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. Abstract

> Despite the growing number of genome-wide association studies (GWAS), it remains unclear to

s what extent gene-by-gene and gene-by-environment interactions influence complex traits in

+ humans. The magnitude of genetic interactions in complex traits has been difficult to quantify

5 because GWAS are generally underpowered to detect individual interactions of small effect. Here,
¢ we develop a method to test for genetic interactions that aggregates information across all trait-

7 associated loci. Specifically, we test whether SNPs in regions of European ancestry shared between
s European American and admixed African American individuals have the same causal effect sizes.

o We hypothesize that in African Americans, the presence of genetic interactions will drive the causal
w effect sizes of SNPs in regions of European ancestry to be more similar to those of SNPs in regions
u  of African ancestry. We apply our method to two traits: gene expression in 296 African Americans
2 and 482 European Americans in the Multi-Ethnic Study of Atherosclerosis (MESA) and low-

13 density lipoprotein cholesterol (LDL-C) in 74K African Americans and 296K European Americans
1 in the Million Veteran Program (MVP). We find significant evidence for genetic interactions in our
15 analysis of gene expression; for LDL-C, we observe a similar point estimate although this is not

16 significant, likely due to lower statistical power. These results suggest that gene-by-gene or

7 gene-by-environment interactions modify the effect sizes of causal variants in human complex traits.

s Introduction

1 Over the last two decades, genome-wide association studies (GWAS) have demonstrated that

2 human complex traits are influenced by many thousands of causal variants, each with small

a1 additive effects. What remains unclear is the extent to which traits are influenced by interactions
2 between these variants, or between variants and the environment. Despite the dramatic increases in
23 study size, GWAS are underpowered to detect individual gene-by-gene interactions of small effect.
2 Testing for gene-by-environment interactions is similarly difficult, but with the added complication

”

»  that the “environment” is notoriously hard to quantify. Thus, even though a handful of large-effect
» interactions have been identified ¢, the overall role of genetic interactions in complex trait

o7 architecture is yet to be determined.

2 Here, we test for genetic interactions by assessing whether causal variant effect sizes differ

2 between populations. We use population differences in causal effect sizes as a proxy for genetic

s interactions because self-reported descriptors of population identity often loosely correlate with

s both genetic variation and environmental factors”. For example, in the United States, self-reported
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» race often correlates with environmental exposures such as access to healthcare, due to a historical
5 legacy of structural racism that extends into the present day®. This drives substantial

s environmental differences between populations, and if two populations have sufficiently different

s environmental backgrounds, then the existence of gene-by-environment interactions can produce

s modest differences in causal variant effect sizes. The existence of differential gene-by-gene

s interactions between populations would likewise produce differences in causal variant effect sizes.

38 However, comparing causal variant effect sizes between populations is rife with challenges. The
3 causal variants underlying human complex traits are generally unknown and instead, GWAS

w typically identify single nucleotide polymorphisms (SNPs) that are statistically associated with the
a  trait due to strong linkage disequilibrium (LD) with the causal variant(s). Due to differences in LD
»2 structure, these trait-associated SNPs may not be equally correlated with the same causal variant
i in two different populations, resulting in different marginal effect sizes. This is especially true if the
« causal variant is private, or only present in a single population. Thus, although several studies have
s observed differences between populations in the marginal effect sizes of trait-associated SNPs® 12,
s this could correspond both to differences in the effect sizes of causal variants themselves and to

«  differences in LD structure.

a8 These questions have been addressed further with statistical methods that leverage LD

» reference panels to account for differences in LD structure between populations 314, These studies
so have found modest differences in causal variant effect sizes for both gene expression and complex
51 traits. However, these existing methods are limited by their reliance on accurate LD reference

52 panels and their difficulty in accounting for rare or population-specific causal variants.

53 Furthermore, these methods are not suitable for application to recently admixed populations such
5o as African Americans and Latin Americans due to the complexities of long-range admixture LD.

55 In this paper, we compare the genetic architecture of gene expression and low-density

ss lipoprotein cholesterol (LDL-C) between African Americans and European Americans. Using data
sv from the Multi-Ethnic Study of Atherosclerosis (MESA) and the Million Veteran Program (MVP),
ss  we first compare the marginal effect sizes of trait-associated SNPs when estimated from European
5o Americans and from African Americans. We next quantify the contribution of local and global

¢ ancestry to phenotypic variance. Lastly, we leverage the multiple ancestries in the genomes of

s admixed populations to test for the existence of genetic interactions. Admixed African American
e genomes contain regions of European ancestry that share the same local LD structure as the

63 genomes of European Americans. Within these regions of shared ancestry, we can compare variant

e effect sizes between populations without bias from differences in LD structure. Specifically, we
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hypothesize that in the absence of gene-by-gene or gene-by-environment interactions, SNPs will
have the same effect sizes in European Americans and regions of European ancestry in African
Americans. Conversely, we hypothesize that the presence of genetic interactions will drive the
causal effect sizes of SNPs in regions of European ancestry in African Americans to be more similar

to those of SNPs in regions of African ancestry.

Material and Methods

Genotype and phenotype datasets

Multi-Ethnic Study of Atherosclerosis (MESA). For MESA, we obtained phased whole
genome sequencing data and gene expression data in peripheral blood mononuclear cells (PBMCs)
from TOPMed Freeze 8. After filtering individuals based on ancestry, as we describe below, the
MESA dataset comprised 296 individuals who self-reported race as Black or African American and
482 individuals who self-reported race as White. We henceforth use the term “African American”
to refer to all individuals who self-report race as Black or African American. Analogously, we use
the term “European American” to refer to all individuals who self-report race as White and cluster
with individuals of European ancestry in principal components analysis of genotypes.

380 of these individuals had gene expression data available at two exams, spaced five years
apart. For these individuals, we selected the time of exam to use such that the proportions of
certain covariates (sex, time of exam, sequencing center) were approximately balanced between
European Americans and African Americans. Briefly, this was done by iterating through this set of
individuals ten times and changing the time of exam used for that individual if doing so would
increase the similarity of covariate proportions between the two populations.

As done previously by!®, gene-level expression quantification was based on the GENCODE 26
annotation, collapsed to a single transcript model for each gene using a custom isoform collapsing
procedure. Gene-level read counts were obtained with RNA-SeQC v1.1.9'6. We selected genes with
expression thresholds of >0.1 TPM in at least 20% of samples and >6 reads in at least 20% of
samples, thresholding separately for European Americans and African Americans in both cases. A
total of 10,870 genes passed this filtering step. We log-transformed gene expression measurements
and used these transformed phenotypes in all downstream analyses. We selected biallelic SNPs
with a MAF > 0.05 and minor allele sample count > 5 in both European Americans and African

Americans.
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s Million Veteran Program (MVP). For MVP, we used GRCh37 genotype calls processed and
% subject to quality control as described in'”. Data were imputed with IMPUTE using the 1000

v Genomes Phase 3 reference panel'®19. As previously done for MVP 17, the population of each

s individual (i.e. African American or European American) was determined by HARE?". Using

o KING coefficients?!, we removed relatives who were closer than 3rd degree cousins, which left

w0 73,788 African American and 296,124 European American individuals. For all analyses, we used

11 the maximum LDL-C measurement for each individual across all time points. In addition, we

102 numerically adjusted LDL-C measurements for statin usage by multiplying measurements by 0.7 if
w3 an individual was inferred to be on statin medication. We inferred that individuals were on statin
s medication if a statin prescription was filled within the length of the prescription plus a buffer of 15

105 days within the LDL-C measurement date.

ws Inferring global and local ancestry

w  We inferred global ancestry for admixed African American individuals with supervised

e ADMIXTURE using default program parameters??. We used 99 CEU individuals and 108 YRI

0o individuals from 1000 Genomes Phase 3 as our reference populations. We filtered for biallelic SNPs
o with MAF > 0.05 in both the admixed population and the reference populations, and again filtered
w  for MAF > 0.1 after merging the admixed and reference datasets. We pruned SNPs with an 72

w2 value > 0.1.

