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Abstract1

Despite the growing number of genome-wide association studies (GWAS), it remains unclear to2

what extent gene-by-gene and gene-by-environment interactions influence complex traits in3

humans. The magnitude of genetic interactions in complex traits has been difficult to quantify4

because GWAS are generally underpowered to detect individual interactions of small effect. Here,5

we develop a method to test for genetic interactions that aggregates information across all trait-6

associated loci. Specifically, we test whether SNPs in regions of European ancestry shared between7

European American and admixed African American individuals have the same causal effect sizes.8

We hypothesize that in African Americans, the presence of genetic interactions will drive the causal9

effect sizes of SNPs in regions of European ancestry to be more similar to those of SNPs in regions10

of African ancestry. We apply our method to two traits: gene expression in 296 African Americans11

and 482 European Americans in the Multi-Ethnic Study of Atherosclerosis (MESA) and low-12

density lipoprotein cholesterol (LDL-C) in 74K African Americans and 296K European Americans13

in the Million Veteran Program (MVP). We find significant evidence for genetic interactions in our14

analysis of gene expression; for LDL-C, we observe a similar point estimate although this is not15

significant, likely due to lower statistical power. These results suggest that gene-by-gene or16

gene-by-environment interactions modify the effect sizes of causal variants in human complex traits.17

Introduction18

Over the last two decades, genome-wide association studies (GWAS) have demonstrated that19

human complex traits are influenced by many thousands of causal variants, each with small20

additive effects. What remains unclear is the extent to which traits are influenced by interactions21

between these variants, or between variants and the environment. Despite the dramatic increases in22

study size, GWAS are underpowered to detect individual gene-by-gene interactions of small effect.23

Testing for gene-by-environment interactions is similarly difficult, but with the added complication24

that the “environment” is notoriously hard to quantify. Thus, even though a handful of large-effect25

interactions have been identified1–6, the overall role of genetic interactions in complex trait26

architecture is yet to be determined.27

Here, we test for genetic interactions by assessing whether causal variant effect sizes differ28

between populations. We use population differences in causal effect sizes as a proxy for genetic29

interactions because self-reported descriptors of population identity often loosely correlate with30

both genetic variation and environmental factors7. For example, in the United States, self-reported31
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race often correlates with environmental exposures such as access to healthcare, due to a historical32

legacy of structural racism that extends into the present day8. This drives substantial33

environmental differences between populations, and if two populations have sufficiently different34

environmental backgrounds, then the existence of gene-by-environment interactions can produce35

modest differences in causal variant effect sizes. The existence of differential gene-by-gene36

interactions between populations would likewise produce differences in causal variant effect sizes.37

However, comparing causal variant effect sizes between populations is rife with challenges. The38

causal variants underlying human complex traits are generally unknown and instead, GWAS39

typically identify single nucleotide polymorphisms (SNPs) that are statistically associated with the40

trait due to strong linkage disequilibrium (LD) with the causal variant(s). Due to differences in LD41

structure, these trait-associated SNPs may not be equally correlated with the same causal variant42

in two different populations, resulting in different marginal effect sizes. This is especially true if the43

causal variant is private, or only present in a single population. Thus, although several studies have44

observed differences between populations in the marginal effect sizes of trait-associated SNPs9–12,45

this could correspond both to differences in the effect sizes of causal variants themselves and to46

differences in LD structure.47

These questions have been addressed further with statistical methods that leverage LD48

reference panels to account for differences in LD structure between populations13,14. These studies49

have found modest differences in causal variant effect sizes for both gene expression and complex50

traits. However, these existing methods are limited by their reliance on accurate LD reference51

panels and their difficulty in accounting for rare or population-specific causal variants.52

Furthermore, these methods are not suitable for application to recently admixed populations such53

as African Americans and Latin Americans due to the complexities of long-range admixture LD.54

In this paper, we compare the genetic architecture of gene expression and low-density55

lipoprotein cholesterol (LDL-C) between African Americans and European Americans. Using data56

from the Multi-Ethnic Study of Atherosclerosis (MESA) and the Million Veteran Program (MVP),57

we first compare the marginal effect sizes of trait-associated SNPs when estimated from European58

Americans and from African Americans. We next quantify the contribution of local and global59

ancestry to phenotypic variance. Lastly, we leverage the multiple ancestries in the genomes of60

admixed populations to test for the existence of genetic interactions. Admixed African American61

genomes contain regions of European ancestry that share the same local LD structure as the62

genomes of European Americans. Within these regions of shared ancestry, we can compare variant63

effect sizes between populations without bias from differences in LD structure. Specifically, we64
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hypothesize that in the absence of gene-by-gene or gene-by-environment interactions, SNPs will65

have the same effect sizes in European Americans and regions of European ancestry in African66

Americans. Conversely, we hypothesize that the presence of genetic interactions will drive the67

causal effect sizes of SNPs in regions of European ancestry in African Americans to be more similar68

to those of SNPs in regions of African ancestry.69

Material and Methods70

Genotype and phenotype datasets71

Multi-Ethnic Study of Atherosclerosis (MESA). For MESA, we obtained phased whole72

genome sequencing data and gene expression data in peripheral blood mononuclear cells (PBMCs)73

from TOPMed Freeze 8. After filtering individuals based on ancestry, as we describe below, the74

MESA dataset comprised 296 individuals who self-reported race as Black or African American and75

482 individuals who self-reported race as White. We henceforth use the term “African American”76

to refer to all individuals who self-report race as Black or African American. Analogously, we use77

the term “European American” to refer to all individuals who self-report race as White and cluster78

with individuals of European ancestry in principal components analysis of genotypes.79

