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Abstract
Ocular accommodation is the process of adjusting the eye’s crystalline lens so as to bring the

retinal image into sharp focus. The major stimulus to accommodation is therefore retinal
defocus, and in essence, the job of accommodative control is to send a signal to the ciliary
muscle which will minimize the magnitude of defocus. In this paper, we first provide a tutorial
introduction to control theory to aid vision scientists without this background. We then present
a unified model of accommodative control that explains properties of the accommodative
response for a wide range of accommodative stimuli. Following previous work, we conclude
that most aspects of accommodation are well explained by dual integral control, with a “fast”
or “phasic” integrator enabling response to rapid changes in demand, which hands over control
to a “slow” or “tonic” integrator which maintains the response to steady demand. Control is
complicated by the sensorimotor latencies within the system, which delay both information
about defocus and the accommodation changes made in response, and by the sluggish response
of the motor plant. These can be overcome by incorporating a Smith predictor, whereby the
system predicts the delayed sensory consequences of its own motor actions. For the first time,
we show that critically-damped dual integral control with a Smith predictor accounts for
adaptation effects as well as for the gain and phase for sinusoidal oscillations in demand. In
addition, we propose a novel proportional-control signal to account for the power spectrum of
accommodative microfluctuations during steady fixation, which may be important in hunting
for optimal focus, and for the nonlinear resonance observed for low-amplitude, high-frequency
input. Complete Matlab/Simulink code implementing the model is provided at
https://doi.org/10.25405/data.ncl.14945550.
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Introduction
Accommodation refers to the ability of the eye to change its focus between near and far

distances, so as to ensure that images remain in sharp focus at the fovea across a wide range of
object distances. This is achieved by changes in the convexity of the intra-ocular lens, brought
about by contraction of the ciliary muscle (Figure 1). To focus on distant objects, the ciliary
muscle is relaxed, the lens curvature and thus its optical power is minimal; to focus on near
objects, the ciliary muscle contracts, the lens curvature increases and so does its optical power.

Accommodation is usually controlled by the brain as an unconscious reflexive process.

Figure 1. (A) Accommodating on a distant object. When the ciliary muscle is slack, tension in the suspensory zonules is released
and the intra-ocular crystalline lens flattens, enabling distant objects to appear in focus on the retina (for an emmetropic
eye). Light from a nearby object, such as shown, is therefore out of focus. (B) Accommodating on a nearby object. The ciliary
muscle has contracted, increasing the curvature of the lens (blue arrows) in order to bring nearby objects into focus. Not to

scale. Image: Pearson Scott Foresman, public domain.

A full understanding of this process requires a knowledge of (i) the optical and biomechanical
properties of the eye; (ii) how the required accommodative response is derived from retinal and
extra-retinal cues; and (iii) the neural signals controlling the ciliary muscle to bring about this
response. In this paper, we concentrate on the third of these.

We begin by discussing the basic structure of models of neural control of accommodation. A
key goal of this section is to provide a clear review of the subject, introducing concepts and

summarizing previous work in a way which is accessible to vision scientists without a
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background in classical control theory. Accordingly, this section incorporates a tutorial to bring

such readers up to speed.

The core of accommodative control is a negative feedback loop attempting to null the error
between accommodative demand, i.e. the accommodation at which the fixated object will be
in sharp focus, and response, i.e. the accommodation actually adopted. Such feedback loops
are vulnerable to instabilities caused by the finite latencies within the control system. A well-
established strategy for avoiding such instabilities is to predict the eye’s response to a motor
command. This requires an “efference copy” of the signal sent to the ocular plant, along with
an internal or “forward” model of the plant, enabling the system to predict the response to the
motor signal. Control can then be based on the predicted future input, rather than the currently
sensed input, effectively removing the effect of the latencies. We consider the particular form
known as a Smith predictor (Abe & Yamanaka, 2003; Miall et al., 1993; Smith, 1957), designed
for closed-loop control of systems with long delays in the feedback. Predictive models stand in
contrast to classical models which do not take account of the sensory consequences of the

body’s own motor actions.

Armed with this background, we next discuss the evidence that accommodation uses a Smith
predictor, and examine empirical constraints on the model parameters. We aim to produce a
model which can account for behavior in both steady-state and smooth tracking, including
accommodative lag/lead, adaptation, critical damping, and Bode plots of gain and phase.
(Extending the model to reproduce dynamics of the step response (Bharadwaj & Schor, 2005,
2006; Schor & Bharadwaj, 2004, 2006) will be covered in a subsequent paper.)

This analysis leads us to conclude that accommodative control most likely incorporates a
predictor, in order to avoid instabilities due to the sensorimotor latency. By “predictor”, we
mean a forward model to predict the effect of commanded accommodation changes on the
visual input. The evidence that the system predicts changes in stimulus demand is equivocal,

and our model simply assumes that demand does not change over the timescale of the latency.

We conclude that accommodation can be modelled successfully as a predictive system with
integral control, but that there are fairly tight constraints on the gain and time-constant of the

integral controller in order for the system to be consistent with empirical data for step and
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92  smooth tracking. Following previous work, we add a slow, second-order integral controller to
93  account for adaptation effects, and show that care is required when using this dual-control with
94  predictive models.
95
96  Most accommodation models omit noise, but noise provides important constraints on model
97  structure and parameters. Predictive models can end up amplifying internal noise when the
98  defocus signal is removed e.g. by viewing through pinholes, which is not observed empirically.
99  Avoiding these resonances places further constraints on model parameters. An important
100  contribution of this paper is that our model explicitly includes noise.
101
102  Noise also accounts naturally for the fluctuations seen in steady-state accommodation. These
103  are often called microfluctuations although they are actually quite substantial at around +0.5D,
104  exceeding the depth of field (Campbell et al., 1959a; Charman & Heron, 1988, 2015; Kotulak
105 & Schor, 1986b). The source and purpose of these is unclear: as well as noise, they may reflect
106  disturbances from the intraocular pulse, mechanical resonances within the ocular plant,
107  deliberate attempts at “hunting” in order to find the best point of focus, and/or fluctuating input
108  from other influences on accommodation (Charman & Heron, 1988, 2015; Collins et al., 1995;
109  Denieul, 1982; Gray et al., 1993b).
110
111 In normal viewing, the power spectrum of microfluctuations typically shows a pronounced
112 peak at around 2Hz. This peak is much weaker when viewing through pinhole pupils, where
113 link between accommodation and image quality is cut (“open-loop”). This may be because in
114 bright viewing conditions, where the pupil stops down and depth of focus is large,
115  microfluctuations are of no assistance in improving vision, and might even cause ocular fatigue.
116  In our model, we are able to reproduce this behavior by including an additional control signal
117  which is driven directly by sensed defocus and not by the output of the Smith predictor.
118
119  Putting these different components together results in a model where accommodation is
120  controlled by the sum of four separate neural signals. The model has a total of ten parameters
121  (Table 2), most of which are quite tightly constrained by the data. In the Results section, we
122 present simulations demonstrating that this model can account simultaneously for a wide range
123  of observations.
124
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125
126

127 Methods

128 Accommodation as a linear, time-invariant negative feedback control system
129

130  “A complex system that works is invariably found to have evolved from a simple system that
131  worked. A complex system designed from scratch never works and cannot be patched up to
132 make it work. You have to start over with a working simple system.” — Gall’s Law (Gall, 1977).
133
134 In the spirit of Gall’s Law, we begin with the simplest possible conceptual model of
135 accommodation (Figure 2). Viewed as a whole, the model has one input, accommodative
136  demand, corresponding to the vergence of light rays from the object we wish to look at. This
137  is measured in diopters; the demand in diopters corresponds to the reciprocal of the distance in
138  metres from the eye. For an infinitely far object, the demand is OD; for an object at 50cm, the
139  demand is 2D.
140
141  The model also has one output, ocular accommodation. When the eye is correctly
142  accommodated, the accommodation will be equal to the demand so that the image is in focus
143 on the posterior receptor layer of the retina. Defocus is the difference between the
144 accommodative demand and the ocular accommodation, all measured in diopters. It acts as an
145  error signal to the model. As discussed in the Introduction, we assume that defocus is a single,
146  signed value which is somehow computed by the visual system from the retinal image (e.g.
147  using blur, higher-order aberrations, longitudinal chromatic aberration (Burge & Geisler, 2011;
148  Cholewiak et al., 2018; Fincham, 1951; Kruger et al., 1993; Seidemann & Schaeffel, 2002;
149  Wilson et al., 2002)) and represented as a neural error signal; how this is achieved is beyond
150 the scope of this paper. In our sign convention, positive defocus error means that the eye is not
151  accommodating enough, i.e. the eye is focusing on a point more distant than the object of
152  interest, so the ocular image is focused behind the retina. Positive defocus error should
153 therefore stimulate an increase of accommodation. The accommodative control system takes
154  the defocus error as input and uses it to compute a neural control signal (blue block in Figure
155  2). This neural signal is then fed into the ocular plant block in Figure 2. This block,
156  corresponding physiologically to the ciliary muscle, lens and other components, converts the
157  neural signal into the optical power of the lens, i.e. the ocular accommodation. This in turn
5
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158  affects the defocus error, since defocus is demand minus accommodation. The accommodative
159  control system is designed to adjust accommodation so as to minimise the defocus error signal
160  (Toates, 1972). Thus, this is a negative feedback system.

161

162 Inany negative feedback system, one faces the question of how to choose the control signal so
163  as to minimize the error. One obvious form of error correction is to make the corrective signal
164  proportional to the error. For example, a very simple form of automotive cruise control might
165 make acceleration proportional to the difference between the current and the desired speed.
166  Other widely-used possibilities are to integrate the error over time, or to anticipate changes by
167 including a term scaling with the derivative. Together, control systems of this type are called
168  PID (proportional-integral-derivative) controllers.

169

170 In reality, of course, defocus is not the only visual cue to accommodation (Heath, 1956b;
171  Maddox, 1893). One additional component that we discuss below and include in our models is
172  the system’s bias towards a particular baseline or resting accommodation (see (Rosenfield et
173 al., 1993a) for a review). Factors which for simplicity we neglect in this paper include pictorial
174  cues to distance, sensed proximity and crosslinks from the vergence system. However, defocus
175 s the only visual cue which is itself altered by accommodation, and thus the cue intrinsic to

176  the negative feedback loop.

177
Accommodative
Dgwand d(e) lm e(t) =d(t) —a(t) i .
D(s) A\ optical defocus error . (s) neural signal
E(s) = D(s) — A(s
ocular ) Accommodative Control System B()E(s)
accommodation
to open
the loop
O« © P(s)
A(s) ocular accommodation
Ocular _
A(s) =P(s)B(s)E(s
Accommodation ) ()B()E(s) Ocular Plant
178
179

180 Figure 2. Conceptual model of accommodation. There is a feedback loop, whereby the output (accommodation) affects the
181 input to the control system. The blocks labelled Accommodative Control System and Ocular Plant are shown here as “black

182 boxes” which take inputs and yield outputs, without showing how the output is computed. Their transfer functions are B(S)

6
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183 and P(s) respectively. The input to the overall system is the accommodative demand, reflecting the distance of the fixated
184 object, and the output is the ocular accommodation, i.e. where the eye is focused. Defocus error is the difference between
185 these, demand minus accommodation. Signals are shown in the time-domain, e.g. d(t), and as Laplace transforms, e.g. D(s).
186 When the system is driven in “open-loop” mode, the connection shown in red is effectively severed at the scissors icon, so that

187 the input to the Accommodative Control system becomes independent of ocular accommodation.

188
189

190 Modelling neural signals as if they were in diopters
191 In this initial part of the paper we will keep the discussion as general as possible, without

192  committing to a particular model of the Ocular Plant or Accommodative Control System blocks
193  shown in Figure 2. However, one detail is worth noting. Without loss of generality we will set
194  the overall gain of the plant to 1, meaning that it passes a constant signal unchanged. In reality,
195 the neural signal is encoded in spikes per second, and the output of the ocular plant is
196  accommodation in diopters. There must therefore be a gain or conversion factor within the
197  neural signal which converts spikes per second into diopters, taking into account the
198  biomechanical gain of the plant (Gamlin et al., 1994) . Without loss of generality, we can fold
199 this conversion factor into our neural signals. Thus by setting the plant gain to 1, we represent
200  all the neural signals in the model as if they were diopters. This makes them particularly simple
201  tointerpret.

202

203  Closed-loop versus open-loop
204  The model shown in Figure 2 is “closed-loop”: that is, the input to the accommodative control

205 system (defocus error) is affected by its output (ocular accommodation). As discussed, this
206  forms a negative feedback loop, in which increases in defocus error stimulate changes in
207  accommodation that in turn reduce defocus error.

208

209  If we use the scissors shown in Figure 2 to cut the connection shown in red, we obtain the
210  equivalent open-loop system, in which the output of the system has no effect on its defocus
211  error. It might seem impossible to cut the connection in this way in the living eye, but in fact
212  all that is required to examine the open-loop mode is to make the optical error signal
213  independent of the accommodative response. There are two main ways in which this can be
214  done. First, by measuring accommodation and optically adding the current accommodation
215 state onto the current input demand. The eye’s own optics then effectively remove

216  accommodation, so that the error signal forming the input to the visual system is simply the
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217  demand applied by the experimenter, independent of the accommodative response. A positive
218 non-zero open-loop error signal continues to stimulate increases of the accommodation
219  response until it reaches saturation, reminiscent of a dog chasing its tail.

220

221  Alternatively, the optical error signal can be set to zero by using a pinhole pupil. Through small
222  pinholes, objects appear slightly blurred due to diffraction, but critically, this blur is virtually
223 independent of the stimulus accommodative demand or the ocular accommodation. Pinholes
224 do not cause a “dog chasing tail” accommodative response; rather accommodation tends to
225  assume its resting state. This suggests that the visual system experiences images seen through
226  pinholes as having zero defocus. Thus, viewing through pinholes is a special case of open-loop
227 in which the input is effectively clamped to zero regardless of output. As we shall see,
228  examining a system in open-loop mode can produce valuable information about its function.
229

230

231

232

233  Primer on control system theory
234 At this point, we note that vision scientists may not be familiar with the classical control

235  systems approach taken in this paper. This section aims to provide a bare-bones introduction
236  to enable such readers to follow subsequent sections. Table 1 provides a reference for all the
237  symbols used throughout the paper.

