

1

Article

2

Duplication of *NRAMP3* gene in poplars generated two homologous 3 transporters with distinct functions

4

5 *Mathieu Pottier^{1,3}, Van Anh Le Thi^{1,4}, Catherine Primard-Brisset¹, Jessica Marion¹, Michele Bianchi¹, Cindy*
6 *Victor¹, Annabelle Déjardin², Gilles Pilate², Sébastien Thomine^{1*}*

7

8 ¹Institut de Biologie Intégrative de la Cellule, CNRS, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France

9 ²INRAE, ONF, BioForA, Orléans, France

10 ³Current affiliation: Institute for Molecular Physiology, Heinrich-Heine-University Düsseldorf, Düsseldorf
11 40225, Germany

12 ⁴Current affiliation: Graduate University of Science and Technology (GUST), Vietnam Academy of Science
13 and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi 10000, Vietnam

14 *Author for correspondence

15 Sébastien Thomine

16 Sebastien.thomine@i2bc.paris-saclay.fr

17

18

19 **ABSTRACT**

20 Transition metals are essential for a wealth of metabolic reactions, but their concentrations need to be tightly
21 controlled across cells and cell compartments, as metal excess or imbalance has deleterious effects. Metal
22 homeostasis is achieved by a combination of metal transport across membranes and metal binding to a
23 variety of molecules. Gene duplication is a key process in evolution, as emergence of advantageous
24 mutations on one of the copies can confer a new function. Here, we report that the poplar genome contains
25 two paralogues encoding NRAMP3 metal transporters localized in tandem. All *Populus* species analyzed had
26 two copies of *NRAMP3*, whereas only one could be identified in *Salix* species indicating that duplication
27 occurred when the two genera separated. Both copies are under purifying selection and encode functional
28 transporters, as shown by expression in the yeast heterologous expression system. However, genetic
29 complementation revealed that only one of the paralogues has retained the original function in release of
30 metals stored in the vacuole previously characterized in *A. thaliana*. Confocal imaging showed that the other
31 copy has acquired a distinct localization to the Trans Golgi Network (TGN). Expression in poplar suggested
32 that the copy of NRAMP3 localized on the TGN has a novel function in the control of cell-to-cell transport
33 of manganese. This work provides a clear case of neo-functionalization through change in the subcellular
34 localization of a metal transporter as well as evidence for the involvement of the secretory pathway in cell-
35 to-cell transport of manganese.

36 **Keywords:** manganese, metal, recycling, Trans Golgi Network, vacuole, Arabidopsis, Salix, Populus,
37 selective pressure, evolution, apoplastic transport, symplasmic transport, nutrition, micronutrient.

38

39 **INTRODUCTION**

40 Several transition metals are essential cofactors for a wealth of metabolic reactions in all living organisms.
41 Iron (Fe) and copper (Cu) are for example needed in large amounts for the respiratory electron transfer
42 chains and ATP production in bacteria and mitochondria. Transition metals are also important for DNA
43 synthesis, proteolysis and the control of reactive oxygen species (ROS). Photosynthetic organisms have an
44 additional specific requirement for manganese (Mn) for light energy conversion and water splitting (Shen
45 2015). Although they are essential, transition metal concentrations need to be tightly controlled across cells
46 and cell compartments, as excess or imbalance between different metals has deleterious effects. Metal
47 homeostasis is achieved by a combination of metal transport across membranes and metal binding to a
48 variety of molecules, including proteins, small peptides, amino acids, organic acids and specialized
49 metabolites, such as phytochelatins or nicotianamine in plants (Seregin and Kozhevnikova 2021).

50 Many families of transporters are implicated in the maintenance of metal homeostasis, either for metal
51 uptake, distribution of metals to organs within organisms and to organelles within a cell, or for removal and
52 sequestration of excess metal. For example, in *Arabidopsis thaliana*, Mn is taken up by AtNRAMP1 (Natural
53 Resistance Associated Macrophage Protein 1) in the roots and distributed within cells by AtNRAMP2
54 (Cailliatte et al. 2010; Alejandro et al. 2017; Gao et al. 2018). AtMTP8 (Metal Tolerance Protein 8) and

55 AtMTP11, which belong to a different transporter family, are responsible for loading Mn from the cytosol
56 into the vacuole or the Trans Golgi Network (TGN), respectively (Delhaize et al. 2007; Peiter et al. 2007;
57 Eroglu et al. 2016). The vacuole is used to store Mn excess and prevent its toxicity. However, when this
58 element becomes scarce, other NRAMP family members, namely AtNRAMP3 and AtNRAMP4, allow the
59 retrieval of Mn from the vacuole (Lanquar et al. 2010). Mn is needed in the secretory system as a cofactor of
60 glycosyl transferases involved in protein glycosylation (Alejandro et al. 2020). It also plays important roles
61 as a cofactor of superoxide dismutase in mitochondria and peroxisomes (Alejandro et al. 2020). Moreover,
62 Mn is essential for oxygenic photosynthesis as a component of the Mn_4CaO_5 cofactor of the water splitting
63 complex, which is bound to photosystem II (PS II) at the inner side of the thylakoid membranes (Shen 2015).
64 CMT1 (Chloroplast Manganese Transporter 1) and PAM71 (Photosynthesis-affected mutant 71), two
65 transporters belonging to the GDT1 family, have been shown to allow the import of Mn across the inner
66 membrane of the chloroplast envelope and the thylakoid membrane, respectively (Schneider et al. 2016;
67 Eisenhut et al. 2018; Zhang et al. 2018). Recently, another member of the GDT1/UPF0016 family was
68 shown to play a crucial role in loading Mn in the Golgi apparatus, where it is needed as a cofactor of
69 glycosyl transferases involved in cell wall formation (Yang et al. 2021). The networks of transporters that
70 mediate uptake, storage and distribution of other essential metals, such as Fe, Zn and Cu, have also been
71 described. Interestingly, these networks are interconnected, as some transporters, as well as ligands, are able
72 to transport a broad range of metal cations (Pottier, Oomen, et al. 2015; Seregin and Kozhevnikova 2021).

73 This is well illustrated when looking at the functions of transporters of the NRAMP family. This family was
74 first identified in the context of resistance to intracellular pathogens, such *Mycobacterium tuberculosis*, in
75 mammals. Murine NRAMP1 was shown to limit the growth of intracellular pathogens by depleting essential
76 metals from the phagosomes where they reside (Vidal et al. 1993; Wessling-Resnick 2015). Mammalian
77 NRAMP2 plays a central role in Fe absorption in the intestine. In yeast, the NRAMP members SMF1 and
78 SMF2 are involved in Mn absorption and distribution, similar to *A. thaliana* NRAMP1 and NRAMP2
79 (Portnoy et al. 2000; Cailliatte et al. 2010; Alejandro et al. 2017; Gao et al. 2018), while SMF3 allows the
80 release of Fe from the vacuole, similar to *A. thaliana* NRAMP3 and NRAMP4 (Portnoy et al. 2000; Lanquar
81 et al. 2005). In *A. thaliana*, NRAMP1 does not only allow high affinity Mn uptake but also plays a role in
82 low affinity Fe uptake (Castaings et al. 2016), clearly illustrating that these transporters connect Fe and Mn
83 homeostasis.

84 While many studies have addressed the molecular mechanisms of metal homeostasis in *A. thaliana* and rice,
85 there are only a limited number of reports on this topic in poplar. Poplars are both model trees for which the
86 genome of several species has been sequenced (Tuskan et al. 2006; Lin et al. 2018; Zhang et al. 2019), and
87 an industrially important crop for wood production. Poplars display outstanding growth yield among tree
88 species and their wood is mostly used by the peeling industry to produce light packaging and plywood.
89 Moreover, poplars are often used in the rehabilitation of polluted areas because they are highly tolerant to
90 heavy metals and other pollutants (Krämer 2005a; Pottier, García de la Torre, et al. 2015). Poplar MTP

91 family members have been functionally investigated. In the first sequenced poplar species *Populus*
92 *trichocarpa* (Tuskan et al. 2006), it has been shown that PotriMTP1 and PotriMTP11 could be the functional
93 homologues of AtMTP1 and AtMTP11 and are involved in Zn loading into the vacuole and Mn loading into
94 the TGN, respectively (Blaudez et al. 2003; Krämer 2005b; Peiter et al. 2007). Copper homeostasis has also
95 been investigated in the context of photosynthetic efficiency (Ravet et al. 2011). In addition, over-expression
96 of genes involved in Zn and Cd chelation and homeostasis has been undertaken in an attempt to increase
97 tolerance and accumulation of these metals (Adams et al. 2011; He et al. 2015; Wang et al. 2019). Several
98 studies have mined poplar genomic data and established lists of metal transport proteins in this species,
99 analyzed the expression pattern of the corresponding genes and sometimes demonstrated the transport
100 function using yeast complementation (Migeon et al. 2010; Li et al. 2015; Gao et al. 2020). These studies
101 have often highlighted the presence of duplication in metal homeostasis genes, which is a prevalent feature in
102 poplar genome (Tuskan et al. 2006). However, they have not investigated in detail the function of the
103 duplicated copies.

104 Gene duplication is a key process in evolution. It occurs through two major processes: either whole genome
105 duplication or local duplication by unequal crossover or transposition (Conant and Wolfe 2008). Gene
106 duplication underlies several key events in evolution such as variation in gene copy number, the generation
107 of new regulatory networks and the appearance of novel functions. After gene duplication occurs, relaxation
108 of selective pressure opens the door to several scenarios. Most of the time, one of the copies undergoes non-
109 functionalization through accumulation of deleterious mutations due to the lack of selective pressure on this
110 copy. In other cases, having multiple copies of the same gene provides advantages and several functional
111 identical genes are therefore actively maintained (Hanikenne et al. 2013). Often the copies can also undergo
112 sub-functionalization: the preduplication function is maintained but partitioned between the two copies.
113 Typically, the expression pattern of the ancestral gene is covered by the two copies which are expressed in
114 different organs and involved in distinct regulatory networks (Tuskan et al. 2006). Finally, in rare cases,
115 emergence of advantageous mutations on one of the copies can also confer a new function, which is
116 commonly known as neo-functionalization (Moriyama et al. 2016).

117 In this study, we have investigated the function of poplar *NRAMP3*. We found that the poplar genome
118 contains two paralogues of *NRAMP3* in tandem. One of the paralogues has conserved the original function in
119 release of metals stored in the vacuole characterized in *A. thaliana*, whereas the other parologue has acquired
120 a distinct localization to the TGN. Analysis of the function of this gene in transgenic poplars suggests that it
121 has a novel function in the control of cell-to-cell transport of Mn. Therefore, the functional analysis of the
122 two paralogues of *PotriNRAMP3* provides a clear case of neo-functionalization through change in the
123 subcellular localization of a transporter and evidence for the involvement of the secretory pathway in cell-to-
124 cell transport of Mn.

125
126

127 **RESULTS**

128 ***PotriNRAMP3.1* and *PotriNRAMP3.2* are a tandem gene pair encoding homologous proteins**

129 The eleven NRAMPs retrieved from *P. trichocarpa* genome V4.1 distribute into the three different
130 phylogenetic groups of plant NRAMPs defined according to their protein sequence identities and exon-intron
131 structures (Migeon et al. 2010, table S1; fig. S1A). *PotriNRAMP1*, *PotriNRAMP6.1* and *PotriNRAMP6.2* as
132 well as *PotriNRAMP7.1*, *PotriNRAMP7.2* and *PotriNRAMP7.3* belong to group I, which also includes
133 *AtNRAMP1* and *AtNRAMP6*. *PotriNRAMP2*, *PotriNRAMP3.1* and *PotriNRAMP3.2* are in group II, which
134 includes *AtNRAMP2*, *AtNRAMP5*, *AtNRAMP3* and *AtNRAMP4*. *PotriEIN2.1* and *PotriEIN2.2* are located
135 in the group III as *AtEIN2* (fig. S1A).

136 Interestingly, *PotriNRAMP3.1* and *PotriNRAMP3.2* genes are localized in close vicinity in *P. trichocarpa*
137 genome. They are positioned in a 32 kb area of chromosome 7 and encode 88.2% identical proteins (fig.
138 S1B-C). Dot plot analyses performed on genomic DNA including *PotriNRAMP3.1* and *PotriNRAMP3.2*
139 genes show sequence conservation specifically between *NRAMP3* loci, more precisely between their coding
140 sequences and their 3'UTR, while no conservation is observed between introns (fig. S1C-D).

141

142 ***NRAMP3.1* and *NRAMP3.2* are present in all sequenced poplar species but not in closely related
143 species**

144 To determine how widespread the duplication of *NRAMP3* observed in *P. trichocarpa* genome is, sequences
145 similar to *PotriNRAMP3.1* and *PotriNRAMP3.2* were retrieved using reciprocal BLASTs in nine genomes
146 and four transcriptomes of *Populus* species, covering the five main *Populus* sections, *i.e.*, Tacahamaca,
147 *Populus*, Leucoïdes, Turanga, Aigeiros and Abaso (Zhang et al. 2019; Wang et al. 2020). We could
148 unequivocally identify two distinct sequences similar to *PotriNRAMP3.1* or *PotriNRAMP3.2*, in all
149 investigated *Populus* genomes, *i.e.*, *P. alba*, *P. cathayana*, *P. simonii*, *P. lasiocarpa*, *P. maximowiczii*, *P.*
150 *euphratica*, *P. ussuriensis*, *P. nigra*, *P. deltoides*, *P. tremula*, *P. tremuloides* and *P. grandidentata* (table S1
151 and supplementary data S1) (Zhang et al. 2019). Evidence for two distinct sequences similar to
152 *PotriNRAMP3.1* or *PotriNRAMP3.2* was also observed in *P. mexicana*, the single living species of the
153 ancestral poplar section Abaso, even though its genome is not fully sequenced yet (table S1 and
154 supplementary data S2; Wang et al. 2020). This result suggests that distinct *PotriNRAMP3.1* and
155 *PotriNRAMP3.2* homologues are present in all *Populus* species. In contrast, blasting *PotriNRAMP3.1* and
156 *PotriNRAMP3.2* on the genomes of three *Salix* species (*S. purpurea*, *S. suchowensis* and *S. brachista*) and on
157 the transcriptomes of five other *Salix* species (*S. viminalis*, *S. sachalinensis*, *S. eriocephala*, *S. fargesii* and *S.*
158 *dasyclados*) that belong to the closest phylogenetic group to *Populus* genus (Chen et al. 2019) identified a
159 single *NRAMP3* sequence in each species (table S1 and supplementary data S1). The reciprocal BLASTs
160 performed on *P. trichocarpa* genome provided *PotriNRAMP3.2* as best hit. These results suggest that the
161 duplication that gave rise to *NRAMP3.1* and *NRAMP3.2* genes coincided with the divergence between
162 *Populus* and *Salix* about 52 million years ago (Ma) (Hou et al. 2016). However, the chromosomal