380 of these individuals had gene expression data available at two exams, spaced five years80

apart. For these individuals, we selected the time of exam to use such that the proportions of81

certain covariates (sex, time of exam, sequencing center) were approximately balanced between82

European Americans and African Americans. Briefly, this was done by iterating through this set of83

individuals ten times and changing the time of exam used for that individual if doing so would84

increase the similarity of covariate proportions between the two populations.85

As done previously by15, gene-level expression quantification was based on the GENCODE 2686

annotation, collapsed to a single transcript model for each gene using a custom isoform collapsing87

procedure. Gene-level read counts were obtained with RNA-SeQC v1.1.916. We selected genes with88

expression thresholds of >0.1 TPM in at least 20% of samples and ≥6 reads in at least 20% of89

samples, thresholding separately for European Americans and African Americans in both cases. A90

total of 10,870 genes passed this filtering step. We log-transformed gene expression measurements91

and used these transformed phenotypes in all downstream analyses. We selected biallelic SNPs92

with a MAF > 0.05 and minor allele sample count > 5 in both European Americans and African93

Americans.94
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Million Veteran Program (MVP). For MVP, we used GRCh37 genotype calls processed and95

subject to quality control as described in17. Data were imputed with IMPUTE using the 100096

Genomes Phase 3 reference panel18,19. As previously done for MVP17, the population of each97

individual (i.e. African American or European American) was determined by HARE20. Using98

KING coefficients21, we removed relatives who were closer than 3rd degree cousins, which left99

73,788 African American and 296,124 European American individuals. For all analyses, we used100

the maximum LDL-C measurement for each individual across all time points. In addition, we101

numerically adjusted LDL-C measurements for statin usage by multiplying measurements by 0.7 if102

an individual was inferred to be on statin medication. We inferred that individuals were on statin103

medication if a statin prescription was filled within the length of the prescription plus a buffer of 15104

days within the LDL-C measurement date.105

Inferring global and local ancestry106

We inferred global ancestry for admixed African American individuals with supervised107

ADMIXTURE using default program parameters22. We used 99 CEU individuals and 108 YRI108

individuals from 1000 Genomes Phase 3 as our reference populations. We filtered for biallelic SNPs109

with MAF > 0.05 in both the admixed population and the reference populations, and again filtered110

for MAF > 0.1 after merging the admixed and reference datasets. We pruned SNPs with an r2111

value > 0.1.112

We inferred local ancestry with RFMix v1.5.4, using no EM iterations and default program113

parameters23. We assumed 8 generations since the time of admixture between an African114

population and a European population24. We again used 99 CEU individuals and 108 YRI115

individuals from 1000 Genomes Phase 3 as our reference populations. We used biallelic SNPs with116

MAF > 0.05 in both the admixed population and the reference populations, and removed SNPs117

with an r2 value > 0.5.118

In both datasets, we excluded African Americans with < 0.5 global African ancestry from119

downstream analyses. We also excluded one European American individual from MESA who did120

not cluster with individuals of European ancestry in principal components analysis of genotypes.121

Comparing marginal SNP effect sizes between populations122

Gene expression (MESA). To identify SNPs affecting expression in cis, we filtered for SNPs123

within 100 kb of the TSS for each gene. We ascertained trait-associated SNPs in a randomly124

sampled subset of 232 European Americans using ordinary least squares. This regression included125
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ten covariates that were significantly correlated with expression phenotypes: sequencing center;126

time of exam; sex; genotype PC 2, which captures structure within European Americans; and six127

covariates corresponding to a one-hot encoding of recruitment site (Figure S2, Figure S3A).128

For each gene, we focused on the most significant SNP and ascertained significant SNP-gene129

associations by applying a false discovery rate of 0.01 to correct for multiple testing, as done by15.130

All downstream analyses were performed on these significant associations. Furthermore, all131

downstream analyses excluded the individuals who were used to ascertain trait-associated SNPs.132

For each significant SNP-gene association, we performed two separate regressions to estimate133

βAA, the effect size in African Americans, and βEA, the effect size in European Americans,134

respectively. For each regression, we again included covariates significantly correlated with135

expression phenotypes. To estimate βEA, we used sequencing center, time of exam, sex, genotype136

PC 2, and recruitment site as above. To estimate βAA, we used sequencing center, time of exam,137

sex, recruitment site, and global African ancestry fraction. (We did not include genotype PC 1 as a138

covariate despite its significant association with expression because this is highly correlated with139

global African ancestry fraction (Figure S3B).) We estimated βEA in 250 European Americans and140

randomly sampled an equal number of African Americans to estimate βAA.141

LDL-C (MVP). We ascertained genome-wide significant SNPs in 318,953 UK Biobank White142

British individuals. After applying genomic filters (MAF ≥ 0.01, missing genotype rate ≤ 0.05,143

Hardy-Weinberg equilibrium with a cutoff of p < 1× 10−50), we tested for association with inverse-144

variance quantile normalized phenotypes using a linear model (–glm) in plink with the covariates145

age, sex, assessment center, and statin usage. Significant variants (p < 5× 10−8) were clumped and146

thinned to leave at most one independent SNP per 0.1 cM25.147

To estimate effect sizes of these variants in MVP, we extracted variants from the imputed148

genotype set using 1000 Genomes Phase 3 as our reference panel. We filtered for MAF ≥ 0.003 in149

European Americans and African Americans, leaving 122 independent SNPs. Our covariates150

included age, sex, global ancestry, and genotype PC 1, which stratifies European Americans and is151

the only principal component associated with LDL-C after residualizing on the other covariates.152

Principal components were calculated on all individuals in the MVP dataset with HARE17.153

To estimate effect sizes from the 74K African Americans (βAA), we used linear regression in154

plink (–glm) and included the covariates above. We likewise randomly sampled an equal number of155