238

239  Linear time-invariant (LTI) systems and the Laplace domain
240  Linear systems are those whose outputs for a linear combination of inputs are the same as a

241  linear combination of individual responses to those inputs. For example, in Figure 2, if the
242  system were linear, then if demand timecourse di(t) elicited accommodation response aa(t),
243  and demand da(t) elicited ax(t), the response to a new demand made up of a weighted sum of
244 these two timecourses, wids(t)+w2d2(t) would be wias(t)+woaz(t). A time-invariant system is
245  one where the same input, delayed by a time T, will always elicit the same response, also
246  delayed by atime T. Thus if demand d1(t) elicited accommodation response ai(t), demand dx(t-
247  T) would elicit accommodation response ax(t-T).

248

249  Where a system is both linear and time-invariant (LTI), its response can be analysed using

250 Laplace transforms of the variables. The Laplace transform turns integral and differential
8
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251  equations into polynomial equations which are much easier to solve. Time-domain functions
252  are converted into Laplace-domain functions of a complex frequency variable s. We assume
253 that all signals are zero for times before t=0, and write the Laplace transform of a signal f(t) as
254  F(s), where

255

256 F(s) = foodt f(t)e st
0

257 Equation 1

258  We will adopt the convention where, when a lower-case variable represents a function of time
259 t, the corresponding upper-case denotes its Laplace transform as a function of s. The Laplace
260  transform is closely related to the Fourier transform with which vision scientists are typically
261  more familiar, with s representing a complex version of angular temporal frequency: s=jw
262  (where we use j for the square root of -1 throughout).

263

264  Inacircuit diagram like Figure 2, the effect of an LTI block is simply to reweight the amplitude,
265  and/or shift the phase, of each frequency in the input. This means that each LTI block can be
266  written simply in terms of its complex transfer function H(s). As discussed in more detail
267  below, a transfer function H(s) is a kind of gain, since it is the ratio of the output to the input,
268  for each frequency s. For example, consider a transport delay block, whose effect is to delay
269  the input signal by a latency T, and which thus shifts the phase of each frequency. If the input
270  signal is i(t), the output after delay is o(t) = i(t-T). Substituting this into Equation 1, we find
271  that

272 0(s) =j dt o(t)e st =J dt i(t —T)e st =f dt i(t)e St=ST = e=5T](s)

0 0 -T
273 Equation 2
274 where we used the fact that i(t)=0 for t<0. Thus, the transfer function of a transport delay block
275 is H(s)=exp(-sT). Constant signals are unaffected (H(0)=1); time-varying signals undergo a
276  shift in phase proportional to their temporal frequency.

277
278 Integrating by parts, and using the assumption that f(0)=0, we see that

(0] d [0e]
279 f dt —e™5t = sf dt f(t)e st = sF(s)
0 dt 0
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280  and so the Laplace transform of a derivative is just s times the Laplace transform of the original
281  function. This means that differentiation can be represented very simply in Laplace space by
282  multiplication by s, and integration by 1/s.

283

284  In LTI systems, one can do algebra on the Laplace transforms in the usual way. The transfer
285  function for several LTI systems in parallel is the sum of the individual transfer functions,
286  while the transfer function for several LTI systems in series is the product of the transfer
287  functions for the individual systems.

288

289 A mathematical trick to handle rest focus
290  When viewing through pinholes, although the demand is zero, accommodation tends not to be

291  zero but to converge on a “rest focus”, arr, generally of around 1.4D (Leibowitz & Owens,
292  1978; Rosenfield et al., 1993b), which is the value we shall assume for our model. A similar
293  default focus is also observed in darkness. To account for this, we assume that the
294  accommodative control system adds onto the signal computed from defocus a constant “bias”
295  signal. Because we have normalized neural signals to be expressed in diopters, setting this bias
296  signal equal to the rest focus ensures that accommodation returns to the rest focus if the defocus
297  erroris clamped at zero.

298

299  This bias signal leads to a small complication, because it technically violates the assumption
300 that all signals are zero for t<0. To handle this, we express both accommodation and demand
301 relative to the rest focus. We define A(s) to be the Laplace transform, not of accommodation
302 itself, but of accommodation relative to rest focus, a(t)-are. Similarly D(s) is the Laplace
303 transform of demand relative to rest focus, d(t)-arr. With this trick, we can then analyse the
304  system in the Laplace domain as if there were no bias signal (arr=0), and at the end simply add
305  arr back on to demand and accommodation when we move back to the time domain. All the
306 analyses in this paper use this approach.

307

308  Open- and closed-loop transfer functions
309  Where accommodation is driven in open-loop mode (imagine Figure 2 after the scissors have

310 cut), we have
311 A(s) = P(s)B(s)D(s)
312  where B(s) is the transfer function representing the brain’s accommodative control system and

313  P(s) that representing the ocular plant. As described in the previous section, A(s) and D(s) are
10
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314  the Laplace transforms of accommodation and demand relative to rest focus. The open-loop

315 transfer function relating output A(s) (accommodation) to input D(s) (demand) is thus

A(s)
316 Hopen(s) = m = P(s)B(s)
317 Equation 3
318
319

320  Inclosed-loop mode (Figure 2 with no scissors), the input to the accommodative control system
321  is defocus error, E(s) = D(s)-A(s). We therefore now have

322 A(s) = Hopen(s)[D(s) — A(s)]
323  and thus derive the closed-loop transfer function:
Hopen (s)

324 H ) = —°openrs

closed( ) 1+ Hopen(s)
325 Equation 4
326  where
327 A(s) = Heiosea(s)D(s)
328 Equation 5

329  This relationship between the open- and closed-loop transfer functions is a standard result for
330  afeedback loop like the one in Figure 2.
331

332  Steady-state response, accommodative lag and lead
333 LTI theory shows that the steady-state response is obtained by evaluating the system at s=0

334 (zero frequency). So, if we apply a constant demand dss in closed-loop mode, Equation 5
335  becomes
336 A(O) = H¢osea (O)D(O)

337 Equation 6

338  where D(0)=dss-arr and A(0)=ass-arr (recalling that accommodation and demand are defined
339  relative to rest focus arr). From Equation 4, we can write Hejoseq(0) in terms of H, e, (0). It
340  will be convenient to introduce the notation Gopen for Hopen(0), i.€. the open-loop steady-state
341 gain of the system. Putting this together with Equation 4 and Equation 6, we find that

342  accommodation will eventually be
343 Ass = Agp t+ (dss — agr)

11
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344 Equation 7

345  The steady-state defocus error is

dss — QRr

346 dss — Ags = HT
open

347 Equation 8

348  Equation 8 shows that — regardless of the control system or plant — the defocus error will be
349  zero when the demand is equal to the rest focus. This is natural enough, since the rest focus is
350  the value to which the system is biased.

351

352  However, for other demands, the steady-state error is not zero. When the demand is nearer than
353 the rest focus, the accommodative response remains further than the demand, a situation
354  referred to as accommodative lag. Conversely when demand is further than rest,
355  accommodation is nearer than demand; this is accommodative lead.

356

357  Importantly, the amount of the error depends on the steady-state open-loop gain Gepen. This
358  demonstrates an important property of negative-feedback systems which attempt to minimise
359  error: small error requires high open-loop gain. Since we have set the gain of the plant to 1
360  (without loss of generality, as noted above), the gain Gopen is set entirely by the brain’s
361 accommodative control system. Empirically, accommodation reaches around 80%-90% of the
362  demand when the demand is far from the rest focus. From Equation 4, we have

Ags — ARFr _ Gopen

363 =
dss — Agfr 1+ Gopen

364 so the observation that accommodation is around 80-90% of demand implies that
365  Gopen/(1+Gopen) is around 0.8-0.9, and in turn that Gopen must be in the range 4-9.
366

367  Gain and phase of response to sinusoidal inputs
368 A property of any LTI system is that (after initial onset transients have died away) its response

369 toasinusoidal input is a sinusoidal output, with a gain and phase reflecting the transfer function
370 of the system. Specifically, if the closed-loop transfer function is H.,s.q(s), then if
371  accommodative demand is a sinusoidal function of time, the accommodative response will also
372  be a sinusoid with the same temporal frequency f. The amplitude of the response will be the
373  amplitude of the demand multiplied by the gain at that frequency, g(f), and the phase will be

374  delayed by (f). We will use lower-case g(f) to denote the gain of a system at a particular
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375  temporal frequency f, and upper-case G=g(0) to denote the steady-state gain, as we did above
376  for Gopen. According to a standard result of LTI theory, the gain and phase-delay of an LTI
377  system at frequency f can be obtained from the complex number represented by its transfer
378  function H(s) evaluated at s=2xjf. The gain g(f) is the magnitude of the complex number
379  H(2mjf) and the phase-delay #(f) is its phase.

380

381  Sometimes below for brevity we will refer to “the gain” of an LT1 operator, without specifying
382 afrequency. In this case, we mean its steady-state gain. For example, when we refer to “the
383  gain” of a low-pass filter, we mean the ratio of its steady-state output to a constant input.

384

385 Sensorimotor latencies: a problem for control
386  These preliminaries out of the way, we now consider different possibilities for the contents of

387  the blue block labelled Accommodative Control System in Figure 2. We begin by expanding
388  this block as shown in Figure 3. We now explicitly include the rest focus signal discussed
389  above. But critically, Figure 3 now also shows the system’s latency, which we have divided
390 into two parts. The first is an afferent-sensory latency, representing the time taken for
391 information about the retinal image to travel up the optic nerve and for the brain to compute a
392  signed estimate of defocus, for example using longitudinal chromatic aberration or higher-
393  order aberrations. The second is an efferent-motor latency, representing the time taken for the
394  resultant neural signal to travel from the Edinger-Westphal nucleus down the Ilird cranial
395 nerve, relay in the ciliary ganglion and reach the ciliary muscle. The motor latency is reduced
396 by the fact that the axons from the ciliary ganglion to the ciliary muscle are myelinated,
397 unusually for postganglionic axons of the autonomous nervous system (Tamm & Litjen-
398  Drecoll, 1996; Warwick, 1954). The sensory and motor latencies have been estimated as
399  Tsens~200ms and Tmot~100ms respectively (Gamlin et al., 1994; Schor et al., 1999; D. Wilson,
400 1973), and we will fix the values in our model at these values. In Figure 3, these latencies are
401  shown within the Accommodative Control System, i.e. the brain, but the model functioning is
402  unchanged if, for example, part of the motor latency occurs at a neuromuscular junction in the
403  eye, or indeed if both latencies are merged into a single block.

404

13


https://doi.org/10.1101/2021.12.09.471909
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.09.471909; this version posted April 14, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

ACCOMMODATIVE CONTROL SYSTEM
aRF bias signal
Rest Focus
Accommodative
TE&I’]S
Demand _ d(t) e (t) = d®) —a(t) ] ot~ Teens)
+'j optical defocus error ] % sensed C(S) control ]
rF Senso defocus signal
ry
latency Controller
ocular
(l(f) accommadation
Tmnr
a(t) in(t - Tmat) m(t)
Ocular D: P(s) input to motor signal
Accommodation ciliary muscle i
Ocular latency
Plant

405
406
407 Figure 3. Expanding the conceptual model shown in Figure 2 so as to show the rest focus and sensorimotor latencies. This is
408 the same circuit diagram, but the block labelled Accommodative Control System has here been expanded to explicitly show
409 the constant bias signal accounting for the rest focus, and the latencies. There is a sensory latency Tsens before the retinal
410 defocus signal reaches the controller, and a further motor latency Tnmo: before the neural signal reaches the plant.
411

412  Latencies are a potentially serious problem for any control system. In the block diagram shown
413  in Figure 3, we can see that the defocus error only becomes available to the block marked
414 Controller after the sensory latency. The controller therefore operates not on e(t), but e(t-Tsens):
415  the retinal defocus as it was a time Tsens ago. This in turn reflects the accommodation due to the
416  neural signal sent up to a time Tsens+ Tmot ag0. Thus, the system suffers an overall latency of Tiat
417 = Tsens +Tmot. This can easily lead to overshoots and “ringing”: oscillations in accommodation
418  asthe system is driven beyond the correct value by the out-of-date error signal.

419

420  Overshoots and ringing due to an out-of-date error signal would be seen with the response to
421  step changes in demand, but in fact the second-order dynamics already indicate that LTI models
422  do not suffice to account for the response to large step changes; accommodative control seems
423  to have special mechanisms for these which are beyond the scope of this paper (Bharadwaj &
424 Schor, 2005, 2006; Schor & Bharadwaj, 2004, 2005). However, an out-of-date error signal
425  would also affect the response to sinusoidal oscillations in demand which we will concentrate
426  on in this paper.

427
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428  Empirically, accommodation shows a low-pass response: gain is greatest in the steady-state,
429  and decreases monotonically with temporal frequency (Charman & Heron, 2000; Krishnan et
430 al., 1973; Kruger & Pola, 1986; Ohtsuka & Sawa, 1997; Stark et al., 1965). However, it is
431  challenging to achieve this with the circuit diagram shown in Figure 3 and a Controller block
432  which is simply a PID controller. Because of the latency, the system can easily end up out of
433  phase, so that the changes in accommodation actually enhance the defocus rather than reducing
434  it, as intended. This shows up as resonances or local peaks in the gain function, making it non-
435  monotonic. This is not observed empirically.

436

437  Overcoming latencies with a predictive control system: the Smith Predictor
438  The solution seems to be that the visual system actually bases its neural control not on the

439  currently available sensed value of retinal defocus, but on its internal prediction of the future
440 retinal defocus. That is, whereas in Figure 3 the controller operates on the sensed defocus,
441  which due to the sensory latency actually represents defocus as it was some time in the past, in
442  apredictive model the controller operates on the predicted future defocus (Smith, 1957). Figure
443 4 shows how Figure 3 can be modified so that the input to the controller is predicted future
444  defocus. Defocus is the difference between the stimulus accommodative demand and the ocular
445  accommodation, so predicting future defocus requires a prediction both of demand and
446  accommodation.

447

448  The brain is in principle able to predict accommodation perfectly up to future times less than
449  the motor latency, simply based on the signals it has already sent to the accommaodative plant.
450  (Campbell & Westheimer, 1960; Hung et al., 2002; Krishnan et al., 1973; Schor & Bharadwaj,
451  2004; Stark et al., 1965; Sun et al., 1989) To do this, the visual system must effectively have
452 its own internal model of the ocular plant, represented by the Virtual Plant block in Figure 4.
453  Such internal models are referred to as forward models in control systems theory. We assume
454 that the motor latency Tmot largely represents delays in transmitting the control signal from the
455  brain to the eye. We assume that the virtual plant is located in the brain close to where the
456  neural control signal is generated, and thus has access to this signal with negligible delay.
457  Accordingly, the output of the virtual plant is predicted future accommodation, i.e. the value
458  that ocular accommodation will have at a time Tmet in advance of the present. We write this
459  predicted future accommodation as a(t+Tmot): the predicted accommodation at a time Tmot In
460 the future, where the circumflex indicates that this is an estimate of the future accommodation.

