

Structural predictions of the SNX-RGS proteins suggest they belong to a new class of lipid transfer proteins

Blessy Paul^{1,2*}, Saroja Weeratunga^{1*}, Vikas A. Tillu¹, Hanaa Hariri^{2,3}, W. Mike Henne² and Brett M. Collins^{1#}

¹The University of Queensland, Institute for Molecular Bioscience, Queensland, 4072, Australia;

²Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States; ³Current address: Department of Biological Sciences, College of Liberal Arts and Sciences, Wayne State University, Detroit, MI, United States.

Running Title: Structural prediction of a novel lipid transfer domain

*These authors contributed equally.

#Corresponding author: Brett Collins, +61 (0)7 33462043, Email: b.collins@imb.uq.edu.au

Keywords – sorting nexin (SNX), regulator of G-protein signaling (RGS), lipid droplets (LDs), AlphaFold2, X-ray crystallography, lipid transfer protein (LTP), phox homology (PX) domain.

Running title – SNX-RGS lipid transfer proteins

1 **Summary**

2 Recent advances in protein structure prediction using machine learning such as AlphaFold2 and
3 RosettaFold presage a revolution in structural biology. Genome-wide predictions of protein
4 structures are providing unprecedented insights into their architecture and intradomain interactions,
5 and applications have already progressed towards assessing protein complex formation. Here we
6 present detailed analyses of the sorting nexin proteins that contain regulator of G-protein signalling
7 domains (SNX-RGS proteins), providing a key example of the ability of AlphaFold2 to reveal novel
8 structures with previously unsuspected biological functions. These large proteins are conserved in
9 most eukaryotes and are known to associate with lipid droplets (LDs) and sites of LD-membrane
10 contacts, with key roles in regulating lipid metabolism. They possess five domains, including an N-
11 terminal transmembrane domain that anchors them to the endoplasmic reticulum, an RGS domain,
12 a lipid interacting phox homology (PX) domain and two additional domains named the PXA and PXC
13 domains of unknown structure and function. Here we report the crystal structure of the RGS domain
14 of sorting nexin 25 (SNX25) and show that the AlphaFold2 prediction closely matches the
15 experimental structure. Analysing the full-length SNX-RGS proteins across multiple homologues and
16 species we find that the distant PXA and PXC domains in fact fold into a single unique structure that
17 notably features a large and conserved hydrophobic pocket. The nature of this pocket strongly
18 suggests a role in lipid or fatty acid binding, and we propose that these molecules represent a new
19 class of conserved lipid transfer proteins.

20
21
22
23

24 **Introduction**

25 The sorting nexins (SNXs) are a large family of proteins with diverse structures and functions. They
26 are found in all eukaryotes and their defining feature is the presence of a phox homology (PX)
27 domain, which most commonly associates with phosphatidylinositol phospholipids (PtdInsPs) to
28 mediate interactions with membranes of the endolysosomal system ¹⁻³. SNX proteins are typically
29 grouped into sub-families based on the presence of additional functional domains such as
30 membrane tubulating bin/amphiphysin/rvs (BAR) domains, protein interacting SH3 domains, and
31 GTPase activating protein (GAP) domains among many others ³.

32 One of the most highly conserved sub-families are the SNX proteins with regulator of G-
33 protein signalling (RGS) domains or SNX-RGS proteins ^{4, 5}. In humans there are four genes encoding
34 SNX-RGS proteins, SNX13, SNX14, SNX19 and SNX25. Other well-characterised family members
35 include Mdm1 from *Saccharomyces cerevisiae* and Snazarus (Snz) from *Drosophila melanogaster*.
36 These proteins have relatively low sequence similarity across homologues and across species but
37 share a conserved architecture with an N-terminal hydrophobic membrane anchor, and a central
38 RGS domain and PX domain (except for SNX19 orthologues which lack the RGS domain). In
39 addition, the RGS and PX domains are flanked by two sequences referred to as the PX-associated
40 domains PXA and PXC at the N- and C-terminus respectively (**Fig. 1A**). The N-terminal membrane
41 anchor mediates localisation to the endoplasmic reticulum (ER) ⁶⁻¹⁰, and the proteins typically localise
42 to sites of new lipid droplet synthesis and can enhance membrane tethering of the ER to other
43 membrane compartments via their PX domains including the vacuole in yeast ^{8, 11, 12}, the plasma
44 membrane in *Drosophila* ¹⁰ and endolysosomal compartments in mammalian cells ^{6, 7, 9, 13}.

45 The precise function of the SNX-RGS proteins is still unclear although their mutation or
46 depletion has significant impacts on cellular physiology, particularly with respect to lipid homeostasis
47 and endolysosomal function. Mutations in human SNX14 cause the autosomal-recessive cerebellar
48 ataxia and intellectual disability syndrome SCAR20, with a common cellular phenotype of autophagic
49 structures containing undigested material and increased cholesterol accumulation in endolysosomal
50 organelles ^{6, 14, 15}. In mice SNX13, SNX14 and SNX25 are all essential for normal development ¹⁶⁻¹⁸,
51 while altering the expression of Snz significantly extends the lifespan of flies ^{10, 19}. Previous work has
52 defined the structures and lipid binding properties of the PX domains of these proteins; the human
53 SNX13 and SNX19 PX domains bind the endosomal lipid PtdIns3P and SNX25 associates with
54 multiple phosphorylated PtdInsP species, while SNX14 has little affinity for PtdInsP lipids due to an
55 altered binding pocket ^{1, 5, 10}. The RGS domains of SNX13 and SNX14 associate with the G α _s subunit
56 of trimeric G-proteins ^{20, 21}. While SNX13 was originally discovered as a GTPase activating protein
57 (GAP) for G α _s ²¹, SNX14 can bind G α _s but has so far been found to not stimulate its GAP activity²⁰.
58 SNX13 and SNX14 have also been found to associate with the endosomal Rab GTPase Rab9A,
59 although the functional significance of this is unclear ²². Proteomics studies have identified
60 association of yeast Mdm1 with Faa1 long-chain-fatty-acid-CoA ligase, while *Drosophila* Snz and
61 human SNX14 were associated with fatty acid desaturases Desat1 and SCD1 respectively ^{10, 23},

62 suggesting a role in lipid and fatty acid regulation. In line with this, members of the SNX-RGS protein
63 family have almost universally been shown to localize to ER-lipid-droplet (LD) contact sites with other
64 organelles (**Fig. 1B**). Yeast Mdm1 localizes to nucleus-LD-vacuole junctions^{8, 12, 24}. Human SNX14
65 localizes to ER-LD contacts⁷, and SNX19 has recently been shown to localize to ER-lysosome
66 contacts, where it also contacts LDs⁹.

67 A better understanding of the function(s) of the SNX-RGS proteins requires further
68 knowledge of their structures and molecular interactions. Here we have solved the crystal structure
69 of the human SNX25 RGS domain, revealing a typical α -helical RGS fold. Building on this we took
70 advantage of the recently developed AlphaFold2 machine learning (ML)-based structural prediction
71 algorithm²⁵ and the related AlphaFold2 database²⁶ to examine the structures of the full-length SNX-
72 RGS proteins. These analyses revealed an intriguing structural fold not previously seen, that is
73 formed by intramolecular association of the distal PXA and PXC domains. A remarkable feature of
74 this structure is the presence of a large hydrophobic cavity. **Based on their structures and known**
75 **localisation and interactions we propose that the SNX-RGS proteins may represent a previously**
76 **undefined class of lipid transfer proteins (LTPs) that are likely to mediate binding of multiple lipids or**
77 **other fatty acid derived molecules.** Further, using AlphaFold2 we identify an additional yeast PX
78 domain-containing protein Lec1/Ypr097w that contains another likely lipid-binding structure that
79 shares superficial resemblance but is not directly related to the SNX-RGS proteins. This work
80 provides a new understanding of the likely function of the SNX-RGS proteins, presents a structural
81 bioinformatics comparison of novel lipid binding domains across various eukaryotic species, and
82 further demonstrates the utility of new ML-based structure prediction programs such as AlphaFold2
83 to develop novel structural and functional insights.

84 **Results**

85 **Crystal structure of the human SNX25 RGS domain**

86 The SNX-RGS family members are typically represented as modular proteins with four to five distinct
87 conserved domains (**Fig. 1A and 1B**)^{4, 5, 8, 9, 12, 14, 15, 19, 21, 23, 27}. Our previous studies examined the
88 structures and phosphoinositide binding properties of the PX domains of SNX14, SNX19 and SNX25
89 using NMR and X-ray crystallography^{1, 5, 10}. Here we have also solved the structure of the human
90 SNX25 RGS domain by X-ray crystallography in two crystal forms (**Fig. 1C; Fig. S1; Table S1**). The
91 wildtype sequence of the RGS domain crystallises with a non-native disulfide bond formed by
92 Cys526 between adjacent monomers in the crystal lattice which distorts the orientation of the helix
93 α 5. Mutation of Cys526 to alanine (C526A) prevents this bond formation and allows the domain to
94 crystallise with a more typical α 5 conformation similar for example to a canonical RGS domain such
95 as RGS16 (PDB ID 2IK8)²⁸ (**Fig. 1D**).

96 We next investigated how similar the experimentally determined SNX25 RGS domain was to
97 the predicted structure from the AlphaFold2 database²⁶. The structure predicted by AlphaFold2 is
98 remarkably close to the SNX25 crystal structure, with an overall root-mean-squared-deviation
99 (RMSD) of 0.8 Å over 107 C_α atoms (**Fig. 1E**). Side chain conformations in general were likewise
100 closely aligned between the experimental and predicted structures (**Fig. S2**). The predicted
101 structures of the human SNX13 and SNX14 RGS domains from the AlphaFold2 database are
102 generally similar to the experimental SNX25 RGS domain structure as expected, but with some
103 notable differences (**Fig. 1F**). In general, the three domains have relatively low sequence homology,
104 and this is reflected for example in a significantly longer α 3- α 4 extension in SNX13 compared to the
105 other two proteins and (**Fig. 1F and 1G**). The experimental structures of the PX domains of SNX14,
106 SNX19 and SNX25 were also compared with their respective AlphaFold2 predictions and in general,
107 the AlphaFold2 models were found to be highly similar with only minor differences in sidechain
108 positions and in some flexible loop regions. (**Fig. S2**). Overall, these comparisons confirm that the
109 AlphaFold2 predictions of selected SNX-RGS domains are accurate models comparable to their
110 known experimental structures, including the RGS domain of SNX25 for which no detailed structural
111 information was available prior to this study.

112

113 **AlphaFold2 predictions of the yeast, fly and human SNX-RGS proteins reveal conserved PXA
114 and PXC domain intramolecular interactions**

115 Despite these structural insights into the SNX-RGS proteins, the structures of the N-terminal PXA
116 and PXC domains bear no obvious sequence similarity to other proteins and their structures have
117 not been determined, and the overall architecture of the proteins is unknown. We have so far been
118 unsuccessful in expressing and purifying either full-length SNX-RGS proteins or any of their
119 individual PXA and PXC domains in suitable quantities for structural or biochemical analyses. As the
120 recently released AlphaFold2 database²⁶ includes predictions of the proteomes of multiple

121 eukaryotic species from yeast to humans, we took advantage of this to examine the predicted
122 structures of full-length SNX-RGS proteins across different species (**Fig. 2**; **Fig. S2**; **Fig. S3**).