113 We inferred local ancestry with RFMix v1.5.4, using no EM iterations and default program

s parameters23. We assumed 8 generations since the time of admixture between an African

us  population and a European population?*. We again used 99 CEU individuals and 108 YRI

us  individuals from 1000 Genomes Phase 3 as our reference populations. We used biallelic SNPs with
w MAF > 0.05 in both the admixed population and the reference populations, and removed SNPs

us  with an 72 value > 0.5.

119 In both datasets, we excluded African Americans with < 0.5 global African ancestry from

2o downstream analyses. We also excluded one European American individual from MESA who did

121 not cluster with individuals of European ancestry in principal components analysis of genotypes.

2 Comparing marginal SNP effect sizes between populations

3 Gene expression (MESA). To identify SNPs affecting expression in cis, we filtered for SNPs
e within 100 kb of the T'SS for each gene. We ascertained trait-associated SNPs in a randomly

s sampled subset of 232 European Americans using ordinary least squares. This regression included
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126 ten covariates that were significantly correlated with expression phenotypes: sequencing center;

127 time of exam; sex; genotype PC 2, which captures structure within European Americans; and six
s covariates corresponding to a one-hot encoding of recruitment site (Figure S2, Figure S3A).

120 For each gene, we focused on the most significant SNP and ascertained significant SNP-gene

1w  associations by applying a false discovery rate of 0.01 to correct for multiple testing, as done by '°.
1 All downstream analyses were performed on these significant associations. Furthermore, all

12 downstream analyses excluded the individuals who were used to ascertain trait-associated SNPs.

133 For each significant SNP-gene association, we performed two separate regressions to estimate
13« [Baa, the effect size in African Americans, and Sga, the effect size in European Americans,

135 respectively. For each regression, we again included covariates significantly correlated with

s expression phenotypes. To estimate Sg 4, we used sequencing center, time of exam, sex, genotype
1w PC 2, and recruitment site as above. To estimate 544, we used sequencing center, time of exam,
13 sex, recruitment site, and global African ancestry fraction. (We did not include genotype PC 1 as a
139 covariate despite its significant association with expression because this is highly correlated with

1o global African ancestry fraction (Figure S3B).) We estimated Sg4 in 250 European Americans and

1w randomly sampled an equal number of African Americans to estimate S44.

12 LDL-C (MVP). We ascertained genome-wide significant SNPs in 318,953 UK Biobank White
13 British individuals. After applying genomic filters (MAF > 0.01, missing genotype rate < 0.05,

s Hardy-Weinberg equilibrium with a cutoff of p < 1 x 10759), we tested for association with inverse-
s variance quantile normalized phenotypes using a linear model (—glm) in plink with the covariates
s age, sex, assessment center, and statin usage. Significant variants (p < 5 x 107%) were clumped and
w7 thinned to leave at most one independent SNP per 0.1 cM?5.

148 To estimate effect sizes of these variants in MVP, we extracted variants from the imputed

s genotype set using 1000 Genomes Phase 3 as our reference panel. We filtered for MAF > 0.003 in
10 European Americans and African Americans, leaving 122 independent SNPs. Our covariates

151 included age, sex, global ancestry, and genotype PC 1, which stratifies European Americans and is
12 the only principal component associated with LDL-C after residualizing on the other covariates.

153 Principal components were calculated on all individuals in the MVP dataset with HARE'7.

154 To estimate effect sizes from the 74K African Americans (844), we used linear regression in

155 plink (—glm) and included the covariates above. We likewise randomly sampled an equal number of

15 European Americans and estimated effect sizes (Bg4).
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57 Comparison of effect sizes. We used total least squares (TLS) regression to assess the slope of
18 the relationship between B a4 and BE 4. Estimates of SNP effect sizes are statistically noisy, and

150 unlike ordinary least squares, total least squares is robust to uncertainty in the x-axis variable.

10 Because we used the same number of samples to estimate S44 and g4, their standard errors will
11 be comparable, as is necessary for TLS regression. We created 1000 bootstrap replicates for each
w2 trait by sampling with replacement over SNPs and report the 95% confidence interval (CI) of the

163 slope as defined by the 0.025 and 0.975 quantiles.

e Quantifying role of ancestry in phenotypic variance

s We constructed a series of phenotypic models and compared the proportion of phenotypic variance
s explained by each model. We fit each model in a training set comprising 80% of the data (for gene
17 expression, 237 African Americans and 200 European Americans; for LDL-C, 52K African

e Americans and 52K European Americans). We computed the proportion of variance explained as

)

Var®) in a test set comprising the remaining 20% of the data (for gene expression, 59

169
o African Americans and 50 European Americans; for LDL-C, 22K African Americans and 22K

wm  European Americans). This quantity can be interpreted as measuring the decrease in residual

2 variance relative to phenotypic variance. For gene expression, we report the average variance

73 explained across all significant genes.

174 We note that this procedure differs from our previous analysis in two ways. First, we fit the

s models below by performing a regression on the joint sample of African Americans and European
ws Americans, while previously, we performed a regression in each population separately. Second,

wr though we previously downsampled the number of African Americans in MESA, here we included
ws  all 296 African Americans to maximize our power to estimate local ancestry-specific effect sizes. (In
o addition, because African American genomes contain both African and European ancestry, it is not
o as useful to downsample the number of African Americans for these analyses.)

181 We first modeled the phenotype y in an individual ¢ with only technical covariates (c). For gene

1,2 expression, this consisted of sex and batch (sequencing center, time of exam, and recruitment site);

183 for LDL-C, this consisted of age and sex.

Yi = CiBe (1)

e Consecutive models added an indicator variable for race (r), followed by genome-wide descriptors of

s ancestry (0). Specifically, 8 includes global African ancestry fraction and genotype principal
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s components that stratify European Americans (PC 2 for gene expression, see Figure S3; and PC 1

187 fOI" LDL—C 17).

Yi = Ciﬁc + ’riﬁr (2)

188

Yi = CiBe +1:iBr + 0: B0 (3)

o We next included a local ancestry covariate () that measures the number of haplotypes with
10 African ancestry at the trait-associated SNP. For gene expression, we averaged across all SNP-gene
11 associations to report the variance explained by local ancestry. On the other hand, for LDL-C, we

12 summed across all trait-associated SNPs to report the variance explained.

Yi = Cifc + 1ifr + 0: 8 + Vi (4)

193 Lastly, we included the genotype at trait-associated SNPs. We modeled the genotype with

10 ancestry-specific effect sizes, given that differences in LD structure produce differences in the

s marginal effect sizes of trait-associated SNPs. Rather than adding a single term for trait-associated
ws SNPs (e.g. gifq), we added two terms, g; 484 and g; gfr. We define g; 4 as the number of

w7 alternate alleles with African local ancestry and g; g as the number of alternate alleles with

s Buropean local ancestry. g; 4 and g; g therefore sum to g;, the total genotype, and B4 is the effect

100 size in African local ancestry while Sg is the effect size in European local ancestry. Once again, to

20 report the variance explained, we averaged across all SNP-gene associations for gene expression and

201 summed across all trait-associated SNPs for LDL-C.

