 *defocus error if the demand oscillated but the response stayed at the steady-state value elicited by the mean demand, and*
1156 *the crosses indicate where this is first less than the error with tracking. The crosses mark where this crosses the mean defocus*
1157 *error. We take this as an indication of the highest frequency which can be successfully tracked at this amplitude. (B) Tracking*
1158 *frequency limit as a function of amplitude, for the actual model (heavy line, crosses) and for a model with perfect demand*
1159 *prediction (upper light line). Code to generate this figure is in Fig_Sine.m. Run_Sine.m must be run first to generate the model*
1160 *data.*

1161

1162 Steady-state microfluctuations

1163 We now turn to noise, and examine how well our model can account for accommodative
1164 microfluctuations. Figure 15A shows example closed- and open-loop accommodation traces
1165 recorded from the model over the course of 5 simulated minutes. The red trace is for closed-
1166 loop viewing of a stimulus at 1D (red dashed line). Accommodation thus fluctuates around a
1167 value a little over 1D, reflecting the accommodative lead for a stimulus nearer than the rest
1168 focus, here 1.4D. The fluctuations span a range of around 0.1D ($\pm 2\text{SD}$). The SD is 0.03D,
1169 which is small compared to the SD of human microfluctuations (0.1-0.3D, (Charman & Heron,
1170 1988, 2015; Gamba et al., 2009)). The power spectrum, Figure 15D, has a prominent peak at
1171 around 1.5Hz. This periodic structure is clearly visible in the 10s excerpt from the trace shown
1172 in Figure 15B.

1173

1174 The blue trace is for open-loop viewing, e.g. through pinholes. Now, the response wanders
1175 around the rest focus, 1.4D (dashed blue line). However, because the bias signal is constant
1176 rather than scaling with the difference between accommodation and rest focus, the excursions
1177 are much wider. This is visible in the power spectrum, Figure 15D, where the power continues
1178 to rise as frequency reduces.

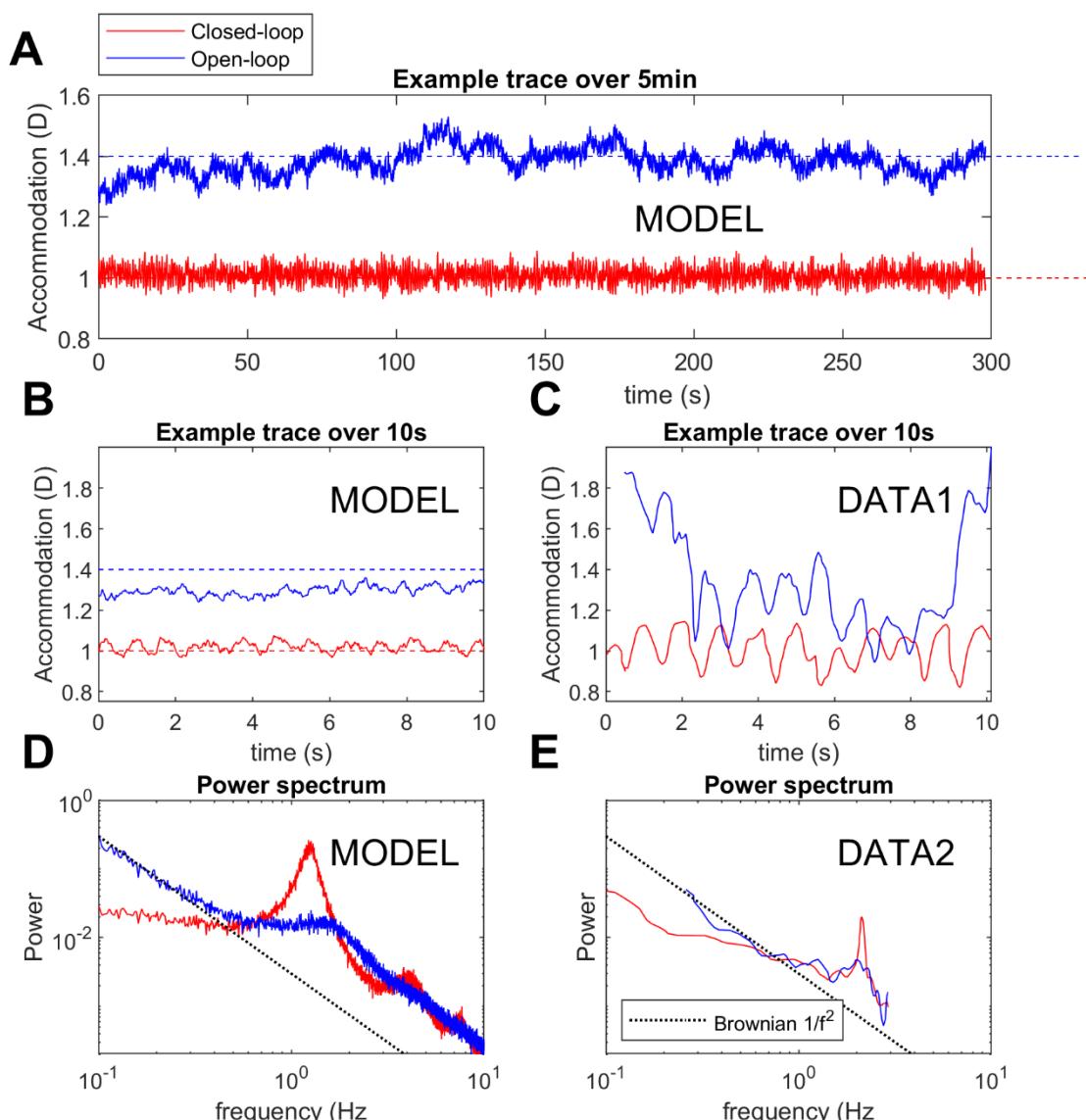
1179

1180 Figure 15B shows a 10s excerpt from the trace in Figure 15A, for comparison with the example
1181 empirical data in Figure 15C, digitized from (Gray et al., 1993a). Although the amplitude of
1182 the microfluctuations is larger in the human observer, the same qualitative features are visible:
1183 closed-loop mode showing strong periodic structure at around 2Hz, open-loop mode showing
1184 much larger low-frequency fluctuations. Figure 15E shows the closed- and open-loop power
1185 spectra for a human observer, digitized from (Campbell et al., 1959b), for comparison with

1186 Figure 15D. Despite quantitative differences, they show the same qualitative features, notably
1187 a much larger peak for closed-loop.

1188
1189 The presence of this relatively large, 1-2Hz periodic component in the closed-loop
1190 microfluctuations may aid accommodative control, for example by “hunting” for the point of
1191 optimal focus (Kotulak & Schor, 1986c). Thus, this could be a reason why the postulated non-
1192 predictive proportional signal is beneficial for accommodative control.

1193
1194



1195
1196 Figure 15. AB: Example accommodation traces in (red) closed-loop response to 1D and (blue) open-loop mode. Dashed
1197 horizontal lines show (red) the 1D demand and (blue) the 1.4D rest focus. A: trace over 5 minutes, to show slow fluctuations
1198 in open-loop response; B: 10s excerpt from A, to facilitate comparison with C: Example 10s trace recorded from a human

1199 observer, digitised from Fig 3 of Gray, Winn and Gilmartin (Gray et al., 1993a). The red trace is for a 5mm pupil; the blue trace
1200 is for viewing through pinholes of 0.5mm diameter. A scalebar but no accommodation values are provided in (Gray et al.,
1201 1993a), so the vertical position is arbitrary. To facilitate comparison with the model, we have set the mean value to 1D for
1202 the closed-loop and 1.4D for the open-loop trace. D: Power spectra of the closed- and open-loop response, obtained by
1203 averaging the Fourier power spectra of 50 traces like those in A, generated from simulations with different noise seeds. For
1204 comparison, a $1/f^2$ Brownian noise spectrum is drawn on with a black dashed line. E: Power spectra of closed- and open-loop
1205 responses for a human observer, digitised from Fig 5 of (Campbell et al., 1959b). This is labelled DATA2 to make clear that it
1206 is not the power spectrum of the trace shown in Figure 15C. No vertical axis scale was provided in (Campbell et al., 1959b),
1207 so we have scaled the spectrum so it best agrees with D. The red curve was recorded with a 7mm pupil and the blue curve
1208 with a 1mm effective entrance pupil. Code to generate this figure is in Fig_Noise.m; Run_Noise.m must be run first to generate
1209 the data.

1210

1211

1212 Response to step changes

1213 When motivating the introduction of the saturating non-predictive proportional signal, i.e. a
1214 proportional controller responding to the current defocus signal (Figure 10), we discussed why
1215 it produces a larger, more rapid response to small changes in demand. We have already seen
1216 how this effect produces a higher gain for high-frequency low-amplitude oscillations (Figure
1217 12) and thus the ability to track low-amplitude oscillations out to higher temporal frequencies
1218 than is possible for larger amplitudes (Figure 14). Similarly, the non-predictive proportional
1219 signal, clipped at ± 0.15 D, enables a faster response to small step changes in demand.

