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Abstract 11 

Ocular accommodation is the process of adjusting the eye’s crystalline lens so as to bring the 12 

retinal image into sharp focus. The major stimulus to accommodation is therefore retinal 13 

defocus, and in essence, the job of accommodative control is to send a signal to the ciliary 14 

muscle which will minimize the magnitude of defocus. In this paper, we first provide a tutorial 15 

introduction to control theory to aid vision scientists without this background. We then present 16 

a unified model of accommodative control that explains properties of the accommodative 17 

response for a wide range of accommodative stimuli. Following previous work, we conclude 18 

that most aspects of accommodation are well explained by dual integral control, with a “fast” 19 

or “phasic” integrator enabling response to rapid changes in demand, which hands over control 20 

to a “slow” or “tonic” integrator which maintains the response to steady demand. Control is 21 

complicated by the sensorimotor latencies within the system, which delay both information 22 

about defocus and the accommodation changes made in response, and by the sluggish response 23 

of the motor plant. These can be overcome by incorporating a Smith predictor, whereby the 24 

system predicts the delayed sensory consequences of its own motor actions. For the first time, 25 

we show that critically-damped dual integral control with a Smith predictor accounts for 26 

adaptation effects as well as for the gain and phase for sinusoidal oscillations in demand. In 27 

addition, we propose a novel proportional-control signal to account for the power spectrum of 28 

accommodative microfluctuations during steady fixation, which may be important in hunting 29 

for optimal focus, and for the nonlinear resonance observed for low-amplitude, high-frequency 30 

input. Complete Matlab/Simulink code implementing the model is provided at 31 

https://doi.org/10.25405/data.ncl.14945550. 32 
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 33 

Introduction 34 

Accommodation refers to the ability of the eye to change its focus between near and far 35 

distances, so as to ensure that images remain in sharp focus at the fovea across a wide range of 36 

object distances. This is achieved by changes in the convexity of the intra-ocular lens, brought 37 

about by contraction of the ciliary muscle (Figure 1).  To focus on distant objects, the ciliary 38 

muscle is relaxed, the lens curvature and thus its optical power is minimal; to focus on near 39 

objects, the ciliary muscle contracts, the lens curvature increases and so does its optical power. 40 

Accommodation is usually controlled by the brain as an unconscious reflexive process.   41 

 42 

 43 

 44 

Figure 1. (A) Accommodating on a distant object. When the ciliary muscle is slack, tension in the suspensory zonules is released 45 

and the intra-ocular crystalline lens flattens, enabling distant objects to appear in focus on the retina (for an emmetropic 46 

eye). Light from a nearby object, such as shown, is therefore out of focus. (B) Accommodating on a nearby object. The ciliary 47 

muscle has contracted, increasing the curvature of the lens (blue arrows) in order to bring nearby objects into focus. Not to 48 

scale. Image: Pearson Scott Foresman, public domain.  49 

  50 

A full understanding of this process requires a knowledge of (i) the optical and biomechanical 51 

properties of the eye; (ii) how the required accommodative response is derived from retinal and 52 

extra-retinal cues; and (iii) the neural signals controlling the ciliary muscle to bring about this 53 

response. In this paper, we concentrate on the third of these.   54 

 55 

We begin by discussing the basic structure of models of neural control of accommodation. A 56 

key goal of this section is to provide a clear review of the subject, introducing concepts and 57 

summarizing previous work in a way which is accessible to vision scientists without a 58 
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background in classical control theory. Accordingly, this section incorporates a tutorial to bring 59 

such readers up to speed.  60 

 61 

The core of accommodative control is a negative feedback loop attempting to null the error 62 

between accommodative demand, i.e. the accommodation at which the fixated object will be 63 

in sharp focus, and response, i.e. the accommodation actually adopted. Such feedback loops 64 

are vulnerable to instabilities caused by the finite latencies within the control system. A well-65 

established strategy for avoiding such instabilities is to predict the eye’s response to a motor 66 

command. This requires an “efference copy” of the signal sent to the ocular plant, along with 67 

an internal or “forward” model of the plant, enabling the system to predict the response to the 68 

motor signal. Control can then be based on the predicted future input, rather than the currently 69 

sensed input, effectively removing the effect of the latencies. We consider the particular form 70 

known as a Smith predictor (Abe & Yamanaka, 2003; Miall et al., 1993; Smith, 1957), designed 71 

for closed-loop control of systems with long delays in the feedback. Predictive models stand in 72 

contrast to classical models which do not take account of the sensory consequences of the 73 

body’s own motor actions.  74 

 75 

Armed with this background, we next discuss the evidence that accommodation uses a Smith 76 

predictor, and examine empirical constraints on the model parameters. We aim to produce a 77 

model which can account for behavior in both steady-state and smooth tracking, including 78 

accommodative lag/lead, adaptation, critical damping, and Bode plots of gain and phase. 79 

(Extending the model to reproduce dynamics of the step response (Bharadwaj & Schor, 2005, 80 

2006; Schor & Bharadwaj, 2004, 2006) will be covered in a subsequent paper.) 81 

 82 

This analysis leads us to conclude that accommodative control most likely incorporates a 83 

predictor, in order to avoid instabilities due to the sensorimotor latency. By “predictor”, we 84 

mean a forward model to predict the effect of commanded accommodation changes on the 85 

visual input. The evidence that the system predicts changes in stimulus demand is equivocal, 86 

and our model simply assumes that demand does not change over the timescale of the latency. 87 

 88 

We conclude that accommodation can be modelled successfully as a predictive system with 89 

integral control, but that there are fairly tight constraints on the gain and time-constant of the 90 

integral controller in order for the system to be consistent with empirical data for step and 91 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 14, 2022. ; https://doi.org/10.1101/2021.12.09.471909doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.09.471909
http://creativecommons.org/licenses/by/4.0/


4 

 

smooth tracking. Following previous work, we add a slow, second-order integral controller to 92 

account for adaptation effects, and show that care is required when using this dual-control with 93 

predictive models.  94 

 95 

Most accommodation models omit noise, but noise provides important constraints on model 96 

structure and parameters.  Predictive models can end up amplifying internal noise when the 97 

defocus signal is removed e.g. by viewing through pinholes, which is not observed empirically. 98 

Avoiding these resonances places further constraints on model parameters. An important 99 

contribution of this paper is that our model explicitly includes noise. 100 

 101 

Noise also accounts naturally for the fluctuations seen in steady-state accommodation. These 102 

are often called microfluctuations although they are actually quite substantial at around 0.5D, 103 

exceeding the depth of field  (Campbell et al., 1959a; Charman & Heron, 1988, 2015; Kotulak 104 

& Schor, 1986b). The source and purpose of these is unclear: as well as noise, they may reflect 105 

disturbances from the intraocular pulse, mechanical resonances within the ocular plant, 106 

deliberate attempts at “hunting” in order to find the best point of focus, and/or fluctuating input 107 

from other influences on accommodation (Charman & Heron, 1988, 2015; Collins et al., 1995; 108 

Denieul, 1982; Gray et al., 1993b). 109 

 110 

In normal viewing, the power spectrum of microfluctuations typically shows a pronounced 111 

peak at around 2Hz. This peak is much weaker when viewing through pinhole pupils, where 112 

link between accommodation and image quality is cut (“open-loop”). This may be because in 113 

bright viewing conditions, where the pupil stops down and depth of focus is large, 114 

microfluctuations are of no assistance in improving vision, and might even cause ocular fatigue. 115 

In our model, we are able to reproduce this behavior by including an additional control signal 116 

which is driven directly by sensed defocus and not by the output of the Smith predictor.  117 

 118 

Putting these different components together results in a model where accommodation is 119 

controlled by the sum of four separate neural signals. The model has a total of ten parameters 120 

(Table 2), most of which are quite tightly constrained by the data. In the Results section, we 121 

present simulations demonstrating that this model can account simultaneously for a wide range 122 

of observations.  123 

 124 
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 125 

 126 

Methods 127 

Accommodation as a linear, time-invariant negative feedback control system 128 

 129 

“A complex system that works is invariably found to have evolved from a simple system that 130 

worked. A complex system designed from scratch never works and cannot be patched up to 131 

make it work. You have to start over with a working simple system.” – Gall’s Law (Gall, 1977). 132 

 133 

In the spirit of Gall’s Law, we begin with the simplest possible conceptual model of 134 

accommodation (Figure 2). Viewed as a whole, the model has one input, accommodative 135 

demand, corresponding to the vergence of light rays from the object we wish to look at. This 136 

is measured in diopters; the demand in diopters corresponds to the reciprocal of the distance in 137 

metres from the eye. For an infinitely far object, the demand is 0D; for an object at 50cm, the 138 

demand is 2D.  139 

 140 

The model also has one output, ocular accommodation. When the eye is correctly 141 

accommodated, the accommodation will be equal to the demand so that the image is in focus 142 

on the posterior receptor layer of the retina. Defocus is the difference between the 143 

accommodative demand and the ocular accommodation, all measured in diopters. It acts as an 144 

error signal to the model. As discussed in the Introduction, we assume that defocus is a single, 145 

signed value which is somehow computed by the visual system from the retinal image (e.g. 146 

using blur, higher-order aberrations, longitudinal chromatic aberration (Burge & Geisler, 2011; 147 

Cholewiak et al., 2018; Fincham, 1951; Kruger et al., 1993; Seidemann & Schaeffel, 2002; 148 

Wilson et al., 2002)) and represented as a neural error signal; how this is achieved is beyond 149 

the scope of this paper. In our sign convention, positive defocus error means that the eye is not 150 

accommodating enough, i.e. the eye is focusing on a point more distant than the object of 151 

interest, so the ocular image is focused behind the retina. Positive defocus error should 152 

therefore stimulate an increase of accommodation. The accommodative control system takes 153 

the defocus error as input and uses it to compute a neural control signal (blue block in Figure 154 

2). This neural signal is then fed into the ocular plant block in Figure 2. This block, 155 

corresponding physiologically to the ciliary muscle, lens and other components, converts the 156 

neural signal into the optical power of the lens, i.e. the ocular accommodation. This in turn 157 
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affects the defocus error, since defocus is demand minus accommodation. The accommodative 158 

control system is designed to adjust accommodation so as to minimise the defocus error signal 159 

(Toates, 1972). Thus, this is a negative feedback system.  160 

 161 

In any negative feedback system, one faces the question of how to choose the control signal so 162 

as to minimize the error. One obvious form of error correction is to make the corrective signal 163 

proportional to the error. For example, a very simple form of automotive cruise control might 164 

make acceleration proportional to the difference between the current and the desired speed. 165 

Other widely-used possibilities are to integrate the error over time, or to anticipate changes by 166 

including a term scaling with the derivative. Together, control systems of this type are called 167 

PID (proportional-integral-derivative) controllers. 168 

 169 

In reality, of course, defocus is not the only visual cue to accommodation (Heath, 1956b; 170 

Maddox, 1893). One additional component that we discuss below and include in our models is 171 

the system’s bias towards a particular baseline or resting accommodation (see (Rosenfield et 172 

al., 1993a) for a review). Factors which for simplicity we neglect in this paper include pictorial 173 

cues to distance, sensed proximity and crosslinks from the vergence system. However, defocus 174 

is the only visual cue which is itself altered by accommodation, and thus the cue intrinsic to 175 

the negative feedback loop.  176 

  177 

 178 

 179 

Figure 2. Conceptual model of accommodation. There is a feedback loop, whereby the output (accommodation) affects the 180 

input to the control system. The blocks labelled Accommodative Control System and Ocular Plant are shown here as “black 181 

boxes” which take inputs and yield outputs, without showing how the output is computed. Their transfer functions are B(s) 182 
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and P(s) respectively. The input to the overall system is the accommodative demand, reflecting the distance of the fixated 183 

object, and the output is the ocular accommodation, i.e. where the eye is focused. Defocus error is the difference between 184 

these, demand minus accommodation. Signals are shown in the time-domain, e.g. d(t), and as Laplace transforms, e.g. D(s). 185 

When the system is driven in “open-loop” mode, the connection shown in red is effectively severed at the scissors icon, so that 186 

the input to the Accommodative Control system becomes independent of ocular accommodation. 187 

 188 

 189 

Modelling neural signals as if they were in diopters 190 

In this initial part of the paper we will keep the discussion as general as possible, without 191 

committing to a particular model of the Ocular Plant or Accommodative Control System blocks 192 

shown in Figure 2. However, one detail is worth noting. Without loss of generality we will set 193 

the overall gain of the plant to 1, meaning that it passes a constant signal unchanged. In reality, 194 

the neural signal is encoded in spikes per second, and the output of the ocular plant is 195 

accommodation in diopters. There must therefore be a gain or conversion factor within the 196 

neural signal which converts spikes per second into diopters, taking into account the 197 

biomechanical gain of the plant (Gamlin et al., 1994) . Without loss of generality, we can fold 198 

this conversion factor into our neural signals. Thus by setting the plant gain to 1, we represent 199 

all the neural signals in the model as if they were diopters. This makes them particularly simple 200 

to interpret. 201 

 202 

Closed-loop versus open-loop  203 

The model shown in Figure 2 is “closed-loop”: that is, the input to the accommodative control 204 

system (defocus error) is affected by its output (ocular accommodation). As discussed, this 205 

forms a negative feedback loop, in which increases in defocus error stimulate changes in 206 

accommodation that in turn reduce defocus error.  207 

 208 

If we use the scissors shown in Figure 2 to cut the connection shown in red, we obtain the 209 

equivalent open-loop system, in which the output of the system has no effect on its defocus 210 

error. It might seem impossible to cut the connection in this way in the living eye, but in fact 211 

all that is required to examine the open-loop mode is to make the optical error signal 212 

independent of the accommodative response. There are two main ways in which this can be 213 

done. First, by measuring accommodation and optically adding the current accommodation 214 

state onto the current input demand. The eye’s own optics then effectively remove 215 

accommodation, so that the error signal forming the input to the visual system is simply the 216 
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demand applied by the experimenter, independent of the accommodative response. A positive 217 

non-zero open-loop error signal continues to stimulate increases of the accommodation 218 

response until it reaches saturation, reminiscent of a dog chasing its tail.   219 

 220 

Alternatively, the optical error signal can be set to zero by using a pinhole pupil. Through small 221 

pinholes, objects appear slightly blurred due to diffraction, but critically, this blur is virtually 222 

independent of the stimulus accommodative demand or the ocular accommodation. Pinholes 223 

do not cause a “dog chasing tail” accommodative response; rather accommodation tends to 224 

assume its resting state. This suggests that the visual system experiences images seen through 225 

pinholes as having zero defocus. Thus, viewing through pinholes is a special case of open-loop 226 

in which the input is effectively clamped to zero regardless of output. As we shall see, 227 

examining a system in open-loop mode can produce valuable information about its function. 228 

 229 

  230 

 231 

 232 

Primer on control system theory 233 

At this point, we note that vision scientists may not be familiar with the classical control 234 

systems approach taken in this paper. This section aims to provide a bare-bones introduction 235 

to enable such readers to follow subsequent sections. Table 1 provides a reference for all the 236 

symbols used throughout the paper. 237 

 238 

Linear time-invariant (LTI) systems and the Laplace domain 239 

Linear systems are those whose outputs for a linear combination of inputs are the same as a 240 

linear combination of individual responses to those inputs. For example, in Figure 2, if the 241 

system were linear, then if demand timecourse d1(t) elicited accommodation response a1(t), 242 

and demand d2(t) elicited a2(t), the response to a new demand made up of a weighted sum of 243 

these two timecourses, w1d1(t)+w2d2(t) would be w1a1(t)+w2a2(t). A time-invariant system is 244 

one where the same input, delayed by a time T, will always elicit the same response, also 245 

delayed by a time T. Thus if demand d1(t) elicited accommodation response a1(t), demand d1(t-246 

T) would elicit accommodation response a1(t-T). 247 

 248 

Where a system is both linear and time-invariant (LTI), its response can be analysed using 249 

Laplace transforms of the variables. The Laplace transform turns integral and differential 250 
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equations into polynomial equations which are much easier to solve.  Time-domain functions 251 

are converted into Laplace-domain functions of a complex frequency variable s. We assume 252 

that all signals are zero for times before t=0, and write the Laplace transform of a signal f(t) as 253 

