

1 Homeostatic Synaptic Plasticity Rescues Neural 2 Coding Reliability

3 Eyal Rozenfeld^{1, 2, ♣}, Nadine Ehmann^{3, ♣}, Julia E. Manoim¹, Robert J. Kittel^{3, *} and Moshe
4 Parnas^{1, 2, *}

5
6 1. Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv
7 University, Tel Aviv 69978, Israel

8 2. Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel

9 3. Department of Animal Physiology, Institute of Biology, Leipzig University, 04103 Leipzig,
10 Germany

11
12 ♣ These authors contributed equally

13 * Co-Corresponding authors, email: mparnas@tauex.tau.ac.il, kittel@uni-leipzig.de

14

15

16

17

18 **Abstract**

19 To survive, animals must recognize reoccurring stimuli. A key requirement for repeated
20 identification of stimuli is reliable representation by the neural code on each encounter. Synaptic
21 transmission underlies neural codes propagation between brain regions. A hallmark of chemical
22 synapses is their plasticity, which enables signal transfer to be modified in an activity-dependent
23 manner. Despite many decades of intense research on synapses, it remains unclear how the
24 plastic features of synaptic transmission can maintain reliable neural coding. By studying the
25 olfactory system of *Drosophila melanogaster*, we aimed to obtain a deeper mechanistic
26 understanding of how synaptic function shapes neural coding reliability in the live, behaving
27 animal. We show that the properties of the active zone (AZ), the presynaptic site of
28 neurotransmitter release, are critical for generating a reliable neural code. Reducing
29 neurotransmitter release probability specifically at AZs of olfactory sensory neurons disrupted
30 both neural coding and behavioral reliability. Strikingly, these defects were rescued within a day
31 by target-specific synaptic plasticity, whereby a homeostatic increase in the number of AZs
32 compensated the drop in release probability. These findings demonstrate an important role for
33 synaptic plasticity in maintaining neural coding reliability and are of pathophysiological interest by
34 uncovering an elegant mechanism through which the neural circuitry can counterbalance
35 perturbations.

36

37 **Keywords:**

38 Neural code reliability, synaptic plasticity, homeostatic compensation, active zone, *Drosophila*,
39 olfaction, presynaptic function

40 **Introduction**

41 Animals encounter the same stimuli repeatedly and are able to recognize them over and over
42 again. An essential requirement for the repeated identification of a stimulus is that its
43 representation by the neural code will be reliably reproduced on each occasion. Two major
44 approaches are used to describe neural coding¹. The first is rate coding, where the firing rate of
45 action potentials over a period of time is employed as the neural code. The second is temporal
46 coding, where the precise timing and the precise pattern of action potentials is utilized for coding.
47 Often, a combination of the two strategies is used as the coin of information for neural coding: the
48 firing rate within a relatively small time window along with changes in firing rate over time.

49

50 Coding of an external stimulus by the nervous system begins at the sensory neurons. The code
51 then undergoes transformations as it passes across synaptic contacts and propagates to higher
52 brain regions. Chemical synaptic transmission is the major mode of fast information transfer
53 between neurons. The response of a postsynaptic neuron depends on neurotransmitter release
54 from synaptic vesicles (SVs) fusing with the plasma membrane at the presynaptic active zone
55 (AZ). SV fusion, in turn, is regulated by the complex interplay of various specialized AZ proteins,
56 which determine neurotransmitter release sites and control release probability²⁻⁴. The molecular
57 mechanisms of SV fusion are highly dynamic and can be modified on timescales ranging from
58 milliseconds to days. Such presynaptic plasticity involves e.g. changes in Ca^{2+} signals, SV
59 availability, and activity-dependent modulations of the release machinery⁵⁻⁹. Importantly,
60 synapses are also under homeostatic control. Homeostatic synaptic plasticity describes a
61 phenomenon whereby pre- or postsynaptic adjustments maintain synaptic stability¹⁰⁻¹³. This
62 evolutionarily conserved process rebalances destabilizing perturbations and preserves
63 functionality in a changing environment. Correspondingly, dysfunctional homeostatic synaptic
64 plasticity has been implicated in several neurological diseases^{14,15}. Considering the many facets

65 of synaptic plasticity, the question arises how the reliability of the neural code is affected by
66 dynamic changes in neurotransmission^{16–20}.

67

68 The *Drosophila* olfactory system is highly amenable to genetic manipulations and is suitable to
69 examine how synaptic function and plasticity affect neural code reliability. In flies, odors activate
70 olfactory receptor neurons (ORNs). In general, each ORN expresses a single odorant receptor
71 gene^{21–23} (but note ref.²⁴). Approximately 20-40 ORNs expressing the same receptor send their
72 axons to a single glomerulus in the antennal lobe (AL)^{25–27}. Approximately 2-5 second-order
73 projection neurons (PNs), in turn, send their dendrites to a single glomerulus²⁸ and each PN
74 samples all arriving ORNs²⁹. The synaptic connection between an individual ORN and PN harbors
75 ~10-30 release sites (scaling with glomerulus size) possessing a high average release probability
76 (~0.75)³⁰. The AL also contains multi-glameruli inhibitory GABAergic and glutamatergic local
77 neurons (iLNs) and excitatory cholinergic LNs (eLNs)^{31–34}. The ORN-PN synapse is mainly
78 modulated by the GABAergic iLNs^{34,35}. Thus, the *Drosophila* ORN-PN connection is a system with
79 a reliable synapse, which can be genetically modified and examined in the context of physiological
80 odor stimuli.

81

82 By performing *in vivo* whole-cell patch-clamp recordings from over 1300 neurons, we show that
83 knocking down the AZ Ca²⁺ channel Cacophony (Cac) specifically in ORNs decreases the
84 reliability of the neural code in the postsynaptic PNs to physiological odor stimuli. Our results
85 demonstrate that interfering with SV release probability from ORN AZs affects the PN neural code
86 in three ways. First, the initial transient phase of the odor response, when PNs reach their highest
87 firing rates, becomes more variable due to reduced recruitment of iLNs. Second, the onset of the
88 odor response is delayed and more variable. Third, the temporal dynamics of the odor response
89 become less reliable; this third result does not involve any circuit motifs and results from
90 monosynaptic effects. In line with its ethological relevance, reducing the reliability of neural coding

91 leads to a reduction in the behavioral ability to correctly classify an olfactory stimulus. Surprisingly,
92 however, we find that decreased expression of Cac at ORN AZs affects neural code reliability
93 only at high stimulus intensities. This differential effect is due to homeostatic synaptic plasticity,
94 which sets in within a day. Thereby, the formation of additional AZs compensates the reduced
95 neurotransmitter release probability and rescues the coding reliability of PNs. Thus, our work
96 uncovers a new role for homeostatic synaptic plasticity in maintaining stable neural coding and
97 reliable behavior.

98

99 **Results**

100 **ORN SVs release probability affects olfactory coding reliability at high odor intensities**

101 In order to investigate how molecular properties of the AZ influence the olfactory neural code, we
102 recorded postsynaptic PN responses to odor presentation with *in vivo* whole-cell current-clamp
103 recordings (Figure 1A). We used RNA interference (RNAi) in ORNs to knock down Cac, the pore-
104 forming subunit of the *Drosophila* Ca_v2-type Ca²⁺ channel, which mediates Ca²⁺-influx at the
105 AZ^{36,37}. Since different odors elicit different firing rates and temporal dynamics in ORNs³⁸ we
106 tested PN responses to five different odors (Isopentyl acetate, linalool, 2-heptanone, ethyl
107 acetate and isobutyl acetate) and used high odor concentrations to minimize variations in ORN
108 responses³⁹. To examine stimulus-evoked response reliability we recorded PN responses to 10
109 applications of each odor (Figure 1A-C and Figure S1). *Orco-GAL4* was used to drive *UAS-*
110 *Cac*^{RNAi} specifically in ORNs and *GH146-QF*, which labels approximately 60% of PNs⁴⁰, was used
111 to drive *QUAS-GFP* for targeted patch-clamp recordings. We confirmed RNAi efficiency for Cac
112 by performing *in vivo* Ca²⁺ imaging via two-photon microscopy during odor stimulation. *Orco-*
113 *GAL4* was used to drive *UAS-Cac*^{RNAi} along with *UAS-GCaMP6f*. As expected, Ca²⁺ signals were
114 significantly reduced in ORN terminals when Cac was targeted by RNAi (Figure S2A). In addition,
115 direct staining against Cac demonstrated reduced Cac levels in *Cac*^{RNAi} flies (Figure S2B). *Cac*^{RNAi}

116 significantly reduced odor-induced PN activity (Figure 1B, C and Figure S2C), illustrating that SV
117 release from ORNs was decreased, though not completely abolished.

118

119 A number of different methods can be used to examine neural code reliability. Correlation-based
120 measurement of coding reliability examines the reliability of the temporal dynamics of neural
121 activity by analyzing the activity time-series as a single entity⁴¹. Thus, this analysis examines the
122 pattern of the response over time, but does not consider the magnitude of the response.
123 Therefore, correlation measurements do not account for variations in firing rate at a specific time
124 point (Figure S3A, C). Another measure of temporal code reliability is the latency of the first spike
125 following odor presentation, which was shown to encode odor identity and intensity⁴². The standard
126 deviation of response magnitude examines response reliability for a given time point or a given
127 firing rate and does not account for the temporal dynamics (Figure S3B, C)⁴³.

128

129 At high odor concentration, correlation analysis using spike trains that were integrated at
130 increasingly wider temporal windows (Figure S3A), revealed that for wild type (*wt*) flies the
131 response reliability (correlation value) became saturated at ~20 ms (Figure 1D, E), consistent with
132 previous reports^{44,45}. Knockdown of Cac decreased overall correlation values and increased the
133 temporal integration window required to reach saturation (Figure 1D, E and Figure S4A, B). This
134 demonstrates that molecular perturbations of ORN AZs decrease the temporal reliability of PN
135 responses. Standard deviations of PN firing rate, as a function of the mean firing rate during a 20
136 ms time window, also revealed a decrease in PN coding reliability in *Cac*^{RNAi} flies (Figure 1F and
137 Figure S4C) with PNs showing increased variability especially at high firing rates (Figure 1F).

138

139 PN somata, which are accessed during patch-clamp recording, are distant from the action
140 potential initiation site^{46,47}. As a result, action potentials recorded at the soma in current-clamp
141 mode are very small, often reaching only 5 mV in amplitude⁴⁶. Such small action potentials are

142 frequently not identified during the rising phase of the odor response. To better detect the first
143 action potential, indicating the response onset, we repeated this set of experiments in voltage-
144 clamp mode. Indeed, voltage-clamp recordings enabled detection of more action potentials in the
145 first 25 ms of the odor response and the latency of the first action potential was shorter (Figure
146 1G-I). As with the other neural coding reliability measurements, this analysis revealed that
147 knocking down Cac resulted in lower reliability, reflected by both increased latency and increased
148 standard deviation of the first action potential (Figure 1J, K and Figure S5).

149

150 High odor concentrations elicit high firing rates in ORNs that may reach up to 300 Hz⁴⁸. To
151 examine if the effect of *Cac*^{RNAi} persists when ORNs fire at lower rates, we repeated the above
152 experiments using a weaker odor intensity. Interestingly, we found that under these conditions,
153 response magnitude and coding reliability by PNs was not decreased by reduced Cac expression
154 (Figure 1L-O). Taken together, our data show that reducing SV release from ORNs affects the
155 reliability of the postsynaptic odor response. However, this effect is only evident during the
156 presentation of a strong olfactory stimulus.

157

158 The above results suggest that high-frequency synaptic transmission is most sensitive to
159 manipulations of ORN AZs, consistent with previous reports⁴⁹. High firing rates usually occur at
160 the beginning of the odor response within the first 200 ms (Figure 1B, C). Thus, we examined the
161 effects of *Cac*^{RNAi} during the presentation of a strong olfactory stimulus without the initial phase of
162 the odor response. The initial phase of the odor response is characterized by a strong increase
163 in firing rate that is highly correlated. Thus, as expected, removing the first 200 ms of the odor
164 response from the analysis resulted in an overall decrease in correlation (Figure 1P compare to
165 Figure 1D), which was further reduced by *Cac*^{RNAi} (Figure 1P, Q). In contrast, the increased
166 standard deviation of PN firing rates that was observed upon *Cac*^{RNAi} was now completely
167 abolished. No difference in the standard deviation was observed between *wt* and RNAi flies even

168 though high firing rates were still obtained in the sustained phase of the odor response (Figure
169 1R). The effect of Cac^{RNAi} was not equally distributed throughout the initial phase of the odor
170 response; rather it was most notable when the PNs reached their peak firing rate, approximately
171 20ms after the response onset (Figure 1S). These results suggest that two different mechanisms
172 underlie the reduced response reliability of PNs, one affecting the reliability of the structure of the
173 temporal firing rate dynamics and the other affecting the reliability of the absolute firing rate
174 magnitude.

175

176 **Knockdown of Cac reduces release probability and increases synaptic latency and jitter**
177 Reducing Cac expression in ORNs significantly reduced PN spiking (Figure 1). Nevertheless, PNs
178 maintained a substantial response to odors, demonstrating that synaptic transmission from ORNs
179 to PNs remained principally functional. Cac is a key regulator of SV release probability at
180 *Drosophila* neuromuscular AZs. Its functional disruption in a temperature-sensitive mutant, RNAi-
181 mediated knockdown, and impaired AZ channel clustering all lead to greatly decreased eEPSC
182 (evoked excitatory postsynaptic current) amplitudes at the NMJ, especially at low stimulation
183 frequencies^{36,37,50}. We were therefore intrigued by the observation that Cac^{RNAi} affected PN coding
184 reliability only at high and not at low ORN firing rates. To better understand this phenomenon, we
185 characterized functional properties of the ORN-PN synapse in *wt* and Cac^{RNAi} animals (Figure
186 2A). Surprisingly, the average eEPSC amplitude of Cac^{RNAi} did not differ from *wt* (Figure 2B).
187 However, Cac knockdown led to increased paired-pulse facilitation at short inter-pulse intervals
188 (Figure 2C, D), consistent with a decrease in SV release probability upon reduced expression of
189 AZ Ca^{2+} channels⁵⁰. In line with a drop in release probability, Cac^{RNAi} synapses also displayed
190 significantly elevated synaptic delay (eEPSC latency; Figure 2E), which was accompanied by an
191 increase in the jitter of eEPSC (Figure 2F). Interestingly, both parameters progressively increased
192 with stimulation frequency in the transgenic animals (Figure 2E, F). Within our sampling range (1,

193 10, 20, 60 Hz), the effect of presynaptic Cac^{RNAi} on these temporal parameters was most
194 pronounced at 60 Hz.

195

196 Taken together, these results suggest a homeostatic mechanism at the ORN-PN synapse, which
197 compensates for the drop in release probability caused by presynaptic Cac knockdown to
198 maintain normal eEPSC amplitudes. However, this compensation does not cover the temporal
199 properties of synaptic transmission. The reduced release probability of Cac^{RNAi} ORNs generates
200 longer synaptic latencies with larger eEPSC jitter, consistent with increased first spike latencies
201 and jitter during odor application. Thus, while the ORN-PN synapse is surprisingly resilient to Ca^{2+}
202 channel perturbations, Cac knockdown delays synaptic transmission and reduces the temporal
203 precision of synaptic signaling.

204

205 **A homeostatic increase in AZ number and synaptic strength compensates for the drop in
206 release probability**

207 So far, all experiments were carried out on 2-4 day old flies. To obtain more information on the
208 homeostatic regulation of the ORN-PN connection, we next addressed the time course of the
209 synaptic adjustment. At day 0 (less than 24 h post pupal eclosion), Cac^{RNAi} caused a reduction in
210 both release probability and eEPSC amplitudes (Figure 2G, H). Moreover, Cac^{RNAi} synapses
211 responded in only 19 out of 40 cases irrespective of stimulus intensity. In contrast, at day 1 (24-
212 48 h post pupal eclosion), eEPSC amplitudes were already elevated to *wt* levels (Figure 2I, J)
213 and the transmission success rate reached 100%. When presented with a high odor concentration
214 at day 0, Cac^{RNAi} flies displayed decreased firing rates and reduced coding reliability compared to
215 *wt* (Figure 2K-O) and to 2-4 days old flies (Figures 1C-F and Table S1). However, when a low
216 odor concentration was applied, both firing rates and neural code reliability remained severely
217 impaired (Figure 2P, Q), contrary to the compensation observed in 2-4 days old flies (Figure 1L-
218 O). Thus, homeostatic synaptic plasticity took place within the first day post eclosion to rescue

219 neural activity and coding reliability at low stimulus intensity but failed to do so at high odor
220 concentrations.