1220

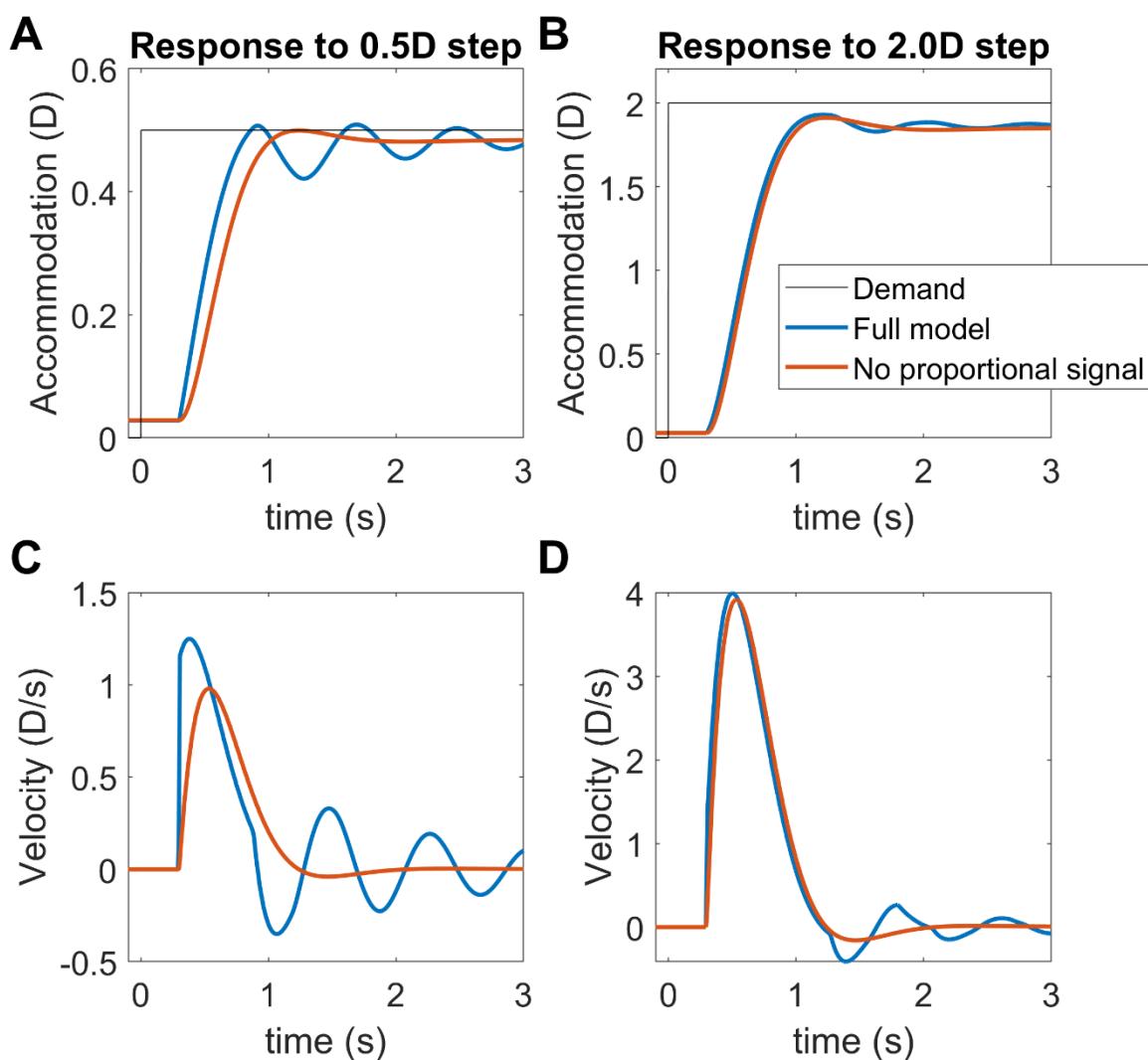
1221 Figure 16 demonstrates this by comparing results from the full model (blue) with those from a
1222 model identical except that it lacks the non-predictive proportional signal (orange). To enable
1223 the effects to be seen clearly, noise is also turned off in this simulation. On the left, Figure
1224 16AC, we plot the accommodation and velocity for a 0.5D increase in demand. The model with
1225 the non-predictive proportional signal responds more quickly. However, for the larger 2D step
1226 shown on the right (note different y-scales), the saturation of the non-predictive proportional
1227 signal at 0.15D limits its effect, and it makes barely any difference either to accommodation
1228 itself or to velocity. In fact, for large step changes like that shown in Figure 16BD, there appears
1229 to be a fifth signal, a nonlinear pulse triggered by sudden large changes in demand (Schor &
1230 Bharadwaj, 2004, 2006). The pulse accounts for the empirical observation that the peak
1231 acceleration of the response for step increases in demand is roughly independent of the step
1232 size, instead of scaling with step size as would occur for a linear system. While implementing
1233 the pulse is beyond the scope of this paper, we note that the non-predictive proportional signal

1234 already moves in the right direction by boosting the acceleration for small steps, and thus
1235 helping reduce the difference between acceleration for large and small steps. This could be
1236 another reason for the accommodative control system to include the postulated non-predictive
1237 proportional signal.

1238

1239 The blue curves in Figure 16 also show the ringing characteristic of non-predictive models,
1240 especially prominent relative to small step changes (Figure 16A). This instability is of course
1241 what we are exploiting to drive the high-frequency peak in the microfluctuations. Thus, our
1242 model predicts, probably wrongly, a transient increase in the amplitude of microfluctuations
1243 following small step changes in response.

1244



1245

1246 *Figure 16. Noise-free accommodation (AB) and velocity (CD) for two different step increases in demand (AC: 0.5D, BD: 2D). The blue curve is for the usual model; the orange curve is for a similar model with no non-predictive proportional signal. To*

1248 enable the effect to be seen clearly, noise has been turned off for this figure only. Also note that the response to the 2D step
1249 (BD) is included only to demonstrate the role of the non-predictive proportional signal. The model presented in this paper
1250 does not accurately capture the dynamics of the response to such large steps, since it does not include the pulse signal (see
1251 text). Code to generate this figure is in Fig_EffectOfPropSignal.m.

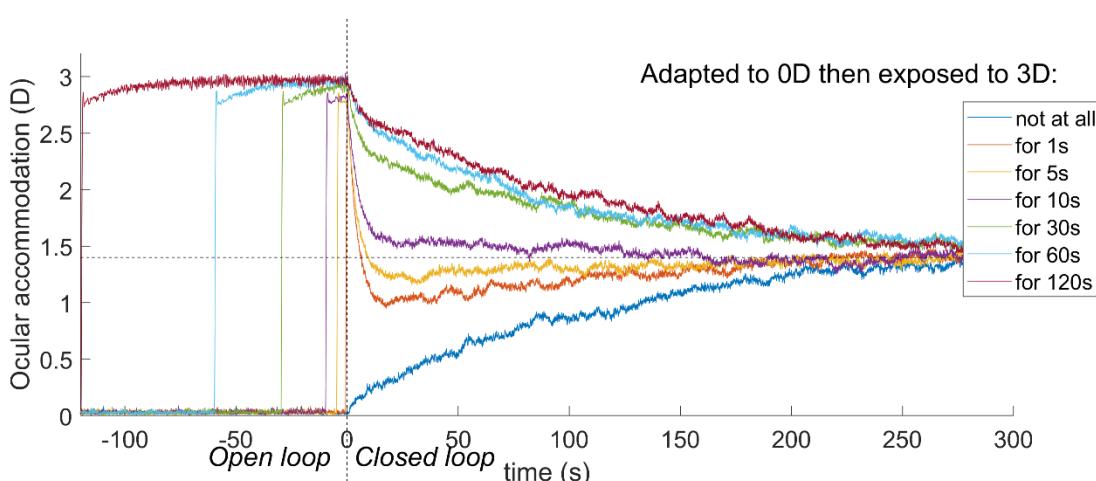
1252

1253 Adaptation

1254 Next, we examine how the model adapts to accommodative demand to which it is exposed for
1255 more than a few tens of seconds. This was the motivation for postulating the slow integrator
1256 (Schor, 1979b; Schor et al., 1986). Its presence has not contributed to the results presented so
1257 far, other than to boost the gain for very slow oscillations. Now we see how it accounts for
1258 adaptation.

1259 Figure 17 shows the time course of accommodation following the application of pinholes at
1260 $t=0$, shifting the system from closed-loop to open-loop demand. After the application of
1261 pinholes, accommodation eventually ends up at the rest focus, but how rapidly it does so
1262 depends on the demand before pinholes were applied. The model observer is initially adapted
1263 to 0D, then switches to viewing 3D for variable amounts of time as shown in the legend. The
1264 results show that after viewing one demand for at least two minutes, the observer adapts to it
1265 such that accommodation remains close to the adapted value for several minutes after pinholes
1266 have been applied (uppermost/red, lowermost/blue traces). Conversely, when the observer was
1267 exposed to different demands immediately before pinholes are applied (middle traces), they
1268 move much more rapidly to the rest focus.

1269



1270

1271 Figure 17. The model shows adaptation to demand, due to the slow integrator. The model observer is initially viewing an
1272 object at 0D, before then viewing an object at 3D for varying durations as shown in the legend. Pinholes are applied at $t=0$,
1273 putting the system in open-loop mode. After long exposures, accommodation adapts to the demand, and moves only slowly
1274 to the rest focus; the adaptation affects the accommodation for many minutes after pinholes have been applied (e.g. dark

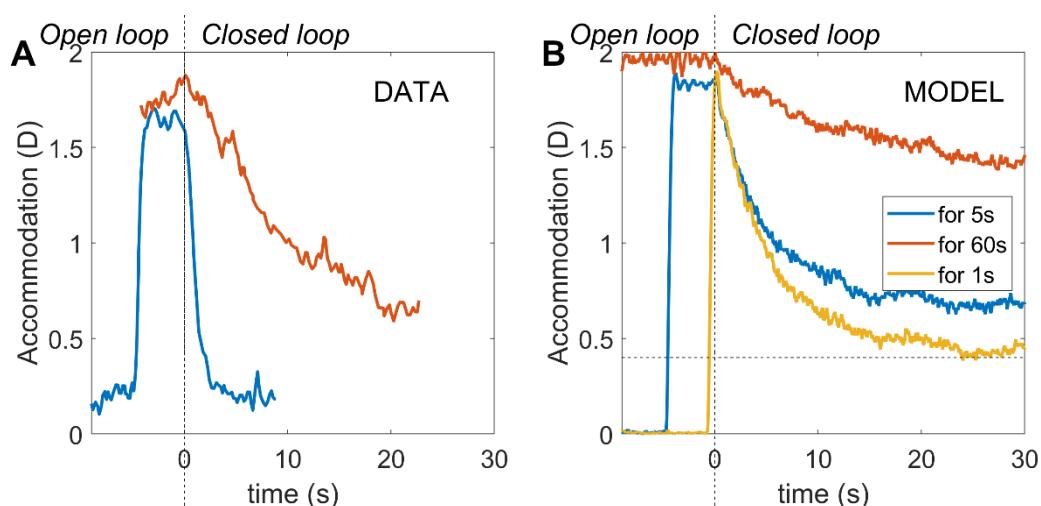
1275 blue curve: adapted to 0D, further than rest focus; red curve: adapted to 3D, closer than rest). Code to generate this figure is
1276 in *Fig_Adaptation.m*; *Run_Adaptation.m* must be run first to save the data in *Results_Adaptation.mat*.