F(s), where  254 

  255 

𝐹(𝑠) = ∫ 𝑑𝑡 
∞

0

𝑓(𝑡)𝑒−𝑠𝑡 256 

Equation 1 257 

We will adopt the convention where, when a lower-case variable represents a function of time 258 

t, the corresponding upper-case denotes its Laplace transform as a function of s. The Laplace 259 

transform is closely related to the Fourier transform with which vision scientists are typically 260 

more familiar, with s representing a complex version of angular temporal frequency: s=j 261 

(where we use j for the square root of -1 throughout). 262 

 263 

In a circuit diagram like Figure 2, the effect of an LTI block is simply to reweight the amplitude, 264 

and/or shift the phase, of each frequency in the input. This means that each LTI block can be 265 

written simply in terms of its complex transfer function H(s). As discussed in more detail 266 

below, a transfer function H(s) is a kind of gain, since it is the ratio of the output to the input, 267 

for each frequency s. For example, consider a transport delay block, whose effect is to delay 268 

the input signal by a latency T, and which thus shifts the phase of each frequency. If the input 269 

signal is i(t), the output after delay is o(t) = i(t-T). Substituting this into Equation 1, we find 270 

that  271 

𝑂(𝑠) = ∫ 𝑑𝑡 
∞

0

𝑜(𝑡)𝑒−𝑠𝑡 = ∫ 𝑑𝑡 
∞

0

𝑖(𝑡 − 𝑇)𝑒−𝑠𝑡 = ∫ 𝑑𝑡 
∞

−𝑇

𝑖(𝑡)𝑒−𝑠𝑡−𝑠𝑇 = 𝑒−𝑠𝑇𝐼(𝑠) 272 

Equation 2 273 

where we used the fact that i(t)=0 for t<0. Thus, the transfer function of a transport delay block 274 

is H(s)=exp(-sT). Constant signals are unaffected (H(0)=1); time-varying signals undergo a 275 

shift in phase proportional to their temporal frequency. 276 

 277 

Integrating by parts, and using the assumption that f(0)=0, we see that  278 

∫ 𝑑𝑡 
∞

0

𝑑𝑓

𝑑𝑡
𝑒−𝑠𝑡 = 𝑠 ∫ 𝑑𝑡 

∞

0

𝑓(𝑡)𝑒−𝑠𝑡 = 𝑠𝐹(𝑠) 279 
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and so the Laplace transform of a derivative is just s times the Laplace transform of the original 280 

function. This means that differentiation can be represented very simply in Laplace space by 281 

multiplication by s, and integration by 1/s. 282 

 283 

In LTI systems, one can do algebra on the Laplace transforms in the usual way. The transfer 284 

function for several LTI systems in parallel is the sum of the individual transfer functions, 285 

while the transfer function for several LTI systems in series is the product of the transfer 286 

functions for the individual systems.  287 

 288 

A mathematical trick to handle rest focus 289 

When viewing through pinholes, although the demand is zero, accommodation tends not to be 290 

zero but to converge on a “rest focus”, aRF, generally of around 1.4D (Leibowitz & Owens, 291 

1978; Rosenfield et al., 1993b), which is the value we shall assume for our model. A similar 292 

default focus is also observed in darkness. To account for this, we assume that the 293 

accommodative control system adds onto the signal computed from defocus a constant “bias” 294 

signal. Because we have normalized neural signals to be expressed in diopters, setting this bias 295 

signal equal to the rest focus ensures that accommodation returns to the rest focus if the defocus 296 

error is clamped at zero.   297 

 298 

This bias signal leads to a small complication, because it technically violates the assumption 299 

that all signals are zero for t0. To handle this, we express both accommodation and demand 300 

relative to the rest focus. We define A(s) to be the Laplace transform, not of accommodation 301 

itself, but of accommodation relative to rest focus, a(t)-aRF. Similarly D(s) is the Laplace 302 

transform of demand relative to rest focus, d(t)-aRF. With this trick, we can then analyse the 303 

system in the Laplace domain as if there were no bias signal (aRF=0), and at the end simply add 304 

aRF back on to demand and accommodation when we move back to the time domain. All the 305 

analyses in this paper use this approach. 306 

 307 

Open- and closed-loop transfer functions 308 

Where accommodation is driven in open-loop mode (imagine Figure 2 after the scissors have 309 

cut), we have 310 

𝐴(𝑠) = 𝑃(𝑠)𝐵(𝑠)𝐷(𝑠) 311 

where B(s) is the transfer function representing the brain’s accommodative control system and 312 

P(s) that representing the ocular plant. As described in the previous section, A(s) and D(s) are 313 
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the Laplace transforms of accommodation and demand relative to rest focus. The open-loop 314 

transfer function relating output A(s) (accommodation) to input D(s) (demand) is thus  315 

𝐻𝑜𝑝𝑒𝑛(𝑠) =
𝐴(𝑠)

𝐷(𝑠)
= 𝑃(𝑠)𝐵(𝑠) 316 

Equation 3 317 

 318 

 319 

In closed-loop mode (Figure 2 with no scissors), the input to the accommodative control system 320 

is defocus error, E(s) = D(s)-A(s). We therefore now have 321 

𝐴(𝑠) = 𝐻𝑜𝑝𝑒𝑛(𝑠)[𝐷(𝑠) − 𝐴(𝑠)] 322 

and thus derive the closed-loop transfer function:  323 

𝐻𝑐𝑙𝑜𝑠𝑒𝑑(𝑠) =
𝐻𝑜𝑝𝑒𝑛(𝑠)

1 + 𝐻𝑜𝑝𝑒𝑛(𝑠)
 324 

Equation 4 325 

where 326 

𝐴(𝑠) = 𝐻𝑐𝑙𝑜𝑠𝑒𝑑(𝑠)𝐷(𝑠) 327 

Equation 5 328 

This relationship between the open- and closed-loop transfer functions is a standard result for 329 

a feedback loop like the one in Figure 2. 330 

 331 

Steady-state response, accommodative lag and lead 332 

LTI theory shows that the steady-state response is obtained by evaluating the system at s=0 333 

(zero frequency). So, if we apply a constant demand dss in closed-loop mode, Equation 5 334 

becomes 335 

𝐴(0) = 𝐻𝑐𝑙𝑜𝑠𝑒𝑑(0)𝐷(0) 336 

Equation 6 337 

where D(0)=dss-aRF and A(0)=ass-aRF (recalling that accommodation and demand are defined 338 

relative to rest focus aRF). From Equation 4, we can write 𝐻𝑐𝑙𝑜𝑠𝑒𝑑(0) in terms of 𝐻𝑜𝑝𝑒𝑛(0). It 339 

will be convenient to introduce the notation Gopen for Hopen(0), i.e. the open-loop steady-state 340 

gain of the system. Putting this together with Equation 4 and Equation 6, we find that 341 

accommodation will eventually be   342 

𝑎𝑠𝑠 = 𝑎𝑅𝐹 +
𝐺𝑜𝑝𝑒𝑛

1 + 𝐺𝑜𝑝𝑒𝑛

(𝑑𝑠𝑠 − 𝑎𝑅𝐹) 343 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 14, 2022. ; https://doi.org/10.1101/2021.12.09.471909doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.09.471909
http://creativecommons.org/licenses/by/4.0/


12 

 

Equation 7 344 

The steady-state defocus error is   345 

𝑑𝑠𝑠 − 𝑎𝑠𝑠 =
𝑑𝑠𝑠 − 𝑎𝑅𝐹

1 + 𝐺𝑜𝑝𝑒𝑛
 346 

Equation 8 347 

Equation 8 shows that – regardless of the control system or plant – the defocus error will be 348 

zero when the demand is equal to the rest focus. This is natural enough, since the rest focus is 349 

the value to which the system is biased. 350 

 351 

However, for other demands, the steady-state error is not zero. When the demand is nearer than 352 

the rest focus, the accommodative response remains further than the demand, a situation 353 

referred to as accommodative lag. Conversely when demand is further than rest, 354 

accommodation is nearer than demand; this is accommodative lead.  355 

 356 

Importantly, the amount of the error depends on the steady-state open-loop gain Gopen. This 357 

demonstrates an important property of negative-feedback systems which attempt to minimise 358 

error: small error requires high open-loop gain. Since we have set the gain of the plant to 1 359 

(without loss of generality, as noted above), the gain Gopen is set entirely by the brain’s 360 

accommodative control system. Empirically, accommodation reaches around 80%-90% of the 361 

demand when the demand is far from the rest focus. From Equation 4, we have 362 

𝑎𝑠𝑠 − 𝑎𝑅𝐹

𝑑𝑠𝑠 − 𝑎𝑅𝐹
=

𝐺𝑜𝑝𝑒𝑛

1 + 𝐺𝑜𝑝𝑒𝑛
 363 

so the observation that accommodation is around 80-90% of demand implies that 364 

Gopen/(1+Gopen) is around 0.8-0.9, and in turn that Gopen must be in the range 4-9. 365 

 366 

Gain and phase of response to sinusoidal inputs 367 

A property of any LTI system is that (after initial onset transients have died away) its response 368 

to a sinusoidal input is a sinusoidal output, with a gain and phase reflecting the transfer function 369 

of the system. Specifically, if the closed-loop transfer function is 𝐻𝑐𝑙𝑜𝑠𝑒𝑑(𝑠), then if 370 

accommodative demand is a sinusoidal function of time, the accommodative response will also 371 

be a sinusoid with the same temporal frequency f. The amplitude of the response will be the 372 

amplitude of the demand multiplied by the gain at that frequency, g(f), and the phase will be 373 

delayed by (f). We will use lower-case g(f) to denote the gain of a system at a particular 374 
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temporal frequency f, and upper-case G=g(0) to denote the steady-state gain, as we did above 375 

for Gopen. According to a standard result of LTI theory, the gain and phase-delay of an LTI 376 

system at frequency f can be obtained from the complex number represented by its transfer 377 

function H(s) evaluated at s=2jf. The gain g(f) is the magnitude of the complex number 378 

H(2jf) and the phase-delay (f) is its phase. 379 

 380 

Sometimes below for brevity we will refer to “the gain” of an LTI operator, without specifying 381 

a frequency. In this case, we mean its steady-state gain. For example, when we refer to “the 382 

gain” of a low-pass filter, we mean the ratio of its steady-state output to a constant input. 383 

 384 

Sensorimotor latencies: a problem for control 385 

These preliminaries out of the way, we now consider different possibilities for the contents of 386 

the blue block labelled Accommodative Control System in Figure 2. We begin by expanding 387 

this block as shown in Figure 3. We now explicitly include the rest focus signal discussed 388 

above. But critically, Figure 3 now also shows the system’s latency, which we have divided 389 

into two parts. The first is an afferent-sensory latency, representing the time taken for 390 

information about the retinal image to travel up the optic nerve and for the brain to compute a 391 

signed estimate of defocus, for example using longitudinal chromatic aberration or higher-392 

order aberrations. The second is an efferent-motor latency, representing the time taken for the 393 

resultant neural signal to travel from the Edinger-Westphal nucleus down the IIIrd cranial 394 

nerve, relay in the ciliary ganglion and reach the ciliary muscle. The motor latency is reduced 395 

by the fact that the axons from the ciliary ganglion to the ciliary muscle are myelinated, 396 

unusually for postganglionic axons of the autonomous nervous system (Tamm & Lütjen-397 

Drecoll, 1996; Warwick, 1954). The sensory and motor latencies have been estimated as 398 

Tsens~200ms and Tmot~100ms respectively (Gamlin et al., 1994; Schor et al., 1999; D. Wilson, 399 

1973), and we will fix the values in our model at these values. In Figure 3, these latencies are 400 

shown within the Accommodative Control System, i.e. the brain, but the model functioning is 401 

unchanged if, for example, part of the motor latency occurs at a neuromuscular junction in the 402 

eye, or indeed if both latencies are merged into a single block. 403 

 404 
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 405 

 406 

Figure 3. Expanding the conceptual model shown in Figure 2 so as to show the rest focus and sensorimotor latencies. This is 407 

the same circuit diagram, but the block labelled Accommodative Control System has here been expanded to explicitly show 408 

the constant bias signal accounting for the rest focus, and the latencies. There is a sensory latency Tsens before the retinal 409 

defocus signal reaches the controller, and a further motor latency Tmot before the neural signal reaches the plant.  410 

 411 

Latencies are a potentially serious problem for any control system. In the block diagram shown 412 

in Figure 3, we can see that the defocus error only becomes available to the block marked 413 

Controller after the sensory latency. The controller therefore operates not on e(t), but e(t-Tsens): 414 

the retinal defocus as it was a time Tsens ago. This in turn reflects the accommodation due to the 415 

neural signal sent up to a time Tsens+Tmot ago. Thus, the system suffers an overall latency of Tlat 416 

= Tsens +Tmot. This can easily lead to overshoots and “ringing”: oscillations in accommodation 417 

as the system is driven beyond the correct value by the out-of-date error signal. 418 

 419 

Overshoots and ringing due to an out-of-date error signal would be seen with the response to 420 

step changes in demand, but in fact the second-order dynamics already indicate that LTI models 421 

do not suffice to account for the response to large step changes; accommodative control seems 422 

to have special mechanisms for these which are beyond the scope of this paper (Bharadwaj & 423 

Schor, 2005, 2006; Schor & Bharadwaj, 2004, 2005). However, an out-of-date error signal 424 

would also affect the response to sinusoidal oscillations in demand which we will concentrate 425 

on in this paper. 426 

 427 
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Empirically, accommodation shows a low-pass response: gain is greatest in the steady-state, 428 

and decreases monotonically with temporal frequency (Charman & Heron, 2000; Krishnan et 429 

al., 1973; Kruger & Pola, 1986; Ohtsuka & Sawa, 1997; Stark et al., 1965). However, it is 430 

challenging to achieve this with the circuit diagram shown in Figure 3 and a Controller block 431 

which is simply a PID controller. Because of the latency, the system can easily end up out of 432 

phase, so that the changes in accommodation actually enhance the defocus rather than reducing 433 

it, as intended. This shows up as resonances or local peaks in the gain function, making it non-434 

monotonic. This is not observed empirically.  435 

 436 

Overcoming latencies with a predictive control system: the Smith Predictor 437 

The solution seems to be that the visual system actually bases its neural control not on the 438 

currently available sensed value of retinal defocus, but on its internal prediction of the future 439 

retinal defocus. That is, whereas in Figure 3 the controller operates on the sensed defocus, 440 

which due to the sensory latency actually represents defocus as it was some time in the past, in 441 

a predictive model the controller operates on the predicted future defocus (Smith, 1957). Figure 442 

4 shows how Figure 3 can be modified so that the input to the controller is predicted future 443 

defocus. Defocus is the difference between the stimulus accommodative demand and the ocular 444 

accommodation, so predicting future defocus requires a prediction both of demand and 445 

accommodation.  446 

 447 

The brain is in principle able to predict accommodation perfectly up to future times less than 448 

the motor latency, simply based on the signals it has already sent to the accommodative plant. 449 

(Campbell & Westheimer, 1960; Hung et al., 2002; Krishnan et al., 1973; Schor & Bharadwaj, 450 

2004; Stark et al., 1965; Sun et al., 1989) To do this, the visual system must effectively have 451 

its own internal model of the ocular plant, represented by the Virtual Plant block in Figure 4. 452 

Such internal models are referred to as forward models in control systems theory. We assume 453 

that the motor latency Tmot largely represents delays in transmitting the control signal from the 454 

brain to the eye. We assume that the virtual plant is located in the brain close to where the  455 

neural control signal is generated, and thus has access to this signal with negligible delay. 456 

Accordingly, the output of the virtual plant is predicted future accommodation, i.e. the value 457 

that ocular accommodation will have at a time Tmot in advance of the present. We write this 458 

predicted future accommodation as â(t+Tmot): the predicted accommodation at a time Tmot in 459 

the future, where the circumflex indicates that this is an estimate of the future accommodation. 460 

Since the accommodation up to a time Tmot into the future is controlled by neural signals already 461 
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sent by the brain, this estimate can in principle be perfect. It should be affected only by noise, 462 

and by any inaccuracies in the virtual plant as a model of the ocular plant. In the model we 463 

present here, neither of these apply and so the prediction of future accommodation is indeed 464 

perfect. 465 

 466 

 467 

   468 

Figure 4. Predictive control. Compare with Figure 3: the Controller block has been replaced with a more complex system 469 

including two predictive blocks (green) as well as the original Controller block (yellow). The prediction helps avoid instability 470 

due to the sensorimotor latencies. To predict accommodation, the model includes a Virtual Plant block (forward model) to 471 

compute what accommodation will be a time Tmot in the future, i.e. after the motor latency. If the forward model is accurate, 472 

this can in principle predict accommodation perfectly up to t+Tmot, since accommodation is under the system’s own control. 473 