Yi = ¢ife + 1iBr + 089 + iy + gi,484 + 9i,EBE (5)

x» Testing for genetic interactions

203 Overview of model. We constructed a phenotypic model in which we introduce the parameter §
204 to measure differences in the marginal effect size of trait-associated SNPs in regions of European
20s ancestry in African Americans compared to European Americans.

206 We extend Equation 5, modeling the phenotype y for a single individual i as follows:

Yi = Ciffe +1ifr + 080 + Viy + 9i,aB4 + 9i.5BE + 67:9:, 5(Ba — BE) (6)

207 As described above, the first four terms (¢;, r;, 05, ;) are technical covariates; race; global ancestry

25 and principal components; and local ancestry, respectively. The next two terms (g; 484, ¢i £SE),
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200  model ancestry-specific effect sizes of trait-associated SNPs.

210 In the final term, we introduce the parameter ¢, which measures the extent to which marginal
an effect sizes of SNPs in regions of European ancestry in African Americans differ from those in

22 BEuropean Americans. Using the parameter §, we can indirectly test whether causal variant effect
a3 sizes differ between African Americans and European Americans. When § equals 0, the marginal
aa effect size of a SNP in a region of European ancestry in an African American is equal to Sg; as §
25 approaches 1, the marginal effect size approaches 84. Thus, under the null hypothesis that causal
26 variant effect sizes are identical between populations, § will be equal to 0. However, if causal

a7 variant effect sizes differ between populations because they are modified by the genome and/or

25 environment, 6 will be greater than 0. (We note that a value of § equal to 0 is not evidence for the
210 absence of any genetic interactions; rather, it indicates that genetic interactions do not differ

20 enough between populations to produce differences in causal variant effect sizes.)

21 Fitting the model. To fit this model, we began by initializing § to a random value on the

2 interval [0, 1], which is the most biologically intuitive range of values for § (see Figure 3A). We next
23 optimized B = (Bc, BT, Bg, va BA, BE) conditional on this value of 5, and we then optimized )

24 conditional on 3 For both gene expression and LDL-C, we performed this regression marginally on
2s each SNP. In other words, conditional on 5, we estimated B for each SNP independently of the rest.
26 We continued this iterative optimizing with ordinary least squares regression until ) converged (i.e.
27 did not change by >.0001). Though & was initialized on the interval [0, 1], the optimization

28 procedure itself was unconstrained. Additionally, we found that regardless of the initial value of ) ,
29 our optimization procedure converged to the same value. The optimization method converged

20 quickly for both datasets (22 iterations for gene expression, 18 for LDL-C). For the gene expression
2 data, we estimated one value of ¢ from all SNP-gene associations to avoid overparameterization.

22 For the LDL-C data, we estimated one value of § across all trait-associated SNPs. To construct 95%
233 confidence intervals for 5, we bootstrapped over SNPs and reported the 0.025 and 0.975 quantiles.
2¢  (For gene expression, this procedure is equivalent to bootstrapping over genes because each gene is
25 modeled by exactly one SNP.) We concluded that causal variant effect sizes are significantly

26 different if the 95% CI does not include 0. To generate a likelihood surface for §, we computed the

23 log-likelihood of the data conditional on values of § ranging from 0 to 1, with a step size of 0.01.

= Assessing properties of the estimator 5. We first assessed the bias of our estimator § with
239 simulations designed to emulate our analyses of gene expression in MESA. We simulated genotypes

20 and phenotypes for 100 independent loci in 320 admixed African Americans and 500 Europeans.
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2 For each African American, we simulated global African ancestry fraction from a beta distribution
2 (a=17.9,0=2.1) resembling the empirical distribution of global ancestry. For each locus, we

23 simulated local ancestry conditional on global ancestry from a binomial distribution.

244 We then simulated the respective numbers of African and European genomes using the two-

25 population out-of-Africa model as implemented in stdpopsim?2%-2°. For each locus, we simulated 1%
us  of chromosome 22 and filtered for SNPs that had MAF > 0.05 in both African and European

27 genomes. To mimic ascertainment in a European population, we held out genomes for 250

s European individuals; to mimic ascertainment in an African population, we held out genomes for
210 two-thirds of all individuals who had two copies of African ancestry (i.e. v = 2). We simulated

20 causal and tag SNPs by jointly sampling at random from the set of all pairs of SNPs with r2

1 greater than a specified threshold in the ascertainment individuals. We conducted simulations with
2 12 thresholds of 0.6 and 0.8.

253 We simulated causal variant effect sizes from a bivariate normal distribution with a correlation
24 of 0.85, which allowed causal variant effect sizes in African and European ancestries to differ (e.g.
255 due to gene-by-gene or gene-by-environment interactions). We simulated phenotypes from causal
6 SNP genotypes using the generative model we specified in Equation 6, ignoring the role of

»7  technical, race, and ancestry covariates. For simulations in which causal variant effect sizes differ
8 between populations, we simulated five values of § ranging between 0 and 0.8. We estimated § by
9 applying our iterative optimization procedure to the simulated phenotypes and tag SNP genotypes
%0 for all 100 loci. For each combination of hyperparameters (ascertainment population, 72 threshold,
21 and simulated value of ¢), we performed 10 simulations.

262 Lastly, we assessed the behavior of our estimator 4 in the case where causal variant effect sizes
%3 are identical between populations. In principle, if the true marginal effect sizes 54 and Bg are

x4 identical, then the parameter ¢ is not identifiable. In practice, we do not expect the marginal effect
x5 sizes S and B to be identical due to differences in LD structure between African and European
x6 ancestries. Nevertheless, we investigated this further in both simulations and empirical data. In

27 simulations, we used a similar framework to that described above, but we used a univariate normal
»s  distribution to simulate causal variant effect sizes that were identical between populations. In

x%0 empirical data, we modified our model such that we could use § to compare effect sizes between two
oo randomly sampled, independent subsets of European Americans. On average, individuals in these
an two subsets have the same race, global ancestry, local ancestry, and environment. Thus, we expect
o2 that causal variant effect sizes are identical between subsets even in the presence of gene-by-gene or

a3 gene-by-environment interactions. To modify our model, we first excluded any African Americans

10
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o with European ancestry at trait-associated SNPs. This ensured that g was estimated only from
a5 Buropean Americans at trait-associated SNPs, and that 54 was estimated only from African

a6 Americans with African ancestry on both haplotypes at trait-associated SNPs. Next, we assigned a
a7 randomly sampled subset of the European Americans as a validation set. For gene expression, this
s was 100 individuals, and for LDL-C, this was 74K individuals. We then replaced the race indicator
79 in the last term of the model with a validation set indicator. With this particular modification of
20 the model, our estimator 5 tests whether trait-associated SNPs have the same effect size in two

s randomly sampled, independent subsets of European Americans. If § is estimated to be nonzero

2 between these two subsets of European Americans, this would indicate that our estimator has

23 pathological behavior in the case where causal effect sizes are identical between populations.

» Results

25 We performed analyses for gene expression and LDL-C, both of which are driven by a combination
26 of genetic factors and environmental factors. We analyzed gene expression using MESA, a dataset

27 with whole genome sequencing and bulk RNA-Seq in peripheral blood mononuclear cells for 296

28 African Americans and 482 FEuropean Americans. We analyzed LDL-C using MVP, a dataset with
29 dense SNP genotyping and LDL-C measurements for 74K African Americans and 296K European

20  Americans. Of existing human genetic datasets, MESA and MVP have some of the largest cohorts

21 of admixed individuals for their respective phenotypes.

