

Genetic interactions drive heterogeneity in causal variant effect sizes for gene expression and complex traits

March 16, 2022

Roshni A. Patel,^{*1,14} Shaila A. Musharoff,^{1,2,14} Jeffrey P. Spence,¹ Harold Pimentel,^{3,4} Catherine Tcheandjieu,^{2,5} Hakhamanesh Mostafavi,¹ Nasa Sinnott-Armstrong,^{1,2} Shoa L. Clarke,^{2,5} Courtney J. Smith,¹ VA Million Veteran Program, Peter P. Durda,⁶ Kent D. Taylor,⁷ Russell Tracy,⁶ Yongmei Liu,⁸ Craig W. Johnson,⁹ Francois Aguet,¹⁰ Kristin G. Ardlie,¹⁰ Stacey Gabriel,¹⁰ Josh Smith,¹¹ Deborah A. Nickerson,¹¹ Stephen S. Rich,¹² Jerome I. Rotter,⁷ Philip S. Tsao,^{2,5} Themistocles L. Assimes,^{2,5} Jonathan K. Pritchard^{*1,13}

¹Genetics, Stanford University School of Medicine, Stanford, CA, ²VA Palo Alto Health Care System, Palo Alto, CA, ³Computational Medicine, University of California Los Angeles, Los Angeles, CA, ⁴Human Genetics, University of California Los Angeles, Los Angeles, CA, ⁵Stanford University School of Medicine, Stanford, CA, ⁶The Robert Larner, M.D. College of Medicine at The University of Vermont, Burlington, VT, ⁷Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, ⁸Duke University School of Medicine, Durham, NC, ⁹Biostatistics, University of Washington, Seattle, WA, ¹⁰Broad Institute of MIT and Harvard, Cambridge, MA, ¹¹Genome Sciences, University of Washington, Seattle, WA, ¹²Center for Public Health Genomics, University of Virginia, Charlottesville, VA, ¹³Biology, Stanford University, Stanford, CA

¹⁴ These authors contributed equally to this work.

*Correspondence: rpatel7@stanford.edu, pritch@stanford.edu

¹ Abstract

² Despite the growing number of genome-wide association studies (GWAS), it remains unclear to
³ what extent gene-by-gene and gene-by-environment interactions influence complex traits in
⁴ humans. The magnitude of genetic interactions in complex traits has been difficult to quantify
⁵ because GWAS are generally underpowered to detect individual interactions of small effect. Here,
⁶ we develop a method to test for genetic interactions that aggregates information across all trait-
⁷ associated loci. Specifically, we test whether SNPs in regions of European ancestry shared between
⁸ European American and admixed African American individuals have the same causal effect sizes.
⁹ We hypothesize that in African Americans, the presence of genetic interactions will drive the causal
¹⁰ effect sizes of SNPs in regions of European ancestry to be more similar to those of SNPs in regions
¹¹ of African ancestry. We apply our method to two traits: gene expression in 296 African Americans
¹² and 482 European Americans in the Multi-Ethnic Study of Atherosclerosis (MESA) and low-
¹³ density lipoprotein cholesterol (LDL-C) in 74K African Americans and 296K European Americans
¹⁴ in the Million Veteran Program (MVP). We find significant evidence for genetic interactions in our
¹⁵ analysis of gene expression; for LDL-C, we observe a similar point estimate although this is not
¹⁶ significant, likely due to lower statistical power. These results suggest that gene-by-gene or
¹⁷ gene-by-environment interactions modify the effect sizes of causal variants in human complex traits.

¹⁸ Introduction

¹⁹ Over the last two decades, genome-wide association studies (GWAS) have demonstrated that
²⁰ human complex traits are influenced by many thousands of causal variants, each with small
²¹ additive effects. What remains unclear is the extent to which traits are influenced by interactions
²² between these variants, or between variants and the environment. Despite the dramatic increases in
²³ study size, GWAS are underpowered to detect individual gene-by-gene interactions of small effect.
²⁴ Testing for gene-by-environment interactions is similarly difficult, but with the added complication
²⁵ that the “environment” is notoriously hard to quantify. Thus, even though a handful of large-effect
²⁶ interactions have been identified¹⁻⁶, the overall role of genetic interactions in complex trait
²⁷ architecture is yet to be determined.

²⁸ Here, we test for genetic interactions by assessing whether causal variant effect sizes differ
²⁹ between populations. We use population differences in causal effect sizes as a proxy for genetic
³⁰ interactions because self-reported descriptors of population identity often loosely correlate with
³¹ both genetic variation and environmental factors⁷. For example, in the United States, self-reported

32 race often correlates with environmental exposures such as access to healthcare, due to a historical
33 legacy of structural racism that extends into the present day⁸. This drives substantial
34 environmental differences between populations, and if two populations have sufficiently different
35 environmental backgrounds, then the existence of gene-by-environment interactions can produce
36 modest differences in causal variant effect sizes. The existence of differential gene-by-gene
37 interactions between populations would likewise produce differences in causal variant effect sizes.

38 However, comparing causal variant effect sizes between populations is rife with challenges. The
39 causal variants underlying human complex traits are generally unknown and instead, GWAS
40 typically identify single nucleotide polymorphisms (SNPs) that are statistically associated with the
41 trait due to strong linkage disequilibrium (LD) with the causal variant(s). Due to differences in LD
42 structure, these trait-associated SNPs may not be equally correlated with the same causal variant
43 in two different populations, resulting in different marginal effect sizes. This is especially true if the
44 causal variant is private, or only present in a single population. Thus, although several studies have
45 observed differences between populations in the marginal effect sizes of trait-associated SNPs⁹⁻¹²,
46 this could correspond both to differences in the effect sizes of causal variants themselves and to
47 differences in LD structure.

48 These questions have been addressed further with statistical methods that leverage LD
49 reference panels to account for differences in LD structure between populations^{13,14}. These studies
50 have found modest differences in causal variant effect sizes for both gene expression and complex
51 traits. However, these existing methods are limited by their reliance on accurate LD reference
52 panels and their difficulty in accounting for rare or population-specific causal variants.
53 Furthermore, these methods are not suitable for application to recently admixed populations such
54 as African Americans and Latin Americans due to the complexities of long-range admixture LD.

55 In this paper, we compare the genetic architecture of gene expression and low-density
56 lipoprotein cholesterol (LDL-C) between African Americans and European Americans. Using data
57 from the Multi-Ethnic Study of Atherosclerosis (MESA) and the Million Veteran Program (MVP),
58 we first compare the marginal effect sizes of trait-associated SNPs when estimated from European
59 Americans and from African Americans. We next quantify the contribution of local and global
60 ancestry to phenotypic variance. Lastly, we leverage the multiple ancestries in the genomes of
61 admixed populations to test for the existence of genetic interactions. Admixed African American
62 genomes contain regions of European ancestry that share the same local LD structure as the
63 genomes of European Americans. Within these regions of shared ancestry, we can compare variant
64 effect sizes between populations without bias from differences in LD structure. Specifically, we

65 hypothesize that in the absence of gene-by-gene or gene-by-environment interactions, SNPs will
66 have the same effect sizes in European Americans and regions of European ancestry in African
67 Americans. Conversely, we hypothesize that the presence of genetic interactions will drive the
68 causal effect sizes of SNPs in regions of European ancestry in African Americans to be more similar
69 to those of SNPs in regions of African ancestry.

70 Material and Methods

71 Genotype and phenotype datasets

72 **Multi-Ethnic Study of Atherosclerosis (MESA).** For MESA, we obtained phased whole
73 genome sequencing data and gene expression data in peripheral blood mononuclear cells (PBMCs)
74 from TOPMed Freeze 8. After filtering individuals based on ancestry, as we describe below, the
75 MESA dataset comprised 296 individuals who self-reported race as Black or African American and
76 482 individuals who self-reported race as White. We henceforth use the term “African American”
77 to refer to all individuals who self-report race as Black or African American. Analogously, we use
78 the term “European American” to refer to all individuals who self-report race as White and cluster
79 with individuals of European ancestry in principal components analysis of genotypes.

80 380 of these individuals had gene expression data available at two exams, spaced five years
81 apart. For these individuals, we selected the time of exam to use such that the proportions of
82 certain covariates (sex, time of exam, sequencing center) were approximately balanced between
83 European Americans and African Americans. Briefly, this was done by iterating through this set of
84 individuals ten times and changing the time of exam used for that individual if doing so would
85 increase the similarity of covariate proportions between the two populations.

86 As done previously by¹⁵, gene-level expression quantification was based on the GENCODE 26
87 annotation, collapsed to a single transcript model for each gene using a custom isoform collapsing
88 procedure. Gene-level read counts were obtained with RNA-SeQC v1.1.9¹⁶. We selected genes with
89 expression thresholds of >0.1 TPM in at least 20% of samples and ≥ 6 reads in at least 20% of
90 samples, thresholding separately for European Americans and African Americans in both cases. A
91 total of 10,870 genes passed this filtering step. We log-transformed gene expression measurements
92 and used these transformed phenotypes in all downstream analyses. We selected biallelic SNPs
93 with a MAF > 0.05 and minor allele sample count > 5 in both European Americans and African
94 Americans.

95 Million Veteran Program (MVP). For MVP, we used GRCh37 genotype calls processed and
96 subject to quality control as described in¹⁷. Data were imputed with IMPUTE using the 1000
97 Genomes Phase 3 reference panel^{18,19}. As previously done for MVP¹⁷, the population of each
98 individual (i.e. African American or European American) was determined by HARE²⁰. Using
99 KING coefficients²¹, we removed relatives who were closer than 3rd degree cousins, which left
100 73,788 African American and 296,124 European American individuals. For all analyses, we used
101 the maximum LDL-C measurement for each individual across all time points. In addition, we
102 numerically adjusted LDL-C measurements for statin usage by multiplying measurements by 0.7 if
103 an individual was inferred to be on statin medication. We inferred that individuals were on statin
104 medication if a statin prescription was filled within the length of the prescription plus a buffer of 15
105 days within the LDL-C measurement date.

106 Inferring global and local ancestry

107 We inferred global ancestry for admixed African American individuals with supervised
108 ADMIXTURE using default program parameters²². We used 99 CEU individuals and 108 YRI
109 individuals from 1000 Genomes Phase 3 as our reference populations. We filtered for biallelic SNPs
110 with MAF > 0.05 in both the admixed population and the reference populations, and again filtered
111 for MAF > 0.1 after merging the admixed and reference datasets. We pruned SNPs with an r^2
112 value > 0.1.

113 We inferred local ancestry with RFMix v1.5.4, using no EM iterations and default program
114 parameters²³. We assumed 8 generations since the time of admixture between an African
115 population and a European population²⁴. We again used 99 CEU individuals and 108 YRI
116 individuals from 1000 Genomes Phase 3 as our reference populations. We used biallelic SNPs with
117 MAF > 0.05 in both the admixed population and the reference populations, and removed SNPs
118 with an r^2 value > 0.5.

119 In both datasets, we excluded African Americans with < 0.5 global African ancestry from
120 downstream analyses. We also excluded one European American individual from MESA who did
121 not cluster with individuals of European ancestry in principal components analysis of genotypes.