1277

1278

1279

1280 Figure 18 shows a comparison with empirical data. Here, the observer was exposed to a demand
1281 of 2D for either 5s (blue) or 60s (orange) before moving to open-loop mode at $t=0$. The traces
1282 in Figure 18A are for a human observer (Schor et al., 1986); those in Figure 18B are from the
1283 model, with rest focus set to 0.4D (dashed line) in order to better match this observer. In both
1284 cases, following the 5s exposure to 2D, accommodation falls rapidly once the system enters
1285 open-loop mode, but following the 60s exposure, the decay is much slower.



1286

1287

1288 Figure 18. Comparison of the model (B) with data digitised from Schor, Kotulak & Tsuetaki (Schor et al., 1986) (Fig 2, empty
1289 field condition). As in Figure 17, pinholes are applied at $t=0$. Before then, the demand is at 0D for a long period, before moving
1290 to 2D for either 5s (blue) or 60s (orange); for the model, we also include 1s (yellow). In (Schor et al., 1986), a scalebar is
1291 provided, but absolute dioptric values are not available. The vertical position in the DATA panel is therefore arbitrary.
1292 However, since the open-loop condition decays by well over 1D from the closed-loop position adopted in response to a 2D
1293 demand, it seems clear that the rest focus for this observer was well below 1.4D. For this comparison, therefore, the rest
1294 focus of the model has been set to 0.4D (dashed line) in this figure only. Code to generate this figure is in
1295 *Fig_SchorKotulakTsuetaki.m*.

1296

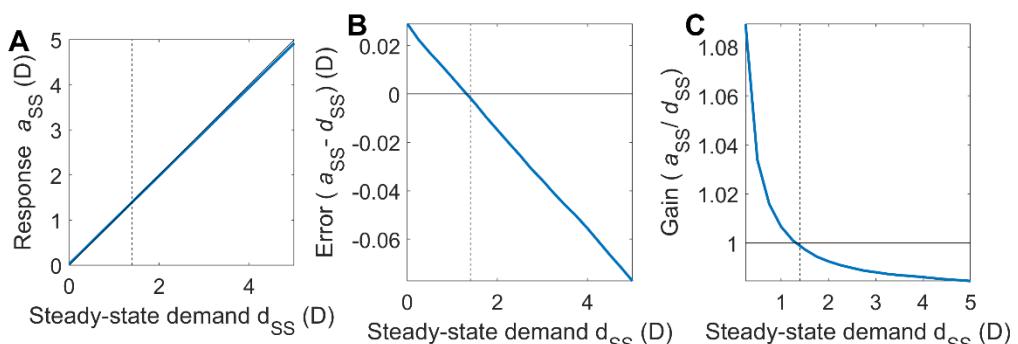
1297 Steady state error

1298 Finally, Figure 19 shows the model's steady-state error. As discussed (Equation 14), this
1299 reflects both the fast and slow integrator. In the model, the additional gain provided by the slow
1300 integrator means that steady-state error eventually becomes extremely small. Figure 20 shows

1301 this process for an example step up to 2D. The error is zero at the resting focus but shows
 1302 lag/lead on either side of this. The gain (response/demand) therefore becomes high as demand
 1303 tends to zero.

1304

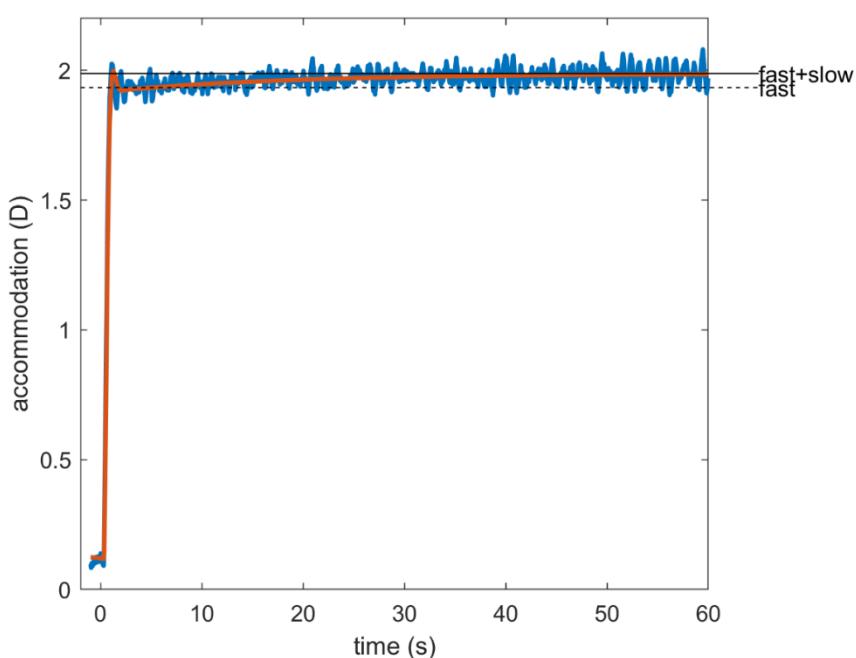
1305



1306

1307 *Figure 19. Steady-state response of the model. The model was run for 320s with a constant demand d_{ss} indicated by the value*
 1308 *on the x-axis, and accommodation was averaged over the final 60s to obtain the steady-state response, a_{ss} . (A) Input/output*
 1309 *function, i.e. steady-state accommodation as a function of demand. (B) Steady-state error, i.e. difference between response*
 1310 *and demand. For distant stimuli, this is positive (lead); for near, it is negative (lag). (C): Gain, i.e. ratio of response to demand.*
 1311 *In each case, blue curves show the response of the model; solid black line indicates response equal to demand, and the dashed*
 1312 *vertical line marks the rest focus, where this occurs. Code to generate this figure is in Fig_SteadyState.m; Run_SteadyState*
 1313 *.m must be run first to save the data in Results_SteadyState.mat.*

1314



1315

1316 *Figure 20. Model response to a step change in demand from 0D to 2D, showing the immediate rise to 89% of demand due to*
 1317 *the fast integrator, and the subsequent slow rise to 98% demand due to the slow integrator. The blue trace is one example*

1318 *run from the full model; the superimposed orange line shows the response with no noise and no non-predictive proportional*
1319 *signal, in order to isolate the response due to the fast and slow integrators. Note that the dynamics of the immediate response*
1320 *to the step are not correct because they do not incorporate the pulse signal, but the point of this figure is to demonstrate the*
1321 *time-course following this immediate response. Code to generate this figure is in Fig_ExampleStep.m*

1322

1323 **Discussion**

1324 In this paper, we have discussed the neural control of accommodation. We have provided a
1325 tutorial overview of the relevant control theory and key empirical observations. We have
1326 discussed the evidence for a predictive control system, i.e. one incorporating a forward model
1327 to predict the accommodative response in advance of the motor latency (Hung et al., 2002;
1328 Khosroyani & Hung, 2002; Schor & Bharadwaj, 2004). Similar models have also been
1329 proposed for vergence control (Erkelens, 2011; Hung et al., 1986; Zee & Levi, 1989) and
1330 saccades (Chen-Harris et al., 2008). Our analysis has led us to make the novel proposal that a
1331 saturating non-predictive proportional-control component may operate in parallel to the main
1332 predictive integrative-control feedback loop. This non-predictive proportional signal causes a
1333 high-frequency resonance in the closed-loop response, observed in the response to low-
1334 amplitude sinusoidal oscillations in demand. It amplifies noise within the system, explaining
1335 the high-frequency peak observed in closed-loop but not open-loop accommodation
1336 microfluctuations. It also speeds up the response to small, sudden changes in demand. Yet its
1337 saturation means that it does not destabilize the system as a whole, and that it becomes
1338 insignificant for large changes in demand.

1339

1340 We have implemented these ideas in a Simulink model, and are publishing this and all code
1341 along with the paper. Although most of the components of the model have been published
1342 before, we believe that this model is the first to incorporate realistic sensorimotor latencies,
1343 non-zero rest focus, noise *and* dual control by fast and slow integrators, as well as our novel
1344 use of a non-predictive proportional-control signal. Accordingly, it is able to account well for
1345 a wide range of empirical observations: the gain and phase of the response to sinusoidal
1346 oscillations in demand, including the puzzling high-frequency low-frequency resonance; the
1347 power spectrum of microfluctuations in closed-loop and open-loop modes, and the adaptation
1348 of accommodation to a steady stimulus.