European Americans and estimated effect sizes (βEA).156
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Comparison of effect sizes. We used total least squares (TLS) regression to assess the slope of157

the relationship between β̂AA and β̂EA. Estimates of SNP effect sizes are statistically noisy, and158

unlike ordinary least squares, total least squares is robust to uncertainty in the x-axis variable.159

Because we used the same number of samples to estimate βAA and βEA, their standard errors will160

be comparable, as is necessary for TLS regression. We created 1000 bootstrap replicates for each161

trait by sampling with replacement over SNPs and report the 95% confidence interval (CI) of the162

slope as defined by the 0.025 and 0.975 quantiles.163

Quantifying role of ancestry in phenotypic variance164

We constructed a series of phenotypic models and compared the proportion of phenotypic variance165

explained by each model. We fit each model in a training set comprising 80% of the data (for gene166

expression, 237 African Americans and 200 European Americans; for LDL-C, 52K African167

Americans and 52K European Americans). We computed the proportion of variance explained as168

1− V ar(y−ŷ)
V ar(y) in a test set comprising the remaining 20% of the data (for gene expression, 59169

African Americans and 50 European Americans; for LDL-C, 22K African Americans and 22K170

European Americans). This quantity can be interpreted as measuring the decrease in residual171

variance relative to phenotypic variance. For gene expression, we report the average variance172

explained across all significant genes.173

We note that this procedure differs from our previous analysis in two ways. First, we fit the174

models below by performing a regression on the joint sample of African Americans and European175

Americans, while previously, we performed a regression in each population separately. Second,176

though we previously downsampled the number of African Americans in MESA, here we included177

all 296 African Americans to maximize our power to estimate local ancestry-specific effect sizes. (In178

addition, because African American genomes contain both African and European ancestry, it is not179

as useful to downsample the number of African Americans for these analyses.)180

We first modeled the phenotype y in an individual i with only technical covariates (c). For gene181

expression, this consisted of sex and batch (sequencing center, time of exam, and recruitment site);182

for LDL-C, this consisted of age and sex.183

yi = ciβc (1)

Consecutive models added an indicator variable for race (r), followed by genome-wide descriptors of184

ancestry (θ). Specifically, θ includes global African ancestry fraction and genotype principal185
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components that stratify European Americans (PC 2 for gene expression, see Figure S3; and PC 1186

for LDL-C17).187

yi = ciβc + riβr (2)

188

yi = ciβc + riβr + θiβθ (3)

We next included a local ancestry covariate (γ) that measures the number of haplotypes with189

African ancestry at the trait-associated SNP. For gene expression, we averaged across all SNP-gene190

associations to report the variance explained by local ancestry. On the other hand, for LDL-C, we191

summed across all trait-associated SNPs to report the variance explained.192

yi = ciβc + riβr + θiβθ + γiβγ (4)

Lastly, we included the genotype at trait-associated SNPs. We modeled the genotype with193

ancestry-specific effect sizes, given that differences in LD structure produce differences in the194

marginal effect sizes of trait-associated SNPs. Rather than adding a single term for trait-associated195

SNPs (e.g. giβg), we added two terms, gi,AβA and gi,EβE . We define gi,A as the number of196

alternate alleles with African local ancestry and gi,E as the number of alternate alleles with197

European local ancestry. gi,A and gi,E therefore sum to gi, the total genotype, and βA is the effect198

size in African local ancestry while βE is the effect size in European local ancestry. Once again, to199

report the variance explained, we averaged across all SNP-gene associations for gene expression and200

summed across all trait-associated SNPs for LDL-C.201

yi = ciβc + riβr + θiβθ + γiβγ + gi,AβA + gi,EβE (5)

Testing for genetic interactions202

Overview of model. We constructed a phenotypic model in which we introduce the parameter δ203

to measure differences in the marginal effect size of trait-associated SNPs in regions of European204

ancestry in African Americans compared to European Americans.205

We extend Equation 5, modeling the phenotype y for a single individual i as follows:206

yi = ciβc + riβr + θiβθ + γiβγ + gi,AβA + gi,EβE + δrigi,E(βA − βE) (6)

As described above, the first four terms (ci, ri, θi, γi) are technical covariates; race; global ancestry207

and principal components; and local ancestry, respectively. The next two terms (gi,AβA, gi,EβE),208
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model ancestry-specific effect sizes of trait-associated SNPs.209

In the final term, we introduce the parameter δ, which measures the extent to which marginal210

effect sizes of SNPs in regions of European ancestry in African Americans differ from those in211

European Americans. Using the parameter δ, we can indirectly test whether causal variant effect212

sizes differ between African Americans and European Americans. When δ equals 0, the marginal213

effect size of a SNP in a region of European ancestry in an African American is equal to βE ; as δ214

approaches 1, the marginal effect size approaches βA. Thus, under the null hypothesis that causal215

variant effect sizes are identical between populations, δ will be equal to 0. However, if causal216

variant effect sizes differ between populations because they are modified by the genome and/or217

environment, δ will be greater than 0. (We note that a value of δ equal to 0 is not evidence for the218

absence of any genetic interactions; rather, it indicates that genetic interactions do not differ219

enough between populations to produce differences in causal variant effect sizes.)220

Fitting the model. To fit this model, we began by initializing δ̂ to a random value on the221

interval [0, 1], which is the most biologically intuitive range of values for δ (see Figure 3A). We next222

optimized β̂ = (β̂c, β̂r, β̂θ, β̂γ , β̂A, β̂E) conditional on this value of δ̂, and we then optimized δ̂223

conditional on β̂. For both gene expression and LDL-C, we performed this regression marginally on224

each SNP. In other words, conditional on δ̂, we estimated β̂ for each SNP independently of the rest.225