123 The plots of the predicted alignment errors (PAE) of the AlphaFold2 models provide important
124 insights into the organisation of the full-length proteins (**Fig. 2A**). The PAE measures AlphaFold's
125 expected position error at residue 'x' if the predicted and true structures were aligned on residue 'y'.
126 Square regions of the plot along the diagonal indicate the presence of globular domains where
127 residues are structurally correlated with each other, while off-diagonal low PAE regions for residue
128 pairs from two different domains is highly indicative of stable inter-domain interactions. The PAE
129 plots for the human SNX-RGS proteins display expected low PAE regions for each of the four
130 cytoplasmic domains downstream of the N-terminal ER membrane anchor (except for SNX19 which
131 lacks an RGS domain). Notably, even though the N-terminal PXA domain and C-terminal PXC
132 domains are around 500 amino-acids apart in the primary sequence, these two domains are
133 invariably predicted to be tightly correlated with each other. Further, *Drosophila* Snz and yeast
134 Mdm1p homologues show a similar high degree of structural correlation between their PXA and PXC
135 domains.

136 The AlphaFold2 predicted atomic structures of the human SNX-RGS proteins are shown in
137 **Fig. 2B** and **Fig. S3**. Consistent with secondary structure predictions⁵ both the PXA and PXC
138 domains are entirely α -helical, and as indicated by the PAE plots they are tightly associated with
139 each other. Indeed, they form an overall structure with a highly entwined topology, which is
140 structurally similar in all four proteins. Relative to this 'core' structure the N-terminal membrane
141 anchor, and intervening RGS and PX domains adopt diverse orientations pointing to a substantial
142 degree of structural dynamics in the full-length proteins. Note that the human SNX25 sequence in
143 the AlphaFold2 database (Uniprot ID Q9H3E2) lacks the N-terminal membrane anchor as previously
144 identified^{5, 29} (Uniprot A0A494C0S0). We therefore also performed predictions of the full SNX25
145 sequence using the online ColabFold pipeline³⁰, which show a similar structure but with the
146 additional N-terminal α -helical membrane anchor (**Fig. S4**). As for predictions across the family, the
147 three separate models of human SNX25 generated by ColabFold suggest that the transmembrane
148 anchor, RGS and PX domains adopt relatively flexible orientations with respect to the core PXA-
149 PXC structure. Although not shown, both full-length Mdm1p and Snz have analogous architectures
150 with a core structure composed of the PXA and PXC domains that adopt a flexible orientation with
151 respect to the transmembrane, RGS and PX domains. Overall, the predicted structures of the RGS-
152 SNX proteins are highly consistent across homologues and species and reveal a novel
153 intramolecular association between the previously uncharacterised PXA and PXC domains.

154

155 ***The PXA and PXC domains form an interwoven structure with a large conserved hydrophobic***
156 ***channel***

157 For a closer examination of the PXA-PXC structure we focus on these domains from the SNX13
158 model (**Fig. 3A**; **Movie S1**). Both the PXA and PXC domains are entirely α -helical as predicted⁵ and

159 do not share any obvious structural similarity with previously characterised proteins. A notable
160 feature of their structures is that they are intimately intertwined in such a way that neither domain
161 would be expected to form their correct fold independently of the other. The threading of their α -
162 helical structures together forms an overall elongated structure with a length of around 80 Å. The
163 same α -helical topology and pattern of threading between the PXA and PXC domains is highly
164 conserved and is seen in all SNX-RGS family members (Fig. 3B). Although the yeast protein Nvj3p
165 (Ydr179w-a) is not found in higher eukaryotes, it was previously proposed to share weak sequence
166 similarity with the PXA domain of the SNX-RGS proteins ⁸. Interestingly the AlphaFold2 prediction
167 of Nvj3p shows a very similar structure to the combined PXA and PXC fold of the SNX-RGS proteins
168 (Fig. 3C). Although it lacks a transmembrane, RGS or PX domains, and has only a minimal linker
169 sequence between the two halves of its structure, it shares the same overall topology and is a bona
170 fide PXA-PXC structure.

171 A visual inspection of the core PXA-PXC domains reveals the presence of a large channel
172 that runs through much of the structure with an exposed surface composed of side chains of both
173 domains (Fig. 4; Fig. S5; Movie S1). The channels are extremely hydrophobic, as seen from
174 mapping surface hydrophobicity (Fig. 4A; Fig. S5) or from inspecting the details of the side chains
175 lining the channel of human SNX13 as an example (Fig. 4B; Fig. S5). The entrance to the cavities
176 is highly conserved indicating it is likely to be a critical functional element of the proteins (Fig. 4A;
177 Fig. S5). The presence of such a hydrophobic channel or pocket is a common feature of the class
178 of proteins known as lipid transfer proteins (LTPs) which can bind, extract and transport hydrophobic
179 lipids and fatty acids from various compartments for non-vesicular trafficking ³¹⁻³⁴ (Fig. S5). Given
180 this structural similarity, coupled with the known localisation of the SNX-RGS proteins at ER
181 membrane contact sites and their effects on lipid homeostasis, we propose that this channel in the
182 SNX-RGS proteins is very likely to be a lipid binding pocket. The sizes of the cavities found in the
183 various PXA-PXC proteins are relatively large, ranging from ~2000-6000 Å³ compared with typical
184 sized lipid binding pockets in other LTPs of ~400-2000 Å³ (Fig. S5; Table S3). These cavities are
185 larger than those found in cholesterol ester transfer protein (CETP), which can bind up to two
186 phospholipids and two neutral lipids such as cholesterol esters or triglycerides at once (Fig. S5)³⁵.
187 Manual placement of a phosphatidylethanolamine lipid (volume ~1200 Å³ for palmitoyl-oleoyl-
188 phosphatidylethanolamine³⁶) in the channel of SNX13 shows that the dimensions of this hydrophobic
189 pocket in the SNX-RGS proteins is well suited for binding lipid acyl chains (Fig. 4C; Movie S1).

190 Several previous studies have shown that the SNX-RGS proteins are rapidly recruited to the
191 surface of newly formed lipid droplets. This has been observed for Mdm1 in yeast ¹¹, Snz in flies ¹⁰,
192 and SNX13, SNX14, and SNX19 in mammalian cells ^{6, 7, 9, 13}. This provides strong support for a role
193 in direct transfer of neutral lipids, phospholipids, or lipid metabolites at ER-LD contact sites. We
194 confirmed the ability to localise to the LD surface is conserved in all human family members by
195 analysing the localisation of SNX25 (Fig. 5). In A431 cells in the absence of stimulation SNX25
196 shows a relatively diffuse localisation, however on addition of oleic acid SNX25-FLAG is rapidly

197 redistributed and shows a strong degree of localisation to the surface of newly formed LDs. Further
198 work will be needed to examine if these ER-associated LDs are also in contact with other membrane
199 compartments, but this data confirms that all SNX-RGS family members from yeast to humans **have**
200 a strong affinity for the LD monolayer.

201

202 **Structural bioinformatics of the SNX-RGS proteins**

203 The DALI webserver³⁷ is now capable of searching the entire database of AlphaFold2 predictions²⁶
204 for structurally similar proteins. We performed a search using the core PXA-PXC structure of SNX25
205 to determine if any other proteins share similar predicted folds (**Table S2**). This revealed several
206 interesting observations. **Firstly, while** the PXA-PXC structure is found in proteins across metazoans,
207 plants and yeast we did not find any similar structures in either *D. dictyostelium* or *P. falciparum* and
208 they therefore do not seem to be present in all eukaryotes. **Secondly, we** identified three proteins in
209 the fission yeast *S. pombe* with this fold. Meiotically up-regulated gene 122 protein (Mug122)
210 (O74444) lacks the RGS domain but has both transmembrane and central PX domains, while snx12
211 (Q9USN1) has each of the domains common to the SNX-RGS family. The protein annotated as
212 Pxa1 (O14200) appears to be most similar to Nvj3, as it lacks transmembrane, PX and RGS domains.
213 We also performed a BLAST **sequence** search of the *Chaetomium thermophilum* genome, a
214 thermophilic filamentous yeast popular with structural biologists because of the generally higher
215 stability of the encoded proteins. The *C. thermophilum* genome encodes three proteins with putative
216 PXA-PXC structures (**Table S2**), and these were confirmed by performing ColabFold predictions of
217 their structures (not shown). One of these has all domains common to the SNX-RGS family, a second
218 lacks the RGS domain like human SNX19, and the third has only the PXA-PXC domains like *S.*
219 *cerevisiae* Nvj3.

220

221 ***Lec1/Ypr097w is another putative LTP found in yeast and amoeba***

222 While examining the AlphaFold2 predicted structures of PX domain containing proteins in various
223 species, primed by the discovery of the PXA-PXC lipid-binding fold, we noticed that another yeast
224 protein called Lec1/Ypr097w (Q06839) also possessed a superficially similar architecture.
225 Lec1/Ypr097w is 1073 residues in length and is annotated to have a central PX domain between an
226 N-terminal PXB domain and C-terminal domain of unknown function (DUF3818) (**Fig. 6A**).
227 Analogously to the SNX-RGS proteins, the N- and C-terminal domains of Lec1/Ypr097w form α -
228 helical structures with previously unknown folds that come together to form an intimately interwoven
229 structure (**Fig. 6B; Fig. S6A and S6B**). **Despite this superficial similarity however**, neither domain is
230 related in sequence or structure to the PXA or PXC domains and the way they interact with each
231 other is also entirely different. Note that the term 'PXB domain' is also used for a C-terminal domain
232 found in human SNX20 and SNX21 which is also completely unrelated in sequence or structure³⁸.
233 For clarity herein we will refer to the N-terminal Lec1/Ypr097w PXB domain as 'PXYn' and the C-
234 terminal DUF3818 domain as 'PXYc', where PXY denotes 'PX-associated domains from yeast'.

235 Most interestingly, the PXYn and PXYc domains of Lec1/Ypr097w also form a barrel-like
236 structure that has a very large cavity surrounded by hydrophobic residues (**Fig. 6C; Table S3**). The
237 structure is conserved in homologues from *Schizosaccharomyces pombe* (Q9Y7N9), and *Candida*
238 *albicans* (A0A1D8PQ52) (**Fig. S6C**). Although structurally unrelated to the SNX-RGS proteins, the
239 general similarities to Lec1/Ypr097w and its homologues are striking, with a central phosphoinositide
240 binding PX domain flanked by N-terminal and C-terminal α -helical domains that come together to
241 form a co-folded intramolecular structure. Like the SNX-RGS proteins based on its structural
242 properties it is very likely that the hydrophobic cavity formed by the PXYn-PXYc domains is also
243 involved in binding to lipids or fatty acids. The volume of the cavity in Lec1/Ypr097w is very large
244 ($>15000 \text{ \AA}^3$) and could potentially accommodate multiple phospholipid or neutral lipid molecules. In
245 each of the predicted PXY protein structures from different species the PX domain forms a loose
246 plug over the large hydrophobic cavity suggesting a potential regulatory role for this domain in lipid
247 binding (**Fig. S6C**). This may be relatively dynamic as several independent predictions of
248 Lec1/Ypr097w using ColabFold suggest the PX domain can adopt alternative orientations that either
249 block the pocket or leave the cavity exposed (**Movie S2**).