22 Inferring global and local ancestry. We inferred global and local ancestry for the African

203 American individuals in MESA and MVP. In both cases, we modeled African Americans as a two-
200 way admixture between African and European populations that occurred 8 generations ago?*. We
205 estimated global ancestry using supervised ADMIXTURE with 1000 Genomes populations (CEU
06 as European and YRI as African) as our reference populations!®22. The average global African

27 ancestry of African American individuals is 0.80 in MESA and 0.82 in MVP, concordant with

xs  previous estimates from similar populations®® (Figure 1A). We performed local ancestry inference
20 with RFMix using the same 1000 Genomes reference populations?3. Global ancestry fractions from
30 ADMIXTURE are highly correlated with those implied by RFMix (MESA p = 0.997, MVP p =
sn 0.98) (Figure S1). As expected based on their admixture history, the local ancestry of African

s2  American individuals alternates between blocks of African and European ancestry along the

53 genome and contains relatively large European blocks (mean length is 15 Mb in MESA, 14 Mb in
s MVP) (Figure 1B).
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A) Global ancestry of African Americans B) Local ancestry of African Americans
_MESA . . MVP X Local ancestry varies across the genome, with either 0, 1,
(296 African Americans) (81K African Americans) or 2 haplotypes with European ancestry at each site.
8000 +

20 4 6000 - D R m=———
o — ———————————————————
g g — w0 —
- —————

10 A S e——==—{) African ancestry
2000 + S om0t

04 04 e e European ancestry
L) L) L) L) L) L)
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C) Comparing marginal effect sizes between populations

Gene expression LDL-C
= Ascertain trait iated SNPs in a held-out
scertain trait-associate s in a held-ou L L
1 w set of individuals with European ancestry 232 individuals, MESA 319K individuals, UKBB
Estimate marginal effect sizes of trait- S P
2 ’n\ associated SNPs in African Americans 250 individuals, MESA 74K individuals, MVP
= Estimat inal effect si f trait
stimate marginal effect sizes of trait- L s
3 'l‘ associated SNPs in European Americans 250 individuals, MESA 74K individuals, MVP

Figure 1: Schematic of the analysis pipeline. A) Global ancestry of African Americans is
predominantly African, with an average global African ancestry fraction of 0.80 in MESA and 0.82
in MVP. B) Local ancestry for one sample individual in MESA. Individuals have either 0, 1, or 2
haplotypes with European ancestry at each position. C) We compare marginal effect sizes of SNPs
between African Americans and European Americans.
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ws  Comparing marginal SNP effect sizes between populations. We first sought to compare
s marginal effect sizes of trait-associated SNPs when estimated from European Americans and from
sr African Americans (Figure 1C). We expect that marginal effect sizes of trait-associated SNPs will
s differ between the two populations due to known differences in LD structure between African and
s BEuropean ancestries, as well as potential differences in gene-by-gene or gene-by-environment

a0 interactions between the populations. However, the magnitude of this difference in marginal effect
su  sizes is unclear. The observed magnitude of differences may be inflated by sampling error,

sz particularly if one population has a small sample size. Additionally, effect sizes are usually largest
a3 in a discovery sample due to Winner’s Curse, which further exacerbates differences between

s discovery and replication datasets. To minimize these biases, we ascertained trait-associated SNPs
a5 in a held-out set of individuals and compared effect sizes in an equal number of African Americans
a5 and European Americans (Fig 1C).

317 We first log-transformed phenotype measurements for variance stabilization. We did not

ue  perform quantile normalization given that phenotypic variance might differ between populations?>!.
a9 We ascertained unlinked, trait-associated SNPs in individuals of European ancestry. For gene

»0 expression, we restricted our analyses to putative cis-acting variants (i.e. within 100 kb of TSS)

21 because cis-acting variants have stronger effects than trans-acting variants and are more easily

2 detected in modest sample sizes'®32. In the event that there were multiple SNPs associated with a
2 gene, we chose the most significant SNP for downstream analyses'®. We ascertained trait-

2 associated SNPs (false discovery rate < 0.01) in a held-out subset of 232 European Americans in
25 MESA, which resulted in 4,236 SNP-gene associations. For LDL-C, we ascertained trait-associated
2 SNPs (p <5 x 1078) in 318,953 UK Biobank (UKBB) White British individuals, and clumped and
227 thinned them, which resulted in 122 trait-associated SNPs. We performed all subsequent analyses
w28 on these trait-associated SNPs.

329 To compare marginal effect sizes between populations, we estimated the effect sizes of trait-

a0 associated SNPs separately in African Americans (64.4) and European Americans (8g4). For gene
s expression, S44 and Spa were each estimated from 250 individuals. For LDL-C, 844 and g4

s were each estimated from 74K individuals. For each trait, we compared marginal effect sizes

313 between the two populations by regressing effect sizes estimated from African Americans (B A44) ON
2 effect sizes estimated from European Americans (8p4) (Figure 2). We used total least squares

15 (TLS) to perform the regression because it is robust to statistical noise in the independent variable
336 (B £a4), while ordinary least squares is not.

337 For gene expression, effect sizes estimated from African Americans are significantly smaller in
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A) Gene expression B) LDL-C
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Figure 2: Comparing marginal SNP effect sizes between populations. We estimated effect
sizes of trait-associated SNPs and regressed the effect size estimated from African Americans on the
effect size estimated from European Americans. We represent the 95% bootstrap CI with the shaded
region. Effect sizes estimated from African Americans are A) significantly smaller in magnitude
than the corresponding effect sizes estimated from European Americans for gene expression and B)
smaller but not significantly so for LDL-C.

18 magnitude than the corresponding effect sizes estimated from European Americans, with a slope of
s 0.85 (95% CT of 0.81-0.89) (Figure 2). For LDL-C, we similarly observe a slope of 0.84, but this is
a0 not significantly different from 1 (95% CI of 0.65-1.01), likely due to the modest number of SNPs
sn analyzed for this trait. Our observation that marginal effect sizes estimated from African

s Americans are smaller in magnitude can be at least partially explained by our ascertainment of
s  trait-associated SNPs in individuals of European ancestry. Blocks of LD structure are smaller in
sa  populations of African ancestry than in populations of European ancestry, and the African

ss  Americans in MESA and MVP have a mean African global ancestry of approximately 80%. Thus,
us  the correlation between causal variants and trait-associated SNPs ascertained in European

7 populations will generally be weaker in African Americans than in European Americans, meaning
s that marginal effect sizes estimated from African Americans will have a smaller magnitude.

s Potential differences in gene-by-gene and gene-by-environment interactions between populations
0 could also contribute to the observed differences in marginal effect sizes, but are unlikely to

1 produce such a systematic shift in the magnitudes of effect sizes.

2  Quantifying role of ancestry in phenotypic variance. Given that African Americans are

33 admixed with both African and European ancestries, we next sought to assess the contribution of
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s global and local ancestry to phenotypic variation. We quantified the contribution of both terms to
s phenotypic variation by constructing a series of phenotypic models and computing the amount of
6 variance explained by each model. We fit each model to roughly 80% of our data allocated as a

7 training set and computed the proportion of phenotypic variance explained by the model in a test
s set using the remaining 20% of our data. For gene expression, we report the average phenotypic

39 variance explained across all genes.

360 We constructed five phenotypic models in total, where each model has an increasing number of
s1 terms relative to its predecessor. Our first phenotypic model (Table 1; Equation 1) included only
s2  technical covariates (sex and batch for gene expression; sex and age for LDL-C) and explains

3 18.41% of phenotypic variance for gene expression and 0.11% of phenotypic variance for LDL-C.
s Most of the variance explained by these covariates for gene expression is due to batch effects, as is
s common for RNA-Seq assays. We next added an indicator variable for race, which allows for race-
w6 specific phenotypic intercepts and can capture trait-relevant differences in environment between

57 African American and European American populations? (Equation 2). Compared to a model that
s only includes technical covariates, including race explains an additional 1.26% of variance in gene
30 expression and 0.05% of variance in LDL-C.