221

222 Next, we turned to the mechanism underlying the homeostatic synaptic change responsible for
223 maintaining normal eEPSC amplitudes. In principle, the drop in release probability caused by
224 *Cac*^{RNAi} could be counterbalanced by an increase in the number of presynaptic release sites or
225 an increase in quantal size. Quantal size describes the postsynaptic response to the fusion of an
226 individual SV with the AZ membrane. This parameter is reflected by the amplitude of
227 spontaneously occurring miniature excitatory postsynaptic currents (minis) and can be influenced
228 by the number and identity of postsynaptic receptors. We recorded similar mini frequencies and
229 amplitudes at *wt* and *Cac*^{RNAi} synapses (Figure 2R, S) demonstrating an unaltered quantal size
230 and, in turn, suggesting a homeostatic addition of release sites. In line with a corresponding
231 increase in postsynaptic receptor fields, puffing nicotine onto PNs elicited larger currents
232 (Figure 2T).

233

234 Based on these results, we sought to match the functional increase of release sites in *Cac*^{RNAi} to
235 a structural correlate. To this end, we performed immunostainings of the antennal lobe and
236 imaged Bruchpilot (Brp), a core component of the AZ cytomatrix (CAZ⁵⁰), via confocal microscopy.
237 To restrict our analysis to ORN-PN synapses, we co-labelled postsynaptic PNs via GFP and
238 quantified Brp labels in the overlapping regions (Figure 2V). Consistent with the
239 electrophysiological estimate of release site addition, the number of Brp clusters was significantly
240 increased upon Cac knockdown (Figure 2U). Moreover, while the average cluster size remained
241 unchanged in *Cac*^{RNAi}, the signal intensity was significantly increased (Figure 2U), possibly
242 reflecting the addition of CAZ units below the diffraction limit⁵¹. Thus, a homeostatic increase in
243 the number of Brp-positive AZs counterbalanced the decreased transmitter release probability
244 caused by reduced Cac expression.

245 **Monosynaptic effects and circuit activity underlie distinct features of coding reliability**

246 Next, we examined whether the diminished coding reliability caused by *Cac*^{RNAi} is due to
247 monosynaptic mechanisms or instead arises from circuit effects. GABAergic iLNs also receive
248 their major input from ORNs and inhibit these presynaptically. Whereas PNs are uniglomerular
249 and receive homogenous ORN input, iLNs are multiglomerular and receive heterogeneous ORN
250 input. PNs respond to ORN activity in a non-linear manner^{30,43,52}. In contrast, GABAergic iLNs
251 respond linearly to ORN activity⁵², are more sensitive to reduced input from ORNs⁵³, and show a
252 stronger transiency in their odor response⁵⁴. Thus, we speculated that at least some of the
253 observed reduction in PN reliability following presynaptic manipulations might arise from reduced
254 recruitment of iLNs. In particular, this may explain the increased standard deviation in *Cac*^{RNAi} that
255 no longer occurred in the absence of the initial transient phase of PN odor responses (Figure 1R,
256 S). To examine how iLN activity affects PN odor response reliability we compared *wt* and
257 presynaptic *Cac*^{RNAi} flies (Figure 3A). *Orco-GAL4* again drove *UAS-Cac*^{RNAi} and 449-QF was used
258 to express QUAS-GFP in iLNs⁵⁵. Reducing Cac protein levels in ORNs resulted in an almost
259 complete abolishment of iLN responses to odors in both 0 and 2-4 days old flies (Figure 3B, C).
260 Similar to PNs, *Cac*^{RNAi} reduced the SV release probability at the ORN-iLN synapse (Figure 3D).
261 However, in contrast to ORN-PN transmission, we observed no homeostatic rescue of iLN
262 responses to odor stimulation even in 2-4 days old flies.

263

264 These results demonstrate that knocking down Cac in ORNs severely impairs the activation of
265 iLNs. We therefore examined the effects of blocking GABAergic transmission on PN reliability. To
266 this end, we exposed the brain to 100 μ M CGP54626, a selective GABA_B receptor antagonist,
267 and 250 μ M picrotoxin, a chloride channel blocker⁵⁶ and antagonist of GABA_A receptors (Figure
268 3E). As expected, GABA blockers affected *wt* firing rates (Figure 3F) but had no effect on PN
269 spiking in *Cac*^{RNAi} flies, where iLNs are hardly recruited (Figure 3B). When blocking GABA
270 receptors in *wt* flies, we observed a significant increase in the variability of PN activity but the

271 temporal integration window of PN responses was unaffected (Figure 3G). This suggests that
272 iLNs affect only certain aspects of the code reliability. Since the odor response of iLNs was
273 diminished when Cac was knocked down in ORNs we expected that blocking GABA receptors
274 would not further affect coding reliability in *Cac*^{RNAi} flies. Indeed, blocking GABAergic transmission
275 had no effect whatsoever on variability and only a minor effect on the temporal integration window
276 in presynaptic *Cac*^{RNAi} (Figure 3G).

277

278 The AL also contains another population of inhibitory local neurons, which release glutamate.
279 These glutamatergic interneurons mainly inhibit PNs, but were shown to have effectively similar
280 roles as the GABAergic iLNs on the activity of the AL neural circuit³³. Thus, the pharmacological
281 experiments affect both the presynapse of ORNs and the postsynapse of PNs. Since iLNs mainly
282 act by activating GABA-B receptors in the presynaptic terminal of ORNs^{34,35}, we tested whether
283 driving *GABA-B-R2*^{RNAi}⁵⁷ in ORNs (Figure 3H) has similar effects on PN coding reliability as
284 pharmacologically blocking the inhibitory iLNs (Figure 3G). Indeed, *GABA-B-R2*^{RNAi} increased the
285 variability at high firing rates but did not affect the temporal integration window (Figure 3I). The
286 glutamatergic iLNs inhibit PNs by activating the glutamate receptor GluCl α ³³. Therefore, we
287 expressed an RNAi construct against GluCl α in PNs (Figure 3J) and tested their odor response
288 and coding reliability. Knockdown of the GluCl α receptor in PNs had a strong effect on coding
289 variability, as observed for the pharmacological experiments and by blocking the inhibitory
290 presynaptic circuit (Figure 3K). In addition, we also observed an overall decrease in correlation
291 (Figure 3K). However, in contrast to *Cac*^{RNAi}, which increased PN integration time (Figure 1D), we
292 did not observe any such increase in *GluCl α* ^{RNAi}, if at all, the integration time of PNs was slightly
293 decreased (Figure 3K and Figure S6). In summary, both pharmacological and genetic approaches
294 suggest that the inhibitory AL circuit affects the variability of PN activity but not the temporal
295 reliability.

296

297 **Reducing neural coding reliability disrupts behavioral reliability**

298 The above results demonstrate that knocking down AZ Ca^{2+} channels specifically in ORNs
299 decreases the coding reliability by PNs. To examine whether these changes are strong enough
300 to affect behavioral output we tested the flies' ability to correctly classify an ecologically relevant
301 stimulus. To reduce response variability, which is often observed for naïve behavior^{58,59}, we paired
302 isopentyl acetate with an electric shock, using a well-established custom built apparatus^{53,58–61}
303 and tested the accuracy of the animals' behavioral responses, i.e. avoidance of isopentyl acetate.
304 Following prolonged exposure (2 minutes) to the olfactory stimulus, presynaptic Cac^{RNAi} animals
305 were equally successful as their parental controls in classifying the odor (Figure 4A, B), indicating
306 no impairment in the flies learning capabilities. However, when flies navigate in their natural
307 habitat, olfactory stimuli are often brief and repetitive. Since such short stimuli could not be
308 delivered in the above paradigm, we used an alternative assay in which the flies walked on a
309 Styrofoam ball. This setting allowed us to present the same pattern of olfactory stimuli as used
310 for the electrophysiological recordings (Figure 1). Ten one-second trials of the shock-paired odor
311 isopentyl acetate were presented and the behavioral response was classified as correct if flies
312 turned away from the odor source (Figure 4C). Indeed, Cac^{RNAi} flies made significantly fewer
313 correct choices as a result of identifying isopentyl acetate less reliably (Figure 4D). This reduction
314 in correct stimulus classification was not due to a learning defect since the learning index was
315 similar between *wt* and Cac^{RNAi} flies (Figure 4B). Furthermore, Cac knockdown was only
316 performed in the first order ORNs and not in third order neurons, which are required for memory
317 formation⁶². Since our electrophysiological results showed that homeostatic synaptic plasticity
318 rescues the neural code reliability only at lower odor concentrations, we tested whether behavioral
319 reliability was also rescued at low stimulation intensities. The overall learning scores of *wt* and
320 Cac^{RNAi} flies were similar at low (Figure 4E) and high odor concentrations (Figure 4B). As
321 predicted, Cac^{RNAi} flies were as successful as *wt* animals in correctly classifying the low
322 concentration odor (Figure 4F). In contrast, while Cac^{RNAi} animals displayed normal memory

323 formation at day 0 (Figure 4G), low concentration odor classification was significantly impaired in
324 young flies (Figure 4H). This nicely matches our finding that homeostatic compensation takes a
325 day to develop. In summary, these results demonstrate how synaptic plasticity can maintain
326 neural coding reliability and enable the animal to consistently classify an important physiological
327 stimulus.

328

329 **Discussion**

330 In this study, we addressed two distinct yet related questions. First, we provide *in vivo* evidence
331 that the molecular integrity of the AZ is important for neural coding reliability. Second, we
332 demonstrate that homeostatic synaptic plasticity operates at the ORN-PN synapse and that this
333 process compensates a reduction in release probability by increasing the number of ORN AZs.
334 The homeostatic adjustment restored eEPSC amplitudes in PNs and neural coding reliability. We
335 further show that the restored neural reliability maintains behavioral performance. Finally, we
336 demonstrate that the homeostatic compensation is limited in its efficiency and fails to maintain
337 reliable neural coding and behaviour at elevated firing frequencies in response to high odor
338 concentrations.

339

340 Using *in vivo* recordings, we show that high release probability of ORN AZs is required for a
341 reliable neural code in the postsynaptic PNs in response to physiological odor stimuli. Knockdown
342 of Cacophony from ORN AZs that reduced ORN release probability affected neural code reliability
343 in several manners. First, the high firing rates of the initial transient phase of PN odor responses
344 became more variable due to reduced recruitment of iLNs. Second, the onset of odor responses
345 was delayed and more variable. Third, the temporal dynamics of the odor response became less
346 reliable. This third effect results most probably from monosynaptic changes to ORN-PN
347 transmission. At a behavioral level, we find that reduced coding reliability of PNs impairs the
348 animals' ability to correctly classify a physiologically relevant stimulus.

349 We found that knocking down Cacophony affected neuronal coding reliability mainly at high firing
350 rates. This was true for both the monosynaptic as well as the circuit mechanisms. In terms of the
351 circuit effects on rate code reliability, this is in line with the recruitment of iLNs. iLNs sample many
352 types of ORNs with different response profiles⁴⁸ and as a result, they respond linearly to ORN
353 activity⁵². Thus, iLNs respond most strongly to high ORN firing rates, which in turn are triggered
354 by high odor intensities. Correspondingly, almost entirely eliminating the recruitment of iLNs by
355 manipulating ORN AZs (Figure 3), mostly affects processing of high firing rates. We find that a
356 decrease in SV release probability increases the latency and jitter of eEPSC (Figure 2),
357 accompanied by an increase in the latency and jitter of postsynaptic action potential initiation
358 (Figure 1). We further show that this drop in the temporal precision of synaptic transmission
359 increases in a frequency-dependent manner. This finding helps to explain why disrupted AZ
360 function mainly impairs temporal coding at high firing rates and strong odor intensities.

361
362 Theoretical studies have suggested that decreasing SV release probability should result in
363 reduced neural coding reliability^{16–20,63–65}, although exceptions have also been demonstrated^{45,66}.
364 However, whether these theoretical studies hold true *in vivo*, with highly dynamic synaptic
365 properties, in complex neural circuits, and in response to physiological stimuli has remained an
366 open question. To the best of our knowledge, the present study provides the first *in vivo* evidence
367 that interfering with the molecular control of SV release results in reduced neural coding reliability.
368 Notably, the ORN-PN synapse is surprisingly resilient to reduced AZ Ca^{2+} channel expression
369 and compensates the drop in release probability by increasing the number of AZs to yield normal
370 eEPSC amplitudes. Homeostatic synaptic plasticity features at the *Drosophila* NMJ^{11,12},
371 mushroom body⁶⁷, and also operates in the antennal lobe to match synaptic strength to PN
372 excitability^{30,68}. Interestingly, *Cac*^{RNAi} decreases synaptic transmission to a greater extent from
373 ORNs to iLNs than from ORNs to PNs (compare Figures 1C and 3C). Thus, the functional impact
374 of *Cac* or mechanisms to compensate for reduced Ca^{2+} channel expression differ between ORN

375 AZs depending on the identity of the postsynaptic partner. Interestingly, a recent study
376 demonstrated that during the time window of homeostatic compensation, i.e. the first day post-
377 eclosion, ORNs and PNs show structural changes involving increased Brp expression and neurite
378 expansion, while iLNs do not⁶⁹. It is conceivable that this developmental stability prevents or limits
379 structural homeostatic plasticity at ORN-iLN synapses. Moreover, parallels may exist with the
380 NMJ, where the expression of presynaptic homeostatic plasticity is compartmentalized to a subset
381 of a motoneuron's synapses depending on their target muscle⁷⁰. These considerations emphasize
382 the importance of further future studies on the molecular heterogeneity of AZs in the olfactory
383 system^{4,71,72} and of elucidating the physiological properties of individual synapses in the context
384 of neural information processing.

385 **Methods**

386

387 *Fly Strains*

388 Fly strains (see below) were raised on cornmeal agar under a 12 h light/12 h dark cycle at 25 °C.

389 The following fly strains were used: *UAS-Cac^{RNAi}*⁷³ (VDRC ID 5551), *UAS-GluCl α ^{RNAi}* (53356),

390 *UAS-GABA-B-R2^{RNAi}* (50608), *GH146-QF,QUAS-mCD8-GFP* (BDSC_30038), *Orco-GAL4*

391 (*BDSC_26818*), *UAS- GCaMP6f* (*BDSC_52869*), *449-QF*⁵⁵, *QUAS-mCD8-GFP* (*BDSC_30002*)

392

393 *Olfactory stimulation*

394 Odors (purest level available) were obtained from Sigma-Aldrich (Rehovot, Israel). Odor flow of

395 0.4 l/min (10⁻¹ dilution) was combined with a carrier air stream of 0.4 l/min using mass-flow

396 controllers (Sensirion) and software controlled solenoid valves (The Lee Company). This resulted

397 in a final odor dilution of 5X10⁻² delivered to the fly. Odor flow was delivered through a 1/16 inch

398 ultra-chemical-resistant Versilon PVC tubing (Saint-Gobain, NJ, USA) placed 5 mm from the fly's

399 antenna.