163 rearrangements that distinguish *Populus* and *Salix* genus did not affect chromosome 7, which carries the
164 *NRAMP3* loci (Hou et al. 2016). Moreover, gene collinearity is maintained around *NRAMP3* loci in *P.*
165 *trichocarpa* and *S. purpurea* (fig. 1; fig. S2). Using the corresponding protein sequences of all the *Populus*
166 and *Salix* *NRAMP3* homologues identified during this analysis (supplementary data S3), we constructed a
167 phylogenetic tree (fig. 2). This analysis showed that *Populus* *NRAMP3.1* and *NRAMP3.2* form distinct
168 phylogenetic groups (fig. 2). The *Salix* homologues clearly cluster together with *Populus* *NRAMP3.2*
169 indicating that it corresponds to the ancestral copy, whereas *Populus* *NRAMP3.1* sequence diverged.
170 To further analyze the evolutionary history of *Populus* *NRAMP3.1* and *NRAMP3.2* sequences, we
171 calculated the ratio of non-synonymous (dN) vs synonymous codons (dS), between all *NRAMP3.1*s,
172 between all *NRAMP3.2*s, and between all *NRAMP3.1*s and *NRAMP3.2*s together. Low global dN/dS
173 around 0.2 were obtained for *NRAMP3.1* and *NRAMP3.2* indicating that both genes are under purifying
174 selection. A sliding window analysis revealed that the low global dN/dS values obtained among *NRAMP3.1*
175 or *NRAMP3.2* sequences result from homogeneously low ratio values along their open reading frames (fig.
176 S3). In contrast, comparing *NRAMP3.1*s with *NRAMP3.2*s revealed heterogeneous values along the open
177 reading frame, with ratios above or close to 1 in the N and C termini, as expected from divergent sequences.
178 These results indicate that relaxation of selective pressure led to sequence diversity after the duplication
179 event, but that both genes are now under purifying selection. Fixed Effects Likelihood (FEL) method was
180 then employed to investigate site specific selective pressures specifically applied to either *NRAMP3.1*s or
181 *NRAMP3.2*s. In this way, 21 and 4 residues under purifying selection ($p < 0.05$) were identified in
182 *NRAMP3.1*s and *NRAMP3.2*s, respectively (tables S2 and S3). These residues are highlighted on an
183 alignment between the consensus sequence of *Populus* *NRAMP3.1* and that of *Populus* *NRAMP3.2*
184 generated from all the *Populus* *NRAMP3.1* and *NRAMP3.2* sequences retrieved in this study (fig. 3;
185 supplementary data S3 and fig. S4). Note that the four residues under purifying selection in *NRAMP3.2*s are
186 also under purifying selection in *NRAMP3.1*s. Moreover, with the exception of V491, amino acids under
187 purifying selection in *NRAMP3.1*s are conserved in *NRAMP3.2*s. These results suggest essential roles of
188 these residues in the basal *NRAMP3* function, common to both *NRAMP3.1* and *NRAMP3.2*. In contrast,
189 distinct residues were found to be under positive selection in both *NRAMP3.1* (positions 3 and 437, $p <$
190 0.05) and *NRAMP3.2* (positions 161 and 265, $p < 0.05$) (fig. 3; tables S2 and S3). These analyses indicate
191 that *NRAMP3.1* and *NRAMP3.2* are not under non-functionalization; both sequences continue to diversify,
192 even though they are globally under strong purifying selection. Moreover, transcript level analysis showed
193 that *NRAMP3.1* and *NRAMP3.2* are both expressed in roots, stems, buds and leaves, arguing against
194 subfunctionalization by partitioning their expression in distinct organs of poplar (fig. S5).

195

196 **Both *PotriNRAMP3.1* and *PotriNRAMP3.2* encode functional metal transporters**

197 To examine the functions of the two paralogues, we cloned *P. trichocarpa* *NRAMP3.1* and *NRAMP3.2*
198 cDNAs and expressed them in yeast. Because several plant *NRAMP* were previously shown to function in

199 Mn homeostasis, we investigated PotriNRAMP3s ability to transport this metal. For this purpose, we tested
200 whether they could complement the *smf1* and *smf2* Mn transporter yeast mutants, which are unable to grow
201 on low Mn condition (Cohen et al. 2000). AtNRAMP1 and AtNRAMP2, which are the functional
202 homologues of Smf1p and Smf2p, respectively, were used as positive controls (Supek et al. 1996; Luk and
203 Culotta 2001; Cailliatte et al. 2010; Alejandro et al. 2017). The β -glucuronidase enzyme (GUS) that has no
204 transport activity was used as a negative control. We found that the expression of *PotriNRAMP3.2* restored
205 *smf1* growth on low Mn condition to the same extent as *AtNRAMP1* (Thomine et al. 2000), whereas the
206 expression of *PotriNRAMP3.1* allowed only a partial complementation (fig. 4A). In contrast, the expression
207 of *PotriNRAMP3.1*, *PotriNRAMP3.2* or *AtNRAMP2* fully complemented *smf2* growth defect in this
208 condition (fig. 4B). We then took advantage of the low Mn concentration in *smf2* mutant cells to investigate
209 the effect of *PotriNRAMP3.1* and *PotriNRAMP3.2* expression on Mn accumulation. We used AtNRAMP4 as
210 a positive control, as expression of this homologue of PotriNRAMP3s was previously shown to enhance Mn
211 accumulation in yeast (Pottier, Oomen, et al. 2015). We found that expression of *PotriNRAMP3.1*,
212 *PotriNRAMP3.2* or *AtNRAMP4* significantly increased Mn concentration in the yeast mutant (fig. S6). Mn
213 concentration was 14 and 8 times higher in *PotriNRAMP3.1* and *PotriNRAMP3.2* expressing *smf2* strains
214 than in *smf2* GUS control (fig. S6). Thus, both copies of PotriNRAMP3 have retained metal transport ability.
215 However, differences in complementation efficiency and metal accumulation suggest differences in transport
216 capacity or localization between these two transporters. Besides, complementation assays of the *fet3fet4*
217 yeast strain deficient for both low- and high-affinity Fe uptake systems indicated that PotriNRAMP3.1 and
218 PotriNRAMP3.2 are able to transport Fe in addition to Mn (fig. S7), as previously shown for AtNRAMP3
219 and AtNRAMP4 (Thomine et al. 2000).

220

221 ***PotriNRAMP3.2*, but not *PotriNRAMP3.1*, complements the *nramp3nramp4* double mutant of *A.*
222 *thaliana***

223 Because both PotriNRAMP3s share high protein sequence identity with AtNRAMP3 and AtNRAMP4, we
224 tested whether they could perform the same function *in planta*. AtNRAMP3 and AtNRAMP4 have
225 redundant functions in Fe remobilization from vacuoles during seed germination. As a consequence, *A.*
226 *thaliana nramp3nramp4* double mutants are sensitive to Fe starvation during their early development
227 (Lanquar et al. 2005). We expressed *PotriNRAMP3.1* and *PotriNRAMP3.2* under the *Ubiquitin 10* (*pUb10*)
228 promoter in the *A. thaliana* Columbia 0 (Col-0) *nramp3nramp4* mutant background (Grefen et al. 2010;
229 Bastow et al. 2018), and selected 3 independent homozygous T3 lines expressing transgenes at various levels
230 for further experiments (fig. S8). Lines transformed with *pUb10:PotriNRAMP3.2* exhibited full
231 complementation of the double mutant phenotype on Fe deficient medium: root length and cotyledon
232 greening were indistinguishable from wild-type (fig. 5). Complementation was observed irrespective of the
233 expression level of the transgene, indicating that even low levels are sufficient to restore the wild-type
234 phenotype. In contrast, the expression of *PotriNRAMP3.1* did not improve the growth of the *A. thaliana*

235 *nramp3nramp4* double mutant under Fe deficient conditions, even in lines showing high expression of the
236 transgene (fig. 5, S8). Similar results were obtained when expressing *PotriNRAMP3.1-GFP* and
237 *PotriNRAMP3.2-GFP* under the CaMV 35S promoter (*p35S*) to study their subcellular localization in *A.*
238 *thaliana* and poplar (see below), except that *p35S:PotriNRAMP3.1-GFP* partially improved *nramp3nramp4*
239 growth under Fe deficiency (fig. S9). Even though *PotriNRAMP3.1* is able to transport Fe (fig. S7), it is thus
240 not able to restore Fe remobilization during seed germination.

241

242 **PotriNRAMP3.1 and PotriNRAMP3.2 have distinct subcellular localizations in plant cells**

243 Change in intracellular localization is one of the mechanisms leading to neofunctionalization (Ren et al.
244 2014). To examine *PotriNRAMP3.1* and *PotriNRAMP3.2* subcellular localizations, *A. thaliana* and poplar
245 transgenic lines expressing C-terminal GFP fusion proteins of these two transporters were generated.
246 Previous studies showed that tagging with GFP at the C-terminal end does not affect NRAMP targeting and
247 function in plants (Lanquar et al. 2005; Cailliatte et al. 2010; Alejandro et al. 2017). The *A. thaliana*
248 *nramp3nramp4* double mutant (Col-0) was stably transformed with *p35S:PotriNRAMP3.1-GFP* and
249 *p35S:PotriNRAMP3.2-GFP*. Roots of these plants were then observed by confocal microscopy (fig. 6A).
250 Interestingly, distinct subcellular localizations were observed for *PotriNRAMP3.1-GFP* and
251 *PotriNRAMP3.2-GFP*. While *PotriNRAMP3.2-GFP* was targeted to the vacuolar membrane, as its
252 homologues in *A. thaliana* and *Noccaea caerulescens* (Thomine et al. 2003; Lanquar et al. 2005; Oomen et
253 al. 2009), *PotriNRAMP3.1* was localized in intracellular punctuate structures (fig. 6A). The localization of
254 *PotriNRAMP3.2* on the vacuolar membrane is consistent with its ability to complement the *A. thaliana*
255 *nramp3nramp4* double mutant. The partial complementation observed with *PotriNRAMP3.1-GFP* could be
256 due to the mis-targeting of a small fraction of this protein, too low to generate detectable fluorescence, to the
257 vacuolar membrane. Similar *PotriNRAMP3.1* and *PotriNRAMP3.2* localizations were observed in poplar
258 root cells (fig. 6A) as well as in mesophyll protoplasts and leaf epidermal cells (fig. S10).

259 To determine more precisely the subcellular localization of *PotriNRAMP3.1*, we tested the colocalization of
260 *PotriNRAMP3.1-GFP* with RFP markers for different cell compartments (Ebine et al. 2011; Uemura et al.
261 2012; Inada et al. 2016). To this aim, *A. thaliana* lines expressing *PotriNRAMP3.1-GFP* were crossed with
262 stable lines expressing markers for the trans Golgi apparatus *i.e.*, mRFP-ST (Sialyl Transferase), the TGN
263 *i.e.*, mRFP-Syp43 and two endosomal markers *i.e.*, ARA6-mRFP and ARA7-mRFP. Spinning disk confocal
264 microscopy performed on the F1 seedlings showed an extensive overlap between *PotriNRAMP3.1-GFP* and
265 mRFP-SYP43 fluorescence (fig. 6B). Interestingly, although *PotriNRAMP3.1-GFP* fluorescence did not
266 overlap with that of mRFP-ST, it was most often in close vicinity (fig. 6B). In contrast, little or no
267 colocalization was observed with endosomal markers (fig. S11). These colocalization experiments indicate
268 that *PotriNRAMP3.1* resides on the TGN, and that it is present in both Golgi-associated and Golgi-
269 independent TGN compartments (Viotti et al. 2010; Uemura et al. 2019). Together, these results show that
270 the *PotriNRAMP3.2* copy has retained the subcellular localization and function of the *NRAMP3* genes

271 characterized in other species, whereas *PotriNRAMP3.1* has likely acquired a novel function due to
272 mutations that modified its subcellular localization to the TGN. However, *PotriNRAMP3.1* expression in *A.*
273 *thaliana* did not lead to any phenotypic alteration that could provide hints at this novel function.

274

275 **PotriNRAMP3.1, but not PotriNRAMP3.2, affects manganese homeostasis in poplar**

276 To investigate the functions of *PotriNRAMP3.1* and *PotriNRAMP3.2* in poplar, the genes coding these
277 transporters were over-expressed as GFP fusions under the control of the *p35S*. For each construct, four
278 independent transgenic lines over-expressing (OE) the *PotriNRAMP3s* at levels 10 to 25 times higher than
279 non-transgenic (NT) control trees were analyzed (fig. S12). Poplar lines with high levels of *PotriNRAMP3.1*
280 expression displayed reduced height as well as interneval chlorosis on mature leaves compared to NT control
281 trees (fig. 7A, C, F; fig. S12). In contrast, *PotriNRAMP3.2* OE trees were indistinguishable from NT poplars
282 (fig. 7B, C, H). To better understand the origin of the chlorosis, the maximum quantum yield of PS II was
283 imaged using an Imaging PAM (Walz, Germany) in leaves of control poplars as well as *PotriNRAMP3.1* and
284 *PotriNRAMP3.2* OE lines (fig. 7E, G, I). The chlorotic areas in *PotriNRAMP3.1* OE lines coincided with
285 strongly decreased PS II maximum quantum yield (0.472 ± 0.035). In contrast, PS II efficiency was close to
286 the optimal value of 0.82 in leaves from control (0.756 ± 0.002) and *PotriNRAMP3.2* OE trees (0.751 ± 0.008).
287 As internerval chlorosis is a symptom of Fe deficiency and decrease in PS II efficiency may be a symptom of
288 Mn deficiency (Connerton et al. 2017; Alejandro et al. 2020), we quantified metals in young, mature and
289 senescent leaves from the different poplar genotypes. These analyses revealed that Mn concentrations in
290 young and mature leaves were significantly lower in *PotriNRAMP3.1* OE lines compared to NT control or
291 *PotriNRAMP3.2* OE lines (fig. 8A, B, C). In contrast, no significant difference in Fe or Zn concentrations
292 was detected among the different genotypes (fig. S13). Interestingly, opposite to what was observed in
293 leaves, Mn concentrations in stems of *PotriNRAMP3.1* OE lines were higher than in NT control or
294 *PotriNRAMP3.2* OE lines (fig. 8D). Mn concentrations were also significantly higher in stems of
295 *PotriNRAMP3.2* OE lines compared to NT control. The defect in Mn distribution observed in
296 *PotriNRAMP3.1* OE lines suggests that the phenotypes observed in these lines are due to a defect in Mn
297 transfer from stems to leaves leading to limited Mn supply to leaves.