122 Comparing marginal SNP effect sizes between populations

123 Gene expression (MESA). To identify SNPs affecting expression in *cis*, we filtered for SNPs
124 within 100 kb of the TSS for each gene. We ascertained trait-associated SNPs in a randomly
125 sampled subset of 232 European Americans using ordinary least squares. This regression included

126 ten covariates that were significantly correlated with expression phenotypes: sequencing center;
127 time of exam; sex; genotype PC 2, which captures structure within European Americans; and six
128 covariates corresponding to a one-hot encoding of recruitment site (Figure S2, Figure S3A).

129 For each gene, we focused on the most significant SNP and ascertained significant SNP-gene
130 associations by applying a false discovery rate of 0.01 to correct for multiple testing, as done by¹⁵.
131 All downstream analyses were performed on these significant associations. Furthermore, all
132 downstream analyses excluded the individuals who were used to ascertain trait-associated SNPs.

133 For each significant SNP-gene association, we performed two separate regressions to estimate
134 β_{AA} , the effect size in African Americans, and β_{EA} , the effect size in European Americans,
135 respectively. For each regression, we again included covariates significantly correlated with
136 expression phenotypes. To estimate β_{EA} , we used sequencing center, time of exam, sex, genotype
137 PC 2, and recruitment site as above. To estimate β_{AA} , we used sequencing center, time of exam,
138 sex, recruitment site, and global African ancestry fraction. (We did not include genotype PC 1 as a
139 covariate despite its significant association with expression because this is highly correlated with
140 global African ancestry fraction (Figure S3B).) We estimated β_{EA} in 250 European Americans and
141 randomly sampled an equal number of African Americans to estimate β_{AA} .

142 **LDL-C (MVP).** We ascertained genome-wide significant SNPs in 318,953 UK Biobank White
143 British individuals. After applying genomic filters (MAF ≥ 0.01 , missing genotype rate ≤ 0.05 ,
144 Hardy-Weinberg equilibrium with a cutoff of $p < 1 \times 10^{-50}$), we tested for association with inverse-
145 variance quantile normalized phenotypes using a linear model (-glm) in plink with the covariates
146 age, sex, assessment center, and statin usage. Significant variants ($p < 5 \times 10^{-8}$) were clumped and
147 thinned to leave at most one independent SNP per 0.1 cM²⁵.

148 To estimate effect sizes of these variants in MVP, we extracted variants from the imputed
149 genotype set using 1000 Genomes Phase 3 as our reference panel. We filtered for MAF ≥ 0.003 in
150 European Americans and African Americans, leaving 122 independent SNPs. Our covariates
151 included age, sex, global ancestry, and genotype PC 1, which stratifies European Americans and is
152 the only principal component associated with LDL-C after residualizing on the other covariates.
153 Principal components were calculated on all individuals in the MVP dataset with HARE¹⁷.

154 To estimate effect sizes from the 74K African Americans (β_{AA}), we used linear regression in
155 plink (-glm) and included the covariates above. We likewise randomly sampled an equal number of
156 European Americans and estimated effect sizes (β_{EA}).

157 **Comparison of effect sizes.** We used total least squares (TLS) regression to assess the slope of
158 the relationship between $\hat{\beta}_{AA}$ and $\hat{\beta}_{EA}$. Estimates of SNP effect sizes are statistically noisy, and
159 unlike ordinary least squares, total least squares is robust to uncertainty in the x-axis variable.
160 Because we used the same number of samples to estimate β_{AA} and β_{EA} , their standard errors will
161 be comparable, as is necessary for TLS regression. We created 1000 bootstrap replicates for each
162 trait by sampling with replacement over SNPs and report the 95% confidence interval (CI) of the
163 slope as defined by the 0.025 and 0.975 quantiles.

164 Quantifying role of ancestry in phenotypic variance

165 We constructed a series of phenotypic models and compared the proportion of phenotypic variance
166 explained by each model. We fit each model in a training set comprising 80% of the data (for gene
167 expression, 237 African Americans and 200 European Americans; for LDL-C, 52K African
168 Americans and 52K European Americans). We computed the proportion of variance explained as
169 $1 - \frac{Var(y - \hat{y})}{Var(y)}$ in a test set comprising the remaining 20% of the data (for gene expression, 59
170 African Americans and 50 European Americans; for LDL-C, 22K African Americans and 22K
171 European Americans). This quantity can be interpreted as measuring the decrease in residual
172 variance relative to phenotypic variance. For gene expression, we report the average variance
173 explained across all significant genes.

174 We note that this procedure differs from our previous analysis in two ways. First, we fit the
175 models below by performing a regression on the joint sample of African Americans and European
176 Americans, while previously, we performed a regression in each population separately. Second,
177 though we previously downsampled the number of African Americans in MESA, here we included
178 all 296 African Americans to maximize our power to estimate local ancestry-specific effect sizes. (In
179 addition, because African American genomes contain both African and European ancestry, it is not
180 as useful to downsample the number of African Americans for these analyses.)

181 We first modeled the phenotype y in an individual i with only technical covariates (c). For gene
182 expression, this consisted of sex and batch (sequencing center, time of exam, and recruitment site);
183 for LDL-C, this consisted of age and sex.

$$y_i = c_i \beta_c \quad (1)$$

184 Consecutive models added an indicator variable for race (r), followed by genome-wide descriptors of
185 ancestry (θ). Specifically, θ includes global African ancestry fraction and genotype principal

186 components that stratify European Americans (PC 2 for gene expression, see Figure S3; and PC 1

187 for LDL-C¹⁷).

$$y_i = c_i \beta_c + r_i \beta_r \quad (2)$$

188

$$y_i = c_i \beta_c + r_i \beta_r + \theta_i \beta_\theta \quad (3)$$

189 We next included a local ancestry covariate (γ) that measures the number of haplotypes with
190 African ancestry at the trait-associated SNP. For gene expression, we averaged across all SNP-gene
191 associations to report the variance explained by local ancestry. On the other hand, for LDL-C, we
192 summed across all trait-associated SNPs to report the variance explained.

$$y_i = c_i \beta_c + r_i \beta_r + \theta_i \beta_\theta + \gamma_i \beta_\gamma \quad (4)$$

193 Lastly, we included the genotype at trait-associated SNPs. We modeled the genotype with
194 ancestry-specific effect sizes, given that differences in LD structure produce differences in the
195 marginal effect sizes of trait-associated SNPs. Rather than adding a single term for trait-associated
196 SNPs (e.g. $g_i \beta_g$), we added two terms, $g_{i,A} \beta_A$ and $g_{i,E} \beta_E$. We define $g_{i,A}$ as the number of
197 alternate alleles with African local ancestry and $g_{i,E}$ as the number of alternate alleles with
198 European local ancestry. $g_{i,A}$ and $g_{i,E}$ therefore sum to g_i , the total genotype, and β_A is the effect
199 size in African local ancestry while β_E is the effect size in European local ancestry. Once again, to
200 report the variance explained, we averaged across all SNP-gene associations for gene expression and
201 summed across all trait-associated SNPs for LDL-C.

$$y_i = c_i \beta_c + r_i \beta_r + \theta_i \beta_\theta + \gamma_i \beta_\gamma + g_{i,A} \beta_A + g_{i,E} \beta_E \quad (5)$$

202 Testing for genetic interactions

203 **Overview of model.** We constructed a phenotypic model in which we introduce the parameter δ
204 to measure differences in the marginal effect size of trait-associated SNPs in regions of European
205 ancestry in African Americans compared to European Americans.

206 We extend Equation 5, modeling the phenotype y for a single individual i as follows:

$$y_i = c_i \beta_c + r_i \beta_r + \theta_i \beta_\theta + \gamma_i \beta_\gamma + g_{i,A} \beta_A + g_{i,E} \beta_E + \delta r_i g_{i,E} (\beta_A - \beta_E) \quad (6)$$

207 As described above, the first four terms (c_i , r_i , θ_i , γ_i) are technical covariates; race; global ancestry
208 and principal components; and local ancestry, respectively. The next two terms ($g_{i,A} \beta_A$, $g_{i,E} \beta_E$),

209 model ancestry-specific effect sizes of trait-associated SNPs.

210 In the final term, we introduce the parameter δ , which measures the extent to which marginal
211 effect sizes of SNPs in regions of European ancestry in African Americans differ from those in
212 European Americans. Using the parameter δ , we can indirectly test whether causal variant effect
213 sizes differ between African Americans and European Americans. When δ equals 0, the marginal
214 effect size of a SNP in a region of European ancestry in an African American is equal to β_E ; as δ
215 approaches 1, the marginal effect size approaches β_A . Thus, under the null hypothesis that causal
216 variant effect sizes are identical between populations, δ will be equal to 0. However, if causal
217 variant effect sizes differ between populations because they are modified by the genome and/or
218 environment, δ will be greater than 0. (We note that a value of δ equal to 0 is not evidence for the
219 absence of any genetic interactions; rather, it indicates that genetic interactions do not differ
220 enough between populations to produce differences in causal variant effect sizes.)

221 **Fitting the model.** To fit this model, we began by initializing $\hat{\delta}$ to a random value on the
222 interval $[0, 1]$, which is the most biologically intuitive range of values for δ (see Figure 3A). We next
223 optimized $\hat{\beta} = (\hat{\beta}_c, \hat{\beta}_r, \hat{\beta}_\theta, \hat{\beta}_\gamma, \hat{\beta}_A, \hat{\beta}_E)$ conditional on this value of $\hat{\delta}$, and we then optimized $\hat{\delta}$
224 conditional on $\hat{\beta}$. For both gene expression and LDL-C, we performed this regression marginally on
225 each SNP. In other words, conditional on $\hat{\delta}$, we estimated $\hat{\beta}$ for each SNP independently of the rest.
226 We continued this iterative optimizing with ordinary least squares regression until $\hat{\delta}$ converged (i.e.
227 did not change by $>.0001$). Though $\hat{\delta}$ was initialized on the interval $[0, 1]$, the optimization
228 procedure itself was unconstrained. Additionally, we found that regardless of the initial value of $\hat{\delta}$,
229 our optimization procedure converged to the same value. The optimization method converged
230 quickly for both datasets (22 iterations for gene expression, 18 for LDL-C). For the gene expression
231 data, we estimated one value of δ from all SNP-gene associations to avoid overparameterization.
232 For the LDL-C data, we estimated one value of δ across all trait-associated SNPs. To construct 95%
233 confidence intervals for $\hat{\delta}$, we bootstrapped over SNPs and reported the 0.025 and 0.975 quantiles.
234 (For gene expression, this procedure is equivalent to bootstrapping over genes because each gene is
235 modeled by exactly one SNP.) We concluded that causal variant effect sizes are significantly
236 different if the 95% CI does not include 0. To generate a likelihood surface for δ , we computed the
237 log-likelihood of the data conditional on values of δ ranging from 0 to 1, with a step size of 0.01.

238 **Assessing properties of the estimator $\hat{\delta}$.** We first assessed the bias of our estimator $\hat{\delta}$ with
239 simulations designed to emulate our analyses of gene expression in MESA. We simulated genotypes
240 and phenotypes for 100 independent loci in 320 admixed African Americans and 500 Europeans.