To predict demand at time Tmot into the future, the model uses a Demand Predictor block. This requires extrapolating demand 474 

at time Tlat=Tsens+Tmot beyond the last available estimate. This is unlikely to be entirely accurate, since demand can reflect 475 

changes in the outside world, beyond the system’s control. Red labels indicate locations referred to in the text. 476 

 477 

Predicting stimulus demand is more challenging, since in general this reflects the motion of 478 

objects in the outside world. Nevertheless, several studies (Campbell & Westheimer, 1960; 479 

Charman & Heron, 2000; Krishnan et al., 1973; Phillips et al., 1972; Stark et al., 1965) have 480 

suggested that the accommodation system, like vergence and other motor systems (Erkelens, 481 

2011; Rashbass & Westheimer, 1961), may be capable of predicting sufficiently regular input. 482 

For example, if the demand is a square wave, jumping between two values with a constant 483 

period, accommodation develops a very short latency or even changes in anticipation (Krishnan 484 

et al., 1973). How or whether this prediction is achieved is beyond the scope of this paper; it 485 

may be performed by the cerebellum (Ohtsuka & Sawa, 1997; Popa & Ebner, 2019) or it may 486 
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not actually occur (Águila-Carrasco & Marín-Franch, 2021; Otero et al., 2019). The different 487 

possibilities can be modelled with the Demand Predictor block (Figure 4). This takes as its 488 

input what demand is estimated to have been at time Tsens in the past, 𝑑̂(𝑡 − 𝑇𝑠𝑒𝑛𝑠), and gives 489 

as output what it estimates demand will be at time Tmot in the future, 𝑑̂(𝑡 + 𝑇𝑚𝑜𝑡). That is, it 490 

extrapolates its input into the future by a time corresponding to the entire sensorimotor latency, 491 

Tlat=Tmot+Tsens . In this paper, our model Demand Predictor block will simply pass its input on 492 

unchanged, effectively assuming that the demand will stay at its current value. This is probably 493 

a reasonable assumption, since in many natural viewing situations, accommodative demand 494 

probably often changes rather little over the timescale of Tlat. A future model could incorporate 495 

a more elaborate form of prediction, e.g. taking account of stimulus periodicity, but that is 496 

beyond the scope of this paper. 497 

 498 

Having introduced the key elements of the predictive model – the virtual plant and the demand 499 

predictor – we now discuss how it works.  To help with this, we have annotated the signals in 500 

Figure 4 and marked some reference points with red letters. Let’s start at A with the output of 501 

the virtual plant. As we saw above, this represents the brain’s prediction of what ocular 502 

accommodation will be at time Tmot in the future:  𝑎̂(𝑡 + 𝑇𝑚𝑜𝑡). Our model brain uses this 503 

predicted future accommodation in two ways. First (B), the model brain delays this predicted-504 

accommodation signal by the total sensorimotor latency to obtain â(t-Tsens), an estimate of what 505 

the ocular accommodation was at a time Tsens in the past. Thus, the predictive model actually 506 

uses an internal estimate of past accommodation as well as of future accommodation. The point 507 

of doing this is to match the latency of the defocus signal. The input to the whole system is 508 

accommodative demand, d(t) (label D). In the eye (label E), the ocular accommodation a(t) is 509 

optically subtracted from d(t) to yield the error signal e(t), the optical defocus at time t. Ideally, 510 

this is what the accommodation control should be based on, but due to the sensory latency Tsens, 511 

the brain only has access to the delayed signal, e(t-Tsens), representing the defocus at a time Tsens 512 

in the past. At the signal combination labelled C, the brain adds its estimate of past 513 

accommodation, â(t-Tsens), back onto this delayed defocus signal e(t-Tsens), in order to obtain 514 

an estimate of what the demand was at a time Tsens in the past: 𝑑̂(𝑡 − 𝑇𝑠𝑒𝑛𝑠) = 𝑒(𝑡 − 𝑇𝑠𝑒𝑛𝑠) +515 

𝑎̂(𝑡 − 𝑇𝑠𝑒𝑛𝑠). This demand signal is fed into the Demand Predictor block, which uses it to make 516 

a guess at what the demand will be at a time Tmot in the future:  𝑑̂(𝑡 + 𝑇𝑚𝑜𝑡) (label F).  517 

 518 
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Now, the brain makes its second use of predicted future ocular accommodation, this time 519 

without applying any delay. At the signal combination labelled G, it subtracts the predicted 520 

accommodation 𝑎̂(𝑡 + 𝑇𝑚𝑜𝑡) from the predicted demand 𝑑̂(𝑡 + 𝑇𝑚𝑜𝑡) to obtain the predicted 521 

future defocus error: 𝑒̂(𝑡 + 𝑇𝑚𝑜𝑡) = 𝑑̂(𝑡 + 𝑇𝑚𝑜𝑡)-𝑎̂(𝑡 + 𝑇𝑚𝑜𝑡). This predicted future defocus 522 

is what is fed into the yellow Controller block and used to compute the neural control signal 523 

driving accommodation. It is this use of predicted future defocus which makes this a predictive 524 

model, as compared to the model shown in Figure 3.  525 

 526 

As noted above, a constant bias is added on to the output of the controller, which accounts for 527 

the non-zero resting focus. We call the result m(t) (label H). This is the actual motor signal sent 528 

to the ocular plant, with a latency Tmot, which results in the ocular accommodation a(t) (label 529 

I). An efference copy of the same motor signal is also sent to be the input of the virtual plant. 530 

The output of the virtual plant is, of course, the predicted future accommodation that we began 531 

with (A), so we have now followed the signals around the whole of the inner and outer loops. 532 

 533 

In summary, then, although the input to the accommodative control system as a whole is the 534 

sensed current defocus (Figure 2), in a predictive model the input to the accommodative 535 

controller itself is the predicted future defocus. With this modification, PID-type controllers 536 

can now work well and avoid the instabilities associated with an out-of-date error signal.  537 

 538 

Simplified representation of the predictive control system 539 

It is useful to note that, if the virtual plant is a perfect simulation of the physical plant, the 540 

predictive control system shown in Figure 4 is mathematically equivalent to the much simpler 541 

form shown in Figure 5. This form can appear confusing, because it shows accommodation 542 

being subtracted from the stimulus demand after the sensory latency (even though some of the 543 

sensory delay represents the optic nerve and cortical processing) and before the motor latency 544 

(even though that represents processes before accommodation). The reader is invited to trace 545 

the signals around Figure 4 and Figure 5, and verify that provided â(t)=a(t), the same inputs 546 

are fed into the same blocks and so the results must be the same.  Figure 5 provides a visual 547 

picture of what is being achieved by the predictive control: it effectively shifts the latencies 548 

outside the control loop. This diagram holds whatever the demand predictor does. If the 549 

demand predictor were able to predict future demand perfectly, it would cancel out the latencies 550 

and the system would behave as if there were no latencies. But even if the demand predictor 551 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 14, 2022. ; https://doi.org/10.1101/2021.12.09.471909doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.09.471909
http://creativecommons.org/licenses/by/4.0/


19 

 

merely assumes demand stays constant, as in our model, it still makes the control immune to 552 

the destabilising effect of latencies. The effect of latencies is now only to delay the response. 553 

The response to any stimulus is exactly the same as for a system with perfect prediction of 554 

demand, just occurring later in time (see Appendix and Table 3). Thus although predicting the 555 

sensory input enables a more rapid response, predicting one’s own motor response suffices to 556 

ensure stability. 557 

 558 

 559 

 560 

Figure 5. Simplified version of the model shown in Figure 4. This “non-causal” model structure is not physiological and cannot 561 

be mapped onto “brain” and “eye” like the predictive physiological model in Figure 4. For example, here the single block 562 

labelled “Plant” is used to represent both the physical plant in the eye and the virtual plant modelled in the brain. However, 563 

as shown by the annotated signals, it is mathematically equivalent to the physiological model in Figure 4, provided that the 564 

Virtual Plant block is a perfect simulation of the Ocular Plant. 565 

 566 

 567 

 568 

A specific model of accommodative control 569 

So far we have deliberately kept the discussion very general, without committing to a particular 570 

choice of transfer function for either the ocular plant or the Controller block which converts 571 

defocus into a neural signal to the plant. In this section, we develop and justify a more specific 572 

model of accommodative control. We discuss plausible assumptions and constraints on both 573 

the forms of these transfer functions, and their particular parameters. 574 

Ocular plant 575 

The Ocular Plant block in Figure 2-Figure 5 converts the motor neural control signal m into 576 

accommodation a. Physiologically, this block corresponds to the following components. The 577 
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ocular lens is held in an elastic capsule between the anterior and posterior chambers of the eye.  578 

It is tethered along its equator by elastic suspensory ligaments or zonules. The axial zonules 579 

pass from the lens equator to the inner margin of the ciliary muscle, while the posterior zonules 580 

pass from the ciliary muscle back to the choroid at the ora serrata, the junction between the 581 

choroid and the ciliary body.  The lens is flattened by the elastic tension under which it is held 582 

by the zonules, and becomes more spherical – and so more optically powerful – when its  583 

extension is reduced by the constriction of the ciliary muscle.  Figure 6A shows a diagram of 584 

this arrangement. Figure 6B shows a simplified biomechanical model (Beers & van der Heijde, 585 

1994, 1996; Schor & Bharadwaj, 2005; Wang & Pierscionek, 2019). The zonules, choroid and 586 

ciliary attachment are represented as springs. The lens is represented by a Voigt model, in 587 

which a spring is in parallel with a dashpot or damper. The springs are modelled according to 588 

Hooke’s law, i.e. they exert a force proportional to their extension. The dashpot exerts a force 589 

proportional to the rate of change of its extension, modelling the viscosity of the lens and 590 

capsule. The whole system is subject to the force f exerted by the ciliary muscle, which is set 591 

by the neural signal sent by the accommodative control system. We assume that the optical 592 

power of the lens is proportional to the extension of the spring/dashpot modeling the lens. 593 

Since by Newton’s laws the forces must sum to zero at every point, the system shown in Figure 594 

6B represents a set of simultaneous equations; for example at the junction between the axial 595 

zonules and the lens, we have  596 

𝑘𝐿𝑥𝐿 + 𝑏𝐿𝑥𝐿̇ = 𝑘𝑧𝑎𝑥𝑧𝑎 597 

where xL, xza are the extensions of the lens and of the axial zonules respectively, k their spring 598 

constants and bL the viscosity of the lens. Using the constraint that the sum of all the extensions 599 

must be constant, we can go through and solve the simultaneous equations for the lens 600 

extension xL. If we do so, the result is the same as for the simplified system shown in Figure 601 

6C, with a dashpot and a single spring, now representing the combined elasticity of all the 602 

component elements. The value of the full model is that the elasticity of the different tissues 603 

can be measured independently. This is important if one wants to model age-dependence 604 

(Schor & Bharadwaj, 2005), since these vary differently with age, but the collapsed model is 605 

obviously much simpler to work with. 606 

In control theory, a spring can be viewed as an  LTI element converting an input, force, into an 607 

output, extension. The transfer function mapping force to extension is thus simply the inverse 608 

of its spring constant k, i.e. its compliance. A dashpot is similar, but since the force is 609 

proportional to the rate of change of extension, the transfer function mapping extension to force 610 
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is bs , where b is the viscosity and s represents differentiation (see primer above). In this way, 611 

the simple biomechanical model shown in Figure 6C can be represented by the block diagram 612 

in Figure 6D, or even more succinctly by the transfer function in Figure 6E. This is the transfer 613 

function of a first-order low-pass temporal filter with time-constant plant=b/k, also known as a 614 

leaky integrator. This, then, is the function mapping ciliary muscle force to lens extension.  615 

 616 

 617 

Figure 6. A: Diagram of the anatomical structures relevant to accommodation. B: Representation as a biomechanical model, 618 

consisting of a set of elastic springs (spring constant k) and dashpots (viscosity b). The posterior zonule fibres and ciliary 619 

attachment are assumed to be in parallel, so their extensions are equal. C: Minimal model which is mathematically equivalent 620 

to the full model shown in B. The parameters k and b are functions of the original parameters. The thick arrows mark forces. 621 

As well as the ciliary muscle force, we now have the force in the spring, fS, and in the dashpot, fD.. D: Control theory block 622 

diagram equivalent to the simple model in C. For example, at the summation block, we have the force balance FS=F-FD; at the 623 

gain block, we have X=FS/k; in the feedback loop we have FD=bsX. E: Single transfer function equivalent to the block diagram 624 

shown in D. This is a leaky integrator, with time-constant plant=b/k.  625 

 626 

We now make two further simplifying assumptions : (1) that the brain is able to command 627 

ciliary muscle force directly, so that the motor signal sent to the plant from the brain can be 628 

regarded as proportional to ciliary muscle force, and (2) that optical power is proportional to 629 

lens extension. With these assumptions, then, the entire ocular plant block mapping neural 630 

signal to accommodation can be regarded at least roughly as a leaky integrator (Beers & van 631 
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der Heijde, 1994, 1996; Ejiri et al., 1969; Wang & Pierscionek, 2019). We therefore model the 632 

transfer function of the plant as  633 

𝑃(𝑠) =
1

1 + 𝜏𝑝𝑙𝑎𝑛𝑡𝑠
 634 

Equation 9 635 

where empirically plant is around 0.156s for young eyes (Schor & Bharadwaj, 2006). In this 636 

paper, we will take this value as a given. As noted above, we can assume without loss of 637 

generality that the steady-state gain is 1. 638 

 639 

Controller 640 

We now come to a key decision: the choice of transfer function for the Controller, C(s). As 641 

noted above, in industrial control systems, controllers typically have proportional, integral and 642 

derivative (PID) terms, with transfer functions which scale as constant, 1/s or s respectively.   643 

We can rule out pure proportional control, since with P(s) as given in Equation 9, making C(s) 644 

constant means that the system tracks rapid sinusoidal oscillations far better than human 645 

accommodation. For example, C(s)=5 results in a realistic steady-state gain of 83% (Equation 646 

7),  but the gain remains >50% out to frequencies as high as 8Hz, far higher than observed (see 647 

Figure 7 below). Derivative terms do not affect steady-state error, but improve stability and 648 

avoid overshoot. They also enable rapid response to rapid changes. However, they can be 649 

problematic in the presence of noise. Previous work by Schor and Bharadwaj (Bharadwaj & 650 

Schor, 2006; Schor & Bharadwaj, 2004, 2006) suggests that the accommodative system has a 651 

distinct “pulse” mechanism for responding to sudden large changes in accommodation such as 652 

occur when we change from looking at a distant to a near object, which cannot be modelled by 653 

an LTI system and which are beyond the scope of this paper. Furthermore, many of the benefits 654 

of derivative control are already achieved by our use of a forward model to predict future 655 

demand. We therefore do not include a derivative term. This leaves us with the integral term. 656 

A pure integral controller has a transfer function proportional to 1/s, and thus infinite gain at 657 

s=0. This is desirable since it eliminates steady-state error, but it also means that errors can 658 

accumuluate; also as noted, the human accommodation does not seem to completely eliminate 659 

steady-state error. We can account for this by modelling the controller as a leaky integrator, 660 

following Krishnan and Stark (1975): 661 

𝐶(𝑠) =
𝐺𝑓𝑎𝑠𝑡

1 + 𝑠𝜏𝑓𝑎𝑠𝑡
 662 

Equation 10 663 
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where Gfast is the steady-state gain and fast the time-constant. The subscript “fast” is to 664 

distinguish this from a slow integrator which we shall introduce below. A leaky integrator acts 665 

like a pure integral controller over short timescales (s>>1), and like a pure proportional 666 

controller over long timescales (s<<1), thus combining aspects of both. We noted above that 667 

accommodative lead/lag suggests the steady-state gain must be in the range 4-9. We somewhat 668 

arbitrarily chose Gfast=8. 669 

 670 

Gain for sinusoidal input: sub-critical damping 671 

With both the plant and the controller being leaky integrators, and with a predictive control 672 

system, the closed-loop gain is that of a damped harmonic oscillator (Equation 19, Appendix). 673 