461  Since the accommodation up to a time Tmet into the future is controlled by neural signals already
15
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462  sent by the brain, this estimate can in principle be perfect. It should be affected only by noise,
463  and by any inaccuracies in the virtual plant as a model of the ocular plant. In the model we
464  present here, neither of these apply and so the prediction of future accommodation is indeed
465  perfect.

ACCOMMODATIVE CONTROL SYSTEM
GRF —
w bias signal
Rest Focus
Accommodative C. 5 G A
Demand d(t) e (t) e e(t — Teens) _d(t — Teens) d(t + Tot)  €(t + Tmor)
| l—){+_ ) {+ )} c(s) e
D ‘{ E optical sensed predicted control
defocus sensory geldas Demand defocus e signal
latency Predictor
predicted
accommodation
i Tinot + Tsens
a(t) oculor a(t - TsenS) t &(t + Tmot) b m(t) H
accommodation B 4 P(S)
A efference copy
sensorimotor -
latency Virtual
(t = Tonor) Tnot Plant
D a(t) ML — Imet. ]
Ocular P(S) input to ww : motor signal
Accommodation 1 ciliary muscle motor
Ocular latency
Plant
468
469 Figure 4. Predictive control. Compare with Figure 3: the Controller block has been replaced with a more complex system

470 including two predictive blocks (green) as well as the original Controller block (yellow). The prediction helps avoid instability

471 due to the sensorimotor latencies. To predict accommodation, the model includes a Virtual Plant block (forward model) to
472 compute what accommodation will be a time Tyt in the future, i.e. after the motor latency. If the forward model is accurate,
473 this can in principle predict accommodation perfectly up to t+Tme, Since accommodation is under the system’s own control.
474 To predict demand at time T, into the future, the model uses a Demand Predictor block. This requires extrapolating demand
475 at time Tiat=Tsens+Tmot beyond the last available estimate. This is unlikely to be entirely accurate, since demand can reflect
476 changes in the outside world, beyond the system’s control. Red labels indicate locations referred to in the text.

477

478  Predicting stimulus demand is more challenging, since in general this reflects the motion of
479  objects in the outside world. Nevertheless, several studies (Campbell & Westheimer, 1960;
480  Charman & Heron, 2000; Krishnan et al., 1973; Phillips et al., 1972; Stark et al., 1965) have
481  suggested that the accommodation system, like vergence and other motor systems (Erkelens,
482  2011; Rashbass & Westheimer, 1961), may be capable of predicting sufficiently regular input.
483  For example, if the demand is a square wave, jJumping between two values with a constant
484  period, accommodation develops a very short latency or even changes in anticipation (Krishnan
485 etal., 1973). How or whether this prediction is achieved is beyond the scope of this paper; it

486  may be performed by the cerebellum (Ohtsuka & Sawa, 1997; Popa & Ebner, 2019) or it may
16
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487  not actually occur (Aguila-Carrasco & Marin-Franch, 2021; Otero et al., 2019). The different
488  possibilities can be modelled with the Demand Predictor block (Figure 4). This takes as its
489  input what demand is estimated to have been at time Tsens in the past, d(t — Tyens), and gives
490  as output what it estimates demand will be at time Tmot in the future, d(t + Ty,0¢). That is, it
491  extrapolates its input into the future by a time corresponding to the entire sensorimotor latency,
492  Tiat=TmottTsens . In this paper, our model Demand Predictor block will simply pass its input on
493  unchanged, effectively assuming that the demand will stay at its current value. This is probably
494  a reasonable assumption, since in many natural viewing situations, accommodative demand
495  probably often changes rather little over the timescale of Tiat. A future model could incorporate
496 a more elaborate form of prediction, e.g. taking account of stimulus periodicity, but that is
497  beyond the scope of this paper.

498

499  Having introduced the key elements of the predictive model — the virtual plant and the demand
500 predictor — we now discuss how it works. To help with this, we have annotated the signals in
501  Figure 4 and marked some reference points with red letters. Let’s start at A with the output of
502  the virtual plant. As we saw above, this represents the brain’s prediction of what ocular
503 accommodation will be at time Tmet in the future: a(t + Tno). Our model brain uses this
504  predicted future accommodation in two ways. First (B), the model brain delays this predicted-
505 accommodation signal by the total sensorimotor latency to obtain &(t-Tsens), an estimate of what
506 the ocular accommodation was at a time Tsens in the past. Thus, the predictive model actually
507 uses an internal estimate of past accommodation as well as of future accommodation. The point
508 of doing this is to match the latency of the defocus signal. The input to the whole system is
509 accommodative demand, d(t) (label D). In the eye (label E), the ocular accommodation a(t) is
510 optically subtracted from d(t) to yield the error signal e(t), the optical defocus at time t. Ideally,
511 thisis what the accommodation control should be based on, but due to the sensory latency Tsens,
512  the brain only has access to the delayed signal, e(t-Tsens), representing the defocus at a time Tsens
513 in the past. At the signal combination labelled C, the brain adds its estimate of past
514  accommodation, a(t-Tsens), back onto this delayed defocus signal e(t-Tsens), in order to obtain
515  an estimate of what the demand was at a time Tsens in the past: d(t — Tsens) = €(t — Tsons) +
516  a(t — Tyens)- This demand signal is fed into the Demand Predictor block, which uses it to make

517  aguess at what the demand will be at a time Tmot in the future: d(t + T,o.) (label F).
518
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519  Now, the brain makes its second use of predicted future ocular accommodation, this time
520  without applying any delay. At the signal combination labelled G, it subtracts the predicted
521  accommodation @(t + T,y,,,) from the predicted demand d(t + Ty,.) to oObtain the predicted
522  future defocus error: 8(t + Tpnor) = d(t + Tooe)-@(t + Tonor). This predicted future defocus
523 is what is fed into the yellow Controller block and used to compute the neural control signal
524 driving accommodation. It is this use of predicted future defocus which makes this a predictive
525  model, as compared to the model shown in Figure 3.

526

527  As noted above, a constant bias is added on to the output of the controller, which accounts for
528  the non-zero resting focus. We call the result m(t) (label H). This is the actual motor signal sent
529  to the ocular plant, with a latency Tmet, Which results in the ocular accommodation a(t) (label
530 1). An efference copy of the same motor signal is also sent to be the input of the virtual plant.
531  The output of the virtual plant is, of course, the predicted future accommodation that we began
532  with (A), so we have now followed the signals around the whole of the inner and outer loops.
533

534  In summary, then, although the input to the accommaodative control system as a whole is the
535 sensed current defocus (Figure 2), in a predictive model the input to the accommodative
536  controller itself is the predicted future defocus. With this modification, PID-type controllers
537  can now work well and avoid the instabilities associated with an out-of-date error signal.

538

539 Simplified representation of the predictive control system
540 It is useful to note that, if the virtual plant is a perfect simulation of the physical plant, the

541  predictive control system shown in Figure 4 is mathematically equivalent to the much simpler
542  form shown in Figure 5. This form can appear confusing, because it shows accommodation
543  being subtracted from the stimulus demand after the sensory latency (even though some of the
544  sensory delay represents the optic nerve and cortical processing) and before the motor latency
545  (even though that represents processes before accommodation). The reader is invited to trace
546  the signals around Figure 4 and Figure 5, and verify that provided a(t)=a(t), the same inputs
547  are fed into the same blocks and so the results must be the same. Figure 5 provides a visual
548  picture of what is being achieved by the predictive control: it effectively shifts the latencies
549  outside the control loop. This diagram holds whatever the demand predictor does. If the
550 demand predictor were able to predict future demand perfectly, it would cancel out the latencies

551 and the system would behave as if there were no latencies. But even if the demand predictor
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552  merely assumes demand stays constant, as in our model, it still makes the control immune to
553 the destabilising effect of latencies. The effect of latencies is now only to delay the response.
554  The response to any stimulus is exactly the same as for a system with perfect prediction of
555  demand, just occurring later in time (see Appendix and Table 3). Thus although predicting the
556  sensory input enables a more rapid response, predicting one’s own motor response suffices to

557  ensure stability.

558
a
=BE bias signal
Rest Focus
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559

560

561 Figure 5. Simplified version of the model shown in Figure 4. This “non-causal” model structure is not physiological and cannot

562 be mapped onto “brain” and “eye” like the predictive physiological model in Figure 4. For example, here the single block
563 labelled “Plant” is used to represent both the physical plant in the eye and the virtual plant modelled in the brain. However,
564 as shown by the annotated signals, it is mathematically equivalent to the physiological model in Figure 4, provided that the

565 Virtual Plant block is a perfect simulation of the Ocular Plant.

566
567
568

569 A specific model of accommodative control
570  So far we have deliberately kept the discussion very general, without committing to a particular

571  choice of transfer function for either the ocular plant or the Controller block which converts
572  defocus into a neural signal to the plant. In this section, we develop and justify a more specific
573  model of accommodative control. We discuss plausible assumptions and constraints on both

574  the forms of these transfer functions, and their particular parameters.

575  Ocular plant
576  The Ocular Plant block in Figure 2-Figure 5 converts the motor neural control signal m into

577  accommodation a. Physiologically, this block corresponds to the following components. The
19
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578 ocular lens is held in an elastic capsule between the anterior and posterior chambers of the eye.
579 It is tethered along its equator by elastic suspensory ligaments or zonules. The axial zonules
580 pass from the lens equator to the inner margin of the ciliary muscle, while the posterior zonules
581  pass from the ciliary muscle back to the choroid at the ora serrata, the junction between the
582  choroid and the ciliary body. The lens is flattened by the elastic tension under which it is held
583 by the zonules, and becomes more spherical — and so more optically powerful — when its
584  extension is reduced by the constriction of the ciliary muscle. Figure 6A shows a diagram of
585 thisarrangement. Figure 6B shows a simplified biomechanical model (Beers & van der Heijde,
586 1994, 1996; Schor & Bharadwaj, 2005; Wang & Pierscionek, 2019). The zonules, choroid and
587 ciliary attachment are represented as springs. The lens is represented by a Voigt model, in
588  which a spring is in parallel with a dashpot or damper. The springs are modelled according to
589  Hooke’s law, i.e. they exert a force proportional to their extension. The dashpot exerts a force
590 proportional to the rate of change of its extension, modelling the viscosity of the lens and
591 capsule. The whole system is subject to the force f exerted by the ciliary muscle, which is set
592 by the neural signal sent by the accommodative control system. We assume that the optical
593  power of the lens is proportional to the extension of the spring/dashpot modeling the lens.

594  Since by Newton’s laws the forces must sum to zero at every point, the system shown in Figure
595 6B represents a set of simultaneous equations; for example at the junction between the axial
596  zonules and the lens, we have

597 kixp + bpxX;, = k,u%,4

598  where X, xza are the extensions of the lens and of the axial zonules respectively, k their spring
599  constants and by the viscosity of the lens. Using the constraint that the sum of all the extensions
600 must be constant, we can go through and solve the simultaneous equations for the lens
601 extension x.. If we do so, the result is the same as for the simplified system shown in Figure
602 6C, with a dashpot and a single spring, now representing the combined elasticity of all the
603  component elements. The value of the full model is that the elasticity of the different tissues
604  can be measured independently. This is important if one wants to model age-dependence
605 (Schor & Bharadwaj, 2005), since these vary differently with age, but the collapsed model is
606  obviously much simpler to work with.

607  In control theory, a spring can be viewed as an LTI element converting an input, force, into an
608  output, extension. The transfer function mapping force to extension is thus simply the inverse
609  of its spring constant k, i.e. its compliance. A dashpot is similar, but since the force is

610  proportional to the rate of change of extension, the transfer function mapping extension to force
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611 is bs, where b is the viscosity and s represents differentiation (see primer above). In this way,
612  the simple biomechanical model shown in Figure 6C can be represented by the block diagram
613  in Figure 6D, or even more succinctly by the transfer function in Figure 6E. This is the transfer
614  function of a first-order low-pass temporal filter with time-constant tpiant=b/k, also known as a
615 leaky integrator. This, then, is the function mapping ciliary muscle force to lens extension.
616

ora
serrata . posterior axial B
choroid  zonule ciliary muscle lens sonule Ciliary
fibres fibres attachment

1 X
k + bs —’D
617
618 Figure 6. A: Diagram of the anatomical structures relevant to accommodation. B: Representation as a biomechanical model,
619 consisting of a set of elastic springs (spring constant k) and dashpots (viscosity b). The posterior zonule fibres and ciliary
620 attachment are assumed to be in parallel, so their extensions are equal. C: Minimal model which is mathematically equivalent
621 to the full model shown in B. The parameters k and b are functions of the original parameters. The thick arrows mark forces.

622 As well as the ciliary muscle force, we now have the force in the spring, fs, and in the dashpot, fp.. D: Control theory block
623 diagram equivalent to the simple model in C. For example, at the summation block, we have the force balance Fs=F-Fp; at the
624 gain block, we have X=Fs/k; in the feedback loop we have Fp=bsX. E: Single transfer function equivalent to the block diagram

625 shown in D. This is a leaky integrator, with time-constant tpjan:=b/k.

626

627  We now make two further simplifying assumptions : (1) that the brain is able to command

628 ciliary muscle force directly, so that the motor signal sent to the plant from the brain can be

629 regarded as proportional to ciliary muscle force, and (2) that optical power is proportional to

630 lens extension. With these assumptions, then, the entire ocular plant block mapping neural

631 signal to accommodation can be regarded at least roughly as a leaky integrator (Beers & van
21
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632  der Heijde, 1994, 1996; Ejiri et al., 1969; Wang & Pierscionek, 2019). We therefore model the

633 transfer function of the plant as

1

634 P(s) e —
1+ TpianeS

635 Equation 9

636  where empirically tpiant is around 0.156s for young eyes (Schor & Bharadwaj, 2006). In this
637  paper, we will take this value as a given. As noted above, we can assume without loss of
638  generality that the steady-state gain is 1.