370 We next added global African ancestry fraction and genotype principal components to the

s model (Equation 3). These covariates can capture additional population structure: global African
sz ancestry fraction stratifies African Americans, while the principal components we include stratify
s3 - European Americans. In the context of gene expression, global ancestry and genotype principal

s components are known to be relevant for trait variation, potentially because they capture the effect

21,33 Surprisingly, we find that these terms have a small

a5 of trans genetic variation on expression
srs - contribution to the overall phenotypic variance of both gene expression and LDL-C.

a77 We next considered the importance of a local ancestry covariate that measures the number of
s haplotypes with African ancestry at each trait-associated SNP (Equation 4). Local ancestry could
sro implicitly capture the effect of local genetic variation from SNPs that are not explicitly modeled; in
s the context of gene expression, these unmodeled, trait-associated SNPs are likely cis-acting

s variants. However, we find that including local ancestry does not explain much additional variance
2  in either gene expression or LDL-C.

383 Lastly, we considered the role of trait-associated SNPs (Equation 5). Differences in LD

;4 structure between African and European ancestries result in different marginal effect sizes at trait-

s associated SNPs, as we see in Figure 2. Consequently, we modeled the genotype at trait-associated

s ONPs with ancestry-specific effect sizes. We find that trait-associated SNPs contribute considerably
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Term added Model Additional variance explained (%)
Gene expression LDL-C
(1) Technical covariates i = ¢ife 18.41 0.11
(2) Race Yi = ¢ife + 130 1.26 0.05
(3) Global ancestry & PCs Yi = ;e + 158 + 0; B0 0.00 0.01
(4) Local ancestry Yi = ¢;Be + 1ifr + 0; 80+ 0.03 —0.04
’Yiﬂ'y
(5) Genotype with Yi = ¢ife +1iBr + 0; 8o+ 3.62 2.12
ancestry-specific ViBy + gi,aBa+
effect sizes 9i,EPE

Table 1: Quantifying role of ancestry in phenotypic variance. We constructed a series of linear
models and computed the percentage of phenotypic variance explained. For both traits, we report
the increase in the percentage of phenotypic variance explained by each model; for gene expression,
we report the average increase across all genes. The variables in the models are defined as follows:
¢; is a vector of technical covariates; r; is a race indicator variable; 6; is a vector of global African
ancestry fraction and principal components; ~; is a local ancestry covariate that measures the number
of haplotypes with African ancestry at trait-associated SNPs; g; 4 is the number of alternate alleles
with African local ancestry and g; g is the number of alternate alleles with European local ancestry.

to trait variation, explaining an additional 3.62% of variance in gene expression and 2.12% of
variance in LDL-C. Thus, we find that the genotype at trait-associated SNPs contributes

substantially more to phenotypic variance than either local or global ancestry.

Testing for genetic interactions. Finally, we looked for evidence of genetic interactions by
testing whether causal variant effect sizes differ between populations. This is difficult to do with
standard approaches due to the way in which LD structure can bias comparisons of marginal effect
sizes. We therefore developed a model that leverages the multiple ancestries within admixed
genomes to indirectly test whether causal variant effect sizes differ between populations.
Specifically, we test whether a genetic variant in a region of European ancestry has the same
marginal effect size in African Americans and European Americans. We assume that the regions of
European ancestry in the African Americans and European Americans in our datasets are virtually
identical with respect to LD structure, which means that differences in marginal effect sizes should
reflect differences in causal effect sizes.

This assumption is based on the specific demographic history of African Americans and
Europeans. Given the relatively short time since admixture in African Americans (approximately 8
generations), we expect that regions of European ancestry in modern-day African Americans
feature the same LD structure as the European source population contributing to the admixture
event 24, Moreover, others have previously demonstrated that there is low Fst and high correlation
of allele frequencies between various European populations®* 36, Empirically, we also find that

nearly all (95%) SNPs that are tightly linked (2 > 0.8) in European Americans in MESA are also
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w7 tightly linked in regions of European ancestry in African Americans in MESA. (In contrast, only

ws  65% of SNPs that are tightly linked in European Americans are tightly linked in regions of African
w0 ancestry in African Americans.) Thus, we have extensive support for the assumption that the LD
so  structure between trait-associated SNPs and causal variants is similar in European Americans and
an regions of European ancestry in African Americans.

a12 Then, under the null hypothesis that genetic interactions do not impact causal variant effect

a3 sizes, causal variants will have an identical effect size in all populations, and trait-associated SNPs
a4 in regions of European ancestry will have the same marginal effect size in African Americans and
a5 European Americans. However, if genetic interactions drive differences in causal variant effect sizes
a6 between populations, trait-associated SNPs in regions of European ancestry will have different

a7 marginal effect sizes in African Americans and European Americans. Specifically, we hypothesize
as  that in African Americans, the presence of genetic interactions will drive the marginal effect sizes of
a0 SNPs in regions of European ancestry to be more similar to those of SNPs in regions of African

20 ancestry. As we noted previously, without accounting for LD structure, we would expect marginal
o1 effect sizes of trait-associated SNPs to differ between populations regardless of whether causal

w2 variant effect sizes do (i.e. regardless of whether genetic interactions exist). However, because we
a3 focus on regions of shared European ancestry in two different populations, our comparison of

¢ marginal effect sizes is not biased by differences in LD structure, nor by the possibility of private
s causal variants in European populations.

426 We test this hypothesis by developing a model that uses the parameter § to measure the extent
27 to which marginal effect sizes of SNPs in regions of European ancestry in African Americans

w28 deviate from those in European Americans (see Methods, Equation 6). Values of § greater than 0
20 indicate that SNPs in regions of European ancestry in African Americans and European Americans
w0 have different marginal effect sizes. In addition, values of d greater than 0 indicate that SNPs in

a1 regions of European ancestry in African Americans have effect sizes more similar to SNPs in

w2 regions of African ancestry in African Americans. Thus, values of § greater than 0 provide evidence
a3 for a difference in causal variant effect sizes between populations.

434 For both traits, we fit this model to the trait-associated SNPs we previously ascertained. We

a5 expect that estimates of § will be noisy at individual SNPs, so for each trait, we estimated a single
s shared value of § across all SNPs. This results in one value of § for gene expression, estimated from
a7 all SNP-gene associations, and one value for LDL-C, estimated from all LDL-associated SNPs.