The behavior of this system can be summarized by its natural frequency and damping 674 

coefficient , both of which depend on the parameters Gfast,fast,plant (Equation 20). If the 675 

damping coefficient is too low, the maximum gain is observed for a non-zero resonance 676 

frequency, and can even exceed 1. This does not agree with empirical observations of 677 

accommodative response to sinewaves, which is low-pass (Charman & Heron, 2000; Kruger 678 

& Pola, 1986; Ohtsuka & Sawa, 1997; Stark et al., 1965); Figure 7A. This indicates that  is at 679 

least 1/2 , not far below critical damping (=1) (Labhishetty & Bobier, 2017). Saccades have 680 

a damping coefficient of around 0.7 (Bahill et al., 1975); systems with this value have minimum 681 

settling time, i.e. they reach and remain within 5% of their final value most rapidly. We show 682 

in the Appendix that obtaining ~1/2 for a system with Gfast>>1 requires the time-constant of 683 

the fast controller to be 684 

 685 

𝜏𝑓𝑎𝑠𝑡 = 2𝐺𝑓𝑎𝑠𝑡𝜏𝑝𝑙𝑎𝑛𝑡 686 

Equation 11 687 

Thus, with plant=0.156s and Gfast=8, fast must be at least 2.5s. 688 

 689 

Phase for sinusoidal input: further evidence for predictive control  690 

Empirically, up to ~1Hz the phase delay of accommodation is very close to a linear function 691 

of frequency, indicating a constant latency Tdelay :  = 2fTdelay (Charman & Heron, 2000; Heron 692 

et al., 1999; Kruger & Pola, 1986; Ohtsuka & Sawa, 1997; Wildt et al., 1974). The slope usually 693 

corresponds to a delay of ~0.5s (dashed lines in Figure 7BC), though there is considerable 694 

variability between studies. Because 0.5s is close to the sensorimotor latency inferred from the 695 

response to step changes, it is often therefore assumed that this phase slope must represent the 696 
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sensorimotor latency. However, this is not necessarily the case. First, the damped second-order 697 

system formed by the ocular plant and the neural control imposes delays in addition to the 698 

sensorimotor latencies. Second, if the brain predicts demand perfectly – at least theoretically 699 

possible for a regular stimulus like a sinewave – then its phase delay becomes independent of 700 

the sensorimotor latency (see Appendix). 701 

 702 

The time-constant of the fast integrator 703 

Thus, together the gain and phase response of accommodation to sinusoidal oscillations in 704 

demand place quite tight constraints on the time-constant of the fast integrator, fast, given that 705 

the time-constant of the plant is a biomechanical given, and the gain of the fast integrator is 706 

already quite tightly constrained by the observed lead/lag following a change in demand. 707 

Figure 7 illustrates this by comparing the theoretical gain and phase with different values of 708 

fast with empirical results from various subjects and studies. As noted, we can rule out fast < 709 

2.5s because the gain is then too high at high frequencies. The gain data is probably best 710 

described by fast = 5s (green lines in Figure 7A), but this does not account for the phase data. 711 

fast = 5s in the perfect-prediction model gives phases which match empirical data up to around 712 

0.5Hz, but at higher frequencies, empirical phase continues to increase roughly linearly, 713 

implying a constant delay, whereas phase for the perfect prediction model asymptotes at 180o 714 

(Figure 7B). Thus, we probably have to reject the perfect-prediction model (not surprising 715 

given its idealised nature). The no-change prediction model is qualitatively in much better 716 

agreement with the phase data, but then fast = 5s predicts larger phases than are observed 717 

(Figure 7C). The purple line shows the curve with minimum settling time, fast=2.5s which 718 

yields ~1/2. This is in reasonable agreement with both gain and phase data, assuming simple 719 

no-change demand prediction, and we therefore adopt this value in the rest of the paper. 720 

 721 

 722 

 723 
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 724 

Figure 7. Constraints on the time-constant of the fast integrator. Coloured lines show the gain and phase predicted for a 725 

predictive model with leaky-integral control, Table 3, with P(s) given by Equation 9 with plant=0.156s , and C(s) given by 726 

Equation 10 with Gfast=8 and different choices of fast. The phase is shown (B) for a model capable of predicting demand 727 

perfectly, or (C) for the “no-change” model which simply assumes demand will continue at its instantaneous value; both of 728 

these have the gain shown in A. Symbols show empirical results from Kruger and Pola (1986), Ohtsuka and Sawa (1997), and 729 

Stark et al (1965). The dashed line in the phase plots corresponds to a constant latency of 0.5s, close to what is observed. 730 

Code to generate this figure is in Fig_TimeConstraints.m. 731 

 732 

Adaptation and dual control 733 

Another distinctive feature of accommodation is that it adapts after prolonged exposure to the 734 

same demand. This can be revealed by using pinholes to place the system in open-loop mode. 735 

As we have seen, in this situation, accommodation returns to the resting focus. After short 736 

periods of stimulation, this happens rapidly, in a few seconds. However, after long periods of 737 

exposure to a particular demand, the return happens over a much longer time period, sometimes 738 

several minutes. This cannot be accounted for with the leaky-integral control proposed so far. 739 

However, it can be explained by positing a dual control system in which a fast, or phasic, neural 740 

integrator controls changes in response amplitude and a slow, or tonic, neural integrator 741 

maintains the response amplitude (Khosroyani & Hung, 2002; Schor, 1979a; Schor et al., 1986; 742 

Sun & Stark, 1990).  743 

 744 

The fast integrator is the one we have considered so far, which responds to error signals 745 

computed from negative feedback. The slow integrator responds to the activity of the fast 746 

neural integrator, and not directly to the error signal. As the name implies, the slow integrator 747 

has a long time constant, which means that it has little effect on the response to rapid changes 748 

in demand, so our previous discussion of the responses to sinusoids is not invalidated by its 749 

addition.  With this arrangement, the transfer function of the Controller becomes 750 

 751 

𝐶(𝑠) =
𝐺𝑓𝑎𝑠𝑡

𝑠𝜏𝑓𝑎𝑠𝑡 + 1
(1 +

𝐺𝑠𝑙𝑜𝑤

𝑠𝜏𝑠𝑙𝑜𝑤 + 1
) 752 

Equation 12 753 

 754 

 755 

The steady-state open-loop gain of the system is therefore 756 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 14, 2022. ; https://doi.org/10.1101/2021.12.09.471909doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.09.471909
http://creativecommons.org/licenses/by/4.0/


26 

 

𝐺𝑜𝑝𝑒𝑛 = 𝐺𝑓𝑎𝑠𝑡(1 + 𝐺𝑠𝑙𝑜𝑤) 757 

Equation 13 758 

Figure 8 shows the non-predictive control system of Figure 3 after the addition of this second, 759 

slow integrator, since it is easier to appreciate its operation in a non-predictive system. Suppose 760 

the system starts from rest, with demand and accommodation both equal to the rest focus, so 761 

that the defocus error and the outputs of the fast and slow integrators are both zero and the 762 

neural signal sent to the plant is simply the bias signal, maintaining it at the rest focus. Suppose 763 

the demand then makes a step change to a nearer value, d0. This in turn makes the defocus error 764 

non-zero, which begins to charge up the fast integrator. The output of the fast integrator 765 

increases the neural control signal above the bias value, altering accommodation so as to reduce 766 

the error. It also begins to charge up the slow integrator. Thus, over short timescales, the neural 767 

signal controlling accommodation is set mainly by the output of the fast integrator. However, 768 

over long timescales, the slow integrator takes over. The ratio of the slow to fast steady-state 769 

contributions is equal to the gain of the slow integrator (Schor, 1979b; Schor et al., 1986); for 770 

example, with our value Gslow=5, steady-state accommodation is 83% due to the slow integrator 771 

and 17% due to the fast integrator. 772 

 773 

Now suppose that pinholes are applied, making the defocus error zero regardless of 774 

accommodation. In this non-predictive model, after a delay corresponding to the sensory 775 

latency, the signal entering the fast integrator instantaneously drops to zero, and the fast 776 

integrator begins to discharge. As the fast integrator discharges, accommodation drops rapidly, 777 

with a decay time corresponding to fast. When the signal from the fast integrator has dropped 778 

far enough, the slow integrator begins to discharge as well, resulting in a second, slower decay 779 

of accommodation, with a time constant corresponding to slow. Thus, after a long period of 780 

exposure, there is an initial rapid drop as the proportion of accommodation due to the fast 781 

integrator, initially 1/(Gslow+1), decays rapidly, but then a much longer decay as the dominant 782 

component due to the slow integrator decays slowly. 783 

 784 

The slow integrator also increases the overall steady-state gain and thus reduces the steady-785 

state error. Using Equation 13 and Equation 7, the steady-state accommodative response is786 

  787 

𝑎𝑠𝑠 = 𝑎𝑅𝐹 +
𝐺𝑓𝑎𝑠𝑡(1 + 𝐺𝑠𝑙𝑜𝑤)

1 + 𝐺𝑓𝑎𝑠𝑡(1 + 𝐺𝑠𝑙𝑜𝑤)
(𝑑𝑠𝑠 − 𝑎𝑅𝐹) 788 
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Equation 14 789 

where with Gfast=8, Gslow=5  the gain term is 0.98, compared to 0.89 with only the fast 790 

integrator. Thus, following a step-change in demand, the model response rises rapidly to around 791 

90% of the demand, and then over the next tens of second rises more slowly to approach the 792 

demand exactly. Thus, the gain of the slow integrator cannot be made too large (say, much 793 

larger than 5) without eliminating the ability of the model to account for accommodative lead 794 

and lag. 795 

  796 

 797 

 798 

 799 

Figure 8. Non-predictive model incorporating dual (fast+slow) control. The slow integrator can be added to predictive models 800 

in the same way, but its effect is then much more complicated. 801 

 802 

With predictive control, there is an additional subtlety which also places an upper bound on 803 

Gslow. In such systems, the fast integrator is driven not by retinal defocus directly, but by the 804 

estimated future defocus (Figure 4). This does not immediately drop to zero when pinholes are 805 

applied. When the system is made open-loop by setting d(t)=a(t), the input to the fast integrator 806 

becomes a(t-Tsens)-a(t+Tmot) for the no-change prediction model. This becomes zero once 807 

accommodation has stabilized, but is finite while it decays. When the gain of the slow integrator 808 

is sufficiently large, this small error input is enough to keep the slow integrator high. This in 809 

turn keeps accommodation high and thus sustains the error signal. Accommodation creeps 810 

slowly down to the rest focus with a time-constant which, counter-intuitively, can be much 811 
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longer than any of the three time-constants of the system: plant, fast, slow. This effect is 812 

independent of exposure duration, so cannot account for the adaptation which the slow 813 

integrator was introduced to explain. To avoid this effect and obtain a clear difference between 814 

short and long exposure durations, we have found that Gslow needs to be less than around 10. 815 

Here, we have set Gslow=5. 816 

 817 

 818 

Microfluctuations and noise 819 

A distinctive property of accommodative response is the relatively large fluctuations to which 820 

it is subject in both open and closed loop. The power spectrum of open-loop accommodation 821 

is roughly a straight line on log-log axes (Campbell et al., 1959b; Campbell & Westheimer, 822 

1960; Stark et al., 1965), i.e. a power-law spectrum, P=1/f. We model this by injecting white 823 

noise onto the defocus signal prior to input to the neural controllers (Figure 10). White noise 824 

has a flat power spectrum, but integration by the two integrators within the system (the neural 825 

controller and the plant) converts it to a power-law spectrum, with an approximately Brownian 826 

(1/f2) spectrum.  827 

 828 

Noise has often been omitted from models of accommodative control, presumably with the 829 

rationale that once the correct noise-free response has been obtained, noise can always be added 830 

later to simulate microfluctuations. However, this approach is unwise, because noise in fact 831 

adds important constraints to the system. This is especially true with a predictive control 832 

system, which can easily end up amplifying noise in the open-loop condition. Referring to 833 

Figure 4, we see that a predictive control system contains not one but two feedback loops: one 834 

via the eyes, and one internal to the brain, incorporating the virtual plant. Operating in open-835 

loop mode cuts the outer feedback loop, but leaves the internal feedback loop intact. Depending 836 

on the coefficients, internal noise can easily resonate within this loop, creating a situation where 837 

the power spectrum of open-loop accommodation has sharp peaks which do not occur in 838 

closed-loop mode, since the outer feedback loop suppresses them in its effort to keep the error 839 

zero. This is not observed empirically. The power of low frequencies does increase in open-840 

loop mode (Charman & Heron, 2015; Gray et al., 1993b), since without an error signal 841 

accommodation performs a random walk around the rest focus, whereas it is kept close to the 842 

demand in closed-loop mode. But we do not see an increase in the power of particular high-843 

frequencies, as would occur if internal noise were resonating within the internal feedback loop.  844 
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 845 

Fortunately, we find that the values we have already derived are consistent with these data. A 846 

more underdamped system –  say Gfast=15, fast=2s, which puts the damping coefficient  at 0.5 847 

– does show unrealistic high-frequency resonances within the forward model feedback loop, 848 

but our sub-critically-damped parameters Gfast=8, fast=2.5s, =0.7 already suppress the open-849 

loop resonance.  850 

 851 

Explaining the closed-loop resonance seen for high frequencies at low amplitudes 852 

In fact, several workers have found evidence for a resonance in closed-loop but not open-loop 853 

mode. The first evidence comes from microfluctuations during steady fixation. Several workers 854 

have found that the power-spectrum of closed-loop accommodation has a peak at around 2Hz 855 

(Figure 9A). It is not always present, but when found is always more prominent in closed-loop 856 

than open-loop accommodation. Although the location of this peak varies with heartrate, 857 

suggesting the pulse as a possible source interacting with blood volume of the ciliary body 858 

(Collins et al., 1995; Winn et al., 1990), the fact that it is higher in closed-loop conditions 859 

suggests that the source must be amplified by a neural resonance within the outer feedback 860 

loop.  861 

 862 

Furthermore, the same resonance is assumed to be responsible for another puzzling 863 

observation, relating to gain with sinusoidal stimuli. In our discussion around Figure 7, we 864 

emphasized the lowpass nature of the gain response. This is true at high amplitudes, but for 865 

low-amplitude oscillations in demand, the curves become non-monotonic, with an increase in 866 

gain at around 2Hz (Figure 9B). Ockham’s Razor suggests this reflects the same closed-loop 867 

resonance causing the ~2Hz peak in microfluctuations. However, the dependence on amplitude 868 

indicates that this resonance must be caused by a nonlinear mechanism, since for a linear 869 

system gain is independent of stimulus amplitude.  870 

 871 
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 872 

Figure 9. Evidence for a resonance at around 2Hz in accommodative control. (A) Figure 5 from Stark et al 1965 (Stark et al., 873 

1965), replotting empirical results from Campbell et al 1959 (Campbell et al., 1959b), showing the power spectrum of 874 

accommodation under closed-loop (solid) and open-loop (pinhole, dashed) conditions. (B) Empirical results from Figure 4 of 875 

Stark et al 1965, showing gain for sinusoidal oscillations of three different amplitudes (0.2D, 0.4D, 0.6D). Gain is expressed in 876 

decibels (left axis): 0dB corresponds to an amplitude gain of 1, -10dB to 0.32, -20dB to 0.1, -30 to 0.03.  877 

 878 

Resonances observed in closed- but not open-loop mode immediately suggest a control system 879 

lacking the predictor we have argued for so far. Non-predictive control is prone to closed-loop 880 

instabilities in systems with latencies, like accommodation. This occurs in the outer feedback 881 

loop via the eye, when the accommodation change designed to null out defocus arrives out of 882 

phase due to the latency and ends up enhancing the defocus which cause it. Predictive control 883 

avoids these closed-loop instabilities, but if the prediction is imperfect, it can be vulnerable to 884 

open-loop resonances due a similar effect occurring via the internal feedback loop driven by 885 

the efference copy. (For a mathematical justification of these statements, see the Appendix, 886 

specifically the discussion around Equation 15, Equation 16 and Equation 18.) 887 

 888 

Thus to explain both the power spectrum of microfluctuations, and the non-linear resonance in 889 

the response to sinusoidal demand, we postulate an additional signal controlling 890 

accommodation. This is proportional to small amplitudes of the current defocus, not the 891 

estimated future defocus, and is thus not predictive. (This signal is, however, included within 892 

the efference copy used to estimate future defocus within the predictive control system, as 893 

shown in Figure 10). Because this signal is non-predictive, it is prone to closed-loop 894 

instabilities. But for the same reason, it avoids open-loop resonances which can occur within a 895 

predictive system.  896 
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To prevent the closed-loop instabilities from catastrophically destabilizing the response, we 897 

clip this non-predictive signal at a low value, set to 0.15D in our model (i.e. signals larger than 898 