250 The PXYn-PXYc structure appears to be relatively restricted throughout evolution, as we only
251 found examples in yeast, including two proteins in *S. pombe*, as well as a protein in *D. dictyostelium*.
252 *S. pombe* PX domain-containing protein C1450.12 (Q9Y7N9) is highly akin to Lec1/Ypr097w from
253 *S. cerevisiae*, while uncharacterized protein C663.15c (O74521) appears to lack a central PX
254 domain between the two halves of the PXYn-PXYc structure (**Fig. S6; Fig. S7**). The *D. discoideum*
255 DUF3818 domain-containing protein (Q54JB8) also lacks a PX domain, and while its C-terminal
256 PXYc domain is like Lec1/Ypr197w, its N-terminal region is structurally divergent from the PXYn
257 domain (**Fig. S7**). Despite this it also possesses a predicted large hydrophobic cavity and therefore
258 may share a functional relationship. Again, we performed a BLAST search of the *C. thermophilum*
259 protein sequences using both *S. pombe* sequences as inputs and found one protein homologous to
260 the Lec1/Ypr097w-like Q9Y7N9 (G0SCP5) and a protein lacking the PX domain like O74521
261 (G0S997). These discoveries further demonstrate the utility of AlphaFold2 for predicting novel
262 structures, and its power in aiding evolutionary analyses of protein homology.

263
264
265

266 **Discussion**

267 With the recent advances made by the AlphaFold2 machine learning algorithm and public release
268 of the AlphaFold2 database^{25, 26}, it is now possible to perform detailed structural analyses and
269 evolutionary comparisons of protein families across diverse species. In this work we have solved the
270 crystal structure of the human SNX25 RGS domain and gone on to examine the previously
271 unexplored structures of the full-length SNX-RGS proteins. Although the overall structures of these
272 proteins display conformational flexibility with respect to their N-terminal transmembrane ER tethers,
273 in contrast to previous pictures based on primary and secondary structure predictions the disparate
274 N- and C-terminal PXA and PXC domains form a highly entwined intramolecular interaction
275 generating a compact cylindrical α -helical structure. The most notable feature of a central
276 hydrophobic cavity with a highly conserved entrance and surface lining. This leads us to conclude
277 that the likely function of the PXA-PXC structure will be to bind and transport lipids or fatty acids,
278 and that the proteins represent a distinct class of ER membrane-anchored LTPs.

279 Broader analysis of other PX domain-containing protein family members indicate that the
280 yeast protein Lec1/Ypr097w and related molecules share a superficially similar LTP structure and
281 function. Here the central PX domain is found between N-terminal PXYn and C-terminal PXYc
282 domains that also become conjoined to form an all α -helical barrel-like structure with a large
283 hydrophobic cavity, although their sequences are not related and their structural details are entirely
284 different. As we were performing these studies, a preprint was published by the Schuldiner lab that
285 identified novel proteins that reside at or regulate formation of membrane contact sites in yeast²⁴.
286 In this work Ypr097w was identified to localise to contacts between lipid droplets and the cell surface
287 and renamed Lec1 (Lipid Droplet Ergosterol Cortex 1) because of a potential role in ergosterol
288 transport. This team also analysed the AlphaFold2 predicted structure of Lec1/Ypr097w and came
289 to similar conclusions about its potential role as a novel lipid transfer protein (LTP), as well as
290 identifying **the superficial** structural similarities to the SNX-RGS proteins.

291 What do these new structural insights suggest about the function(s) of the SNX-RGS proteins?
292 The hydrophobic nature and conserved surface of the large interior cavity found in the PXA-PXC
293 domain structure indicates they are very likely to mediate the binding of lipids, fatty acids or other
294 lipid-derived metabolites. A general finding is that the SNX-RGS proteins reside in the ER at steady
295 state via their N-terminal membrane anchor, and **subsequently** colocalise with LDs particularly under
296 conditions of new LD synthesis. They are typically found to be enriched in regions of the ER and ER-
297 associated LDs that are in contact with other membranes where they can play a tethering role via
298 their phosphoinositide-binding PX domain. These membrane contacts include the cell surface in the
299 fat body cells of fruit flies¹⁰, the nuclear-vacuolar junction in budding yeast^{8, 11, 12}, and with
300 endolysosomal compartments in mammalian cells^{6, 7, 9, 13}. This localisation to ER-LD-membrane
301 contact sites is dramatically altered under conditions of lipid flux (e.g. addition of excess free fatty
302 acids to cells^{7, 9}), and the SNX-RGS proteins play important roles in lipid metabolism and
303 homeostasis.

304 The effects of mutations, knockouts or overexpression of SNX-RGS proteins are complex,
305 but at the cellular level their depletion commonly leads to higher cellular levels of neutral
306 triacylglycerol (TAG) and accumulation of cholesterol in late endosomal compartments^{6, 11, 13, 16}.
307 Yeast Mdm1 and human SNX14 have been associated with Faa1 and ACSL3 respectively, long-
308 chain-fatty-acid-CoA ligases that activate fatty acids for synthesis of cellular lipids and degradation
309 via β -oxidation^{7, 11}. **Drosophila Snz and human SNX14 were also found to associate with stearoyl-**
310 **CoA desaturases Desat1 and SCD1 respectively, which catalyze the insertion of a cis double bond**
311 **at the Δ -9 position of fatty acyl-CoA substrates**^{10, 23}. Knockout of SNX14 causes cells to be sensitive
312 to saturated fatty acid (SFA)-induced toxicity and increased levels of SFAs are incorporated into
313 phospholipids, which can be rescued by SCD1 overexpression. A recent CRISPR screen for genes
314 that influence cholesterol homeostasis found SNX13 (and SNX14) as a prominent hit¹³. Niemann
315 Pick type C (NPC) disease is caused by genetic defects in the lysosomal cholesterol transport
316 system, Niemann Pick C1 and C2 proteins (NPC1 and NPC2) leading to endolysosomal
317 accumulation of cholesterol and Bis(monoacylglycerol)phosphate (BMP, also known as LBPA)^{39, 40},
318 which is essential for normal cholesterol transport out of the endolysosomal compartment⁴¹⁻⁴⁵. In
319 screens using the NPC1 inhibitor U18666A cholesterol accumulation could be reversed by depletion
320 of SNX13, and cholesterol was **exported** in an NPC1-independent manner to other compartments
321 including the plasma membrane. Surprisingly SNX13 depletion led to a significant increase in total
322 lysosomal BMP, which may be important for the observed NPC1-independent cholesterol transport
323^{46, 47}. Although highly speculative one possibility is that the PXA-PXC domains are important for
324 transport and regulation of lipids such as BMP at contacts between the ER and endolysosomal
325 compartments. Identifying specific ligand(s) and whether the different family members have
326 alternative binding activities will require further experimentation.

327 The PXA-PXC domains were previously considered as conserved but essentially
328 independent structures in the SNX-RGS family of proteins. From the analyses presented here it is
329 clear that these two domains are intimately associated in a single structural unit and that neither the
330 PXA or PXC sequences are likely to fold correctly in the absence of the other. Previously, several
331 studies have examined the impact of deleting these regions on SNX-RGS protein function. While
332 deletion of either domain generally renders the proteins non-functional as expected, there is
333 evidence that the two sequences contain regions that are important for LD targeting and potentially
334 protein interactions. In yeast, it was found that the PXA domain of Mdm1 could define sites of LD
335 formation, and could recruit the Faa1 fatty-acid-CoA ligase¹². In contrast, several reports have
336 shown that the PXC domain by itself is required and sufficient for targeting to the surface of newly
337 formed LDs in both flies and mammals^{7, 10, 13}. Deleting an amphipathic helical region in SNX14 PXC
338 (residues 801-819), which is predicted to sit at the entrance of the hydrophobic cavity of the
339 assembled PXA-PXC structure (**Fig. S5**), prevents LD attachment. These studies suggest that even
340 in the absence of the PXA domain, and thus proper folding of the PXA-PXC structure, there are
341 sequences in the PXC domain capable of direct association with the LD monolayer.

342 In conclusion, although further experiments are required to [experimentally validate these](#)
343 [models and](#) define the functional lipid interactions of the SNX-RGS proteins and their distantly related
344 Lec1/Ypr097w cousins, these structural studies provide strong evidence for a novel lipid transport
345 activity mediated by these conserved molecules. As a final general observation, this work further
346 confirms the ability of AlphaFold2 to predict not only already known folds, but to define completely
347 new structures without previously recognised topologies and thus provide new insights into biological
348 function.

349
350

351 **Materials and methods**

352 **Cloning, expression purification of the SNX25 RGS domain**

353 The genes encoding the human SNX25 RGS domain (residues 446-569; A0A494C0S0) and the
354 SNX25 RGS(C526A) mutant were synthesised by Gene Universal (USA) and cloned into the
355 expression plasmid of pGEX-4T-2 for bacterial expression with an N-terminal GST tag and thrombin
356 cleavage site. The construct was transformed into *Escherichia coli* BL21-CodonPlus (DE3)-RIL cells
357 and plated on lysogeny-broth (LB) agar plates supplemented with ampicillin (0.1 mg/mL). Single
358 colonies were then used to inoculate 50 mL of LB medium containing ampicillin and the culture was
359 grown overnight at 37°C with shaking at 180 rpm. The following day 1 L of LB medium containing
360 ampicillin (0.1 mg/mL) was inoculated using 10 ml of the overnight culture. Cells were then grown
361 at 37°C with shaking at 200 rpm to an optical density of 0.8-0.9 at 600 nm and the protein expression
362 was induced by adding 0.5 mM IPTG (isopropyl-β-D-thiogalactopyranoside). Expression cultures
363 were incubated at 20°C overnight with shaking and the cells were harvested the next day by
364 centrifugation at 4000 rpm for 15 min using a Beckman rotor JLA 8.100. Cell pellets were
365 resuspended in 20 mL (for cell pellet from 1 L culture) of lysis buffer (50 mM HEPES, (pH 7.5), 500
366 mM NaCl, 5% glycerol, Benzamidine (0.1 mg/mL), and DNase (0.1 mg/mL)). Resuspended cells
367 were lysed by using the cell disrupter (Constant systems, LTD, UK, TS-Series) and the soluble
368 fraction containing the protein was separated from cell debris by centrifugation at 18,000 rpm for 30
369 min at 4°C. The soluble fraction was first purified by affinity chromatography using Glutathione
370 Sepharose 4B resin (GE Healthcare) and the GST tag was cleaved on column by incubating the
371 protein with Thrombin (Sigma Aldrich) overnight at 4°C. The next day the protein was eluted using
372 50 mM HEPES (pH 7.5), 200 mM NaCl. The eluted protein was then concentrated and further
373 purified by gel filtration chromatography (Superdex 75 (16/600), GE Healthcare) using 50 mM
374 HEPES, pH 7.5, 200 mM NaCl, 0.5 mM TCEP (tri(2-carboxyethyl)phosphine) and the fractions
375 corresponding to SNX25 RGS domains were analysed by SDS PAGE.