18 Because this model is non-linear, we iteratively optimized J and all other coefficients,

w3 = (Be,Br,Bo, By, Ba, Br) with ordinary least squares until convergence. To construct a confidence
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A) Because LD structure differs between ancestries, we model We model the marginal effect size of SNPs in regions of
SNPs with different marginal effect sizes for European and European ancestry in African Americans as
African local ancestry, 3 and f3,.
. Pe + 6(Bs — Pr)
IH' Yi= giﬂE where § ranges from 0 to 1. As § increases, evidence for a
difference in causal variant effect sizes across populations
increases.
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Figure 3: Testing for genetic interactions. A) We looked for evidence of genetic interactions
by testing for differences in causal variant effect sizes between African Americans and European
Americans. The parameter 6 measures the extent to which the marginal effect sizes of SNPs in
regions of European ancestry in African Americans differ from those in European Americans. B, C)
Likelihood surface for §. Maximum likelihood estimates and 95% bootstrap CI are 0.47 (0.39, 0.53)
for gene expression and 0.46 (-0.06, 0.87) for LDL-C. We denote the MLE and 95% bootstrap CI
with the vertical line and shaded region, respectively.
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a0 interval for 5, we bootstrapped over SNPs.

aa1 We first assessed the bias of our estimator 4. Using a standard demographic model, we

w2 simulated genotypes for admixed African Americans and Europeans. In order to simulate the LD
w3 structure present in our analyses of real data, we simulated phenotypes from causal SNP genotypes
ws but estimated 0 from tag SNP genotypes in simulations. We find that our estimates § are well-

ws correlated with the simulated values of § regardless of ascertainment population (Figure S5). We
us  next assessed the performance of our estimator in the case where causal effect sizes are identical
w7 between populations. We find that even when causal effect sizes are simulated to be identical

ws  between populations, the marginal effect sizes at trait-associated SNPs differ enough that our

wuo  model remains identifiable and we estimate values of § close to 0 (Figure S6). We additionally

w0 investigate this in empirical data by estimating ¢ from two subsets of European Americans between
1 which we expect causal effect sizes to be identical. For both gene expression and LDL-C, we

2 estimate values of 0 close to 0, demonstrating that our estimator § has the desired behavior when
i3 causal effect sizes are identical between populations (Figure S7).

454 Finally, we used our model to test whether causal variants have the same effect size in African
a5 Americans and European Americans. For gene expression, §is significantly different from zero,

w6 with a maximum likelihood estimate (MLE) of 0.47 and a 95% CI of (0.39,0.53) (Figure 3B). For
w57 LDL-C, we estimate a similar MLE of 0.46 with a 95% CI of (—0.06,0.87) (Figure 3C). Moreover,
s we find that the term containing § contributes modestly to phenotypic variance: 0.01% for gene

o expression, 0.01% LDL-C. Thus, our results indicate that SNPs in regions of European ancestry in
wo African Americans and European Americans have different marginal effect sizes, suggesting that
1 causal variant effect sizes differ between populations because they are modified by the genome or

%2 environment, providing evidence for gene-by-gene or gene-by-environment interactions.

« Discussion

ws  We developed a model in which we introduce the parameter ¢ to test for the existence of genetic
w5 Interactions. Specifically, we leveraged regions of European ancestry shared between African

s Americans and European Americans to compare marginal effect sizes of trait-associated SNPs in a
w7 manner unbiased by LD structure. We applied our model to two traits, gene expression in MESA
w and LDL-C in MVP. For gene expression, we observe that ¢ is significantly different from zero,

w0 implying that causal variant effect sizes differ between African Americans and European

a0 Americans. For LDL-C, we obtain a MLE for § that is similar to that from gene expression but not
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a significantly different from zero. These observed differences in causal variant effect sizes between

a2 populations must be due to unmodeled gene-by-gene or gene-by-environment interactions. Our

w13 observation that causal variant effect sizes differ between populations is also relevant to previous

s work on quantifying cross-population genetic correlations!®'4. There is no straightforward

a5 analytical relationship between our parameter § and genetic correlation, but our results are

as  Intuitively consistent with a cross-population genetic correlation less than one.

ar7 Though we observe that causal variant effect sizes significantly differ between populations, we
as  also find that the inclusion of the § term in the model does not substantially increase the amount of
a9 phenotypic variance explained. This apparent discrepancy can be resolved by noting that we

w0 evaluate model performance on the full dataset of African Americans and European Americans, but
s the § term will only improve the modeling of effect sizes in regions of European ancestry in African
42 Americans, which only represents about 10% of the full dataset.

483 Our results have implications for modeling complex trait phenotypes with polygenic scores

s (PGS). We find that trait-associated SNPs ascertained in Europeans have attenuated effect sizes in
w5 African Americans, which is consistent with European-ascertained SNPs tagging causal variants

a6 poorly in African ancestry. Thus, our findings corroborate earlier work demonstrating that

w7 differences in LD structure contribute to poor PGS portability, reiterating that a PGS will perform

12,3740 Noreover, our findings

s best when constructed from a population with similar LD structure
a0 imply the existence of genetic interactions, which challenges the assumption of additivity made by
w0 the statistical genetic models underpinning PGS. This suggests that genetic interactions could

21 contribute to poor PGS portability, though it remains unclear to what extent they may do so.

192 Future directions include applying our model to additional traits. The larger confidence interval
23 we observe for LDL-C is likely due to differences in statistical power between the two traits.

w0 Though we used significantly associated SNPs for both traits, many fewer SNPs were used in LDL-
w5 C analyses (122 SNPs) than in gene expression analyses (4,236 SNPs). Moreover, trait-associated
ws  SNPs were ascertained within the same dataset (MESA) for gene expression but were ascertained
w7 from an external dataset (UK Biobank) for LDL-C. This should not bias the estimation of § but

w8 may mean that trait-associated SNPs capture a larger proportion of phenotypic variance for gene
s expression relative to LDL-C. Thus, by applying our model to additional traits, such as those with
so0 thousands of associated SNPs, we could gain further insights into the role of genetic interactions in
s complex traits. Another area of investigation includes adapting our model to understand how the
s2  magnitude of genetic interactions varies across SNPs or individuals. We only estimate one

s03 parameter J from all trait-associated SNPs in order to maximize power, but by understanding how
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sa 0 varies with certain functional genomic properties of SNPs or with individuals’ ancestry, we could

ss  begin to untangle the contributions of gene-by-gene versus gene-by-environment interactions.

506 In summary, we find evidence for genetic interactions by testing for differences in causal variant
sor effect sizes between populations. This analysis is motivated by the assumption that the African

sos  American and European American individuals in our datasets have sufficiently different genetic and
so0 environmental backgrounds such that the existence of gene-by-gene or gene-by-environment

si0  interactions will produce modest differences in causal variant effect sizes. However, we reiterate

su  others’ findings that there is a great deal of genetic and environmental heterogeneity within human
sz populations44240, Thus, it is worth noting that if causal variant effect sizes can be modified by

si3 gene-by-gene or gene-by-environment interactions, it follows that causal variant effect sizes will

s differ not only between populations, but also between individuals within a population. Ultimately,

sis our results give insight into the importance of genetic interactions in human complex traits.
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= HEthics

si7 Human subjects: This research has been conducted using the Multi-Ethnic Study of Atherosclerosis
sis  (MESA) dataset, the Million Veteran Program (MVP) dataset, and the UK Biobank dataset. The

s MESA dataset was obtained under TOPMed application number 10194, ”Investigating cross-

s population portability of variant effect sizes”. All MESA participants provided written informed

s consent. The MVP dataset was obtained under MVP application number 200229, ” Genetics of

s2  Cardiometabolic Diseases in the VA population”. All MVP participants provided written informed
s23 consent, and the study protocol was approved by the Veterans Affairs Central Institutional Review
s Board. The UK Biobank dataset was obtained under application number 24983, ” Generating

s effective therapeutic hypotheses from genomic and hospital linkage data”. All participants of UK