0.15D in magnitude are set to 0.15D depending on their sign). This saturating value is chosen 899 

simply because it gives a reasonable match to empirical results. It is low enough to ensure that 900 

the signal does not change the behavior of the model in response to large changes in defocus. 901 

However, it is large enough that the signal still produces a visible high-frequency peak in the 902 

power spectrum of closed-loop microfluctuations and a high-frequency resonance in the 903 

response to low-amplitude sinusoids (see Results).   904 

This non-predictive saturating signal has other interesting effects on accommodation. Notably, 905 

it facilitates a rapid response to small step stimuli, because non-predictive proportional signals 906 

tend to react faster than predictive integral signals. For example, suppose demand suddenly 907 

increases by 0.1D, causing an 0.1D step-change in defocus. The non-predictive proportional 908 

control signal, with unit gain, requests the full 0.1D increase in accommodation. The fast 909 

integrator begins responding at the same time, but due to its integral nature, its response ramps 910 

up more gradually. Furthermore, because the non-predictive proportional signal uses the 911 

current sensed defocus, rather than the predicted future defocus, it stays requesting the full 912 

0.1D for at least 0.3s, until the sensorimotor latency has elapsed and the ocular plant starts to 913 

respond and thus reduces the sensed defocus. In contrast, input to the fast integrator is estimated 914 

future defocus, which begins to fall immediately based on the requested change to 915 

accommodation (the predictive control system assumes that demand will stay at the new value, 916 

but it predicts that defocus will fall because of the predicted accommodative response). So, the 917 

input to the fast integrator begins to fall immediately from its initial peak of 0.1D, whereas the 918 

input to the proportional controller stays at 0.1D until the sensorimotor latency has elapsed. 919 

Thus for small step-changes in defocus, the non-predictive proportional signal enables a larger, 920 

faster response. However, the saturation means that its effect is limited to small changes, with 921 

the predictive-integral control dominating the response to large changes. Dynamics of larger 922 

step responses are controlled with a pulse signal  (Bharadwaj & Schor, 2005, 2006; Schor & 923 

Bharadwaj, 2004, 2006) that will be added to this model in a subsequent paper.   924 

 925 

Depth of focus 926 

In principle, changes in defocus that are so small they produce no detectable change in the 927 

retinal image, given the eye’s optics, cannot drive accommodation. The smallest change in 928 
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defocus which produces a detectable change in accommodation is referred to as objective depth 929 

of focus. This is typically much smaller than the subjective depth of focus, i.e. the smallest 930 

change in defocus which produces a perceptible change in image quality (Kotulak & Schor, 931 

1986a; Udlam et al., 1968; Yao et al., 2010). Depth of focus is often modelled as a deadzone 932 

(e.g. (Khosroyani & Hung, 2002; Schor, 1979b)): the defocus signal is set to zero unless it 933 

exceeds some threshold value corresponding to the objective depth of focus, say 0.2D. In such 934 

models, the deadzone contributes to lags and leads of accommodation, since the error signal 935 

vanishes once accommodation comes within the deadzone. However, this approach has a 936 

number of drawbacks:  937 

(i) It can result in unrealistic jumps, where a small change in demand pushes the defocus above 938 

the threshold and thus elicits a disproportionately large response.  939 

(ii) It produces a hysteresis effect, whereby accommodative lead and lag can depend on how 940 

the demand is approached. For example, with a threshold of 0.2D, if the demand steps up from 941 

1D to 2D, the effective defocus becomes zero once accommodation reaches 1.8D, so we get a 942 

lag. But if demand steps down from 3D to 2D, effective defocus becomes zero once 943 

accommodation reaches 2.2D, so we get a lead. This hysteresis is not typically observed, except 944 

with extremely blurred images (Heath, 1956a) . 945 

(iii) It reduces the gain of the response to low-amplitude oscillations. For example, consider a 946 

slow oscillation ranging between 1D and 3D. Assume for simplicity that the closed-loop gain 947 

of the system is 1, so that in the absence of a deadzone, the response would track demand 948 

exactly. With a deadzone clipped at 0.2D, the response would range from 1.2D to 2.8D, 949 

reducing the gain to 0.8. With a lower-amplitude oscillation where demand ranged from 1.5D 950 

to 2.5D, the response would range from 1.7D to 2.3D, making the gain 0.6. With a still lower-951 

amplitude demand ranging from 1.7D to 2.3D, response would range from 1.9D to 2.1D, 952 

making the gain 0.3. Yet this decrease in gain with decreasing amplitude is not observed. In 953 

fact, accommodative gain tends to be smallest for high amplitudes, not for low amplitudes 954 

(Stark et al., 1965, p. 196). 955 

Furthermore, recent evidence has undermined the experimental support for the notion of a 956 

deadzone. The accommodative system produces measurable responses to small amounts of  957 

defocus which do not introduce perceptible blur (Kotulak & Schor, 1986a; Yao et al., 2010), 958 

while  the measured accommodative lags and leads may in fact maximize image quality rather 959 

than reflecting a deadzone (Labhishetty et al., 2021). For all these reasons, we have chosen not 960 

to include a defocus deadzone in our model. The objective depth of focus is adequately 961 
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accounted for here by the white noise we have added to the defocus signal, which effectively 962 

swamps small changes. A more complete model would of course compute defocus from the 963 

retinal images, and thus take into account that small changes in defocus are hard to detect 964 

(Labhishetty et al., 2021). 965 

 966 

 967 

Simulink implementation and summary of the model 968 

Figure 10 shows the complete model as it appears in our Matlab Simulink implementation, 969 

incorporating all the elements discussed above. The Simulink model has two inputs: (1) 970 

“demand”, accommodative demand in diopters, and (2) “pinhole”, a binary signal which 971 

conveys whether the eye is currently viewing through a pinhole or not. If pinholes are present, 972 

the defocus signal is set to zero at the block labelled “Apply Pinhole”; otherwise it is set to the 973 

optical defocus, i.e. demand minus accommodation. The defocus signal has white noise added 974 

to it and is delayed by the sensory latency before reaching the “brain” module.  975 

 976 

Here, four signals are combined to produce a neural signal which is delayed by the motor 977 

latency before reaching the ocular plant. From top to bottom, these four signals are: (1) the 978 

constant bias signal, which sets the rest focus;  (2) the proportional signal, which is simply the 979 

noisy defocus signal clipped at 0.15D; (3) the signal from the fast integrator, which is driven 980 

by the estimated future defocus; (4) the signal from the slow integrator, which is driven by the 981 

fast integrator. One final detail not mentioned so far is that the neural signal is thresholded at 982 

zero to ensure it is positive. This is visible in the diagram as the “saturation” block on the far 983 

right, immediately after the four signals are combined. This accounts for the fact that the ciliary 984 

muscle can only be commanded to contract, making the lens more convergent, or allowed to 985 

relax. Negative values would effectively command the ocular lens to adopt a divergent form, 986 

which is physically impossible. 987 

 988 

As well as being sent down cranial nerve III to the eye, an efference copy of the neural signal 989 

is directed to a virtual plant within the brain, which predicts the future accommodation. This in 990 

turn is used to estimate the future defocus which drives the fast integrator. For completeness, 991 

we have included a block labelled “Demand Predictor”, although in the current instantiation of 992 

the model, this simply passes its input through unchanged. 993 

 994 
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 995 

 996 

Figure 10. Block diagram of our final model (Simulink file AccommodationModel.slx), incorporating all the features discussed 997 

in the paper.  The Simulink model has two inputs: (1) demand, and (2) whether or not the eye is viewing through a pinhole. It 998 

has one output: accommodation. 999 

 1000 

Simulation details 1001 

The next section shows simulation results for sine and step stimuli with this model. All 1002 

simulations were run in Simulink, Matlab R2020b, with a variable-step solver, automatic solver 1003 

selection and the default settings (relative tolerance 0.001 and max/min/initial step size and 1004 

absolute tolerance all set to “auto”). For plotting, we interpolated the output to obtain results 1005 

every millisecond. Note that this can give the impression of greater variability than in some 1006 

empirical results where accommodation may be measured at a much lower rate, e.g. 50Hz. To 1007 

obtain the velocity traces shown in Figure 16, we took the difference between successive 1008 

accommodation values to obtain the change per millisecond, then smoothed this within a 1009 

moving window of 10ms. 1010 

 1011 

To obtain the model gain and phase in response to sinusoidal oscillations in demand, we ran 1012 

the model for 25 cycles of the specified frequency, then fitted a sinewave to the results using 1013 

Matlab’s Curve Fitting Toolbox. We fixed the frequency of the sinewave to the frequency of 1014 

the stimulus and fitted the three free parameters baseline, amplitude and phase (see code in 1015 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 14, 2022. ; https://doi.org/10.1101/2021.12.09.471909doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.09.471909
http://creativecommons.org/licenses/by/4.0/


35 

 

Run_Sine.m). The amplitude and phase of the response were taken to be those of the fitted 1016 

sinewave. 1017 

 1018 

The simulation shows onset transients at its start point, as the integrators settle. In all cases, we 1019 

therefore discarded the first few seconds of simulation time in order to exclude these transients. 1020 

 1021 

Results 1022 

The different elements of this model were motivated by different observations – the gain and 1023 

phase to sinusoids; adaptation; power spectra of microfluctuations so on. Components such as 1024 

the fast and slow integrator and the virtual plant have been proposed before for the 1025 

accommodation step response (Schor & Bharadwaj, 2005), but to our knowledge never tested 1026 

in combination for pursuit sinusoidal tracking (Schor & Kotulak, 1986) or adaptation (Schor, 1027 

1979b), or with white noise and the feeding through of a clipped signal proportional to the 1028 

current defocus. This combination is thus a novel contribution of this paper. We now 1029 

demonstrate that this unified model can reproduce each of the observations that motivated its 1030 

different components. 1031 

 1032 

Response to sinusoidal demand 1033 

Figure 11 shows the gain and phase of the model (heavy black line), compared with results 1034 

from human subjects digitised from (Kruger & Pola, 1986; Ohtsuka & Sawa, 1997). This is of 1035 

course similar to results already shown in Figure 7, but whereas those curves were obtained 1036 

from mathematical formulae for a leaky integrator in a predictive control system, Figure 11 is 1037 

obtained via Simulink simulation of the full four-signal model with noise.  There is reasonable 1038 

agreement in gain (Figure 11AB); both humans and model are low-pass. The main quantitative 1039 

disagreement is that the “knee”, where the gain drops rapidly, typically occurs around 0.4Hz 1040 

in humans and slightly later, around 0.6Hz, in the model. There is also good agreement in phase 1041 

(Figure 11C). For comparison, the dashed black line shows the phase which would be obtained 1042 

for a model with perfect demand prediction. This can be obtained from the phase of our model 1043 

with “no change” demand prediction by subtracting the sensorimotor latency: perfect = nochange 1044 

– 360fTsens. The phase function of most human subjects agrees better with that of the no-change 1045 

model rather than the perfect model, suggesting that these subjects had little ability to predict 1046 

the oscillatory demand.  1047 

 1048 
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 1049 

 1050 

 1051 

Figure 11. Gain and phase of the model response to sinusoidal demand, compared to empirical results. A,B: Gain plotted on 1052 

linear and log axes. C: Phase plotted on linear axes. The heavy black line is the response of the model in Figure 10 with the 1053 

parameters given in Table 2. The dashed black phase line shows the phase which would be obtained by a model capable of 1054 

perfectly predicting the sinusoidal oscillation in demand. Triangles show empirical results for four human subjects, digitised 1055 

from Kruger and Pola (Kruger & Pola, 1986), using the data with white light and defocus cue only. Circles are for a further 1056 

four subjects, digitised from Ohtsuka and Sawa (Ohtsuka & Sawa, 1997), using only their control subjects. In (Kruger & Pola, 1057 

1986) and in the model, the demand oscillated between 1D and 3D, i.e. the amplitude of the sinusoid was 1D and its mean 1058 

value was 2D. In (Ohtsuka & Sawa, 1997), the amplitude was 1.5D and its mean value is not stated.  Code to generate this 1059 

figure is in Fig_CompareGainPhase.m. Run_Sine.m must be run first to generate the model data. 1060 

 1061 

Figure 11 was for sinusoidal demand oscillations with an amplitude of 1D. Of course, the gain 1062 

and phase of a linear system are independent of amplitude. However, our model is nonlinear 1063 

due to the saturation of the non-predictive proportional signal. Figure 12 shows the gain and 1064 

phase in the same format as Figure 11, but for different amplitudes of oscillation around a 2D 1065 

baseline. The green lines are for the 1D amplitude shown in Figure 11, but for lower amplitudes 1066 

the gain and phase start to deviate significantly from these results. Most strikingly, there is a 1067 

resonance at 1.2Hz where the gain actually goes above 1 for the smallest oscillations (0.1D). 1068 

This represents the instability caused by the non-predictive proportional signal. Since this 1069 

signal is clipped at 0.15D, it has a significant effect only for low-amplitude oscillations.  1070 

 1071 
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 1072 

 1073 

Figure 12. Model gain and phase as a function of amplitude. The green curves (1D) are what was shown in Figure 11, but we 1074 

see that the behaviour at low amplitudes is quite different, with a resonance at 1.2Hz.  Code to generate this figure is in 1075 

Fig_Sine.m. Run_Sine.m must be run first to generate the model data. 1076 

 1077 

This effect is qualitatively in agreement with the low-frequency resonance reported by Stark et 1078 

al. (1965), which led them to conclude that human accommodative control must include a 1079 

nonlinearity. Digitized data from Stark et al. (1965) is replotted in Figure 13, along with the 1080 

response of the model. The model does not reproduce the strong dip in gain at 0.8Hz for an 1081 

amplitude of 0.3D (blue point in Figure 13A), but apart from that, the agreement is quite good. 1082 

In particular, it accounts for the key observation that gain is quite high, around 0.5, for 0.3D-1083 

amplitude oscillations at around 2Hz, whereas gain is much lower, around 0.1, for higher 1084 

amplitude oscillations at this frequency. 1085 

 1086 

 1087 

 1088 

Figure 13. Symbols are digitised data from Figure 3 of  Stark, Takahashi & Zames (Stark et al., 1965). These are measured 1089 

gain and phase for one subject, for amplitudes of 0.3D (blue) and 1D (orange). The curves are model gains and phase for 1090 

these amplitudes, about a baseline of 2D. Code to generate this figure is in Fig_StarkTakahashiZames.m. 1091 

Run_StarkTakahashiZames.m must be run first to generate the model data. 1092 

 1093 
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Limiting tracking frequency  1094 

When asking what are the fastest changes that can be tracked by accommodation, it is important 1095 

to consider phase as well as gain. Figure 12C and Figure 13C showed that the phase of the 1096 

response relative to demand increases with frequency, reaching 180 degrees at a frequency of 1097 

around 1Hz. When this occurs, the demand and response are in antiphase, and the error is 1098 

greater than the stimulus. Interestingly, if the response gain were zero, then the error for the 1099 

180 deg phase delay would be smaller than if the gain were 1.0.  It is therefore of interest to 1100 

ask how the gain and phase changes affect the model’s defocus error for demand oscillations 1101 

of different amplitude and frequency. We quantify this using the mean absolute defocus error. 1102 

The defocus error is the difference between demand and accommodation at any time; absolute 1103 

defocus error is the rectified version of this waveform, and mean absolute defocus is the 1104 

average value of this over time: 〈|𝑑(𝑡) − 𝑎(𝑡)|〉 , where 𝑑(𝑡) = 𝐷𝑚𝑒𝑎𝑛 + 𝐷𝑎𝑚𝑝(sin 2𝜋𝑓𝑡). 1105 

 1106 

The heavy curves in Figure 14A show how mean absolute defocus error varies with amplitude 1107 

and frequency of sinusoidal demand. In each case, the peak error is just below 1Hz, when the 1108 

response is 180o out of phase with the demand (Figure 12C). The error increases with demand 1109 

amplitude, even though for frequencies below the peak, the gain (i.e. the ratio of response to 1110 

demand) is closer to 1 for larger amplitudes (Figure 12AB).  1111 

 1112 

The aim of accommodative control is to track demand so as to minimize defocus error, 1113 

but the phase-delay means that for sufficiently high frequencies, this aim would be better 1114 

achieved by simply keeping accommodation fixed at the mean demand, i.e. by having a 1115 

response gain of 0, rather than attempting to track oscillations in demand about this baseline. 1116 