241 For each African American, we simulated global African ancestry fraction from a beta distribution
242 ($\alpha = 7.9, \beta = 2.1$) resembling the empirical distribution of global ancestry. For each locus, we
243 simulated local ancestry conditional on global ancestry from a binomial distribution.

244 We then simulated the respective numbers of African and European genomes using the two-
245 population out-of-Africa model as implemented in stdpopsim^{26–29}. For each locus, we simulated 1%
246 of chromosome 22 and filtered for SNPs that had $MAF > 0.05$ in both African and European
247 genomes. To mimic ascertainment in a European population, we held out genomes for 250
248 European individuals; to mimic ascertainment in an African population, we held out genomes for
249 two-thirds of all individuals who had two copies of African ancestry (i.e. $\gamma = 2$). We simulated
250 causal and tag SNPs by jointly sampling at random from the set of all pairs of SNPs with r^2
251 greater than a specified threshold in the ascertainment individuals. We conducted simulations with
252 r^2 thresholds of 0.6 and 0.8.

253 We simulated causal variant effect sizes from a bivariate normal distribution with a correlation
254 of 0.85, which allowed causal variant effect sizes in African and European ancestries to differ (e.g.
255 due to gene-by-gene or gene-by-environment interactions). We simulated phenotypes from causal
256 SNP genotypes using the generative model we specified in Equation 6, ignoring the role of
257 technical, race, and ancestry covariates. For simulations in which causal variant effect sizes differ
258 between populations, we simulated five values of δ ranging between 0 and 0.8. We estimated δ by
259 applying our iterative optimization procedure to the simulated phenotypes and tag SNP genotypes
260 for all 100 loci. For each combination of hyperparameters (ascertainment population, r^2 threshold,
261 and simulated value of δ), we performed 10 simulations.

262 Lastly, we assessed the behavior of our estimator $\hat{\delta}$ in the case where causal variant effect sizes
263 are identical between populations. In principle, if the true marginal effect sizes β_A and β_E are
264 identical, then the parameter δ is not identifiable. In practice, we do not expect the marginal effect
265 sizes β_A and β_E to be identical due to differences in LD structure between African and European
266 ancestries. Nevertheless, we investigated this further in both simulations and empirical data. In
267 simulations, we used a similar framework to that described above, but we used a univariate normal
268 distribution to simulate causal variant effect sizes that were identical between populations. In
269 empirical data, we modified our model such that we could use δ to compare effect sizes between two
270 randomly sampled, independent subsets of European Americans. On average, individuals in these
271 two subsets have the same race, global ancestry, local ancestry, and environment. Thus, we expect
272 that causal variant effect sizes are identical between subsets even in the presence of gene-by-gene or
273 gene-by-environment interactions. To modify our model, we first excluded any African Americans

274 with European ancestry at trait-associated SNPs. This ensured that β_E was estimated only from
275 European Americans at trait-associated SNPs, and that β_A was estimated only from African
276 Americans with African ancestry on both haplotypes at trait-associated SNPs. Next, we assigned a
277 randomly sampled subset of the European Americans as a validation set. For gene expression, this
278 was 100 individuals, and for LDL-C, this was 74K individuals. We then replaced the race indicator
279 in the last term of the model with a validation set indicator. With this particular modification of
280 the model, our estimator $\hat{\delta}$ tests whether trait-associated SNPs have the same effect size in two
281 randomly sampled, independent subsets of European Americans. If δ is estimated to be nonzero
282 between these two subsets of European Americans, this would indicate that our estimator has
283 pathological behavior in the case where causal effect sizes are identical between populations.

284 Results

285 We performed analyses for gene expression and LDL-C, both of which are driven by a combination
286 of genetic factors and environmental factors. We analyzed gene expression using MESA, a dataset
287 with whole genome sequencing and bulk RNA-Seq in peripheral blood mononuclear cells for 296
288 African Americans and 482 European Americans. We analyzed LDL-C using MVP, a dataset with
289 dense SNP genotyping and LDL-C measurements for 74K African Americans and 296K European
290 Americans. Of existing human genetic datasets, MESA and MVP have some of the largest cohorts
291 of admixed individuals for their respective phenotypes.

292 **Inferring global and local ancestry.** We inferred global and local ancestry for the African
293 American individuals in MESA and MVP. In both cases, we modeled African Americans as a two-
294 way admixture between African and European populations that occurred 8 generations ago²⁴. We
295 estimated global ancestry using supervised ADMIXTURE with 1000 Genomes populations (CEU
296 as European and YRI as African) as our reference populations^{18,22}. The average global African
297 ancestry of African American individuals is 0.80 in MESA and 0.82 in MVP, concordant with
298 previous estimates from similar populations³⁰ (Figure 1A). We performed local ancestry inference
299 with RFMix using the same 1000 Genomes reference populations²³. Global ancestry fractions from
300 ADMIXTURE are highly correlated with those implied by RFMix (MESA $\rho = 0.997$, MVP $\rho =$
301 0.98) (Figure S1). As expected based on their admixture history, the local ancestry of African
302 American individuals alternates between blocks of African and European ancestry along the
303 genome and contains relatively large European blocks (mean length is 15 Mb in MESA, 14 Mb in
304 MVP) (Figure 1B).

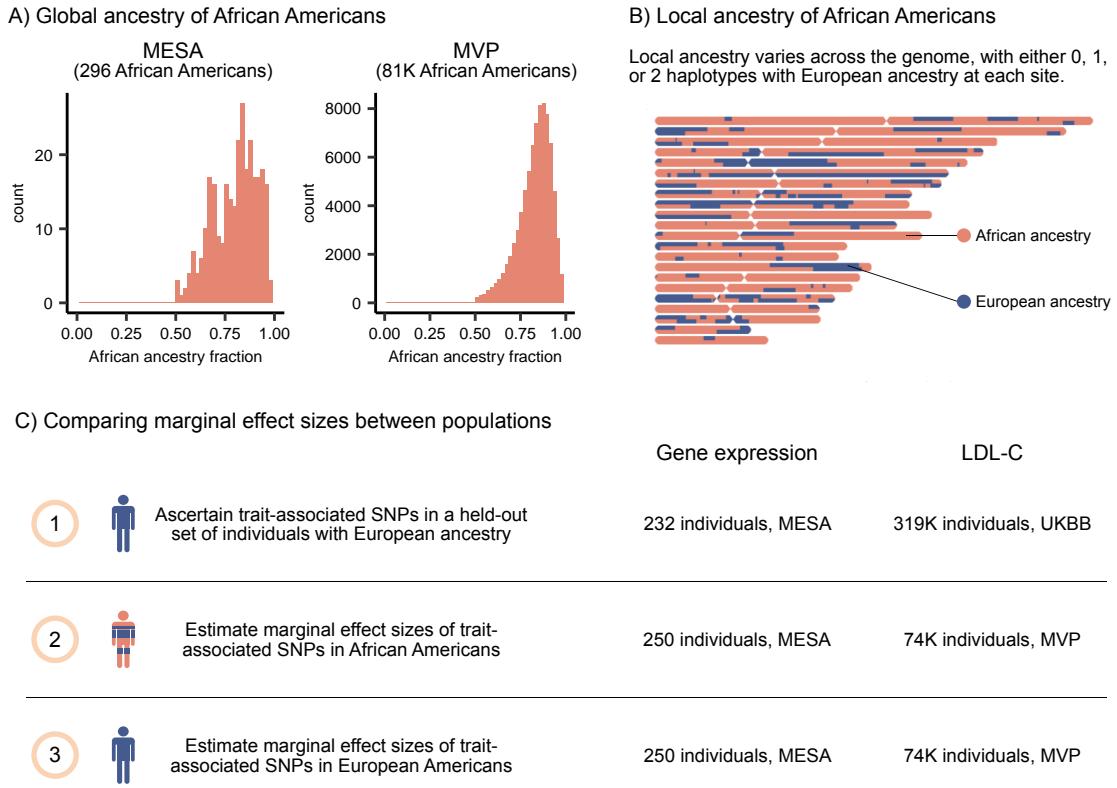


Figure 1: Schematic of the analysis pipeline. **A)** Global ancestry of African Americans is predominantly African, with an average global African ancestry fraction of 0.80 in MESA and 0.82 in MVP. **B)** Local ancestry for one sample individual in MESA. Individuals have either 0, 1, or 2 haplotypes with European ancestry at each position. **C)** We compare marginal effect sizes of SNPs between African Americans and European Americans.

305 **Comparing marginal SNP effect sizes between populations.** We first sought to compare
306 marginal effect sizes of trait-associated SNPs when estimated from European Americans and from
307 African Americans (Figure 1C). We expect that marginal effect sizes of trait-associated SNPs will
308 differ between the two populations due to known differences in LD structure between African and
309 European ancestries, as well as potential differences in gene-by-gene or gene-by-environment
310 interactions between the populations. However, the magnitude of this difference in marginal effect
311 sizes is unclear. The observed magnitude of differences may be inflated by sampling error,
312 particularly if one population has a small sample size. Additionally, effect sizes are usually largest
313 in a discovery sample due to Winner's Curse, which further exacerbates differences between
314 discovery and replication datasets. To minimize these biases, we ascertained trait-associated SNPs
315 in a held-out set of individuals and compared effect sizes in an equal number of African Americans
316 and European Americans (Fig 1C).

317 We first log-transformed phenotype measurements for variance stabilization. We did not
318 perform quantile normalization given that phenotypic variance might differ between populations³¹.
319 We ascertained unlinked, trait-associated SNPs in individuals of European ancestry. For gene
320 expression, we restricted our analyses to putative *cis*-acting variants (i.e. within 100 kb of TSS)
321 because *cis*-acting variants have stronger effects than *trans*-acting variants and are more easily
322 detected in modest sample sizes^{15,32}. In the event that there were multiple SNPs associated with a
323 gene, we chose the most significant SNP for downstream analyses¹⁵. We ascertained trait-
324 associated SNPs (false discovery rate < 0.01) in a held-out subset of 232 European Americans in
325 MESA, which resulted in 4,236 SNP-gene associations. For LDL-C, we ascertained trait-associated
326 SNPs ($p < 5 \times 10^{-8}$) in 318,953 UK Biobank (UKBB) White British individuals, and clumped and
327 thinned them, which resulted in 122 trait-associated SNPs. We performed all subsequent analyses
328 on these trait-associated SNPs.

329 To compare marginal effect sizes between populations, we estimated the effect sizes of trait-
330 associated SNPs separately in African Americans (β_{AA}) and European Americans (β_{EA}). For gene
331 expression, β_{AA} and β_{EA} were each estimated from 250 individuals. For LDL-C, β_{AA} and β_{EA}
332 were each estimated from 74K individuals. For each trait, we compared marginal effect sizes
333 between the two populations by regressing effect sizes estimated from African Americans ($\hat{\beta}_{AA}$) on
334 effect sizes estimated from European Americans ($\hat{\beta}_{EA}$) (Figure 2). We used total least squares
335 (TLS) to perform the regression because it is robust to statistical noise in the independent variable
336 ($\hat{\beta}_{EA}$), while ordinary least squares is not.