639

640  Controller
641  We now come to a key decision: the choice of transfer function for the Controller, C(s). As

642  noted above, in industrial control systems, controllers typically have proportional, integral and
643  derivative (PID) terms, with transfer functions which scale as constant, 1/s or s respectively.
644  We can rule out pure proportional control, since with P(s) as given in Equation 9, making C(s)
645 constant means that the system tracks rapid sinusoidal oscillations far better than human
646  accommodation. For example, C(s)=5 results in a realistic steady-state gain of 83% (Equation
647  7), but the gain remains >50% out to frequencies as high as 8Hz, far higher than observed (see
648  Figure 7 below). Derivative terms do not affect steady-state error, but improve stability and
649 avoid overshoot. They also enable rapid response to rapid changes. However, they can be
650  problematic in the presence of noise. Previous work by Schor and Bharadwaj (Bharadwaj &
651  Schor, 2006; Schor & Bharadwaj, 2004, 2006) suggests that the accommodative system has a
652  distinct “pulse” mechanism for responding to sudden large changes in accommodation such as
653  occur when we change from looking at a distant to a near object, which cannot be modelled by
654  an LTI system and which are beyond the scope of this paper. Furthermore, many of the benefits
655  of derivative control are already achieved by our use of a forward model to predict future
656 demand. We therefore do not include a derivative term. This leaves us with the integral term.
657 A pure integral controller has a transfer function proportional to 1/s, and thus infinite gain at
658 s=0. This is desirable since it eliminates steady-state error, but it also means that errors can
659  accumuluate; also as noted, the human accommodation does not seem to completely eliminate
660 steady-state error. We can account for this by modelling the controller as a leaky integrator,
661  following Krishnan and Stark (1975):

662 C(s) =

663 Equation 10
22
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664  where Grast is the steady-state gain and tf.st the time-constant. The subscript “fast” is to
665  distinguish this from a slow integrator which we shall introduce below. A leaky integrator acts
666 like a pure integral controller over short timescales (st>>1), and like a pure proportional
667  controller over long timescales (st<<1), thus combining aspects of both. We noted above that
668 accommodative lead/lag suggests the steady-state gain must be in the range 4-9. We somewhat
669 arbitrarily chose Gfast=8.

670

671  Gain for sinusoidal input: sub-critical damping
672  With both the plant and the controller being leaky integrators, and with a predictive control

673  system, the closed-loop gain is that of a damped harmonic oscillator (Equation 19, Appendix).
674  The behavior of this system can be summarized by its natural frequency and damping
675  coefficient ¢, both of which depend on the parameters Gast, Tfast, Tplant (EQuation 20). If the
676  damping coefficient ¢ is too low, the maximum gain is observed for a non-zero resonance
677  frequency, and can even exceed 1. This does not agree with empirical observations of
678 accommodative response to sinewaves, which is low-pass (Charman & Heron, 2000; Kruger
679 & Pola, 1986; Ohtsuka & Sawa, 1997; Stark et al., 1965); Figure 7A. This indicates that C is at
680 least 1/2, not far below critical damping ((=1) (Labhishetty & Bobier, 2017). Saccades have
681  adamping coefficient of around 0.7 (Bahill et al., 1975); systems with this value have minimum
682  settling time, i.e. they reach and remain within 5% of their final value most rapidly. We show
683 in the Appendix that obtaining ¢~1/2 for a system with Grst>>1 requires the time-constant of
684  the fast controller to be

685

686 Trast = 2GrastTplant

687 Equation 11

688  Thus, with tp1ant=0.1565 and Grast=8, trast Must be at least 2.5s.
689

690  Phase for sinusoidal input: further evidence for predictive control
691  Empirically, up to ~1Hz the phase delay of accommodation is very close to a linear function

692  of frequency, indicating a constant latency Tdelay : ¢ = 27fTgelay (Charman & Heron, 2000; Heron
693 etal, 1999; Kruger & Pola, 1986; Ohtsuka & Sawa, 1997; Wildtetal., 1974). The slope usually
694  corresponds to a delay of ~0.5s (dashed lines in Figure 7BC), though there is considerable
695 variability between studies. Because 0.5s is close to the sensorimotor latency inferred from the

696  response to step changes, it is often therefore assumed that this phase slope must represent the
23
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697  sensorimotor latency. However, this is not necessarily the case. First, the damped second-order
698 system formed by the ocular plant and the neural control imposes delays in addition to the
699  sensorimotor latencies. Second, if the brain predicts demand perfectly — at least theoretically
700  possible for a regular stimulus like a sinewave — then its phase delay becomes independent of
701  the sensorimotor latency (see Appendix).

702

703  The time-constant of the fast integrator
704  Thus, together the gain and phase response of accommodation to sinusoidal oscillations in

705  demand place quite tight constraints on the time-constant of the fast integrator, tsst, given that
706 the time-constant of the plant is a biomechanical given, and the gain of the fast integrator is
707  already quite tightly constrained by the observed lead/lag following a change in demand.

708  Figure 7 illustrates this by comparing the theoretical gain and phase with different values of
709  trast With empirical results from various subjects and studies. As noted, we can rule out Tfast <
710  2.5s because the gain is then too high at high frequencies. The gain data is probably best
711  described by trst = 5s (green lines in Figure 7A), but this does not account for the phase data.
712 trast = 5S in the perfect-prediction model gives phases which match empirical data up to around
713  0.5Hz, but at higher frequencies, empirical phase continues to increase roughly linearly,
714 implying a constant delay, whereas phase for the perfect prediction model asymptotes at 180°
715  (Figure 7B). Thus, we probably have to reject the perfect-prediction model (not surprising
716  given its idealised nature). The no-change prediction model is qualitatively in much better
717  agreement with the phase data, but then trst = 5s predicts larger phases than are observed
718  (Figure 7C). The purple line shows the curve with minimum settling time, trst=2.5s which
719  yields ¢~1/7/2. This is in reasonable agreement with both gain and phase data, assuming simple
720  no-change demand prediction, and we therefore adopt this value in the rest of the paper.

721
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724

725 Figure 7. Constraints on the time-constant of the fast integrator. Coloured lines show the gain and phase predicted for a
726 predictive model with leaky-integral control, Table 3, with P(s) given by Equation 9 with 7,a,:=0.156s , and C(s) given by
127 Equation 10 with Ggs=8 and different choices of st The phase is shown (B) for a model capable of predicting demand
728 perfectly, or (C) for the “no-change” model which simply assumes demand will continue at its instantaneous value; both of
729 these have the gain shown in A. Symbols show empirical results from Kruger and Pola (1986), Ohtsuka and Sawa (1997), and
730 Stark et al (1965). The dashed line in the phase plots corresponds to a constant latency of 0.5s, close to what is observed.

731 Code to generate this figure is in Fig_TimeConstraints.m.

732

733  Adaptation and dual control
734 Another distinctive feature of accommodation is that it adapts after prolonged exposure to the

735 same demand. This can be revealed by using pinholes to place the system in open-loop mode.
736  As we have seen, in this situation, accommodation returns to the resting focus. After short
737  periods of stimulation, this happens rapidly, in a few seconds. However, after long periods of
738  exposure to a particular demand, the return happens over a much longer time period, sometimes
739  several minutes. This cannot be accounted for with the leaky-integral control proposed so far.
740  However, it can be explained by positing a dual control system in which a fast, or phasic, neural
741  integrator controls changes in response amplitude and a slow, or tonic, neural integrator
742  maintains the response amplitude (Khosroyani & Hung, 2002; Schor, 1979a; Schor et al., 1986;
743 Sun & Stark, 1990).

744

745  The fast integrator is the one we have considered so far, which responds to error signals
746  computed from negative feedback. The slow integrator responds to the activity of the fast
747  neural integrator, and not directly to the error signal. As the name implies, the slow integrator
748  has a long time constant, which means that it has little effect on the response to rapid changes
749  in demand, so our previous discussion of the responses to sinusoids is not invalidated by its
750  addition. With this arrangement, the transfer function of the Controller becomes

751

752 C(s) = —ast (1 4 Gslow )
STrast +1 STgow T 1
753 Equation 12
754
755

756  The steady-state open-loop gain of the system is therefore
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757 Gopen = Gfast(1 + Gsiow)

758 Equation 13

759  Figure 8 shows the non-predictive control system of Figure 3 after the addition of this second,
760  slow integrator, since it is easier to appreciate its operation in a non-predictive system. Suppose
761  the system starts from rest, with demand and accommodation both equal to the rest focus, so
762  that the defocus error and the outputs of the fast and slow integrators are both zero and the
763  neural signal sent to the plant is simply the bias signal, maintaining it at the rest focus. Suppose
764  the demand then makes a step change to a nearer value, do. This in turn makes the defocus error
765  non-zero, which begins to charge up the fast integrator. The output of the fast integrator
766 increases the neural control signal above the bias value, altering accommodation so as to reduce
767  theerror. It also begins to charge up the slow integrator. Thus, over short timescales, the neural
768  signal controlling accommodation is set mainly by the output of the fast integrator. However,
769  over long timescales, the slow integrator takes over. The ratio of the slow to fast steady-state
770  contributions is equal to the gain of the slow integrator (Schor, 1979b; Schor et al., 1986); for
771 example, with our value Gsiow=5, steady-state accommodation is 83% due to the slow integrator
772  and 17% due to the fast integrator.

773

774  Now suppose that pinholes are applied, making the defocus error zero regardless of
775 accommodation. In this non-predictive model, after a delay corresponding to the sensory
776  latency, the signal entering the fast integrator instantaneously drops to zero, and the fast
777  integrator begins to discharge. As the fast integrator discharges, accommodation drops rapidly,
778  with a decay time corresponding to trst. When the signal from the fast integrator has dropped
779  far enough, the slow integrator begins to discharge as well, resulting in a second, slower decay
780  of accommodation, with a time constant corresponding to tsiow. Thus, after a long period of
781  exposure, there is an initial rapid drop as the proportion of accommodation due to the fast
782  integrator, initially 1/(Gsiow+1), decays rapidly, but then a much longer decay as the dominant
783  component due to the slow integrator decays slowly.

784

785  The slow integrator also increases the overall steady-state gain and thus reduces the steady-
786  state error. Using Equation 13 and Equation 7, the steady-state accommodative response is
787

Gfast (1 + Gslow)

788 = agp +
fss R 1+ Gfast(l + Gslow)

(dss - aRF)
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789 Equation 14

790  where with Grast=8, Gsiow=5 the gain term is 0.98, compared to 0.89 with only the fast
791  integrator. Thus, following a step-change in demand, the model response rises rapidly to around
792  90% of the demand, and then over the next tens of second rises more slowly to approach the
793  demand exactly. Thus, the gain of the slow integrator cannot be made too large (say, much
794  larger than 5) without eliminating the ability of the model to account for accommodative lead
795  and lag.

796

797

ACCOMMODATIVE CONTROL SYSTEM
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798
799
800 Figure 8. Non-predictive model incorporating dual (fast+slow) control. The slow integrator can be added to predictive models
801 in the same way, but its effect is then much more complicated.
802

803  With predictive control, there is an additional subtlety which also places an upper bound on
804  Gsiow. In such systems, the fast integrator is driven not by retinal defocus directly, but by the
805  estimated future defocus (Figure 4). This does not immediately drop to zero when pinholes are
806  applied. When the system is made open-loop by setting d(t)=a(t), the input to the fast integrator
807  becomes a(t-Tsens)-a(t+Tmot) for the no-change prediction model. This becomes zero once
808 accommodation has stabilized, but is finite while it decays. When the gain of the slow integrator
809 s sufficiently large, this small error input is enough to keep the slow integrator high. This in
810  turn keeps accommodation high and thus sustains the error signal. Accommodation creeps
811  slowly down to the rest focus with a time-constant which, counter-intuitively, can be much
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812  longer than any of the three time-constants of the system: Tpiant, Tfast, Tslow. This effect is
813 independent of exposure duration, so cannot account for the adaptation which the slow
814  integrator was introduced to explain. To avoid this effect and obtain a clear difference between
815  short and long exposure durations, we have found that Gsiow Needs to be less than around 10.
816  Here, we have set Gsiow=5.

817

818

819  Microfluctuations and noise
820 A distinctive property of accommodative response is the relatively large fluctuations to which

821 it is subject in both open and closed loop. The power spectrum of open-loop accommodation
822 is roughly a straight line on log-log axes (Campbell et al., 1959b; Campbell & Westheimer,
823  1960; Stark et al., 1965), i.e. a power-law spectrum, P=1/f%. We model this by injecting white
824  noise onto the defocus signal prior to input to the neural controllers (Figure 10). White noise
825  has a flat power spectrum, but integration by the two integrators within the system (the neural
826  controller and the plant) converts it to a power-law spectrum, with an approximately Brownian
827  (1/f%) spectrum.

828

829  Noise has often been omitted from models of accommodative control, presumably with the
830 rationale that once the correct noise-free response has been obtained, noise can always be added
831 later to simulate microfluctuations. However, this approach is unwise, because noise in fact
832 adds important constraints to the system. This is especially true with a predictive control
833  system, which can easily end up amplifying noise in the open-loop condition. Referring to
834  Figure 4, we see that a predictive control system contains not one but two feedback loops: one
835 via the eyes, and one internal to the brain, incorporating the virtual plant. Operating in open-
836  loop mode cuts the outer feedback loop, but leaves the internal feedback loop intact. Depending
837  onthe coefficients, internal noise can easily resonate within this loop, creating a situation where
838  the power spectrum of open-loop accommodation has sharp peaks which do not occur in
839 closed-loop mode, since the outer feedback loop suppresses them in its effort to keep the error
840  zero. This is not observed empirically. The power of low frequencies does increase in open-
841 loop mode (Charman & Heron, 2015; Gray et al., 1993b), since without an error signal
842  accommodation performs a random walk around the rest focus, whereas it is kept close to the
843  demand in closed-loop mode. But we do not see an increase in the power of particular high-
844  frequencies, as would occur if internal noise were resonating within the internal feedback loop.
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845

846  Fortunately, we find that the values we have already derived are consistent with these data. A
847  more underdamped system — say Grast=15, tfast=2S, Which puts the damping coefficient £ at 0.5
848  — does show unrealistic high-frequency resonances within the forward model feedback loop,
849  Dbut our sub-critically-damped parameters Grast=8, trast=2.5S, £=0.7 already suppress the open-
850  loop resonance.

851

852  Explaining the closed-loop resonance seen for high frequencies at low amplitudes
853 In fact, several workers have found evidence for a resonance in closed-loop but not open-loop

854  mode. The first evidence comes from microfluctuations during steady fixation. Several workers
855  have found that the power-spectrum of closed-loop accommodation has a peak at around 2Hz
856  (Figure 9A). It is not always present, but when found is always more prominent in closed-loop
857  than open-loop accommodation. Although the location of this peak varies with heartrate,
858  suggesting the pulse as a possible source interacting with blood volume of the ciliary body
859  (Collins et al., 1995; Winn et al., 1990), the fact that it is higher in closed-loop conditions
860  suggests that the source must be amplified by a neural resonance within the outer feedback
861 loop.