376

377 **Crystallisation and structure determination of the SNX25 RGS domain**

378 Purified proteins were concentrated to 12 mg/mL for crystallisation. Initially 96 well crystallisation
379 screens were set up using the hanging drop method with a Mosquito Liquid Handling robot (TTP
380 LabTech). The optimised diffraction-quality crystals were obtained in 24-well plates using hanging
381 drop method. The SNX25 RGS domain was crystallised in 30% PEG 4000, 0.2 M Sodium acetate,
382 0.1 M Tris pH 8.5, while the SNX25 RGS(C526A) domain was crystallised in 18% PEG 8000, 0.1 M
383 calcium acetate, 0.1 M sodium cacodylate, pH 6.5. Diffraction data was collected at the Australian
384 Synchrotron MX2 beamline (Clayton, VIC, Australia), integrated with XDS ⁴⁸ and scaled with
385 AIMLESS software ⁴⁹. The SNX25 RGS structure was solved by molecular replacement using the
386 RGS1 structure as input (PDB ID 2BV1; ²⁸) in PHASER ⁵⁰ and the resulting model was rebuilt and
387 refined by using COOT ⁵¹ and PHENIX ⁵² respectively. The SNX25 RGS(C526A) was solved similarly
388 by molecular replacement using the wild-type SNX25 RGS domain as input.

389

390 **Protein structural prediction, modelling and visualisation**

391 The structural predictions of the full-length proteins from different species including *S. cerevisiae*, *D.*
392 *melanogaster*, *C. elegans*, *P. falciparum*, *D. discoideum*, *A. thaliana*, *S. pombe*, *M. janaschii*, *D. rerio*
393 and *H. sapiens* analysed in this study were obtained from the AlphaFold2 database
394 (<https://alphafold.ebi.ac.uk>;^{25, 26}). To generate predicted models of human SNX25 including the
395 previously annotated transmembrane domain^{5, 29} and the *S. cerevisiae* Lec1/Ypr097w to assess the
396 flexibility of its PX domain, we used the AlphaFold2 neural-network²⁵ implemented within the freely
397 accessible ColabFold pipeline³⁰. For each modelling experiment ColabFold was executed using
398 default settings where multiple sequence alignments were generated with MMseqs2⁵³ and structural
399 relaxation of final peptide geometry was performed with Amber⁵⁴ to generate three models per
400 structure. Sequence conservation was mapped onto the modelled SNX27 FERM domain structure
401 with Consurf⁵⁵. **Interior cavities of proteins were mapped and their volumes were calculated using**
402 **POCKET-CAVITY Search Application (POCASA)**⁵⁶, **with default settings of 2 Å for probe radius and 1**
403 **Å for the grid size.** All structural images were made with Pymol (Schrodinger, USA;
404 <https://pymol.org/2/>).

405

406 **Localisation of SNX25 in A431 cells**

407 The human SNX25 open reading frame (ORF) cloned into the pcDNA3.1+-C DYK was obtained from
408 Genscript (NM_031953). This expresses a C-terminally tagged SNX25 (SNX25-FLAG) that has the
409 same sequence as the AlphaFold2 model shown in **Fig. 2B**. Note however, that it lacks the predicted
410 N-terminal ER anchor found in the SNX25 isoform A0A494C0S0 that is modelled in **Fig. S4**. A431
411 cells were maintained in DMEM medium (Gibco Life technologies) supplemented with 10% foetal
412 bovine serum (FBS) and Penicillin/Streptomycin. A431 cell line was sourced from ATCC and tested
413 regularly for mycoplasma contamination. Cells (2 X 10⁵) were plated in 6 well culture dishes (NuncTM,
414 Cat. No. 140675, Culture area—9.6 cm²) and grown to 50% confluency before transfection of
415 SNX25-FLAG construct using lipofectamine 3000 (Invitrogen) as per manufacturer's protocol. Cells
416 were shifted to DMEM media containing oleic acid (50 µg/ml) 4 h post transfection and incubated for
417 another 20 h. DMEM with oleic acid was prepared by mixing oleic acid (Sigma Aldrich, Cat. No. O-
418 1008) in DMEM medium containing bovine serum albumin (fatty acid free) to final oleic acid
419 concentration (50 µg/ml) with rigorous shaking at 37°C to avoid precipitation. Cells were fixed 24 h
420 post-transfection with 4% paraformaldehyde in phosphate buffered saline (PBS) at 4°C and
421 subsequently permeabilised with 0.1% Triton X-100 in PBS for 7 min. Cells were probed with FLAG
422 antibody (Sigma Aldrich Cat. No. F7425, 2 µg/ml) and anti-Rabbit secondary antibody Alexa
423 Fluor®488 conjugate (4 µg/ml) to visualise SNX-25 protein. Cells were finally labelled with nile red
424 solution (100 nM) to visualise lipid droplets. Confocal images (1024 X 1024) were acquired on a
425 Zeiss inverted LSM 880 microscope coupled with fast airyscan detector (Carl Zeiss, Inc) equipped
426 with 63X oil immersion objective, NA 1.4.

427 **Acknowledgements**

428 We thank Prof. Rob Parton for the gift of A431 cells, and antibodies for LD staining. This work was
429 supported by funding from the Australian Research Council (ARC) (DP200102551). BMC is
430 supported by an NHMRC Senior Research Fellowship (APP1136021). WMH is supported by funds
431 from the Welch Foundation (I-1873), the NIH NIGMS (GM119768), NIDDK (DK126887), Ara
432 Parseghian Medical Research Fund, and the UT Southwestern Endowed Scholars Program.

433

434 **Author contributions**

435 Conceptualization, WMH, BMC.; Methodology, SW, BP, VT, BMC; Investigation, SW, BP, VT, BMC;
436 Writing – Original Draft, SW, BMC; Writing – Review & Editing, SW, BP, VT, BMC; Funding
437 Acquisition, WMH, BMC; Supervision, WMH, BMC.

438

439 **Conflict of interest**

440 Authors declare that they have no conflict of interest.

441

442

443

444 **References**

- 445 1. Chandra, M. *et al.* Classification of the human phox homology (PX) domains based on their phosphoinositide binding specificities. *Nat Commun* **10**, 1528 (2019).
- 446 2. Chandra, M. & Collins, B.M. The Phox Homology (PX) Domain. *Adv Exp Med Biol* **1111**, 1-17 (2019).
- 447 3. Teasdale, R.D. & Collins, B.M. Insights into the PX (phox-homology) domain and SNX (sorting nexin) protein families: structures, functions and roles in disease. *Biochem J* **441**, 39-59 (2012).
- 448 4. Amatya, B. *et al.* SNX-PXA-RGS-PXC Subfamily of SNXs in the Regulation of Receptor-Mediated Signaling and Membrane Trafficking. *Int J Mol Sci* **22** (2021).
- 449 5. Mas, C. *et al.* Structural basis for different phosphoinositide specificities of the PX domains of sorting nexins regulating G-protein signaling. *J Biol Chem* **289**, 28554-28568 (2014).
- 450 6. Bryant, D. *et al.* SNX14 mutations affect endoplasmic reticulum-associated neutral lipid metabolism in autosomal recessive spinocerebellar atrophy 20. *Hum Mol Genet* **27**, 1927-1940 (2018).
- 451 7. Datta, S., Liu, Y., Hariri, H., Bowerman, J. & Henne, W.M. Cerebellar ataxia disease-associated Snx14 promotes lipid droplet growth at ER-droplet contacts. *J Cell Biol* **218**, 1335-1351 (2019).
- 452 8. Henne, W.M. *et al.* Mdm1/Snx13 is a novel ER-endolysosomal interorganelle tethering protein. *J Cell Biol* **210**, 541-551 (2015).
- 453 9. Saric, A. *et al.* SNX19 restricts endolysosome motility through contacts with the endoplasmic reticulum. *Nat Commun* **12**, 4552 (2021).
- 454 10. Ugrankar, R. *et al.* Drosophila Snazarus Regulates a Lipid Droplet Population at Plasma Membrane-Droplet Contacts in Adipocytes. *Dev Cell* **50**, 557-572 e555 (2019).
- 455 11. Hariri, H. *et al.* Lipid droplet biogenesis is spatially coordinated at ER-vacuole contacts under nutritional stress. *EMBO Rep* **19**, 57-72 (2018).
- 456 12. Hariri, H. *et al.* Mdm1 maintains endoplasmic reticulum homeostasis by spatially regulating lipid droplet biogenesis. *J Cell Biol* **218**, 1319-1334 (2019).
- 457 13. Lu, A. *et al.* CRISPR screens for lipid regulators reveal a role for ER-bound SNX13 in lysosomal cholesterol export. *J Cell Biol* **221** (2022).
- 458 14. Akizu, N. *et al.* Biallelic mutations in SNX14 cause a syndromic form of cerebellar atrophy and lysosome-autophagosome dysfunction. *Nat Genet* **47**, 528-534 (2015).
- 459 15. Thomas, A.C. *et al.* Mutations in SNX14 cause a distinctive autosomal-recessive cerebellar ataxia and intellectual disability syndrome. *Am J Hum Genet* **95**, 611-621 (2014).
- 460 16. Bryant, D. *et al.* Diverse species-specific phenotypic consequences of loss of function sorting nexin 14 mutations. *Sci Rep* **10**, 13763 (2020).
- 461 17. Bult, C.J. *et al.* Mouse Genome Database (MGD) 2019. *Nucleic Acids Res* **47**, D801-D806 (2019).
- 462 18. Zheng, B. *et al.* Essential role of RGS-PX1/sorting nexin 13 in mouse development and regulation of endocytosis dynamics. *Proc Natl Acad Sci U S A* **103**, 16776-16781 (2006).

484 19. Suh, J.M. *et al.* An RGS-containing sorting nexin controls *Drosophila* lifespan. *PLoS One* **3**,
485 e2152 (2008).

486 20. Ha, C.M. *et al.* SNX14 is a bifunctional negative regulator for neuronal 5-HT6 receptor
487 signaling. *J Cell Sci* **128**, 1848-1861 (2015).

488 21. Zheng, B. *et al.* RGS-PX1, a GAP for GalphaS and sorting nexin in vesicular trafficking.
489 *Science* **294**, 1939-1942 (2001).

490 22. Gillingham, A.K., Bertram, J., Begum, F. & Munro, S. In vivo identification of GTPase
491 interactors by mitochondrial relocalization and proximity biotinylation. *Elife* **8** (2019).

492 23. Datta, S. *et al.* Snx14 proximity labeling reveals a role in saturated fatty acid metabolism and
493 ER homeostasis defective in SCAR20 disease. *Proc Natl Acad Sci U S A* (2020).