337 For gene expression, effect sizes estimated from African Americans are significantly smaller in

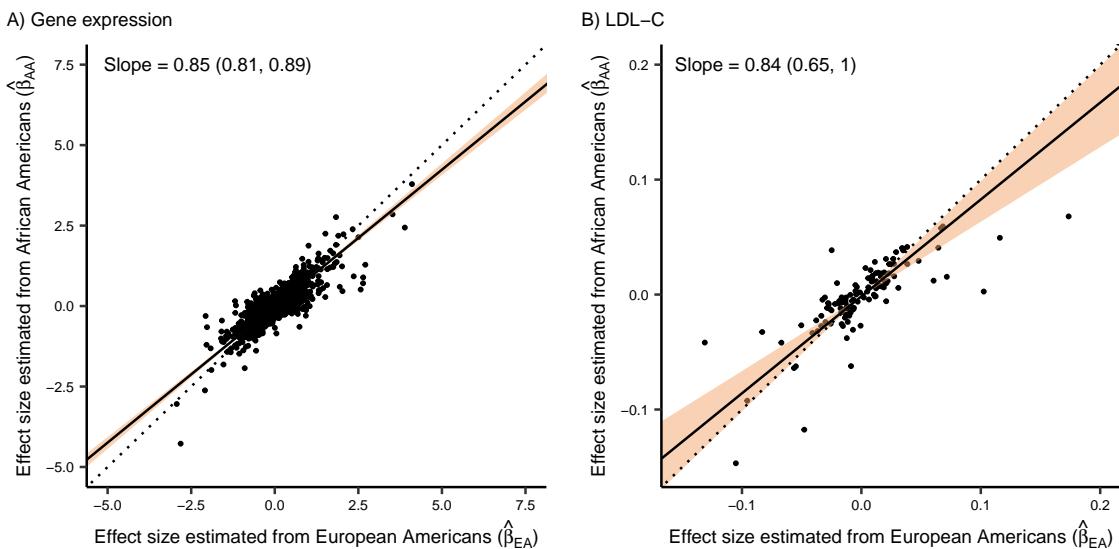


Figure 2: Comparing marginal SNP effect sizes between populations. We estimated effect sizes of trait-associated SNPs and regressed the effect size estimated from African Americans on the effect size estimated from European Americans. We represent the 95% bootstrap CI with the shaded region. Effect sizes estimated from African Americans are **A)** significantly smaller in magnitude than the corresponding effect sizes estimated from European Americans for gene expression and **B)** smaller but not significantly so for LDL-C.

338 magnitude than the corresponding effect sizes estimated from European Americans, with a slope of
 339 0.85 (95% CI of 0.81-0.89) (Figure 2). For LDL-C, we similarly observe a slope of 0.84, but this is
 340 not significantly different from 1 (95% CI of 0.65-1.01), likely due to the modest number of SNPs
 341 analyzed for this trait. Our observation that marginal effect sizes estimated from African
 342 Americans are smaller in magnitude can be at least partially explained by our ascertainment of
 343 trait-associated SNPs in individuals of European ancestry. Blocks of LD structure are smaller in
 344 populations of African ancestry than in populations of European ancestry, and the African
 345 Americans in MESA and MVP have a mean African global ancestry of approximately 80%. Thus,
 346 the correlation between causal variants and trait-associated SNPs ascertained in European
 347 populations will generally be weaker in African Americans than in European Americans, meaning
 348 that marginal effect sizes estimated from African Americans will have a smaller magnitude.
 349 Potential differences in gene-by-gene and gene-by-environment interactions between populations
 350 could also contribute to the observed differences in marginal effect sizes, but are unlikely to
 351 produce such a systematic shift in the magnitudes of effect sizes.

352 **Quantifying role of ancestry in phenotypic variance.** Given that African Americans are
 353 admixed with both African and European ancestries, we next sought to assess the contribution of

354 global and local ancestry to phenotypic variation. We quantified the contribution of both terms to
355 phenotypic variation by constructing a series of phenotypic models and computing the amount of
356 variance explained by each model. We fit each model to roughly 80% of our data allocated as a
357 training set and computed the proportion of phenotypic variance explained by the model in a test
358 set using the remaining 20% of our data. For gene expression, we report the average phenotypic
359 variance explained across all genes.

360 We constructed five phenotypic models in total, where each model has an increasing number of
361 terms relative to its predecessor. Our first phenotypic model (Table 1; Equation 1) included only
362 technical covariates (sex and batch for gene expression; sex and age for LDL-C) and explains
363 18.41% of phenotypic variance for gene expression and 0.11% of phenotypic variance for LDL-C.
364 Most of the variance explained by these covariates for gene expression is due to batch effects, as is
365 common for RNA-Seq assays. We next added an indicator variable for race, which allows for race-
366 specific phenotypic intercepts and can capture trait-relevant differences in environment between
367 African American and European American populations³³ (Equation 2). Compared to a model that
368 only includes technical covariates, including race explains an additional 1.26% of variance in gene
369 expression and 0.05% of variance in LDL-C.

370 We next added global African ancestry fraction and genotype principal components to the
371 model (Equation 3). These covariates can capture additional population structure: global African
372 ancestry fraction stratifies African Americans, while the principal components we include stratify
373 European Americans. In the context of gene expression, global ancestry and genotype principal
374 components are known to be relevant for trait variation, potentially because they capture the effect
375 of *trans* genetic variation on expression^{2,1,33}. Surprisingly, we find that these terms have a small
376 contribution to the overall phenotypic variance of both gene expression and LDL-C.

377 We next considered the importance of a local ancestry covariate that measures the number of
378 haplotypes with African ancestry at each trait-associated SNP (Equation 4). Local ancestry could
379 implicitly capture the effect of local genetic variation from SNPs that are not explicitly modeled; in
380 the context of gene expression, these unmodeled, trait-associated SNPs are likely *cis*-acting
381 variants. However, we find that including local ancestry does not explain much additional variance
382 in either gene expression or LDL-C.

383 Lastly, we considered the role of trait-associated SNPs (Equation 5). Differences in LD
384 structure between African and European ancestries result in different marginal effect sizes at trait-
385 associated SNPs, as we see in Figure 2. Consequently, we modeled the genotype at trait-associated
386 SNPs with ancestry-specific effect sizes. We find that trait-associated SNPs contribute considerably

Term added	Model	Additional variance explained (%)	
		Gene expression	LDL-C
(1) Technical covariates	$y_i = c_i \beta_c$	18.41	0.11
(2) Race	$y_i = c_i \beta_c + r_i \beta_r$	1.26	0.05
(3) Global ancestry & PCs	$y_i = c_i \beta_c + r_i \beta_r + \theta_i \beta_\theta$	0.00	0.01
(4) Local ancestry	$y_i = c_i \beta_c + r_i \beta_r + \theta_i \beta_\theta + \gamma_i \beta_\gamma$	0.03	-0.04
(5) Genotype with ancestry-specific effect sizes	$y_i = c_i \beta_c + r_i \beta_r + \theta_i \beta_\theta + \gamma_i \beta_\gamma + g_{i,A} \beta_A + g_{i,E} \beta_E$	3.62	2.12

Table 1: **Quantifying role of ancestry in phenotypic variance.** We constructed a series of linear models and computed the percentage of phenotypic variance explained. For both traits, we report the increase in the percentage of phenotypic variance explained by each model; for gene expression, we report the average increase across all genes. The variables in the models are defined as follows: c_i is a vector of technical covariates; r_i is a race indicator variable; θ_i is a vector of global African ancestry fraction and principal components; γ_i is a local ancestry covariate that measures the number of haplotypes with African ancestry at trait-associated SNPs; $g_{i,A}$ is the number of alternate alleles with African local ancestry and $g_{i,E}$ is the number of alternate alleles with European local ancestry.

387 to trait variation, explaining an additional 3.62% of variance in gene expression and 2.12% of
 388 variance in LDL-C. Thus, we find that the genotype at trait-associated SNPs contributes
 389 substantially more to phenotypic variance than either local or global ancestry.

390 **Testing for genetic interactions.** Finally, we looked for evidence of genetic interactions by
 391 testing whether causal variant effect sizes differ between populations. This is difficult to do with
 392 standard approaches due to the way in which LD structure can bias comparisons of marginal effect
 393 sizes. We therefore developed a model that leverages the multiple ancestries within admixed
 394 genomes to indirectly test whether causal variant effect sizes differ between populations.
 395 Specifically, we test whether a genetic variant in a region of European ancestry has the same
 396 marginal effect size in African Americans and European Americans. We assume that the regions of
 397 European ancestry in the African Americans and European Americans in our datasets are virtually
 398 identical with respect to LD structure, which means that differences in marginal effect sizes should
 399 reflect differences in causal effect sizes.

400 This assumption is based on the specific demographic history of African Americans and
 401 Europeans. Given the relatively short time since admixture in African Americans (approximately 8
 402 generations), we expect that regions of European ancestry in modern-day African Americans
 403 feature the same LD structure as the European source population contributing to the admixture
 404 event²⁴. Moreover, others have previously demonstrated that there is low Fst and high correlation
 405 of allele frequencies between various European populations³⁴⁻³⁶. Empirically, we also find that
 406 nearly all (95%) SNPs that are tightly linked ($r^2 > 0.8$) in European Americans in MESA are also

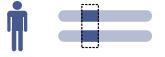
407 tightly linked in regions of European ancestry in African Americans in MESA. (In contrast, only
408 65% of SNPs that are tightly linked in European Americans are tightly linked in regions of African
409 ancestry in African Americans.) Thus, we have extensive support for the assumption that the LD
410 structure between trait-associated SNPs and causal variants is similar in European Americans and
411 regions of European ancestry in African Americans.

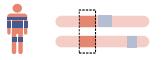
412 Then, under the null hypothesis that genetic interactions do not impact causal variant effect
413 sizes, causal variants will have an identical effect size in all populations, and trait-associated SNPs
414 in regions of European ancestry will have the same marginal effect size in African Americans and
415 European Americans. However, if genetic interactions drive differences in causal variant effect sizes
416 between populations, trait-associated SNPs in regions of European ancestry will have different
417 marginal effect sizes in African Americans and European Americans. Specifically, we hypothesize
418 that in African Americans, the presence of genetic interactions will drive the marginal effect sizes of
419 SNPs in regions of European ancestry to be more similar to those of SNPs in regions of African
420 ancestry. As we noted previously, without accounting for LD structure, we would expect marginal
421 effect sizes of trait-associated SNPs to differ between populations regardless of whether causal
422 variant effect sizes do (i.e. regardless of whether genetic interactions exist). However, because we
423 focus on regions of shared European ancestry in two different populations, our comparison of
424 marginal effect sizes is not biased by differences in LD structure, nor by the possibility of private
425 causal variants in European populations.