1349

1350 The four control signals: bias, fast, slow, non-predictive
1351 In our model, accommodation is controlled by four separate signals (Figure 10), which offer
1352 different benefits. The constant bias signal sets the rest focus, to which the system returns in
1353 the absence of other stimulation (Figure 17). This may represent a typical demand, making it
1354 easier for the system to respond when stimulation restarts. The slow integrator means that the
1355 system tends to adapt to steady demand, perhaps reducing disruption if vision is briefly
1356 interrupted during sustained attention to one distance.
1357
1358 The fast integrator is the main workhorse of the feedback loop, enabling accommodation to
1359 respond rapidly yet smoothly to changes in demand (Figure 11, Figure 20). It is embedded
1360 within a predictive control system, incorporating a forward model to predict the effect of
1361 signals previously sent to the plant. This predictive control enables a smooth response and
1362 avoids ringing and instability. In principle, it can entirely remove delay due to the sensorimotor
1363 latency in a situation where demand can be predicted perfectly, as in a regular oscillation.
1364 However, it can slow the response to sudden and unpredictable changes in demand.
1365
1366 The fourth control signal can facilitate rapid responses in such situations (Figure 16). This
1367 signal is non-predictive: it is proportional to the currently sensed defocus, not the predicted
1368 future defocus. We originally rejected non-predictive control because it is prone to closed-loop
1369 resonances at particular frequencies. This is because the phase of the cycle where demand is
1370 high causes an increase in accommodation designed to null the defocus error, but – due to the
1371 latency – by the time the increase in accommodation has taken effect, the demand cycle has
1372 moved on to a phase where demand is low, and so the increase in accommodation in fact
1373 enhances the defocus error, causing a larger change in accommodation in the next cycle, and
1374 so on. In our model, we limit the destabilizing effect of this signal by making it saturate at low
1375 values. This ensures that it has little influence on accommodation in general, which remains
1376 dominated by the predictive integral control discussed above. However, the closed-loop
1377 resonance associated with non-predictive control remains detectable for small changes in
1378 demand. This amplifies noise within particular bandwidths, and means that the
1379 microfluctuations in the steady-state response show a peak at frequencies just over 1Hz, as
1380 observed. Opening the loop cuts the feedback pathway generating the resonance, explaining
1381 why this peak in the microfluctuation power spectrum is much less prominent in open-loop
1382 mode. The saturating proportional signal also accounts for the non-linear resonance observed
1383 when accommodation tracks low-amplitude – but not high-amplitude – sinusoidal oscillations

1384 in demand. However, an unrealistic feature of our model’s way of generating microfluctuations
1385 is that it predicts a transient increase in the amplitude of microfluctuations following small
1386 step-changes in demand – the ringing visible in Figure 16 – which has not been reported. The
1387 amplitude of microfluctuations in the model is also smaller than observed (Figure 15BC); this
1388 cannot be fixed simply by increasing the amplitude of the noise since that also changes the
1389 open- and closed-loop power spectra.

1390

1391 “Prediction” in the accommodation literature has often concentrated on predicting changes in
1392 demand (Krishnan et al., 1973; Stark, 1968). We believe it is helpful to draw a clear distinction
1393 between predicting one’s own accommodation, which is in principle possible perfectly with an
1394 efference copy and a forward model, and predicting demand, which is external and thus not
1395 always possible, for example when a fixated object moves suddenly. Predicting
1396 accommodation but simply using the current demand suffices to achieve closed-loop stability.
1397 The additional benefit of predicting future demand accurately is to avoid delay and thus avoid
1398 errors for rapidly changing stimuli. However, the low-pass characteristics of the plant and
1399 leaky-integral controller mean that the benefits of demand prediction are limited unless one
1400 also posits a different form of control.

1401

1402 Deficits of the model

1403 The model as currently implemented has many omissions and inadequacies, which must
1404 contribute to its imperfect ability to match the empirical data discussed in this paper. First, we
1405 do not consider control signals driven by inputs other than retinal defocus and bias (Heath,
1406 1956b; Maddox, 1893). Notably, we do not include the crosslinks from and to the vergence
1407 system (Bharadwaj, 2005; Schor & Kotulak, 1986). We also do not consider other noise
1408 sources, such as heartbeat.

1409 Second, this paper has nothing to say about how a signed estimate of defocus is obtained from
1410 the retinal image. This deficiency is perhaps especially important since our model assumes that
1411 visual feedback from the retinal images is the only feedback available to the accommodative
1412 control system. (Stretch receptors in the scleral spur base of the ciliary body could potentially
1413 also provide sensory feedback used in accommodative control (Tamm et al., 1994; Tamm &
1414 Lütjen-Drecoll, 1996), but at present nothing is known about whether or how this occurs, and
1415 it has not been included in any model of accommodative control.)

1416 Perceptually, the threshold for detecting a change in focus which produces a detectable change
1417 in the image is higher for sharp than for blurring images: a focus change of 0.2D may be visible
1418 when the baseline defocus is 1.5D but not when the baseline is 0D (Campbell & Westheimer,
1419 1958). It seems likely that such differences also affect the stimulus to accommodative control,
1420 but this is not taken into account in our model.

1421 Related to this, we assume that the control system is attempting to minimize defocus, whereas
1422 in fact it is presumably attempting to maximize image quality. The accommodative lag and
1423 lead, which in our model is accounted for by the finite gain of the fast integrator, may
1424 effectively be an artefact of objective measurements of accommodation (Labhishetty et al.,
1425 2021). Recasting the control system so as to maximize a realistic measure of image quality
1426 rather than to minimize defocus could therefore profoundly alter the behavior of the model and
1427 lead to different conclusions about the nature of neural control. This would need to consider
1428 not only defocus but also higher-order aberrations such as spherical aberration, and should take
1429 into account pupil size. This would be computationally demanding to implement, and no
1430 published model of accommodative control has yet attempted it, but it must certainly be done
1431 in order to understand accommodative control in full.

1432

1433 The current model does not incorporate physical limits on accommodation, a non-zero far point
1434 or refractive error, nor do we consider how the system parameters may change with age
1435 (Bharadwaj & Schor, 2005; Schor & Bharadwaj, 2005), though these would be simple to add
1436 if required.

1437 The model components are highly simplified. For example, the ocular plant is modelled as a
1438 linear-time-invariant leaky integrator with a fixed gain and time-constant, and the optical power
1439 is assumed to be proportional to the output of this integrator. A more accurate, yet useably
1440 simple, optical/biomechanical model of the relationship between ciliary muscle signal and
1441 optical power would be welcome (Wang et al., 2017).

1442 The model developed here cannot account for the non-linear dynamics observed in response to
1443 large step changes. These have been accounted for previously with an additional “pulse” signal
1444 triggered by large step changes in accommodation (Schor & Bharadwaj, 2004, 2006), which
1445 temporarily overrides the error-driven signal, although non-linearities in the plant could also
1446 contribute. This of course means that the model presented here cannot accurately model the
1447 dynamics of the accommodative response to large step- changes, though it should remain valid

1448 for all the situations modelled in the Results (except Figure 16BD, included for illustrative
1449 purposes).

1450 Finally, we have not attempted a realistic implementation of the demand-prediction model.
1451 There is some evidence that the brain can predict changing accommodative demand some time
1452 into the future, but we have here assumed it simply assumes demand will stay constant
1453 (Khosroyani & Hung, 2002). We hope to address some of these deficiencies in future work.

1454

1455

1456

1457 **Financial disclosure and competing interests**

1458 This work was part-funded by Magic Leap Inc. by a consultancy contract to Newcastle
1459 University for the work of JCAR and CKR. Authors BV and BW are employees of Magic Leap
1460 who initiated the study, reviewed the models and assisted with the preparation of the
1461 manuscript.

1462

1463
1464

Tables

Symbol	Meaning
ω	Angular temporal frequency, $\omega = 2\pi f$
$\phi(f)$	phase-delay of accommodation at frequency f
τ_{fast}	Time-constant of the fast leaky-integrator controller, see Equation 10
τ_{plant}	Time-constant of the ocular plant, when this is modelled as a leaky integrator, see Equation 9
τ_{slow}	Time-constant of the slow leaky-integrator controller, see Equation 12
ζ	Damping coefficient, see Equation 20
$\hat{a}(t + T_{\text{mot}})$	Predicted accommodation at a time T_{mot} after the current time t . In this paper, generally assumed equal to $a(t+T_{\text{mot}})$, i.e. prediction is perfect.
$\hat{d}(t + T_{\text{mot}})$	Predicted demand at a time T_{mot} after the current time t . In the no-change prediction model, this is assumed to be the same as the last available demand, from time T_{sens} before the current time, i.e. $d(t - T_{\text{sens}})$
$A(s)$	Laplace transform of accommodation relative to rest focus
a_{RF}	Rest focus, i.e. accommodation adopted in the absence of any visual stimulus
ass	Steady-state accommodation in response to d_{ss} , see Equation 7
$C(s)$	Transfer function of controller
$D(s)$	Laplace transform of accommodative demand relative to rest focus
d_{ss}	Steady-state demand, see Equation 7
$E(s)$	Laplace transform of defocus error, $E(s)=D(s)-A(s)$
f	Temporal frequency
$g(f)$	gain of accommodation at frequency f
G_{fast}	Steady-state gain of the fast leaky-integrator controller, see Equation 10
G_{open}	steady-state open-loop gain of accommodation

G_{slow}	Steady-state gain of the slow leaky-integrator controller, see Equation 12
$H_{\text{closed}}(s)$	Closed-loop transfer function relating demand to accommodation, see Equation 4
$H_{\text{open}}(s)$	Open-loop transfer function relating demand to accommodation, see Equation 3
j	Square root of -1.
$P(s)$	Transfer function of ocular plant
s	Complex temporal frequency in Laplace domain, $s = j\omega$, see Equation 1
t	Time
T_{lat}	Total sensorimotor latency, $T_{\text{lat}} = T_{\text{sens}} + T_{\text{mot}}$
T_{mot}	Motor latency, i.e. time taken for the neural signal controlling accommodation to travel from the brain to the ocular plant
T_{sens}	Sensory latency, i.e. time taken for defocus at the retina to reach the accommodative control system in the brain

1465

Table 1. Symbols used in this paper.