494 24. Castro, I.G. *et al.* Systematic analysis of membrane contact sites in *Saccharomyces*
495 *cerevisiae* uncovers modulators of cellular lipid distribution. *bioRxiv*,
496 2021.2010.2017.464712 (2021).

497 25. Jumper, J. *et al.* Highly accurate protein structure prediction with AlphaFold. *Nature* **596**, 583-
498 589 (2021).

499 26. Tunyasuvunakool, K. *et al.* Highly accurate protein structure prediction for the human
500 proteome. *Nature* **596**, 590-596 (2021).

501 27. Li, J. *et al.* SNX13 reduction mediates heart failure through degradative sorting of apoptosis
502 repressor with caspase recruitment domain. *Nat Commun* **5**, 5177 (2014).

503 28. Soundararajan, M. *et al.* Structural diversity in the RGS domain and its interaction with
504 heterotrimeric G protein alpha-subunits. *Proc Natl Acad Sci U S A* **105**, 6457-6462 (2008).

505 29. Lauzier, A. *et al.* Snazarus and its human ortholog SNX25 modulate autophagic flux. *J Cell
506 Sci* (2021).

507 30. Mirdita, M., Ovchinnikov, S. & Steinegger, M. ColabFold - Making protein folding accessible
508 to all. . *bioRxiv* (2021).

509 31. Malinina, L., Patel, D.J. & Brown, R.E. How alpha-Helical Motifs Form Functionally Diverse
510 Lipid-Binding Compartments. *Annu Rev Biochem* **86**, 609-636 (2017).

511 32. Wong, L.H., Copic, A. & Levine, T.P. Advances on the Transfer of Lipids by Lipid Transfer
512 Proteins. *Trends Biochem Sci* **42**, 516-530 (2017).

513 33. Wong, L.H., Gatta, A.T. & Levine, T.P. Lipid transfer proteins: the lipid commute via shuttles,
514 bridges and tubes. *Nat Rev Mol Cell Biol* **20**, 85-101 (2019).

515 34. Chiapparino, A., Maeda, K., Turei, D., Saez-Rodriguez, J. & Gavin, A.C. The orchestra of
516 lipid-transfer proteins at the crossroads between metabolism and signaling. *Prog Lipid Res*
517 **61**, 30-39 (2016).

518 35. Qiu, X. *et al.* Crystal structure of cholesteryl ester transfer protein reveals a long tunnel and
519 four bound lipid molecules. *Nat Struct Mol Biol* **14**, 106-113 (2007).

520 36. Kucerka, N., Heberle, F.A., Pan, J. & Katsaras, J. Structural Significance of Lipid Diversity
521 as Studied by Small Angle Neutron and X-ray Scattering. *Membranes (Basel)* **5**, 454-472
522 (2015).

523 37. Holm, L. Using Dali for Protein Structure Comparison. *Methods Mol Biol* **2112**, 29-42 (2020).

524 38. Clairfeuille, T., Norwood, S.J., Qi, X., Teasdale, R.D. & Collins, B.M. Structure and Membrane
525 Binding Properties of the Endosomal Tetratricopeptide Repeat (TPR) Domain-containing
526 Sorting Nexins SNX20 and SNX21. *J Biol Chem* **290**, 14504-14517 (2015).

527 39. Pentchev, P.G. Niemann-Pick C research from mouse to gene. *Biochim Biophys Acta* **1685**,
528 3-7 (2004).

529 40. Wheeler, S. & Sillence, D.J. Niemann-Pick type C disease: cellular pathology and
530 pharmacotherapy. *J Neurochem* **153**, 674-692 (2020).

531 41. Chevallier, J. *et al.* Lysobisphosphatidic acid controls endosomal cholesterol levels. *J Biol*
532 *Chem* **283**, 27871-27880 (2008).

533 42. Gallala, H.D. & Sandhoff, K. Biological function of the cellular lipid BMP-BMP as a key
534 activator for cholesterol sorting and membrane digestion. *Neurochem Res* **36**, 1594-1600
535 (2011).

536 43. Gruenberg, J. Life in the lumen: The multivesicular endosome. *Traffic* **21**, 76-93 (2020).

537 44. Kobayashi, T. *et al.* Late endosomal membranes rich in lysobisphosphatidic acid regulate
538 cholesterol transport. *Nat Cell Biol* **1**, 113-118 (1999).

539 45. McCauliff, L.A. *et al.* Intracellular cholesterol trafficking is dependent upon NPC2 interaction
540 with lysobisphosphatidic acid. *Elife* **8** (2019).

541 46. Ilnytska, O. *et al.* Enrichment of NPC1-deficient cells with the lipid LBPA stimulates
542 autophagy, improves lysosomal function, and reduces cholesterol storage. *J Biol Chem* **297**,
543 100813 (2021).

544 47. Moreau, D. *et al.* Drug-induced increase in lysobisphosphatidic acid reduces the cholesterol
545 overload in Niemann-Pick type C cells and mice. *EMBO Rep* **20**, e47055 (2019).

546 48. Kabsch, W. Xds. *Acta Crystallogr D Biol Crystallogr* **66**, 125-132 (2010).

547 49. Evans, P.R. & Murshudov, G.N. How good are my data and what is the resolution? *Acta*
548 *Crystallogr D Biol Crystallogr* **69**, 1204-1214 (2013).

549 50. McCoy, A.J. *et al.* Phaser crystallographic software. *J Appl Crystallogr* **40**, 658-674 (2007).

550 51. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. *Acta Crystallogr*
551 *D Biol Crystallogr* **60**, 2126-2132 (2004).

552 52. Adams, P.D. *et al.* PHENIX: a comprehensive Python-based system for macromolecular
553 structure solution. *Acta Crystallogr D Biol Crystallogr* **66**, 213-221 (2010).

554 53. Mirdita, M., Steinegger, M. & Soding, J. MMseqs2 desktop and local web server app for fast,
555 interactive sequence searches. *Bioinformatics* **35**, 2856-2858 (2019).

556 54. Hornak, V. *et al.* Comparison of multiple Amber force fields and development of improved
557 protein backbone parameters. *Proteins* **65**, 712-725 (2006).

558 55. Ashkenazy, H. *et al.* ConSurf 2016: an improved methodology to estimate and visualize
559 evolutionary conservation in macromolecules. *Nucleic Acids Res* **44**, W344-350 (2016).

560 56. Yu, J., Zhou, Y., Tanaka, I. & Yao, M. Roll: a new algorithm for the detection of protein
561 pockets and cavities with a rolling probe sphere. *Bioinformatics* **26**, 46-52 (2010).

562 57. Schauder, C.M. *et al.* Structure of a lipid-bound extended synaptotagmin indicates a role in
563 lipid transfer. *Nature* **510**, 552-555 (2014).

564 58. Samygina, V.R. *et al.* Enhanced selectivity for sulfatide by engineered human glycolipid
565 transfer protein. *Structure* **19**, 1644-1654 (2011).

566 59. Roderick, S.L. *et al.* Structure of human phosphatidylcholine transfer protein in complex with
567 its ligand. *Nat Struct Biol* **9**, 507-511 (2002).

568 60. Dong, J. *et al.* Allosteric enhancement of ORP1-mediated cholesterol transport by
569 PI(4,5)P2/PI(3,4)P2. *Nat Commun* **10**, 829 (2019).

570

571

572 **Figure legends**

573 **Figure 1. The SNX-RGS protein family.**

574 **(A)** Domains of human, *Drosophila*, and *S. cerevisiae* SNX-RGS family members. Putative ligands
575 for each domain are indicated above. SNX14 mutations causing cerebellar ataxia are shown with
576 dashed lines^{14, 15}. Boxes indicate domains with experimental structures determined. **(B)** The current
577 working model for the architecture, localisation and function of the SNX-RGS protein family and their
578 potential roles at the interface between the ER, LDs, and membranes of the endolysosomal system.
579 **(C)** Crystal structure of human SNX25(C362A) RGS domain in cartoon diagram. Helical secondary
580 structure elements are indicated. **(D)** The crystal structure of human SNX25(C362A) RGS domain
581 (light blue) is aligned with the canonical RGS domain of RGS16 (pink) (PDB ID 2IK8)²⁸ and shows
582 the expected topology. **(E)** $\text{C}\alpha$ ribbon diagram showing the overlay of the SNX25(C362A) RGS
583 domain (light blue) with the same sequence predicted in the AlphaFold2 database (red) (Q9H3E2).
584 **(F)** Cartoon representation of SNX25(C362A) RGS domain compared with the SNX13 and SNX14
585 RGS domains from the AlphaFold2 database (Q9Y5W8; Q9Y5W7). **(G)** Sequence alignment of
586 human SNX13, SNX14 and SNX25 RGS domains based on structural comparisons. The secondary
587 structure of SNX25 derived from its crystal structure is shown schematically above the alignment,
588 while the α -helical regions of the three proteins from their AlphaFold2 predictions are shaded blue
589 within the alignment.

590

591 **Figure 2. Structures of the SNX-RGS proteins predicted by AlphaFold2.**

592 **(A)** Predicted Alignment Error (PAE) plots from the AlphaFold2 database²⁶ are shown for human fly
593 and yeast SNX-RGS proteins. In these plots all SNX-RGS proteins show a strong degree of
594 correlation between the PXA and PXC domain suggesting these two domains are physically
595 associated. **(B)** The predicted structures of human SNX-RGS proteins from the AlphaFold2 database.
596 The PXA domain is coloured green, RGS domain in light blue, PX domain in blue and PXC domain
597 in orange. The predicted TM domain and any unstructured linker regions are coloured grey. The
598 structures are shown in the same orientation after alignments based on the PXA and PXC core
599 region. This shows that the two domains are intimately entwined with each other, whereas the TM,
600 RGS and PX domains are predicted to have flexible orientations relative to these domains.

601

602 **Figure 3. The PXA and PXC domains combine to form an intertwined α -helical structure.**

603 **(A)** Structure of the PXA and PXC domains of human SNX13 predicted by AlphaFold2 in green and
604 orange respectively, shown with cylinders for α -helices. The two domains are predicted to be tightly
605 interwoven. **(B)** An overlay of the core PXA-PXC domains of human, yeast and fly SNX-RGS proteins
606 shows that all predicted structures have the same topology. **(C)** Predicted structure of *S. cerevisiae*
607 Nvj3 with the regions expected to be similar to PXA and PXC domains coloured green and orange
608 and the linker shown in grey.

609

610 **Figure 4. The PXA-PXC structure forms a conserved hydrophobic cavity with potential for**
611 **lipid binding.**

612 (A) The predicted structures of PXA-PXC domains from human SNX13 and SNX25, fly Snz, and
613 yeast Mdm1 and Nyj3 are shown in ribbon representation (left), surface coloured by hydrophobicity
614 (middle), and sequence conservation (right). All PXA-PXC structures have a highly conserved
615 hydrophobic tunnel. (B) Structure of PXA and PXC domains of SNX13 with sidechains of the putative
616 lipid binding pocket shown. (C) The PXA and PXC domains of SNX13 is shown in close-up with its
617 surface coloured for hydrophobicity as in (A). A phosphatidylethanolamine lipid has been docked
618 manually in the putative lipid binding pocket to give perspective on the dimensions of the channel.