426 We test this hypothesis by developing a model that uses the parameter δ to measure the extent
427 to which marginal effect sizes of SNPs in regions of European ancestry in African Americans
428 deviate from those in European Americans (see Methods, Equation 6). Values of δ greater than 0
429 indicate that SNPs in regions of European ancestry in African Americans and European Americans
430 have different marginal effect sizes. In addition, values of δ greater than 0 indicate that SNPs in
431 regions of European ancestry in African Americans have effect sizes more similar to SNPs in
432 regions of African ancestry in African Americans. Thus, values of δ greater than 0 provide evidence
433 for a difference in causal variant effect sizes between populations.

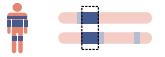
434 For both traits, we fit this model to the trait-associated SNPs we previously ascertained. We
435 expect that estimates of δ will be noisy at individual SNPs, so for each trait, we estimated a single
436 shared value of δ across all SNPs. This results in one value of δ for gene expression, estimated from
437 all SNP-gene associations, and one value for LDL-C, estimated from all LDL-associated SNPs.
438 Because this model is non-linear, we iteratively optimized δ and all other coefficients,
439 $\beta = (\beta_c, \beta_r, \beta_\theta, \beta_\gamma, \beta_A, \beta_E)$ with ordinary least squares until convergence. To construct a confidence

A) Because LD structure differs between ancestries, we model SNPs with different marginal effect sizes for European and African local ancestry, β_E and β_A .

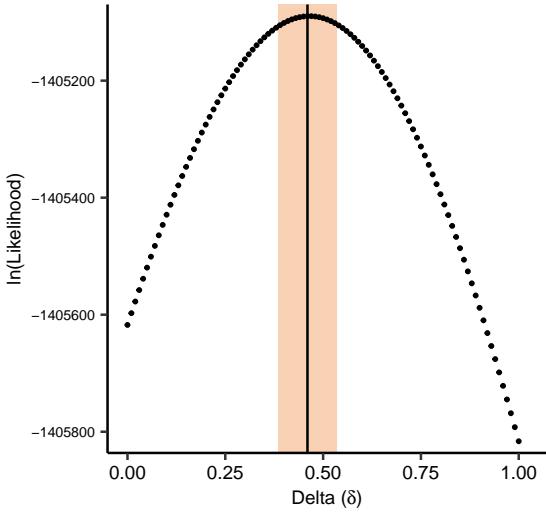
 $y_i = g_i \beta_E$

 $y_i = g_i \beta_A$

Suppose that an admixed African American has a region of local European ancestry at this SNP. Is the marginal effect size of the SNP determined strictly by the local European ancestry or modified by gene-by-gene and gene-by-environment interactions?

 $y_i = ?$

B) Gene expression



We model the marginal effect size of SNPs in regions of European ancestry in African Americans as

$$\beta_E + \delta(\beta_A - \beta_E)$$

where δ ranges from 0 to 1. As δ increases, evidence for a difference in causal variant effect sizes across populations increases.

$$\begin{aligned} \delta = 0 & \quad y_i = g_i \beta_E \\ 0 < \delta < 1 & \quad y_i = g_i(\beta_E + \delta(\beta_A - \beta_E)) \\ \delta = 1 & \quad y_i = g_i \beta_A \end{aligned}$$

C) LDL-C



Figure 3: **Testing for genetic interactions.** **A)** We looked for evidence of genetic interactions by testing for differences in causal variant effect sizes between African Americans and European Americans. The parameter δ measures the extent to which the marginal effect sizes of SNPs in regions of European ancestry in African Americans differ from those in European Americans. **B, C)** Likelihood surface for δ . Maximum likelihood estimates and 95% bootstrap CI are 0.47 (0.39, 0.53) for gene expression and 0.46 (-0.06, 0.87) for LDL-C. We denote the MLE and 95% bootstrap CI with the vertical line and shaded region, respectively.

440 interval for $\hat{\delta}$, we bootstrapped over SNPs.

441 We first assessed the bias of our estimator $\hat{\delta}$. Using a standard demographic model, we
442 simulated genotypes for admixed African Americans and Europeans. In order to simulate the LD
443 structure present in our analyses of real data, we simulated phenotypes from causal SNP genotypes
444 but estimated δ from tag SNP genotypes in simulations. We find that our estimates $\hat{\delta}$ are well-
445 correlated with the simulated values of δ regardless of ascertainment population (Figure S5). We
446 next assessed the performance of our estimator in the case where causal effect sizes are identical
447 between populations. We find that even when causal effect sizes are simulated to be identical
448 between populations, the marginal effect sizes at trait-associated SNPs differ enough that our
449 model remains identifiable and we estimate values of δ close to 0 (Figure S6). We additionally
450 investigate this in empirical data by estimating δ from two subsets of European Americans between
451 which we expect causal effect sizes to be identical. For both gene expression and LDL-C, we
452 estimate values of δ close to 0, demonstrating that our estimator $\hat{\delta}$ has the desired behavior when
453 causal effect sizes are identical between populations (Figure S7).

454 Finally, we used our model to test whether causal variants have the same effect size in African
455 Americans and European Americans. For gene expression, $\hat{\delta}$ is significantly different from zero,
456 with a maximum likelihood estimate (MLE) of 0.47 and a 95% CI of (0.39, 0.53) (Figure 3B). For
457 LDL-C, we estimate a similar MLE of 0.46 with a 95% CI of (-0.06, 0.87) (Figure 3C). Moreover,
458 we find that the term containing δ contributes modestly to phenotypic variance: 0.01% for gene
459 expression, 0.01% LDL-C. Thus, our results indicate that SNPs in regions of European ancestry in
460 African Americans and European Americans have different marginal effect sizes, suggesting that
461 causal variant effect sizes differ between populations because they are modified by the genome or
462 environment, providing evidence for gene-by-gene or gene-by-environment interactions.

463 Discussion

464 We developed a model in which we introduce the parameter δ to test for the existence of genetic
465 interactions. Specifically, we leveraged regions of European ancestry shared between African
466 Americans and European Americans to compare marginal effect sizes of trait-associated SNPs in a
467 manner unbiased by LD structure. We applied our model to two traits, gene expression in MESA
468 and LDL-C in MVP. For gene expression, we observe that $\hat{\delta}$ is significantly different from zero,
469 implying that causal variant effect sizes differ between African Americans and European
470 Americans. For LDL-C, we obtain a MLE for δ that is similar to that from gene expression but not

471 significantly different from zero. These observed differences in causal variant effect sizes between
472 populations must be due to unmodeled gene-by-gene or gene-by-environment interactions. Our
473 observation that causal variant effect sizes differ between populations is also relevant to previous
474 work on quantifying cross-population genetic correlations^{13,14}. There is no straightforward
475 analytical relationship between our parameter δ and genetic correlation, but our results are
476 intuitively consistent with a cross-population genetic correlation less than one.

477 Though we observe that causal variant effect sizes significantly differ between populations, we
478 also find that the inclusion of the δ term in the model does not substantially increase the amount of
479 phenotypic variance explained. This apparent discrepancy can be resolved by noting that we
480 evaluate model performance on the full dataset of African Americans and European Americans, but
481 the δ term will only improve the modeling of effect sizes in regions of European ancestry in African
482 Americans, which only represents about 10% of the full dataset.

483 Our results have implications for modeling complex trait phenotypes with polygenic scores
484 (PGS). We find that trait-associated SNPs ascertained in Europeans have attenuated effect sizes in
485 African Americans, which is consistent with European-ascertained SNPs tagging causal variants
486 poorly in African ancestry. Thus, our findings corroborate earlier work demonstrating that
487 differences in LD structure contribute to poor PGS portability, reiterating that a PGS will perform
488 best when constructed from a population with similar LD structure^{12,37-40}. Moreover, our findings
489 imply the existence of genetic interactions, which challenges the assumption of additivity made by
490 the statistical genetic models underpinning PGS. This suggests that genetic interactions could
491 contribute to poor PGS portability, though it remains unclear to what extent they may do so.

492 Future directions include applying our model to additional traits. The larger confidence interval
493 we observe for LDL-C is likely due to differences in statistical power between the two traits.
494 Though we used significantly associated SNPs for both traits, many fewer SNPs were used in LDL-
495 C analyses (122 SNPs) than in gene expression analyses (4,236 SNPs). Moreover, trait-associated
496 SNPs were ascertained within the same dataset (MESA) for gene expression but were ascertained
497 from an external dataset (UK Biobank) for LDL-C. This should not bias the estimation of δ but
498 may mean that trait-associated SNPs capture a larger proportion of phenotypic variance for gene
499 expression relative to LDL-C. Thus, by applying our model to additional traits, such as those with
500 thousands of associated SNPs, we could gain further insights into the role of genetic interactions in
501 complex traits. Another area of investigation includes adapting our model to understand how the
502 magnitude of genetic interactions varies across SNPs or individuals. We only estimate one
503 parameter δ from all trait-associated SNPs in order to maximize power, but by understanding how

504 δ varies with certain functional genomic properties of SNPs or with individuals' ancestry, we could
505 begin to untangle the contributions of gene-by-gene versus gene-by-environment interactions.

506 In summary, we find evidence for genetic interactions by testing for differences in causal variant
507 effect sizes between populations. This analysis is motivated by the assumption that the African
508 American and European American individuals in our datasets have sufficiently different genetic and
509 environmental backgrounds such that the existence of gene-by-gene or gene-by-environment
510 interactions will produce modest differences in causal variant effect sizes. However, we reiterate
511 others' findings that there is a great deal of genetic and environmental heterogeneity within human
512 populations^{41,42,40}. Thus, it is worth noting that if causal variant effect sizes can be modified by
513 gene-by-gene or gene-by-environment interactions, it follows that causal variant effect sizes will
514 differ not only between populations, but also between individuals within a population. Ultimately,
515 our results give insight into the importance of genetic interactions in human complex traits.

516 **Ethics**

517 Human subjects: This research has been conducted using the Multi-Ethnic Study of Atherosclerosis
518 (MESA) dataset, the Million Veteran Program (MVP) dataset, and the UK Biobank dataset. The
519 MESA dataset was obtained under TOPMed application number 10194, "Investigating cross-
520 population portability of variant effect sizes". All MESA participants provided written informed
521 consent. The MVP dataset was obtained under MVP application number 200229, "Genetics of
522 Cardiometabolic Diseases in the VA population". All MVP participants provided written informed
523 consent, and the study protocol was approved by the Veterans Affairs Central Institutional Review
524 Board. The UK Biobank dataset was obtained under application number 24983, "Generating
525 effective therapeutic hypotheses from genomic and hospital linkage data". All participants of UK
526 Biobank provided written informed consent.

527 **Data and Code Availability**

528 The code generated during this study is available on GitHub
529 (<https://github.com/roshnipatel/LocalAncestry>; <https://github.com/roshnipatel/eQTLs>). The
530 Multi-Ethnic Study of Atherosclerosis (MESA) and the Million Veteran Program (MVP) datasets
531 are available via dbGAP with study accessions phs000209.v13.p3 and phs001672.v6.p1, respectively.