1466

1467

1468

Parameter	Symbol used in the paper	Name in Simulink workspace	Value
Rest focus	a_{RF}	RestFocus	1.4D
Sensory latency	T_{sens}	SensoryLatency	0.20s
Motor latency	T_{mot}	MotorLatency	0.10s
Time constant of plant	τ_{plant}	PlantTimeConstant	0.156s
Gain of fast integrator	G_{fast}	FastGain	8.0
Time constant of fast integrator	τ_{fast}	FastTimeConstant	2.5s
Gain of slow integrator	G_{slow}	SlowGain	5.0
Time constant of slow integrator	τ_{slow}	SlowTimeConstant	100s
Noise power		NoisePower	0.001 with sample time 0.01s
Where to clip the proportional signal		ProportionalClipping	0.15D

1469

Table 2. Parameter values for the Simulink model supplied with the paper and used to obtain the results (except where noted

1470

otherwise in figure legends). These values are visible in the Simulink Model Workspace, and can be altered there if desired.

1471

1472

1473

1474

1475

1476 [Appendix](#)

1477 Here, we derive the total transfer function corresponding to the three types of linear models
 1478 discussed in the text: (i) the non-predictive model and the predictive models with (ii) perfect
 1479 and (iii) no-change prediction of demand. The bias signal due to the rest focus a_{RF} is included
 1480 as an inhomogeneous “forcing” term. We handle this by defining $A(s)$ and $D(s)$ to be the
 1481 Laplace transforms of $a(t)-a_{RF}$ and $d(t)-a_{RF}$, respectively, where $a(t)$ and $d(t)$ are
 1482 accommodation and demand as functions of time. In this way, we can effectively ignore a_{RF}
 1483 when obtaining the transfer functions.

1484

1485 [\(i\) Non-predictive model](#)

1486 The system diagram for this model is given in Figure 3. Reading around this circuit diagram,
 1487 we see immediately that

1488
$$E(s) = D(s) - A(s),$$

1489 where $E(s)$ is the Laplace transform of the defocus error signal, $d(t)-a(t)$. The input to the
 1490 Controller block is $E(s) \exp(-sT_{sens})$, i.e. the defocus error signal after the sensory latency.
 1491 The output from the Controller block is $C(s)E(s) \exp(-sT_{sens})$, where $C(s)$ is the transfer
 1492 function of the Controller. After accounting for the motor latency, the input to the ocular plant
 1493 is $C(s)E(s) \exp(-sT_{lat})$. So, the output of the ocular plant, i.e. accommodation, is

1494
$$A(s) = H_{plant}(s)C(s)E(s) \exp(-sT_{lat})$$

1495 Substituting in for $E(s)$, we obtain the closed-loop transfer function

1496
$$H_{closed}^{nonpred}(s) = \frac{A(s)}{D(s)} = \frac{P(s)C(s) \exp(-sT_{lat})}{1 + P(s)C(s) \exp(-sT_{lat})}$$

1497 The gain and phase of the accommodative response to sinusoidal stimuli are the amplitude and
 1498 phase of the complex number given by this closed-loop transfer function evaluated at
 1499 $s=j\omega=2\pi jf$, $H_{closeda}(2\pi jf)$. The closed-loop gain as a function of demand frequency is
 1500 therefore

1501
$$G_{closed}^{nonpred}(f) = \frac{|PC|}{\sqrt{1 + 2Re(PCe^{-2\pi jfT_{lat}}) + |PC|^2}}$$

1502

Equation 15

1503 where the plant and controller transfer functions are similarly complex functions of frequency:
 1504 $P=P(2\pi jf)$, $C=C(2\pi jf)$. The denominator contains oscillatory terms which mean that, even if
 1505 PC is lowpass (i.e. a monotonically decreasing function of frequency), the denominator can be
 1506 close to zero at particular frequencies and thus produce large resonances, for which the closed-

1507 loop gain exceeds 1. These manifest themselves as ringing or instability in the response to step
1508 changes in demand, and as gains>1 for sinusoidal oscillations in demand, which are not
1509 observed for large amplitudes.

1510

1511 With proportional control with unit gain ($C=1$), a sensorimotor latency of $T_{lat}=0.3s$ and the
1512 plant being a leaky integrator with $\tau_{plant}=0.156s$, Equation 15 has its first resonance at 1.2Hz
1513 where the closed-loop gain goes well above 1. This is ultimately responsible for the model's
1514 high-frequency peak in microfluctuations (Figure 15) and the low-amplitude resonance in the
1515 response to sine-waves (Figure 12), although the precise behaviour also depends on the
1516 nonlinear clipping. The precise position of the first resonance depends on the gain of the
1517 proportional control, but only rather subtly. We therefore kept unit gain for simplicity.

1518 We obtain the open-loop transfer function in the same way, but with the input to the Controller
1519 being $D(s)$ instead of $D(s)-A(s)$. This yields

1520
$$H_{open}^{nonpred}(s) = P(s)C(s) \exp(-sT_{lat})$$

1521
$$G_{open}^{nonpred}(\omega) = |PC|$$

1522

Equation 16

1523 Thus, whether we use an integral or proportional controller in this non-predictive control
1524 system, the open-loop gain is purely low-pass, with no resonances. This means that adding our
1525 non-predictive proportional signal does not introduce any peaks to the power spectrum of open-
1526 loop microfluctuations.

1527

1528 Predictive models

1529 The simplified system diagram for this model is given in Figure 5. As usual, we can ignore the
1530 bias signal if we express accommodation and demand relative to the rest focus. Reading around
1531 the circuit diagram, the demand signal is the input on the left; we represent this as usual in the
1532 Laplace domain by $D(s)$. After passing through the sensory latency, it becomes
1533 $D(s) \exp(-sT_{sens})$, with the exponential being the Laplacian representation of a time delay
1534 (cf discussion of Equation 2). It then passes through the demand predictor, which attempts to
1535 predict the signal $T_{lat} = T_{sens} + T_{mot}$ into the future. If it did this perfectly, the output of the demand
1536 predictor would be $D(s) \exp(-sT_{sens}) \exp(-sT_{lat}) = D(s) \exp(+sT_{mot})$. To allow for the
1537 fact that demand is unlikely to be predicted perfectly, we will write the output as
1538 $\hat{D}(s) \exp(+sT_{mot})$. $\hat{D}(s)$ is the Laplace transform of the estimated future demand, again

1539 relative to the rest focus. That is, whereas $d(t)$ is the actual demand at time t , $\hat{d}(t)$ is the
1540 estimated demand at time t , as estimated at time $(t-T_{\text{lat}})$.

1541 Looking at the bottom of Figure 5, the output is accommodation, or $A(s)$ in the Laplace domain.
1542 This is output after a motor latency T_{mot} ; thus the output of the “Plant” block in Figure 5 is
1543 $A(s) \exp(+sT_{\text{mot}})$.

1544 Putting both these together, we see that the input to the Controller in Figure 5 is
1545 $[\hat{D}(s) - A(s)] \exp(+sT_{\text{mot}})$. After multiplying this by the Controller and Plant transfer
1546 functions, we find that the output of the plant is $P(s)C(s)[\hat{D}(s) - A(s)] \exp(+sT_{\text{mot}})$. But we
1547 previously saw that the output of the plant is $A(s) \exp(+sT_{\text{mot}})$. Equating these, we see that

$$1548 \quad A(s) = P(s)C(s)[\hat{D}(s) - A(s)]$$

1549 and thus that

$$1550 \quad A(s) = \frac{P(s)C(s)\hat{D}(s)}{1 + P(s)C(s)}$$

1551 Equation 17

1552

1553 (ii) Perfect demand predictor

1554 In this idealized case, the demand predictor successfully outputs the future accommodative
1555 demand, so that $\hat{D}(s) = D(s)$ and the transfer function is

$$1556 \quad H_{\text{closed}}^{\text{perfect}}(s) = \frac{P(s)C(s)}{1 + P(s)C(s)}$$

1557 The closed-loop gain is therefore

$$1558 \quad g_{\text{closed}}^{\text{perfect}}(f) = \frac{|PC|}{\sqrt{1 + 2\text{Re}(PC) + |PC|^2}}$$

1559 To obtain the open-loop transfer function, we replace $D(s)$ with $D(s)+A(s)$ in Equation 17,
1560 obtaining

$$1561 \quad A(s) = \frac{P(s)C(s)[A(s) + D(s)]}{1 + P(s)C(s)}$$

1562 and thus

$$1563 \quad H_{\text{open}}^{\text{perfect}}(s) = P(s)C(s)$$

1564 If demand prediction is perfect, the open-loop gain of the controller is independent of latency.

1565 For our situation where both the plant and controller are leaky integrators, the open-loop gain
1566 is lowpass, with no resonances.

1567

1568 (iii) "No-change" demand predictor
1569 In this opposite extreme, the demand predictor simply assumes that the future defocus after
1570 time T_{lat} will still be the same as the defocus it is receiving now:
1571
$$\hat{d}(t + T_{lat}) = d(t)$$

1572 and thus

1573
$$\hat{D}(s) = D(s)\exp(-sT_{lat})$$

1574 Hence

1575
$$H_{closed}^{nochange}(s) = \frac{P(s)C(s)\exp(-sT_{lat})}{1 + P(s)C(s)}$$

1576 The closed-loop gain at any frequency f is therefore the same as for the perfect predictor, while
1577 the phase is reduced by $2\pi f T_{lat}$. In fact, the closed-loop gain would be the same for any demand
1578 predictor which accurately predicts demand any time at all into the future, even if, as here, that
1579 time is zero. Inaccurate predictions would of course change the closed-loop gain.