619

620 **Figure 5. Human SNX25 is localises to newly synthesised LDs following oleic acid addition**

621 A431 cells were transfected with SNX25-FLAG and either left untreated or treated with 50 µg/ml
622 oleic acid to stimulate LD formation. After oleic acid addition SNX25-FLAG undergoes rapid
623 redistribution to the periphery of newly generated LDs LD periphery. Scale bars represent 10 µm.

624

625 **Figure 6. The yeast Lec1/Ypr097w protein forms a unique structure with a hydrophobic cavity.**

626 (A) Domain structure of the *S. cerevisiae* Lec1/Ypr097w protein. (B) AlphaFold2 structural prediction
627 of the Lec1/Ypr097w protein with the PXYn domain in green, PX domain in blue and PXYc domain
628 in orange. (C) The PXYn and PXYc domains are shown with α -helices in cylinder representation
629 and the PX domain removed for clarity. The domains encompass a large conserved hydrophobic
630 cavity and like the SNX-RGS proteins may be a potential lipid binding protein. The far right panel
631 shows the solvent accessible cavity (red surface representation) identified with POCASA⁵⁶ and the
632 volume (\AA^3) of the largest identified cavity is indicated.

633

634

635 **Supplementary Information**

636 **Figure S1. Crystal structure of the SNX25 RGS domain.**

637 (A) Crystal structure of the wild-type human SNX25 RGS domain. (B) Alignment of the two chains
638 in the asymmetric unit of wild-type SNX25 RGS domain. (C) The position of the non-native disulfide
639 bond formed between adjacent chains in the crystal lattice. This causes the change in orientation of
640 the α 5 helix. (D) Crystal structure of the SNX25(C526A) mutant protein. (E) Alignment of the two
641 chains in the asymmetric unit of SNX25(C526A) RGS domain. (F) Structural alignment of the wild-
642 type and C526A SNX25 RGS domain structures.

643

644 **Figure S2. Comparison of experimental SNX-RGS structures with their AlphaFold2
645 predictions.**

646 (A) Crystal structure of the human SNX25(C326A) RGS domain (red, this study) aligned with the
647 AlphaFold2 prediction (light blue). (B) Crystal structures of human SNX14 PX domain (green, PDB
648 4PQP; magenta, 4PQO) with the AlphaFold2 prediction (blue). (C) Crystal structure of mouse SNX19
649 PX domain (pink, PDB 4P2I) aligned with the AlphaFold2 prediction (blue). (D) NMR structure of
650 human SNX25 PX domain (cyan, PDB 4PQP) aligned with the AlphaFold2 prediction (blue).

651

652 **Figure S3. Additional details of the SNX13 predicted full length structure.**

653 (A) AlphaFold2 prediction of full-length human SNX13 protein with individual domains coloured as
654 in **Fig. 2B** with the TM domain and linker regions (grey), PXA domain (green), RGS domain (light
655 blue), PX domain (blue), and PXC domain (orange). (B) AlphaFold2 prediction of full-length human
656 SNX13 protein coloured according to the pLDDT score. (C) The AlphaFold2 predictions of human,
657 mouse and zebrafish SNX13 proteins were aligned based on the core PXA-PXC structure.

658

659 **Figure S4. AlphaFold2 prediction of full-length human SNX25 protein.**

660 (A) Top ranked structure of full length human SNX25⁵ (Uniprot ID A0A494C0S0) predicted by
661 ColabFold coloured according to pLDDT score. (B) Top ranked structure of human SNX25 predicted
662 by ColabFold coloured according to the indicated domains. (C) Alignment based on the core PXA-
663 PXC structure of the five structural predictions of human SNX25 from ColabFold.

664

665 **Figure S5. Conserved hydrophobic cavities in all human, yeast and fly PXA-PXC domains.**

666 Structures of indicated PXA-PXC domains in ribbon (left) surface coloured by hydrophobicity, and
667 sequence conservation. A region in SNX14 is highlighted that when deleted prevents LD recruitment
668⁷. Far right panels display accessible cavities (red surface representation) in the proteins identified
669 with POCASA⁵⁶ and the volume (\AA^3) of the largest continuous cavity is indicated. The five bottom
670 structures are examples of other lipid transfer proteins bound to different lipids, demonstrating how
671 similar kinds of conserved hydrophobic pockets can serve as lipid binding cavities and provided for
672 comparison. Extended synaptotagmin 2 (E-Syt2) is in complex with a phosphatidylethanolamine lipid

673 and Triton-X100 detergent molecule (PDB 4P42) ⁵⁷. Cholesteryl ester transfer protein (CETP) is in
674 complex with two cholesteryl esters and two phosphatidylcholine lipids (PDB 2OBP) ³⁵. Glycolipid
675 transfer protein (GLTP) is in complex with N-oleoyl-glucosylceramide (PDB 3S0K) ⁵⁸.
676 Phosphatidylcholine transfer protein (PC-TP) is shown in complex with a phosphatidylcholine
677 molecule (PDB 1LN2) ⁵⁹. Human OSBP-related protein 1 (ORP1) is shown bound to
678 phosphatidylinositol(4,5)P₂ (PDB 5ZM6)⁶⁰

679
680 **Figure S6. AlphaFold2 predicted structure of Lec1/Ypr097w.**

681 (A) Plot of the Predicted Alignment Error (PAE) from the AlphaFold2 database. There is a strong
682 degree of correlation between the N-terminal PXYn and C-terminal PXYc domains suggesting these
683 two domains are physically associated. (B) The predicted structure of Lec1/Ypr097w from *S.*
684 *cerevisiae* coloured according to the pLDDT score. (C) Overlay of the PXY proteins from *S.*
685 *cerevisiae*, *S. pombe* and *C. albicans*.

686
687 **Figure S7. AlphaFold2 predicted structure of PXY domain proteins found in *S. pombe*, *C.*
688 *thermophilum* and *D. dictyostelium*.**

689 (A) Structural prediction of *S. pombe* Lec1/Ypr092w orthologue C1450.12. (B) Structural prediction
690 of *S. pombe* Lec1/Ypr092w homologue C663.15c. (C) Structural prediction of *C. thermophilum*
691 Lec1/Ypr092w orthologue EGS19171. (D) Structural prediction of *C. thermophilum* Lec1/Ypr092w
692 homologue EGS20008. (E) Structural prediction of *D. discoideum* DUF3818 domain-containing
693 protein.

694
695

Table S1. Statistics for X-ray crystallographic data collection and structure refinement^a

	Human SNX25 RGS domain	Human SNX25 RGS domain (C526A)
Wavelength (Å)	1.006	0.95364
Resolution range (Å)	45.84 -2.4 (2.486-2.4)	48.25-2.42 (2.52-2.42)
Space group	P 1 21 1	P 1 21 1
Unit cell	48.6 57.1 67.0 90 109.5 90	44.0 75.9 51.1 90.00 109.3 90.00
Total reflections	47931 (3290)	81322 (7264)
Unique reflections	13200 (1003)	11898 (1111)
Multiplicity	3.6 (3.1)	6.8 (6.5)
Completeness (%)	96.5 (74.1)	97.9 (89.2)
Mean I/sigma(I)	11.9 (2.1)	7.2 (1.4)
R-merge	0.065 (0.506)	0.171 (0.976)
R-meas	0.089 (0.690)	0.185 (1.062)
R-pim	0.061 (0.467)	0.070 (0.410)
CC1/2	0.998 (0.718)	0.992 (0.631)
R-work	0.2164 (0.2984)	0.2108 (0.3258)
R-free	0.2421 (0.2906)	0.2497 (0.4051)
Number of non-hydrogen atoms	2157	2026
macromolecules	2080	1991
solvent	77	30
RMS(bonds)	0.003	0.007
RMS(angles)	0.55	0.87
Ramachandran favored (%)	97.08	97.38
Ramachandran allowed (%)	2.92	2.62
Ramachandran outliers (%)	0.00	0.00
Clashscore	2.66	6.07
Average B-factor	51.51	52.68
macromolecules	51.69	52.76
solvent	46.74	46.51
PDB ID	7SR1	7SR2

696
697
698

a. Statistics for the highest-resolution shell are shown in parentheses.

699 **Table S2. Homologues of the PXA-PXC and PXYn-PXYc domain-containing proteins based**
700 **on structural similarity in the AlphaFold2 database^a.**

701
702

	PXA-PXC domains	Uniprot ID	PXYn-PXYc domains	Uniprot ID
<i>H. sapiens</i> (human)	SNX13 SNX14 SNX19 SNX25 SNX25 full length	Q9Y5W8 Q9Y5W7 Q92543 Q9H3E2 A0A494C0S0	-	-
<i>D. melanogaster</i> (fly)	Snz	Q9W3N0	-	-
<i>C. elegans</i> (worm)	snx-14 snx-13	G5EF63 Q9U2U6	-	-
<i>A. thaliana</i> (plant)	At1g15240 At2g15900	F4HZJ6 F4IJE1	-	-
<i>D. discoideum</i> (amoeba)	-	-	DDB0187809	Q54JB8
<i>S. cerevisiae</i> (budding yeast)	Mdm1/Yml104c Nvj3/Ydr179W-a	Q01846 Q03983	Lec1/Ypr097w	Q06839
<i>S. pombe</i> (fission yeast)	snx12 mug122 pxa1	Q9USN1 (all domains) O74444 (no RGS) O14200 (like Nvj3)	SPCC663.15c SPCC1450.12	O74521 (no PX) Q9Y7N9 (all domains)
<i>C. thermophilum^b</i> (thermophilic fungi)	CTHT_0043790/EGS19887 CTHT_0051170/EGS18515 CTHT_0024100/EGS20576	G0S8X6 (all domains) G0SDB4 (no RGS) G0S5A3 (like Nvj3)	CTHT_0045050/EGS20008 CTHT_0057960/EGS19171	G0S997 (no PX) G0SCP5 (all domains)
<i>M. janaschii</i> (archaea)	-	-	-	-
<i>P. falciparum</i> (protozoan)	-	-	-	-

703

704 a. The DALI webserver (<http://ekhidna2.biocenter.helsinki.fi/dali/>) was used to search the
705 AlphaFold2 database against the indicates species using either the SNX25 PXA-PXC
706 structure or the Lec1/Ypr097w PXYn-PXYc structure.
707 b. *C. thermophilum* proteins were identified via BLAST sequence searches and their domain
708 structures were validated using ColabFold structural predictions.

709 **Table S3. Cavity volumes identified in LTP proteins**

710

Protein	Largest continuous cavity volume (Å ³) ^a
SNX13	2360
SNX14	2347
SNX19	3291
SNX25	3974
Snz	3830
Mdm1	2166
Nvj3	6166
Lec1/Ypr097w	15249
E-Syt2	1952
GLTP	380
PC-TP START domain	830
CETP	1873
ORP1	425

711

712 a. The cavity volumes in each structure were identified and calculated using POCASA
713 (<http://g6altair.sci.hokudai.ac.jp/g6/service/pocasa/>)⁵⁶.