400

401 *Electrophysiology*

402 Flies were anesthetized for 1 minute on ice. A single fly was fixed to aluminum foil using wax. To

403 expose the brain, the cuticle and trachea were removed. The brain was superfused with

404 carbonated solution (95% O₂, 5% CO₂) containing 103 mM NaCl, 3 mM KCl, 5 mM trehalose, 10

405 mM glucose, 26 mM NaHCO₃, 1 mM NaH₂PO₄, 1.5 mM CaCl₂, 4 mM MgCl₂, 5 mM N-Tris (TES),

406 pH 7.3. For *in vivo* whole-cell recordings 0,1 or 2-4 days old flies were used as previously

407 described ⁷⁴ . Briefly, flies' brains were visualized on a Scientifica SliceScope Pro 1000 upright

408 microscope with a 40x water immersion objective. Patch pipettes of 9–12 MΩ resistance were

409 used. Intracellular solution contained: potassium aspartate 140mM, HEPES 10mM, KCL 1mM,

410 MgATP 4mM, Na3GTP 0.5mM, EGTA 1mM with pH of 7.3 and osmolarity of 265 mOsm. PNs

411 were randomly patched from both the lateral and medial cluster and iLNs were randomly patched
412 from the lateral cluster. Voltage or current recordings were performed using Axon Instruments
413 MultiClamp 700B amplifier in current- or voltage-clamp mode respectively. Data was low-pass
414 filtered at 1 kHz and sampled at 50 kHz. Upon break-in to the cell, a small constant current was
415 applied to maintain a membrane potential of -60mV. Action potential times were extracted using
416 a custom MATLAB code followed by manual inspection to verify correct identification. Spike times
417 were aligned to the beginning of the rising phase of the membrane potential, indicating the
418 beginning of the odor stimulus. In experiments where GABA blockers were used, 100 μ M of CGP
419 54626 (Tocris, CAS: 149184-21-4) and 250 μ M of picrotoxin (Sigma-Aldrich, CAS: 124-87-8) were
420 bath applied. eEPSCs were evoked by stimulating ORN axons with a minimal stimulation protocol
421 via a suction electrode ³⁰. Brief (typically 50 μ s) pulses were passed through the innervating nerve
422 using a constant current stimulator (Digitimer, DS3 Isolated Current Stimulator). To measure
423 eEPSC amplitude and kinetics 32 eEPSCs were evoked at 1 Hz and averaged. eEPSC latency
424 was measured from the beginning of the stimulation artifact to the beginning of the eEPSC rising
425 phase. Paired-pulse recordings were made at 0.2 Hz with inter-stimulus intervals of (in ms): 10,
426 30, 100, 300 and 1,000. For each interval 20 traces were averaged. Ten seconds of rest were
427 afforded to the cell in between recordings. The amplitude of the second response in 10 ms inter-
428 pulse recordings was measured from the peak to the point of interception with the extrapolated
429 first response. Data were analyzed using MATLAB.

430 *In vivo* patch-clamp recordings of minis were performed essentially as previously described⁷⁵. Cell
431 bodies of PNs were visualized with a Scientifica Slice Scope equipped with a 40 x Water Objective
432 (Olympus 40x, NA 0.8). Electrodes (6 - 8MOhm) were filled with internal solution containing (in
433 mM): Potassium aspartate 125, CaCl₂ 0.1, EGTA 1.1, HEPES 10, MgATP 4, Na₃GTP 0.5, pH
434 adjusted to 7.3, osmolarity was 265 mOsm. To visualize PN morphology, Biocytin (3 mg/ml) was
435 added to the intracellular solution. Throughout measurements, preparations were perfused with
436 oxygenated external saline, containing (in mM): NaCl 103, KCl 3, CaCl₂ 1.5, MgCl₂ 4, NaH₂PO₄

437 1, NaHCO₃ 26, TES 5, Trehalose 10, Glucose 10, 277 ± 2 mOsm, pH 7.3. Additionally, 4 µM TTX
438 (Carl Roth, 6973) was supplied to the bath solution to suppress spontaneous spiking. For
439 recordings, PNs of female flies were held at a command potential of - 80 to - 100 mV. Signals
440 were low-pass filtered at 1kHz and digitized at 10kHz. For detection of minis, templates were
441 generated and applied to recordings (ClampFit 11.0.3).

442

443 *Functional Imaging*

444 Flies used for functional imaging were reared as described above. Imaging was done as
445 previously described ^{59,61,76}. Briefly, using two-photon laser-scanning microscopy (DF-Scope
446 installed on an Olympus BX51WI microscope). Flies were anesthetized on ice then a single fly
447 was moved to a custom built chamber and fixed to aluminum foil using wax. Cuticle and trachea
448 in the required area were removed, and the exposed brain was superfused with carbonated
449 solution as described above. Odors at final dilution of 5X10⁻² were delivered as described above.
450 Fluorescence was excited by a Ti-Sapphire laser (Mai Tai HP DS, 100 fs pulses) centered at 910
451 nm, attenuated by a Pockels cell (Conoptics) and coupled to a galvo-resonant scanner. Excitation
452 light was focused by a 20X, 1.0 NA objective (Olympus XLUMPLFLN20XW), and emitted photons
453 were detected by GaAsP photomultiplier tubes (Hamamatsu Photonics, H10770PA-40SEL),
454 whose currents were amplified (Hamamatsu HC-130-INV) and transferred to the imaging
455 computer (MScan 2.3.01). All imaging experiments were acquired at 30 Hz.

456

457 *Immunohistochemistry*

458 Whole mount stainings were performed essentially as previously described⁷⁷. For analyzing Brp,
459 brains were fixed with 4% PFA for 2h, washed with PBT (0.3%) and blocked using 5% normal
460 goat serum in PBT overnight at 4°C, before mouse-anti Brp [nc82, 1:50; provided by E. Buchner;
461 RRID: AB_528108⁷⁸ was added. Following another overnight incubation at 4°C, samples were
462 washed with PBT before goat anti-mouse STAR RED (1:200; Abberior #2-0002-011-2,

463 RRID:AB_2810982) was applied overnight. After washes with PBT, samples were stored in
464 mounting medium (Abberior MOUNT, LIQUID ANTIADE, #MM-2009). To preserve tissue
465 morphology, imaging spacer (Sigma-Aldrich #GBL654008) were used. For verification of
466 Cacophony knock down at ORN pre-synapses, we followed a protocol published by Chang and
467 colleagues⁷⁹. Whole mounts were fixed with Bouins fixative (Carl Roth #6482.3), washed with
468 PBS and blocked in PBT (0.2%) with 5% NGS at 4°C overnight. This was followed by an overnight
469 incubation with rabbit anti-cacophony (1:1000) in blocking solution, before the samples were
470 washed several times with PBT. Subsequently, whole mounts were incubated with biotinylated
471 goat anti rabbit IgG (1:500; Jackson ImmunoResearch Labs #111-065-003, RRID:AB_2337959),
472 washed with PBT and subsequently incubated with STAR RED streptavidin (1:500; Abberior
473 #STRED-0120). Samples were stored in mounting medium (Abberior MOUNT, LIQUID
474 ANTIADE, #MM-2009) until final use.

475

476 *Confocal microscopy*

477 Images were acquired with an Abberior INFINITY LINE system (upright Olympus BX63F)
478 equipped with a 60x / NA 1.42 oil immersion objective. Laser settings were kept constant and
479 image acquisition alternated between genotypes. Image analysis was done using ImageJ
480 (National Institutes of Health, Bethesda). Analysis was performed on each image in a stack. Data
481 sets exceeding the maximal slice number of 125 slices per stack were excluded from analysis.
482 To restrict image analysis to signals at ORN-PN synapses, masks of the GFP signal (driven with
483 GH146) were created and overlayed with the Brp or Cacophony channel. Individual punctae were
484 detected with the “Find Maxima” command and quantified via “Analyze Particles”.

485

486

487 *Behavioral chambers*

488 Experiments were performed using a custom-built, fully automated apparatus^{58,60,61}. Single flies
489 were housed in clear chambers (polycarbonate, length 50 mm, width 5 mm, height 1.3 mm). Mass
490 flow controllers (CMOSens PerformanceLine, Sensirion) were used to control air flow. An odor
491 stream (0.3 l/min) obtained by circulating the air flow through vials filled with a liquid odorant was
492 combined with a carrier flow (2.7 l/min). Isopentyl acetate was prepared at 10 fold dilution in
493 mineral oil. Liquid dilution and mixing carrier and odor stimulus stream resulted in a final 100 fold
494 dilution. Fresh odors were prepared daily.

495 Two identical odor delivery systems were used each delivering odors independently to each half
496 of the chamber. The total flow (3 l/minute, carrier and odor stimulus) was split between 20
497 chambers. . The air flow from the two halves of the chamber converged at a central choice zone.
498 The 20 chambers were stacked in two columns each containing 10 chambers and were backlit
499 by 940 nm LEDs (Vishay TSAL6400). Images were obtained by a MAKO CMOS camera (Allied
500 Vision Technologies) equipped with a Computar M0814-MP2 lens. The apparatus was operated
501 in a temperature controlled incubator (Panasonic MIR 154) at 25°C.

502 Fly position was extracted from video images using a virtual instrument written in LabVIEW 7.1
503 (National Instruments). The same virtual instrument was also used to control odor delivery. Data
504 were analyzed in MATLAB 2018a (The MathWorks). Conditioning protocol included 12 equally
505 spaced 1.25 s electric shocks at 50 V, and was repeated twice. The learning index was calculated
506 as (preference for isopentyl acetate before training) – (preference for isopentyl acetate after
507 training). Flies that were used for the ball assay in figure 4C were given a training protocol that
508 consisted of 12 equally spaced 1.25 s electric shocks at 50 V, and repeated 6 times with 15
509 minutes interval. Flies were then tested on the ball assay 12 hours later.

510

511

512 *Ball assay*

513 Flies walked on a treadmill ball as previously described ⁸⁰. Briefly, the fly thorax was glued to a
514 fine metal rod using wax in a manner that allowed for free limb movement. Flies were then placed
515 on a Styrofoam ball with a diameter of 9 mm which floated on an air-steam in a custom made ball
516 holder. Videos were captured using a Blackfly S (FLIR® Systems) camera fitted with a Computar
517 Macro zoom 0.3–1x, 1:4.5 lens at a frame rate of 100 FPS. The ball was illuminated by infrared
518 LEDs and the fly position was tracked offline using FicTrac ⁸¹. Odor delivery was the same as for
519 the electrophysiological recording experiments described above.

520

521 **Quantification and statistical analysis**

522 *Integration window analysis*

523 For this analysis, only the first two seconds after the beginning of the odor stimulus were used.
524 Spike trains were then binned with bin sizes ranging from 1ms to 200ms with 1ms intervals. For
525 each bin size, the pairwise Pearson correlation was calculated for all combinations of the 10 trials
526 for each odor. Trials that did not show any odor response were excluded from this analysis.
527 Integration window was defined by using the Youden's index ⁸², which is the point of maximal
528 distance between the correlation vs. bin size curve and the diagonal between the minimum and
529 maximum point of said curve. The Youden's index is a communally used measure for the optimal
530 cutoff point of a curve, such as the one obtained by plotting correlation vs. bin size⁸³.

531

532 *Variance analysis*

533 For each fly, the mean and variance of the 10 stimuli repetitions were calculated using time bins
534 of 20ms. The mean spike count of each bin was then binned into discrete bins along with the
535 corresponding variance in that time bin.

536

537

538 *Statistics and data analysis*

539 All statistical testing and parameter extraction were done using custom MATLAB code (The
540 MathWorks, Inc.). All statistical tests details can be found in table S1. Significance was defined
541 as a p-value smaller than 0.05 and all statistical tests were two-sided. Normality assumption
542 was tested using the Shapiro-Wilk test

543 (<https://www.mathworks.com/matlabcentral/fileexchange/13964-shapiro-wilk-and-shapiro-francia-normality-tests>). In cases where the normality assumption was violated a permutation
544 test was used using the 'permutationTest' function in MATLAB
545 (<https://github.com/lrkrol/permutationTest>).

547 Effect size was calculated with the Measures of Effect Size (MES) Toolbox

548 [https://github.com/hhentschke/measures-of-effect-size-
549 toolbox/blob/master/readme.md](https://github.com/hhentschke/measures-of-effect-size-toolbox/blob/master/readme.md)). Permutation test was used using the 'permutationTest'

550 function in MATLAB (<https://github.com/lrkrol/permutationTest>).

551 For presentation, bar plots with dots were generated using the UnivarScatter MATLAB ToolBox

552 (<https://www.mathworks.com/matlabcentral/fileexchange/54243-univarscatter>), raster plots were
553 generated with the Flexible and Fast Spike Raster Plotting ToolBox
554 ([https://www.mathworks.com/matlabcentral/fileexchange/45671-flexible-and-fast-spike-raster-
555 plotting](https://www.mathworks.com/matlabcentral/fileexchange/45671-flexible-and-fast-spike-raster-plotting)) and the shadedErrorBar function (<https://github.com/raacampbell/shadedErrorBar>) for
556 shaded errors on imaging traces.

557

558 **Data and code availability**

559 The data and code used to generate the figures in this manuscript are available upon publication
560 in the first author GitHub page: <https://github.com/Eyal-ro>.

561

562

563

564 **Acknowledgments**

565 We thank Dr. Ya-Hui Chou and the Bloomington Stock Center for fly strains. We also thank David
566 Morton for kindly sharing the Cacophony antibody. This work was supported by the European
567 Research Council (676844, MP) and the Deutsche Forschungsgemeinschaft (project numbers
568 430156010/SPP 2205 to RJK and 408264519 to MP and RJK).

569

570

571 **Author contributions**

572 ER: conceptualization, methodology, investigation, formal analysis, software, writing–review &
573 editing, visualization. NE: investigation, formal analysis, writing–review & editing, visualization
574 JEM: investigation, formal analysis, visualization. RJK: Initiated the project, conceptualization,
575 methodology, writing–original draft, writing–review & editing, supervision, funding acquisition. MP:
576 Initiated the project, conceptualization, methodology, investigation, formal analysis, software,
577 writing–original draft, writing–review & editing, visualization, supervision, funding acquisition.

578 **References**

579 1. Panzeri, S., Brunel, N., Logothetis, N. K. & Kayser, C. Sensory neural codes using
580 multiplexed temporal scales. *Trends Neurosci.* **33**, 111–120 (2010).

581 2. Südhof, T. C. The presynaptic active zone. *Neuron* vol. 75 11–25 (2012).

582 3. Jahn, R. & Fasshauer, D. Molecular machines governing exocytosis of synaptic vesicles.
583 *Nature* vol. 490 201–207 (2012).

584 4. Fulterer, A. et al. Active Zone Scaffold Protein Ratios Tune Functional Diversity across
585 Brain Synapses. *Cell Rep.* **23**, 1259–1274 (2018).

586 5. Hallermann, S. & Silver, R. A. Sustaining rapid vesicular release at active zones:
587 Potential roles for vesicle tethering. *Trends in Neurosciences* vol. 36 185–194 (2013).

588 6. Kaeser, P. S. & Regehr, W. G. The readily releasable pool of synaptic vesicles. *Current
589 Opinion in Neurobiology* vol. 43 63–70 (2017).

590 7. Kittel, R. J. & Heckmann, M. Synaptic vesicle proteins and active zone plasticity. *Front.
591 Synaptic Neurosci.* **8**, (2016).

592 8. Neher, E. & Brose, N. Dynamically Primed Synaptic Vesicle States: Key to Understand
593 Synaptic Short-Term Plasticity. *Neuron* vol. 100 1283–1291 (2018).

594 9. Monday, H. R., Younts, T. J. & Castillo, P. E. Long-Term Plasticity of Neurotransmitter
595 Release: Emerging Mechanisms and Contributions to Brain Function and Disease.
596 <https://doi.org/10.1146/annurev-neuro-080317-062155> **41**, 299–322 (2018).

597 10. Turrigiano, G. Homeostatic Synaptic Plasticity: Local and Global Mechanisms for
598 Stabilizing Neuronal Function. *Cold Spring Harb. Perspect. Biol.* **4**, a005736 (2012).

599 11. Davis, G. W. & Müller, M. Homeostatic control of presynaptic neurotransmitter release.

600 *Ann. Rev. Physiol.* **77**, 251–270 (2015).

601 12. Goel, P. & Dickman, D. Synaptic homeostats: latent plasticity revealed at the Drosophila
602 neuromuscular junction. *Cellular and Molecular Life Sciences* (2021) doi:10.1007/s00018-
603 020-03732-3.

604 13. Mrestani, A. *et al.* Active zone compaction correlates with presynaptic homeostatic
605 potentiation. *Cell Rep.* **37**, (2021).

606 14. Styr, B. & Slutsky, I. Imbalance between firing homeostasis and synaptic plasticity drives
607 early-phase Alzheimer's disease. *Nat. Neurosci.* 2018 **21**, 463–473 (2018).

608 15. Vertkin, I. *et al.* GABAB receptor deficiency causes failure of neuronal homeostasis in
609 hippocampal networks. *Proc. Natl. Acad. Sci. U. S. A.* **112**, E3291–E3299 (2015).

610 16. Kandaswamy, U., Deng, P. Y., Stevens, C. F. & Klyachko, V. A. The role of presynaptic
611 dynamics in processing of natural spike trains in hippocampal synapses. *J. Neurosci.* **30**,
612 15904–15914 (2010).