532 **Declaration of Interests**

533 The authors declare no competing interests.

534 **Acknowledgments**

535 We thank Matthew Aguirre, Margaret Antonio, Nicole Ersaro, Nicole Gay, Arbel Harpak,
536 Kangcheng Hou, Stephen Montgomery, Bogdan Pasaniuc, Molly Przeworski, and additional
537 members of the Pritchard lab for helpful comments and/or technical advice on this project.
538 Research reported in this publication was supported by the National Center For Advancing
539 Translational Sciences of the National Institutes of Health under Award Number UL1TR003142.
540 The content is solely the responsibility of the authors and does not necessarily represent the official
541 views of the National Institutes of Health. This work was supported by NIH grants R01HG008140,
542 U01HG009431, R01HL142015, and R01HG011432. Molecular data for the Trans-Omics in Precision

543 Medicine (TOPMed) program was supported by the National Heart, Lung and Blood Institute
544 (NHLBI). Multi-Ethnic Study of Atherosclerosis (MESA)" (phs001416.v1.p1) was performed at the
545 Broad Institute of MIT and Harvard (3U54HG003067-13S1). Centralized read mapping and
546 genotype calling, along with variant quality metrics and filtering were provided by the TOPMed
547 Informatics Research Center (3R01HL-117626-02S1, contract HHSN268201800002I) (Broad RNA
548 Seq, Proteomics HHSN268201600034I, UW RNA Seq HHSN268201600032I, USC DNA Methylation
549 HHSN268201600034I, Broad Metabolomics HHSN268201600038I). Phenotype harmonization, data
550 management, sample-identity QC, and general study coordination, were provided by the TOPMed
551 Data Coordinating Center (3R01HL-120393; U01HL-120393; contract HHSN268180001I). The
552 MESA project is conducted and supported by the National Heart, Lung, and Blood Institute
553 (NHLBI) in collaboration with MESA investigators. Support for MESA is provided by contracts
554 75N92020D00001, HHSN268201500003I, N01-HC-95159, 75N92020D00005, N01-HC-95160,
555 75N92020D00002, N01-HC-95161, 75N92020D00003, N01-HC-95162, 75N92020D00006, N01-HC-
556 95163, 75N92020D00004, N01-HC-95164, 75N92020D00007, N01-HC-95165, N01-HC-95166,
557 N01-HC-95167, N01-HC-95168, N01-HC-95169, UL1-TR-000040, UL1-TR-001079, UL1-TR-001420.
558 Also supported in part by the National Center for Advancing Translational Sciences, CTSI grant
559 UL1TR001881, and the National Institute of Diabetes and Digestive and Kidney Disease Diabetes
560 Research Center (DRC) grant DK063491 to the Southern California Diabetes Endocrinology
561 Research Center. Infrastructure for the CHARGE Consortium is supported in part by the National
562 Heart, Lung, and Blood Institute (NHLBI) grant R01HL105756. This research is based on data
563 from the Million Veteran Program, Office of Research and Development, Veterans Health
564 Administration, and was supported by award I01BX003362. This publication does not represent
565 the views of the Department of Veteran Affairs or the United States Government.

⁵⁶⁶ **Supplementary Items**

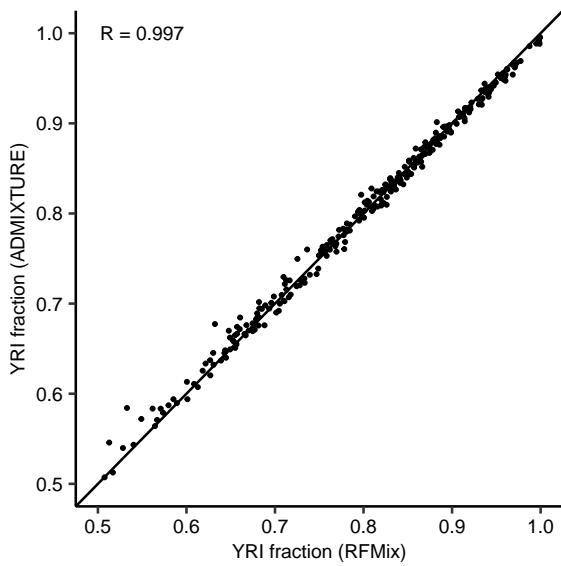


Figure S1: **Comparison of ancestry inference methods.** We observe a strong correlation between RFMix and ADMIXTURE estimates of global African ancestry fraction for African American individuals in MESA.

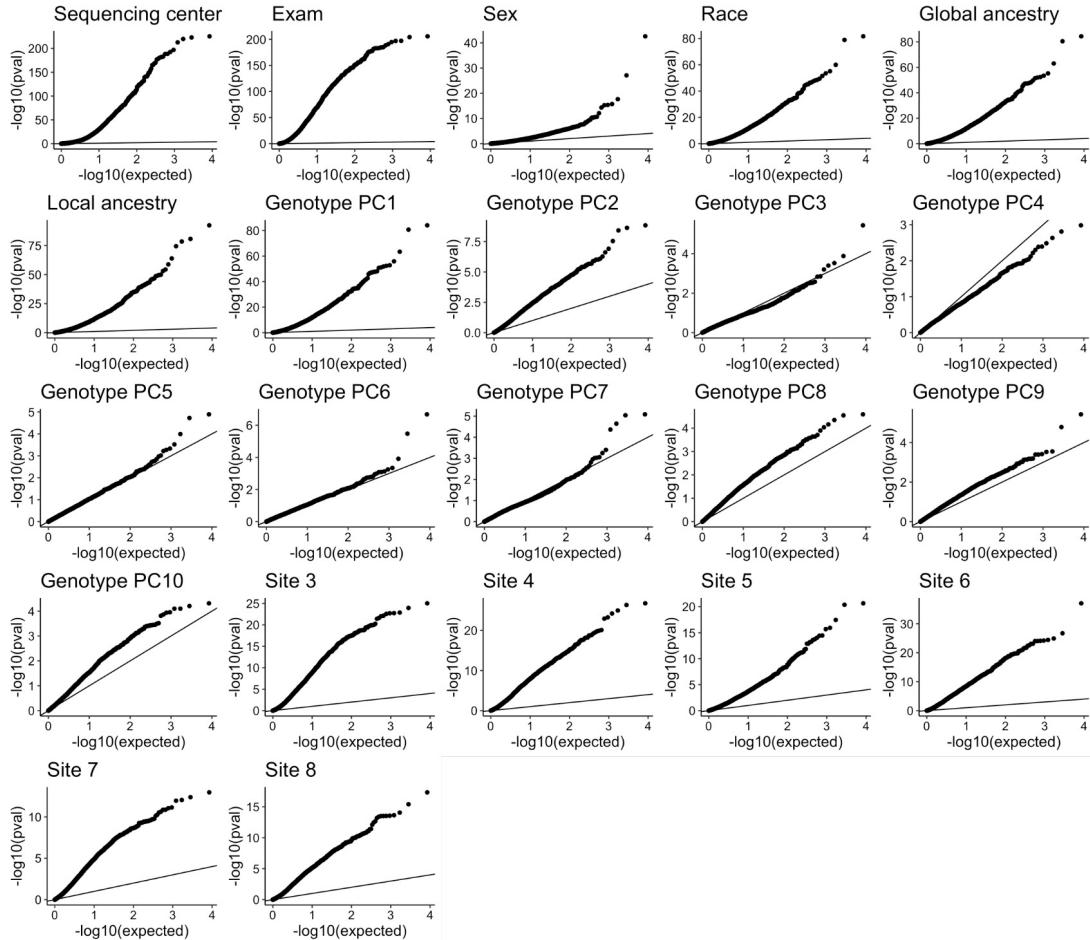


Figure S2: Association between gene expression phenotypes and covariates. We tested for statistical association between phenotypes of all 4,236 significant genes and 22 covariates, including 2 batch covariates (sequencing center and time of exam), sex, race, global and local ancestry, 10 genotype principal components (PCs), and 6 covariates corresponding to a one-hot encoding of recruitment site. We show the resulting QQ plots of association p-values, demonstrating that expression phenotypes are significantly associated with sequencing center, time of exam, sex, race, global and local ancestry, recruitment site, and the first two PCs.

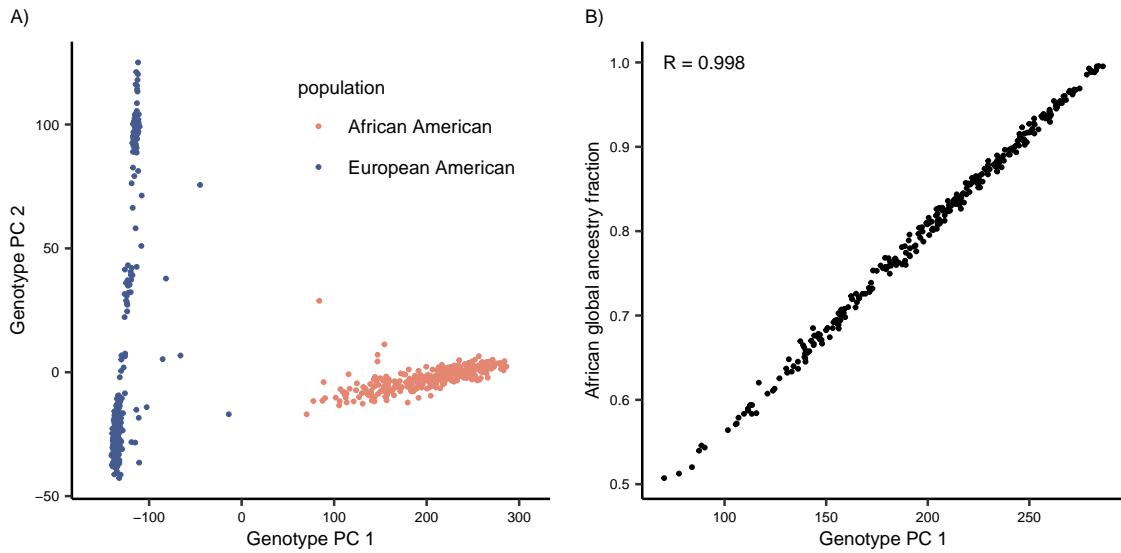


Figure S3: Principal components analysis of MESA genotypes. **A)** We computed principal components from the genotypes of 296 African Americans and 482 European Americans in MESA. The first genotype PC stratifies the African Americans and the second genotype PC stratifies the European Americans. **B)** Within African Americans, the first genotype PC is highly correlated with African global ancestry fraction.