862

863  Furthermore, the same resonance is assumed to be responsible for another puzzling
864  observation, relating to gain with sinusoidal stimuli. In our discussion around Figure 7, we
865 emphasized the lowpass nature of the gain response. This is true at high amplitudes, but for
866  low-amplitude oscillations in demand, the curves become non-monotonic, with an increase in
867  gain at around 2Hz (Figure 9B). Ockham’s Razor suggests this reflects the same closed-loop
868  resonance causing the ~2Hz peak in microfluctuations. However, the dependence on amplitude
869 indicates that this resonance must be caused by a nonlinear mechanism, since for a linear
870  system gain is independent of stimulus amplitude.

871

29


https://doi.org/10.1101/2021.12.09.471909
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.09.471909; this version posted April 14, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

T 40
5 \ !
T —
> \ T 10 -80 H
= X = \ 5
7] o ©
= 30 A —— T =
w u N e —
o }\ B e g — -lz0 ol

] I p—
2 . = 3
E 20 \;“\E\ i -10 -160
a
7]
1 \\Dﬁ\
w M L -20 -180
g
a

-30 -240
0 I
0. 0.2 FRE%?JENCY '( , 2 5 ol oz 04 o 2z 0
cps) —= FREQUENCY {cps) —=
872
873 Figure 9. Evidence for a resonance at around 2Hz in accommodative control. (A) Figure 5 from Stark et al 1965 (Stark et al.,

874 1965), replotting empirical results from Campbell et al 1959 (Campbell et al., 1959b), showing the power spectrum of
875 accommodation under closed-loop (solid) and open-loop (pinhole, dashed) conditions. (B) Empirical results from Figure 4 of
876 Stark et al 1965, showing gain for sinusoidal oscillations of three different amplitudes (0.2D, 0.4D, 0.6D). Gain is expressed in
877 decibels (left axis): 0dB corresponds to an amplitude gain of 1, -10dB to 0.32, -20dB to 0.1, -30 to 0.03.

878

879  Resonances observed in closed- but not open-loop mode immediately suggest a control system
880 lacking the predictor we have argued for so far. Non-predictive control is prone to closed-loop
881 instabilities in systems with latencies, like accommodation. This occurs in the outer feedback
882  loop via the eye, when the accommodation change designed to null out defocus arrives out of
883  phase due to the latency and ends up enhancing the defocus which cause it. Predictive control
884  avoids these closed-loop instabilities, but if the prediction is imperfect, it can be vulnerable to
885  open-loop resonances due a similar effect occurring via the internal feedback loop driven by
886  the efference copy. (For a mathematical justification of these statements, see the Appendix,
887  specifically the discussion around Equation 15, Equation 16 and Equation 18.)

888

889  Thus to explain both the power spectrum of microfluctuations, and the non-linear resonance in
890 the response to sinusoidal demand, we postulate an additional signal controlling
891 accommodation. This is proportional to small amplitudes of the current defocus, not the
892  estimated future defocus, and is thus not predictive. (This signal is, however, included within
893  the efference copy used to estimate future defocus within the predictive control system, as
894  shown in Figure 10). Because this signal is non-predictive, it is prone to closed-loop
895 instabilities. But for the same reason, it avoids open-loop resonances which can occur within a

896  predictive system.
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897  To prevent the closed-loop instabilities from catastrophically destabilizing the response, we
898 clip this non-predictive signal at a low value, set to 0.15D in our model (i.e. signals larger than
899  0.15D in magnitude are set to £0.15D depending on their sign). This saturating value is chosen
900 simply because it gives a reasonable match to empirical results. It is low enough to ensure that
901 the signal does not change the behavior of the model in response to large changes in defocus.
902 However, it is large enough that the signal still produces a visible high-frequency peak in the
903 power spectrum of closed-loop microfluctuations and a high-frequency resonance in the

904  response to low-amplitude sinusoids (see Results).

905 This non-predictive saturating signal has other interesting effects on accommodation. Notably,
906 it facilitates a rapid response to small step stimuli, because non-predictive proportional signals
907 tend to react faster than predictive integral signals. For example, suppose demand suddenly
908 increases by 0.1D, causing an 0.1D step-change in defocus. The non-predictive proportional
909 control signal, with unit gain, requests the full 0.1D increase in accommodation. The fast
910 integrator begins responding at the same time, but due to its integral nature, its response ramps
911  up more gradually. Furthermore, because the non-predictive proportional signal uses the
912  current sensed defocus, rather than the predicted future defocus, it stays requesting the full
913  0.1D for at least 0.3s, until the sensorimotor latency has elapsed and the ocular plant starts to
914  respond and thus reduces the sensed defocus. In contrast, input to the fast integrator is estimated
915  future defocus, which begins to fall immediately based on the requested change to
916  accommodation (the predictive control system assumes that demand will stay at the new value,
917  but it predicts that defocus will fall because of the predicted accommodative response). So, the
918 input to the fast integrator begins to fall immediately from its initial peak of 0.1D, whereas the
919 input to the proportional controller stays at 0.1D until the sensorimotor latency has elapsed.
920  Thus for small step-changes in defocus, the non-predictive proportional signal enables a larger,
921 faster response. However, the saturation means that its effect is limited to small changes, with
922  the predictive-integral control dominating the response to large changes. Dynamics of larger
923  step responses are controlled with a pulse signal (Bharadwaj & Schor, 2005, 2006; Schor &
924  Bharadwaj, 2004, 2006) that will be added to this model in a subsequent paper.

925

926  Depth of focus
927  In principle, changes in defocus that are so small they produce no detectable change in the

928 retinal image, given the eye’s optics, cannot drive accommodation. The smallest change in
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929  defocus which produces a detectable change in accommodation is referred to as objective depth
930  of focus. This is typically much smaller than the subjective depth of focus, i.e. the smallest
931 change in defocus which produces a perceptible change in image quality (Kotulak & Schor,
932  1986a; Udlam et al., 1968; Yao et al., 2010). Depth of focus is often modelled as a deadzone
933 (e.g. (Khosroyani & Hung, 2002; Schor, 1979b)): the defocus signal is set to zero unless it
934  exceeds some threshold value corresponding to the objective depth of focus, say 0.2D. In such
935 models, the deadzone contributes to lags and leads of accommodation, since the error signal
936  vanishes once accommodation comes within the deadzone. However, this approach has a
937  number of drawbacks:

938 (i) It can result in unrealistic jumps, where a small change in demand pushes the defocus above
939 the threshold and thus elicits a disproportionately large response.

940 (i) It produces a hysteresis effect, whereby accommodative lead and lag can depend on how
941 the demand is approached. For example, with a threshold of 0.2D, if the demand steps up from
942 1D to 2D, the effective defocus becomes zero once accommodation reaches 1.8D, so we get a
943 lag. But if demand steps down from 3D to 2D, effective defocus becomes zero once
944  accommodation reaches 2.2D, so we get a lead. This hysteresis is not typically observed, except
945  with extremely blurred images (Heath, 1956a) .

946  (iii) It reduces the gain of the response to low-amplitude oscillations. For example, consider a
947  slow oscillation ranging between 1D and 3D. Assume for simplicity that the closed-loop gain
948  of the system is 1, so that in the absence of a deadzone, the response would track demand
949  exactly. With a deadzone clipped at 0.2D, the response would range from 1.2D to 2.8D,
950 reducing the gain to 0.8. With a lower-amplitude oscillation where demand ranged from 1.5D
951  to 2.5D, the response would range from 1.7D to 2.3D, making the gain 0.6. With a still lower-
952  amplitude demand ranging from 1.7D to 2.3D, response would range from 1.9D to 2.1D,
953  making the gain 0.3. Yet this decrease in gain with decreasing amplitude is not observed. In
954  fact, accommodative gain tends to be smallest for high amplitudes, not for low amplitudes
955  (Starketal., 1965, p. 196).

956  Furthermore, recent evidence has undermined the experimental support for the notion of a
957 deadzone. The accommodative system produces measurable responses to small amounts of
958 defocus which do not introduce perceptible blur (Kotulak & Schor, 1986a; Yao et al., 2010),
959  while the measured accommaodative lags and leads may in fact maximize image quality rather
960 than reflecting a deadzone (Labhishetty et al., 2021). For all these reasons, we have chosen not

961 to include a defocus deadzone in our model. The objective depth of focus is adequately
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962 accounted for here by the white noise we have added to the defocus signal, which effectively
963  swamps small changes. A more complete model would of course compute defocus from the
964  retinal images, and thus take into account that small changes in defocus are hard to detect
965  (Labhishetty et al., 2021).

966

967

968 Simulink implementation and summary of the model
969  Figure 10 shows the complete model as it appears in our Matlab Simulink implementation,

970 incorporating all the elements discussed above. The Simulink model has two inputs: (1)
971  “demand”, accommodative demand in diopters, and (2) “pinhole”, a binary signal which
972  conveys whether the eye is currently viewing through a pinhole or not. If pinholes are present,
973  the defocus signal is set to zero at the block labelled “Apply Pinhole”; otherwise it is set to the
974  optical defocus, i.e. demand minus accommodation. The defocus signal has white noise added
975  to it and is delayed by the sensory latency before reaching the “brain” module.

976

977  Here, four signals are combined to produce a neural signal which is delayed by the motor
978 latency before reaching the ocular plant. From top to bottom, these four signals are: (1) the
979  constant bias signal, which sets the rest focus; (2) the proportional signal, which is simply the
980 noisy defocus signal clipped at +£0.15D; (3) the signal from the fast integrator, which is driven
981 by the estimated future defocus; (4) the signal from the slow integrator, which is driven by the
982  fast integrator. One final detail not mentioned so far is that the neural signal is thresholded at
983  zero to ensure it is positive. This is visible in the diagram as the “saturation” block on the far
984  right, immediately after the four signals are combined. This accounts for the fact that the ciliary
985 muscle can only be commanded to contract, making the lens more convergent, or allowed to
986 relax. Negative values would effectively command the ocular lens to adopt a divergent form,
987  which is physically impossible.

088

989  As well as being sent down cranial nerve 111 to the eye, an efference copy of the neural signal
990 isdirected to a virtual plant within the brain, which predicts the future accommodation. This in
991 turnis used to estimate the future defocus which drives the fast integrator. For completeness,
992  we have included a block labelled “Demand Predictor”, although in the current instantiation of
993  the model, this simply passes its input through unchanged.

994
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997 Figure 10. Block diagram of our final model (Simulink file AccommodationModel.slx), incorporating all the features discussed
998 in the paper. The Simulink model has two inputs: (1) demand, and (2) whether or not the eye is viewing through a pinhole. It

999 has one output: accommodation.

1000

1001  Simulation details
1002  The next section shows simulation results for sine and step stimuli with this model. All

1003  simulations were run in Simulink, Matlab R2020b, with a variable-step solver, automatic solver
1004  selection and the default settings (relative tolerance 0.001 and max/min/initial step size and
1005 absolute tolerance all set to “auto”). For plotting, we interpolated the output to obtain results
1006  every millisecond. Note that this can give the impression of greater variability than in some
1007  empirical results where accommodation may be measured at a much lower rate, e.g. 50Hz. To
1008 obtain the velocity traces shown in Figure 16, we took the difference between successive
1009  accommodation values to obtain the change per millisecond, then smoothed this within a
1010  moving window of 10ms.

1011

1012  To obtain the model gain and phase in response to sinusoidal oscillations in demand, we ran
1013  the model for 25 cycles of the specified frequency, then fitted a sinewave to the results using
1014  Matlab’s Curve Fitting Toolbox. We fixed the frequency of the sinewave to the frequency of
1015 the stimulus and fitted the three free parameters baseline, amplitude and phase (see code in
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1016  Run_Sine.m). The amplitude and phase of the response were taken to be those of the fitted
1017  sinewave.

1018

1019  The simulation shows onset transients at its start point, as the integrators settle. In all cases, we
1020 therefore discarded the first few seconds of simulation time in order to exclude these transients.
1021

1022 Results
1023  The different elements of this model were motivated by different observations — the gain and

1024  phase to sinusoids; adaptation; power spectra of microfluctuations so on. Components such as
1025 the fast and slow integrator and the virtual plant have been proposed before for the
1026  accommodation step response (Schor & Bharadwaj, 2005), but to our knowledge never tested
1027  in combination for pursuit sinusoidal tracking (Schor & Kotulak, 1986) or adaptation (Schor,
1028  1979b), or with white noise and the feeding through of a clipped signal proportional to the
1029  current defocus. This combination is thus a novel contribution of this paper. We now
1030 demonstrate that this unified model can reproduce each of the observations that motivated its
1031  different components.

1032

1033  Response to sinusoidal demand
1034  Figure 11 shows the gain and phase of the model (heavy black line), compared with results

1035 from human subjects digitised from (Kruger & Pola, 1986; Ohtsuka & Sawa, 1997). This is of
1036  course similar to results already shown in Figure 7, but whereas those curves were obtained
1037  from mathematical formulae for a leaky integrator in a predictive control system, Figure 11 is
1038  obtained via Simulink simulation of the full four-signal model with noise. There is reasonable
1039  agreement in gain (Figure 11AB); both humans and model are low-pass. The main quantitative
1040  disagreement is that the “knee”, where the gain drops rapidly, typically occurs around 0.4Hz
1041  inhumans and slightly later, around 0.6Hz, in the model. There is also good agreement in phase
1042  (Figure 11C). For comparison, the dashed black line shows the phase which would be obtained
1043  for a model with perfect demand prediction. This can be obtained from the phase of our model
1044  with “no change” demand prediction by subtracting the sensorimotor latency: ¢perfect = dnochange
1045  —360fTsens. The phase function of most human subjects agrees better with that of the no-change
1046  model rather than the perfect model, suggesting that these subjects had little ability to predict
1047  the oscillatory demand.

1048
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1052 Figure 11. Gain and phase of the model response to sinusoidal demand, compared to empirical results. A,B: Gain plotted on
1053 linear and log axes. C: Phase plotted on linear axes. The heavy black line is the response of the model in Figure 10 with the
1054 parameters given in Table 2. The dashed black phase line shows the phase which would be obtained by a model capable of
1055 perfectly predicting the sinusoidal oscillation in demand. Triangles show empirical results for four human subjects, digitised
1056 from Kruger and Pola (Kruger & Pola, 1986), using the data with white light and defocus cue only. Circles are for a further
1057 four subjects, digitised from Ohtsuka and Sawa (Ohtsuka & Sawa, 1997), using only their control subjects. In (Kruger & Pola,
1058 1986) and in the model, the demand oscillated between 1D and 3D, i.e. the amplitude of the sinusoid was 1D and its mean
1059 value was 2D. In (Ohtsuka & Sawa, 1997), the amplitude was 1.5D and its mean value is not stated. Code to generate this

1060 figure is in Fig_CompareGainPhase.m. Run_Sine.m must be run first to generate the model data.