The dashed lines in Figure 14A shows this zero-gain tracking error, i.e. the mean absolute 1117 

defocus error which would be achieved if accommodation stayed at the steady-state value 1118 

elicited by the mean demand (Dmean=2D in this example). Because the amplitude of zero gain 1119 

tracking error depends only on the input amplitude, the error is independent of temporal 1120 

frequency of the sine input. Since the static accommodative lag is small, the zero-gain steady-1121 

state response is also close to 2D.  So the mean zero-gain error is approximately the average 1122 

value of  |𝐷𝑎𝑚𝑝(sin 2𝜋𝑓𝑡)|, or  2Damp/, where Damp is the amplitude of the demand oscillations 1123 

about the 2D baseline.  1124 

 1125 
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We define the limiting tracking frequency to be the frequency at which the actual gain 1126 

and phase-delay of the accommodative response produces the same error as would be achieved 1127 

with zero gain.  This is where the zero-gain tracking error is first equal to the actual error, 1128 

marked with a cross x in Figure 15A. For frequencies lower than this limit, the oscillation in 1129 

accommodative response is helpful, i.e. it tracks the oscillations in demand with a phase delay 1130 

low enough to reduce the mean defocus error below the zero-gain tracking error. However for 1131 

frequencies above the limit marked with a cross, the oscillatory response is out of phase and 1132 

ends up making mean defocus error larger than if accommodation simply remained constant at 1133 

the baseline value. 1134 

 1135 

Because of the nonlinearity represented by the saturating non-predictive proportional 1136 

signal, this limiting-tracking frequency depends on amplitude, as shown in Figure 14B. For 1137 

large-amplitude oscillations in demand, accommodation can track only up to around 0.4Hz. 1138 

We saw above that the  non-predictive proportional signal enables a more rapid response to 1139 

small changes. This is shown in Figure 14B by the increase in limiting tracking frequency for 1140 

low-amplitude oscillations. 1141 

 1142 

Using the result that perfect demand prediction would reduce the phase by the sensorimotor 1143 

latency, we can also infer what these curves would be for a model with perfect demand 1144 

prediction but with the same plant and same leaky-integral controller. These are shown with 1145 

the light curves in Figure 14AB. Perfect demand prediction does reduce the error and increase 1146 

the limiting tracking frequency, but not dramatically, because of limits imposed by the time 1147 

constants of the plant and of the fast integrator.  1148 

 1149 

 1150 
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 1151 

Figure 14. (A) Mean absolute defocus error for sinusoidal demand oscillations of different frequencies and amplitudes about 1152 

a 2D baseline. The heavy curves show |d(t)-a(t)| for our model with its observed gain and phase; the light curves are those 1153 

inferred for a model with perfect demand prediction. The dashed lines show the expected high-frequency limit, i.e. the mean 1154 

defocus error if the demand oscillated but the response stayed at the steady-state value elicited by the mean demand, and 1155 

the crosses indicate where this is first less than the error with tracking. The crosses mark where this crosses the mean defocus 1156 

error.  We take this as an indication of the highest frequency which can be successfully tracked at this amplitude. (B) Tracking 1157 

frequency limit as a function of amplitude, for the actual model (heavy line, crosses) and for a model with perfect demand 1158 

prediction (upper light line). Code to generate this figure is in Fig_Sine.m. Run_Sine.m must be run first to generate the model 1159 

data. 1160 

 1161 

Steady-state microfluctuations 1162 

We now turn to noise, and examine how well our model can account for accommodative 1163 

microfluctuations. Figure 15A shows example closed- and open-loop accommodation traces 1164 

recorded from the model over the course of 5 simulated minutes. The red trace is for closed-1165 

loop viewing of a stimulus at 1D (red dashed line). Accommodation thus fluctuates around a 1166 

value a little over 1D, reflecting the accommodative lead for a stimulus nearer than the rest 1167 

focus, here 1.4D. The fluctuations span a range of around 0.1D (2SD). The SD is 0.03D, 1168 

which is small compared to the SD of human microfluctuations (0.1-0.3D, (Charman & Heron, 1169 

1988, 2015; Gambra et al., 2009)). The power spectrum, Figure 15D, has a prominent peak at 1170 

around 1.5Hz. This periodic structure is clearly visible in the 10s excerpt from the trace shown 1171 

in Figure 15B. 1172 

 1173 

The blue trace is for open-loop viewing, e.g. through pinholes. Now, the response wanders 1174 

around the rest focus, 1.4D (dashed blue line). However, because the bias signal is constant 1175 

rather than scaling with the difference between accommodation and rest focus, the excursions 1176 

are much wider. This is visible in the power spectrum, Figure 15D, where the power continues 1177 

to rise as frequency reduces.  1178 

 1179 

Figure 15B shows a 10s excerpt from the trace in Figure 15A, for comparison with the example 1180 

empirical data in Figure 15C, digitized from (Gray et al., 1993a). Although the amplitude of 1181 

the microfluctuations is larger in the human observer, the same qualitative features are visible: 1182 

closed-loop mode showing strong periodic structure at around 2Hz, open-loop mode showing 1183 

much larger low-frequency fluctuations. Figure 15E shows the closed- and open-loop power 1184 

spectra for a human observer, digitized from (Campbell et al., 1959b), for comparison with 1185 
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Figure 15D. Despite quantitative differences, they show the same qualitative features, notably 1186 

a much larger peak for closed-loop. 1187 

 1188 

The presence of this relatively large, 1-2Hz periodic component in the closed-loop 1189 

microfluctuations may aid accommodative control, for example by “hunting” for the point of 1190 

optimal focus (Kotulak & Schor, 1986c). Thus, this could be a reason why the postulated  non-1191 

predictive proportional signal is beneficial for accommodative control. 1192 

 1193 

 1194 

 1195 

Figure 15. AB: Example accommodation traces in (red) closed-loop response to 1D and (blue) open-loop mode. Dashed 1196 

horizontal lines show (red) the 1D demand and (blue) the 1.4D rest focus. A: trace over 5 minutes, to show slow fluctuations 1197 

in open-loop response; B: 10s excerpt from A, to facilitate comparison with C: Example 10s trace recorded from a human 1198 
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observer, digitised from Fig 3 of Gray, Winn and Gilmartin (Gray et al., 1993a). The red trace is for a 5mm pupil; the blue trace 1199 

is for viewing through pinholes of 0.5mm diameter. A scalebar but no accommodation values are provided in (Gray et al., 1200 

1993a), so the vertical position is arbitrary. To facilitate comparison with the model, we have set the mean value to 1D for 1201 

the closed-loop and 1.4D for the open-loop trace. D: Power spectra of the closed- and open-loop response, obtained by 1202 

averaging the Fourier power spectra of 50 traces like those in A, generated from simulations with different noise seeds. For 1203 

comparison, a 1/f2 Brownian noise spectrum is drawn on with a black dashed line. E: Power spectra of closed- and open-loop 1204 

responses for a human observer, digitised from Fig 5 of (Campbell et al., 1959b). This is labelled DATA2 to make clear that it 1205 

is not the power spectrum of the trace shown in Figure 15C. No vertical axis scale was provided in (Campbell et al., 1959b), 1206 

so we have scaled the spectrum so it best agrees with D. The red curve was recorded with a 7mm pupil and the blue curve 1207 

with a 1mm effective entrance pupil. Code to generate this figure is in Fig_Noise.m; Run_Noise.m must be run first to generate 1208 

the data. 1209 

 1210 

 1211 

Response to step changes 1212 

When motivating the introduction of the saturating non-predictive proportional signal, i.e. a 1213 

proportional controller responding to the current defocus signal (Figure 10), we discussed why 1214 

it produces a larger, more rapid response to small changes in demand. We have already seen 1215 

how this effect produces a higher gain for high-frequency low-amplitude oscillations (Figure 1216 

12) and thus the ability to track low-amplitude oscillations out to higher temporal frequencies 1217 

than is possible for larger amplitudes (Figure 14). Similarly, the non-predictive proportional 1218 

signal, clipped at 0.15D, enables a faster response to small step changes in demand. 1219 

  1220 

Figure 16 demonstrates this by comparing results from the full model (blue) with those from a 1221 

model identical except that it lacks the non-predictive proportional signal (orange). To enable 1222 

the effects to be seen clearly, noise is also turned off in this simulation. On the left, Figure 1223 

16AC, we plot the accommodation and velocity for a 0.5D increase in demand. The model with 1224 

the non-predictive proportional signal responds more quickly. However, for the larger 2D step 1225 

shown on the right (note different y-scales), the saturation of the non-predictive proportional 1226 

signal at 0.15D limits its effect, and it makes barely any difference either to accommodation 1227 

itself or to velocity. In fact, for large step changes like that shown in Figure 16BD, there appears 1228 

to be a fifth signal, a nonlinear pulse triggered by sudden large changes in demand (Schor & 1229 

Bharadwaj, 2004, 2006). The pulse accounts for the empirical observation that the peak 1230 

acceleration of the response for step increases in demand is roughly independent of the step 1231 

size, instead of scaling with step size as would occur for a linear system. While implementing 1232 

the pulse is beyond the scope of this paper, we note that the non-predictive proportional signal 1233 
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already moves in the right direction by boosting the acceleration for small steps, and thus 1234 

helping reduce the difference between acceleration for large and small steps. This could be 1235 

another reason for the accommodative control system to include the postulated non-predictive 1236 

proportional signal. 1237 

 1238 

The blue curves in Figure 16 also show the ringing characteristic of non-predictive models, 1239 

especially prominent relative to small step changes (Figure 16A). This instability is of course 1240 

what we are exploiting to drive the high-frequency peak in the microfluctuations. Thus, our 1241 

model predicts, probably wrongly, a transient increase in the amplitude of microfluctuations 1242 

following small step changes in response.  1243 

 1244 

 1245 

Figure 16. Noise-free accommodation (AB) and velocity (CD) for two different step increases in demand (AC: 0.5D, BD: 2D). 1246 

The blue curve is for the usual model; the orange curve is for a similar model with no non-predictive proportional signal. To 1247 
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enable the effect to be seen clearly, noise has been turned off for this figure only. Also note that the response to the 2D step 1248 

(BD) is included only to demonstrate the role of the non-predictive proportional signal. The model presented in this paper 1249 

does not accurately capture the dynamics of the response to such large steps, since it does not include the pulse signal (see 1250 

text).  Code to generate this figure is in Fig_EffectOfPropSignal.m. 1251 

 1252 

Adaptation 1253 

Next, we examine how the model adapts to accommodative demand to which it is exposed for 1254 

more than a few tens of seconds. This was the motivation for postulating the slow integrator 1255 

(Schor, 1979b; Schor et al., 1986). Its presence has not contributed to the results presented so 1256 

far, other than to boost the gain for very slow oscillations. Now we see how it accounts for 1257 

adaptation. 1258 

Figure 17 shows the time course of accommodation following the application of pinholes at 1259 

t=0, shifting the system from closed-loop to open-loop demand. After the application of 1260 

pinholes, accommodation eventually ends up at the rest focus, but how rapidly it does so 1261 

depends on the demand before pinholes were applied. The model observer is initially adapted 1262 

to 0D, then switches to viewing 3D for variable amounts of time as shown in the legend. The 1263 

results show that after viewing one demand for at least two minutes, the observer adapts to it 1264 

such that accommodation remains close to the adapted value for several minutes after pinholes 1265 

have been applied (uppermost/red, lowermost/blue traces). Conversely, when the observer was 1266 

exposed to different demands immediately before pinholes are applied (middle traces), they 1267 

move much more rapidly to the rest focus. 1268 

 1269 

 1270 

Figure 17. The model shows adaptation to demand, due to the slow integrator. The model observer is initially viewing an 1271 

object at 0D, before then viewing an object at 3D  for varying durations as shown in the legend. Pinholes are applied at t=0s, 1272 

putting the system in open-loop mode. After long exposures, accommodation adapts to the demand, and moves only slowly 1273 

to the rest focus; the adaptation affects the accommodation for many minutes after pinholes have been applied (e.g. dark 1274 
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blue curve: adapted to 0D, further than rest focus; red curve: adapted to 3D, closer than rest). Code to generate this figure is 1275 

in Fig_Adaptation.m; Run_Adaptation.m must be run first to save the data in Results_Adaptation.mat. 1276 

 1277 

 1278 

 1279 

Figure 18 shows a comparison with empirical data. Here, the observer was exposed to a demand 1280 

of 2D for either 5s (blue) or 60s (orange) before moving to open-loop mode at t=0. The traces 1281 

in Figure 18A are for a human observer (Schor et al., 1986); those in Figure 18B are from the 1282 

model, with rest focus set to 0.4D (dashed line) in order to better match this observer. In both 1283 

cases, following the 5s exposure to 2D, accommodation falls rapidly once the system enters 1284 

open-loop mode, but following the 60s exposure, the decay is much slower. 1285 

 1286 

 1287 

Figure 18. Comparison of the model (B) with data digitised from Schor, Kotulak & Tsuetaki (Schor et al., 1986) (Fig 2, empty 1288 

field condition). As in Figure 17, pinholes are applied at t=0. Before then, the demand is at 0D for a long period, before moving 1289 

to 2D for either 5s (blue) or 60s (orange); for the model, we also include 1s (yellow). In (Schor et al., 1986), a scalebar is 1290 

provided, but absolute dioptre values are not available. The vertical position in the DATA panel is therefore arbitrary. 1291 

However, since the open-loop condition decays by well over 1D from the closed-loop position adopted in response to a 2D 1292 

demand, it seems clear that the rest focus for this observer was well below 1.4D.  For this comparison, therefore, the rest 1293 

focus of the model has been set to 0.4D (dashed line) in this figure only. Code to generate this figure is in 1294 

Fig_SchorKotulakTsuetaki.m. 1295 

 1296 

Steady state error 1297 

Finally, Figure 19 shows the model’s steady-state error. As discussed (Equation 14), this 1298 

reflects both the fast and slow integrator. In the model, the additional gain provided by the slow 1299 

integrator means that steady-state error eventually becomes extremely small. Figure 20 shows 1300 
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this process for an example step up to 2D. The error is zero at the resting focus but shows 1301 

lag/lead on either side of this. The gain (response/demand) therefore becomes high as demand 1302 

tends to zero. 1303 

 1304 

 1305 

 1306 

Figure 19. Steady-state response of the model. The model was run for 320s with a constant demand dSS indicated by the value 1307 

on the x-axis, and accommodation was averaged over the final 60s to obtain the steady-state response, aSS.  (A) Input/output 1308 

function, i.e. steady-state accommodation as a function of demand. (B) Steady-state error, i.e. difference between response 1309 

and demand. For distant stimuli, this is positive (lead); for near, it is negative (lag). (C): Gain, i.e. ratio of response to demand. 1310 

In each case, blue curves show the response of the model; solid black line indicates response equal to  demand, and the dashed 1311 

vertical line marks the rest focus, where this occurs. Code to generate this figure is in Fig_SteadyState.m; Run_SteadyState 1312 

.m must be run first to save the data in Results_SteadyState.mat. 1313 

 1314 

 1315 

Figure 20. Model response to a step change in demand from 0D to 2D, showing the immediate rise to 89% of demand due to 1316 

the fast integrator, and the subsequent slow rise to 98% demand due to the slow integrator. The blue trace is one example 1317 
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run from the full model; the superimposed orange line shows the response with no noise and no non-predictive proportional 1318 

signal, in order to isolate the response due to the fast and slow integrators. Note that the dynamics of the immediate response 1319 

to the step are not correct because they do not incorporate the pulse signal, but the point of this figure is to demonstrate the 1320 

time-course following this immediate response. Code to generate this figure is in Fig_ExampleStep.m 1321 

 1322 

Discussion 1323 

In this paper, we have discussed the neural control of accommodation. We have provided a 1324 

tutorial overview of the relevant control theory and key empirical observations. We have 1325 

discussed the evidence for a predictive control system, i.e. one incorporating a forward model 1326 

to predict the accommodative response in advance of the motor latency (Hung et al., 2002; 1327 