298 To further test this hypothesis, we analyzed Mn distribution in mature leaves from *PotriNRAMP3.1* OE lines
299 compared to NT control. We dissected leaves into vein and lamina, and measured Mn separately (fig. 8E). In
300 *PotriNRAMP3.1* OE lines, the Mn concentration was lower in lamina compared with veins, whereas the
301 concentrations in these two parts of the leaf were similar in NT control. Moreover, the Mn concentration in
302 the lamina tended to be lower in *PotriNRAMP3.1* OE lines than in the NT control line, while the opposite
303 was observed in veins. The decrease in Mn concentration in the lamina of *PotriNRAMP3.1* OE lines
304 compared to NT control was only significant for line 9, which displayed the most severe internerval
305 chlorosis. These results confirm that over-expression of *PotriNRAMP3.1* in poplar perturbs Mn distribution
306 between and within organs. Analysis of *PotriNRAMP3.1* expression using RT-qPCR showed that this gene

307 is expressed at similar levels in the lamina and the veins (fig. S14). Together, the results presented indicate
308 that PotriNRAMP3.1 expression can modulate Mn transport between organs and tissues.

309 To confirm that the leaf chlorosis symptoms observed in PotriNRAMP3.1 OE lines were due to Mn
310 depletion in the lamina, we supplemented the trees with Mn. We grew tree cuttings for 4 weeks and then
311 started watering half of them with 0.5 mM of MnSO₄ for an additional 5 weeks. We observed that chlorosis
312 did not appear in newly formed leaves of Mn treated trees (fig. S15A). In these leaves, Mn concentrations
313 were higher in lamina and veins, but the treatment did not restore the defect in Mn distribution between these
314 tissues (fig. S15B). Chlorosis was not reverted in leaves formed prior to the treatment indicating that the
315 treatment prevented chlorosis in newly formed leaves rather than corrected it in older leaves.

316

317 **Discussion**

318 In this study, we have characterized two poplar NRAMP3 metal transporters using a combination of
319 phylogenetic, cell biology and molecular genetic approaches. We found that poplar genomes harbor two
320 tandem copies of *NRAMP3* gene under selection, whereas only one copy is present in the closest genus,
321 *Salix*. Moreover, we demonstrated that the two paralogues encode functional metal transporters but that their
322 functions *in planta* have diverged. Whereas PotriNRAMP3.2 has the same function in metal retrieval from
323 the vacuole as AtNRAMP3 and AtNRAMP4, PotriNRAMP3.1 displays a distinct subcellular localization to
324 the TGN as well as a distinct function. Our results suggest that PotriNRAMP3.1 could be involved in Mn
325 distribution in poplar aerial organs. Elemental analyses show that poplar lines ectopically expressing
326 *PotriNRAMP3.1* are impaired in Mn transfer from the stem to the leaves and, within the leaves, from the
327 veins to the lamina, resulting in chlorosis and a decreased PS II efficiency. Together our results show that a
328 gene duplication of NRAMP3 specific to the poplar genus gave rise to the neofunctionalization of one of the
329 copies, while the other retained the conserved function described in other species and highlight an
330 unsuspected role of the secretory pathway in cell-to-cell transport of Mn.

331

332 **Distinct mechanisms for the formation of NRAMP gene pairs in *A. thaliana* and poplar**

333 Duplication events are a driving force in evolution, facilitating adaptation to changing environments.
334 Although gene duplication may be followed by accumulation of deleterious mutations and gene elimination,
335 it may also lead to diversification of gene function and sub- or neo-functionalization (Yang et al. 2006). The
336 ancestral angiosperm genome contained only 14000 genes or less (Proost et al. 2011). However, whole
337 genome triplications that occurred about 120 Ma significantly increased the size of the Eudicotyledon
338 genomes.

339 In *A. thaliana* *AtNRAMP3* and *AtNRAMP4* encode functionally redundant metal transporters (Lanquar et al.
340 2005). This pair of genes located on two different chromosomes is present in *A. thaliana*, *Arabidopsis lyrata*
341 and *Noccea caerulescens* (Oomen et al. 2009), but only one gene is found in *Carica papaya* and *Ricinus*

342 *communis* genomes. Thus, they probably originate from a duplication that took place after the *Carica papaya*
343 divergence that happened 72 Ma. The analysis of the duplicated regions of the *A. thaliana* genome showed
344 that *AtNRAMP3* and *AtNRAMP4* loci are located on the duplicated block 0204146800380, suggesting that
345 the pair originates from one of the two whole genome duplications that occurred between 70 and 23 Ma in
346 the *A. thaliana* lineage (Lanquar et al. 2005; Ming et al. 2008; Proost et al. 2011).

347 The poplar lineage has also undergone one whole genome duplication 60-65 Ma *i.e.*, before the *Populus* and
348 *Salix* divergence that took place 52 Ma (Tuskan et al. 2006; Hou et al. 2016). Comparing gene order in *S.*
349 *purpurea* and in *P. trichocarpa* showed genomic collinearity upstream and downstream *NRAMP3* loci,
350 except that only one copy of *NRAMP3* is found in *S. purpurea* (fig. 1; fig. S2). In contrast, two copies of
351 *NRAMP3* were found in all sequenced poplar genotypes (fig. 2). It is unlikely that the whole genome
352 duplication accounts for the emergence of *NRAMP3.1* and *NRAMP3.2* genes specific to *Populus* species
353 since this event happened before the *Populus* and *Salix* divergence. Moreover, gene tandem arrangements
354 generally imply local duplication processes rather than whole genome duplications. The genomic sequence
355 surrounding *Populus NRAMP3.1* and *NRAMP3.2* shows homologies with Class I long terminal repeats
356 (LTR) retrotransposon elements (Gypsy) mainly located between the two genes. Retrotransposons can
357 mediate gene duplications. However, such duplications usually create a typical intron-free copy, which can
358 be integrated throughout the genome and not specifically close to the initial copy (Freeling 2009). The
359 conservation of intron/exon structure and the tandem arrangement of *Populus NRAMP3.1* and *NRAMP3.2*
360 suggest another mechanism. Repeated sequences of retrotransposons are known to stimulate
361 intrachromosomal recombination events or unequal crossing over, leading to gene duplication (White et al.
362 1994; Flagel and Wendel 2009). The genome of poplar which contains significantly more gene tandems than
363 that of *A. thaliana* (Proost et al. 2011), contains also three time more transposons (Ming et al. 2008). Thus, it
364 is most likely that this mechanism accounts for the tandem duplication of *Populus NRAMP3.1* and
365 *NRAMP3.2*. Therefore, distinct mechanisms of gene duplication led to *NRAMP* gene pair formation in poplar
366 and *A. thaliana*.

367

368 ***Populus NRAMP3* copies are subjected to both positive and purifying selection**

369 Non-synonymous (dN) vs synonymous codons (dS) analyses (dN/dS) highlight that *Populus NRAMP3.1* and
370 *NRAMP3.2* sequences are mostly under purifying selection (fig. 3 and S3; tables S2 and S3) acting on many
371 residues in the core conserved transmembrane domains of the protein. This is in agreement with the finding
372 that both PotriNRAMP3.1 and PotriNRAMP3.2 have retained metal transport ability. However, the evidence
373 suggests both positive and relaxed purifying selection especially on residues localized at the N and C
374 terminal ends of the protein (fig. 3; fig. S3, tables S2 and S3). Mutations in the N terminal region, where
375 motives involved in the targeting of AtNRAMP3 and AtNRAMP4 have previously been identified, likely
376 enabled the protein to acquire distinct subcellular localizations (Müdsam et al. 2018). The vacuolar
377 membrane localization of PotriNRAMP3.2 (fig. 6A), its transport capacities (fig. 4; fig. S6 and S7) and its

ability to complement *A. thaliana nramp3nramp4* double mutant phenotypes (fig. 5) indicate that PotriNRAMP3.2 is the functional homologue of AtNRAMP3 and AtNRAMP4. The ability of PotriNRAMP3.1 to transport Fe and Mn in yeast (fig. 4; fig. S6 and S7), its distinct intracellular localization (fig. 6), its inability to complement the *nramp3nramp4* double mutant phenotypes (fig. 5) and the signature of purifying selection (fig. 3, fig. S3, tables S2 and S3) argue in favor of neo-functionalization rather than non-functionalization. The finding that *Populus NRAMP3.1* and *Populus NRAMP3.2* promoter sequences lack significant sequence identities further suggests that the regulation of the two copies has diverged (fig. S1D). This is in agreement with our previous report showing that *Populus NRAMP3.1* and *NRAMP3.2* belong to different networks of co-expressed genes (Pottier, Garcia de la Torre, et al. 2015). We propose a scenario in which after *Populus NRAMP3* gene duplication, relaxation of purifying selection allowed mutations altering PotriNRAMP3.1 subcellular localization. This mutated version of *Populus NRAMP3* was subsequently maintained by purifying selection, probably because it conferred improved fitness. Specific inactivation of *Populus NRAMP3.1* would allow to further test this scenario.

391

392 PotriNRAMP3.1 modulates tissue distribution of Mn

393 To investigate the function of PotriNRAMP3.1 and PotriNRAMP3.2 *in planta*, we generated transgenic
394 poplars over-expressing *PotriNRAMP3.1-GFP* and *PotriNRAMP3.2-GFP*. PotriNRAMP3.1 and
395 PotriNRAMP3.2 subcellular localizations in poplar roots or leaves were similar to those observed in *A.*
396 *thaliana*. (fig. 6; fig. S10). Analysis of metal concentrations revealed a specific decrease in Mn
397 concentrations in leaves from lines over-expressing *PotriNRAMP3.1-GFP*. Moreover, lines with the lowest
398 Mn leaf concentrations displayed internerval chlorosis (fig. 7). In agreement with the role of Mn in
399 photosynthesis, PS II efficiency was decreased in the chlorotic parts of *PotriNRAMP3.1* OE leaves (fig. 7).
400 Further analysis showed that the decrease in Mn leaf concentration was associated to an increase in Mn
401 concentration in stems (fig. 8). Furthermore, Mn distribution within leaves was also affected in
402 *PotriNRAMP3.1* OE lines: Mn accumulated at higher levels in the veins while it was depleted in the lamina.
403 Together, these results indicate that PotriNRAMP3.1 can modulate transcellular transport of Mn. This
404 phenotype is unexpected as PotriNRAMP3.1-GFP exhibits a clear intracellular localization to the TGN. Even
405 though the partial complementation of *nramp3nramp4* suggests that a small fraction of PotriNRAMP3.1-
406 GFP might be targeted to the vacuolar membrane (fig. S9), the absence of similar phenotypes in
407 PotriNRAMP3.2-GFP OE lines support the hypothesis that the fraction of PotriNRAMP3.1 associated to the
408 TGN is responsible for the phenotypes observed in PotriNRAMP3.1 OE lines. To account for this
409 phenotype, we propose a working model (fig. 9) based on two hypotheses (1) Mn cell-to-cell transport
410 requires Mn secretion (2) expression of *PotriNRAMP3.1* limits Mn secretion by allowing the retrieval of Mn
411 from the TGN, which would otherwise be secreted. PtNRAMP3.1 overexpression seems to restrict
412 specifically Mn transfer from the veins to the lamina. However, PotriNRAMP3.1 is expressed at similar
413 levels in the veins and in the lamina (Fig S13). Mn secretion to the cell wall is expected to be important for

414 cell to cell transfer when cells are not or poorly connected by plasmodesmata. We propose that the effect of
415 PotriNRAMP3.1 expression is more pronounced in the lamina because (1) veins are directly supplied with
416 Mn upon unloading from the xylem sap, and (2) the density of plasmodesmata between lamina cells is lower
417 than between the cells of the veins (Russin and Evert 1985).

418 The function of PotriNRAMP3.1 in retrieval of Mn from the secretory system would be equivalent to the
419 function of AtNRAMP2 (Alejandro et al. 2017; Gao et al. 2018). AtNRAMP2 localizes to the TGN and was
420 proposed to retrieve Mn from this compartment to make it available for uptake into chloroplasts. Previous
421 work also showed that loss of AtMTP11, which also localizes in the secretory system, leads to an increase in
422 plant Mn concentration (Peiter et al. 2007). As AtMTP11 is involved in Mn loading into the secretory
423 system, the observed phenotype also agrees with the hypothesis that Mn concentrations in plant tissues are,
424 at least in part, controlled by Mn secretion. As SMF2 has also been proposed to retrieve Mn from the
425 secretory system in yeast, the model of figure 9 would also account for the strong decrease in Mn content in
426 the *smf2* mutant (Luk and Culotta 2001). Homologues of AtMTP11 and AtNRAMP2 are also present in
427 poplar and could act in concert with PotriNRAMP3.1 to control the rate of Mn secretion vs intracellular
428 distribution in poplar cells. Interestingly, mRNA levels of *PotriNRAMP2* and *PotriNRAMP3.1* are correlated
429 in leaves (Pottier, García de la Torre, et al. 2015).

430 Taken together, our results provide a clear case for neofunctionalization in a tandem of NRAMP genes
431 specific to poplar. It also provides new insights into the cell-to-cell transport of divalent cations by showing
432 the significant contribution of the secretory pathway in the cellular export of Mn as well as new evidence of
433 the essential role of transporters located at the secretory pathway in the regulation of the cellular storage of
434 Mn. In the future, it would be interesting to find out what is the advantage conferred by the newly
435 functionalized PotriNRAMP3.1 that led to the conservation of this gene in all examined poplar species. It
436 will also be interesting to understand the interplay between PotriNRAMP3.1, PotriNRAMP2 and
437 PotriMTP11 in the control of Mn concentration in the secretory pathway.

438

439 Materials and methods

440 Sequences analysis

441 Sequences were retrieved as indicated in the table S1. To obtain the homologous genomic sequence of
442 *PotriNRAMP3.1* (Potri007G050600) and *PotriNRAMP3.2* (Potri007G050600) from non-assembled poplar
443 and willow genomes, raw reads were aligned to *P. trichocarpa* genome V4.1. *PotriNRAMP3.1* and
444 *PotriNRAMP3.2* were blasted on the obtained genome consensus using QIAGEN CLC Genomics
445 Workbench 12.0. The best hits were then blasted back on *P. trichocarpa* genome V4.1 to confirm the
446 sequence homology relationship. *P. trichocarpa* and *S. purpurea* genomic DNA homologies were
447 investigated by Dot-plot analyses using Gepard softwares V1.30 and V1.40 (Krusmiek et al. 2007).