613 17. Rotman, Z. & Klyachko, V. A. Role of synaptic dynamics and heterogeneity in neuronal
614 learning of temporal code. *J. Neurophysiol.* **110**, 2275–2286 (2013).

615 18. Tiesinga, P., Fellous, J. M. & Sejnowski, T. J. Regulation of spike timing in visual cortical
616 circuits. *Nature Reviews Neuroscience* vol. 9 97–107 (2008).

617 19. Tsodyks, M. V & Markram, H. The neural code between neocortical pyramidal neurons
618 depends. *Proc. Natl. Acad. Sci.* **94**, 719–723 (1997).

619 20. Wang, H. P., Spencer, D., Fellous, J. M. & Sejnowski, T. J. Synchrony of thalamocortical
620 inputs maximizes cortical reliability. *Science (80-.).* **328**, 106–109 (2010).

621 21. Buck, L. & Axel, R. A novel multigene family may encode odorant receptors: A molecular

622 basis for odor recognition. *Cell* **65**, 175–187 (1991).

623 22. Vosshall, L. B., Amrein, H., Morozov, P. S., Rzhetsky, A. & Axel, R. A Spatial Map of
624 Olfactory Receptor Expression in the *Drosophila* Antenna. *Cell* **96**, 725–736 (1999).

625 23. Hallem, E. A. & Carlson, J. R. The odor coding system of *Drosophila*. *Trends Genet.* **20**,
626 453–459 (2004).

627 24. Task, D. *et al.* Chemoreceptor co-expression in *Drosophila melanogaster* olfactory
628 neurons. *Elife* **11**, (2022).

629 25. Gao, Q., Yuan, B. & Chess, A. Convergent projections of *Drosophila* olfactory neurons to
630 specific glomeruli in the antennal lobe. *Nat. Neurosci.* **3**, 780–785 (2000).

631 26. Mombaerts, P. *et al.* Visualizing an olfactory sensory map. *Cell* **87**, 675–686 (1996).

632 27. Vosshall, L. B., Wong, A. M. & Axel, R. An olfactory sensory map in the fly brain. *Cell*
633 **102**, 147–159 (2000).

634 28. Tanaka, N. K., Endo, K. & Ito, K. Organization of antennal lobe-associated neurons in
635 adult *Drosophila melanogaster* brain. *J Comp Neurol* **520**, 4067–4130 (2012).

636 29. Kazama, H. & Wilson, R. I. Origins of correlated activity in an olfactory circuit. *Nat.*
637 *Neurosci.* **12**, 1136–1144 (2009).

638 30. Kazama, H. & Wilson, R. I. Homeostatic Matching and Nonlinear Amplification at
639 Identified Central Synapses. *Neuron* **58**, 401–413 (2008).

640 31. Olsen, S. R., Bhandawat, V. & Wilson, R. I. Excitatory interactions between olfactory
641 processing channels in the *Drosophila* antennal lobe. *Neuron* **54**, 89–103 (2007).

642 32. Shang, Y., Claridge-Chang, A., Sjulson, L., Pypaert, M. & Miesenböck, G. Excitatory
643 Local Circuits and Their Implications for Olfactory Processing in the Fly Antennal Lobe.

644 *Cell* (2007) doi:10.1016/j.cell.2006.12.034.

645 33. Liu, W. W. & Wilson, R. I. Glutamate is an inhibitory neurotransmitter in the *Drosophila*
646 olfactory system. *Proc Natl Acad Sci U S A* **110**, 10294–10299 (2013).

647 34. Root, C. M. *et al.* A presynaptic gain control mechanism fine-tunes olfactory behavior.
648 *Neuron* **59**, 311–321 (2008).

649 35. Olsen, S. R. & Wilson, R. I. Lateral presynaptic inhibition mediates gain control in an
650 olfactory circuit. *Nature* **452**, 956–960 (2008).

651 36. Kawasaki, F., Felling, R. & Ordway, R. W. *A Temperature-Sensitive Paralytic Mutant*
652 *Defines a Primary Synaptic Calcium Channel in Drosophila*. (2000).

653 37. Hallermann, S. *et al.* Naked dense bodies provoke depression. *J Neurosci* **30**, 14340–
654 14345 (2010).

655 38. Hallem, E. A., Ho, M. G. & Carlson, J. R. The molecular basis of odor coding in the
656 *Drosophila* antenna. *Cell* **117**, 965–979 (2004).

657 39. Nagel, K. I. & Wilson, R. I. Biophysical mechanisms underlying olfactory receptor neuron
658 dynamics. *Nat. Neurosci.* **14**, 208–216 (2011).

659 40. Stocker, R. F., Heimbeck, G., Gendre, N. & de Belle, J. S. Neuroblast ablation in
660 *Drosophila* P[GAL4] lines reveals origins of olfactory interneurons. *J. Neurobiol.* **32**, 443–
661 56 (1997).

662 41. Schreiber, S., Fellous, J. M., Whitmer, D., Tiesinga, P. & Sejnowski, T. J. A new
663 correlation-based measure of spike timing reliability. *Neurocomputing* **52–54**, 925–931
664 (2003).

665 42. Egea-Weiss, A., Renner, A., Kleineidam, C. J. & Szyszka, P. High Precision of Spike

666 Timing across Olfactory Receptor Neurons Allows Rapid Odor Coding in *Drosophila*.
667 *iScience* **4**, 76–83 (2018).

668 43. Bhandawat, V., Olsen, S. R., Gouwens, N. W., Schlief, M. L. & Wilson, R. I. Sensory
669 processing in the *Drosophila* antennal lobe increases reliability and separability of
670 ensemble odor representations. *Nat Neurosci* **10**, 1474–1482 (2007).

671 44. Jeanne, J. M. & Wilson, R. I. Convergence, Divergence, and Reconvergence in a
672 Feedforward Network Improves Neural Speed and Accuracy. *Neuron* **88**, 1014–1026
673 (2015).

674 45. Fellous, J.-M. & Corral-Frías, N. S. Reliability and Precision Are Optimal for Non-Uniform
675 Distributions of Presynaptic Release Probability. *J. Biomed. Sci. Eng.* **8**, 170–183 (2015).

676 46. Gouwens, N. W. & Wilson, R. I. Signal propagation in *Drosophila* central neurons. *J.*
677 *Neurosci.* **29**, 6239–6249 (2009).

678 47. Ravenscroft, T. A. *et al.* *Drosophila* voltage-gated sodium channels are only expressed in
679 active neurons and are localized to distal axonal initial segment-like domains. *J.*
680 *Neurosci.* **40**, 7999–8024 (2020).

681 48. Hallem, E. A. & Carlson, J. R. Coding of Odors by a Receptor Repertoire. *Cell* **125**, 143–
682 160 (2006).

683 49. Fox, D. & Nagel, K. I. Synaptic control of temporal processing in the *Drosophila* olfactory
684 system. *bioRxiv* 2021.05.03.442428 (2021) doi:10.1101/2021.05.03.442428.

685 50. Kittel, R. J. *et al.* Bruchpilot promotes active zone assembly, Ca²⁺ channel clustering,
686 and vesicle release. *Science (80-)* **312**, 1051–1054 (2006).

687 51. Ehmann, N. *et al.* Quantitative super-resolution imaging of Bruchpilot distinguishes active
688 zone states. *Nat. Commun.* 2014 **5**, 1–12 (2014).

689 52. Olsen, S. R., Bhandawat, V. & Wilson, R. I. Divisive normalization in olfactory population
690 codes. *Neuron* **66**, 287–299 (2010).

691 53. Rozenfeld, E., Lerner, H. & Parnas, M. Muscarinic Modulation of Antennal Lobe
692 GABAergic Local Neurons Shapes Odor Coding and Behavior. *Cell Rep.* **29**, 3253–3265
693 (2019).

694 54. Nagel, K. I., Hong, E. J. & Wilson, R. I. Synaptic and circuit mechanisms promoting
695 broadband transmission of olfactory stimulus dynamics. *Nat. Neurosci.* **18**, 56–65 (2015).

696 55. Chen, Y. J. *et al.* Differential efficacy of genetically swapping GAL4. *J. Neurogenet.*
697 (2019) doi:10.1080/01677063.2018.1564289.

698 56. Etter, A. *et al.* Picrotoxin Blockade of Invertebrate Glutamate-Gated Chloride Channels:
699 Subunit Dependence and Evidence for Binding Within the Pore. *J. Neurochem.* **72**, 318–
700 326 (2002).

701 57. Perkins, L. A. *et al.* The transgenic RNAi project at Harvard medical school: Resources
702 and validation. *Genetics* **201**, 843–852 (2015).

703 58. Parnas, M., Lin, A. C., Huetteroth, W. & Miesenböck, G. Odor Discrimination in
704 Drosophila: From Neural Population Codes to Behavior. *Neuron* **79**, 932–944 (2013).

705 59. Lerner, H., Rozenfeld, E., Rozenman, B., Huetteroth, W. & Parnas, M. Differential Role
706 for a Defined Lateral Horn Neuron Subset in Naïve Odor Valence in Drosophila. *Sci. Rep.*
707 (2020) doi:10.1038/s41598-020-63169-3.

708 60. Claridge-Chang, A. *et al.* Writing Memories with Light-Addressable Reinforcement
709 Circuitry. *Cell* **139**, 405–415 (2009).

710 61. Bielopolski, N. *et al.* Inhibitory muscarinic acetylcholine receptors enhance aversive
711 olfactory learning in adult Drosophila. *Elife* **8**, (2019).

712 62. Modi, M. N., Shuai, Y. & Turner, G. C. The Drosophila Mushroom Body: From
713 Architecture to Algorithm in a Learning Circuit. *Annu. Rev. Neurosci.* **43**, 465–484 (2020).

714 63. Zador, A. Impact of synaptic unreliability on the information transmitted by spiking
715 neurons. *J. Neurophysiol.* **79**, 1219–1229 (1998).

716 64. Yang, H. & Xu-Friedman, M. A. Stochastic properties of neurotransmitter release expand
717 the dynamic range of synapses. *J. Neurosci.* **33**, 14406–14416 (2013).

718 65. Yu, J., Qian, H. & Wang, J. H. Upregulation of transmitter release probability improves a
719 conversion of synaptic analogue signals into neuronal digital spikes. *Mol. Brain* **5**, 26
720 (2012).

721 66. Arleo, A. *et al.* How synaptic release probability shapes neuronal transmission:
722 Information-theoretic analysis in a cerebellar granule cell. *Neural Computation* vol. 22
723 2031–2058 (2010).

724 67. Apostolopoulou, A. A. & Lin, A. C. Mechanisms underlying homeostatic plasticity in the
725 Drosophila mushroom body *in vivo*. *Proc. Natl. Acad. Sci. U. S. A.* **117**, 16606–16615
726 (2020).

727 68. Harrell, E. R., Pimentel, D. & Miesenböck, G. Changes in Presynaptic Gene Expression
728 during Homeostatic Compensation at a Central Synapse. *J. Neurosci.* **41**, 3054–3067
729 (2021).

730 69. Aimino, M. A., Depew, A. T., Restrepo, L., Mosca, T. J. & Preprint, †. Different olfactory
731 neuron classes use distinct temporal and molecular programs to complete synaptic
732 development. *bioRxiv* 2022.03.31.486637 (2022) doi:10.1101/2022.03.31.486637.

733 70. Li, X. *et al.* Synapse-specific and compartmentalized expression of presynaptic
734 homeostatic potentiation. *Elife* **7**, (2018).

735 71. Ehmann, N., Owald, D. & Kittel, R. J. Drosophila active zones: From molecules to
736 behaviour. *Neuroscience Research* vol. 127 14–24 (2018).

737 72. Pooryasin, A. *et al.* Unc13A and Unc13B contribute to the decoding of distinct sensory
738 information in Drosophila. *Nat. Commun.* **12**, 1–14 (2021).

739 73. Dietzl, G. *et al.* A genome-wide transgenic RNAi library for conditional gene inactivation in
740 Drosophila. *Nature* **448**, 151–156 (2007).

741 74. Wilson, R. I. & Laurent, G. Role of GABAergic inhibition in shaping odor-evoked
742 spatiotemporal patterns in the Drosophila antennal lobe. *J Neurosci* **25**, 9069–9079
743 (2005).

744 75. Wilson, R. I., Turner, G. C. & Laurent, G. Transformation of olfactory representations in
745 the Drosophila antennal lobe. *Science (80-)* **303**, 366–70 (2004).

746 76. Israel, S., Rozenfeld, E., Weber, D., Huetteroth, W. & Parnas, M. Two Parallel Pathways
747 Mediate Olfactory-Driven Backward Locomotion. *bioRxiv* 2020.11.23.393819 (2020)
748 doi:10.1101/2020.11.23.393819.

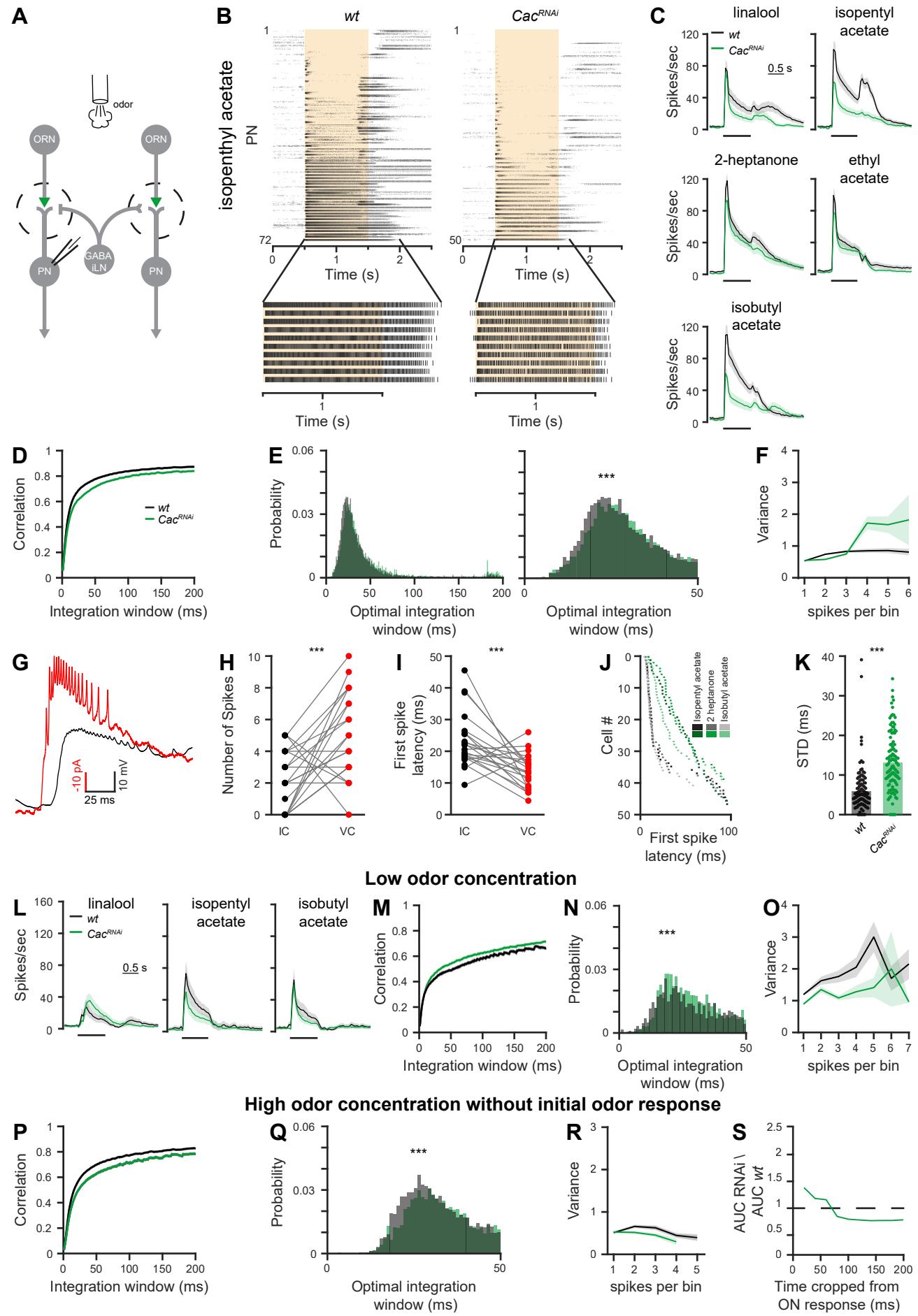
749 77. Selcho, M. & Wegener, C. Immunofluorescence and Genetic Fluorescent Labeling
750 Techniques in the Drosophila Nervous System. in *Immunocytochemistry and Related*
751 *Techniques* vol. 101 39–62 (2015).