Khosroyani & Hung, 2002; Schor & Bharadwaj, 2004). Similar models have also been 1328 

proposed for vergence control (Erkelens, 2011; Hung et al., 1986; Zee & Levi, 1989) and 1329 

saccades (Chen-Harris et al., 2008). Our analysis has led us to make the novel proposal that a 1330 

saturating non-predictive proportional-control component may operate in parallel to the main 1331 

predictive integrative-control feedback loop. This non-predictive proportional signal causes a 1332 

high-frequency resonance in the closed-loop response, observed in the response to low-1333 

amplitude sinusoidal oscillations in demand. It amplifies noise within the system, explaining 1334 

the high-frequency peak observed in closed-loop but not open-loop accommodation 1335 

microfluctuations. It also speeds up the response to small, sudden changes in demand. Yet its 1336 

saturation means that it does not destabilize the system as a whole, and that it becomes 1337 

insignificant for large changes in demand. 1338 

 1339 

We have implemented these ideas in a Simulink model, and are publishing this and all code 1340 

along with the paper. Although most of the components of the model have been published 1341 

before, we believe that this model is the first to incorporate realistic sensorimotor latencies, 1342 

non-zero rest focus, noise and dual control by fast and slow integrators, as well as our novel 1343 

use of a non-predictive proportional-control signal. Accordingly, it is able to account well for 1344 

a wide range of empirical observations: the gain and phase of the response to sinusoidal 1345 

oscillations in demand, including the puzzling high-frequency low-frequency resonance; the 1346 

power spectrum of microfluctuations in closed-loop and open-loop modes, and the adaptation 1347 

of accommodation to a steady stimulus.   1348 

 1349 
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The four control signals: bias, fast, slow, non-predictive 1350 

In our model, accommodation is controlled by four separate signals (Figure 10), which offer 1351 

different benefits. The constant bias signal sets the rest focus, to which the system returns in 1352 

the absence of other stimulation (Figure 17). This may represent a typical demand, making it 1353 

easier for the system to respond when stimulation restarts. The slow integrator means that the 1354 

system tends to adapt to steady demand, perhaps reducing disruption if vision is briefly 1355 

interrupted during sustained attention to one distance.  1356 

 1357 

The fast integrator is the main workhorse of the feedback loop, enabling accommodation to 1358 

respond rapidly yet smoothly to changes in demand (Figure 11, Figure 20). It is embedded 1359 

within a predictive control system, incorporating a forward model to predict the effect of 1360 

signals previously sent to the plant. This predictive control enables a smooth response and 1361 

avoids ringing and instability. In principle, it can entirely remove delay due to the sensorimotor 1362 

latency in a situation where demand can be predicted perfectly, as in a regular oscillation. 1363 

However, it can slow the response to sudden and unpredictable changes in demand. 1364 

 1365 

The fourth control signal can facilitate rapid responses in such situations (Figure 16). This 1366 

signal is non-predictive: it is proportional to the currently sensed defocus, not the predicted 1367 

future defocus. We originally rejected non-predictive control because it is prone to closed-loop 1368 

resonances at particular frequencies. This is because the phase of the cycle where demand is 1369 

high causes an increase in accommodation designed to null the defocus error, but – due to the 1370 

latency – by the time the increase in accommodation has taken effect, the demand cycle has 1371 

moved on to a phase where demand is low, and so the increase in accommodation in fact 1372 

enhances the defocus error, causing a larger change in accommodation in the next cycle, and 1373 

so on. In our model, we limit the destabilizing effect of this signal by making it saturate at low 1374 

values. This ensures that it has little influence on accommodation in general, which remains 1375 

dominated by the predictive integral control discussed above. However, the closed-loop 1376 

resonance associated with non-predictive control remains detectable for small changes in 1377 

demand. This amplifies noise within particular bandwidths, and means that the 1378 

microfluctuations in the steady-state response show a peak at frequencies just over 1Hz, as 1379 

observed. Opening the loop cuts the feedback pathway generating the resonance, explaining 1380 

why this peak in the microfluctuation power spectrum is much less prominent in open-loop 1381 

mode. The saturating proportional signal also accounts for the non-linear resonance observed 1382 

when accommodation tracks low-amplitude – but not high-amplitude – sinusoidal oscillations 1383 
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in demand.  However, an unrealistic feature of our model’s way of generating microfluctuations 1384 

is that it predicts a transient increase in the amplitude of microfluctuations following small 1385 

step-changes in demand –  the ringing visible in Figure 16 – which has not been reported. The 1386 

amplitude of microfluctuations in the model is also smaller than observed (Figure 15BC); this 1387 

cannot be fixed simply by increasing the amplitude of the noise since that also changes the 1388 

open- and closed-loop power spectra.  1389 

 1390 

“Prediction” in the accommodation literature has often concentrated on predicting changes in 1391 

demand (Krishnan et al., 1973; Stark, 1968). We believe it is helpful to draw a clear distinction 1392 

between predicting one’s own accommodation, which is in principle possible perfectly with an 1393 

efference copy and a forward model, and predicting demand, which is external and thus not 1394 

always possible, for example when a fixated object moves suddenly. Predicting 1395 

accommodation but simply using the current demand suffices to achieve closed-loop stability. 1396 

The additional benefit of predicting future demand accurately is to avoid delay and thus avoid 1397 

errors for rapidly changing stimuli. However, the low-pass characteristics of the plant and 1398 

leaky-integral controller mean that the benefits of demand prediction are limited unless one 1399 

also posits a different form of control. 1400 

 1401 

Deficits of the model 1402 

The model as currently implemented has many omissions and inadequacies, which must 1403 

contribute to its imperfect ability to match the empirical data discussed in this paper. First, we 1404 

do not consider control signals driven by inputs other than retinal defocus and bias (Heath, 1405 

1956b; Maddox, 1893). Notably, we do not include the crosslinks from and to the vergence 1406 

system (Bharadwaj, 2005; Schor & Kotulak, 1986). We also do not consider other noise 1407 

sources, such as heartbeat.  1408 

Second, this paper has nothing to say about how a signed estimate of defocus is obtained from 1409 

the retinal image. This deficiency is perhaps especially important since our model assumes that 1410 

visual feedback from the retinal images is the only feedback available to the accommodative 1411 

control system. (Stretch receptors in the scleral spur base of the ciliary body could potentially 1412 

also provide sensory feedback used in accommodative control (Tamm et al., 1994; Tamm & 1413 

Lütjen-Drecoll, 1996), but at present nothing is known about whether or how this occurs, and 1414 

it has not been included in any model of accommodative control.) 1415 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 14, 2022. ; https://doi.org/10.1101/2021.12.09.471909doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.09.471909
http://creativecommons.org/licenses/by/4.0/


50 

 

Perceptually, the threshold for detecting a change in focus which produces a detectable change 1416 

in the image is higher for sharp than for blurring images: a focus change of 0.2D may be visible 1417 

when the baseline defocus is 1.5D but not when the baseline is 0D (Campbell & Westheimer, 1418 

1958). It seems likely that such differences also affect the stimulus to accommodative control, 1419 

but this is not taken into account in our model.   1420 

Related to this, we assume that the control system is attempting to minimize defocus, whereas 1421 

in fact it is presumably attempting to maximize image quality. The accommodative lag and 1422 

lead, which in our model is accounted for by the finite gain of the fast integrator, may 1423 

effectively be an artefact of objective measurements of accommodation (Labhishetty et al., 1424 

2021). Recasting the control system so as to maximize a realistic measure of image quality 1425 

rather than to minimize defocus could therefore profoundly alter the behavior of the model and 1426 

lead to different conclusions about the nature of neural control. This would need to consider 1427 

not only defocus but also higher-order aberrations such as spherical aberration, and should take 1428 

into account pupil size. This would be computationally demanding to implement, and no 1429 

published model of accommodative control has yet attempted it, but it must certainly be done 1430 

in order to understand accommodative control in full. 1431 

 1432 

The current model does not incorporate physical limits on accommodation, a non-zero far point 1433 

or refractive error, nor do we consider how the system parameters may change with age 1434 

(Bharadwaj & Schor, 2005; Schor & Bharadwaj, 2005), though these would be simple to add 1435 

if required. 1436 

The model components are highly simplified. For example, the ocular plant is modelled as a 1437 

linear-time-invariant leaky integrator with a fixed gain and time-constant, and the optical power 1438 

is assumed to be proportional to the output of this integrator. A more accurate, yet usably 1439 

simple, optical/biomechanical model of the relationship between ciliary muscle signal and 1440 

optical power would be welcome (Wang et al., 2017). 1441 

The model developed here cannot account for the non-linear dynamics observed in response to 1442 

large step changes. These have been accounted for previously with an additional “pulse” signal 1443 

triggered by large step changes in accommodation (Schor & Bharadwaj, 2004, 2006), which 1444 

temporarily overrides the error-driven signal, although non-linearities in the plant could also 1445 

contribute. This of course means that the model presented here cannot accurately model the 1446 

dynamics of the accommodative response to large step- changes, though it should remain valid 1447 
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for all the situations modelled in the Results (except Figure 16BD, included for illustrative 1448 

purposes). 1449 

Finally, we have not attempted a realistic implementation of the demand-prediction model. 1450 

There is some evidence that the brain can predict changing accommodative demand some time 1451 

into the future, but we have here assumed it simply assumes demand will stay constant 1452 

(Khosroyani & Hung, 2002). We hope to address some of these deficiencies in future work. 1453 

 1454 
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Tables 1463 

 1464 

Symbol Meaning 

 Angular temporal frequency,  = 2f 

(f) phase-delay of accommodation at frequency f 

fast Time-constant of the fast leaky-integrator controller, see Equation 10 

plant Time-constant of the ocular plant, when this is modelled as a leaky 

integrator, see Equation 9 

slow Time-constant of the slow leaky-integrator controller, see Equation 

12 

 Damping coefficient, see Equation 20 

𝑎̂(𝑡 + 𝑇𝑚𝑜𝑡) Predicted accommodation at a time Tmot after the current time t. In 

this paper, generally assumed equal to a(t+Tmot), i.e. prediction is 

perfect. 

𝑑̂(𝑡 + 𝑇𝑚𝑜𝑡) Predicted demand at a time Tmot after the current time t. In the no-

change prediction model, this is assumed to be the same as the last 

available demand, from time Tsens before the current time, i.e. d(t-

Tsens) 

A(s) Laplace transform of accommodation relative to rest focus 

aRF Rest focus, i.e. accommodation adopted in the absence of any visual 

stimulus 

aSS Steady-state accommodation in response to dSS, see Equation 7 

C(s) Transfer function of controller 

D(s) Laplace transform of accommodative demand relative to rest focus 

dSS Steady-state demand, see Equation 7 

E(s) Laplace transform of defocus error, E(s)=D(s)-A(s) 

f Temporal frequency 

g(f) gain of accommodation at frequency f 

Gfast Steady-state gain of the fast leaky-integrator controller, see Equation 

10 

Gopen steady-state open-loop gain of accommodation 
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Gslow Steady-state gain of the slow leaky-integrator controller, see 

Equation 12 

Hclosed(s) Closed-loop transfer function relating demand to accommodation, 

see Equation 4 

Hopen(s) Open-loop transfer function relating demand to accommodation, see 

Equation 3 

j Square root of -1. 

P(s) Transfer function of ocular plant 

s Complex temporal frequency in Laplace domain, s = j, see 

Equation 1 

t Time 

Tlat Total sensorimotor latency, Tlat=Tsens+Tmot 

Tmot Motor latency, i.e. time taken for the neural signal controlling 

accommodation to travel from the brain to the ocular plant 

Tsens Sensory latency, i.e. time taken for defocus at the retina to reach the 

accommodative control system in the brain 

Table 1. Symbols used in this paper. 1465 

  1466 
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 1467 

 1468 

Parameter Symbol used in the 

paper 

Name in Simulink 

workspace 

Value 

Rest focus aRF RestFocus 1.4D 

Sensory latency Tsens SensoryLatency 0.20s 

Motor latency Tmot MotorLatency 0.10s 

Time constant of 

plant 

plant PlantTimeConstant 0.156s 

Gain of fast 

integrator 

Gfast FastGain 8.0 

Time constant of 

fast integrator 

fast FastTimeConstant 2.5s 

Gain of slow 

integrator 

Gslow SlowGain 5.0 

Time constant of 

slow integrator 

slow SlowTimeConstant 100s 

Noise  power  NoisePower 0.001 with sample 

time 0.01s 

Where to clip the 

proportional signal 

 ProportionalClipping 0.15D 

Table 2. Parameter values for the Simulink model supplied with the paper and used to obtain the results (except where noted 1469 

otherwise in figure legends). These values are visible in the Simulink Model Workspace, and can be altered there if desired.  1470 

 1471 

 1472 

 1473 

 1474 

  1475 
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Appendix 1476 

Here, we derive the total transfer function corresponding to the three types of linear models 1477 

discussed in the text: (i) the non-predictive model and the predictive models with (ii) perfect 1478 

and (iii) no-change prediction of demand. The bias signal due to the rest focus aRF is included 1479 

as an inhomogeneous “forcing” term. We handle this by defining A(s) and D(s) to be the 1480 

Laplace transforms of a(t)−aRF and d(t)−aRF, respectively, where a(t) and d(t) are 1481 

accommodation and demand as functions of time. In this way, we can effectively ignore aRF 1482 

when obtaining the transfer functions. 1483 

 1484 

(i) Non-predictive model 1485 

The system diagram for this model is given in Figure 3. Reading around this circuit diagram, 1486 

we see immediately that 1487 

  𝐸(𝑠) = 𝐷(𝑠) − 𝐴(𝑠),  1488 

where E(s) is the Laplace transform of the defocus error signal, d(t)-a(t). The input to the 1489 

Controller block is 𝐸(𝑠) exp(−𝑠𝑇𝑠𝑒𝑛𝑠), i.e. the defocus error signal after the sensory latency. 1490 

The output from the Controller block is 𝐶(𝑠)𝐸(𝑠) exp(−𝑠𝑇𝑠𝑒𝑛𝑠), where C(s) is the transfer 1491 

function of the Controller. After accounting for the motor latency, the input to the ocular plant 1492 

is 𝐶(𝑠)𝐸(𝑠) exp(−𝑠𝑇𝑙𝑎𝑡). So, the output of the ocular plant, i.e. accommodation, is 1493 

 𝐴(𝑠) = 𝐻𝑝𝑙𝑎𝑛𝑡(𝑠)𝐶(𝑠)𝐸(𝑠) exp(−𝑠𝑇𝑙𝑎𝑡) 1494 

Substituting in for E(s), we obtain the closed-loop transfer function 1495 

𝐻𝑐𝑙𝑜𝑠𝑒𝑑
𝑛𝑜𝑛𝑝𝑟𝑒𝑑(𝑠) =

𝐴(𝑠)

𝐷(𝑠)
=

𝑃(𝑠)𝐶(𝑠) exp(−𝑠𝑇𝑙𝑎𝑡)

1 + 𝑃(𝑠)𝐶(𝑠) exp(−𝑠𝑇𝑙𝑎𝑡)
 1496 

The gain and phase of the accommodative response to sinusoidal stimuli are the amplitude and 1497 

phase of the complex number given by this closed-loop transfer function evaluated at 1498 

s=j=2jf,  𝐻𝑐𝑙𝑜𝑠𝑒𝑑(2𝜋𝑗𝑓)  . The closed-loop gain as a function of demand frequency is 1499 

therefore 1500 

𝐺𝑐𝑙𝑜𝑠𝑒𝑑
𝑛𝑜𝑛𝑝𝑟𝑒𝑑(𝑓) =

|𝑃𝐶|

√1 + 2𝑅𝑒(𝑃𝐶𝑒−2𝜋𝑗𝑓𝑇𝑙𝑎𝑡) + |𝑃𝐶|2
 1501 

Equation 15 1502 

where the plant and controller transfer functions are similarly complex functions of frequency: 1503 

P=P(2jf), C=C(2jf). The denominator contains oscillatory terms which mean that, even if 1504 

PC is lowpass (i.e. a monotonically decreasing function of frequency), the denominator can be 1505 

close to zero at particular frequencies and thus produce large resonances, for which the closed-1506 
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loop gain exceeds 1. These manifest themselves as ringing or instability in the response to step 1507 

changes in demand, and as gains>1 for sinusoidal oscillations in demand, which are not 1508 

observed for large amplitudes. 1509 

 1510 

With proportional control with unit gain (C=1), a sensorimotor latency of Tlat=0.3s and the 1511 

plant being a leaky integrator with plant=0.156s, Equation 15 has its first resonance at 1.2Hz 1512 

where the closed-loop gain goes well above 1. This is ultimately responsible for the model’s 1513 

high-frequency peak in microfluctuations (Figure 15) and the low-amplitude resonance in the 1514 

response to sine-waves (Figure 12), although the precise behaviour also depends on the 1515 

nonlinear clipping. The precise position of the first resonance depends on the gain of the 1516 

proportional control, but only rather subtly. We therefore kept unit gain for simplicity. 1517 