448

449 Phylogenetic tree construction

450 The tree shown in figure 2 was generated from amino acid sequences listed in supplementary data S3 and
451 outgroup sequences listed in the figure legend. For figure S1, the accession numbers of the sequences are
452 provided in the figure legend. Full-length sequences were imported into the Molecular Evolutionary Genetics
453 Analysis (MEGA) package version 7, and aligned by CLUSTALW (Kumar et al. 2016). Only conserved
454 positions were used for figure 2, while all positions with at least 90% site coverage was used for figure S1.
455 Phylogenetic analyses were conducted using the Maximum Likelihood method. Thanks to the “Find best
456 protein model (ML)” tool available in MEGA 7, the lower BIC (Bayesian Information Criterion) model was
457 selected for each tree. Therefore, JTT matrix-based model and the Le_Gascuel (LG) model were used for the
458 trees displayed in figure 2 and figure S1, respectively (Jones et al. 1992; Le and Gascuel 2008). A discrete
459 Gamma distribution was used to model evolutionary rate differences among sites (5 categories, +G,
460 parameter = 0.55 and parameter = 1.15 for figure 2 and figure S1, respectively). Initial tree(s) for the
461 heuristic search were obtained automatically by applying Neighbor-Joining and BioNJ algorithms to a matrix
462 of pairwise distances estimated using a JTT model, and then selecting the topology with superior log
463 likelihood value. The bootstrap consensus tree inferred from 1000 replicates was taken to represent the
464 evolutionary history of the analyzed genes. Branches corresponding to partitions reproduced in less than 50%
465 bootstrap replicates were collapsed. Trees are drawn to scale, with branch lengths measured in the number of
466 substitutions per site. To determine the codon specific selective pressure by FEL method (see “selective
467 pressure analysis”), a nucleotide substitution-based tree has also been generated. The best-fitting nucleotide
468 model was selected by iterative procedure as described (Kosakovsky Pond and Frost 2005a), and initial
469 estimate of the phylogeny was reconstructed by neighbor-joining (Saitou and Nei 1987) using the Tamura-
470 Nei distance (Tamura and Nei 1993; Kosakovsky Pond and Frost 2005b).

471

472 *Selective pressure analysis*

473 After codon based alignment, global dN/dS was first calculated for each pair of the 26 poplar NRAMP CDS
474 using HYPHY in MEGA7. Then, the distribution of dN/dS along the protein sequence was computed
475 through the Neij Gojobori algorithm using a 20 residue window with a shift of 10 residues using JCoDA 1.4
476 (Nei and Gojobori 1986; Steinway et al. 2010). Finally, positive and purifying selection at individual sites
477 were inferred using the FEL method available at <https://www.datammonkey.org> (Kosakovsky Pond and Frost
478 2005b; Weaver et al. 2018). FEL generated a phylogenetic tree with the 26 *Populus* NRAMP CDS. A subset
479 of branches encompassing either the *NRAMP3.1s* or the *NRAMP3.2s* were analyzed separately to estimate dS
480 and dN at a site (α and β , respectively). A maximum-likelihood approach was then undertaken to calculate
481 the dN/dS for each codon site (\square ; $p < 0.05$).

482

483 *Construction of expression vectors*

484 *PotriNRAMP3.1* and *PotriNRAMP3.2* CDSs were amplified by PCR from cDNA synthesized from leaf RNA
485 of *P. trichocarpa* cv Nisqually-1 using the Phusion high-fidelity DNA polymerase (Thermo-Scientific) and

486 primers listed in table S4. The gel-purified PCR products were recombined into pDONR207 for
487 *PotriNRAMP3.1* and into pDONR201 for *PotriNRAMP3.2* following the BP Clonase (Invitrogen)
488 manufacturer's instruction. LR reactions were performed using the pDR195gtw vector (Rentsch et al. 1995;
489 Oomen et al. 2009) for the generation of yeast expression vectors, and using pB7FWG2 (Karimi et al. 2002),
490 pMDC83 (Curtis and Grossniklaus 2003) and pUB-DEST binary vectors (Grefen et al. 2010) for the
491 generation of plant expression vectors.

492
493 *Yeast growth assays*

494 Yeasts were transformed as indicated in supplementary materials and methods. Transformed *smf1* and *smf2*
495 yeast mutants were grown overnight in liquid Synthetic Dextrose -ura (SD -ura, pH 6). The cultures were
496 diluted to ODs of 1 to 10^{-3} and spotted on SD -ura plates (pH 6). Transformed *smf1* and *smf2* strains were
497 spotted on SD -ura, supplemented with 5 mM (*smf1*) or 10 mM (*smf2*) ethylene glycolbis (beta-aminoethyl
498 ether)-*N,N,N',N'*-tetraacetic acid (EGTA) and 100 μ M MnSO₄ (+ Mn) or with 5 mM (*smf1*) or 10 mM (*smf2*)
499 EGTA without MnSO₄ (- Mn).

500
501 *Confocal imaging*

502 Roots of *in vitro* grown 6-day-old *A. thaliana* seedlings or 2-3 week-old poplar explants were mounted in
503 liquid culture medium, and confocal images of epidermal cells in the elongation zone were obtained by high-
504 speed (100 ms) sequential acquisition of GFP ($\lambda_{\text{ex}} = 490$ nm, $\lambda_{\text{em}} = 500\text{--}550$ nm) and mRFP ($\lambda_{\text{ex}} = 590$ nm,
505 $\lambda_{\text{em}} = 600\text{--}650$ nm, employing a Nipkow spinning disk confocal system equipped with a Prime 95B camera
506 (Photometrics) and a Nikon 100X 1.4 aperture oil immersion objective. Super resolution images were
507 generated with a Live-SR module for optically demodulated structured illumination (GATACA Systems).
508 Image processing (cropping, contrast adjustment and background subtraction) was performed with ImageJ
509 1.45s program (Schneider et al. 2012).

510
511 *Plant material and plant transformation*

512 The generation of the *nramp3nramp4* double mutants of *A. thaliana* Col-0 was described previously (Bastow
513 et al. 2018). pUB-DEST and pB7FWG2 constructs were introduced in *nramp3nramp4* mutants through
514 *Agrobacterium tumefaciens* (strain AGL0) mediated transformation using the flower dip method (Clough
515 and Bent 1998). Independent homozygous *A. thaliana* Col-0 *nramp3nramp4* transformants with a single
516 insertion locus were obtained by plant selection based on Basta resistance. The poplar INRA 717-1-B4 clone
517 (*P. tremula* x *P. alba*) was transformed as described in supplementary materials and methods using media
518 listed in table S5 (Leplé et al. 1992).

519
520 *A. thaliana growth conditions*

521 *A. thaliana* seedlings were grown on ABIS medium plates containing 2.5 mM H₃PO₄, 5 mM KNO₃, 2 mM
522 MgSO₄, 1 mM Ca(NO₃)₂, MS microelements, 1% sucrose, 1% Phytagel, 1 mM MES adjusted with KOH to

523 pH 6.1 and FeHBED (Strem Chemicals, Newburyport, MA, USA) as indicated in figure legends. FeHBED
524 was prepared as described by Lanquar *et al.* (2005). For low Fe sensitivity growth assays, plants were grown
525 for 8 days on plates where Fe was omitted. Plates were placed vertically in environmental growth chambers
526 (Sanyo MLR- 350, Morigushi, Japan) at 21°C with a 16 h photoperiod under 120 $\mu\text{mol photon}\cdot\text{m}^{-2}\cdot\text{s}^{-1}$.

527
528 *Photosystem II maximum quantum yield*

529 Phostosystem II maximum quantum yield was determined using an Imaging PAM (Walz, Germany).
530 Efficiency of the photosynthetic electron transport (Fv/Fm) was assayed by calculating the ratio of variable
531 fluorescence (Fv) to maximal fluorescence (Fm) after a saturating light pulse (Maxwell and Johnson 2000).
532 Plants were dark adapted for 15 min prior to measurements. The fluorescence was measured under low
533 measuring light (F_0) and after a flash of saturating light (Fm). Fv/Fm was calculated as $(F_m - F_0)/F_m$. Five
534 areas of interest (AOI) of each leaf were selected for quantification in three leaves from different individuals
535 of each genotype.

536
537 *Root length measurements*

538 Plants grown vertically on plates were photographed at the indicated times and root length was determined
539 using ImageJ and a digitizer tablet (Schneider *et al.* 2012; Intuos 4M WACOM, Krefeld, Germany).

540
541 *Elemental analysis*

542 For metal analyses in yeast, liquid SD -ura medium containing transformed *smf2* strain growing overnight
543 were diluted to OD 0.3 in liquid SD -ura supplemented with 30 μM FeCl_3 and 10 μM MnSO_4 . After 30 h of
544 incubation at 30°C under agitation, yeast cells were recovered by centrifugation (3340g, 5 min, 4°C) and
545 washed twice in 50 ml ice cold YNB supplemented with EDTA 20 mM and MES 50 mM pH6, pelleted and
546 then washed in ice cold ultrapure water. For metal analyses in plants, tissues were harvested and washed.
547 The dry weight (DW) of the samples (yeasts or plants) was measured after drying at 60°C for 3 days. Dried
548 samples were mineralized and analyzed for metal content as previously described (Pottier *et al.* 2019).

549
550 *Statistical analysis*

551 Data were analyzed with Kruskal-Wallis and Mann-Whitney non-parametric tests for multiple comparisons
552 and pair comparisons, respectively. For multiple comparisons, a Dunn's post hoc test was performed when
553 significant differences were detected. Both tests were performed using GraphPad Prism 7.

554
555 **Acknowledgments**

556 This work was supported by grants from the DIM Astréa (Région Ile-de-France) to MP, from the VIED
557 organisation to VALT, ANR PHYTOPOP (ANR-06-ECOT-0015) and MOBIFER (ANR-17-CE20-0008-02)
558 to ST. CPB was funded by AgriObtentions. The ST team is supported by the CNRS and benefits and from
559 the support of Saclay Plant Sciences-SPS (ANR-17-EUR-0007). This work has benefited from the facilities

560 and the expertise of Imagerie-Gif microscopy platform, which is supported by France-BioImaging (ANR-
561 INBS-04, 'Investments for the future'). The authors thank Prof. Wolf B. Frommer for providing support.

562

563 **Data availability statement**

564 The data underlying this article are available in the article and in its online supplementary material.

565

566 **References**

567 Adams JP, Adeli A, Hsu C-Y, Harkess RL, Page GP, dePamphilis CW, Schultz EB, Yuceer C. 2011. Poplar
568 maintains zinc homeostasis with heavy metal genes HMA4 and PCS1. *J. Exp. Bot.* 62:3737–3752.

569 Alejandro S, Cailliatte R, Alcon C, Dirick L, Domergue F, Correia D, Castaings L, Briat J-F, Mari S, Curie
570 C. 2017. Intracellular Distribution of Manganese by the *Trans*-Golgi Network Transporter NRAMP2 Is
571 Critical for Photosynthesis and Cellular Redox Homeostasis. *Plant Cell* 29:3068–3084.

572 Alejandro S, Höller S, Meier B, Peiter E. 2020. Manganese in Plants: From Acquisition to Subcellular
573 Allocation. *Front. Plant Sci.* 11:300.

574 Bastow EL, Garcia de la Torre VS, Maclean AE, Green RT, Merlot S, Thomine S, Balk J. 2018. Vacuolar
575 Iron Stores Gated by NRAMP3 and NRAMP4 Are the Primary Source of Iron in Germinating Seeds. *Plant
576 Physiol.* 177:1267–1276.

577 Blaudez D, Kohler A, Martin F, Sanders D, Chalot M. 2003. Poplar Metal Tolerance Protein 1 Confers Zinc
578 Tolerance and Is an Oligomeric Vacuolar Zinc Transporter with an Essential Leucine Zipper Motif. *Plant
579 Cell* 15:2911–2928.

580 Cailliatte R, Schikora A, Briat J-F, Mari S, Curie C. 2010. High-Affinity Manganese Uptake by the Metal
581 Transporter NRAMP1 Is Essential for *Arabidopsis* Growth in Low Manganese Conditions. *Plant Cell*
582 22:904–917.

583 Castaings L, Caquot A, Loubet S, Curie C. 2016. The high-affinity metal Transporters NRAMP1 and IRT1
584 Team up to Take up Iron under Sufficient Metal Provision. *Sci. Rep.* 6:37222.

585 Chen J, Huang Y, Brachi B, Yun Q, Zhang W, Lu W, Li H, Li W, Sun X, Wang G, et al. 2019. Genome-
586 wide analysis of Cushion willow provides insights into alpine plant divergence in a biodiversity hotspot. *Nat.
587 Commun.* 10:5230.

588 Clough SJ, Bent AF. 1998. Floral dip: a simplified method for Agrobacterium-mediated transformation
589 of *Arabidopsis thaliana*: Floral dip transformation of *Arabidopsis*. *Plant J.* 16:735–743.

590 Cohen A, Nelson H, Nelson N. 2000. The family of SMF metal ion transporters in yeast cells. *J. Biol. Chem.*
591 275:33388–33394.

592 Conant GC, Wolfe KH. 2008. Turning a hobby into a job: How duplicated genes find new functions. *Nat.
593 Rev. Genet.* 9:938–950.

594 Connerton JM, Balk J, Rodríguez-Celma J. 2017. Iron homeostasis in plants – a brief overview. *Metallomics*
595 9:813–823.

596 Curtis MD, Grossniklaus U. 2003. A Gateway Cloning Vector Set for High-Throughput Functional Analysis
597 of Genes in *Planta*. *Plant Physiol.* 133:462–469.

598 Delhaize E, Gruber BD, Pittman JK, White RG, Leung H, Miao Y, Jiang L, Ryan PR, Richardson AE. 2007.
599 A role for the *AtMTP11* gene of *Arabidopsis* in manganese transport and tolerance: *A role for AtMTP11 in*
600 *Mn transport and tolerance*. *Plant J.* 51:198–210.

601 Ebine K, Fujimoto M, Okatani Y, Nishiyama T, Goh T, Ito E, Dainobu T, Nishitani A, Uemura T, Sato MH,
602 et al. 2011. A membrane trafficking pathway regulated by the plant-specific RAB GTPase ARA6. *Nat. Cell*
603 *Biol.* 13:853–859.

604 Eisenhut M, Hoecker N, Schmidt SB, Basgaran RM, Flachbart S, Jahns P, Eser T, Geimer S, Husted S,
605 Weber APM, et al. 2018. The Plastid Envelope CHLOROPLAST MANGANESE TRANSPORTER1 Is
606 Essential for Manganese Homeostasis in *Arabidopsis*. *Mol. Plant* 11:955–969.

607 Eroglu S, Meier B, von Wirén N, Peiter E. 2016. The Vacuolar Manganese Transporter MTP8 Determines
608 Tolerance to Iron Deficiency-Induced Chlorosis in *Arabidopsis*. *Plant Physiol.* 170:1030–1045.

609 Flagel LE, Wendel JF. 2009. Gene duplication and evolutionary novelty in plants. *New Phytol.* 183:557–564.

610 Freeling M. 2009. Bias in Plant Gene Content Following Different Sorts of Duplication: Tandem, Whole-
611 Genome, Segmental, or by Transposition. *Annu. Rev. Plant Biol.* 60:433–453.

612 Gao H, Xie W, Yang C, Xu J, Li J, Wang H, Chen X, Huang C-F. 2018. NRAMP2, a trans-Golgi network-
613 localized manganese transporter, is required for *Arabidopsis* root growth under manganese deficiency. *New*
614 *Phytol.* 217:179–193.

615 Gao Y, Yang F, Liu J, Xie W, Zhang L, Chen Z, Peng Z, Ou Y, Yao Y. 2020. Genome-Wide Identification
616 of Metal Tolerance Protein Genes in *Populus trichocarpa* and Their Roles in Response to Various Heavy
617 Metal Stresses. *Int. J. Mol. Sci.* 21:1680.