752 78. Wagh, D. A. *et al.* Bruchpilot, a protein with homology to ELKS/CAST, is required for
753 structural integrity and function of synaptic active zones in Drosophila. *Neuron* **49**, 833–
754 844 (2006).

755 79. Chang, J. C., Hazelett, D. J., Stewart, J. A. & Morton, D. B. Motor neuron expression of
756 the voltage-gated calcium channel cacophony restores locomotion defects in a
757 Drosophila, TDP-43 loss of function model of ALS. *Brain Res.* **1584**, 39–51 (2014).

758 80. Seelig, J. D. *et al.* Two-photon calcium imaging from head-fixed *Drosophila* during
759 optomotor walking behavior. *Nat. Methods* **7**, 535–540 (2010).

760 81. Moore, R. J. D. *et al.* FicTrac: A visual method for tracking spherical motion and
761 generating fictive animal paths. *J. Neurosci. Methods* (2014)
762 doi:10.1016/j.jneumeth.2014.01.010.


763 82. Youden, W. J. Index for rating diagnostic tests. *Cancer* **3**, 32–35 (1950).

764 83. Schisterman, E. F., Perkins, N. J., Liu, A. & Bondell, H. Optimal cut-point and its
765 corresponding Youden index to discriminate individuals using pooled blood samples.
766 *Epidemiology* **16**, 73–81 (2005).

767

Figure 1

available under aCC-BY-NC-ND 4.0 International license.

High odor concentration

768 **Figure 1: Reducing SV release probability reduces coding reliability only at high stimulus
769 intensities**

770 **A.** Experimental scheme. *UAS-Cac^{RNAi}* was expressed in ORNs using *Orco-GAL4* and whole-cell
771 patch clamp recordings were made from PNs labeled by the *GH146-QF* driver line. PN odor
772 response were measured for high odor concentration in 2-4 days old flies.

773 **B.** *Top*, Raster plot of PN population odor responses to isopentyl acetate (a final odor dilution of
774 5×10^{-2} was used) in *wt* flies (left, n=72 flies) and *Cac^{RNAi}* in ORNs (right, n=50 flies). Each neuron
775 was presented with 10 repetitions of the olfactory stimulus (1 s). *Bottom*, the 10 repetitions of a
776 single PN are presented. The shaded area indicates the odor stimulus.

777 **C.** Peristimulus time histogram (PSTH) of PN population responses to five odors examined as
778 indicated (shaded areas represent SEM, odor pulse is labeled with a black bar) obtained from
779 recordings as in panel A. Spike trains were binned using a 50 ms time bin. Knockdown *Cac*
780 (green) in ORNs resulted in decreased PN odor responses. A final odor dilution of 5×10^{-2} was
781 used (n=48-72 flies). *Orco-GAL4* was used to drive the RNAi constructs and *GH146-QF* drove
782 *QUAS-GFP*.

783 **D.** Temporal reliability analysis. Pairwise correlations for each odor-neuron combination were
784 pooled across all odors for data in Figure S1. Non-overlapping windows from 1 to 200 ms were
785 used. *Cac^{RNAi}* in ORNs reduces correlation values.

786 **E.** *Left*, the curve saturation point (see methods) was calculated for each odor-neuron
787 combination and pooled across all odors for data in Figure S1. *Right*, Left curves are presented
788 at a larger scale. *Cac^{RNAi}* in ORNs shifts the optimal temporal integration window of PNs as evident
789 by a larger integration window spread (left) and a peak shift of ~10 ms (right).

790 **F.** Firing-rate reliability analysis for data in Figure S1. Spike trains were binned using 20 ms
791 windows. Spike count and variability were calculated for each bin and pooled across neurons,
792 odors, and time. Increased rate variability is observed for high firing rates.

793 **G.** Example traces of recordings performed in current clamp (IC, black) and in voltage clamp (VC,
794 red). Note, the VC trace is inverted for presentation purposes.

795 **H.** PN firing-rate during the first 25 ms of the response to isopentyl acetate in current clamp (IC,
796 black) vs. voltage clamp (VC, red). Each dot represents an individual fly (n=22). The VC
797 configuration enabled detection of more action potentials.

798 **I.** First spike latency of PNs in response to isopentyl acetate in IC (black) vs. VC (red). Dots
799 represent individual flies (n=22).

800 **J.** First spike latency of PNs in response to the indicated odors for *wt* and *Cac^{RNAi}* flies (n=50).
801 Each dot represent the mean first spike latency for 10 trials of a given neuron. Data were obtained
802 in VC configuration and PNs that did not spike within 100ms after stimulus onset were omitted.

803 **K.** First spike jitter of PN odor responses, pooled across all odors, for *wt* and *Cac^{RNAi}* flies (n=50).

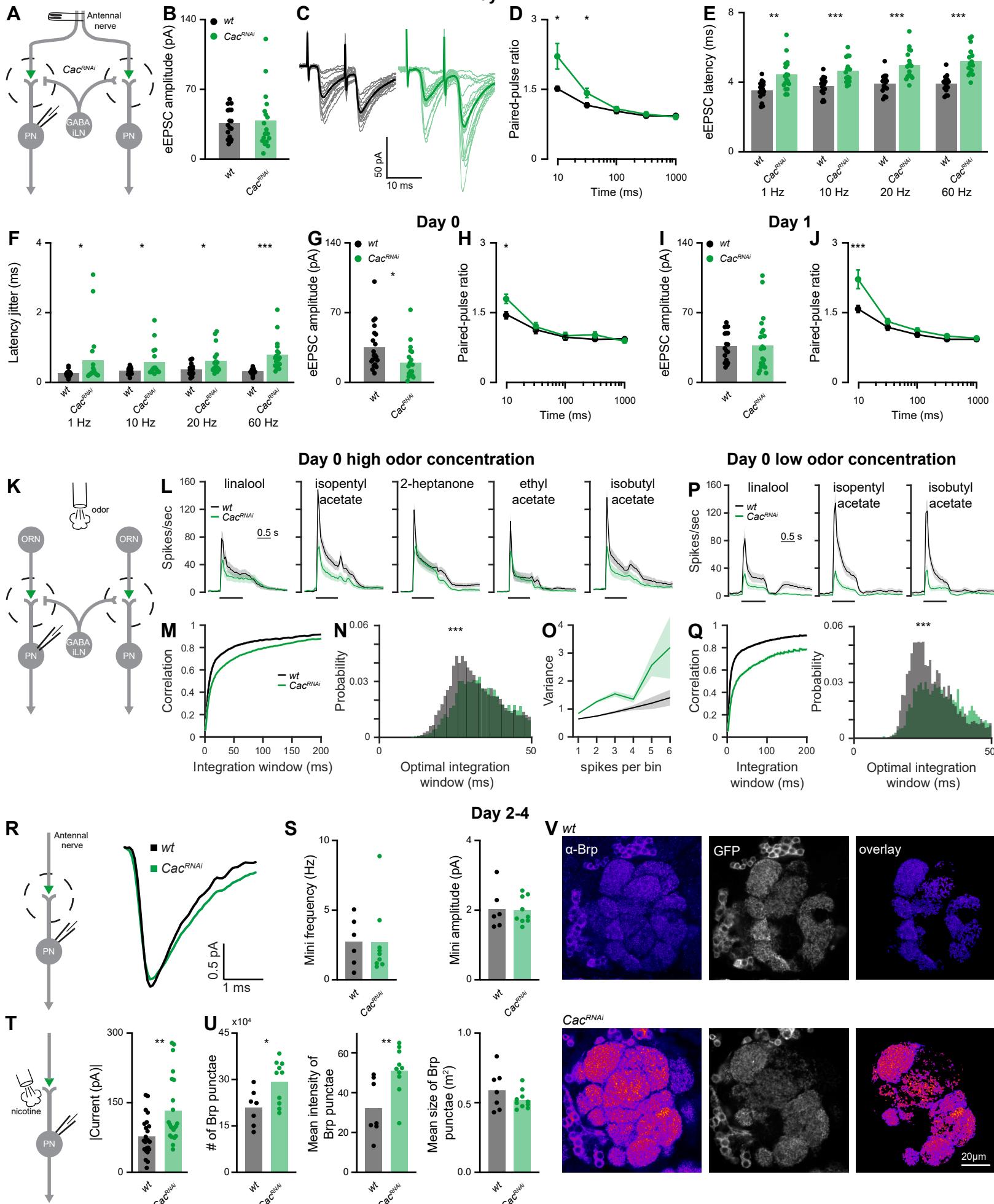
804 **L.** PSTH of PN population responses to three low concentration odors examined as indicated
805 (shaded areas represent SEM, odor pulse is labeled with a black bar). Spike trains were binned
806 using a 50 ms time bin. Knockdown *Cac* (green) in ORNs did not affect PN odor responses. A
807 final odor dilution of 5×10^{-4} was used (n=50 flies). *Orco-GAL4* was used to drive the RNAi
808 constructs and *GH146-QF* drove *QUAS-GFP*.

809 **M, N.** Temporal reliability analysis (as in panels D, E) for data in panel L. *Cac^{RNAi}* in ORNs did not
810 reduce correlation values.

811 **O.** Firing-rate reliability analysis (as in panel F) for data in panel L. *Cac^{RNAi}* in ORNs did not
812 increase firing rate variability.

813 **P, Q.** Temporal reliability analysis (as in panels D, E) for data in Figure S1. Removing the first
814 200 ms of the odor response leads to an overall decrease in correlation. A shift of the peak of the
815 curve is observed for the sustained odor response in *Cac^{RNAi}* flies.

816 **R.** Firing-rate reliability analysis (as in panel F) for data in Figure S1 without the first 200 ms of
817 the odor response. Contrary to the increased variation observed for the entire odor response


818 (Figure 2C), Cac^{RNAi} in ORNs did not increase the variability for the sustained odor response
819 although high firing-rates were still obtained.

820 **S.** The ratio between the area under the curve (AUC) of the rate code variability in Cac^{RNAi} relative
821 to wt . The initial response was progressively cropped from the analysis. The difference in rate
822 code variation of wt and Cac^{RNAi} flies gradually decreases over the first 200 ms of the odor
823 response.

824

825 For all panels *** p<0.001, see table S1 for statistical analysis.

Figure 2

826 **Figure 2: Presynaptic Cac knockdown induces homeostatic plasticity**

827 **A.** Experimental scheme. *UAS-Cac^{RNAi}* was expressed in ORNs using *Orco-GAL4* and whole-cell
828 patch clamp recordings were made from PNs labeled by the *GH146-QF* driver line. The antennal
829 nerve was stimulated with a suction electrode.

830 **B.** The average eEPSC amplitude was unaltered by *Cac^{RNAi}* for 2-4 days old flies (1 Hz stimulation
831 frequency; *Orco-Gal4* driver, *wt* n=17 and *Cac^{RNAi}* n=18 flies).

832 **C.** Examples traces of eEPSC evoked by paired pulse stimulation with an inter-pulse interval of
833 10ms.

834 **D.** Quantification of the paired-pulse ratio at different inter-stimulus intervals for 2-4 days old flies
835 (10ms, 30ms, 100ms, 300ms and 1000ms). *Cac^{RNAi}* significantly increased paired-pulse
836 facilitation at short inter-pulse intervals (*wt*, n=20-22; *Cac^{RNAi}*, n=24-28 flies). Error bars represent
837 SEM.

838 **E, F.** Average eEPSC latencies (**E**) and average eEPSC jitter (**F**) at 1, 10, 20, and 60 Hz
839 stimulation for *wt* (n=17) and *Cac^{RNAi}* (n=18) flies. A significant increase was observed for all
840 tested stimulation frequencies (except of jitter at 1 Hz).

841 **G.** The average eEPSC amplitude was reduced by *Cac^{RNAi}* for 0 day old flies (1 Hz stimulation
842 frequency; *Orco-Gal4* driver, *wt* n=20 and *Cac^{RNAi}* n=19 flies).

843

844 **H.** Quantification of the paired-pulse ratio at different inter-stimulus intervals for 0 day old flies
845 (10ms, 30ms, 100ms, 300ms and 1000ms). *Cac^{RNAi}* significantly increased paired-pulse
846 facilitation at short inter-pulse intervals (*wt*, n=20-21; *Cac^{RNAi}*, n=19 flies). Error bars represent
847 SEM.

848 **I.** The average eEPSC amplitude was unaltered by *Cac^{RNAi}* for 1 day old flies (1 Hz stimulation
849 frequency; *Orco-Gal4* driver, *wt* n=17 and *Cac^{RNAi}* n=18 flies).

850 **J.** Quantification of the paired-pulse ratio at different inter-stimulus intervals for 1 day old flies
851 (10ms, 30ms, 100ms, 300ms and 1000ms). *Cac^{RNAi}* significantly increased paired-pulse

852 facilitation at short inter-pulse intervals (*wt*, n=20-22; *Cac^{RNAi}*, n=22 flies). Error bars represent
853 SEM.

854 **K.** Experimental scheme. *UAS-Cac^{RNAi}* was expressed in ORNs using *Orco-GAL4* and whole-cell
855 patch clamp recordings were made from PNs labeled by the *GH146-QF* driver line. PN odor
856 response were measured for both high and low odor concentration in 0 days old flies.

857 **L.** PSTH of PN population responses to five high concentration odors examined as indicated
858 (shaded areas represent SEM, odor pulse is labeled with a black bar) for 0 day old flies. Spike
859 trains were binned using a 50 ms time bin. Knockdown *Cac* (green) in ORNs resulted in decreased
860 PN odor responses. A final odor dilution of 5×10^{-2} was used (n=50-57 flies). *Orco-GAL4* was used
861 to drive the RNAi constructs and *GH146-QF* drove *QUAS-GFP*.

862 **M, N.** Temporal reliability analysis (as in Figure 1 D, E) for data in panel L. *Cac^{RNAi}* in ORNs
863 reduces correlation values.

864 **O.** Firing-rate reliability analysis (as in Figure 1 F) for data in panel L. *Cac^{RNAi}* in ORNs increased
865 firing rate variability.

866 **P.** PSTH of PN population responses to three low concentration odors examined as indicated
867 (shaded areas represent SEM, odor pulse is labeled with a black bar) for 0 day old flies. Spike
868 trains were binned using a 50 ms time bin. Knockdown *Cac* (green) in ORNs resulted in decreased
869 PN odor responses. A final odor dilution of 5×10^{-4} was used (n=49-50 flies). *Orco-GAL4* was used
870 to drive the RNAi constructs and *GH146-QF* drove *QUAS-GFP*.