1061

1062  Figure 11 was for sinusoidal demand oscillations with an amplitude of 1D. Of course, the gain
1063  and phase of a linear system are independent of amplitude. However, our model is nonlinear
1064  due to the saturation of the non-predictive proportional signal. Figure 12 shows the gain and
1065 phase in the same format as Figure 11, but for different amplitudes of oscillation around a 2D
1066  baseline. The green lines are for the 1D amplitude shown in Figure 11, but for lower amplitudes
1067 the gain and phase start to deviate significantly from these results. Most strikingly, there is a
1068 resonance at 1.2Hz where the gain actually goes above 1 for the smallest oscillations (+0.1D).
1069  This represents the instability caused by the non-predictive proportional signal. Since this
1070  signal is clipped at £0.15D, it has a significant effect only for low-amplitude oscillations.
1071
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1074 Figure 12. Model gain and phase as a function of amplitude. The green curves (1D) are what was shown in Figure 11, but we
1075 see that the behaviour at low amplitudes is quite different, with a resonance at 1.2Hz. Code to generate this figure is in

1076 Fig_Sine.m. Run_Sine.m must be run first to generate the model data.
1077

1078  This effect is qualitatively in agreement with the low-frequency resonance reported by Stark et
1079  al. (1965), which led them to conclude that human accommodative control must include a
1080 nonlinearity. Digitized data from Stark et al. (1965) is replotted in Figure 13, along with the
1081  response of the model. The model does not reproduce the strong dip in gain at 0.8Hz for an
1082  amplitude of 0.3D (blue point in Figure 13A), but apart from that, the agreement is quite good.
1083 In particular, it accounts for the key observation that gain is quite high, around 0.5, for 0.3D-
1084  amplitude oscillations at around 2Hz, whereas gain is much lower, around 0.1, for higher

1085  amplitude oscillations at this frequency.

1086
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1089 Figure 13. Symbols are digitised data from Figure 3 of Stark, Takahashi & Zames (Stark et al., 1965). These are measured
1090 gain and phase for one subject, for amplitudes of 0.3D (blue) and 1D (orange). The curves are model gains and phase for
1091 these amplitudes, about a baseline of 2D. Code to generate this figure is in Fig_StarkTakahashiZames.m.

1092 Run_StarkTakahashiZames.m must be run first to generate the model data.

1093
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1094  Limiting tracking frequency
1095 When asking what are the fastest changes that can be tracked by accommodation, it is important

1096 to consider phase as well as gain. Figure 12C and Figure 13C showed that the phase of the
1097  response relative to demand increases with frequency, reaching 180 degrees at a frequency of
1098 around 1Hz. When this occurs, the demand and response are in antiphase, and the error is
1099  greater than the stimulus. Interestingly, if the response gain were zero, then the error for the
1100 180 deg phase delay would be smaller than if the gain were 1.0. It is therefore of interest to
1101  ask how the gain and phase changes affect the model’s defocus error for demand oscillations
1102  of different amplitude and frequency. We quantify this using the mean absolute defocus error.
1103  The defocus error is the difference between demand and accommodation at any time; absolute
1104  defocus error is the rectified version of this waveform, and mean absolute defocus is the
1105  average value of this over time: (|d(t) — a(t)|) , where d(t) = Dpean + Damp(sin 2mft).
1106

1107  The heavy curves in Figure 14A show how mean absolute defocus error varies with amplitude
1108 and frequency of sinusoidal demand. In each case, the peak error is just below 1Hz, when the
1109  response is 180° out of phase with the demand (Figure 12C). The error increases with demand
1110  amplitude, even though for frequencies below the peak, the gain (i.e. the ratio of response to
1111  demand) is closer to 1 for larger amplitudes (Figure 12AB).

1112

1113 The aim of accommodative control is to track demand so as to minimize defocus error,
1114  but the phase-delay means that for sufficiently high frequencies, this aim would be better
1115  achieved by simply keeping accommodation fixed at the mean demand, i.e. by having a
1116  response gain of 0, rather than attempting to track oscillations in demand about this baseline.
1117  The dashed lines in Figure 14A shows this zero-gain tracking error, i.e. the mean absolute
1118  defocus error which would be achieved if accommodation stayed at the steady-state value
1119 elicited by the mean demand (Dmean=2D in this example). Because the amplitude of zero gain
1120 tracking error depends only on the input amplitude, the error is independent of temporal
1121  frequency of the sine input. Since the static accommodative lag is small, the zero-gain steady-
1122  state response is also close to 2D. So the mean zero-gain error is approximately the average

1123  value of |Damp (sin 2mtft) | or 2Damp/m, where Damp is the amplitude of the demand oscillations

1124  about the 2D baseline.
1125
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1126 We define the limiting tracking frequency to be the frequency at which the actual gain
1127  and phase-delay of the accommaodative response produces the same error as would be achieved
1128  with zero gain. This is where the zero-gain tracking error is first equal to the actual error,
1129  marked with a cross x in Figure 15A. For frequencies lower than this limit, the oscillation in
1130 accommodative response is helpful, i.e. it tracks the oscillations in demand with a phase delay
1131  low enough to reduce the mean defocus error below the zero-gain tracking error. However for
1132  frequencies above the limit marked with a cross, the oscillatory response is out of phase and
1133  ends up making mean defocus error larger than if accommodation simply remained constant at
1134  the baseline value.

1135

1136 Because of the nonlinearity represented by the saturating non-predictive proportional
1137  signal, this limiting-tracking frequency depends on amplitude, as shown in Figure 14B. For
1138 large-amplitude oscillations in demand, accommodation can track only up to around 0.4Hz.
1139  We saw above that the non-predictive proportional signal enables a more rapid response to
1140  small changes. This is shown in Figure 14B by the increase in limiting tracking frequency for
1141  low-amplitude oscillations.

1142

1143  Using the result that perfect demand prediction would reduce the phase by the sensorimotor
1144  latency, we can also infer what these curves would be for a model with perfect demand
1145  prediction but with the same plant and same leaky-integral controller. These are shown with
1146  the light curves in Figure 14AB. Perfect demand prediction does reduce the error and increase
1147  the limiting tracking frequency, but not dramatically, because of limits imposed by the time

1148  constants of the plant and of the fast integrator.

1149
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1151

1152 Figure 14. (A) Mean absolute defocus error for sinusoidal demand oscillations of different frequencies and amplitudes about
1153 a 2D baseline. The heavy curves show [d(t)-a(t)| for our model with its observed gain and phase; the light curves are those
1154 inferred for a model with perfect demand prediction. The dashed lines show the expected high-frequency limit, i.e. the mean
1155 defocus error if the demand oscillated but the response stayed at the steady-state value elicited by the mean demand, and
1156 the crosses indicate where this is first less than the error with tracking. The crosses mark where this crosses the mean defocus
1157 error. We take this as an indication of the highest frequency which can be successfully tracked at this amplitude. (B) Tracking
1158 frequency limit as a function of amplitude, for the actual model (heavy line, crosses) and for a model with perfect demand

1159 prediction (upper light line). Code to generate this figure is in Fig_Sine.m. Run_Sine.m must be run first to generate the model

1160 data.

1161

1162  Steady-state microfluctuations
1163  We now turn to noise, and examine how well our model can account for accommodative

1164  microfluctuations. Figure 15A shows example closed- and open-loop accommodation traces
1165  recorded from the model over the course of 5 simulated minutes. The red trace is for closed-
1166  loop viewing of a stimulus at 1D (red dashed line). Accommodation thus fluctuates around a
1167  value a little over 1D, reflecting the accommodative lead for a stimulus nearer than the rest
1168  focus, here 1.4D. The fluctuations span a range of around 0.1D (+2SD). The SD is 0.03D,
1169  which is small compared to the SD of human microfluctuations (0.1-0.3D, (Charman & Heron,
1170 1988, 2015; Gambra et al., 2009)). The power spectrum, Figure 15D, has a prominent peak at
1171  around 1.5Hz. This periodic structure is clearly visible in the 10s excerpt from the trace shown
1172 in Figure 15B.

1173

1174  The blue trace is for open-loop viewing, e.g. through pinholes. Now, the response wanders
1175 around the rest focus, 1.4D (dashed blue line). However, because the bias signal is constant
1176  rather than scaling with the difference between accommodation and rest focus, the excursions
1177  are much wider. This is visible in the power spectrum, Figure 15D, where the power continues
1178  to rise as frequency reduces.

1179

1180  Figure 15B shows a 10s excerpt from the trace in Figure 15A, for comparison with the example
1181  empirical data in Figure 15C, digitized from (Gray et al., 1993a). Although the amplitude of
1182  the microfluctuations is larger in the human observer, the same qualitative features are visible:
1183  closed-loop mode showing strong periodic structure at around 2Hz, open-loop mode showing
1184  much larger low-frequency fluctuations. Figure 15E shows the closed- and open-loop power

1185  spectra for a human observer, digitized from (Campbell et al., 1959b), for comparison with
40
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Figure 15D. Despite quantitative differences, they show the same qualitative features, notably
a much larger peak for closed-loop.

The presence of this relatively large, 1-2Hz periodic component in the closed-loop

microfluctuations may aid accommodative control, for example by “hunting” for the point of
optimal focus (Kotulak & Schor, 1986¢). Thus, this could be a reason why the postulated non-

predictive proportional signal is beneficial for accommodative control.
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Figure 15. AB: Example accommodation traces in (red) closed-loop response to 1D and (blue) open-loop mode. Dashed

horizontal lines show (red) the 1D demand and (blue) the 1.4D rest focus. A: trace over 5 minutes, to show slow fluctuations

in open-loop response; B: 10s excerpt from A, to facilitate comparison with C: Example 10s trace recorded from a human
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1199 observer, digitised from Fig 3 of Gray, Winn and Gilmartin (Gray et al., 1993a). The red trace is for a 5mm pupil; the blue trace
1200 is for viewing through pinholes of 0.5mm diameter. A scalebar but no accommodation values are provided in (Gray et al.,
1201 1993a), so the vertical position is arbitrary. To facilitate comparison with the model, we have set the mean value to 1D for
1202 the closed-loop and 1.4D for the open-loop trace. D: Power spectra of the closed- and open-loop response, obtained by
1203 averaging the Fourier power spectra of 50 traces like those in A, generated from simulations with different noise seeds. For
1204 comparison, a 1/f2 Brownian noise spectrum is drawn on with a black dashed line. E: Power spectra of closed- and open-loop
1205 responses for a human observer, digitised from Fig 5 of (Campbell et al., 1959b). This is labelled DATA2 to make clear that it
1206 is not the power spectrum of the trace shown in Figure 15C. No vertical axis scale was provided in (Campbell et al., 1959b),
1207 so we have scaled the spectrum so it best agrees with D. The red curve was recorded with a 7mm pupil and the blue curve

1208 with a Imm effective entrance pupil. Code to generate this figure is in Fig_Noise.m; Run_Noise.m must be run first to generate

1209 the data.

1210

1211

1212  Response to step changes
1213  When motivating the introduction of the saturating non-predictive proportional signal, i.e. a

1214  proportional controller responding to the current defocus signal (Figure 10), we discussed why
1215 it produces a larger, more rapid response to small changes in demand. We have already seen
1216  how this effect produces a higher gain for high-frequency low-amplitude oscillations (Figure
1217  12) and thus the ability to track low-amplitude oscillations out to higher temporal frequencies
1218  than is possible for larger amplitudes (Figure 14). Similarly, the non-predictive proportional
1219  signal, clipped at £0.15D, enables a faster response to small step changes in demand.

1220

1221  Figure 16 demonstrates this by comparing results from the full model (blue) with those from a
1222  model identical except that it lacks the non-predictive proportional signal (orange). To enable
1223  the effects to be seen clearly, noise is also turned off in this simulation. On the left, Figure
1224  16AC, we plot the accommodation and velocity for a 0.5D increase in demand. The model with
1225  the non-predictive proportional signal responds more quickly. However, for the larger 2D step
1226  shown on the right (note different y-scales), the saturation of the non-predictive proportional
1227  signal at 0.15D limits its effect, and it makes barely any difference either to accommodation
1228  itself or to velocity. In fact, for large step changes like that shown in Figure 16BD, there appears
1229  to be a fifth signal, a nonlinear pulse triggered by sudden large changes in demand (Schor &
1230  Bharadwaj, 2004, 2006). The pulse accounts for the empirical observation that the peak
1231  acceleration of the response for step increases in demand is roughly independent of the step
1232  size, instead of scaling with step size as would occur for a linear system. While implementing
1233  the pulse is beyond the scope of this paper, we note that the non-predictive proportional signal

42


https://doi.org/10.1101/2021.12.09.471909
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.09.471909; this version posted April 14, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

1234  already moves in the right direction by boosting the acceleration for small steps, and thus
1235  helping reduce the difference between acceleration for large and small steps. This could be
1236  another reason for the accommodative control system to include the postulated non-predictive
1237  proportional signal.

1238

1239  The blue curves in Figure 16 also show the ringing characteristic of non-predictive models,
1240  especially prominent relative to small step changes (Figure 16A). This instability is of course
1241  what we are exploiting to drive the high-frequency peak in the microfluctuations. Thus, our
1242  model predicts, probably wrongly, a transient increase in the amplitude of microfluctuations

1243  following small step changes in response.

1244
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1246 Figure 16. Noise-free accommodation (AB) and velocity (CD) for two different step increases in demand (AC: 0.5D, BD: 2D).

1247 The blue curve is for the usual model; the orange curve is for a similar model with no non-predictive proportional signal. To
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1248 enable the effect to be seen clearly, noise has been turned off for this figure only. Also note that the response to the 2D step
1249 (BD) is included only to demonstrate the role of the non-predictive proportional signal. The model presented in this paper
1250 does not accurately capture the dynamics of the response to such large steps, since it does not include the pulse signal (see

1251 text). Code to generate this figure is in Fig_EffectOfPropSignal.m.

1252

1253  Adaptation
1254 Next, we examine how the model adapts to accommodative demand to which it is exposed for

1255  more than a few tens of seconds. This was the motivation for postulating the slow integrator
1256  (Schor, 1979Db; Schor et al., 1986). Its presence has not contributed to the results presented so
1257  far, other than to boost the gain for very slow oscillations. Now we see how it accounts for
1258  adaptation.

1259  Figure 17 shows the time course of accommodation following the application of pinholes at
1260 t=0, shifting the system from closed-loop to open-loop demand. After the application of
1261  pinholes, accommodation eventually ends up at the rest focus, but how rapidly it does so
1262  depends on the demand before pinholes were applied. The model observer is initially adapted
1263  to OD, then switches to viewing 3D for variable amounts of time as shown in the legend. The
1264  results show that after viewing one demand for at least two minutes, the observer adapts to it
1265  such that accommodation remains close to the adapted value for several minutes after pinholes
1266  have been applied (uppermost/red, lowermost/blue traces). Conversely, when the observer was
1267  exposed to different demands immediately before pinholes are applied (middle traces), they
1268  move much more rapidly to the rest focus.