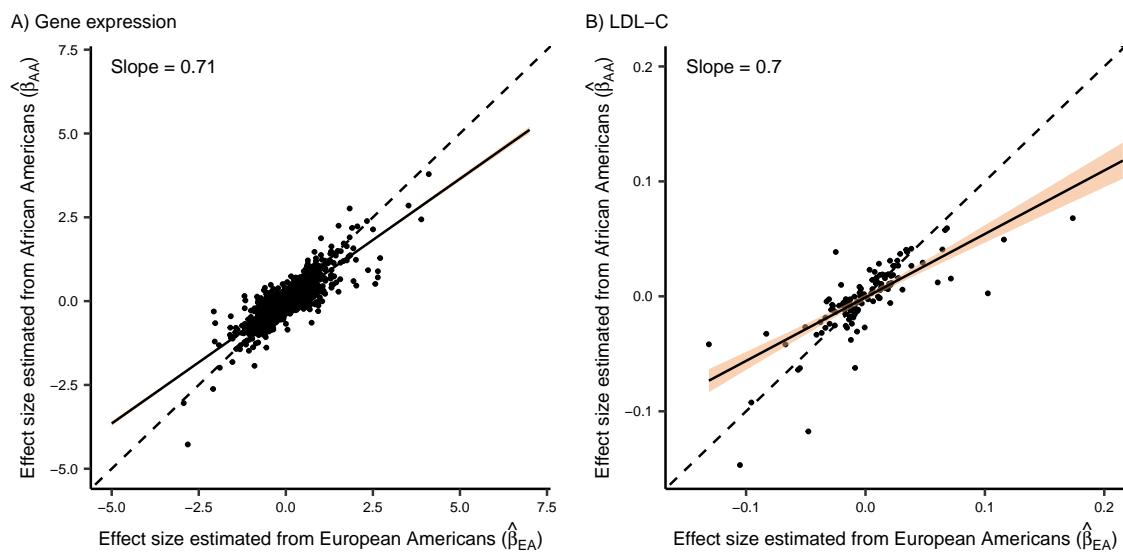


Figure S4: Ordinary least squares regression of β_{AA} on β_{EA} for **A)** gene expression and **B)** LDL-C. We represent the 95% CI with the shaded region.

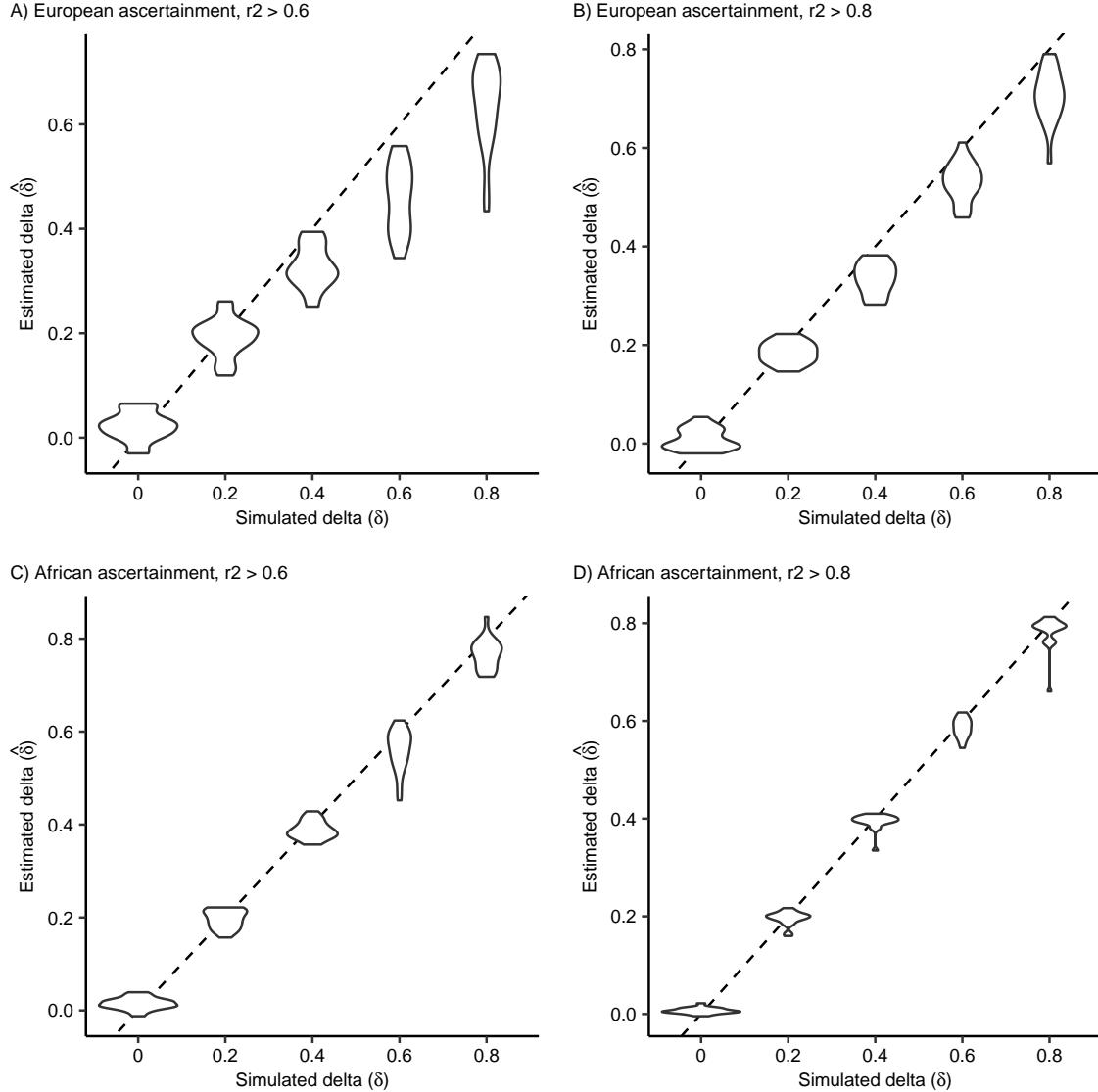


Figure S5: Estimates of δ from simulations where causal variant effect sizes are allowed to differ between populations. We simulated ascertainment in both European and African ancestries and required that the squared correlation between the causal SNP and the tag SNP was either greater than 0.6 or 0.8.

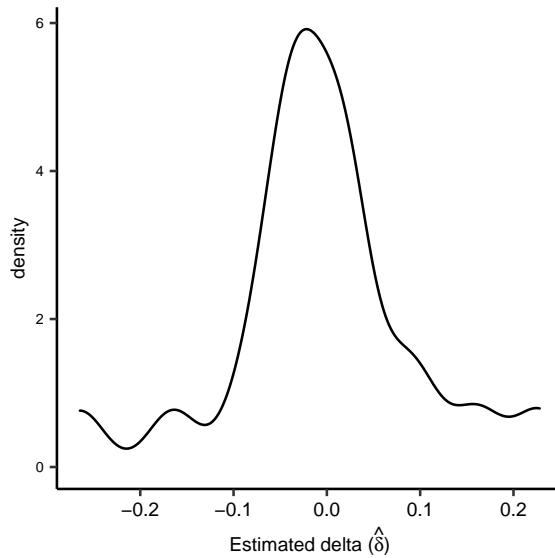


Figure S6: Estimates of δ from ten simulations where causal variant effect sizes are identical between populations.

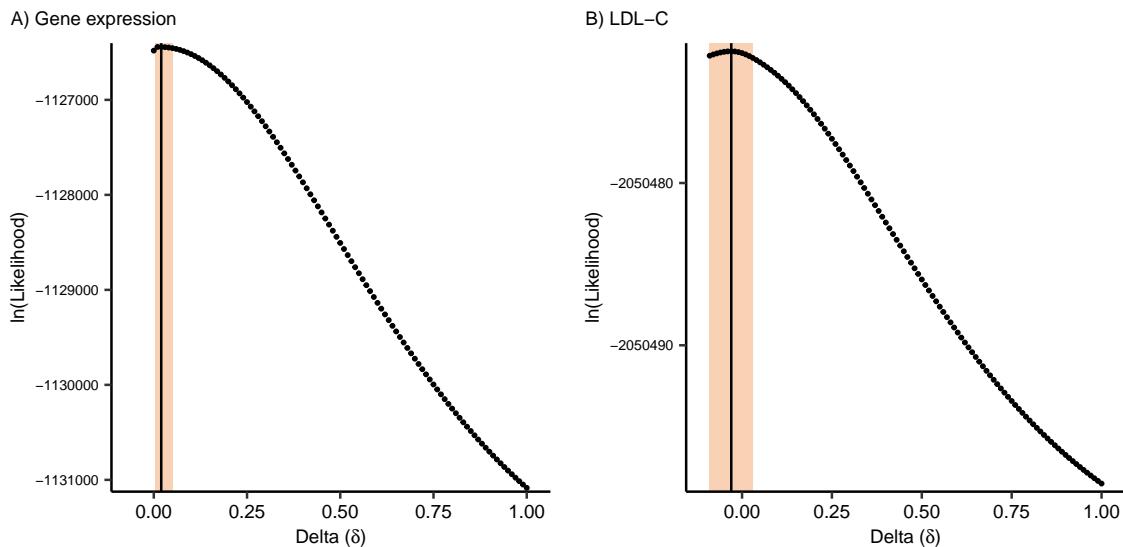


Figure S7: Likelihood surface for δ when comparing causal variant effect sizes between two subsets of European Americans. Maximum likelihood estimates and 95% bootstrap CI are **A)** 0.008 (0.003, 0.05) for gene expression and **B)** -0.03 (-0.09, 0.03) for LDL-C. We denote the MLE and 95% bootstrap CI with the vertical line and shaded region, respectively.

567 References

568 [1] Randolph, H. E., Z. Mu, J. K. Fiege, B. K. Thielen, J.-C. Grenier, M. S. Cobb, J. G. Hussin,
569 Y. I. Li, R. A. Langlois, and L. B. Barreiro, 2020 Single-cell RNA-sequencing reveals pervasive
570 but highly cell type-specific genetic ancestry effects on the response to viral infection. preprint,
571 *Genomics*.

572 [2] Nédélec, Y., J. Sanz, G. Baharian, Z. A. Szpiech, A. Pacis, A. Dumaine, J.-C. Grenier,
573 A. Freiman, A. J. Sams, S. Hebert, *et al.*, 2016 Genetic Ancestry and Natural Selection Drive
574 Population Differences in Immune Responses to Pathogens. *Cell* **167**: 657–669.e21.

575 [3] Young, A. I., F. Wauthier, and P. Donnelly, 2016 Multiple novel gene-by-environment
576 interactions modify the effect of FTO variants on body mass index. *Nature Communications* **7**:
577 12724.

578 [4] Green, A., J. Van Der Pols, and D. Hunter, 2008 Skin Cancer. In *Textbook of Cancer
579 Epidemiology*, Oxford University Press, New York, second edition.

580 [5] Takeshita, T., X.-Q. Mao, and K. Morimoto, 1996 The contribution of polymorphism in the
581 alcohol dehydrogenase subunit to alcohol sensitivity in a Japanese population. *Human
582 Genetics* **97**: 409–413.

583 [6] Kilpeläinen, T. O., L. Qi, S. Brage, S. J. Sharp, E. Sonestedt, E. Demerath, T. Ahmad,
584 S. Mora, M. Kaakinen, C. H. Sandholt, *et al.*, 2011 Physical activity attenuates the influence
585 of FTO variants on obesity risk: a meta-analysis of 218,166 adults and 19,268 children. *PLoS
586 medicine* **8**: e1001116.

587 [7] Popejoy, A. B., K. R. Crooks, S. M. Fullerton, L. A. Hindorff, G. W. Hooker, B. A. Koenig,
588 N. Pino, E. M. Ramos, D. I. Ritter, H. Wand, *et al.*, 2020 Clinical Genetics Lacks Standard
589 Definitions and Protocols for the Collection and Use of Diversity Measures. *The American
590 Journal of Human Genetics* **107**: 72–82.