618 Grefen C, Donald N, Hashimoto K, Kudla J, Schumacher K, Blatt MR. 2010. A ubiquitin-10 promoter-based
619 vector set for fluorescent protein tagging facilitates temporal stability and native protein distribution in
620 transient and stable expression studies: Fluorescence tagging and expression in *Arabidopsis*. *Plant J.* 64:355–
621 365.

622 Hanikenne M, Kroymann J, Trampczynska A, Bernal M, Motte P, Clemens S, Krämer U. 2013. Hard
623 Selective Sweep and Ectopic Gene Conversion in a Gene Cluster Affording Environmental
624 Adaptation. *Bomblies K, editor. PLoS Genet.* 9:e1003707.

625 He J, Li H, Ma C, Zhang Y, Polle A, Rennenberg H, Cheng X, Luo Z. 2015. Overexpression of bacterial
626 γ -glutamylcysteine synthetase mediates changes in cadmium influx, allocation and detoxification in poplar.
627 *New Phytol.* 205:240–254.

628 Hou J, Ye N, Dong Z, Lu M, Li L, Yin T. 2016. Major Chromosomal Rearrangements Distinguish Willow
629 and Poplar After the Ancestral “Salicoid” Genome Duplication. *Genome Biol. Evol.* 8:1868–1875.

630 Inada N, Betsuyaku S, Shimada TL, Ebine K, Ito E, Kutsuna N, Hasezawa S, Takano Y, Fukuda H, Nakano
631 A, et al. 2016. Modulation of Plant RAB GTPase-Mediated Membrane Trafficking Pathway at the Interface
632 Between Plants and Obligate Biotrophic Pathogens. *Plant Cell Physiol.* 57:1854–1864.

633 Karimi M, Inzé D, Depicker A. 2002. GATEWAYTM vectors for Agrobacterium-mediated plant
634 transformation. *Trends Plant Sci.* 7:193–195.

635 Kosakovsky Pond SL, Frost SDW. 2005a. A Simple Hierarchical Approach to Modeling Distributions of
636 Substitution Rates. *Mol. Biol. Evol.* 22:223–234.

637 Kosakovsky Pond SL, Frost SDW. 2005b. Not So Different After All: A Comparison of Methods for
638 Detecting Amino Acid Sites Under Selection. *Mol. Biol. Evol.* 22:1208–1222.

639 Krämer U. 2005a. Phytoremediation: novel approaches to cleaning up polluted soils. *Curr. Opin. Biotechnol.*
640 16:133–141.

641 Krämer U. 2005b. MTP1 mops up excess zinc in *Arabidopsis* cells. *Trends Plant Sci.* 10:313–315.

642 Krumsiek J, Arnold R, Rattei T. 2007. Gepard: a rapid and sensitive tool for creating dotplots on genome
643 scale. *Bioinformatics* 23:1026–1028.

644 Kumar S, Stecher G, Tamura K. 2016. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for
645 Bigger Datasets. *Mol. Biol. Evol.* 33:1870–1874.

646 Lanquar V, Lelièvre F, Bolte S, Hamès C, Alcon C, Neumann D, Vansuyt G, Curie C, Schröder A, Krämer
647 U, et al. 2005. Mobilization of vacuolar iron by AtNRAMP3 and AtNRAMP4 is essential for seed
648 germination on low iron: Iron mobilization during seed germination. *EMBO J.* 24:4041–4051.

649 Lanquar V, Ramos MS, Lelièvre F, Barbier-Brygoo H, Krieger-Liszakay A, Krämer U, Thomine S. 2010.
650 Export of Vacuolar Manganese by AtNRAMP3 and AtNRAMP4 Is Required for Optimal Photosynthesis
651 and Growth under Manganese Deficiency. *Plant Physiol.* 152:1986–1999.

652 Leplé JC, Brasileiro AC, Michel MF, Delmotte F, Jouanin L. 1992. Transgenic poplars: expression of
653 chimeric genes using four different constructs. *Plant Cell Rep.* 11:137–141.

654 Li D, Xu X, Hu X, Liu Q, Wang Z, Zhang H, Wang Han, Wei M, Wang Hanzeng, Liu H, et al. 2015.
655 Genome-Wide Analysis and Heavy Metal-Induced Expression Profiling of the HMA Gene Family in
656 *Populus trichocarpa*. *Front. Plant Sci.* 6:1149.

657 Lin Y-C, Wang J, Delhomme N, Schiffthaler B, Sundström G, Zuccolo A, Nystedt B, Hvidsten TR, de la
658 Torre A, Cossu RM, et al. 2018. Functional and evolutionary genomic inferences in *Populus* through genome
659 and population sequencing of American and European aspen. *Proc. Natl. Acad. Sci. U. S. A.* 115:E10970–
660 E10978.

661 Luk EE, Culotta VC. 2001. Manganese superoxide dismutase in *Saccharomyces cerevisiae* acquires its metal
662 co-factor through a pathway involving the Nramp metal transporter, Smf2p. *J. Biol. Chem.* 276:47556–
663 47562.

664 Maxwell K, Johnson GN. 2000. Chlorophyll fluorescence—a practical guide. *J. Exp. Bot.* 51:659–668.

665 Migeon A, Blaudez D, Wilkins O, Montanini B, Campbell MM, Richaud P, Thomine S, Chalot M. 2010.
666 Genome-wide analysis of plant metal transporters, with an emphasis on poplar. *Cell. Mol. Life Sci.* 67:3763–
667 3784.

668 Ming R, Hou S, Feng Y, Yu Q, Dionne-Laporte A, Saw JH, Senin P, Wang W, Ly BV, Lewis KLT, et al.
669 2008. The draft genome of the transgenic tropical fruit tree papaya (*Carica papaya* Linnaeus). *Nature*
670 452:991–996.

671 Moriyama Y, Ito F, Takeda H, Yano T, Okabe M, Kuraku S, Keeley FW, Koshiba-Takeuchi K. 2016.
672 Evolution of the fish heart by sub/neofunctionalization of an elastin gene. *Nat. Commun.* 7:10397.

673 Müdsam C, Wollschläger P, Sauer N, Schneider S. 2018. Sorting of *Arabidopsis* NRAMP3 and NRAMP4
674 depends on adaptor protein complex AP4 and a dileucine-based motif. *Traffic* 19:503–521.

675 Nei M, Gojobori T. 1986. Simple methods for estimating the numbers of synonymous and nonsynonymous
676 nucleotide substitutions. *Mol. Biol. Evol.* 3:418–426.

677 Oomen RJFJ, Wu J, Lelièvre F, Blanchet S, Richaud P, Barbier-Brygoo H, Aarts MGM, Thomine S. 2009.
678 Functional characterization of NRAMP3 and NRAMP4 from the metal hyperaccumulator *Thlaspi*
679 *caeruleascens*. *New Phytol.* 181:637–650.

680 Peiter E, Montanini B, Gobert A, Pedas P, Husted S, Maathuis FJM, Blaudez D, Chalot M, Sanders D. 2007.
681 A secretory pathway-localized cation diffusion facilitator confers plant manganese tolerance. *Proc. Natl.*
682 *Acad. Sci.* 104:8532–8537.

683 Portnoy ME, Liu XF, Culotta VC. 2000. *Saccharomyces cerevisiae* Expresses Three Functionally Distinct
684 Homologues of the Nramp Family of Metal Transporters. *Mol. Cell. Biol.* 20:7893–7902.

685 Pottier M, Dumont J, Masclaux-Daubresse C, Thomine S. 2019. Autophagy is essential for optimal
686 translocation of iron to seeds in *Arabidopsis*. *J. Exp. Bot.* 70:859–869.

687 Pottier M, García de la Torre V, Victor C, David LC, Chalot M, Thomine S. 2015. Genotypic variations in
688 the dynamics of metal concentrations in poplar leaves: A field study with a perspective on phytoremediation.
689 *Environ. Pollut.* 199:73–82.

690 Pottier M, Oomen R, Picco C, Giraudat J, Scholz-Starke J, Richaud P, Carpaneto A, Thomine S. 2015.
691 Identification of mutations allowing Natural Resistance Associated Macrophage Proteins (NRAMP) to
692 discriminate against cadmium. *Plant J.* 83:625–637.

693 Proost S, Pattyn P, Gerats T, Van de Peer Y. 2011. Journey through the past: 150 million years of plant
694 genome evolution: One hundred and fifty million years of plant genome evolution. *Plant J.* 66:58–65.

695 Ravet K, Danford FL, Dihle A, Pittarello M, Pilon M. 2011. Spatiotemporal Analysis of Copper Homeostasis
696 in *Populus trichocarpa* Reveals an Integrated Molecular Remodeling for a Preferential Allocation of Copper
697 to Plastocyanin in the Chloroplasts of Developing Leaves. *Plant Physiol.* 157:1300–1312.

698 Rentsch D, Laloi M, Rouhara I, Schmelzer E, Delrot S, Frommer WB. 1995. *NTR1* encodes a high affinity
699 oligopeptide transporter in *Arabidopsis*. *FEBS Lett.* 370:264–268.

700 Russin WA, Evert RF. 1985. Studies on the leaf of *Populus deltoides* (Salicaceae): ultrastructure,
701 plasmodesmatal frequency and solute concentrations. *Am. J. Bot.* 72:1232–1247.

702 Saitou N, Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees.
703 *Mol. Biol. Evol.* 4:406–425.

704 Schneider A, Steinberger I, Herdean A, Gandini C, Eisenhut M, Kurz S, Morper A, Hoecker N, Rühle T,
705 Labs M, et al. 2016. The Evolutionarily Conserved Protein PHOTOSYNTHESIS AFFECTED MUTANT71
706 Is Required for Efficient Manganese Uptake at the Thylakoid Membrane in *Arabidopsis*. *Plant Cell* 28:892–
707 910.

708 Schneider CA, Rasband WS, Eliceiri KW. 2012. NIH Image to ImageJ: 25 years of image analysis. *Nat.*
709 *Methods* 9:671–675.

710 Seregin IV, Kozhevnikova AD. 2021. Low-molecular-weight ligands in plants: role in metal homeostasis
711 and hyperaccumulation. *Photosynth. Res.* 150:51–96.

712 Shen J-R. 2015. The Structure of Photosystem II and the Mechanism of Water Oxidation in Photosynthesis.
713 *Annu. Rev. Plant Biol.* 66:23–48.

714 Steinway SN, Dannenfelser R, Laucius CD, Hayes JE, Nayak S. 2010. JCoDA: a tool for detecting
715 evolutionary selection. *BMC Bioinformatics* 11:284.

716 Supek F, Supekova L, Nelson H, Nelson N. 1996. A yeast manganese transporter related to the macrophage
717 protein involved in conferring resistance to mycobacteria. *Proc. Natl. Acad. Sci.* 93:5105–5110.

718 Tamura K, Nei M. 1993. Estimation of the number of nucleotide substitutions in the control region of
719 mitochondrial DNA in humans and chimpanzees. *Mol. Biol. Evol.* 10:512–526.

720 Thomine S, Wang R, Ward JM, Crawford NM, Schroeder JI. 2000. Cadmium and iron transport by members
721 of a plant metal transporter family in *Arabidopsis* with homology to Nramp genes. *Proc. Natl. Acad. Sci.*
722 97:4991–4996.

723 Tuskan GA, DiFazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, Putnam N, Ralph S, Rombauts S,
724 Salamov A, et al. 2006. The Genome of Black Cottonwood, *Populus trichocarpa* (Torr. & Gray). *Science*
725 313:1596–1604.

726 Uemura T, Kim H, Saito C, Ebine K, Ueda T, Schulze-Lefert P, Nakano A. 2012. Qa-SNAREs localized to
727 the trans-Golgi network regulate multiple transport pathways and extracellular disease resistance in plants.
728 *Proc. Natl. Acad. Sci.* 109:1784–1789.

729 Uemura T, Nakano RT, Takagi J, Wang Y, Kramer K, Finkemeier I, Nakagami H, Tsuda K, Ueda T,
730 Schulze-Lefert P, et al. 2019. A Golgi-Released Subpopulation of the Trans-Golgi Network Mediates Protein
731 Secretion in *Arabidopsis*. *Plant Physiol.* 179:519–532.

732 Vidal SM, Malo D, Vogan K, Skamene E, Gros P. 1993. Natural resistance to infection with intracellular
733 parasites: Isolation of a candidate for Bcg. *Cell* 73:469–485.

734 Viotti C, Bubeck J, Stierhof Y-D, Krebs M, Langhans M, van den Berg W, van Dongen W, Richter S,
735 Geldner N, Takano J, et al. 2010. Endocytic and Secretory Traffic in *Arabidopsis* Merge in the Trans-Golgi
736 Network/Early Endosome, an Independent and Highly Dynamic Organelle. *Plant Cell* 22:1344–1357.

737 Wang H, Liu Yuanyuan, Peng Z, Li J, Huang W, Liu Yan, Wang X, Xie S, Sun L, Han E, et al. 2019.
738 Ectopic Expression of Poplar ABC Transporter PtoABCG36 Confers Cd Tolerance in *Arabidopsis thaliana*.
739 *Int. J. Mol. Sci.* 20:3293.

740 Wang M, Zhang L, Zhang Z, Li M, Wang D, Zhang X, Xi Z, Keefover-Ring K, Smart LB, DiFazio SP, et
741 al. 2020. Phylogenomics of the genus *Populus* reveals extensive interspecific gene flow and balancing
742 selection. *New Phytol.* 225:1370–1382.

743 Weaver S, Shank SD, Spielman SJ, Li M, Muse SV, Kosakovsky Pond SL. 2018. Datamonkey 2.0: A
744 Modern Web Application for Characterizing Selective and Other Evolutionary Processes. *Mol. Biol. Evol.*
745 35:773–777.

746 Wessling-Resnick M. 2015. Nramp1 and Other Transporters Involved in Metal Withholding during
747 Infection. *J. Biol. Chem.* 290:18984–18990.

748 White SE, Habera LF, Wessler SR. 1994. Retrotransposons in the flanking regions of normal plant genes: a
749 role for copia-like elements in the evolution of gene structure and expression. *Proc. Natl. Acad. Sci.*
750 91:11792–11796.

751 Yang Chang-Hong, Wang C, Singh S, Fan N, Liu S, Zhao L, Cao H, Xie W, Yang Chengwei, Huang C.
752 2021. Golgi-localised manganese transporter PML3 regulates *Arabidopsis* growth through modulating
753 Golgi glycosylation and cell wall biosynthesis. *New Phytol.*:nph.17209.

754 Zhang B, Zhang C, Liu C, Jing Y, Wang Y, Jin L, Yang L, Fu A, Shi J, Zhao F, et al. 2018. Inner Envelope
755 CHLOROPLAST MANGANESE TRANSPORTER 1 Supports Manganese Homeostasis and Phototrophic
756 Growth in *Arabidopsis*. *Mol. Plant* 11:943–954.