We continued this iterative optimizing with ordinary least squares regression until δ̂ converged (i.e.226

did not change by >.0001). Though δ̂ was initialized on the interval [0, 1], the optimization227

procedure itself was unconstrained. Additionally, we found that regardless of the initial value of δ̂,228

our optimization procedure converged to the same value. The optimization method converged229

quickly for both datasets (22 iterations for gene expression, 18 for LDL-C). For the gene expression230

data, we estimated one value of δ from all SNP-gene associations to avoid overparameterization.231

For the LDL-C data, we estimated one value of δ across all trait-associated SNPs. To construct 95%232

confidence intervals for δ̂, we bootstrapped over SNPs and reported the 0.025 and 0.975 quantiles.233

(For gene expression, this procedure is equivalent to bootstrapping over genes because each gene is234

modeled by exactly one SNP.) We concluded that causal variant effect sizes are significantly235

different if the 95% CI does not include 0. To generate a likelihood surface for δ, we computed the236

log-likelihood of the data conditional on values of δ ranging from 0 to 1, with a step size of 0.01.237

Assessing properties of the estimator δ̂. We first assessed the bias of our estimator δ̂ with238

simulations designed to emulate our analyses of gene expression in MESA. We simulated genotypes239

and phenotypes for 100 independent loci in 320 admixed African Americans and 500 Europeans.240
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For each African American, we simulated global African ancestry fraction from a beta distribution241

(α = 7.9, β = 2.1) resembling the empirical distribution of global ancestry. For each locus, we242

simulated local ancestry conditional on global ancestry from a binomial distribution.243

We then simulated the respective numbers of African and European genomes using the two-244

population out-of-Africa model as implemented in stdpopsim26–29. For each locus, we simulated 1%245

of chromosome 22 and filtered for SNPs that had MAF > 0.05 in both African and European246

genomes. To mimic ascertainment in a European population, we held out genomes for 250247

European individuals; to mimic ascertainment in an African population, we held out genomes for248

two-thirds of all individuals who had two copies of African ancestry (i.e. γ = 2). We simulated249

causal and tag SNPs by jointly sampling at random from the set of all pairs of SNPs with r2250

greater than a specified threshold in the ascertainment individuals. We conducted simulations with251

r2 thresholds of 0.6 and 0.8.252

We simulated causal variant effect sizes from a bivariate normal distribution with a correlation253

of 0.85, which allowed causal variant effect sizes in African and European ancestries to differ (e.g.254

due to gene-by-gene or gene-by-environment interactions). We simulated phenotypes from causal255

SNP genotypes using the generative model we specified in Equation 6, ignoring the role of256

technical, race, and ancestry covariates. For simulations in which causal variant effect sizes differ257

between populations, we simulated five values of δ ranging between 0 and 0.8. We estimated δ by258

applying our iterative optimization procedure to the simulated phenotypes and tag SNP genotypes259

for all 100 loci. For each combination of hyperparameters (ascertainment population, r2 threshold,260

and simulated value of δ), we performed 10 simulations.261

Lastly, we assessed the behavior of our estimator δ̂ in the case where causal variant effect sizes262

are identical between populations. In principle, if the true marginal effect sizes βA and βE are263

identical, then the parameter δ is not identifiable. In practice, we do not expect the marginal effect264

sizes βA and βE to be identical due to differences in LD structure between African and European265

ancestries. Nevertheless, we investigated this further in both simulations and empirical data. In266

simulations, we used a similar framework to that described above, but we used a univariate normal267

distribution to simulate causal variant effect sizes that were identical between populations. In268

empirical data, we modified our model such that we could use δ to compare effect sizes between two269

randomly sampled, independent subsets of European Americans. On average, individuals in these270

two subsets have the same race, global ancestry, local ancestry, and environment. Thus, we expect271

that causal variant effect sizes are identical between subsets even in the presence of gene-by-gene or272

gene-by-environment interactions. To modify our model, we first excluded any African Americans273
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with European ancestry at trait-associated SNPs. This ensured that βE was estimated only from274

European Americans at trait-associated SNPs, and that βA was estimated only from African275

Americans with African ancestry on both haplotypes at trait-associated SNPs. Next, we assigned a276

randomly sampled subset of the European Americans as a validation set. For gene expression, this277

was 100 individuals, and for LDL-C, this was 74K individuals. We then replaced the race indicator278

in the last term of the model with a validation set indicator. With this particular modification of279

the model, our estimator δ̂ tests whether trait-associated SNPs have the same effect size in two280

randomly sampled, independent subsets of European Americans. If δ is estimated to be nonzero281

between these two subsets of European Americans, this would indicate that our estimator has282

pathological behavior in the case where causal effect sizes are identical between populations.283

Results284

We performed analyses for gene expression and LDL-C, both of which are driven by a combination285

of genetic factors and environmental factors. We analyzed gene expression using MESA, a dataset286

with whole genome sequencing and bulk RNA-Seq in peripheral blood mononuclear cells for 296287

African Americans and 482 European Americans. We analyzed LDL-C using MVP, a dataset with288

dense SNP genotyping and LDL-C measurements for 74K African Americans and 296K European289

Americans. Of existing human genetic datasets, MESA and MVP have some of the largest cohorts290

of admixed individuals for their respective phenotypes.291

Inferring global and local ancestry. We inferred global and local ancestry for the African292

American individuals in MESA and MVP. In both cases, we modeled African Americans as a two-293

way admixture between African and European populations that occurred 8 generations ago24. We294

estimated global ancestry using supervised ADMIXTURE with 1000 Genomes populations (CEU295

as European and YRI as African) as our reference populations18,22. The average global African296

ancestry of African American individuals is 0.80 in MESA and 0.82 in MVP, concordant with297

previous estimates from similar populations30 (Figure 1A). We performed local ancestry inference298

with RFMix using the same 1000 Genomes reference populations23. Global ancestry fractions from299