1580

1581 The open-loop gain does depend critically on demand prediction. With no-change prediction,
1582 replacing $D(s)$ with $D(s) + A(s)$ in Equation 17, yields

1583
$$A(s) = \frac{P(s)C(s)[A(s) + D(s)]\exp(-sT_{lat})}{1 + P(s)C(s)}$$

1584 and thus

1585
$$H_{open}^{nochange}(s) = \frac{P(s)C(s)\exp(-sT_{lat})}{1 + P(s)C(s)(1 - \exp(-sT_{lat}))}$$

1586

Equation 18

1587 The presence of the oscillatory $\exp(-sT_{lat})$ term in the denominator can lead to local peaks in
1588 the gain at some frequencies. Thus with inaccurate no-change prediction, the system is prone
1589 to open-loop resonances due to the inner feedback loop via the efference copy. However, with
1590 our parameter values (Table 2), Equation 18 is a monotonically decreasing function of
1591 frequency. This ensures that we do not see local peaks in the power spectrum of open-loop
1592 microfluctuations (Figure 15).

1593

1594

1595 [The predictive model with leaky-integral control: a damped harmonic oscillator](#)
1596 For the case where the plant and the controller are both leaky integrators (Equation 9, Equation
1597 10), and we neglect the other signals, the transfer function of the perfect-prediction model is

1598
$$H_{closed}^{perfect}(s) = \frac{G_{fast}}{(1 + s\tau_{plant})(1 + s\tau_{fast}) + G_{fast}}$$

1599 Equation 19

1600 with $s = 2\pi jf$. This is the transfer function of a second-order damped oscillator. We can rewrite
1601 it in the standard form

1602
$$H_{closed}^{perfect}(s) \approx \frac{K\omega_0^2}{s^2 + 2\zeta\omega_0s + \omega_0^2}$$

1603 where K is the closed-loop gain:

1604
$$K = \frac{G_{fast}}{(1 + G_{fast})}$$

1605 ω_0 the natural angular frequency:

1606
$$\omega_0^2 = \frac{(1 + G_{fast})}{\tau_{plant}\tau_{fast}}$$

1607 and ζ the damping coefficient:

1608
$$\zeta = \frac{1}{2\sqrt{1 + G_{fast}}} \frac{(\tau_{plant} + \tau_{fast})}{\sqrt{\tau_{plant}\tau_{fast}}}$$

1609 Equation 20

1610 For perfect demand prediction, the phase at angular frequency ω is:

1611
$$\phi^{perfect}(\omega) = -\arctan\left(\frac{2\zeta\omega\omega_0}{\omega_0^2 - \omega^2}\right)$$

1612 while for no-change prediction,

1613
$$\phi^{nochange}(\omega) = -\arctan\left(\frac{2\zeta\omega\omega_0}{\omega_0^2 - \omega^2}\right) - \omega T_{lat}$$

1614

1615 If $\zeta < 1/\sqrt{2}$, then the maximum gain occurs at the resonant angular frequency:

1616
$$\omega_{res} = \omega_0\sqrt{1 - 2\zeta^2} = \sqrt{\frac{G_{fast}}{\tau_{plant}\tau_{fast}} - \frac{1}{2\tau_{fast}^2} - \frac{1}{2\tau_{plant}^2}}$$

1617 If $\zeta > 1/\sqrt{2}$, then the gain is maximum for $f=0$ and decreases monotonically with frequency. If
1618 $\zeta=1$, the system is said to be critically damped.

1619 As discussed in the text, to match the empirical gain of accommodation, ζ must exceed $1/\sqrt{2}$,
1620 the minimum value for which gain decreases monotonically with frequency. Solving Equation
1621 20, we find that

1622 $\tau_{fast} = \tau_{plant} \left(G_{fast} + \sqrt{G_{fast}^2 - 1} \right) \approx 2G_{fast}\tau_{plant}$ yields $\zeta = 1/\sqrt{2}$, while

1623 $\tau_{fast} = \tau_{plant} \left(2G_{fast} + 1 + \sqrt{[2G_{fast} + 1]^2 - 1} \right) \approx 4G_{fast}\tau_{plant}$ yields $\zeta = 1$, i.e. critical

1624 damping

1625

1626 where the approximations hold since the gain G_{fast} has to be $>>1$, say at least 5, to avoid
1627 excessive lag. (Mathematically, there are two solutions, but the other one gives a very short
1628 time-constant for the controller, which in turn causes other problems such as open-loop
1629 resonances in the noise.)

1630

1631 The minimal-settling time solution

1632 In the model presented here, we chose the “minimum settling time” solution which yields $\zeta =$
1633 $1/\sqrt{2}$:

1634
$$\tau_{fast} = 2G_{fast}\tau_{plant}$$

1635 since this gave the best match to both gain and phase data. With this choice, since $G_{fast}>>1$, the
1636 natural frequency is approximately

1637
$$\omega_0 = \frac{1}{\tau_{plant}\sqrt{2}}$$

1638 which with our value $\tau_{plant}=0.156s$ corresponds to 0.72Hz.

1639 For $\zeta=1/\sqrt{2}$, the phase function is very close to linear out to $\omega=\omega_0$. In this region, for perfect
1640 demand prediction

1641
$$\phi^{perfect} \approx -2\tau_{plant}\omega$$

1642 corresponding to an effective delay of $T_{delay} = 2\tau_{plant}$. Presumably coincidentally, this delay is
1643 very similar to the sensorimotor latency, although as we can see it arises from a completely
1644 different source. However, for frequencies beyond $\sim 1Hz$, the phase asymptotes to 180° (Figure
1645 7).

1646 For no-change prediction, the phase is approximately

1647
$$\phi(\omega) \approx -\omega(2\tau_{plant} + T_{lat})$$

1648 at low frequencies, corresponding to an effective delay of $2\tau_{plant} + T_{lat}$.

1649

1650

1651

1652

Transfer function $A(s) = H(s)D(s)$	Non-predictive model – no prediction	Predictive model – perfect prediction of future demand	Predictive model – “no change” prediction of future demand
Open-loop transfer function	$PCe^{-sT_{lat}}$	PC	$\frac{PCe^{-sT_{lat}}}{1 + PC(1 - e^{-sT_{lat}})}$
Closed-loop transfer function	$\frac{PCe^{-sT_{lat}}}{1 + PCe^{-sT_{lat}}}$	$\frac{PC}{1 + PC}$	$\frac{PCe^{-sT_{lat}}}{1 + PC}$
Closed-loop gain	$\frac{ PC }{\sqrt{1 + 2Re(PCe^{-i\omega T_{lat}}) + PC ^2}}$	$\frac{ PC }{\sqrt{1 + 2Re(PC) + PC ^2}}$	$\frac{ PC }{\sqrt{1 + 2Re(PC) + PC ^2}}$

1653 *Table 3. Open- and closed-loop transfer functions $H(s)$ for different control systems; see Appendix for derivation. The transfer*
 1654 *function relates accommodation to the demand via $A(s) = H(s) D(s)$, where $A(s)$ is the Laplace transform of accommodation*
 1655 *relative to rest focus, $a(t)-a_{RF}$, and $D(s)$ is the Laplace transform of demand relative to rest focus, $d(t)-a_{RF}$. $P(s)$ the transfer*
 1656 *function of the ocular plant, and $C(s)$ is the transfer function of the neural control (block marked Controller in Figure 3, Figure*
 1657 *4, Figure 5). T_{lat} is the total sensorimotor latency from a change in demand to the accommodative response.*

1658

1659 References

1660 Abe, N., & Yamanaka, K. (2003). Smith predictor control and internal model control—A tutorial. *SICE*
 1661 *2003 Annual Conference (IEEE Cat. No.03TH8734)*, 2, 1383-1387 Vol.2.

1662 Águila-Carrasco, A. J. D., & Marín-Franch, I. (2021). Predictability of sinusoidally moving stimuli does
 1663 not improve the accuracy of the accommodative response. *Scientific Reports*, 11(1), 15195.

1664 <https://doi.org/10.1038/s41598-021-94642-2>

1665 Bahill, A. T., Clark, M. R., & Stark, L. (1975). Computer simulation of overshoot in saccadic eye
1666 movements. *Computer Programs in Biomedicine*, 4(4), 230–236.
1667 [https://doi.org/10.1016/0010-468X\(75\)90036-7](https://doi.org/10.1016/0010-468X(75)90036-7)

1668 Beers, A. P., & van der Heijde, G. L. (1994). In vivo determination of the biomechanical properties of
1669 the component elements of the accommodation mechanism. *Vision Research*, 34(21), 2897–
1670 2905. [https://doi.org/10.1016/0042-6989\(94\)90058-2](https://doi.org/10.1016/0042-6989(94)90058-2)

1671 Beers, A. P., & van der Heijde, G. L. (1996). Age-Related Changes in the Accommodation Mechanism.
1672 *Optometry and Vision Science*, 73(4), 235–242. <https://doi.org/10.1097/00006324-199604000-00004>

1673 Bharadwaj, S. R. (2005). *Neural Control Strategies of the Human Focusing Mechanism*.

1674 Bharadwaj, S. R., & Schor, C. M. (2005). Acceleration characteristics of human ocular accommodation.
1675 *Vision Research*, 45(1), 17–28. <https://doi.org/10.1016/j.visres.2004.07.040>

1676 Bharadwaj, S. R., & Schor, C. M. (2006). Dynamic control of ocular disaccommodation: First and
1677 second-order dynamics. *Vision Res*, 46(6–7). <https://doi.org/10.1016/j.visres.2005.06.005>

1678 Burge, J., & Geisler, W. S. (2011). Optimal defocus estimation in individual natural images. *Proc Natl
1679 Acad Sci U S A*, 108(40), 16849–16854. <https://doi.org/10.1073/pnas.1108491108> [pii]
1680 [10.1073/pnas.1108491108](https://doi.org/10.1073/pnas.1108491108)

1681 Campbell, F. W., Robson, J. G., & Westheimer, G. (1959a). Fluctuations of accommodation under
1682 steady viewing conditions. *The Journal of Physiology*, 145(3), 579–594.
1683 <https://doi.org/10.1113/jphysiol.1959.sp006164>

1684 Campbell, F. W., Robson, J. G., & Westheimer, G. (1959b). Fluctuations of accommodation under
1685 steady viewing conditions. *The Journal of Physiology*, 145(3), 579–594.
1686 <https://doi.org/10.1113/jphysiol.1959.sp006164>

1687 Campbell, F. W., & Westheimer, G. (1958). Sensitivity of the eye to differences in focus. *J Physiol
1688 (Lond)*, 143, 18.