714

715

Table S4. Key Resources Table.

REAGENT or RESOURCE	SOURCE or REFERENCE	IDENTIFIER
Bacterial Strains		
<i>E. coli</i> DH5α	Invitrogen	18265017
BL21-CodonPlus (DE3)-RIL	Agilent Technologies	230245
Mammalian cell Lines		
A431 (human squamous carcinoma cell line)	Merck (ATCC)	85090402
Antibodies, mammalian cell culture and imaging		
FLAG	Sigma Aldrich	F7425
Nile red	Sigma Aldrich	72485
Donkey anti-Rabbit secondary antibody Alexa Fluor®488 conjugate	Life Technologies Australia	A21206
Culture dishes	Nunc	140675
DMEM, high glucose, pyruvate, no glutamine	Thermo Fisher Scientific Aus Pty Ltd	10313039
Foetal bovine serum	Cytiva (Global Life Sciences Solutions)	SH30084.03
Trypsin-EDTA 0.05%	Thermo Fisher Scientific Aus Pty Ltd	25300054
lipofectamine 3000	Thermo Fisher Scientific Aus Pty Ltd	L3000015
Penicillin/Streptomycin	Thermo Fisher Scientific Aus Pty Ltd	15070063
Chemicals and enzymes		
Thrombin	Sigma Aldrich	T6634-1KU
Recombinant DNA		
pGEX4T-2 human SNX25 RGS domain (residues 446-569; A0A494C0S0)	This study	N/A
pGEX4T-2 human SNX25 RGS domain (residues 446-569; A0A494C0S0) C526A mutation	This study	N/A
pcDNA3.1+-C DYK (FLAG) human SNX25	Genscript	NM_031953
Deposited Data		
human SNX13 AlphaFold2 model	25, 26	Q9Y5W8
human SNX14 AlphaFold2 model	25, 26	Q9Y5W7
human SNX19 AlphaFold2 model	25, 26	Q92543
human SNX25 AlphaFold2 model	25, 26	Q9H3E2
human SNX25 sequence including an N-terminal hydrophobic ER anchor sequence.	Uniprot	
fly Snz AlphaFold2 model	25, 26	Q9W3N0
yeast Mdm1 AlphaFold2 model	25, 26	Q01846
yeast Nvj3 AlphaFold2 model	25, 26	Q03983
yeast Lec1/Ypr097w AlphaFold2 model	25, 26	Q06839
<i>S. pombe</i> SNX14 AlphaFold2 model	25, 26	Q9Y7N9

<i>C. albicans</i> SNX14 AlphaFold2 model	25, 26	A0A1D8PQ52
human SNX14 PX domain crystal structure	5	4PQP
human SNX14 PX domain crystal structure	5	4PQO
mouse SNX19 PX domain crystal structure	5	4P2I
human SNX25 PX domain NMR structure	1	4PQP
human GLTP crystal structure	58	3S0K
human E-Syt2 crystal structure	57	4P42
Human phosphatidylcholine transfer protein (PC-TP) bound to phosphatidylcholine	59	1LN2
Human CETP bound to two cholesteryl esters and two phosphatidylcholine lipids	35	2OBD
Human OSBP-related protein 1 (ORP1) bound to phosphatidylinositol(4,5)P₂	60	5ZM6
human SNX25 RGS domain (residues 283-405; Q9H3E2) crystal structure	This study	7SR1
human SNX25 RGS domain (residues 283-405; Q9H3E2) (C326A) crystal structure	This study	7SR2
human RGS1 RGS domain crystal structure	28	2BV1
Software		
Coot	51	https://www2.mrc-lmb.cam.ac.uk/personal/pemsley/coot/
Pymol	Schrodinger, USA.	https://pymol.org/2/
AlphaFold2	25	N/A
ColabFold	30	https://colab.research.google.com/github/sokrypton/ColabFold/blob/main/beta/AlphaFold2_advanced.ipynb
Consurf	55	https://consurf.tau.ac.il
POCASA	56	http://q6altair.sci.hokudai.ac.jp/q6/service/pocasa/
Other		
HiLoad™ Superdex75 PG	GE Healthcare	Catalogue: 28989333

716

717

718

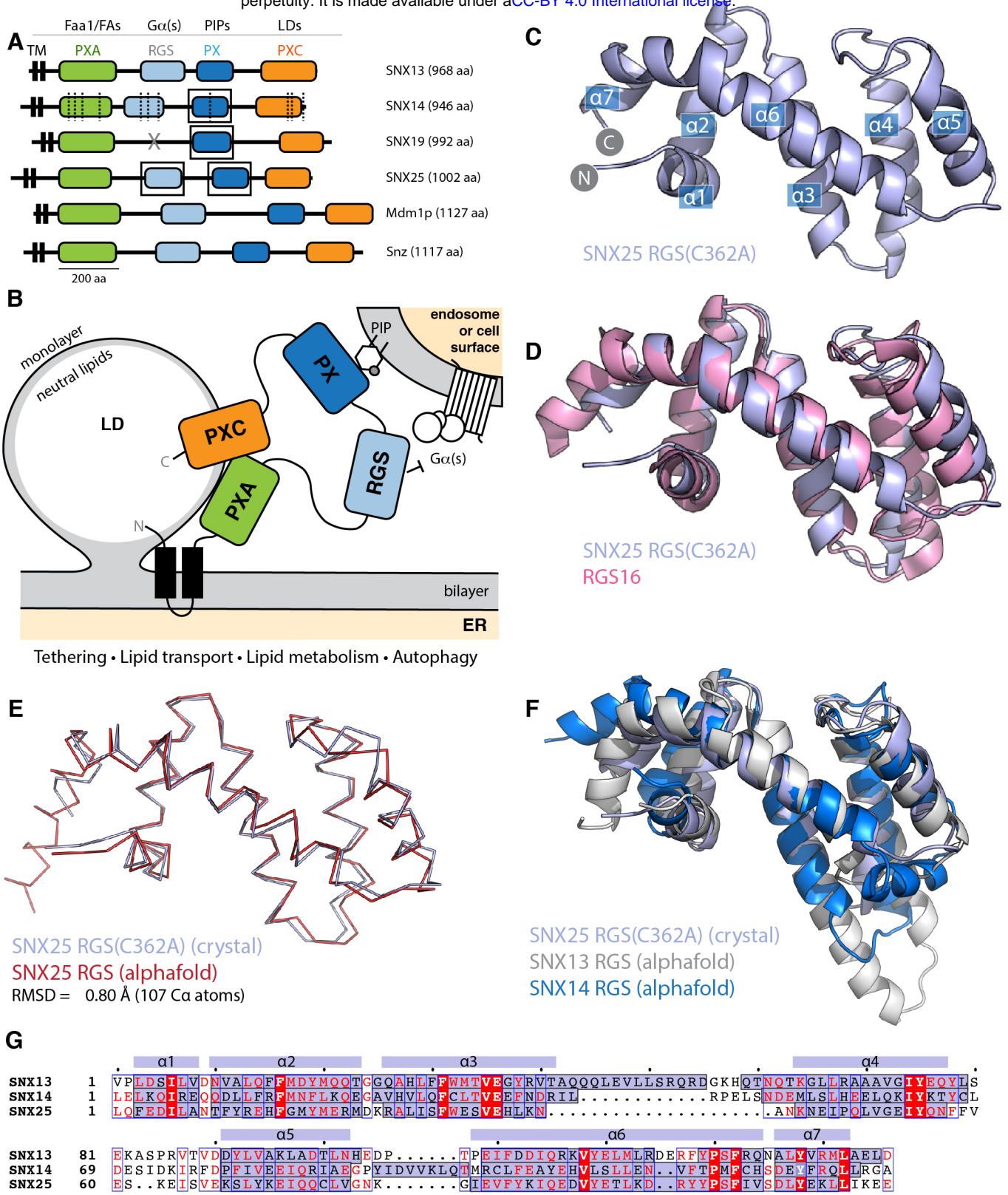
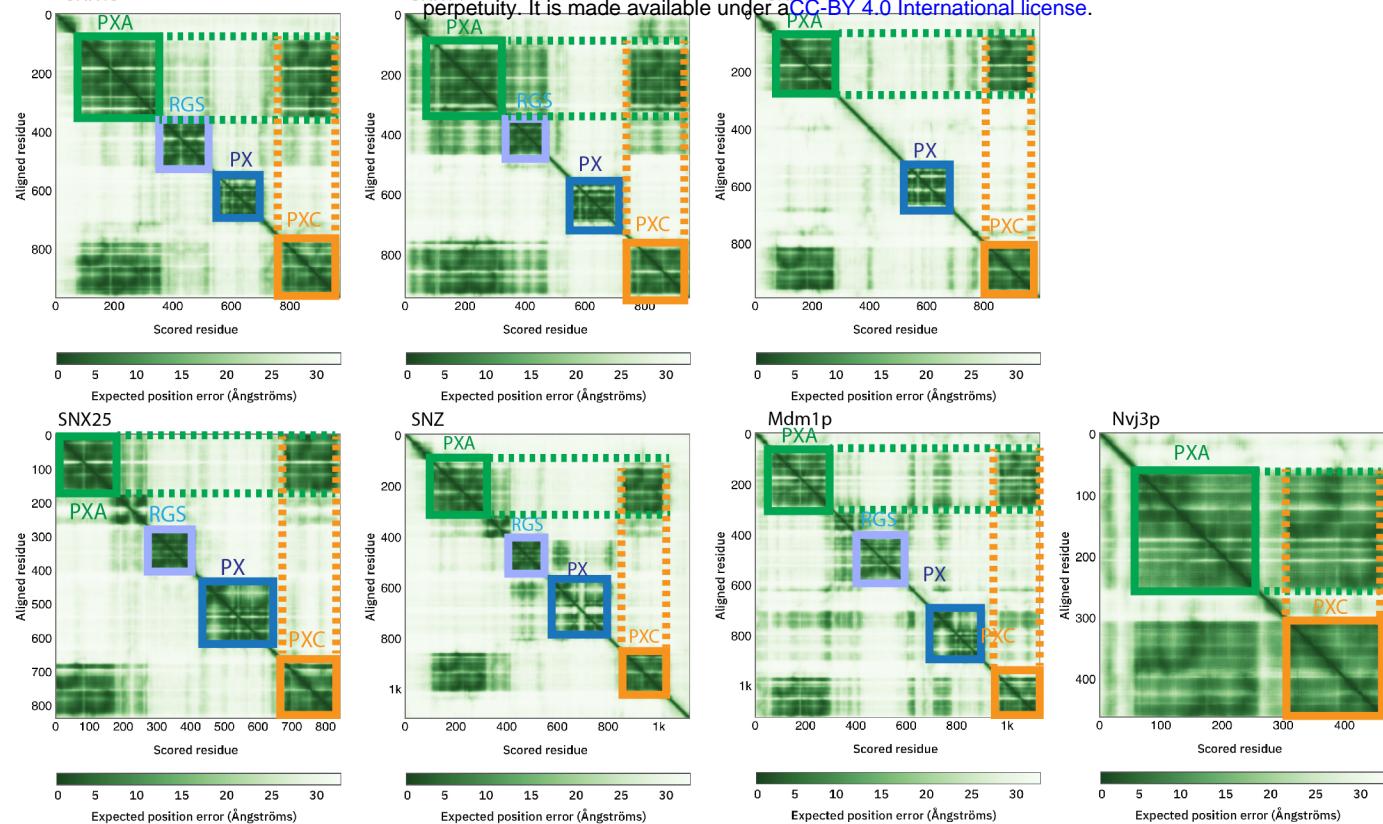
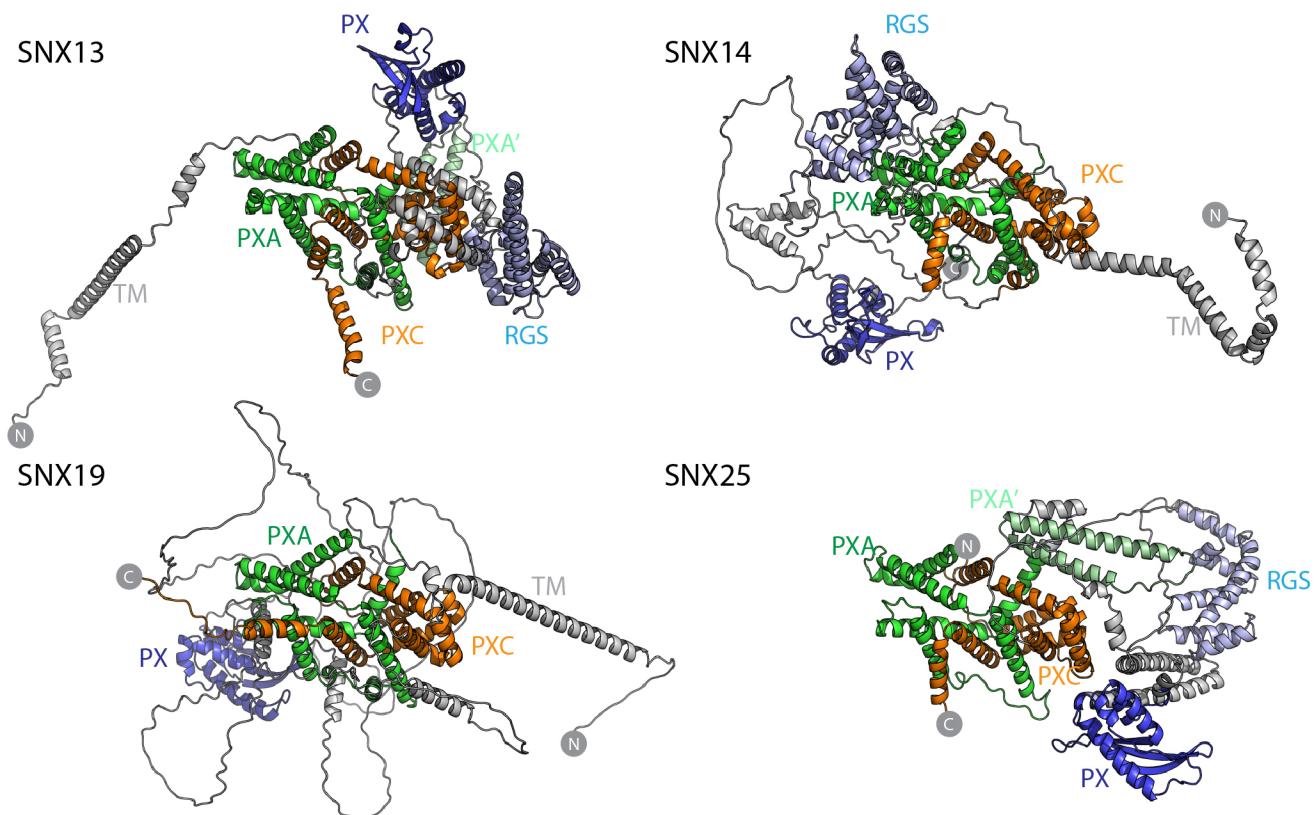
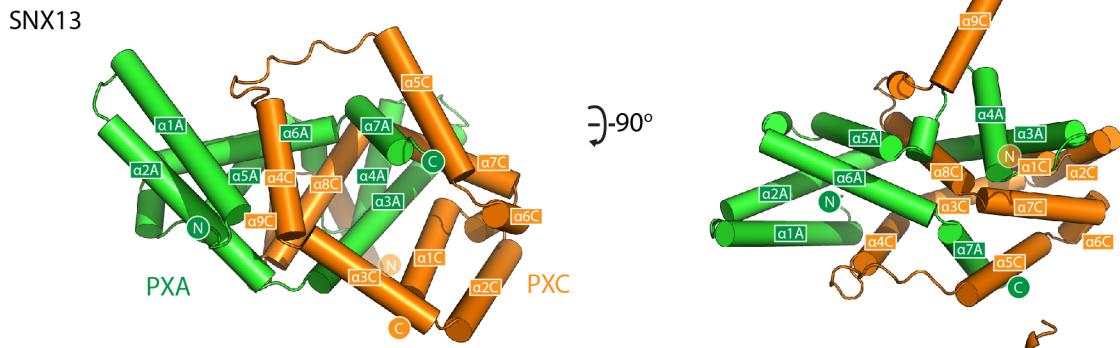