ADMIXTURE are highly correlated with those implied by RFMix (MESA ρ = 0.997, MVP ρ =300

0.98) (Figure S1). As expected based on their admixture history, the local ancestry of African301

American individuals alternates between blocks of African and European ancestry along the302

genome and contains relatively large European blocks (mean length is 15 Mb in MESA, 14 Mb in303

MVP) (Figure 1B).304
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74K individuals, MVP250 individuals, MESAEstimate marginal effect sizes of trait-
associated SNPs in European Americans3

74K individuals, MVP250 individuals, MESAEstimate marginal effect sizes of trait-
associated SNPs in African Americans2

319K individuals, UKBB232 individuals, MESAAscertain trait-associated SNPs in a held-out
set of individuals with European ancestry1

LDL-CGene expression
C) Comparing marginal effect sizes between populations

B) Local ancestry of African Americans

European ancestry

African ancestry

Local ancestry varies across the genome, with either 0, 1,
or 2 haplotypes with European ancestry at each site.
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Figure 1: Schematic of the analysis pipeline. A) Global ancestry of African Americans is
predominantly African, with an average global African ancestry fraction of 0.80 in MESA and 0.82
in MVP. B) Local ancestry for one sample individual in MESA. Individuals have either 0, 1, or 2
haplotypes with European ancestry at each position. C) We compare marginal effect sizes of SNPs
between African Americans and European Americans.
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Comparing marginal SNP effect sizes between populations. We first sought to compare305

marginal effect sizes of trait-associated SNPs when estimated from European Americans and from306

African Americans (Figure 1C). We expect that marginal effect sizes of trait-associated SNPs will307

differ between the two populations due to known differences in LD structure between African and308

European ancestries, as well as potential differences in gene-by-gene or gene-by-environment309

interactions between the populations. However, the magnitude of this difference in marginal effect310

sizes is unclear. The observed magnitude of differences may be inflated by sampling error,311

particularly if one population has a small sample size. Additionally, effect sizes are usually largest312

in a discovery sample due to Winner’s Curse, which further exacerbates differences between313

discovery and replication datasets. To minimize these biases, we ascertained trait-associated SNPs314

in a held-out set of individuals and compared effect sizes in an equal number of African Americans315

and European Americans (Fig 1C).316

We first log-transformed phenotype measurements for variance stabilization. We did not317

perform quantile normalization given that phenotypic variance might differ between populations31.318

We ascertained unlinked, trait-associated SNPs in individuals of European ancestry. For gene319

expression, we restricted our analyses to putative cis-acting variants (i.e. within 100 kb of TSS)320

because cis-acting variants have stronger effects than trans-acting variants and are more easily321

detected in modest sample sizes15,32. In the event that there were multiple SNPs associated with a322

gene, we chose the most significant SNP for downstream analyses15. We ascertained trait-323

associated SNPs (false discovery rate < 0.01) in a held-out subset of 232 European Americans in324

MESA, which resulted in 4,236 SNP-gene associations. For LDL-C, we ascertained trait-associated325

SNPs (p < 5× 10−8) in 318,953 UK Biobank (UKBB) White British individuals, and clumped and326

thinned them, which resulted in 122 trait-associated SNPs. We performed all subsequent analyses327

on these trait-associated SNPs.328

To compare marginal effect sizes between populations, we estimated the effect sizes of trait-329

associated SNPs separately in African Americans (βAA) and European Americans (βEA). For gene330

expression, βAA and βEA were each estimated from 250 individuals. For LDL-C, βAA and βEA331

were each estimated from 74K individuals. For each trait, we compared marginal effect sizes332

between the two populations by regressing effect sizes estimated from African Americans (β̂AA) on333

effect sizes estimated from European Americans (β̂EA) (Figure 2). We used total least squares334

(TLS) to perform the regression because it is robust to statistical noise in the independent variable335

(β̂EA), while ordinary least squares is not.336

For gene expression, effect sizes estimated from African Americans are significantly smaller in337
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Figure 2: Comparing marginal SNP effect sizes between populations. We estimated effect
sizes of trait-associated SNPs and regressed the effect size estimated from African Americans on the
effect size estimated from European Americans. We represent the 95% bootstrap CI with the shaded
region. Effect sizes estimated from African Americans are A) significantly smaller in magnitude
than the corresponding effect sizes estimated from European Americans for gene expression and B)
smaller but not significantly so for LDL-C.

magnitude than the corresponding effect sizes estimated from European Americans, with a slope of338

0.85 (95% CI of 0.81-0.89) (Figure 2). For LDL-C, we similarly observe a slope of 0.84, but this is339

not significantly different from 1 (95% CI of 0.65-1.01), likely due to the modest number of SNPs340

analyzed for this trait. Our observation that marginal effect sizes estimated from African341

Americans are smaller in magnitude can be at least partially explained by our ascertainment of342

trait-associated SNPs in individuals of European ancestry. Blocks of LD structure are smaller in343

populations of African ancestry than in populations of European ancestry, and the African344

Americans in MESA and MVP have a mean African global ancestry of approximately 80%. Thus,345

the correlation between causal variants and trait-associated SNPs ascertained in European346

populations will generally be weaker in African Americans than in European Americans, meaning347

that marginal effect sizes estimated from African Americans will have a smaller magnitude.348