We obtain the open-loop transfer function in the same way, but with the input to the Controller 1518 

being D(s) instead of D(s)-A(s). This yields 1519 

𝐻𝑜𝑝𝑒𝑛
𝑛𝑜𝑛𝑝𝑟𝑒𝑑(𝑠) = 𝑃(𝑠)𝐶(𝑠) exp(−𝑠𝑇𝑙𝑎𝑡) 1520 

𝐺𝑜𝑝𝑒𝑛
𝑛𝑜𝑛𝑝𝑟𝑒𝑑(𝜔) = |𝑃𝐶| 1521 

Equation 16 1522 

Thus, whether we use an integral or proportional controller in this non-predictive control 1523 

system, the open-loop gain is purely low-pass, with no resonances. This means that adding our 1524 

non-predictive proportional signal does not introduce any peaks to the power spectrum of open-1525 

loop microfluctuations. 1526 

 1527 

Predictive models 1528 

The simplified system diagram for this model is given in Figure 5. As usual, we can ignore the 1529 

bias signal if we express accommodation and demand relative to the rest focus.  Reading around 1530 

the circuit diagram, the demand signal is the input on the left; we represent this as usual in the 1531 

Laplace domain by D(s). After passing through the sensory latency, it becomes 1532 

𝐷(𝑠) exp(−𝑠𝑇𝑠𝑒𝑛𝑠), with the exponential being the Laplacian representation of a time delay 1533 

(cf discussion of Equation 2). It then passes through the demand predictor, which attempts to 1534 

predict the signal Tlat =Tsens+Tmot into the future. If it did this perfectly, the output of the demand 1535 

predictor would be 𝐷(𝑠) exp(−𝑠𝑇𝑠𝑒𝑛𝑠) exp(−𝑠𝑇𝑙𝑎𝑡) = 𝐷(𝑠) exp(+𝑠𝑇𝑚𝑜𝑡). To allow for the 1536 

fact that demand is unlikely to be predicted perfectly, we will write the output as 1537 

𝐷̂(𝑠) exp(+𝑠𝑇𝑚𝑜𝑡). 𝐷̂(𝑠) is the Laplace transform of the estimated future demand, again 1538 
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relative to the rest focus. That is, whereas 𝑑(𝑡) is the actual demand at time t, 𝑑̂(𝑡) is the 1539 

estimated demand at time t, as estimated at time (t-Tlat). 1540 

Looking at the bottom of Figure 5, the output is accommodation, or A(s) in the Laplace domain. 1541 

This is output after a motor latency Tmot; thus the output of the “Plant” block in Figure 5 is 1542 

𝐴(𝑠) exp(+𝑠𝑇𝑚𝑜𝑡). 1543 

Putting both these together, we see that the input to the Controller in Figure 5 is 1544 

[𝐷̂(𝑠) − 𝐴(𝑠)] exp(+𝑠𝑇𝑚𝑜𝑡). After multiplying this by the Controller and Plant transfer 1545 

functions, we find that the output of the plant is 𝑃(𝑠)𝐶(𝑠)[𝐷̂(𝑠) − 𝐴(𝑠)] exp(+𝑠𝑇𝑚𝑜𝑡). But we 1546 

previously saw that the output of the plant is 𝐴(𝑠) exp(+𝑠𝑇𝑚𝑜𝑡). Equating these, we see that  1547 

𝐴(𝑠) = 𝑃(𝑠)𝐶(𝑠)[𝐷̂(𝑠) − 𝐴(𝑠)] 1548 

and thus that 1549 

𝐴(𝑠) =
𝑃(𝑠)𝐶(𝑠)𝐷̂(𝑠)

1 + 𝑃(𝑠)𝐶(𝑠)
 1550 

Equation 17 1551 

 1552 

(ii) Perfect demand predictor 1553 

In this idealized case, the demand predictor successfully outputs the future accommodative 1554 

demand, so that 𝐷̂(𝑠) = 𝐷(𝑠) and the transfer function is 1555 

𝐻𝑐𝑙𝑜𝑠𝑒𝑑
𝑝𝑒𝑟𝑓𝑒𝑐𝑡(𝑠) =

𝑃(𝑠)𝐶(𝑠)

1 + 𝑃(𝑠)𝐶(𝑠)
 1556 

The closed-loop gain is therefore 1557 

𝑔𝑐𝑙𝑜𝑠𝑒𝑑
𝑝𝑒𝑟𝑓𝑒𝑐𝑡(𝑓) =

|𝑃𝐶|

√1 + 2𝑅𝑒(𝑃𝐶) + |𝑃𝐶|2
 1558 

To obtain the open-loop transfer function, we replace D(s) with D(s)+A(s) in Equation 17, 1559 

obtaining 1560 

𝐴(𝑠) =
𝑃(𝑠)𝐶(𝑠)[𝐴(𝑠) + 𝐷(𝑠)]

1 + 𝑃(𝑠)𝐶(𝑠)
 1561 

and thus 1562 

𝐻𝑜𝑝𝑒𝑛
𝑝𝑒𝑟𝑓𝑒𝑐𝑡(𝑠) = 𝑃(𝑠)𝐶(𝑠) 1563 

If demand prediction is perfect, the open-loop gain of the controller is independent of latency. 1564 

For our situation where both the plant and controller are leaky integrators, the open-loop gain 1565 

is lowpass, with no resonances. 1566 

 1567 
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(iii) “No-change” demand predictor 1568 

In this opposite extreme, the demand predictor simply assumes that the future defocus after 1569 

time Tlat will still be the same as the defocus it is receiving now: 1570 

𝑑̂(𝑡 + 𝑇𝑙𝑎𝑡) = 𝑑(𝑡) 1571 

and thus 1572 

𝐷̂(𝑠) = 𝐷(𝑠)exp (−𝑠𝑇𝑙𝑎𝑡) 1573 

Hence  1574 

𝐻𝑐𝑙𝑜𝑠𝑒𝑑
𝑛𝑜𝑐ℎ𝑎𝑛𝑔𝑒(𝑠) =

𝑃(𝑠)𝐶(𝑠) exp(−𝑠𝑇𝑙𝑎𝑡) 

1 + 𝑃(𝑠)𝐶(𝑠)
 1575 

The closed-loop gain at any frequency f is therefore the same as for the perfect predictor, while 1576 

the phase is reduced by 2fTlat. In fact, the closed-loop gain would be the same for any demand 1577 

predictor which accurately predicts demand any time at all into the future, even if, as here, that 1578 

time is zero. Inaccurate predictions would of course change the closed-loop gain.  1579 

 1580 

The open-loop gain does depend critically on demand prediction. With no-change prediction, 1581 

replacing D(s) with D(s)+A(s) in Equation 17, yields 1582 

𝐴(𝑠) =
𝑃(𝑠)𝐶(𝑠)[𝐴(𝑠) + 𝐷(𝑠)]exp (−𝑠𝑇𝑙𝑎𝑡)

1 + 𝑃(𝑠)𝐶(𝑠)
 1583 

and thus 1584 

𝐻𝑜𝑝𝑒𝑛
𝑛𝑜𝑐ℎ𝑎𝑛𝑔𝑒(𝑠) =

𝑃(𝑠)𝐶(𝑠) exp(−𝑠𝑇𝑙𝑎𝑡)

1 + 𝑃(𝑠)𝐶(𝑠)(1 − exp(−𝑠𝑇𝑙𝑎𝑡))
 1585 

Equation 18 1586 

The presence of the oscillatory exp(−𝑠𝑇𝑙𝑎𝑡) term in the denominator can lead to local peaks in 1587 

the gain at some frequencies. Thus with inaccurate no-change prediction, the system is prone 1588 

to open-loop resonances due to the inner feedback loop via the efference copy. However, with 1589 

our parameter values (Table 2), Equation 18 is a monotonically decreasing function of 1590 

frequency. This ensures that we do not see local peaks in the power spectrum of open-loop 1591 

microfluctuations (Figure 15). 1592 

 1593 

 1594 

The predictive model with leaky-integral control: a damped harmonic oscillator 1595 

For the case where the plant and the controller are both leaky integrators (Equation 9, Equation 1596 

10), and we neglect the other signals, the transfer function of the perfect-prediction model is  1597 
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𝐻𝑐𝑙𝑜𝑠𝑒𝑑
𝑝𝑒𝑟𝑓𝑒𝑐𝑡(𝑠) =

𝐺𝑓𝑎𝑠𝑡

(1 + 𝑠𝜏𝑝𝑙𝑎𝑛𝑡)(1 + 𝑠𝜏𝑓𝑎𝑠𝑡) + 𝐺𝑓𝑎𝑠𝑡

 1598 

Equation 19 1599 

with s = 2jf. This is the transfer function of a second-order damped oscillator. We can rewrite 1600 

it in the standard form 1601 

𝐻𝑐𝑙𝑜𝑠𝑒𝑑
𝑝𝑒𝑟𝑓𝑒𝑐𝑡(𝑠) ≈

𝐾𝜔0
2

𝑠2 + 2𝜁𝜔0𝑠 + 𝜔0
2 1602 

where K is the closed-loop gain: 1603 

𝐾 =
𝐺𝑓𝑎𝑠𝑡

(1 + 𝐺𝑓𝑎𝑠𝑡)
 1604 

0 the natural angular frequency: 1605 

𝜔0
2 =

(1 + 𝐺𝑓𝑎𝑠𝑡)

𝜏𝑝𝑙𝑎𝑛𝑡𝜏𝑓𝑎𝑠𝑡
 1606 

and  the damping coefficient: 1607 

𝜁 =
1

2√1 + 𝐺𝑓𝑎𝑠𝑡

(𝜏𝑝𝑙𝑎𝑛𝑡 + 𝜏𝑓𝑎𝑠𝑡)

√𝜏𝑝𝑙𝑎𝑛𝑡𝜏𝑓𝑎𝑠𝑡

 1608 

Equation 20 1609 

For perfect demand prediction, the phase at angular frequency  is: 1610 

𝜙𝑝𝑒𝑟𝑓𝑒𝑐𝑡(𝑤) = − arctan (
2𝜁𝜔𝜔0

𝜔0
2 − 𝜔2

) 1611 

while for no-change prediction,  1612 

𝜙𝑛𝑜𝑐ℎ𝑎𝑛𝑔𝑒(𝜔) = − arctan (
2𝜁𝜔𝜔0

𝜔0
2 − 𝜔2

) − 𝜔𝑇𝑙𝑎𝑡 1613 

 1614 

If <1/2, then the maximum gain occurs at the resonant angular frequency: 1615 

𝜔𝑟𝑒𝑠 = 𝜔0√1 − 2𝜁2 = √
𝐺𝑓𝑎𝑠𝑡

𝜏𝑝𝑙𝑎𝑛𝑡𝜏𝑓𝑎𝑠𝑡
−

1

2𝜏𝑓𝑎𝑠𝑡
2 −

1

2𝜏𝑝𝑙𝑎𝑛𝑡
2  1616 

If >1/2, then the gain is maximum for f=0 and decreases monotonically with frequency. If 1617 

=1, the system is said to be critically damped.  1618 

As discussed in the text, to match the empirical gain of accommodation,  must exceed 1/2, 1619 

the minimum value for which gain decreases monotonically with frequency. Solving Equation 1620 

20, we find that 1621 
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𝜏𝑓𝑎𝑠𝑡 = 𝜏𝑝𝑙𝑎𝑛𝑡 (𝐺𝑓𝑎𝑠𝑡 + √𝐺𝑓𝑎𝑠𝑡
2 − 1) ≈ 2𝐺𝑓𝑎𝑠𝑡𝜏𝑝𝑙𝑎𝑛𝑡  yields  = 1/2 , while 1622 

𝜏𝑓𝑎𝑠𝑡 = 𝜏𝑝𝑙𝑎𝑛𝑡 (2𝐺𝑓𝑎𝑠𝑡 + 1 + √[2𝐺𝑓𝑎𝑠𝑡 + 1]
2

− 1) ≈ 4𝐺𝑓𝑎𝑠𝑡𝜏𝑝𝑙𝑎𝑛𝑡 yields =1, i.e. critical 1623 

damping 1624 

 1625 

where the approximations hold since the gain Gfast has to be >>1, say at least 5, to avoid 1626 

excessive lag.  (Mathematically, there are two solutions, but the other one gives a very short 1627 

time-constant for the controller, which in turn causes other problems such as open-loop 1628 

resonances in the noise.)  1629 

 1630 

The minimal-settling time solution 1631 

In the model presented here, we chose the “minimum settling time” solution which yields  = 1632 

1/2:  1633 

𝜏𝑓𝑎𝑠𝑡 = 2𝐺𝑓𝑎𝑠𝑡𝜏𝑝𝑙𝑎𝑛𝑡 1634 

since this gave the best match to both gain and phase data. With this choice, since Gfast>>1,  the 1635 

natural frequency is approximately 1636 

𝜔0 =
1

𝜏𝑝𝑙𝑎𝑛𝑡√2
 1637 

which with our value plant=0.156s corresponds to 0.72Hz. 1638 

For =1/2, the phase function is very close to linear out to =0 . In this region, for perfect 1639 

demand prediction 1640 

𝜙𝑝𝑒𝑟𝑓𝑒𝑐𝑡 ≈ −2𝜏𝑝𝑙𝑎𝑛𝑡𝜔 1641 

corresponding to an effective delay of Tdelay = 2plant. Presumably coincidentally, this delay is 1642 

very similar to the sensorimotor latency, although as we can see it arises from a completely 1643 

different source. However, for frequencies beyond ~1Hz, the phase asymptotes to 180o (Figure 1644 

7). 1645 

For no-change prediction, the phase is approximately  1646 

𝜙(𝜔) ≈ −𝜔(2𝜏𝑝𝑙𝑎𝑛𝑡 + 𝑇𝑙𝑎𝑡) 1647 

at low frequencies, corresponding to an effective delay of 2𝜏𝑝𝑙𝑎𝑛𝑡 + 𝑇𝑙𝑎𝑡.  1648 

 1649 

 1650 

  1651 
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 1652 

Transfer 

function 

𝐴(𝑠)

= 𝐻(𝑠)𝐷(𝑠) 

Non-predictive model – no 

prediction 

Predictive model – 

perfect prediction of 

future demand 

Predictive model – 

“no change” 

prediction of future 

demand 

Open-loop 

transfer 

function 

 

𝑃𝐶𝑒−𝑠𝑇𝑙𝑎𝑡  𝑃𝐶 
𝑃𝐶𝑒−𝑠𝑇𝑙𝑎𝑡

1 + 𝑃𝐶(1 − 𝑒−𝑠𝑇𝑙𝑎𝑡)
 

Closed-

loop 

transfer 

function 

 

 

𝑃𝐶𝑒−𝑠𝑇𝑙𝑎𝑡

1 + 𝑃𝐶𝑒−𝑠𝑇𝑙𝑎𝑡
 

𝑃𝐶

1 + 𝑃𝐶
 

𝑃𝐶𝑒−𝑠𝑇𝑙𝑎𝑡

1 + 𝑃𝐶
 

Closed-

loop gain 

|𝑃𝐶|

√1 + 2𝑅𝑒(𝑃𝐶𝑒−𝑖𝜔𝑇𝑙𝑎𝑡) + |𝑃𝐶|2
 

 

|𝑃𝐶|

√1 + 2𝑅𝑒(𝑃𝐶) + |𝑃𝐶|2
 

 

|𝑃𝐶|

√1 + 2𝑅𝑒(𝑃𝐶) + |𝑃𝐶|2
 

 

Table 3. Open- and closed-loop transfer functions H(s) for different control systems; see Appendix for derivation. The transfer 1653 

function relates accommodation to the demand via A(s) = H(s) D(s), where A(s) is the Laplace transform of accommodation 1654 

relative to rest focus, a(t)-aRF, and D(s) is the Laplace transform of demand relative to rest focus, d(t)-aRF. P(s) the transfer 1655 

function of the ocular plant, and C(s) is the transfer function of the neural control (block marked Controller in Figure 3, Figure 1656 

4, Figure 5). Tlat is the total sensorimotor latency from a change in demand to the accommodative response. 1657 
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