1690 Campbell, F. W., & Westheimer, G. (1960). Dynamics of accommodation responses of the human eye.

1691 *The Journal of Physiology*, 151(2), 285–295. <https://doi.org/10.1113/jphysiol.1960.sp006438>

1692 Charman, W. N., & Heron, G. (1988). Fluctuations in accommodation: A review. *Ophthalmic &*

1693 *Physiological Optics: The Journal of the British College of Ophthalmic Opticians (Optometrists)*,

1694 8(2), 153–164. <https://doi.org/10.1111/j.1475-1313.1988.tb01031.x>

1695 Charman, W. N., & Heron, G. (2000). On the linearity of accommodation dynamics. *Vision Research*,

1696 40(15), 2057–2066. [https://doi.org/10.1016/S0042-6989\(00\)00066-3](https://doi.org/10.1016/S0042-6989(00)00066-3)

1697 Charman, W. N., & Heron, G. (2015). Microfluctuations in accommodation: An update on their

1698 characteristics and possible role. *Ophthalmic and Physiological Optics*, 35(5), 476–499.

1699 <https://doi.org/10.1111/opo.12234>

1700 Chen-Harris, H., Joiner, W. M., Ethier, V., Zee, D. S., & Shadmehr, R. (2008). Adaptive Control of

1701 Saccades via Internal Feedback. *Journal of Neuroscience*, 28(11), 2804–2813.

1702 <https://doi.org/10.1523/JNEUROSCI.5300-07.2008>

1703 Cholewiak, S. A., Love, G. D., & Banks, M. S. (2018). Creating correct blur and its effect on

1704 accommodation. *Journal of Vision*, 18(9). <https://doi.org/10.1167/18.9.1>

1705 Collins, M., Davis, B., & Wood, J. (1995). Microfluctuations of steady-state accommodation and the

1706 cardiopulmonary system. *Vision Research*, 35(17), 2491–2502.

1707 Denieul, P. (1982). Effects of stimulus vergence on mean accommodation response, microfluctuations

1708 of accommodation and optical quality of the human eye. *Vision Research*, 22(5), 561–569.

1709 [https://doi.org/10.1016/0042-6989\(82\)90114-6](https://doi.org/10.1016/0042-6989(82)90114-6)

1710 Ejiri, M., Thompson, H. E., & O'Neill, W. D. (1969). Dynamic visco-elastic properties of the lens. *Vision*

1711 *Research*, 9(2), 233–244. [https://doi.org/10.1016/0042-6989\(69\)90003-0](https://doi.org/10.1016/0042-6989(69)90003-0)

1712 Erkelens, C. J. (2011). A dual visual-local feedback model of the vergence eye movement system.

1713 *Journal of Vision*, 11(10), 21. <https://doi.org/10.1167/11.10.21>

1714 Fincham, E. F. (1951). The Accommodation Reflex and its Stimulus. *The British Journal of*

1715 *Ophthalmology*, 35(7), 381–393.

1716 Gall, J. (1977). *Systemantics: How Systems Work & Especially How They Fail*. Times Books.

1717 <https://www.amazon.co.uk/Systemantics-Systems-Work-Especially-They/dp/0812906748>

1718 Gambra, E., Sawides, L., Dorronsoro, C., & Marcos, S. (2009). Accommodative lag and fluctuations

1719 when optical aberrations are manipulated. *Journal of Vision*, 9(6), 4.1-15.

1720 <https://doi.org/10.1167/9.6.4>

1721 Gamlin, P. D., Zhang, Y., Clendaniel, R. A., & Mays, L. E. (1994). Behavior of identified Edinger-Westphal

1722 neurons during ocular accommodation. *Journal of Neurophysiology*, 72(5), 2368–2382.

1723 <https://doi.org/10.1152/jn.1994.72.5.2368>

1724 Gray, L. S., Winn, B., & Gilmartin, B. (1993a). Effect of target luminance on microfluctuations of

1725 accommodation. *Ophthalmic & Physiological Optics: The Journal of the British College of*

1726 *Ophthalmic Opticians (Optometrists)*, 13(3), 258–265. <https://doi.org/10.1111/j.1475-1313.1993.tb00468.x>

1728 Gray, L. S., Winn, B., & Gilmartin, B. (1993b). Accommodative microfluctuations and pupil diameter.

1729 *Vision Research*, 33(15), 2083–2090. [https://doi.org/10.1016/0042-6989\(93\)90007-j](https://doi.org/10.1016/0042-6989(93)90007-j)

1730 Heath, G. G. (1956a). The influence of visual acuity on accommodative responses of the eye. *American*

1731 *Journal of Optometry and Archives of American Academy of Optometry*, 33(10), 513–524.

1732 <https://doi.org/10.1097/00006324-195610000-00001>

1733 Heath, G. G. (1956b). Components of accommodation. *American Journal of Optometry and Archives*

1734 *of American Academy of Optometry*, 33(11), 569–579. <https://doi.org/10.1097/00006324-195611000-00001>

1736 Heron, G., Charman, W. N., & Gray, L. S. (1999). Accommodation Responses and Ageing. *Investigative*

1737 *Ophthalmology & Visual Science*, 40(12), 2872–2883.

1738 Hung, G. K., Ciuffreda, K. J., Khosroyani, M., & Jiang, B.-C. (2002). *Models of Accommodation* (pp. 287–

1739 339). https://doi.org/10.1007/978-1-4757-5865-8_8

1740 Hung, G. K., Semmlow, J. L., & Ciufferda, K. J. (1986). A Dual-Mode Dynamic Model of the Vergence
1741 Eye Movement System. *IEEE Transactions on Biomedical Engineering, BME-33*(11), 1021–
1742 1028. <https://doi.org/10.1109/TBME.1986.325868>

1743 Khosroyani, M., & Hung, G. K. (2002). A Dual-Mode Dynamic Model of the Human Accommodation
1744 System. *Bulletin of Mathematical Biology*, 64(2), 285–299.
1745 <https://doi.org/10.1006/bulm.2001.0274>

1746 Kotulak, J. C., & Schor, C. M. (1986a). The accommodative response to subthreshold blur and to
1747 perceptual fading during the Troxler phenomenon. *Perception*, 15(1), 7–15.
1748 <https://doi.org/10.1068/p150007>

1749 Kotulak, J. C., & Schor, C. M. (1986b). Temporal variations in accommodation during steady-state
1750 conditions. *Journal of the Optical Society of America. A, Optics and Image Science*, 3(2), 223–
1751 227. <https://doi.org/10.1364/josaa.3.000223>

1752 Kotulak, J. C., & Schor, C. M. (1986c). A computational model of the error detector of human visual
1753 accommodation. *Biological Cybernetics*, 54(3), 189–194.
1754 <https://doi.org/10.1007/BF00356857>

1755 Krishnan, V. V., Phillips, S., & Stark, L. (1973). Frequency analysis of accommodation, accommodative
1756 vergence and disparity vergence. *Vision Research*, 13(8), 1545–1554.

1757 Krishnan, V. V., & Stark, L. (1975). Integral control in accommodation. *Computer Programs in
1758 Biomedicine*, 4(4), 237–245. [https://doi.org/10.1016/0010-468X\(75\)90037-9](https://doi.org/10.1016/0010-468X(75)90037-9)

1759 Kruger, P. B., Mathews, S., Aggarwala, K. R., & Sanchez, N. (1993). Chromatic aberration and ocular
1760 focus: Fincham revisited. *Vision Research*, 33(10), 1397–1411. [https://doi.org/10.1016/0042-6989\(93\)90046-y](https://doi.org/10.1016/0042-
1761 6989(93)90046-y)

1762 Kruger, P. B., & Pola, J. (1986). Stimuli for accommodation: Blur, chromatic aberration and size. *Vision
1763 Research*, 26(6), 957–971. [https://doi.org/10.1016/0042-6989\(86\)90153-7](https://doi.org/10.1016/0042-6989(86)90153-7)

1764 Labhishetty, V., & Bobier, W. R. (2017). Are high lags of accommodation in myopic children due to
1765 motor deficits? *Vision Research*, 130, 9–21. <https://doi.org/10.1016/j.visres.2016.11.001>

1766 Labhishetty, V., Cholewiak, S. A., Roorda, A., & Banks, M. S. (2021). Lags and leads of accommodation
1767 in humans: Fact or fiction? *Journal of Vision*, 21(3), 21–21.
1768 <https://doi.org/10.1167/jov.21.3.21>

1769 Leibowitz, H. W., & Owens, D. A. (1978). New evidence for the intermediate position of relaxed
1770 accommodation. *Documenta Ophthalmologica. Advances in Ophthalmology*, 46(1), 133–147.
1771 <https://doi.org/10.1007/BF00174103>

1772 Maddox, E. E. (1893). *The Clinical Use of Prisms; and the Decentering of Lenses*, 2nd edition. John
1773 Wright & Sons, Bristol, England. (2nd ed.). John Wright & Sons.