Potential differences in gene-by-gene and gene-by-environment interactions between populations349

could also contribute to the observed differences in marginal effect sizes, but are unlikely to350

produce such a systematic shift in the magnitudes of effect sizes.351

Quantifying role of ancestry in phenotypic variance. Given that African Americans are352

admixed with both African and European ancestries, we next sought to assess the contribution of353
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global and local ancestry to phenotypic variation. We quantified the contribution of both terms to354

phenotypic variation by constructing a series of phenotypic models and computing the amount of355

variance explained by each model. We fit each model to roughly 80% of our data allocated as a356

training set and computed the proportion of phenotypic variance explained by the model in a test357

set using the remaining 20% of our data. For gene expression, we report the average phenotypic358

variance explained across all genes.359

We constructed five phenotypic models in total, where each model has an increasing number of360

terms relative to its predecessor. Our first phenotypic model (Table 1; Equation 1) included only361

technical covariates (sex and batch for gene expression; sex and age for LDL-C) and explains362

18.41% of phenotypic variance for gene expression and 0.11% of phenotypic variance for LDL-C.363

Most of the variance explained by these covariates for gene expression is due to batch effects, as is364

common for RNA-Seq assays. We next added an indicator variable for race, which allows for race-365

specific phenotypic intercepts and can capture trait-relevant differences in environment between366

African American and European American populations33 (Equation 2). Compared to a model that367

only includes technical covariates, including race explains an additional 1.26% of variance in gene368

expression and 0.05% of variance in LDL-C.369

We next added global African ancestry fraction and genotype principal components to the370

model (Equation 3). These covariates can capture additional population structure: global African371

ancestry fraction stratifies African Americans, while the principal components we include stratify372

European Americans. In the context of gene expression, global ancestry and genotype principal373

components are known to be relevant for trait variation, potentially because they capture the effect374

of trans genetic variation on expression2,1,33. Surprisingly, we find that these terms have a small375

contribution to the overall phenotypic variance of both gene expression and LDL-C.376

We next considered the importance of a local ancestry covariate that measures the number of377

haplotypes with African ancestry at each trait-associated SNP (Equation 4). Local ancestry could378

implicitly capture the effect of local genetic variation from SNPs that are not explicitly modeled; in379

the context of gene expression, these unmodeled, trait-associated SNPs are likely cis-acting380

variants. However, we find that including local ancestry does not explain much additional variance381

in either gene expression or LDL-C.382

Lastly, we considered the role of trait-associated SNPs (Equation 5). Differences in LD383

structure between African and European ancestries result in different marginal effect sizes at trait-384

associated SNPs, as we see in Figure 2. Consequently, we modeled the genotype at trait-associated385

SNPs with ancestry-specific effect sizes. We find that trait-associated SNPs contribute considerably386
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Term added Model Additional variance explained (%)
Gene expression LDL-C

(1) Technical covariates yi = ciβc 18.41 0.11
(2) Race yi = ciβc + riβr 1.26 0.05
(3) Global ancestry & PCs yi = ciβc + riβr + θiβθ 0.00 0.01
(4) Local ancestry yi = ciβc + riβr + θiβθ+ 0.03 −0.04

γiβγ

(5) Genotype with yi = ciβc + riβr + θiβθ+ 3.62 2.12
ancestry-specific γiβγ + gi,AβA+
effect sizes gi,EβE

Table 1: Quantifying role of ancestry in phenotypic variance. We constructed a series of linear
models and computed the percentage of phenotypic variance explained. For both traits, we report
the increase in the percentage of phenotypic variance explained by each model; for gene expression,
we report the average increase across all genes. The variables in the models are defined as follows:
ci is a vector of technical covariates; ri is a race indicator variable; θi is a vector of global African
ancestry fraction and principal components; γi is a local ancestry covariate that measures the number
of haplotypes with African ancestry at trait-associated SNPs; gi,A is the number of alternate alleles
with African local ancestry and gi,E is the number of alternate alleles with European local ancestry.

to trait variation, explaining an additional 3.62% of variance in gene expression and 2.12% of387

variance in LDL-C. Thus, we find that the genotype at trait-associated SNPs contributes388

substantially more to phenotypic variance than either local or global ancestry.389

Testing for genetic interactions. Finally, we looked for evidence of genetic interactions by390

testing whether causal variant effect sizes differ between populations. This is difficult to do with391

standard approaches due to the way in which LD structure can bias comparisons of marginal effect392

sizes. We therefore developed a model that leverages the multiple ancestries within admixed393

genomes to indirectly test whether causal variant effect sizes differ between populations.394

Specifically, we test whether a genetic variant in a region of European ancestry has the same395

marginal effect size in African Americans and European Americans. We assume that the regions of396

European ancestry in the African Americans and European Americans in our datasets are virtually397

identical with respect to LD structure, which means that differences in marginal effect sizes should398

reflect differences in causal effect sizes.399

This assumption is based on the specific demographic history of African Americans and400

Europeans. Given the relatively short time since admixture in African Americans (approximately 8401

generations), we expect that regions of European ancestry in modern-day African Americans402

feature the same LD structure as the European source population contributing to the admixture403

event24. Moreover, others have previously demonstrated that there is low Fst and high correlation404

of allele frequencies between various European populations34–36. Empirically, we also find that405

nearly all (95%) SNPs that are tightly linked (r2 > 0.8) in European Americans in MESA are also406
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tightly linked in regions of European ancestry in African Americans in MESA. (In contrast, only407

65% of SNPs that are tightly linked in European Americans are tightly linked in regions of African408

ancestry in African Americans.) Thus, we have extensive support for the assumption that the LD409

structure between trait-associated SNPs and causal variants is similar in European Americans and410

regions of European ancestry in African Americans.411

Then, under the null hypothesis that genetic interactions do not impact causal variant effect412

sizes, causal variants will have an identical effect size in all populations, and trait-associated SNPs413

in regions of European ancestry will have the same marginal effect size in African Americans and414