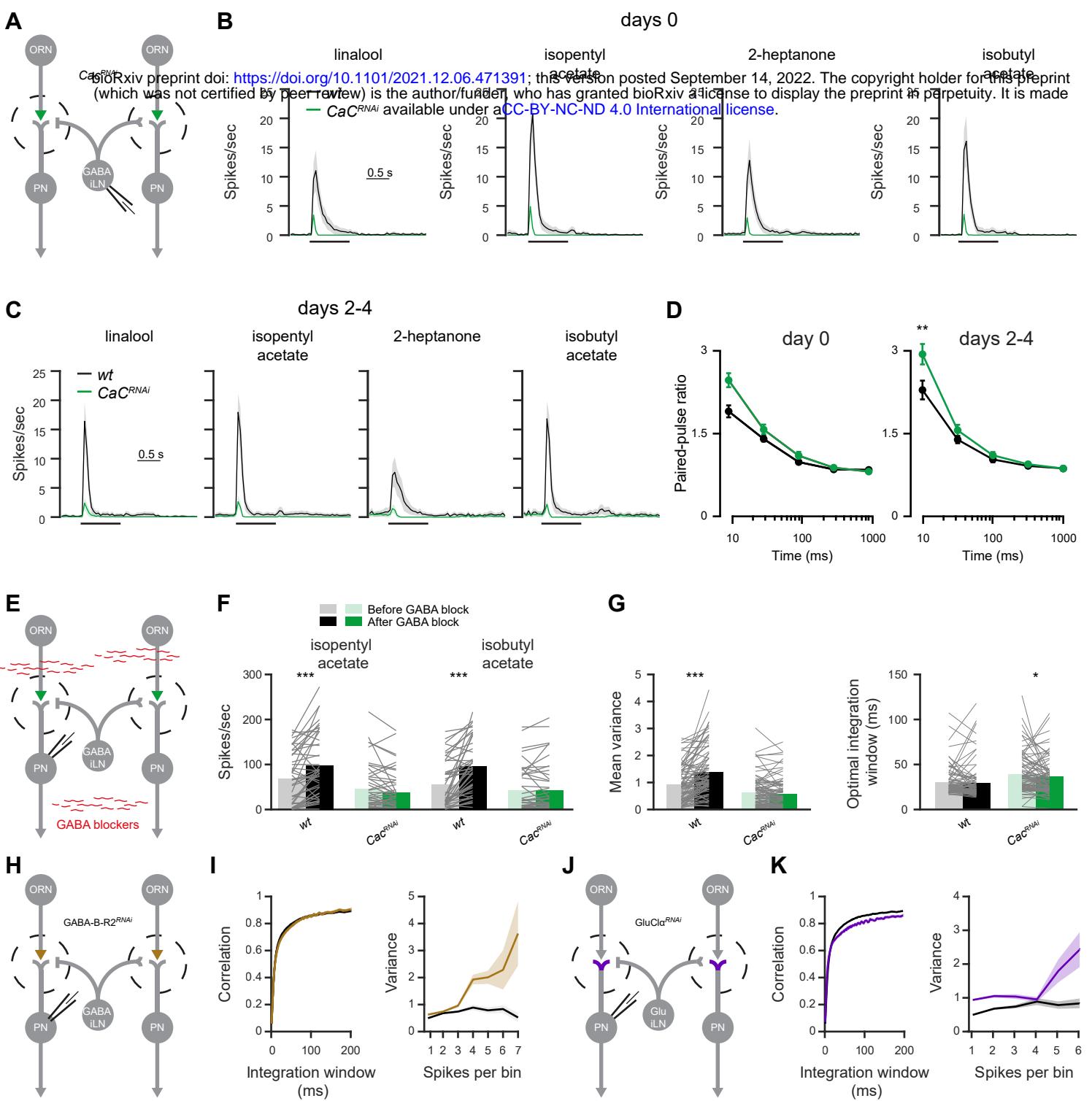
871 **Q.** Temporal reliability analysis (as in Figure 1 D, E) for data in panel P. *Cac^{RNAi}* in ORNs reduces
872 correlation values.

873 **R.** *Left*, Experimental scheme. Spontaneously occurring single-vesicle fusions (minis) were
874 recorded at PNs in 2-4 days old flies. *Right*, Representative traces of averaged spontaneous minis
875 in PNs of *wt* (black) and *Cac^{RNAi}* in ORNs (green).

876 **S.** Analysis of mini frequency (left) and amplitude (right) does not show significant differences
877 between genotypes. (*wt*, n=6; *Cac^{RNAi}*, n=9 flies).

878 **T.** *Left*, Experimental scheme. Nicotine (100 μ M) was injected to the AL and currents were
879 measured in PNs. *Right*, Analysis of the current magnitude in response to a nicotinic puff. Cac^{RNAi}
880 in ORNs increases PN response to the cholinergic agonist nicotine, indicating an increase in
881 postsynaptic receptor fields. *Orco-GAL4* was used to drive the RNAi construct and *GH146-QF*
882 drove *QUAS-GFP* (*wt*, n=23; Cac^{RNAi} , n=22 flies).

883 **U.** Analysis of Brp in ORN pre-synapses shows a significant increase in number and fluorescence
884 intensity of Brp punctae following Cac knock-down, while the size of Brp points is unaffected. (*wt*,
885 n=7; Cac^{RNAi} , n=10 flies).


886 **V.** Example confocal images of an individual plane through the antennal lobe in control (upper
887 panel; *orco-Gal4/+; GH-146-QF, QUAS-GFP/+*) and Cac^{RNAi} flies (lower panel; *orco-Gal4/+; GH146-QF, QUAS-GFP/UAS-Cac^{RNAi}*) stained against Brp (fire). To restrict the analysis of Brp to
888 excitatory PN post-synapses, the Brp signal was overlayed with masks generated from imaging
889 endogenous GFP driven via GH146 (GFP, grey; overlay). Scale bar: 20 μ m.

890

891

892 For all panels, * p<0.05, ** p<0.01, *** p<0.001, see table S1 for statistical analysis.

Figure 3

893 **Figure 3: Monosynaptic effects underlie temporal reliability whereas circuit effects**
894 **underlie rate code reliability**

895 **A.** Experimental scheme. Cac^{RNAi} was driven in ORNs using *Orco-GAL4*. Whole-cell patch
896 recordings were made from iLNs labeled with the *449-QF* driver line.

897 **B.** PSTH of the iLN population response to four odors examined as indicated (shaded areas
898 represent SEM, the odor pulse is labeled with a black bar) for 0 day old flies. Cac knockdown
899 resulted in an almost complete abolishment of iLN odor responses (final odor dilution of 5×10^{-2} ;
900 $n=49-50$ flies).

901 **C.** PSTH of the iLN population response to four odors examined as indicated (shaded areas
902 represent SEM, the odor pulse is labeled with a black bar) for 2-4 days old flies. Cac knockdown
903 resulted in an almost complete abolishment of iLN odor responses (final odor dilution of 5×10^{-2} ;
904 $n=49-50$ flies).

905 **D.** Quantification of the paired-pulse ratio at different inter-stimulus intervals for 0 day (left) and
906 2-4 days (right) old flies (10ms, 30ms, 100ms, 300ms and 1000ms). Cac^{RNAi} significantly
907 increased paired-pulse facilitation at short inter-pulse intervals (*wt*, $n=13-22$; Cac^{RNAi} , $n=15-28$
908 flies). Error bars represent SEM. * $p<0.05$, two-sample t-test, see table S1.

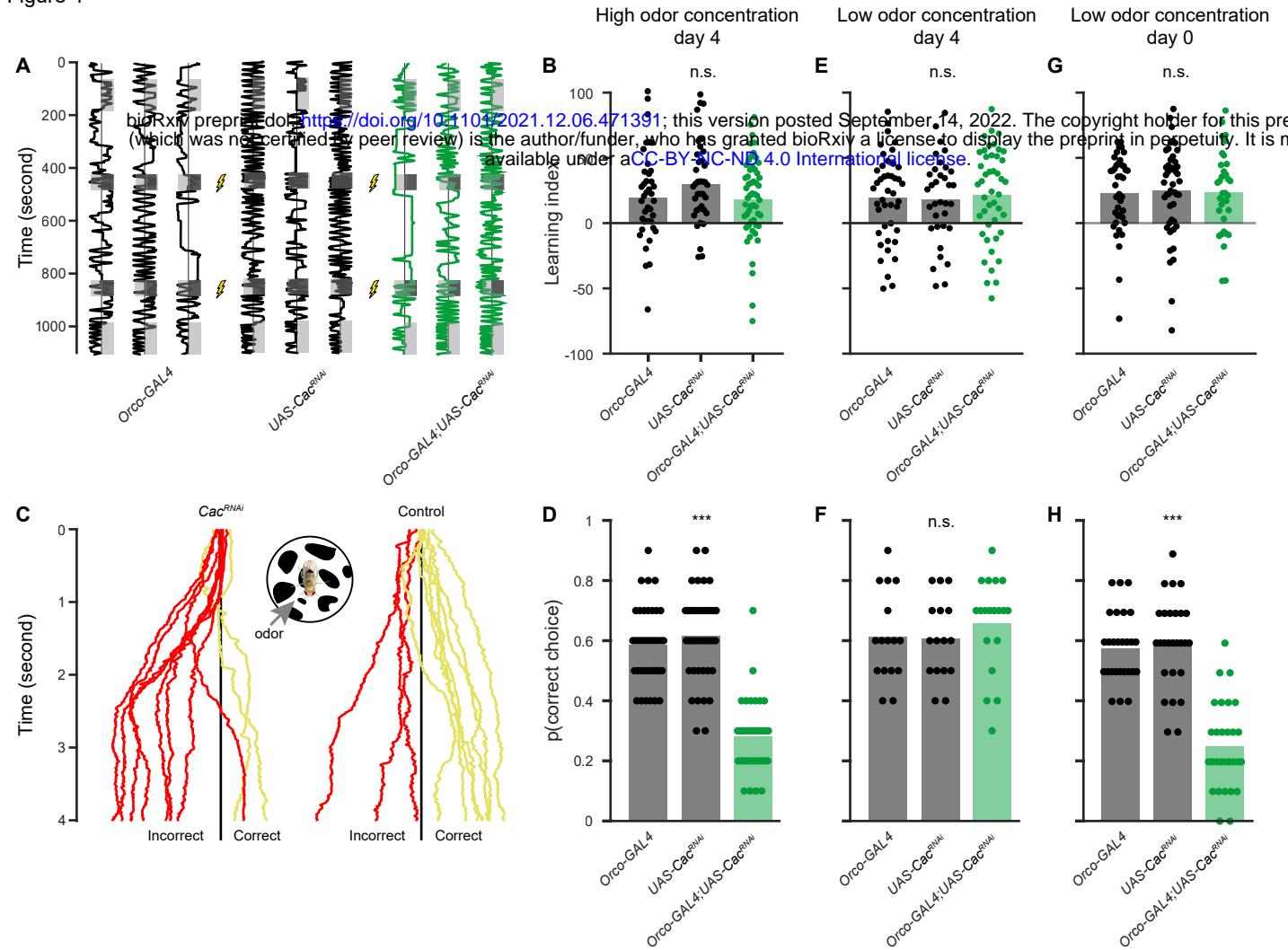
909 **E.** Experimental scheme. GABA receptors blockers (100 μ M CGP54626 and 250 μ M picrotoxin)
910 were applied by bath perfusion. Whole-cell patch recordings were made from PNs labeled with
911 the *GH146-QF* driver line. *UAS-Cac^{RNAi}* was expressed in ORNs using *Orco-GAL4*

912 **F.** Mean firing rate during the odor response. Application of GABA blockers significantly increased
913 *wt* firing rates but had no effect on Cac^{RNAi} . *Orco-GAL4* drove *UAS-Cac^{RNAi}* and *GH146-QF* drove
914 *QUAS-GFP* ($n = 45-48$ flies).

915 **G.** *Left.* Temporal integration window and *right*, firing-rate reliability analysis for *wt* and Cac^{RNAi}
916 flies before and after the application of GABA receptors blockers (100 μ M CGP54626, and 250
917 μ M picrotoxin). The data were pooled for the presentation of two odors (isopentyl acetate and
918 isobutyl acetate) and across all firing-rates ($n=45-48$ flies).

919 **H.** Experimental scheme. An RNAi construct against the GABA-B-R2 receptor was expressed in
920 ORNs using *Orco-GAL4*. Whole-cell patch recordings were made from PNs labeled with the
921 *GH146-QF* driver line.

922 **I.** *Left*. Temporal integration window and *right*, firing-rate reliability analysis for *wt* and *GABA-B-*
923 *R2*^{*RNAi*} flies (brown). The data were pooled for the presentation of two odors (isopentyl acetate
924 and isobutyl acetate) and across all firing-rates (n=50-72 flies).


925 **J.** Experimental scheme. An RNAi construct against the GluCl α receptor was expressed in PNs
926 using *GH146-GAL4*. Whole-cell patch recordings were made from PNs.

927 **K.** *Left*. Temporal integration window and *right*, firing-rate reliability analysis for *wt* and GluCl α ^{*RNAi*}
928 flies (purple). The data were pooled for the presentation of two odors (isopentyl acetate and
929 isobutyl acetate) and across all firing-rates (n=50-72 flies).

930

931 For all panels, * p<0.05, ** p<0.01, *** p<0.001, see table S1 for statistical analysis.

Figure 4

932 **Figure 4: Cac knockdown reduces behavioral reliability**

933 **A.** Experimental scheme for the learning paradigm. Flies were constrained in a linear chamber
934 with isopentyl acetate presented on one side (gray). For pairing with an electric shock, the odor
935 was presented on both sides of the chamber. Examples of single fly trajectories are shown.

936 **B.** Learning performance for prolonged odor exposure at high odor concentration. No significant
937 differences in the learning index were observed between the parental controls and *Cac*^{RNAi} in
938 ORNs. Each dot represents a single fly (final odor dilution of 5×10^{-2} ; n=37-54).

939 **C.** Trained flies were tested in an assay where flies walked on a ball and the shock-paired odor
940 was presented from the indicated side. Ten one second odor trials were presented as in Figure
941 1. Examples for single fly trajectories along the virtual X-axis are presented. Choice was classified
942 as correct (yellow) if the mean X-axis position following the odor presentation was rightward of
943 the X-axis midline (black line) and incorrect (red) otherwise.

944 **D.** Behavioral reliability measure. The behavioral reliability measure was defined as the probability
945 of correctly classifying the shock-paired odor. Cac knockdown in ORNs reduces the behavioral
946 reliability compared to the parental controls at high odor concentration. Each dot represents a
947 single fly (final odor dilution of 5×10^{-2} ; n=20-21).

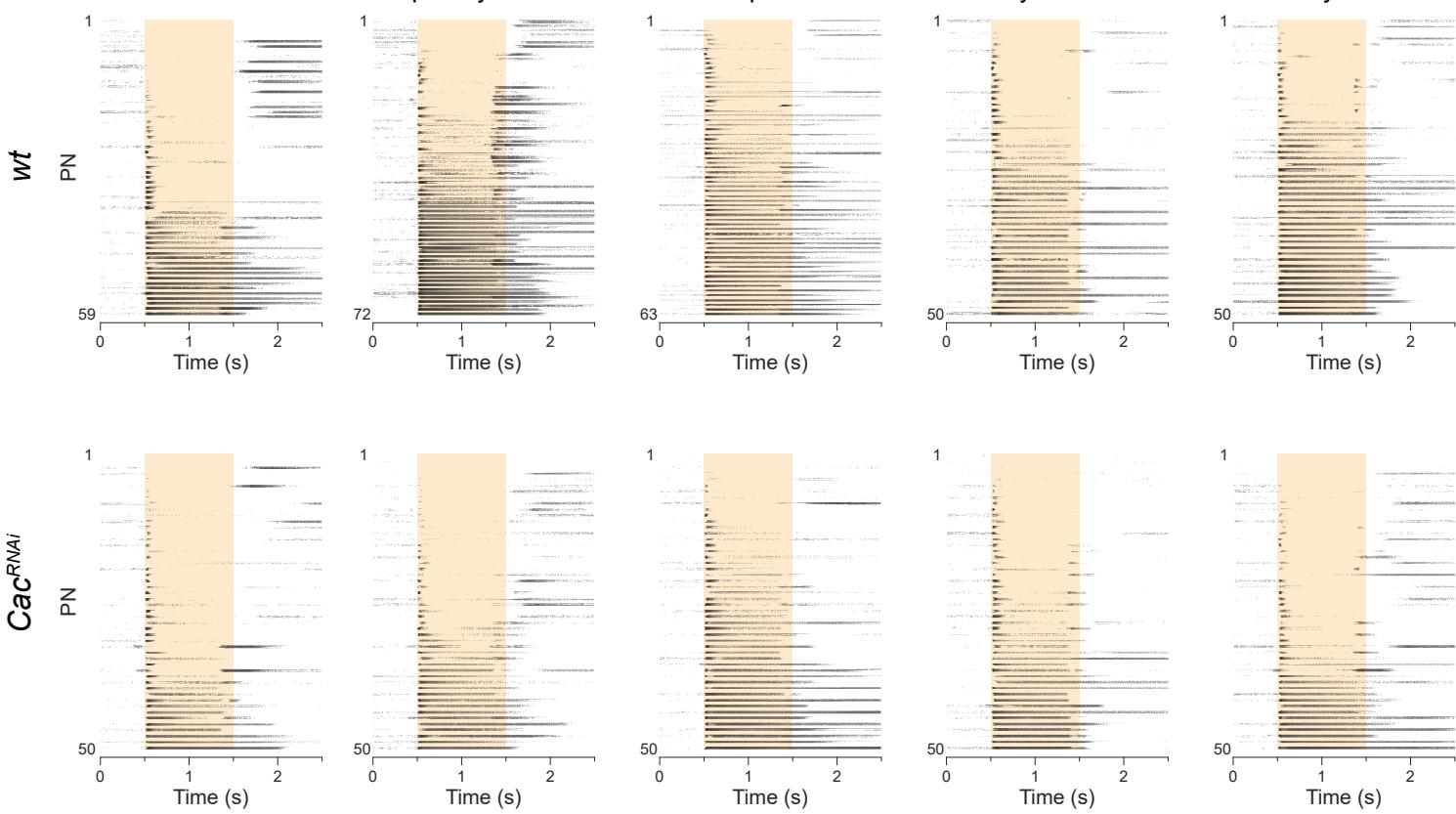
948 **E.** Learning performance for prolonged odor exposure at low odor concentration in 4 days old fly.
949 No significant differences in the learning index were observed between the parental controls and
950 *Cac*^{RNAi} in ORNs. Each dot represents a single fly (final odor dilution of 5×10^{-4} ; n=34-45).