1774 Miall, R. C., Weir, D. J., Wolpert, D. M., & Stein, J. (1993). Is the cerebellum a Smith predictor? *Journal*
1775 *of Motor Behaviour*, 25(3), 203–216.

1776 Ohtsuka, K., & Sawa, M. (1997). Frequency characteristics of accommodation in a patient with
1777 agenesis of the posterior vermis and normal subjects. *British Journal of Ophthalmology*, 81(6),
1778 476–480. <https://doi.org/10.1136/bjo.81.6.476>

1779 Otero, C., Aldaba, M., Díaz-Doutón, F., Vera-Díaz, F. A., & Pujol, J. (2019). Stimulus Unpredictability in
1780 Time, Magnitude, and Direction on Accommodation. *Optometry and Vision Science: Official*
1781 *Publication of the American Academy of Optometry*, 96(6), 424–433.
1782 <https://doi.org/10.1097/OPX.0000000000001384>

1783 Phillips, S., Shirachi, D., & Stark, L. (1972). ANALYSIS OF ACCOMMODATIVE RESPONSE TIMES USING
1784 HISTOGRAM INFORMATION. *American Journal of Optometry and Archives of American*
1785 *Academy of Optometry*, 49(5), 389–400.

1786 Popa, L. S., & Ebner, T. J. (2019). Cerebellum, Predictions and Errors. *Frontiers in Cellular Neuroscience*,
1787 12. <https://doi.org/10.3389/fncel.2018.00524>

1788 Rashbass, C., & Westheimer, G. (1961). Disjunctive eye movements. *J Physiol*, 159, 339–360.

1789 Rosenfield, M., Ciuffreda, K. J., Hung, G. K., & Gilmartin, B. (1993a). Tonic accommodation: A review.
1790 I. Basic aspects. *Ophthalmic & Physiological Optics : The Journal of the British College of*
1791 *Ophthalmic Opticians (Optometrists)*, 13(3), 266–284.

1792 Rosenfield, M., Ciuffreda, K. J., Hung, G. K., & Gilmartin, B. (1993b). Tonic accommodation: A review.

1793 I. Basic aspects. *Ophthalmic & Physiological Optics : The Journal of the British College of*
1794 *Ophthalmic Opticians (Optometrists)*, 13(3), 266–284. <https://doi.org/10.1111/j.1475-1313.1993.tb00469.x>

1795

1796 Schor, C. M. (1979a). The influence of rapid prism adaptation upon fixation disparity. *Vision Research*,
1797 19(7), 757–765. [https://doi.org/10.1016/0042-6989\(79\)90151-2](https://doi.org/10.1016/0042-6989(79)90151-2)

1798 Schor, C. M. (1979b). The relationship between fusional vergence eye movements and fixation
1799 disparity. *Vision Research*, 19(12), 1359–1367. [https://doi.org/10.1016/0042-6989\(79\)90208-6](https://doi.org/10.1016/0042-6989(79)90208-6)

1800

1801 Schor, C. M., & Bharadwaj, S. R. (2004). A pulse-step model of accommodation dynamics. *The 26th*
1802 *Annual International Conference of the IEEE Engineering in Medicine and Biology Society*, 3,
1803 766–769. <https://doi.org/10.1109/IEMBS.2004.1403271>

1804 Schor, C. M., & Bharadwaj, S. R. (2005). A pulse-step model of accommodation dynamics in the aging
1805 eye. *Vision Research*, 45(10), 1237–1254. <https://doi.org/10.1016/j.visres.2004.11.011>

1806 Schor, C. M., & Bharadwaj, S. R. (2006). Pulse-step models of control strategies for dynamic ocular
1807 accommodation and disaccommodation. *Vision Research*, 46(1), 242–258.
1808 <https://doi.org/10.1016/j.visres.2005.09.030>

1809 Schor, C. M., & Kotulak, J. C. (1986). Dynamic interactions between accommodation and convergence
1810 are velocity sensitive. *Vision Research*, 26(6), 927–942. [https://doi.org/10.1016/0042-6989\(86\)90151-3](https://doi.org/10.1016/0042-6989(86)90151-3)

1811

1812 Schor, C. M., Kotulak, J. C., & Tsuetaki, T. (1986). Adaptation of tonic accommodation reduces
1813 accommodative lag and is masked in darkness. *Investigative Ophthalmology & Visual Science*,
1814 27(5), 820–827.

1815 Schor, C. M., Lott, L. A., Pope, D., & Graham, A. D. (1999). Saccades reduce latency and increase
1816 velocity of ocular accommodation. *Vision Research*, 39(22), 3769–3795.
1817 [https://doi.org/10.1016/s0042-6989\(99\)00094-2](https://doi.org/10.1016/s0042-6989(99)00094-2)

1818 Seidemann, A., & Schaeffel, F. (2002). Effects of longitudinal chromatic aberration on accommodation
1819 and emmetropization. *Vision Research*, 42(21), 2409–2417. [https://doi.org/10.1016/S0042-6989\(02\)00262-6](https://doi.org/10.1016/S0042-6989(02)00262-6)

1820
1821 Smith, O. (1957). Closer control of loops with dead time. *Chemical Engineering Progress*, 53(5), 217–
1822 219.

1823 Stark, L. (1968). Accommodative Tracking: A Trial-and-Error Function. In L. Stark (Ed.), *Neurological
1824 Control Systems: Studies in Bioengineering* (pp. 220–230). Springer US.
1825 https://doi.org/10.1007/978-1-4684-0706-8_10

1826 Stark, L., Takahashi, Y., & Zames, G. (1965). Nonlinear Servoanalysis of Human Lens Accommodation.
1827 *IEEE Transactions on Systems Science and Cybernetics*, 1(1), 75–83.
1828 <https://doi.org/10.1109/TSSC.1965.300064>

1829 Sun, F. C., Brandt, S., Nguyen, A., Wong, M., & Stark, L. (1989). Frequency analysis of accommodation:
1830 Single sinusoids. *Ophthalmic & Physiological Optics: The Journal of the British College of
1831 Ophthalmic Opticians (Optometrists)*, 9(4), 392–397.

1832 Sun, F. C., & Stark, L. (1990). Switching control of accommodation: Experimental and simulation
1833 responses to ramp inputs. *IEEE Transactions on Bio-Medical Engineering*, 37(1), 73–79.
1834 <https://doi.org/10.1109/10.43618>

1835 Tamm, E. R., Flügel, C., Stefani, F. H., & Lütjen-Drecoll, E. (1994). Nerve endings with structural
1836 characteristics of mechanoreceptors in the human scleral spur. *Investigative Ophthalmology
1837 & Visual Science*, 35(3), 1157–1166.

1838 Tamm, E. R., & Lütjen-Drecoll, E. (1996). Ciliary body. *Microscopy Research and Technique*, 33(5), 390–
1839 439. [https://doi.org/10.1002/\(SICI\)1097-0029\(19960401\)33:5<390::AID-JEMT2>3.0.CO;2-S](https://doi.org/10.1002/(SICI)1097-0029(19960401)33:5<390::AID-JEMT2>3.0.CO;2-S)

1840 Toates, F. M. (1972). Accommodation function of the human eye. *Physiological Reviews*, 52(4).

1841 Udlam, W. M., Wittenberg, S., Giglio, E. J., & Rosenberg, R. (1968). Accommodative responses to small
1842 changes in dioptric stimulus. *American Journal of Optometry and Archives of American*

1843 *Academy of Optometry*, 45(8), 483–506. <https://doi.org/10.1097/00006324-196808000-00001>

1844 Wang, K., & Pierscionek, B. K. (2019). Biomechanics of the human lens and accommodative system: 1845 Functional relevance to physiological states. *Progress in Retinal and Eye Research*, 71, 114–1846 131. <https://doi.org/10.1016/j.preteyeres.2018.11.004>

1847 Wang, K., Venetsanos, D. T., Wang, J., Augousti, A. T., & Pierscionek, B. K. (2017). The importance of 1848 parameter choice in modelling dynamics of the eye lens. *Scientific Reports*, 7(1), 16688. 1849 <https://doi.org/10.1038/s41598-017-16854-9>

1850 Warwick, R. (1954). The ocular parasympathetic nerve supply and its mesencephalic sources. *Journal 1851 of Anatomy*, 88(Pt 1), 71–93.

1852 Wildt, G. J. van der, Bouman, M. A., & Kraats, J. van de. (1974). The Effect of Anticipation on the 1853 Transfer Function of the Human Lens System. *Optica Acta: International Journal of Optics*, 1854 21(11), 843–860. <https://doi.org/10.1080/713818858>

1855 Wilson, B. J., Decker, K. E., & Roorda, A. (2002). Monochromatic aberrations provide an odd-error cue 1856 to focus direction. *Journal of the Optical Society of America A-Optics Image Science and Vision*, 1857 19(5), 833–839.

1858 Wilson, D. (1973). A centre for accommodative vergence motor control. *Vision Research*, 13(12), 1859 2491–2503. [https://doi.org/10.1016/0042-6989\(73\)90246-0](https://doi.org/10.1016/0042-6989(73)90246-0)

1860 Winn, B., Pugh, J. R., Gilmartin, B., & Owens, H. (1990). Arterial pulse modulates steady-state ocular 1861 accommodation. *Current Eye Research*, 9(10), 971–975.

1862 <https://doi.org/10.3109/02713689009069933>

1863 Yao, P., Lin, H., Huang, J., Chu, R., & Jiang, B. (2010). Objective depth-of-focus is different from 1864 subjective depth-of-focus and correlated with accommodative microfluctuations. *Vision 1865 Research*, 50(13), 1266–1273. <https://doi.org/10.1016/j.visres.2010.04.011>

1866 Zee, D. S., & Levi, L. (1989). Neurological aspects of vergence eye movements. *Revue Neurologique*, 1867 145(8–9), 613–620.

1868