European Americans. However, if genetic interactions drive differences in causal variant effect sizes415

between populations, trait-associated SNPs in regions of European ancestry will have different416

marginal effect sizes in African Americans and European Americans. Specifically, we hypothesize417

that in African Americans, the presence of genetic interactions will drive the marginal effect sizes of418

SNPs in regions of European ancestry to be more similar to those of SNPs in regions of African419

ancestry. As we noted previously, without accounting for LD structure, we would expect marginal420

effect sizes of trait-associated SNPs to differ between populations regardless of whether causal421

variant effect sizes do (i.e. regardless of whether genetic interactions exist). However, because we422

focus on regions of shared European ancestry in two different populations, our comparison of423

marginal effect sizes is not biased by differences in LD structure, nor by the possibility of private424

causal variants in European populations.425

We test this hypothesis by developing a model that uses the parameter δ to measure the extent426

to which marginal effect sizes of SNPs in regions of European ancestry in African Americans427

deviate from those in European Americans (see Methods, Equation 6). Values of δ greater than 0428

indicate that SNPs in regions of European ancestry in African Americans and European Americans429

have different marginal effect sizes. In addition, values of δ greater than 0 indicate that SNPs in430

regions of European ancestry in African Americans have effect sizes more similar to SNPs in431

regions of African ancestry in African Americans. Thus, values of δ greater than 0 provide evidence432

for a difference in causal variant effect sizes between populations.433

For both traits, we fit this model to the trait-associated SNPs we previously ascertained. We434

expect that estimates of δ will be noisy at individual SNPs, so for each trait, we estimated a single435

shared value of δ across all SNPs. This results in one value of δ for gene expression, estimated from436

all SNP-gene associations, and one value for LDL-C, estimated from all LDL-associated SNPs.437

Because this model is non-linear, we iteratively optimized δ and all other coefficients,438

β = (βc, βr, βθ, βγ , βA, βE) with ordinary least squares until convergence. To construct a confidence439
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We model the marginal effect size of SNPs in regions of
European ancestry in African Americans as

βE + δ(βA − βE)
where ranges from 0 to 1. As increases, evidence for a
difference in causal variant effect sizes across populations
increases.

δδ

yi = gi βE

(βE + δ(βA − βE))yi = gi

yi = gi βA

δ = 0

0 < δ < 1

δ = 1

Because LD structure differs between ancestries, we model
SNPs with different marginal effect sizes for European and
African local ancestry, βE and βA.

Suppose that an admixed African American has a region of
local European ancestry at this SNP. Is the marginal effect size
of the SNP determined strictly by the local European ancestry
or modified by gene-by-gene and gene-by-environment
interactions?

yi = giβE

yi = giβA

yi = ?
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Figure 3: Testing for genetic interactions. A) We looked for evidence of genetic interactions
by testing for differences in causal variant effect sizes between African Americans and European
Americans. The parameter δ measures the extent to which the marginal effect sizes of SNPs in
regions of European ancestry in African Americans differ from those in European Americans. B, C)
Likelihood surface for δ. Maximum likelihood estimates and 95% bootstrap CI are 0.47 (0.39, 0.53)
for gene expression and 0.46 (-0.06, 0.87) for LDL-C. We denote the MLE and 95% bootstrap CI
with the vertical line and shaded region, respectively.
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interval for δ̂, we bootstrapped over SNPs.440

We first assessed the bias of our estimator δ̂. Using a standard demographic model, we441

simulated genotypes for admixed African Americans and Europeans. In order to simulate the LD442

structure present in our analyses of real data, we simulated phenotypes from causal SNP genotypes443

but estimated δ from tag SNP genotypes in simulations. We find that our estimates δ̂ are well-444

correlated with the simulated values of δ regardless of ascertainment population (Figure S5). We445

next assessed the performance of our estimator in the case where causal effect sizes are identical446

between populations. We find that even when causal effect sizes are simulated to be identical447

between populations, the marginal effect sizes at trait-associated SNPs differ enough that our448

model remains identifiable and we estimate values of δ close to 0 (Figure S6). We additionally449

investigate this in empirical data by estimating δ from two subsets of European Americans between450

which we expect causal effect sizes to be identical. For both gene expression and LDL-C, we451

estimate values of δ close to 0, demonstrating that our estimator δ̂ has the desired behavior when452

causal effect sizes are identical between populations (Figure S7).453

Finally, we used our model to test whether causal variants have the same effect size in African454

Americans and European Americans. For gene expression, δ̂ is significantly different from zero,455

with a maximum likelihood estimate (MLE) of 0.47 and a 95% CI of (0.39, 0.53) (Figure 3B). For456

LDL-C, we estimate a similar MLE of 0.46 with a 95% CI of (−0.06, 0.87) (Figure 3C). Moreover,457

we find that the term containing δ contributes modestly to phenotypic variance: 0.01% for gene458

expression, 0.01% LDL-C. Thus, our results indicate that SNPs in regions of European ancestry in459

African Americans and European Americans have different marginal effect sizes, suggesting that460

causal variant effect sizes differ between populations because they are modified by the genome or461

environment, providing evidence for gene-by-gene or gene-by-environment interactions.462

Discussion463

We developed a model in which we introduce the parameter δ to test for the existence of genetic464

interactions. Specifically, we leveraged regions of European ancestry shared between African465

Americans and European Americans to compare marginal effect sizes of trait-associated SNPs in a466

manner unbiased by LD structure. We applied our model to two traits, gene expression in MESA467

and LDL-C in MVP. For gene expression, we observe that δ̂ is significantly different from zero,468

implying that causal variant effect sizes differ between African Americans and European469