s2  Biobank provided written informed consent.
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= Supplementary Items
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Figure S1: Comparison of ancestry inference methods. We observe a strong correlation be-
tween RFMix and ADMIXTURE estimates of global African ancestry fraction for African American
individuals in MESA.
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Figure S2: Association between gene expression phenotypes and covariates. We tested for
statistical association between phenotypes of all 4,236 significant genes and 22 covariates, includ-
ing 2 batch covariates (sequencing center and time of exam), sex, race, global and local ancestry,
10 genotype principal components (PCs), and 6 covariates corresponding to a one-hot encoding of
recruitment site. We show the resulting QQ plots of association p-values, demonstrating that expres-
sion phenotypes are significantly associated with sequencing center, time of exam, sex, race, global
and local ancestry, recruitment site, and the first two PCs.
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Figure S3: Principal components analysis of MESA genotypes. A) We computed principal
components from the genotypes of 296 African Americans and 482 European Americans in MESA.
The first genotype PC stratifies the African Americans and the second genotype PC stratifies the
European Americans. B) Within African Americans, the first genotype PC is highly correlated with
African global ancestry fraction.
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Figure S4: Ordinary least squares regression of S44 on Sga for A) gene expression and B) LDL-C.
We represent the 95% CI with the shaded region.
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Figure S5: Estimates of § from simulations where causal variant effect sizes are allowed to differ
between populations. We simulated ascertainment in both European and African ancestries and
required that the squared correlation between the causal SNP and the tag SNP was either greater

than 0.6 or 0.8.
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Figure S6: Estimates of § from ten simulations where causal variant effect sizes are identical between

populations.
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Figure S7: Likelihood surface for § when comparing causal variant effect sizes between two subsets
of European Americans. Maximum likelihood estimates and 95% bootstrap CI are A) 0.008 (0.003,
0.05) for gene expression and B) -0.03 (-0.09, 0.03) for LDL-C. We denote the MLE and 95%
bootstrap CI with the vertical line and shaded region, respectively.

28


https://doi.org/10.1101/2021.12.06.471235
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.06.471235; this version posted March 16, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

« References

s« [1] Randolph, H. E., Z. Mu, J. K. Fiege, B. K. Thielen, J.-C. Grenier, M. S. Cobb, J. G. Hussin,

569 Y. I. Li, R. A. Langlois, and L. B. Barreiro, 2020 Single-cell RN A-sequencing reveals pervasive
570 but highly cell type-specific genetic ancestry effects on the response to viral infection. preprint,
571 Genomics.

s [2] Nédélec, Y., J. Sanz, G. Baharian, Z. A. Szpiech, A. Pacis, A. Dumaine, J.-C. Grenier,
573 A. Freiman, A. J. Sams, S. Hebert, et al., 2016 Genetic Ancestry and Natural Selection Drive

574 Population Differences in Immune Responses to Pathogens. Cell 167: 657-669.e21.

s5 3] Young, A. I, F. Wauthier, and P. Donnelly, 2016 Multiple novel gene-by-environment
576 interactions modify the effect of FTO variants on body mass index. Nature Communications 7:

577 12724.

se 4] Green, A., J. Van Der Pols, and D. Hunter, 2008 Skin Cancer. In Texztbook of Cancer

579 Epidemiology, Oxford University Press, New York, second edition.

so0  [b] Takeshita, T., X.-Q. Mao, and K. Morimoto, 1996 The contribution of polymorphism in the
581 alcohol dehydrogenase subunit to alcohol sensitivity in a Japanese population. Human

562 Genetics 97: 409-413.

ss  [6] Kilpeldinen, T. O., L. Qi, S. Brage, S. J. Sharp, E. Sonestedt, E. Demerath, T. Ahmad,

584 S. Mora, M. Kaakinen, C. H. Sandholt, et al., 2011 Physical activity attenuates the influence
585 of FTO variants on obesity risk: a meta-analysis of 218,166 adults and 19,268 children. PLoS
586 medicine 8: e1001116.

ssv 7] Popejoy, A. B., K. R. Crooks, S. M. Fullerton, L. A. Hindorff, G. W. Hooker, B. A. Koenig,

588 N. Pino, E. M. Ramos, D. I. Ritter, H. Wand, et al., 2020 Clinical Genetics Lacks Standard
589 Definitions and Protocols for the Collection and Use of Diversity Measures. The American
590 Journal of Human Genetics 107: 72-82.

sn  [8] Peterson, R. E., K. Kuchenbaecker, R. K. Walters, C.-Y. Chen, A. B. Popejoy, S. Periyasamy,

592 M. Lam, C. Iyegbe, R. J. Strawbridge, L. Brick, et al., 2019 Genome-wide Association Studies
503 in Ancestrally Diverse Populations: Opportunities, Methods, Pitfalls, and Recommendations.
594 Cell 179: 589-603.

ss  [9] de Candia, T., S. Lee, J. Yang, B. Browning, P. Gejman, D. Levinson, B. Mowry, J. Hewitt,
596 M. Goddard, M. O’Donovan, et al., 2013 Additive Genetic Variation in Schizophrenia Risk Is

29


https://doi.org/10.1101/2021.12.06.471235
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.06.471235; this version posted March 16, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

507 Shared by Populations of African and European Descent. American Journal of Human

508 Genetics 93: 463-470.

s0  [10] Mancuso, N., N. Rohland, K. A. Rand, A. Tandon, A. Allen, D. Quinque, S. Mallick, H. Li,
600 A. Stram, X. Sheng, et al., 2016 The contribution of rare variation to prostate cancer

601 heritability. Nature genetics 48: 30-35.

2 [11] Wojcik, G. L., M. Graff, K. K. Nishimura, R. Tao, J. Haessler, C. R. Gignoux, H. M.
603 Highland, Y. M. Patel, E. P. Sorokin, C. L. Avery, et al., 2019 Genetic analyses of diverse

604 populations improves discovery for complex traits. Nature 570: 514-518.

sos [12] Bitarello, B. D. and I. Mathieson, 2020 Polygenic Scores for Height in Admixed Populations.

606 G3: Genes, Genomes, Genetics 10: 4027-4036.

s [13] Brown, B. C., Asian Genetic Epidemiology Network Type 2 Diabetes Consortium, C. J. Ye,
608 A. L. Price, and N. Zaitlen, 2016 Transethnic Genetic-Correlation Estimates from Summary

609 Statistics. American Journal of Human Genetics 99: 76-88.

s [14] Galinsky, K. J., Y. A. Reshef, H. K. Finucane, P.-R. Loh, N. Zaitlen, N. J. Patterson, B. C.
611 Brown, and A. L. Price, 2019 Estimating cross-population genetic correlations of causal effect

612 sizes. Genetic epidemiology 43: 180-188.

a3 [15] GTEx Consortium, 2017 Genetic effects on gene expression across human tissues. Nature 550:

614 204-213.

o5 [16] DeLuca, D. S.; J. Z. Levin, A. Sivachenko, T. Fennell, M.-D. Nazaire, C. Williams, M. Reich,
616 W. Winckler, and G. Getz, 2012 RNA-SeQC: RNA-seq metrics for quality control and process

617 optimization. Bioinformatics (Oxford, England) 28: 1530-1532.

s [17] Hunter-Zinck, H., Y. Shi, M. Li, B. R. Gorman, S.-G. Ji, N. Sun, T. Webster, A. Liem,
619 P. Hsieh, P. Devineni, et al., 2020 Genotyping Array Design and Data Quality Control in the

620 Million Veteran Program. American Journal of Human Genetics 106: 535-548.

ez [18] Auton, A., G. R. Abecasis, D. M. Altshuler, R. M. Durbin, G. R. Abecasis, D. R. Bentley,
622 A. Chakravarti, A. G. Clark, P. Donnelly, E. E. Eichler, et al., 2015 A global reference for

623 human genetic variation. Nature 526: 68-74.

s [19] Howie, B. N., P. Donnelly, and J. Marchini, 2009 A Flexible and Accurate Genotype
625 Imputation Method for the Next Generation of Genome-Wide Association Studies. PLOS

626 Genetics 5: ¢1000529.

30


https://doi.org/10.1101/2021.12.06.471235
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.06.471235; this version posted March 16, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

ez [20] Fang, H., Q. Hui, J. Lynch, J. Honerlaw, T. L. Assimes, J. Huang, M. Vujkovic, S. M.