757 Zhang B, Zhu W, Diao S, Wu X, Lu J, Ding C, Su X. 2019. The poplar pan-genome provides insights into the
758 evolutionary history of the genus. *Commun. Biol.* 2:215.

759

760 **Figure legends**

761 **Fig. 1.** Gene collinearity between *Salix purpurea* and *Populus trichocarpa* genomes is maintained in the area
762 surrounding *NRAMP3* locus which is specifically duplicated in poplars. Schematic representation of the
763 genomic sequence around *NRAMP3* loci in *P. trichocarpa* and *S. purpurea*. Gene collinearity and poplar-
764 specific *NRAMP3* duplication are supported by dot-plots analysis performed with *S. purpurea* and *P.*
765 *trichocarpa* genomic sequences surrounding *NRAMP3* loci (fig. S2).

766

767 **Fig. 2.** Phylogenetic tree of *NRAMP3* homologues in *Populus* and *Salix* species. *A. thaliana* *NRAMP2*
768 (AT1G47240.1), *NRAMP3* (AT2G23150.1), *NRAMP4* (AT5G67330.1) and *NRAMP5* (AT4G18790.1) as
769 well as *P. trichocarpa* *NRAMP2* (Potri002G121000.1) and *S. purpurea* *NRAMP2* (Sapur.002G098200.1)
770 are shown as an outgroup. The other protein sequences used for this tree are listed in supplementary data S3.
771 \$ indicates incomplete protein sequences. Phylogenetic analyses were conducted as described in Materials
772 and methods.

773

774 **Fig. 3.** Alignment of the consensus sequences of *Populus* *NRAMP3.1* and *NRAMP3.2*. The consensus
775 sequences were determined from the *NRAMP* alignments shown in supplementary figure S3. Asterisk
776 indicates less than 90% of conservation within *Populus* *NRAMP3.1* or *NRAMP3.2* cluster. Identical, similar
777 and different residues between the two consensus sequences are indicated in black, blue, and red,
778 respectively. Frames indicate residues under purifying selection and green arrows indicate positive selection
779 in either *Populus* *NRAMP3.1* or *NRAMP3.2* cluster according to the FEL method ($p < 0.05$). Note that
780 *NRAMP3.1* sequences contain an insertion of residue at position 4, leading to a gap (-) in *NRAMP3.2*
781 sequences.

782

783 **Fig. 4.** *PotriNRAMP3.1* and *PotriNRAMP3.2* encode functional Mn transporters. Functional
784 complementation of *smf1* (A) and *smf2* (B) yeast mutants. Yeast cells expressing *GUS* (negative control),
785 *AtNRAMP1* (positive control), *AtNRAMP2* (positive control), *PotriNRAMP3.1* or *PotriNRAMP3.2* were
786 grown overnight. The cultures were diluted to ODs of 1 to 10^{-3} and spotted on synthetic dextrose -ura plates.
787 Transformed *smf1* (A) strains were grown on medium supplemented with 5 mM EGTA and 100 μ M $MnSO_4$
788 (+ Mn) or with 5 mM EGTA without $MnSO_4$ (- Mn). Transformed *smf2* (B) strains were grown in medium
789 supplemented with 10 mM EGTA and 100 μ M $MnSO_4$ (+ Mn) or with 10 mM EGTA without $MnSO_4$ (-
790 Mn). The plates were incubated at 30°C for 5 days (*smf1*) or 2 days (*smf2*) before photography. White lines
791 indicate cropping.

792

793 **Fig. 5.** *PotriNRAMP3.2* but not *PotriNRAMP3.1* expression complements the *Arabidopsis* *nramp3nramp4*
794 double mutant growth defects under iron starvation. (A) Representative pictures of *nramp3nramp4*
795 *pUb10:PotriNRAMP3.1* and *pUb10:PotriNRAMP3.2* T3 *Arabidopsis* lines together with wild-type (Col-0)
796 as positive control and *nramp3nramp4* as negative control grown vertically for 8 days in ABIS supplemented

797 with 50 μ M FeHBED (control, bottom panel) or without iron (- Fe, top panel). (B) Quantification of main
798 root lengths of wild-type (Col-0), *nramp3nramp4* and 3 independent *nramp3nramp4*
799 *pUb10:PotriNRAMP3.1* and *pUb10:PotriNRAMP3.2* T3 lines. Values represent mean of 10 - 12 roots and
800 bars represent SD. Different letters reflect significant differences according to a Kruskal-Wallis test followed
801 by Dunn's test for multiple comparison ($p < 0.01$). No significant differences among genotypes were
802 detected in the presence of Fe, left panel in (B).

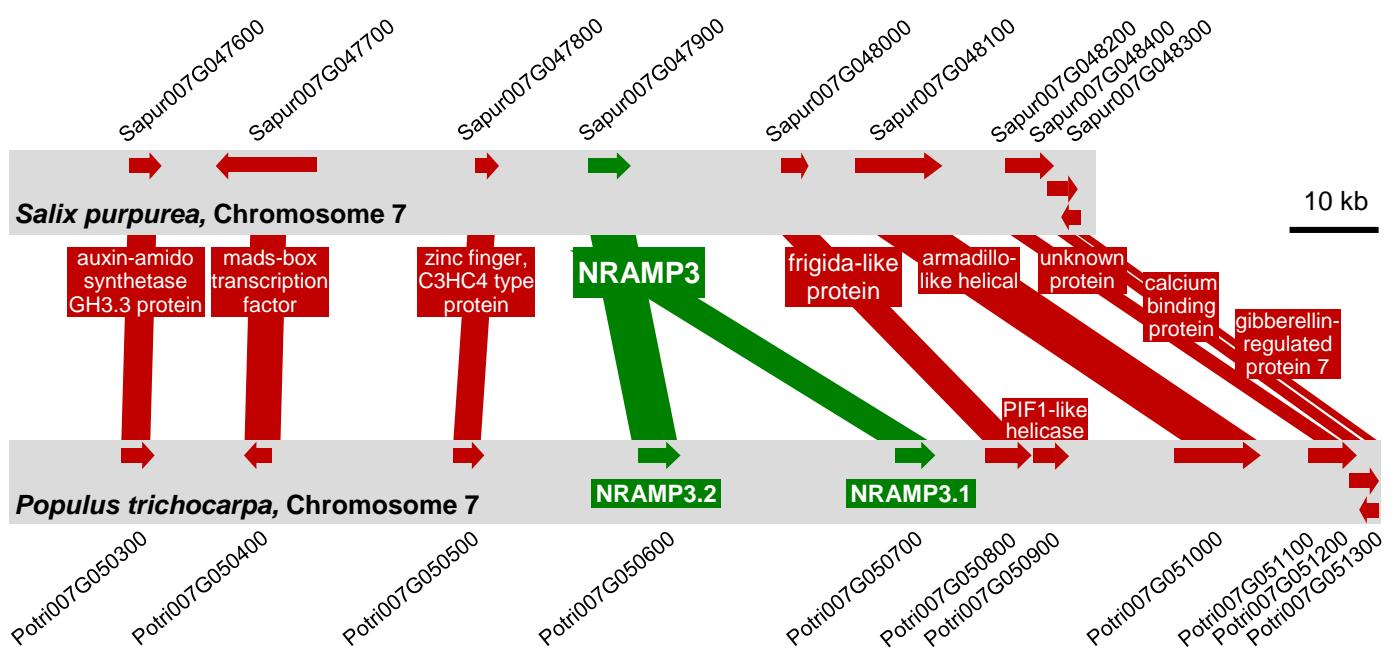
803

804 **Fig. 6.** PotriNRAMP3.1 localizes to the Trans-Golgi Network (TGN) while PotriNRAMP3.2 localizes to the
805 vacuolar membrane. (A) GFP translational fusions of PotriNRAMP3.1 and PotriNRAMP3.2 were imaged in
806 vacuolar planes by spinning disk confocal microscopy in root epidermal cells (early elongation zone) of
807 transgenic Arabidopsis T3 seedlings and poplar. NRAMP3.1-GFP labels granular cytoplasmic structures at
808 the cell periphery, in both Arabidopsis and Poplar. In contrast, NRAMP3.2-GFP is present on the vacuolar
809 membrane. Transmitted-light (differential interference contrast, DIC) and fluorescence (GFP) acquisitions
810 are shown. (B) Colocalization of PotriNRAMP3.1-GFP with the TGN marker mRFP-SYP43 (*top panel*) and
811 juxtaposition of PotriNRAMP3.1-GFP with the trans-Golgi apparatus marker mRFP-ST (*bottom panel*) in
812 root epidermal cells (early elongation zone) of Arabidopsis F1 seedlings. Translational fusions were imaged
813 in the cortical planes by spinning disk confocal. Note how PotriNRAMP3.1-GFP fluorescence either faces
814 the center of the toroidal structure of the trans-Golgi or is present as Golgi-independent structures (white
815 asterisks). On the merged images the overlap of GFP (green) and mRFP (magenta) channels appears white.
816 Scale bar : 10 μ m. Super resolution acquisitions (Super Res.) are 10 μ m wide.

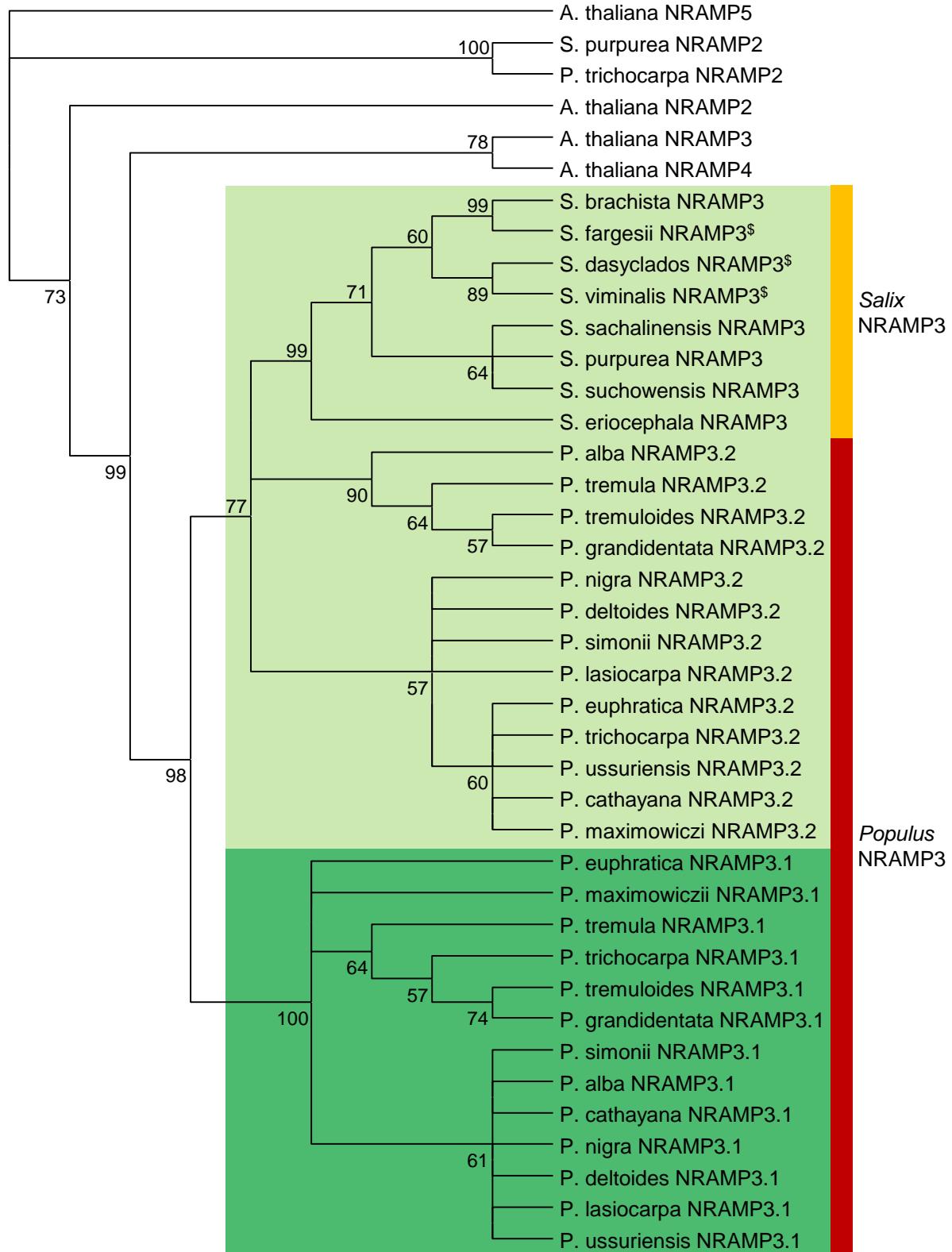
817

818 **Fig. 7.** The ectopic over expression of *PotriNRAMP3.1* but not that of *PotriNRAMP3.2* leads to phenotypic
819 alterations in poplar. Overview of 4 independent transgenic poplar lines over-expressing *PotriNRAMP3.1-*
820 *GFP* (A, purple tags) or *PotriNRAMP3.2-GFP* (B, orange tags) along with NT control (A and B, white tag),
821 2 months after transfer from *in vitro* to soil. (C) Mean heights of poplar from the different genotypes. Error
822 bars represent SE (n = 4-7 trees per genotype). Asterisks denote significant difference with respect to NT
823 control according to a Mann-Whitney test (*: $p < 0.05$, **: $p < 0.01$). (D-I) Leaf phenotypes of
824 representative trees. (D,E) NT control, (F,G) *PotriNRAMP3.1-GFP* line 9 (H,I), *PotriNRAMP3.2-GFP* line
825 12. (D, F, H) pictures; (E, G, I) PS II maximum quantum yield measured with imaging Pulse-Amplitude-
826 Modulation. The blue color indicates values of Fv/Fm around 0.75 close to the optimal value of 0.8,
827 turquoise indicates a lower value around 0.45. Relative *PotriNRAMP3.1* and *PotriNRAMP3.2* mRNA levels
828 of over-expressing lines are shown in supplementary figure S5.