Americans. For LDL-C, we obtain a MLE for δ that is similar to that from gene expression but not470
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significantly different from zero. These observed differences in causal variant effect sizes between471

populations must be due to unmodeled gene-by-gene or gene-by-environment interactions. Our472

observation that causal variant effect sizes differ between populations is also relevant to previous473

work on quantifying cross-population genetic correlations13,14. There is no straightforward474

analytical relationship between our parameter δ and genetic correlation, but our results are475

intuitively consistent with a cross-population genetic correlation less than one.476

Though we observe that causal variant effect sizes significantly differ between populations, we477

also find that the inclusion of the δ term in the model does not substantially increase the amount of478

phenotypic variance explained. This apparent discrepancy can be resolved by noting that we479

evaluate model performance on the full dataset of African Americans and European Americans, but480

the δ term will only improve the modeling of effect sizes in regions of European ancestry in African481

Americans, which only represents about 10% of the full dataset.482

Our results have implications for modeling complex trait phenotypes with polygenic scores483

(PGS). We find that trait-associated SNPs ascertained in Europeans have attenuated effect sizes in484

African Americans, which is consistent with European-ascertained SNPs tagging causal variants485

poorly in African ancestry. Thus, our findings corroborate earlier work demonstrating that486

differences in LD structure contribute to poor PGS portability, reiterating that a PGS will perform487

best when constructed from a population with similar LD structure12,37–40. Moreover, our findings488

imply the existence of genetic interactions, which challenges the assumption of additivity made by489

the statistical genetic models underpinning PGS. This suggests that genetic interactions could490

contribute to poor PGS portability, though it remains unclear to what extent they may do so.491

Future directions include applying our model to additional traits. The larger confidence interval492

we observe for LDL-C is likely due to differences in statistical power between the two traits.493

Though we used significantly associated SNPs for both traits, many fewer SNPs were used in LDL-494

C analyses (122 SNPs) than in gene expression analyses (4,236 SNPs). Moreover, trait-associated495

SNPs were ascertained within the same dataset (MESA) for gene expression but were ascertained496

from an external dataset (UK Biobank) for LDL-C. This should not bias the estimation of δ but497

may mean that trait-associated SNPs capture a larger proportion of phenotypic variance for gene498

expression relative to LDL-C. Thus, by applying our model to additional traits, such as those with499

thousands of associated SNPs, we could gain further insights into the role of genetic interactions in500

complex traits. Another area of investigation includes adapting our model to understand how the501

magnitude of genetic interactions varies across SNPs or individuals. We only estimate one502

parameter δ from all trait-associated SNPs in order to maximize power, but by understanding how503
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δ varies with certain functional genomic properties of SNPs or with individuals’ ancestry, we could504

begin to untangle the contributions of gene-by-gene versus gene-by-environment interactions.505

In summary, we find evidence for genetic interactions by testing for differences in causal variant506

effect sizes between populations. This analysis is motivated by the assumption that the African507

American and European American individuals in our datasets have sufficiently different genetic and508

environmental backgrounds such that the existence of gene-by-gene or gene-by-environment509

interactions will produce modest differences in causal variant effect sizes. However, we reiterate510

others’ findings that there is a great deal of genetic and environmental heterogeneity within human511

populations41,42,40. Thus, it is worth noting that if causal variant effect sizes can be modified by512

gene-by-gene or gene-by-environment interactions, it follows that causal variant effect sizes will513

differ not only between populations, but also between individuals within a population. Ultimately,514

our results give insight into the importance of genetic interactions in human complex traits.515
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Ethics516

Human subjects: This research has been conducted using the Multi-Ethnic Study of Atherosclerosis517

(MESA) dataset, the Million Veteran Program (MVP) dataset, and the UK Biobank dataset. The518

MESA dataset was obtained under TOPMed application number 10194, ”Investigating cross-519

population portability of variant effect sizes”. All MESA participants provided written informed520

consent. The MVP dataset was obtained under MVP application number 200229, ”Genetics of521
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Figure S1: Comparison of ancestry inference methods. We observe a strong correlation be-
tween RFMix and ADMIXTURE estimates of global African ancestry fraction for African American
individuals in MESA.
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Figure S2: Association between gene expression phenotypes and covariates. We tested for
statistical association between phenotypes of all 4,236 significant genes and 22 covariates, includ-
ing 2 batch covariates (sequencing center and time of exam), sex, race, global and local ancestry,
10 genotype principal components (PCs), and 6 covariates corresponding to a one-hot encoding of
recruitment site. We show the resulting QQ plots of association p-values, demonstrating that expres-
sion phenotypes are significantly associated with sequencing center, time of exam, sex, race, global
and local ancestry, recruitment site, and the first two PCs.
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Figure S3: Principal components analysis of MESA genotypes. A) We computed principal
components from the genotypes of 296 African Americans and 482 European Americans in MESA.
The first genotype PC stratifies the African Americans and the second genotype PC stratifies the
European Americans. B) Within African Americans, the first genotype PC is highly correlated with
African global ancestry fraction.
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Figure S4: Ordinary least squares regression of βAA on βEA for A) gene expression and B) LDL-C.
We represent the 95% CI with the shaded region.
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Figure S5: Estimates of δ from simulations where causal variant effect sizes are allowed to differ
between populations. We simulated ascertainment in both European and African ancestries and
required that the squared correlation between the causal SNP and the tag SNP was either greater
than 0.6 or 0.8.
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Figure S6: Estimates of δ from ten simulations where causal variant effect sizes are identical between
populations.
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Figure S7: Likelihood surface for δ when comparing causal variant effect sizes between two subsets
of European Americans. Maximum likelihood estimates and 95% bootstrap CI are A) 0.008 (0.003,
0.05) for gene expression and B) -0.03 (-0.09, 0.03) for LDL-C. We denote the MLE and 95%
bootstrap CI with the vertical line and shaded region, respectively.
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