1269
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1271 Figure 17. The model shows adaptation to demand, due to the slow integrator. The model observer is initially viewing an

1272 object at 0D, before then viewing an object at 3D for varying durations as shown in the legend. Pinholes are applied at t=0s,
1273 putting the system in open-loop mode. After long exposures, accommodation adapts to the demand, and moves only slowly
1274 to the rest focus; the adaptation affects the accommodation for many minutes after pinholes have been applied (e.g. dark
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1275 blue curve: adapted to 0D, further than rest focus; red curve: adapted to 3D, closer than rest). Code to generate this figure is

1276 in Fig_Adaptation.m; Run_Adaptation.m must be run first to save the data in Results_Adaptation.mat.

1277

1278

1279

1280  Figure 18 shows a comparison with empirical data. Here, the observer was exposed to a demand
1281  of 2D for either 5s (blue) or 60s (orange) before moving to open-loop mode at t=0. The traces
1282  in Figure 18A are for a human observer (Schor et al., 1986); those in Figure 18B are from the
1283  model, with rest focus set to 0.4D (dashed line) in order to better match this observer. In both
1284  cases, following the 5s exposure to 2D, accommodation falls rapidly once the system enters

1285  open-loop mode, but following the 60s exposure, the decay is much slower.
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1288 Figure 18. Comparison of the model (B) with data digitised from Schor, Kotulak & Tsuetaki (Schor et al., 1986) (Fig 2, empty
1289 field condlition). As in Figure 17, pinholes are applied at t=0. Before then, the demand is at OD for a long period, before moving
1290 to 2D for either 5s (blue) or 60s (orange); for the model, we also include 1s (yellow). In (Schor et al., 1986), a scalebar is
1291 provided, but absolute dioptre values are not available. The vertical position in the DATA panel is therefore arbitrary.
1292 However, since the open-loop condition decays by well over 1D from the closed-loop position adopted in response to a 2D
1293 demand, it seems clear that the rest focus for this observer was well below 1.4D. For this comparison, therefore, the rest
1294 focus of the model has been set to 0.4D (dashed line) in this figure only. Code to generate this figure is in
1295 Fig_SchorKotulakTsuetaki.m.

1296

1297  Steady state error

1298  Finally, Figure 19 shows the model’s steady-state error. As discussed (Equation 14), this
1299 reflects both the fast and slow integrator. In the model, the additional gain provided by the slow

1300 integrator means that steady-state error eventually becomes extremely small. Figure 20 shows
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1301  this process for an example step up to 2D. The error is zero at the resting focus but shows
1302  lag/lead on either side of this. The gain (response/demand) therefore becomes high as demand
1303  tends to zero.
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1307 Figure 19. Steady-state response of the model. The model was run for 320s with a constant demand dss indicated by the value
1308 on the x-axis, and accommodation was averaged over the final 60s to obtain the steady-state response, ass. (A) Input/output
1309 function, i.e. steady-state accommodation as a function of demand. (B) Steady-state error, i.e. difference between response
1310 and demand. For distant stimuli, this is positive (lead); for near, it is negative (lag). (C): Gain, i.e. ratio of response to demand.
1311 In each case, blue curves show the response of the model, solid black line indicates response equal to demand, and the dashed
1312 vertical line marks the rest focus, where this occurs. Code to generate this figure is in Fig_SteadyState.m; Run_SteadyState

1313 .m must be run first to save the data in Results_SteadyState.mat.
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1316 Figure 20. Model response to a step change in demand from 0D to 2D, showing the immediate rise to 89% of demand due to

1317 the fast integrator, and the subsequent slow rise to 98% demand due to the slow integrator. The blue trace is one example
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1318 run from the full model; the superimposed orange line shows the response with no noise and no non-predictive proportional
1319 signal, in order to isolate the response due to the fast and slow integrators. Note that the dynamics of the immediate response
1320 to the step are not correct because they do not incorporate the pulse signal, but the point of this figure is to demonstrate the
1321 time-course following this imnmediate response. Code to generate this figure is in Fig_ExampleStep.m

1322

1323 Discussion

1324  In this paper, we have discussed the neural control of accommodation. We have provided a
1325  tutorial overview of the relevant control theory and key empirical observations. We have
1326  discussed the evidence for a predictive control system, i.e. one incorporating a forward model
1327  to predict the accommodative response in advance of the motor latency (Hung et al., 2002;
1328  Khosroyani & Hung, 2002; Schor & Bharadwaj, 2004). Similar models have also been
1329  proposed for vergence control (Erkelens, 2011; Hung et al., 1986; Zee & Levi, 1989) and
1330 saccades (Chen-Harris et al., 2008). Our analysis has led us to make the novel proposal that a
1331  saturating non-predictive proportional-control component may operate in parallel to the main
1332  predictive integrative-control feedback loop. This non-predictive proportional signal causes a
1333  high-frequency resonance in the closed-loop response, observed in the response to low-
1334  amplitude sinusoidal oscillations in demand. It amplifies noise within the system, explaining
1335 the high-frequency peak observed in closed-loop but not open-loop accommodation
1336 microfluctuations. It also speeds up the response to small, sudden changes in demand. Yet its
1337  saturation means that it does not destabilize the system as a whole, and that it becomes
1338 insignificant for large changes in demand.

1339

1340  We have implemented these ideas in a Simulink model, and are publishing this and all code
1341  along with the paper. Although most of the components of the model have been published
1342  before, we believe that this model is the first to incorporate realistic sensorimotor latencies,
1343  non-zero rest focus, noise and dual control by fast and slow integrators, as well as our novel
1344  use of a non-predictive proportional-control signal. Accordingly, it is able to account well for
1345 a wide range of empirical observations: the gain and phase of the response to sinusoidal
1346  oscillations in demand, including the puzzling high-frequency low-frequency resonance; the
1347  power spectrum of microfluctuations in closed-loop and open-loop modes, and the adaptation
1348  of accommodation to a steady stimulus.

1349
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1350 The four control signals: bias, fast, slow, non-predictive
1351  In our model, accommodation is controlled by four separate signals (Figure 10), which offer

1352  different benefits. The constant bias signal sets the rest focus, to which the system returns in
1353  the absence of other stimulation (Figure 17). This may represent a typical demand, making it
1354  easier for the system to respond when stimulation restarts. The slow integrator means that the
1355  system tends to adapt to steady demand, perhaps reducing disruption if vision is briefly
1356 interrupted during sustained attention to one distance.

1357

1358  The fast integrator is the main workhorse of the feedback loop, enabling accommodation to
1359  respond rapidly yet smoothly to changes in demand (Figure 11, Figure 20). It is embedded
1360  within a predictive control system, incorporating a forward model to predict the effect of
1361 signals previously sent to the plant. This predictive control enables a smooth response and
1362 avoids ringing and instability. In principle, it can entirely remove delay due to the sensorimotor
1363 latency in a situation where demand can be predicted perfectly, as in a regular oscillation.
1364  However, it can slow the response to sudden and unpredictable changes in demand.

1365

1366  The fourth control signal can facilitate rapid responses in such situations (Figure 16). This
1367  signal is non-predictive: it is proportional to the currently sensed defocus, not the predicted
1368  future defocus. We originally rejected non-predictive control because it is prone to closed-loop
1369 resonances at particular frequencies. This is because the phase of the cycle where demand is
1370  high causes an increase in accommodation designed to null the defocus error, but — due to the
1371 latency — by the time the increase in accommodation has taken effect, the demand cycle has
1372 moved on to a phase where demand is low, and so the increase in accommodation in fact
1373  enhances the defocus error, causing a larger change in accommodation in the next cycle, and
1374  soon. In our model, we limit the destabilizing effect of this signal by making it saturate at low
1375  values. This ensures that it has little influence on accommodation in general, which remains
1376  dominated by the predictive integral control discussed above. However, the closed-loop
1377  resonance associated with non-predictive control remains detectable for small changes in
1378 demand. This amplifies noise within particular bandwidths, and means that the
1379  microfluctuations in the steady-state response show a peak at frequencies just over 1Hz, as
1380 observed. Opening the loop cuts the feedback pathway generating the resonance, explaining
1381  why this peak in the microfluctuation power spectrum is much less prominent in open-loop
1382  mode. The saturating proportional signal also accounts for the non-linear resonance observed

1383  when accommodation tracks low-amplitude — but not high-amplitude — sinusoidal oscillations
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1384  indemand. However, an unrealistic feature of our model’s way of generating microfluctuations
1385 s that it predicts a transient increase in the amplitude of microfluctuations following small
1386  step-changes in demand — the ringing visible in Figure 16 — which has not been reported. The
1387  amplitude of microfluctuations in the model is also smaller than observed (Figure 15BC); this
1388  cannot be fixed simply by increasing the amplitude of the noise since that also changes the
1389  open- and closed-loop power spectra.

1390

1391  “Prediction” in the accommodation literature has often concentrated on predicting changes in
1392 demand (Krishnan et al., 1973; Stark, 1968). We believe it is helpful to draw a clear distinction
1393  between predicting one’s own accommodation, which is in principle possible perfectly with an
1394  efference copy and a forward model, and predicting demand, which is external and thus not
1395 always possible, for example when a fixated object moves suddenly. Predicting
1396  accommodation but simply using the current demand suffices to achieve closed-loop stability.
1397  The additional benefit of predicting future demand accurately is to avoid delay and thus avoid
1398 errors for rapidly changing stimuli. However, the low-pass characteristics of the plant and
1399  leaky-integral controller mean that the benefits of demand prediction are limited unless one
1400 also posits a different form of control.

1401

1402  Deficits of the model
1403  The model as currently implemented has many omissions and inadequacies, which must

1404  contribute to its imperfect ability to match the empirical data discussed in this paper. First, we
1405 do not consider control signals driven by inputs other than retinal defocus and bias (Heath,
1406  1956b; Maddox, 1893). Notably, we do not include the crosslinks from and to the vergence
1407  system (Bharadwaj, 2005; Schor & Kotulak, 1986). We also do not consider other noise
1408  sources, such as heartbeat.

1409  Second, this paper has nothing to say about how a signed estimate of defocus is obtained from
1410 theretinal image. This deficiency is perhaps especially important since our model assumes that
1411  visual feedback from the retinal images is the only feedback available to the accommodative
1412  control system. (Stretch receptors in the scleral spur base of the ciliary body could potentially
1413  also provide sensory feedback used in accommodative control (Tamm et al., 1994; Tamm &
1414  Litjen-Drecoll, 1996), but at present nothing is known about whether or how this occurs, and

1415 it has not been included in any model of accommodative control.)
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1416  Perceptually, the threshold for detecting a change in focus which produces a detectable change
1417  inthe image is higher for sharp than for blurring images: a focus change of 0.2D may be visible
1418  when the baseline defocus is 1.5D but not when the baseline is 0D (Campbell & Westheimer,
1419  1958). It seems likely that such differences also affect the stimulus to accommodative control,
1420  but this is not taken into account in our model.

1421  Related to this, we assume that the control system is attempting to minimize defocus, whereas
1422 in fact it is presumably attempting to maximize image quality. The accommodative lag and
1423  lead, which in our model is accounted for by the finite gain of the fast integrator, may
1424  effectively be an artefact of objective measurements of accommodation (Labhishetty et al.,
1425  2021). Recasting the control system so as to maximize a realistic measure of image quality
1426  rather than to minimize defocus could therefore profoundly alter the behavior of the model and
1427  lead to different conclusions about the nature of neural control. This would need to consider
1428  not only defocus but also higher-order aberrations such as spherical aberration, and should take
1429  into account pupil size. This would be computationally demanding to implement, and no
1430  published model of accommodative control has yet attempted it, but it must certainly be done
1431  in order to understand accommodative control in full.

1432

1433  The current model does not incorporate physical limits on accommodation, a non-zero far point
1434 or refractive error, nor do we consider how the system parameters may change with age
1435  (Bharadwaj & Schor, 2005; Schor & Bharadwaj, 2005), though these would be simple to add
1436  if required.

1437  The model components are highly simplified. For example, the ocular plant is modelled as a
1438 linear-time-invariant leaky integrator with a fixed gain and time-constant, and the optical power
1439  is assumed to be proportional to the output of this integrator. A more accurate, yet usably
1440  simple, optical/biomechanical model of the relationship between ciliary muscle signal and
1441  optical power would be welcome (Wang et al., 2017).

1442  The model developed here cannot account for the non-linear dynamics observed in response to
1443  large step changes. These have been accounted for previously with an additional “pulse” signal
1444 triggered by large step changes in accommodation (Schor & Bharadwaj, 2004, 2006), which
1445  temporarily overrides the error-driven signal, although non-linearities in the plant could also
1446  contribute. This of course means that the model presented here cannot accurately model the

1447  dynamics of the accommodative response to large step- changes, though it should remain valid
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1448  for all the situations modelled in the Results (except Figure 16BD, included for illustrative
1449  purposes).

1450  Finally, we have not attempted a realistic implementation of the demand-prediction model.
1451  There is some evidence that the brain can predict changing accommodative demand some time
1452  into the future, but we have here assumed it simply assumes demand will stay constant
1453  (Khosroyani & Hung, 2002). We hope to address some of these deficiencies in future work.
1454
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1463 Tables
1464

Symbol Meaning

@ Angular temporal frequency, o = 2xf

o(f) phase-delay of accommodation at frequency f

Thast Time-constant of the fast leaky-integrator controller, see Equation 10

Tplant Time-constant of the ocular plant, when this is modelled as a leaky
integrator, see Equation 9

Tslow Time-constant of the slow leaky-integrator controller, see Equation
12

¢ Damping coefficient, see Equation 20

at + Tpor) Predicted accommodation at a time Tmot after the current time t. In
this paper, generally assumed equal to a(t+Tmot), i.e. prediction is
perfect.
d(t + Tpor) Predicted demand at a time Tmot after the current time t. In the no-

change prediction model, this is assumed to be the same as the last
available demand, from time Tsens before the current time, i.e. d(t-
Tsens)

A(s) Laplace transform of accommodation relative to rest focus

arr Rest focus, i.e. accommodation adopted in the absence of any visual
stimulus

ass Steady-state accommodation in response to dss, see Equation 7

C(s) Transfer function of controller

D(s) Laplace transform of accommodative demand relative to rest focus

dss Steady-state demand, see Equation 7

E(s) Laplace transform of defocus error, E(s)=D(s)-A(S)

f Temporal frequency

a(f) gain of accommodation at frequency f

Grast Steady-state gain of the fast leaky-integrator controller, see Equation
10

Gopen steady-state open-loop gain of accommodation
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Gslow Steady-state gain of the slow leaky-integrator controller, see
Equation 12
Helosed(S) Closed-loop transfer function relating demand to accommodation,

see Equation 4

Hopen(S) Open-loop transfer function relating demand to accommodation, see
Equation 3

J Square root of -1.