829

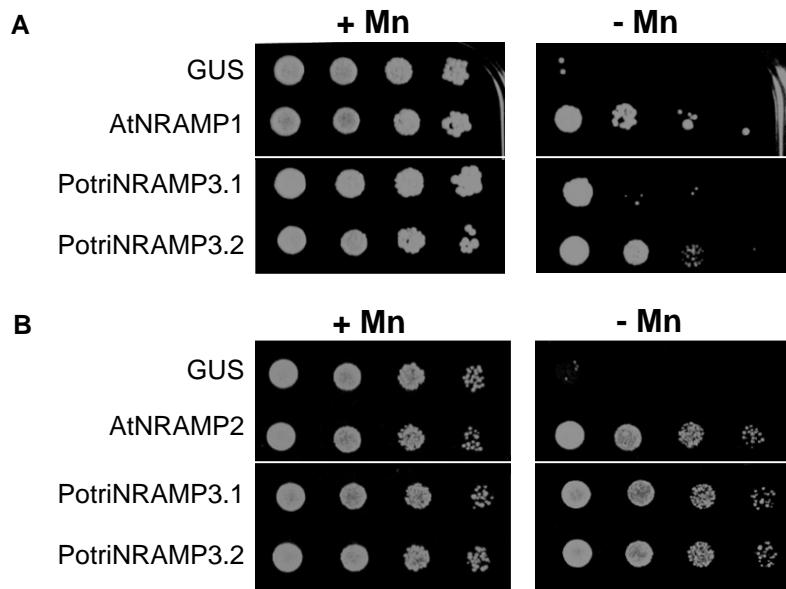

830 **Fig. 8.** Ectopic over-expression of *PotriNRAMP3.1-GFP* but not that of *PotriNRAMP3.2-GFP* perturbs Mn
831 distribution in poplar leaves. Mn concentrations in senescent (A), mature (B), young leaves (C) and young
832 stems (D) of poplars 2 months after transfer from *in vitro* to soil were determined using Atomic Emission
833 Spectroscopy. Mean Mn concentrations of *PotriNRAMP3.1-GFP* or *PotriNRAMP3.2-GFP* OE lines were

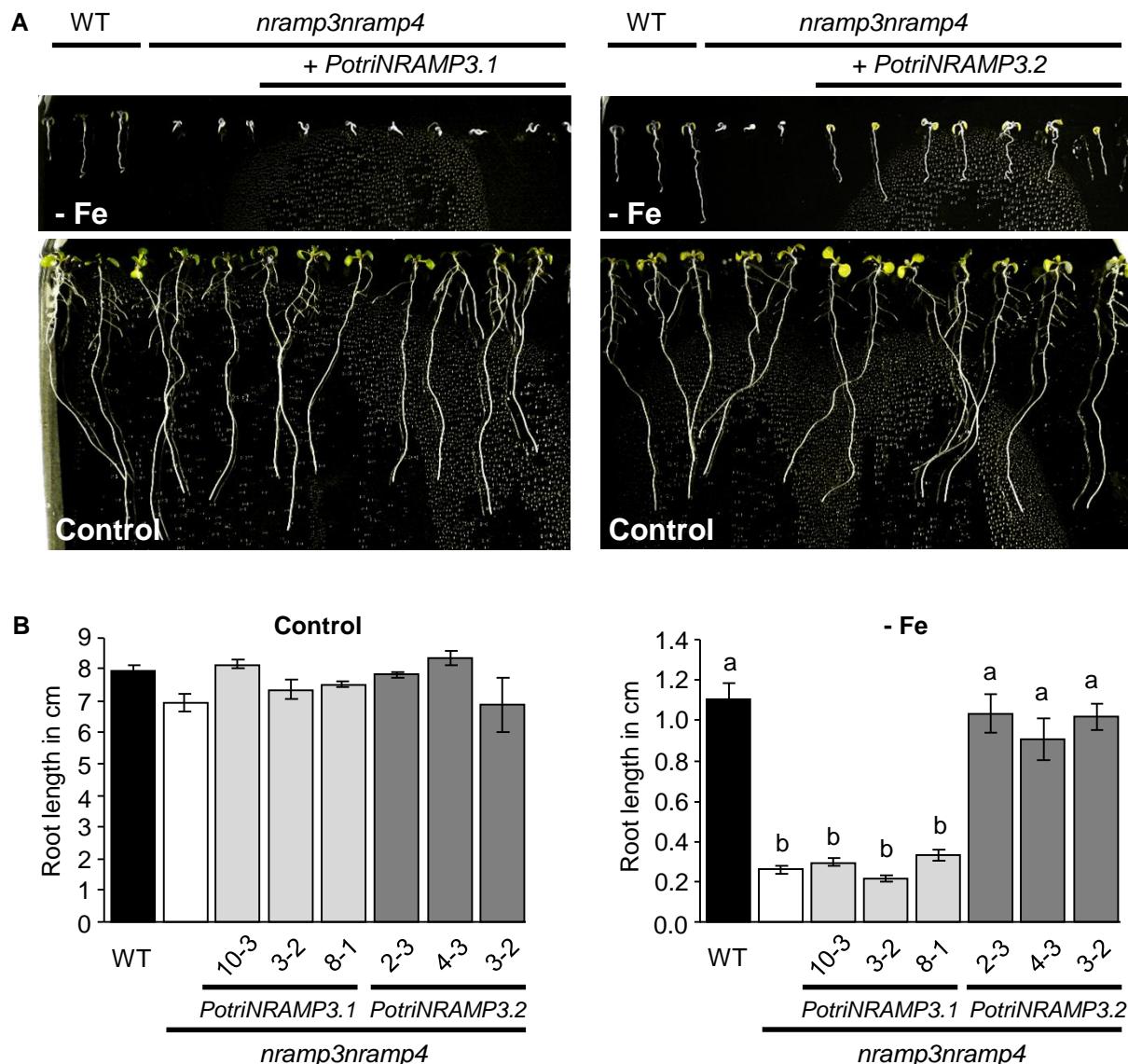
834 compared with NT control. Error bars represent SD (n = 4-7 plants from each independent transgenic line).
835 (E) Mean Mn concentrations in veins and lamina of mature leaves (B) from NT control and 4
836 *PotriNRAMP3.1-GFP* OE lines. Error bars represent SD (n = 4-8 leaves from 2-8 plants for each
837 independent transgenic line). Symbols denote significant differences with the NT control (*) or between
838 lamina and veins (\$) according to a Mann-Whitney test (*/\$: $p < 0.05$, **/\$\$: $p < 0.01$).

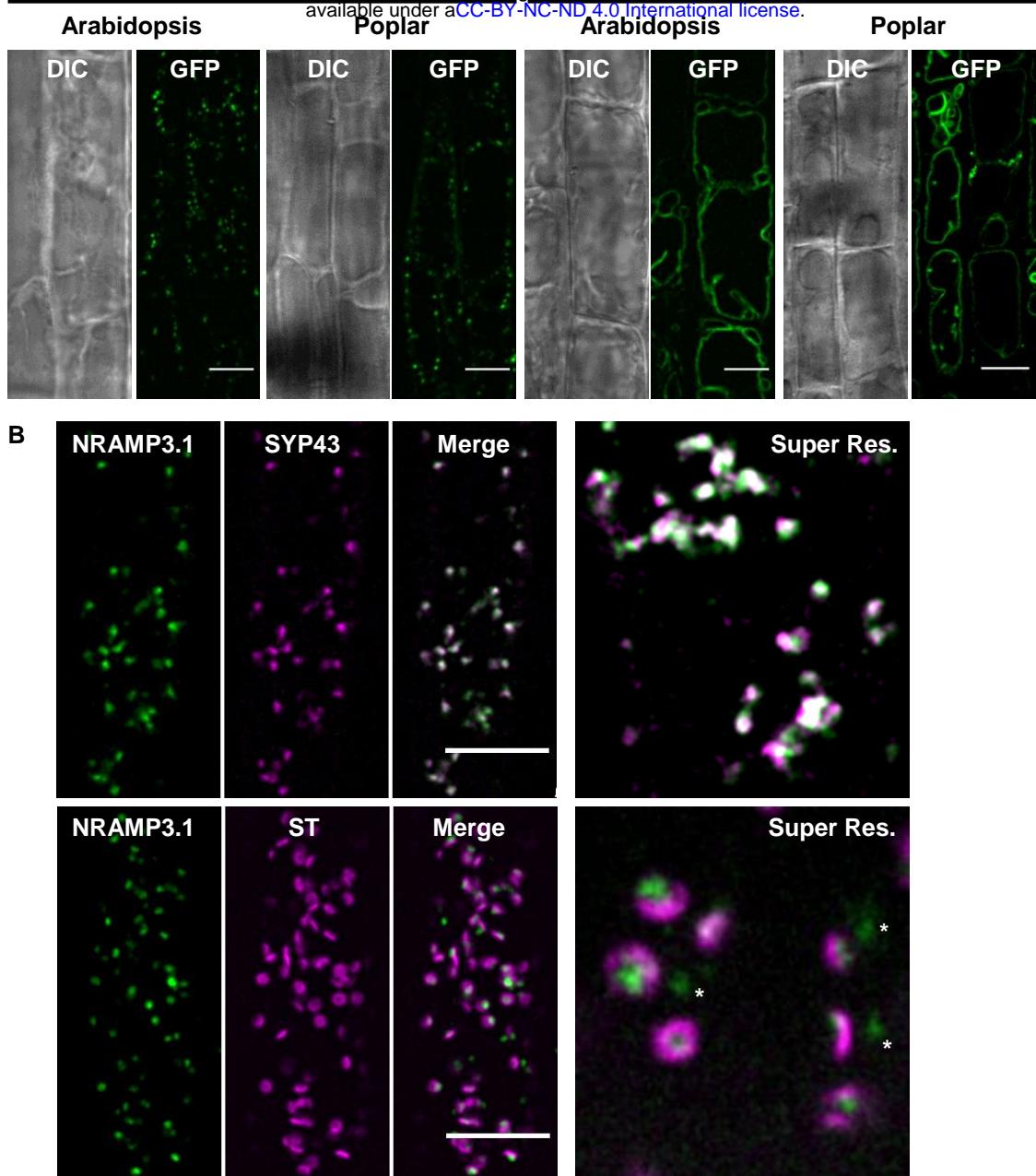

839

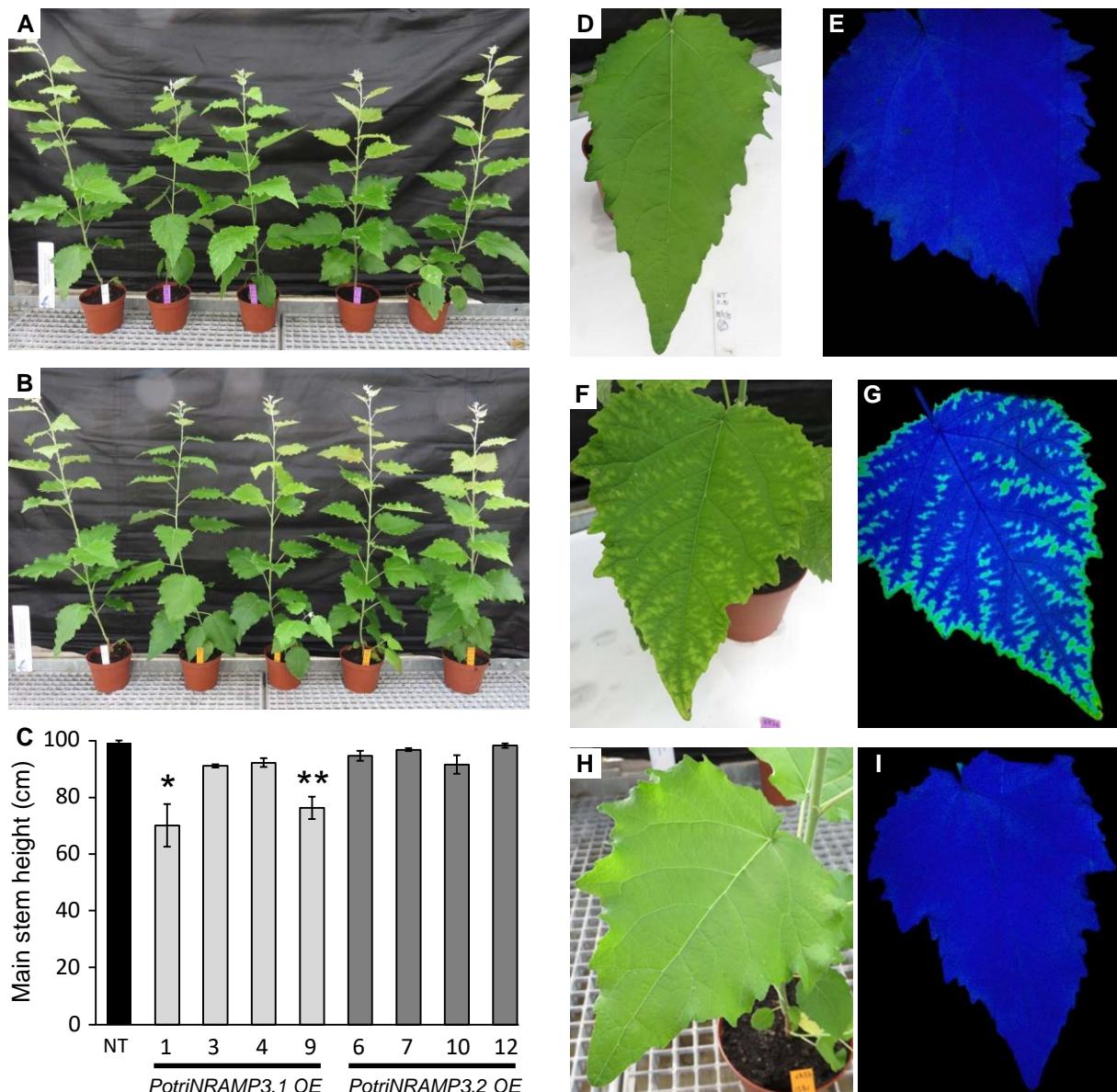
840 **Fig. 9.** Working model to account of *PotriNRAMP3.1* role in Mn transport from cell to cell. The model is
841 based on the hypothesis that Mn moves through the transcellular pathway, being secreted in the apoplast via
842 exocytosis by the cells proximal to the veins and taken up by the cells that are distal to the veins. According
843 to this hypothesis, the transporters loading Mn (*PotriMTP11*) or unloading Mn (*PotriNRAMP3.1* as well as
844 *PotriNRAMP2* assuming function conservation with *Arabidopsis AtNRAMP2*) from the secretory pathway
845 would determine the amount of Mn made available by proximal cells for uptake by distal cells. In this
846 context, efficient removal of Mn from the secretory pathway in the proximal cells by *PotriNRAMP3.1* over-
847 expression would limit Mn availability for the distal cell.