951 **F.** Behavioral reliability measure as in panel D for low odor concentration in 4 days old fly. Cac
952 knockdown in ORNs did not affect the behavioral reliability compared to the parental controls at
953 low odor concentration. Each dot represents a single fly (final odor dilution of 5×10^{-4} ; n=16-19).

954 **G.** Learning performance for prolonged odor exposure at low odor concentration in 0 day old flies.
955 No significant differences in the learning index were observed between the parental controls and
956 *Cac*^{RNAi} in ORNs. Each dot represents a single fly (final odor dilution of 5×10^{-4} ; n=34-47).

957 **H.** Behavioral reliability measure for low odor concentration in 0 day old flies. Cac knockdown in
958 ORNs reduces the behavioral reliability compared to the parental controls at low odor
959 concentration, indicating a lack of homeostatic compensation. Each dot represents a single fly
960 (final odor dilution of 5×10^{-4} ; n=27-29).

961


962 For all panels *** p<0.001, see table S1 for statistical analysis.

Supplementary Information

Homeostatic Plasticity Rescues Neural Coding Reliability

Eyal Rozenfeld, Nadine Ehmann, Julia E. Manoim, Robert J. Kittel and Moshe Parnas

Figure S1

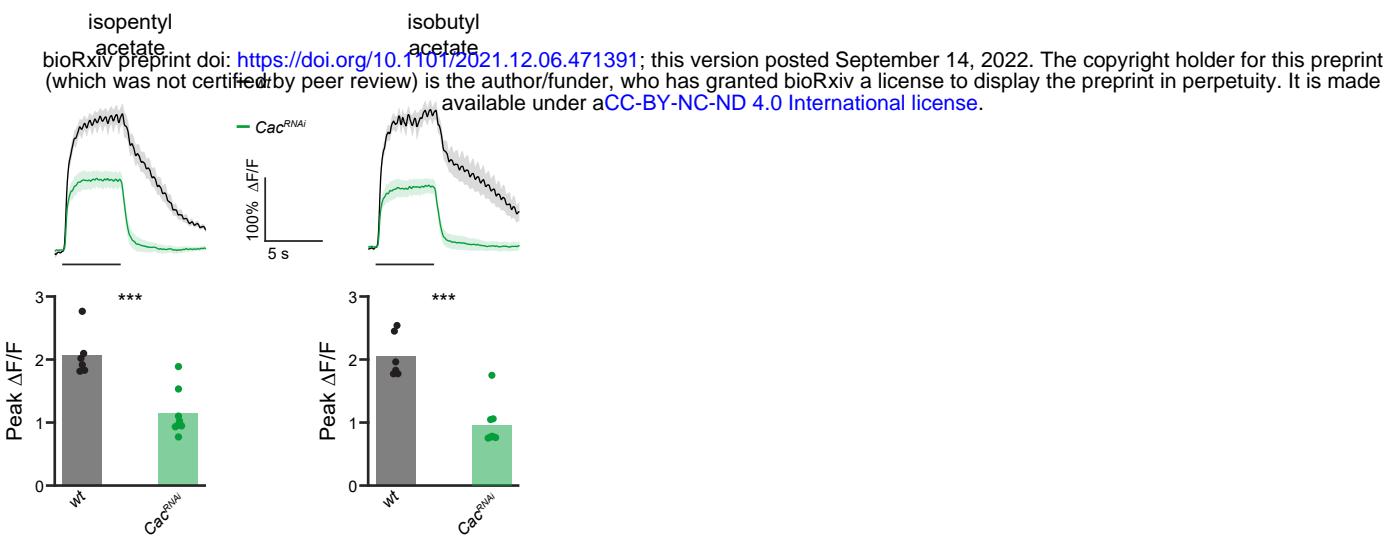


Figure S1: PN population responses to odor stimulation

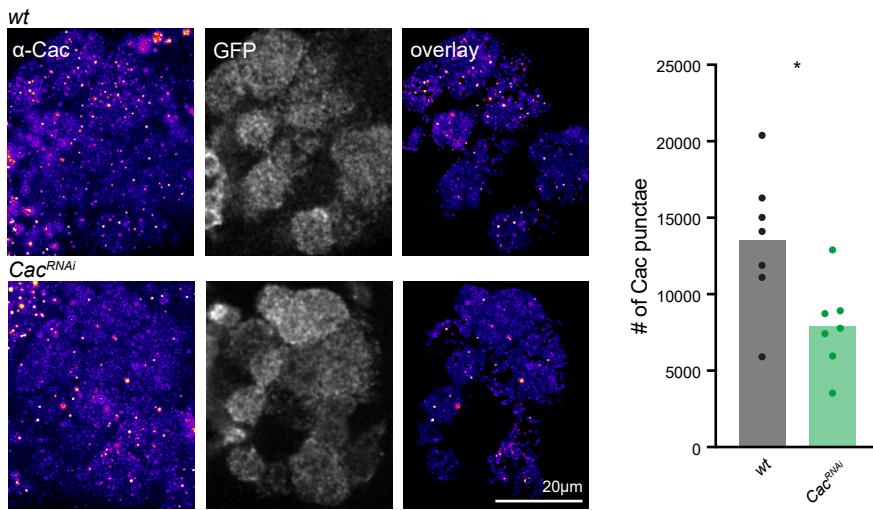
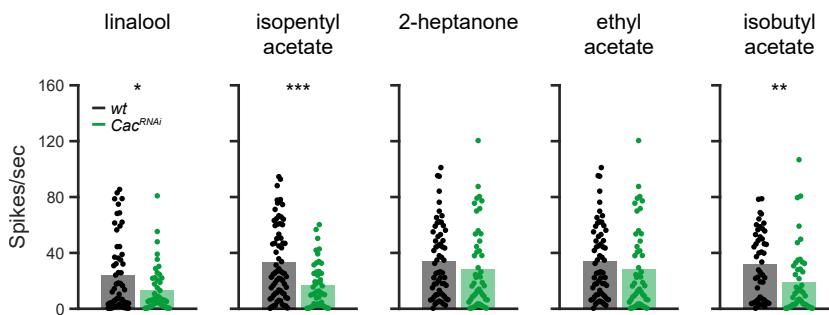
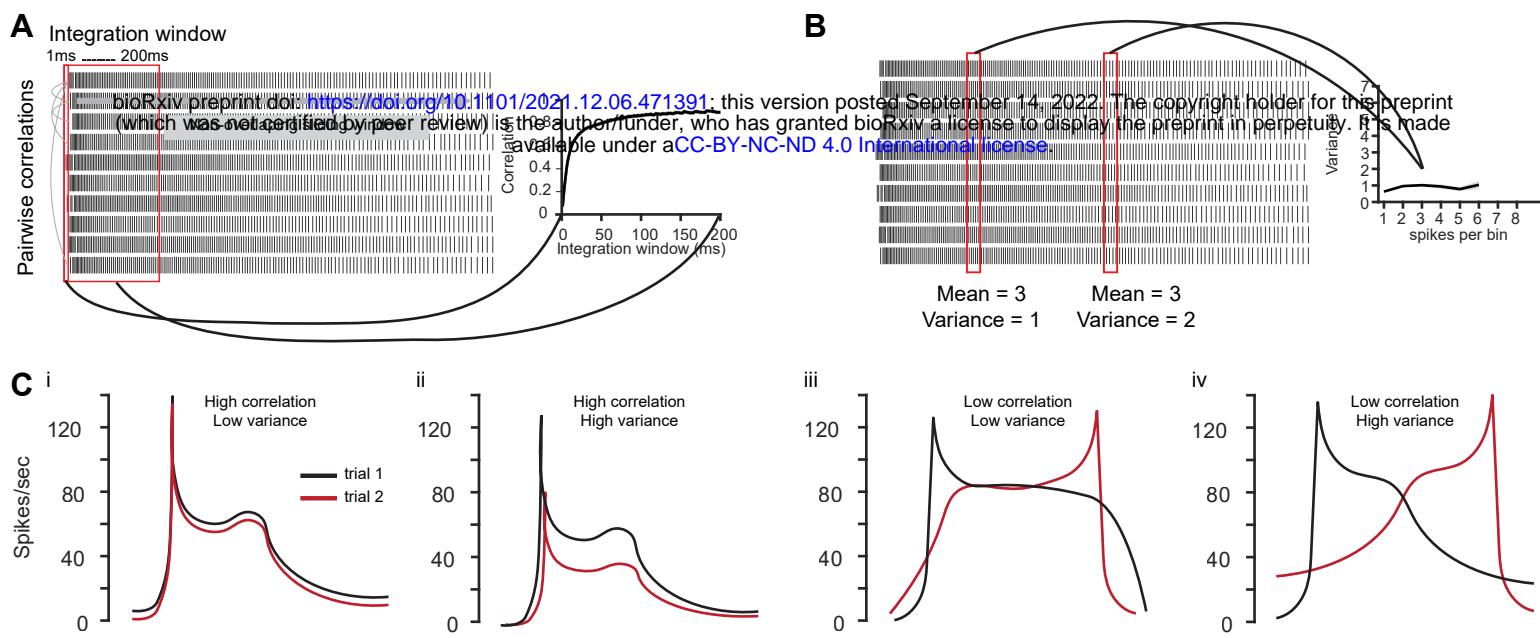

Raster plots of PN population responses to five odors as indicated (final odor dilution of 5×10^{-2}) in *wt* flies and *UAS-Cac^{RNAi}* in ORNs. Each neuron was presented with 10 repetitions of the olfactory stimulus. *Orco-GAL4 UAS-Cac^{RNAi}* in ORNs and *GH146-QF* drove *QUAS-GFP* (n=45-72).

Figure S2


A

B

C

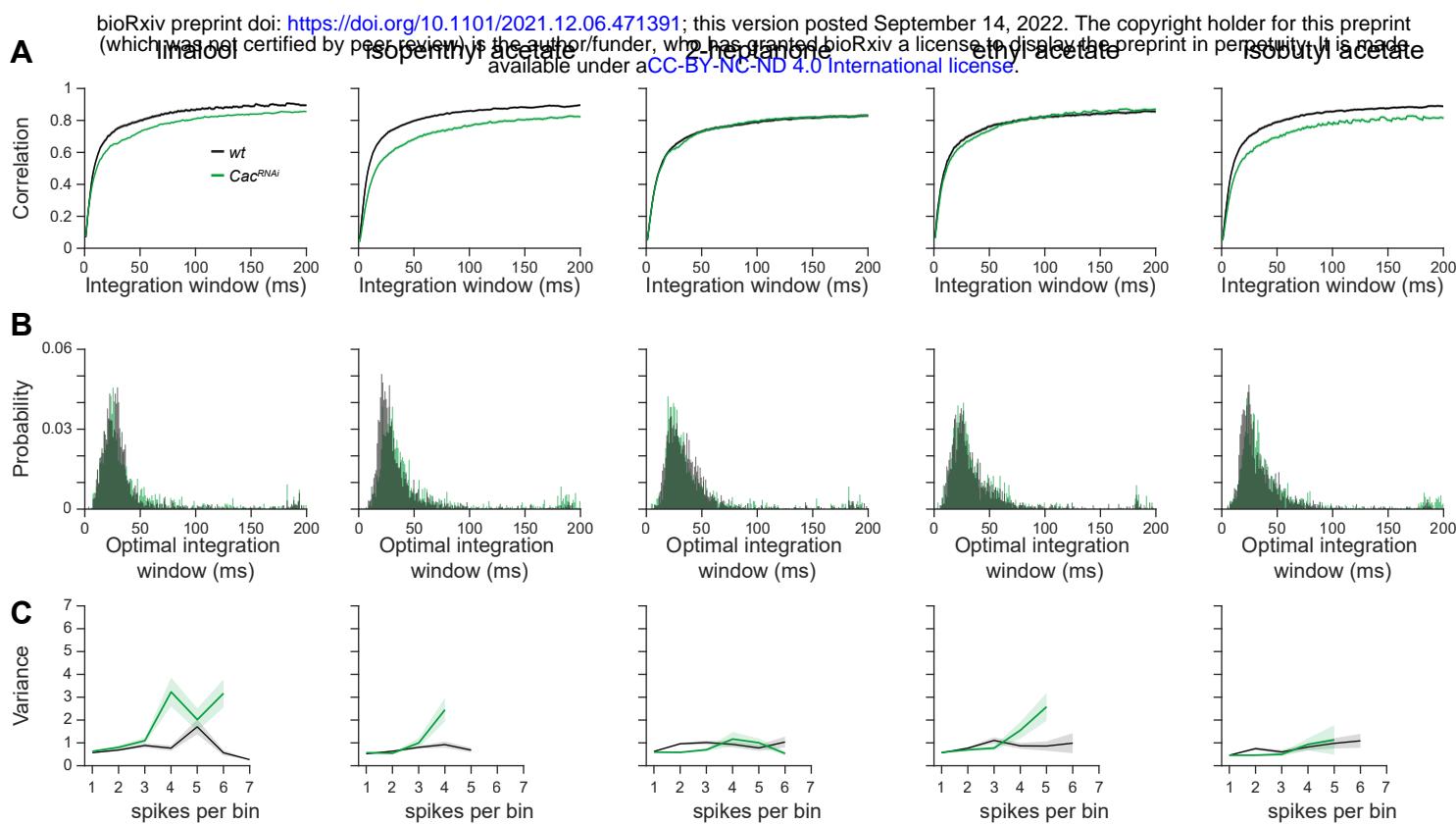

Figure S2: Knockdown of Cac affects ORNs calcium levels and reduces odor-stimulated PN firing rates

A. *Top*, averaged traces \pm SEM (shading) of odor responses (as indicated, odor pulse is labeled with a black bar) obtained from a single plane of the entire AL for *wt* or RNAi flies. *Orco-GAL4* drove *UAS-Cac^{RNAi}* along with *UAS-GCaMP6f*. *Bottom*, peak $\Delta F/F$ during odor responses for the traces presented in the *top* panel. As expected, a significant decrease in Ca^{2+} signals was observed for *Cac^{RNAi}*. (n = 5-7 flies, ** p < 0.01, *** p < 0.001, Two-sample t-test, see table S1).

B. To validate knock-down of Cacophony at ORN-PN synapses, whole mounts of flies were stained with an antibody against Cacophony¹ (Chang et al., 2014) in control (upper panel; *orco-Gal4/+; GH-146-QF, QUAS-GFP/+*) and *Cac^{RNAi}* flies (lower panel; *orco-Gal4/+; GH146-QF, QUAS-GFP/UAS-Cac^{RNAi}*). Analysis of Cac signals (fire) was restricted to excitatory PN post-synapses trough an overlay with the respective mask generated by imaging GH146 driven GFP (grey, GFP; overlay). Scale bar 20 μm . *Right*. Confocal analysis yielded a lower number of Cac signals at ORN-PN synapses upon Cac knock-down in ORNs, confirming the RNAi efficacy. (n=7, * P \leq 0.05).

C. Mean firing rate of PNs in response to five odors as indicated (final odor dilution of 5×10^{-2}) for *wt* flies and for *Cac^{RNAi}*. Each data point shows the average of 10 responses to a 1 s odor stimulus and 1 s following the odor stimulus. *Orco-GAL4* drove *UAS-Cac^{RNAi}* in ORNs and *GH146-QF* drove *QUAS-GFP*. For most odors a significant decrease in firing rate was observed. (n=45-72, * p<0.05, ** p<0.01, *** p<0.001, Two-sample t-test, see table S1).