P(s) Transfer function of ocular plant

S Complex temporal frequency in Laplace domain, s = jo, see
Equation 1

t Time

Tlat Total sensorimotor latency, Tiat=Tsens* Tmot

Tmot Motor latency, i.e. time taken for the neural signal controlling

accommodation to travel from the brain to the ocular plant

Tsens Sensory latency, i.e. time taken for defocus at the retina to reach the

accommodative control system in the brain

1465 Table 1. Symbols used in this paper.

1466
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slow integrator

Parameter Symbol used in the | Name in Simulink | Value
paper workspace

Rest focus arF RestFocus 1.4D

Sensory latency Tsens SensoryLatency 0.20s

Motor latency Tmot MotorLatency 0.10s

Time constant of | tpjant PlantTimeConstant 0.156s

plant

Gain  of  fast | Grast FastGain 8.0

integrator

Time constant of | T FastTimeConstant 2.5s

fast integrator

Gain  of  slow | Gsiow SlowGain 5.0

integrator

Time constant of | tgow SlowTimeConstant 100s

Noise power

NoisePower

0.001 with sample
time 0.01s

Where to clip the

proportional signal

Proportional Clipping

0.15D

Table 2. Parameter values for the Simulink model supplied with the paper and used to obtain the results (except where noted

otherwise in figure legends). These values are visible in the Simulink Model Workspace, and can be altered there if desired.
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1476 Appendix
1477  Here, we derive the total transfer function corresponding to the three types of linear models

1478  discussed in the text: (i) the non-predictive model and the predictive models with (ii) perfect
1479  and (iii) no-change prediction of demand. The bias signal due to the rest focus arr is included
1480 as an inhomogeneous “forcing” term. We handle this by defining A(s) and D(s) to be the
1481 Laplace transforms of a(t)-arr and d(t)—arr, respectively, where a(t) and d(t) are
1482  accommodation and demand as functions of time. In this way, we can effectively ignore arr
1483  when obtaining the transfer functions.

1484

1485 (i) Non-predictive model
1486  The system diagram for this model is given in Figure 3. Reading around this circuit diagram,

1487  we see immediately that

1488 E(s) = D(s) — A(s),

1489  where E(s) is the Laplace transform of the defocus error signal, d(t)-a(t). The input to the
1490  Controller block is E(s) exp(—sTsens), i.€. the defocus error signal after the sensory latency.
1491  The output from the Controller block is C(s)E(s) exp(—sTsens), Where C(s) is the transfer
1492  function of the Controller. After accounting for the motor latency, the input to the ocular plant
1493  is C(s)E(s) exp(—sTqt)- SO, the output of the ocular plant, i.e. accommodation, is

1494 A(S) = Hyiane ()C(S)E(s) exp(—5Tiar)

1495  Substituting in for E(S), we obtain the closed-loop transfer function

nonpred( ) A(S) _ P(S)C(S) exp(_STlat)
Heosea D(s) 1+ P(s)C(s) exp(=sTiar)

1497  The gain and phase of the accommodative response to sinusoidal stimuli are the amplitude and

1496

1498 phase of the complex number given by this closed-loop transfer function evaluated at
1499  ssjo=2xjf, Hgoseqa(2mjf) . The closed-loop gain as a function of demand frequency is
1500 therefore

|PC]
J1+ 2Re(PCe=2mifTiat) + |PC|2

1502 Equation 15

1501 nonpred (f) —

closed

1503  where the plant and controller transfer functions are similarly complex functions of frequency:
1504  P=P(2rf), C=C(2f). The denominator contains oscillatory terms which mean that, even if
1505 PC is lowpass (i.e. a monotonically decreasing function of frequency), the denominator can be

1506  close to zero at particular frequencies and thus produce large resonances, for which the closed-
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1507  loop gain exceeds 1. These manifest themselves as ringing or instability in the response to step
1508 changes in demand, and as gains>1 for sinusoidal oscillations in demand, which are not
1509  observed for large amplitudes.

1510

1511  With proportional control with unit gain (C=1), a sensorimotor latency of Tix=0.3s and the
1512  plant being a leaky integrator with tpant=0.156s, Equation 15 has its first resonance at 1.2Hz
1513  where the closed-loop gain goes well above 1. This is ultimately responsible for the model’s
1514  high-frequency peak in microfluctuations (Figure 15) and the low-amplitude resonance in the
1515  response to sine-waves (Figure 12), although the precise behaviour also depends on the
1516  nonlinear clipping. The precise position of the first resonance depends on the gain of the
1517  proportional control, but only rather subtly. We therefore kept unit gain for simplicity.

1518  We obtain the open-loop transfer function in the same way, but with the input to the Controller
1519  being D(s) instead of D(s)-A(s). This yields

1520 Hooa? "% (s) = P(s)C(s) exp(—sTiar)
1521 Goge"*4(w) = |PC|
1522 Equation 16

1523  Thus, whether we use an integral or proportional controller in this non-predictive control
1524  system, the open-loop gain is purely low-pass, with no resonances. This means that adding our
1525  non-predictive proportional signal does not introduce any peaks to the power spectrum of open-
1526  loop microfluctuations.

1527

1528  Predictive models
1529  The simplified system diagram for this model is given in Figure 5. As usual, we can ignore the

1530  bias signal if we express accommodation and demand relative to the rest focus. Reading around
1531  the circuit diagram, the demand signal is the input on the left; we represent this as usual in the
1532  Laplace domain by D(s). After passing through the sensory latency, it becomes
1533  D(s) exp(—sTsens), With the exponential being the Laplacian representation of a time delay
1534  (cf discussion of Equation 2). It then passes through the demand predictor, which attempts to
1535  predict the signal Tiat =Tsens* Tmot into the future. If it did this perfectly, the output of the demand
1536  predictor would be D(s) exp(—sTsens) €Xp(—sTiq:) = D(s) exp(+5Tp,:). TO allow for the
1537  fact that demand is unlikely to be predicted perfectly, we will write the output as
1538  D(s) exp(+sTyor). D(s) is the Laplace transform of the estimated future demand, again
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1539  relative to the rest focus. That is, whereas d(t) is the actual demand at time t, d(t) is the
1540  estimated demand at time t, as estimated at time (t-Tat).

1541  Looking at the bottom of Figure 5, the output is accommaodation, or A(s) in the Laplace domain.
1542  This is output after a motor latency Tmot; thus the output of the “Plant” block in Figure 5 is
1543 A(s) exp(+sTpot)-

1544  Putting both these together, we see that the input to the Controller in Figure 5 is
1545  [D(s) — A(s)] exp(+sTmor). After multiplying this by the Controller and Plant transfer
1546  functions, we find that the output of the plant is P(s)C(s)[D(s) — A(s)] exp(+5Tmor)- But we
1547  previously saw that the output of the plant is A(s) exp(+sT,,,:). Equating these, we see that
1548 A(s) = P(s)C(s)[D(s) — A(s)]

1549  and thus that

P(s)C(s)D(s)
1550 A(S) =————
(s) 1+ P(s)C(s)
1551 Equation 17
1552

1553 (i) Perfect demand predictor
1554 In this idealized case, the demand predictor successfully outputs the future accommodative

1555  demand, SO that D(s) = D(s) and the transfer function is

P(s)C(s)
1 perfect
>8 Hetosea (8 =77 P(s)C(s)
1557  The closed-loop gain IS therefore
|PC]
1558 Gtiosed ) =

J1+ 2Re(PC) + |PC|?
1559  To obtain the open-loop transfer function, we replace D(s) with D(s)+A(s) in Equation 17,
1560  obtaining

P(s)C(s)[A(s) + D(s)]
1+ P(s)C(s)

1561 A(s) =

1562 and thus
1563 HPETTet (o) = P(s)C(s)

open
1564  If demand prediction is perfect, the open-loop gain of the controller is independent of latency.
1565  For our situation where both the plant and controller are leaky integrators, the open-loop gain
1566 is lowpass, with no resonances.

1567
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1568 (iii) “No-change” demand predictor
1569 In this opposite extreme, the demand predictor simply assumes that the future defocus after

1570 time T will still be the same as the defocus it is receiving now:

1571 d(t + Tiqr) = d(t)
1572  and thus
1573 D(s) = D(s)exp(—sTiqr)
1574 Hence
P(s)C(s) exp(—sTiqt)
h t
1575 HRochange (o) = .

14 P(s)C(s)

1576  The closed-loop gain at any frequency f is therefore the same as for the perfect predictor, while
1577  the phase is reduced by 2nfTiat. In fact, the closed-loop gain would be the same for any demand
1578  predictor which accurately predicts demand any time at all into the future, even if, as here, that
1579  time is zero. Inaccurate predictions would of course change the closed-loop gain.

1580

1581  The open-loop gain does depend critically on demand prediction. With no-change prediction,
1582  replacing D(s) with D(s)+A(s) in Equation 17, yields

P(s)C(s)[A(s) + D(s)]exp(—sTqar)
1+ P(s)C(s)

1583 As) =

1584  and thus

nochange( ) P(S)C(S) exp(_STlat)

Hopen 1+ P(s)C(s)(1 — exp(=sTjar))

1586 Equation 18

1585

1587  The presence of the oscillatory exp(—sT;,;) term in the denominator can lead to local peaks in
1588 the gain at some frequencies. Thus with inaccurate no-change prediction, the system is prone
1589  to open-loop resonances due to the inner feedback loop via the efference copy. However, with
1590  our parameter values (Table 2), Equation 18 is a monotonically decreasing function of
1591  frequency. This ensures that we do not see local peaks in the power spectrum of open-loop
1592  microfluctuations (Figure 15).

1593

1594

1595 The predictive model with leaky-integral control: a damped harmonic oscillator
1596  For the case where the plant and the controller are both leaky integrators (Equation 9, Equation

1597  10), and we neglect the other signals, the transfer function of the perfect-prediction model is
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Gf ast

(1 + STplant)(l + srfast) + Grast
1599 Equation 19

1598 perfect( ) _

Closed

1600  with s = 2mxjf. This is the transfer function of a second-order damped oscillator. We can rewrite
1601 it in the standard form

2
Kw§

1602 perfect
()~ s2 4+ 2{wes + wé

closed

1603  where K is the closed-loop gain:

G

1604 —__ fast

(14 Grase)
1605 o the natural angular frequency:

1+G

1606 w2 = (1+ Grase)

TplantTfast
1607  and ¢ the damping coefficient:
1608 C — 1 (Tplant + Tfast)

2\/1 + Gfast \/TplantTfast

1609 Equation 20

1610 For perfect demand prediction, the phase at angular frequency o is:

2{wwy
1611 perfect - _ t Eakheted
¢ (w) arctan <a)§ — w2>
1612  while for no-change prediction,
2{ww
1613 gpnochange (¢)) = — arctan <%) — Ty
2 -

1614

1615  If {<1/N/2, then the maximum gain occurs at the resonant angular frequency:

Grast 1 1
1616 Wres = Woy/1 — 202 = \/ fast  _ -

TplantTrast  2Tfast ZTplant

1617  If {>1/42, then the gain is maximum for f=0 and decreases monotonically with frequency. If
1618 (=1, the system is said to be critically damped.

1619  As discussed in the text, to match the empirical gain of accommodation, ¢ must exceed 1/2,
1620  the minimum value for which gain decreases monotonically with frequency. Solving Equation
1621 20, we find that

59


https://doi.org/10.1101/2021.12.09.471909
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.09.471909; this version posted April 14, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

1622 Trase = Tprant (Gfast + [62 - 1) ~ 2GsastTptane Yields ¢ = V2 , while

1623 Trgse = Tpiant (20fast +1+ J [2Gfase + 1]2 - 1) ~ 4GraseTpiane Yields C=1, i.e. critical

1624  damping

1625

1626  where the approximations hold since the gain Grast has to be >>1, say at least 5, to avoid
1627  excessive lag. (Mathematically, there are two solutions, but the other one gives a very short
1628  time-constant for the controller, which in turn causes other problems such as open-loop
1629  resonances in the noise.)

1630

1631  The minimal-settling time solution
1632  In the model presented here, we chose the “minimum settling time” solution which yields ¢ =

1633 1M2:
1634 Trast = ZGfastTplant
1635  since this gave the best match to both gain and phase data. With this choice, since Grast>>1, the

1636  natural frequency is approximately
_ 1
Tplant\/i

1638  which with our value tpiant=0.156s corresponds to 0.72Hz.

1637 W

1639  For ¢=1/N/2, the phase function is very close to linear out to ®=awo . In this region, for perfect
1640  demand prediction

1641 preTrect x 21,0

1642  corresponding to an effective delay of Tgelay = 27piant. Presumably coincidentally, this delay is
1643  very similar to the sensorimotor latency, although as we can see it arises from a completely

1644  different source. However, for frequencies beyond ~1Hz, the phase asymptotes to 180° (Figure

1645 7).
1646  For no-change prediction, the phase is approximately
1647 ¢(®) = —0(2Tpiane + Tiar)

1648  at low frequencies, corresponding to an effective delay of 27,45t + Tiq:-
1649
1650
1651
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1652
Transfer Non-predictive model — no | Predictive model - | Predictive model —
function prediction perfect prediction of | “no change”
A(s) future demand prediction of future
= H(s)D(s demand
Open-loop
transfer PCe~STiat
function PCe™Har pe 1+ PC(1 — e~ STiar)
Closed-
loop
transfer PCe—STiat PC PCe~STiat
function 1+ PCe=sTwar 1+PC 1+PC
Closed- |PC| |PC| |PC|
loop gain | /1 + 2Re(PCe~i@Twar) + |P( /1 + 2Re(PC) + |PC| /1 + 2Re(PC) + |PC

1653 Table 3. Open- and closed-loop transfer functions H(s) for different control systems; see Appendix for derivation. The transfer
1654 function relates accommodation to the demand via A(s) = H(s) D(s), where A(s) is the Laplace transform of accommodation
1655 relative to rest focus, a(t)-agr, and D(s) is the Laplace transform of demand relative to rest focus, d(t)-age. P(s) the transfer

1656 function of the ocular plant, and C(s) is the transfer function of the neural control (block marked Controller in Figure 3, Figure

1657 4, Figure 5). Tiat is the total sensorimotor latency from a change in demand to the accommodative response.
1658
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