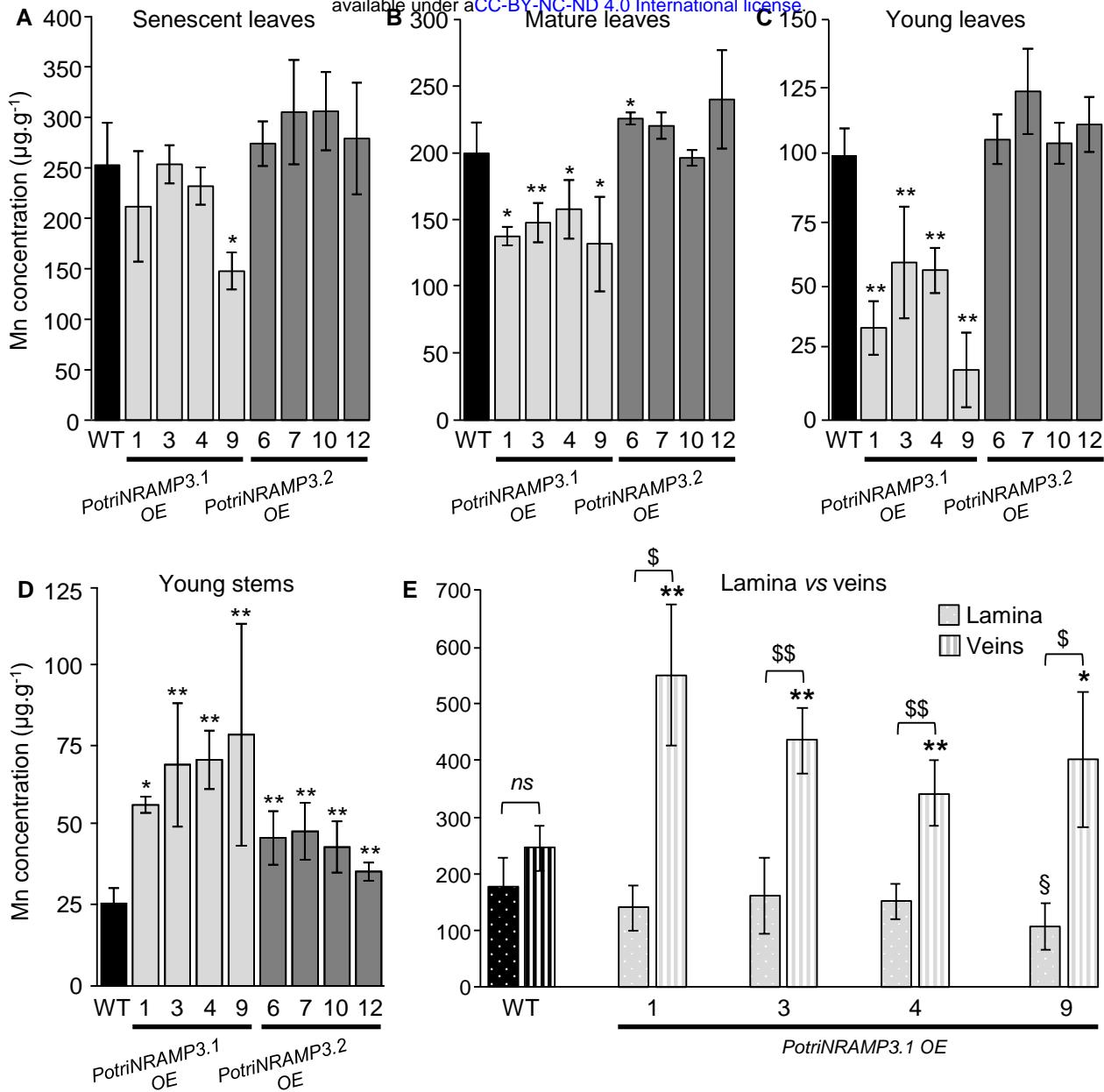
848


Fig. 1. Gene collinearity between *Salix purpurea* and *Populus trichocarpa* genomes is maintained in the area surrounding *NRAMP3* locus which is specifically duplicated in poplars. Schematic representation of the genomic sequence around *NRAMP3* loci in *P. trichocarpa* and *S. purpurea*. Gene collinearity and poplar-specific *NRAMP3* duplication are supported by dot-plots analysis performed with *S. purpurea* and *P. trichocarpa* genomic sequences surrounding *NRAMP3* loci (fig. S2).


Fig. 2. Phylogenetic tree of NRAMP3 homologues in *Populus* and *Salix* species. *A. thaliana* NRAMP2 (AT1G47240.1), NRAMP3 (AT2G23150.1), NRAMP4 (AT5G67330.1) and NRAMP5 (AT4G18790.1) as well as *P. trichocarpa* NRAMP2 (Potri002G121000.1) and *S. purpurea* NRAMP2 (Sapur.002G098200.1) are shown as an outgroup. The other protein sequences used for this tree are listed in supplementary data S3. \$ indicates incomplete protein sequences. Phylogenetic analyses were conducted as described in Materials and methods.


Fig. 3. Alignment of the consensus sequences of *Populus* NRAMP3.1 and NRAMP3.2. The consensus sequences were determined from the NRAMP alignments shown in supplementary figure S3. Asterisk indicates less than 90% of conservation within *Populus* NRAMP3.1 or NRAMP3.2 cluster. Identical, similar and different residues between the two consensus sequences are indicated in black, blue, and red, respectively. Frames indicate residues under purifying selection and green arrows indicate positive selections in either *Populus* NRAMP3.1 or NRAMP3.2 cluster according to the FEL method ($p < 0.05$). Note that NRAMP3.1 sequences contain an insertion of residue at position 4, leading to a gap (-) in NRAMP3.2 sequences.


Fig. 4. *PotriNRAMP3.1* and *PotriNRAMP3.2* encode functional Mn transporters. Functional complementation of *smf1* (A) and *smf2* (B) yeast mutants. Yeast cells expressing GUS (negative control), AtNRAMP1 (positive control), AtNRAMP2 (positive control), *PotriNRAMP3.1* or *PotriNRAMP3.2* were grown overnight. The cultures were diluted to ODs of 1 to 10^{-3} and spotted on synthetic dextrose -ura plates. Transformed *smf1* (A) strains were grown on medium supplemented with 5 mM EGTA and 100 μ M MnSO₄ (+ Mn) or with 5 mM EGTA without MnSO₄ (- Mn). Transformed *smf2* (B) strains were grown in medium supplemented with 10 mM EGTA and 100 μ M MnSO₄ (+ Mn) or with 10 mM EGTA without MnSO₄ (- Mn). The plates were incubated at 30°C for 5 days (*smf1*) or 2 days (*smf2*) before photography. White lines indicate cropping.


Fig. 5. *PotriNRAMP3.2* but not *PotriNRAMP3.1* expression complements the *Arabidopsis nramp3nramp4* double mutant growth defects under iron starvation. (A) Representative pictures of *nramp3nramp4 pUb10:PotriNRAMP3.1* and *pUb10:PotriNRAMP3.2* T3 *Arabidopsis* lines together with wild-type (Col-0) as positive control and *nramp3nramp4* as negative control grown vertically for 8 days in ABIS supplemented with 50 μ M FeHBED (control, bottom panel) or without iron (- Fe, top panel). (B) Quantification of main root lengths of wild-type (Col-0), *nramp3nramp4* and 3 independent *nramp3nramp4 pUb10:PotriNRAMP3.1* and *pUb10:PotriNRAMP3.2* T3 lines. Values represent mean of 10 - 12 roots and bars represent SD. Different letters reflect significant differences according to a Kruskal-Wallis test followed by Dunn's test for multiple comparison ($p < 0.01$). No significant differences among genotypes were detected in the presence of Fe, left panel in (B).

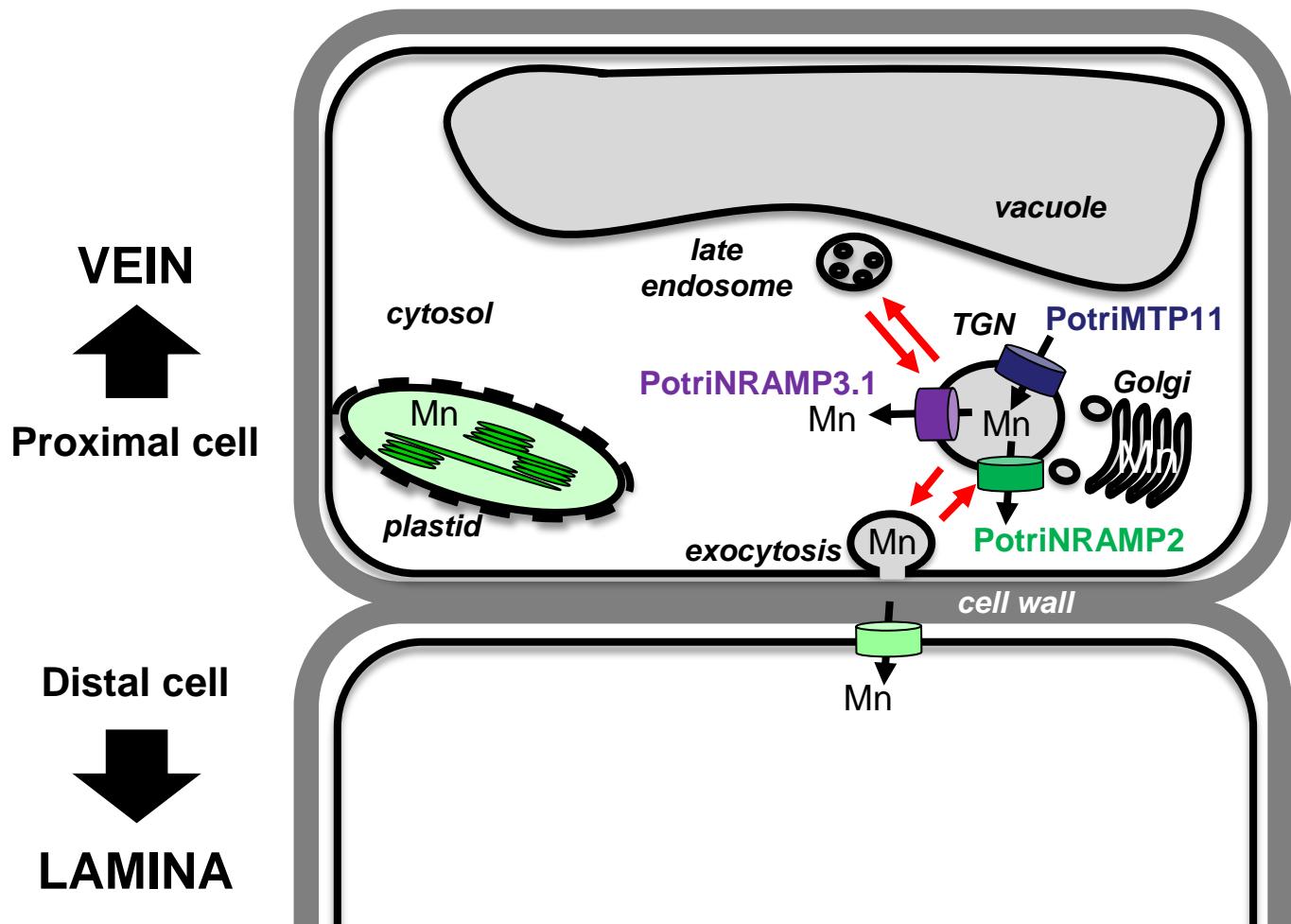

Fig. 6. PotriNRAMP3.1 localizes to the Trans-Golgi Network (TGN) while PotriNRAMP3.2 localizes to the vacuolar membrane. (A) GFP translational fusions of PotriNRAMP3.1 and PotriNRAMP3.2 were imaged in vacuolar planes by spinning disk confocal microscopy in root epidermal cells (early elongation zone) of transgenic Arabidopsis T3 seedlings and poplar. NRAMP3.1-GFP labels granular cytoplasmic structures at the cell periphery, in both Arabidopsis and poplar. In contrast, NRAMP3.2-GFP is present on the vacuolar membrane. Transmitted-light (differential interference contrast, DIC) and fluorescence (GFP) acquisitions are shown. (B) Colocalization of PotriNRAMP3.1-GFP with the TGN marker mRFP-SYP43 (top panel) and juxtaposition of PotriNRAMP3.1-GFP with the trans-Golgi apparatus marker mRFP-ST (bottom panel) in root epidermal cells (early elongation zone) of Arabidopsis F1 seedlings. Translational fusions were imaged in the cortical planes by spinning disk confocal. Note how PotriNRAMP3.1-GFP fluorescence either faces the center of the toroidal structure of the trans-Golgi or is present as Golgi-independent structures (white asterisks). On the merged images the overlap of GFP (green) and mRFP (magenta) channels appears white. Scale bar : 10 μ m. Super resolution acquisitions (Super Res.) are 10 μ m wide.

Fig. 7. The ectopic over-expression of *PotriNRAMP3.1* but not that of *PotriNRAMP3.2* leads to phenotypic alterations in poplar. Overview of 4 independent transgenic poplar lines over-expressing *PotriNRAMP3.1-GFP* (A, purple tags) or *PotriNRAMP3.2-GFP* (B, orange tags) along with NT control (A and B, white tag), 2 months after transfer from *in vitro* to soil. (C) Mean heights of poplar from the different genotypes. Error bars represent SE (n = 4-7 trees per genotype). Asterisks denote significant difference with respect to NT control according to a Mann-Whitney test (*: $p < 0.05$, **: $p < 0.01$). (D-I) Leaf phenotypes of representative trees. (D,E) NT control, (F,G) *PotriNRAMP3.1-GFP* line 9, (H,I) *PotriNRAMP3.2-GFP* line 12. (D, F, H) pictures; (E, G, I) PS II maximum quantum yield measured with imaging Pulse-Amplitude-Modulation. The blue color indicates values of Fv/Fm around 0.75 close to the optimal value of 0.8, turquoise indicates a lower value around 0.45. Relative *PotriNRAMP3.1* and *PotriNRAMP3.2* mRNA levels of over-expressing lines are shown in supplementary figure S5.

Fig. 8. Ectopic over-expression of *PotriNRAMP3.1*-GFP but not that of *PotriNRAMP3.2*-GFP perturbs Mn distribution in poplar leaves. Mn concentrations in senescent (A), mature (B), young leaves (C) and young stems (D) of poplars 2 months after transfer from *in vitro* to soil were determined using Atomic Emission Spectroscopy. Mean Mn concentrations of *PotriNRAMP3.1*-GFP or *PotriNRAMP3.2*-GFP OE lines were compared with NT control. Error bars represent SD ($n = 4-7$ plants from each independent transgenic line). (E) Mean Mn concentrations in veins and lamina of mature leaves (B) from NT control and 4 *PotriNRAMP3.1*-GFP OE lines. Error bars represent SD ($n = 4-8$ leaves from 2-8 plants for each independent transgenic line). Symbols denote significant differences with the NT control (* or \$) or between lamina and veins (\$) according to a Mann-Whitney test (*/\$/\$: $p < 0.05$, **/\$/\$: $p < 0.01$).

Fig. 9. Working model to account of PotriNRAMP3.1 role in Mn transport from cell-to-cell. The model is based on the hypothesis that Mn moves through the transcellular pathway, being secreted in the apoplast via exocytosis by the cells proximal to the veins and taken up by the cells that are distal to the veins. According to this hypothesis, the transporters loading Mn (PotriMTP11) or unloading Mn (PotriNRAMP3.1 as well as PotriNRAMP2, assuming function conservation with *Arabidopsis* AtNRAMP2) from the secretory pathway would determine the amount of Mn made available by proximal cells for uptake by distal cells. In this context, efficient removal of Mn from the secretory pathway in the proximal cells by PotriNRAMP3.1 overexpression would limit Mn availability for the distal cell.