628 Damrauer, S. Pyarajan, J. M. Gaziano, et al., 2019 Harmonizing Genetic Ancestry and Self-
629 identified Race/Ethnicity in Genome-wide Association Studies. American Journal of Human
630 Genetics 105: 763-772.

s [21] Manichaikul, A., J. C. Mychaleckyj, S. S. Rich, K. Daly, M. Sale, and W.-M. Chen, 2010
632 Robust relationship inference in genome-wide association studies. Bioinformatics 26:

633 2867-2873.

s [22] Alexander, D. H., J. Novembre, and K. Lange, 2009 Fast model-based estimation of ancestry

635 in unrelated individuals. Genome Research 19: 1655-1664.

e [23] Maples, B. K., S. Gravel, E. E. Kenny, and C. D. Bustamante, 2013 RFMix: a discriminative
637 modeling approach for rapid and robust local-ancestry inference. American Journal of Human

638 Genetics 93: 278-288.

s [24] Baharian, S., M. Barakatt, C. R. Gignoux, S. Shringarpure, J. Errington, W. J. Blot, C. D.
640 Bustamante, E. E. Kenny, S. M. Williams, M. C. Aldrich, et al., 2016 The Great Migration

641 and African-American Genomic Diversity. PLOS Genetics 12: e1006059.

sz [25] Sinnott-Armstrong, N., Y. Tanigawa, D. Amar, N. Mars, C. Benner, M. Aguirre, G. R.
643 Venkataraman, M. Wainberg, H. M. Ollila, T. Kiiskinen, et al., 2021 Genetics of 35 blood and

644 urine biomarkers in the UK Biobank. Nature Genetics 53: 185-194.

s [26] Adrion, J. R., C. B. Cole, N. Dukler, J. G. Galloway, A. L. Gladstein, G. Gower, C. C.

646 Kyriazis, A. P. Ragsdale, G. Tsambos, F. Baumdicker, et al., 2020 A community-maintained
647 standard library of population genetic models. eLife 9: €54967, Publisher: eLife Sciences
648 Publications, Ltd.

s0  [27] Fu, W., T. D. O’Connor, G. Jun, H. M. Kang, G. Abecasis, S. M. Leal, S. Gabriel, M. J.
650 Rieder, D. Altshuler, J. Shendure, et al., 2013 Analysis of 6,515 exomes reveals the recent

651 origin of most human protein-coding variants. Nature 493: 216—220.

s> [28] Tennessen, J. A., A. W. Bigham, T. D. O’Connor, W. Fu, E. E. Kenny, S. Gravel, S. McGee,

653 R. Do, X. Liu, G. Jun, et al., 2012 Evolution and Functional Impact of Rare Coding Variation
654 from Deep Sequencing of Human Exomes. Science Publisher: American Association for the
655 Advancement of Science.

31


https://doi.org/10.1101/2021.12.06.471235
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.06.471235; this version posted March 16, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

s [29] Kelleher, J., A. M. Etheridge, and G. McVean, 2016 Efficient coalescent simulation and

657 genealogical analysis for large sample sizes. PLoS computational biology 12: €1004842.

s [30] Martin, A. R., C. R. Gignoux, R. K. Walters, G. L. Wojcik, B. M. Neale, S. Gravel, M. J. Daly,
659 C. D. Bustamante, and E. E. Kenny, 2017 Human Demographic History Impacts Genetic Risk

660 Prediction across Diverse Populations. American Journal of Human Genetics 100: 635-649.

s [31] Musharoff, S., D. S. Park, A. Dahl, J. M. Galanter, X. Liu, S. Huntsman, C. Eng, E. G.
662 Burchard, J. F. Ayroles, and N. Zaitlen, 2018 Existence and implications of population

663 variance structure. BioRxiv .

see  [32] Vosa, U., A. Claringbould, H.-J. Westra, M. J. Bonder, P. Deelen, B. Zeng, H. Kirsten,

665 A. Saha, R. Kreuzhuber, S. Yazar, et al., 2021 Large-scale cis- and trans-eQTL analyses
666 identify thousands of genetic loci and polygenic scores that regulate blood gene expression.
667 Nature Genetics 53: 1300-1310.

ses [33] Price, A. L., N. Patterson, D. C. Hancks, S. Myers, D. Reich, V. G. Cheung, and R. S.
669 Spielman, 2008 Effects of cis and trans genetic ancestry on gene expression in African

670 Americans. PLoS Genetics 4: ¢1000294.

sn  [34] Yengo, L., S. Vedantam, E. Marouli, J. Sidorenko, E. Bartell, S. Sakaue, M. Graff, A. U.

672 Eliasen, Y. Jiang, S. Raghavan, et al., 2022 A Saturated Map of Common Genetic Variants
673 Associated with Human Height from 5.4 Million Individuals of Diverse Ancestries. preprint,
674 Genetics.

s [35] Lao, O., T. T. Lu, M. Nothnagel, O. Junge, S. Freitag-Wolf, A. Caliebe, M. Balascakova,
676 J. Bertranpetit, L. A. Bindoff, D. Comas, et al., 2008 Correlation between Genetic and

677 Geographic Structure in Europe. Current Biology 18: 1241-1248.

s [36] Novembre, J., T. Johnson, K. Bryc, Z. Kutalik, A. R. Boyko, A. Auton, A. Indap, K. S. King,
679 S. Bergmann, M. R. Nelson, et al., 2008 Genes mirror geography within Europe. Nature 456:
680 98-101.

s [37] Martin, A. R., M. Kanai, Y. Kamatani, Y. Okada, B. M. Neale, and M. J. Daly, 2019 Clinical
682 use of current polygenic risk scores may exacerbate health disparities. Nature Genetics 51:

683 584-591.

32


https://doi.org/10.1101/2021.12.06.471235
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.06.471235; this version posted March 16, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

684

685

686

687

688

689

690

691

692

693

694

695

696

[38]

[39]

available under aCC-BY-NC 4.0 International license.
Berg, J. J., A. Harpak, N. Sinnott-Armstrong, A. M. Joergensen, H. Mostafavi, Y. Field, E. A.
Boyle, X. Zhang, F. Racimo, J. K. Pritchard, et al., 2019 Reduced signal for polygenic
adaptation of height in UK Biobank. eLife 8.

Sohail, M., R. M. Maier, A. Ganna, A. Bloemendal, A. R. Martin, M. C. Turchin, C. W.
Chiang, J. Hirschhorn, M. J. Daly, N. Patterson, et al., 2019 Polygenic adaptation on height is

overestimated due to uncorrected stratification in genome-wide association studies. eLife 8.

Mostafavi, H., A. Harpak, I. Agarwal, D. Conley, J. K. Pritchard, and M. Przeworski, 2020

Variable prediction accuracy of polygenic scores within an ancestry group. eLife 9: e48376.

Lewontin, R. C., 1972 The Apportionment of Human Diversity. In Evolutionary Biology:
Volume 6, edited by T. Dobzhansky, M. K. Hecht, and W. C. Steere, pp. 381-398, Springer
US, New York, NY.

Barton, N., J. Hermisson, and M. Nordborg, 2019 Why structure matters. eLife 8: 45380,

Publisher: eLife Sciences Publications, Ltd.

33


https://doi.org/10.1101/2021.12.06.471235
http://creativecommons.org/licenses/by-nc/4.0/