Figure S3

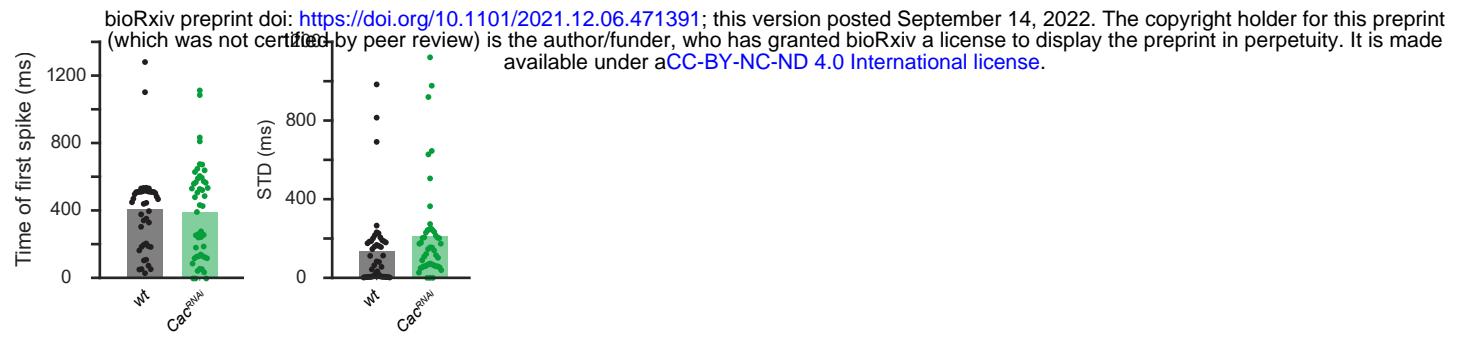

Figure S3: Graphical description of the reliability analysis

A. Temporal reliability analysis. Pairwise correlations were performed between the 10 repetitions of each odor-neuron combination. Correlations were calculated using increasing, non-overlapping integration windows from 1 to 200 ms with 1 ms intervals. The 45 pairwise correlation values for each condition (i.e. PN and odor) were averaged to a single correlation value for this condition. All correlation values for all PNs and odors were pooled to yield the correlation curve on the right.

B. Firing rate reliability analysis. Spike trains were binned using 20 ms windows. The number of spikes and variability was calculated for each individual bin. The mean variance value for all bins having the same number of spikes is presented on the variance curve on the right. Variance values are pooled across neurons, odors and time.

C. Temporal reliability analysis and firing rate reliability analysis capture different aspects of trial-to-trial coding reliability. Correlation captures the general shape of the PSTH regardless of momentary changes in firing rate at a given point in time (i and ii). Inter trial variability captures the momentary changes in firing rates regardless of the PSTH temporal dynamics (ii and iv).

Figure S4


Figure S4: Single odor analyses of response reliability

A. Temporal reliability analysis as performed in Figure 1A but for single odors as indicated. Data obtained from Figure 1 and Figure S1. For all odors, a final odor dilution of 5×10^{-2} was used.

B. The optimal integration window analysis as performed in Figure 1D but for single odors as indicated. Data obtained from Figure 1 and Figure S1. For all odors, a final odor dilution of 5×10^{-2} was used.

C. Firing rate reliability analysis as performed in Figure 1E but for single odors as indicated. Data obtained from Figure 1 and Figure S1. For all odors, a final odor dilution of 5×10^{-2} was used.

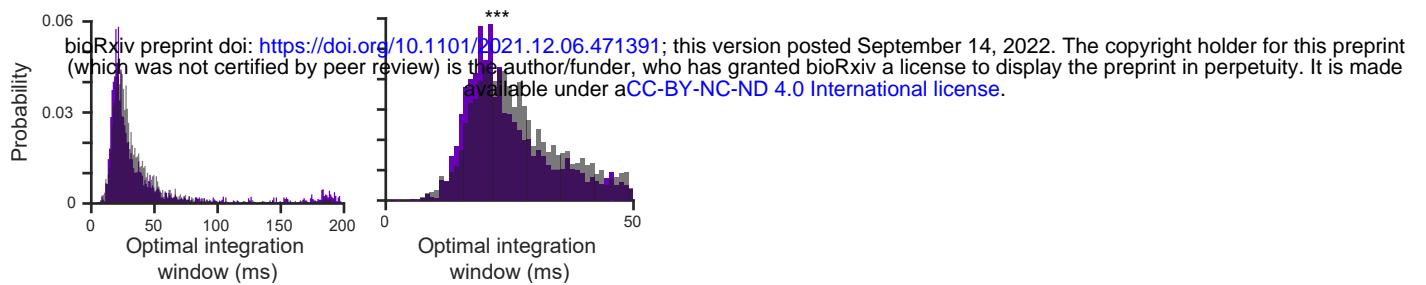

Figure S5

Figure S5: Controls for first spike analysis

Analysis of the latency of the first spike (left) and jitter of the first spike (right) in PNs as performed in Figure 1I,J but in response to mock odor application (i.e. no odor was actually applied) for *wt* flies or *Cac*^{RNAi} in ORNs (n=47-49). No change in any parameter was observed.

Figure S6

Figure S6: GluCl α RNAi in PNs does not increase their integration window

Left, the curve saturation point was calculated for each odor-neuron combination and pooled across the two odors for the data in Figure 3K. *Right*, Left curves are presented at a larger scale. GluCl α knockdown in PNs did not increase their optimal temporal integration window. If at all, it slightly improved as reflected by a smaller integration window spread and a slight peak shift to the left.

References

1. Chang, J. C., Hazelett, D. J., Stewart, J. A. & Morton, D. B. Motor neuron expression of the voltage-gated calcium channel cacophony restores locomotion defects in a *Drosophila*, TDP-43 loss of function model of ALS. *Brain Res.* **1584**, 39–51 (2014).

Table S1: statistical analysis

Figure	data	Statistical method	comparison	P-value	Effect size	significance
Figure 1E	J-index probability Cac^{RNAi} all odors pooled	Permutation test	1. Control (N=12133) 2. Cac^{RNAi} (N=9883)	<0.001	-0.211	***
Figure 1H	Spike count IC vs. VC	Two sample paired t-test	1. IC (N=22) 2. VC (N=22)	0.001	-1.162	***
Figure 1I	First spike latency IC vs. VC	Two sample paired t-test	1. IC (N=22) 2. VC (N=22)	<0.001	1.265	***
Figure 1K	First spike jitter all odors pooled	Permutation test	1. Control (N=134) 2. Cac^{RNAi} (N=127)	<0.001	-1.178	***
Figure 1N	J-index probability Cac^{RNAi} all odors pooled	Permutation test	1. Control (N=4198) 2. Cac^{RNAi} (N=4722)	<0.001	0.083	***
Figure 1Q	J-index probability Cac^{RNAi} all odors pooled	Permutation test	1. Control (N=9803) 2. Cac^{RNAi} (N=7156)	<0.001	-0.253	***
Figure 2B	eEPSC amplitude (pA)	Permutation test	1. Control (N=17) 2. Cac^{RNAi} (N=18)	0.789	-0.093	n.s
Figure 2D	Paired-pulse ratio (10ms interval)	Permutation test	1. Control (N=20) 2. Cac^{RNAi} (N=25)	0.010	-0.638	*
	Paired-pulse ratio (30ms interval)	Permutation test	1. Control (N=21) 2. Cac^{RNAi} (N=24)	0.034	-0.614	*
Figure 2E	eEPSC latency – 1Hz	Two sample t-test	1. Control (N=17) 2. Cac^{RNAi} (N=18)	0.001	-1.185	**
	eEPSC latency – 10Hz	Two sample t-test	1. Control (N=17) 2. Cac^{RNAi} (N=17)	<0.001	-1.402	***
	eEPSC latency – 20Hz	Two sample t-test	1. Control (N=17) 2. Cac^{RNAi} (N=18)	<0.001	-1.518	***

	eEPSC latency – 60Hz	Two sample t-test	1. Control (N=17) 2. <i>Cac</i> ^{RNAi} (N=18)	<0.001	-2.053	***
Figure 2F	eEPSC jitter – 1Hz	Permutation test	1. Control (N=17) 2. <i>Cac</i> ^{RNAi} (N=18)	0.044	-0.611	*
	eEPSC jitter – 10Hz	Permutation test	1. Control (N=17) 2. <i>Cac</i> ^{RNAi} (N=17)	0.016	-0.772	*
	eEPSC jitter – 20Hz	Permutation test	1. Control (N=17) 2. <i>Cac</i> ^{RNAi} (N=18)	0.010	-0.849	*
	eEPSC jitter – 60Hz	Two sample t-test	1. Control (N=17) 2. <i>Cac</i> ^{RNAi} (N=18)	<0.001	-1.452	***
Figure 2G	eEPSC amplitude (pA)	Permutation test	1. Control (N=20) 2. <i>Cac</i> ^{RNAi} (N=19)	0.016	0.751	*
Figure 2H	Paired-pulse ratio (10ms interval)	Permutation test	1. Control (N=20) 2. <i>Cac</i> ^{RNAi} (N=19)	0.025	-0.731	*
Figure 2I	eEPSC amplitude (pA)	Permutation test	1. Control (N=17) 2. <i>Cac</i> ^{RNAi} (N=22)	0.927	-0.028	n.s
Figure 2J	Paired-pulse ratio (10ms interval)	Permutation test	1. Control (N=20) 2. <i>Cac</i> ^{RNAi} (N=22)	<0.001	-0.933	***
Figure 2N	J-index probability <i>Cac</i> ^{RNAi} all odors pooled	Permutation test	1. Control (N=10782) 2. <i>Cac</i> ^{RNAi} (N=7598)	<0.001	-0.350	***
Figure 2Q	J-index probability <i>Cac</i> ^{RNAi} all odors pooled	Permutation test	1. Control (N=5463) 2. <i>Cac</i> ^{RNAi} (N=3552)	<0.001	-0.533	***
Figure 2S	Mini frequency (Hz)	Permutation test	1. Control (N=6) 2. <i>Cac</i> ^{RNAi} (N=9)	0.984	0.012	n.s
	Mini amplitude (pA)	Two sample t-test	1. Control (N=6) 2. <i>Cac</i> ^{RNAi} (N=9)	0.872	0.081	n.s

Figure 2T	Nicotine response (pA)	Permutation test	1. Control (N=23) 2. <i>Cac</i> ^{RNAi} (N=22)	0.002	-0.931	**
Figure 2U	# of Brp punctae	Two sample t-test	1. Control (N=7) 2. <i>Cac</i> ^{RNAi} (N=10)	0.020	-1.215	*
	Mean intensity of Brp punctae	Two sample t-test	1. Control (N=7) 2. <i>Cac</i> ^{RNAi} (N=10)	0.009	-1.401	**
	Mean size of Brp punctae	Two sample t-test	1. Control (N=7) 2. <i>Cac</i> ^{RNAi} (N=10)	0.20	0.627	n.s
Figure 3D	Paired pulse ratio-day 0 (10ms)	Two sample t-test	1. Control (N=22) 2. <i>Cac</i> ^{RNAi} (N=28)	0.002	-0.915	**
	Paired pulse ratio-day 2-4 (10ms)	Two sample t-test	1. Control (N=13) 2. <i>Cac</i> ^{RNAi} (N=15)	0.025	-0.870	*
Figure 3F	Firing rate-control- isopentyl acetate	Permutation test	1. Before GABA blockers (N=45) 2. After GABA blockers (N=45)	<0.001	-0.430	***
	Firing rate- <i>Cac</i> ^{RNAi} - isopentyl acetate	Permutation test	1. Before GABA blockers (N=46) 2. After GABA blockers (N=46)	0.056	0.144	n.s
	Firing rate-control- isobutyl acetate	Permutation test	1. Before GABA blockers (N=43) 2. After GABA blockers (N=43)	<0.001	-0.731	***
	Firing rate- <i>Cac</i> ^{RNAi} - isobutyl acetate	Permutation test	1. Before GABA blockers (N=44) 2. After GABA blockers (N=44)	0.842	-0.013	n.s
Figure 3G	Mean variance-control	Permutation test	1. Before GABA blockers (N=88) 2. After GABA blockers (N=88)	<0.001	-0.583	***
	Mean variance- <i>Cac</i> ^{RNAi}	Permutation test	1. Before GABA blockers (N=90) 2. After GABA blockers (N=90)	0.151	0.088	n.s
	Integration window-control	Permutation test	1. Before GABA blockers (N=88) 2. After GABA blockers (N=88)	0.895	0.012	n.s

	Integration window- <i>Cac</i> ^{RNAi}	Permutation test	1. Before GABA blockers (N=90) 2. After GABA blockers (N=90)	0.041	0.216	*
Figure 4B	Learning index	One-way ANOVA	1. <i>Orco-GAL4</i> (N=40) 2. <i>UAS-Cac RNAi</i> (N=37) 3. <i>Orco-GAL4;UAS-Cac RNAi</i> (N=54)	0.196	0.025	n.s
Figure 4D	p(correct choice)	Permutation test	1. <i>Orco-GAL4</i> (N=39) 2. <i>UAS-Cac RNAi</i> (N=40) 3. <i>Orco-GAL4;UAS-Cac RNAi</i> (N=36)	<0.001	0.564	***
Figure 4E	Learning index	One-way ANOVA	1. <i>Orco-GAL4</i> (N=43) 2. <i>UAS-Cac RNAi</i> (N=34) 3. <i>Orco-GAL4;UAS-Cac RNAi</i> (N=45)	0.892	0.001	n.s
Figure 4F	p(correct choice)	Permutation test	1. <i>Orco-GAL4</i> (N=16) 2. <i>UAS-Cac RNAi</i> (N=16) 3. <i>Orco-GAL4;UAS-Cac RNAi</i> (N=19)	0.559	0.026	n.s
Figure 4G	Learning index	Permutation test	1. <i>Orco-GAL4</i> (N=40) 2. <i>UAS-Cac RNAi</i> (N=47) 3. <i>Orco-GAL4;UAS-Cac RNAi</i> (N=34)	0.962	0.0005	n.s
Figure 4H	p(correct choice)	Permutation test	1. <i>Orco-GAL4</i> (N=27) 2. <i>UAS-Cac RNAi</i> (N=27) 3. <i>Orco-GAL4;UAS-Cac RNAi</i> (N=29)	<0.001	0.580	***
Figure S2A	Peak ΔF/F isopentyl acetate	Permutation test	1. Control (N=6) 2. <i>Cac</i> ^{RNAi} (N=8)	<0.001	2.374	***
	Peak ΔF/F isobutyl acetate	Permutation test	1. Control (N=6) 2. <i>Cac</i> ^{RNAi} (N=8)	<0.001	2.956	***

Figure S2B	# of Cac punctae	Two sample t-test	1. Control (N=7) 2. <i>Cac</i> ^{RNAi} (N=7)	0.016	1.393	*
Figure S2C	Spikes/sec linalool	Permutation test	1. Control (N=58) 2. <i>Cac</i> ^{RNAi} (N=49)	0.014	0.475	*
	Spikes/sec isopentyl acetate	Permutation test	1. Control (N=71) 2. <i>Cac</i> ^{RNAi} (N=49)	<0.001	0.776	***
	Spikes/sec 2-heptanone	Permutation test	1. Control (N=62) 2. <i>Cac</i> ^{RNAi} (N=49)	0.326	0.190	n.s
	Spikes/sec ethyl acetate	Permutation test	1. Control (N=49) 2. <i>Cac</i> ^{RNAi} (N=49)	0.291	0.210	n.s
	Spikes/sec isobutyl acetate	Permutation test	1. Control (N=49) 2. <i>Cac</i> ^{RNAi} (N=49)	0.007	0.545	**
Figure S5	Time of first spike (ms)	Permutation test	1. Control (N=47) 2. <i>Cac</i> ^{RNAi} (N=49)	0.776	0.057	n.s
	STD (ms)	Permutation test	1. Control (N=47) 2. <i>Cac</i> ^{RNAi} (N=49)	0.108	-0.329	n.s
Figure S6	Optimal integration window (ms)	Permutation test	1. Control (N=5234) 2. <i>GluClαRNAi</i> ^{RNAi} (N=3950)	<0.001	-0.230	***