591 [8] Peterson, R. E., K. Kuchenbaecker, R. K. Walters, C.-Y. Chen, A. B. Popejoy, S. Periyasamy,
592 M. Lam, C. Iyegbe, R. J. Strawbridge, L. Brick, *et al.*, 2019 Genome-wide Association Studies
593 in Ancestrally Diverse Populations: Opportunities, Methods, Pitfalls, and Recommendations.
594 *Cell* **179**: 589–603.

595 [9] de Candia, T., S. Lee, J. Yang, B. Browning, P. Gejman, D. Levinson, B. Mowry, J. Hewitt,
596 M. Goddard, M. O'Donovan, *et al.*, 2013 Additive Genetic Variation in Schizophrenia Risk Is

597 Shared by Populations of African and European Descent. *American Journal of Human*
598 *Genetics* **93**: 463–470.

599 [10] Mancuso, N., N. Rohland, K. A. Rand, A. Tandon, A. Allen, D. Quinque, S. Mallick, H. Li,
600 A. Stram, X. Sheng, *et al.*, 2016 The contribution of rare variation to prostate cancer
601 heritability. *Nature genetics* **48**: 30–35.

602 [11] Wojcik, G. L., M. Graff, K. K. Nishimura, R. Tao, J. Haessler, C. R. Gignoux, H. M.
603 Highland, Y. M. Patel, E. P. Sorokin, C. L. Avery, *et al.*, 2019 Genetic analyses of diverse
604 populations improves discovery for complex traits. *Nature* **570**: 514–518.

605 [12] Bitarello, B. D. and I. Mathieson, 2020 Polygenic Scores for Height in Admixed Populations.
606 *G3: Genes, Genomes, Genetics* **10**: 4027–4036.

607 [13] Brown, B. C., Asian Genetic Epidemiology Network Type 2 Diabetes Consortium, C. J. Ye,
608 A. L. Price, and N. Zaitlen, 2016 Transtheortic Genetic-Correlation Estimates from Summary
609 Statistics. *American Journal of Human Genetics* **99**: 76–88.

610 [14] Galinsky, K. J., Y. A. Reshef, H. K. Finucane, P.-R. Loh, N. Zaitlen, N. J. Patterson, B. C.
611 Brown, and A. L. Price, 2019 Estimating cross-population genetic correlations of causal effect
612 sizes. *Genetic epidemiology* **43**: 180–188.

613 [15] GTEx Consortium, 2017 Genetic effects on gene expression across human tissues. *Nature* **550**:
614 204–213.

615 [16] DeLuca, D. S., J. Z. Levin, A. Sivachenko, T. Fennell, M.-D. Nazaire, C. Williams, M. Reich,
616 W. Winckler, and G. Getz, 2012 RNA-SeQC: RNA-seq metrics for quality control and process
617 optimization. *Bioinformatics (Oxford, England)* **28**: 1530–1532.

618 [17] Hunter-Zinck, H., Y. Shi, M. Li, B. R. Gorman, S.-G. Ji, N. Sun, T. Webster, A. Liem,
619 P. Hsieh, P. Devineni, *et al.*, 2020 Genotyping Array Design and Data Quality Control in the
620 Million Veteran Program. *American Journal of Human Genetics* **106**: 535–548.

621 [18] Auton, A., G. R. Abecasis, D. M. Altshuler, R. M. Durbin, G. R. Abecasis, D. R. Bentley,
622 A. Chakravarti, A. G. Clark, P. Donnelly, E. E. Eichler, *et al.*, 2015 A global reference for
623 human genetic variation. *Nature* **526**: 68–74.

624 [19] Howie, B. N., P. Donnelly, and J. Marchini, 2009 A Flexible and Accurate Genotype
625 Imputation Method for the Next Generation of Genome-Wide Association Studies. *PLOS*
626 *Genetics* **5**: e1000529.

627 [20] Fang, H., Q. Hui, J. Lynch, J. Honerlaw, T. L. Assimes, J. Huang, M. Vujkovic, S. M.
628 Damrauer, S. Pyarajan, J. M. Gaziano, *et al.*, 2019 Harmonizing Genetic Ancestry and Self-
629 identified Race/Ethnicity in Genome-wide Association Studies. *American Journal of Human
630 Genetics* **105**: 763–772.

631 [21] Manichaikul, A., J. C. Mychaleckyj, S. S. Rich, K. Daly, M. Sale, and W.-M. Chen, 2010
632 Robust relationship inference in genome-wide association studies. *Bioinformatics* **26**:
633 2867–2873.

634 [22] Alexander, D. H., J. Novembre, and K. Lange, 2009 Fast model-based estimation of ancestry
635 in unrelated individuals. *Genome Research* **19**: 1655–1664.

636 [23] Maples, B. K., S. Gravel, E. E. Kenny, and C. D. Bustamante, 2013 RFMix: a discriminative
637 modeling approach for rapid and robust local-ancestry inference. *American Journal of Human
638 Genetics* **93**: 278–288.

639 [24] Baharian, S., M. Barakatt, C. R. Gignoux, S. Shringarpure, J. Errington, W. J. Blot, C. D.
640 Bustamante, E. E. Kenny, S. M. Williams, M. C. Aldrich, *et al.*, 2016 The Great Migration
641 and African-American Genomic Diversity. *PLOS Genetics* **12**: e1006059.

642 [25] Sinnott-Armstrong, N., Y. Tanigawa, D. Amar, N. Mars, C. Benner, M. Aguirre, G. R.
643 Venkataraman, M. Wainberg, H. M. Ollila, T. Kiiskinen, *et al.*, 2021 Genetics of 35 blood and
644 urine biomarkers in the UK Biobank. *Nature Genetics* **53**: 185–194.

645 [26] Adrion, J. R., C. B. Cole, N. Dukler, J. G. Galloway, A. L. Gladstein, G. Gower, C. C.
646 Kyriazis, A. P. Ragsdale, G. Tsambos, F. Baumdicker, *et al.*, 2020 A community-maintained
647 standard library of population genetic models. *eLife* **9**: e54967, Publisher: eLife Sciences
648 Publications, Ltd.

649 [27] Fu, W., T. D. O'Connor, G. Jun, H. M. Kang, G. Abecasis, S. M. Leal, S. Gabriel, M. J.
650 Rieder, D. Altshuler, J. Shendure, *et al.*, 2013 Analysis of 6,515 exomes reveals the recent
651 origin of most human protein-coding variants. *Nature* **493**: 216–220.

652 [28] Tennesen, J. A., A. W. Bigham, T. D. O'Connor, W. Fu, E. E. Kenny, S. Gravel, S. McGee,
653 R. Do, X. Liu, G. Jun, *et al.*, 2012 Evolution and Functional Impact of Rare Coding Variation
654 from Deep Sequencing of Human Exomes. *Science* Publisher: American Association for the
655 Advancement of Science.

656 [29] Kelleher, J., A. M. Etheridge, and G. McVean, 2016 Efficient coalescent simulation and
657 genealogical analysis for large sample sizes. PLoS computational biology **12**: e1004842.

658 [30] Martin, A. R., C. R. Gignoux, R. K. Walters, G. L. Wojcik, B. M. Neale, S. Gravel, M. J. Daly,
659 C. D. Bustamante, and E. E. Kenny, 2017 Human Demographic History Impacts Genetic Risk
660 Prediction across Diverse Populations. American Journal of Human Genetics **100**: 635–649.

661 [31] Musharoff, S., D. S. Park, A. Dahl, J. M. Galanter, X. Liu, S. Huntsman, C. Eng, E. G.
662 Burchard, J. F. Ayroles, and N. Zaitlen, 2018 Existence and implications of population
663 variance structure. BioRxiv .

664 [32] Võsa, U., A. Claringbould, H.-J. Westra, M. J. Bonder, P. Deelen, B. Zeng, H. Kirsten,
665 A. Saha, R. Kreuzhuber, S. Yazar, *et al.*, 2021 Large-scale cis- and trans-eQTL analyses
666 identify thousands of genetic loci and polygenic scores that regulate blood gene expression.
667 Nature Genetics **53**: 1300–1310.

668 [33] Price, A. L., N. Patterson, D. C. Hancks, S. Myers, D. Reich, V. G. Cheung, and R. S.
669 Spielman, 2008 Effects of cis and trans genetic ancestry on gene expression in African
670 Americans. PLoS Genetics **4**: e1000294.

671 [34] Yengo, L., S. Vedantam, E. Marouli, J. Sidorenko, E. Bartell, S. Sakaue, M. Graff, A. U.
672 Eliasen, Y. Jiang, S. Raghavan, *et al.*, 2022 A Saturated Map of Common Genetic Variants
673 Associated with Human Height from 5.4 Million Individuals of Diverse Ancestries. preprint,
674 Genetics.

675 [35] Lao, O., T. T. Lu, M. Nothnagel, O. Junge, S. Freitag-Wolf, A. Caliebe, M. Balascakova,
676 J. Bertranpetti, L. A. Bindoff, D. Comas, *et al.*, 2008 Correlation between Genetic and
677 Geographic Structure in Europe. Current Biology **18**: 1241–1248.

678 [36] Novembre, J., T. Johnson, K. Bryc, Z. Katalik, A. R. Boyko, A. Auton, A. Indap, K. S. King,
679 S. Bergmann, M. R. Nelson, *et al.*, 2008 Genes mirror geography within Europe. Nature **456**:
680 98–101.

681 [37] Martin, A. R., M. Kanai, Y. Kamatani, Y. Okada, B. M. Neale, and M. J. Daly, 2019 Clinical
682 use of current polygenic risk scores may exacerbate health disparities. Nature Genetics **51**:
683 584–591.

684 [38] Berg, J. J., A. Harpak, N. Sinnott-Armstrong, A. M. Joergensen, H. Mostafavi, Y. Field, E. A.
685 Boyle, X. Zhang, F. Racimo, J. K. Pritchard, *et al.*, 2019 Reduced signal for polygenic
686 adaptation of height in UK Biobank. *eLife* **8**.

687 [39] Sohail, M., R. M. Maier, A. Ganna, A. Bloemendal, A. R. Martin, M. C. Turchin, C. W.
688 Chiang, J. Hirschhorn, M. J. Daly, N. Patterson, *et al.*, 2019 Polygenic adaptation on height is
689 overestimated due to uncorrected stratification in genome-wide association studies. *eLife* **8**.

690 [40] Mostafavi, H., A. Harpak, I. Agarwal, D. Conley, J. K. Pritchard, and M. Przeworski, 2020
691 Variable prediction accuracy of polygenic scores within an ancestry group. *eLife* **9**: e48376.

692 [41] Lewontin, R. C., 1972 The Apportionment of Human Diversity. In *Evolutionary Biology:*
693 *Volume 6*, edited by T. Dobzhansky, M. K. Hecht, and W. C. Steere, pp. 381–398, Springer
694 US, New York, NY.

695 [42] Barton, N., J. Hermisson, and M. Nordborg, 2019 Why structure matters. *eLife* **8**: e45380,
696 Publisher: eLife Sciences Publications, Ltd.