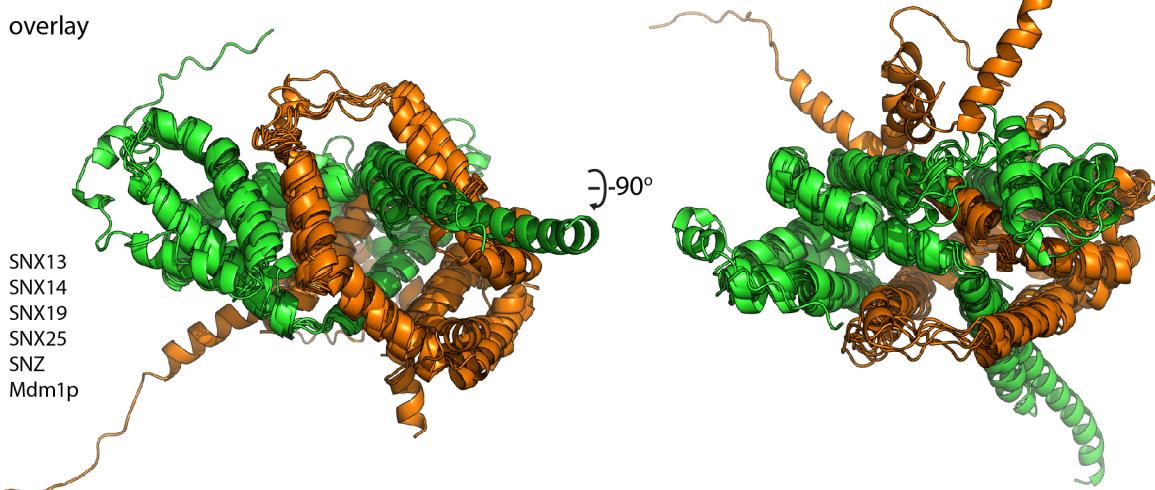
Figure 1. The SNX-RGS protein family.

(A) Domains of human, Drosophila, and *S. cerevisiae* SNX-RGS family members. Putative ligands for each domain are indicated above. SNX14 mutations causing cerebellar ataxia are shown with dashed lines 14, 15. Boxes indicate domains with experimental structures determined. (B) The current working model for the architecture, localisation and function of the SNX-RGS protein family and their potential roles at the interface between the ER, LDs, and membranes of the endolysosomal system. (C) Crystal structure of human SNX25(C362A) RGS domain in cartoon diagram. Helical secondary structure elements are indicated. (D) The crystal structure of human SNX25(C362A) RGS domain (light blue) is aligned with the canonical RGS domain of RGS16 (pink) (PDB ID 2IK8)27 and shows the expected topology. (E) Cα ribbon diagram showing the overlay of the SNX25(C362A) RGS domain (light blue) with the same sequence predicted in the AlphaFold2 database (red) (Q9H3E2). (F) Cartoon representation of SNX25(C362A) RGS domain compared with the SNX13 and SNX14 RGS domains from the AlphaFold2 database (Q9Y5W8; Q9Y5W7). (G) Sequence alignment of human SNX13, SNX14 and SNX25 RGS domains based on structural comparisons. The secondary structure of SNX25 derived from its crystal structure is shown schematically above the alignment, while the α-helical regions of the three proteins from their AlphaFold2 predictions are shaded blue within the alignment.

A

B


Figure 2. Structures of the SNX-RGS proteins predicted by AlphaFold2.

(A) Predicted Alignment Error (PAE) plots from the AlphaFold2 database 25 are shown for human fly and yeast SNX-RGS proteins. In these plots all SNX-RGS proteins show a strong degree of correlation between the PXA and PXC domain suggesting these two domains are physically associated. (B) The predicted structures of human SNX-RGS proteins from the AlphaFold2 database. The PXA domain is coloured green, RGS domain in light blue, PX domain in blue and PXC domain in orange. The predicted TM domain and any unstructured linker regions are coloured grey. The structures are shown in the same orientation after alignments based on the PXA and PXC core region. This shows that the two domains are intimately entwined with each other, whereas the TM, RGS and PX domains are predicted to have flexible orientations relative to these domains.

A

B

C

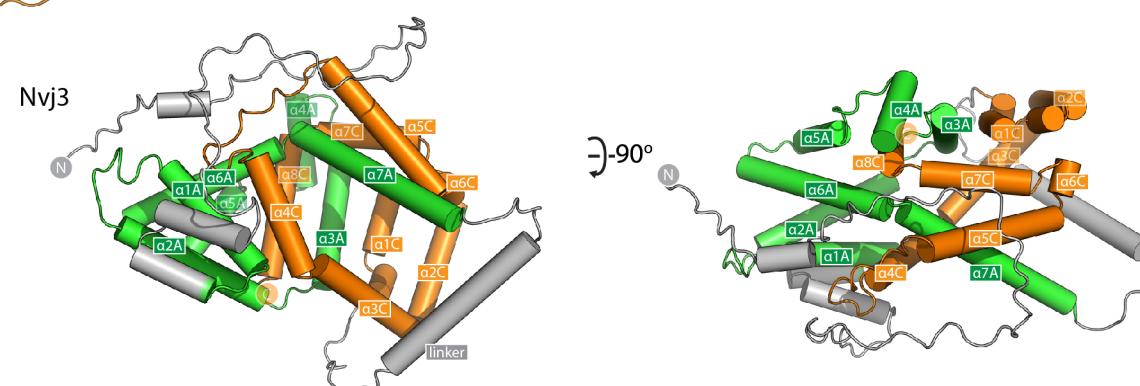
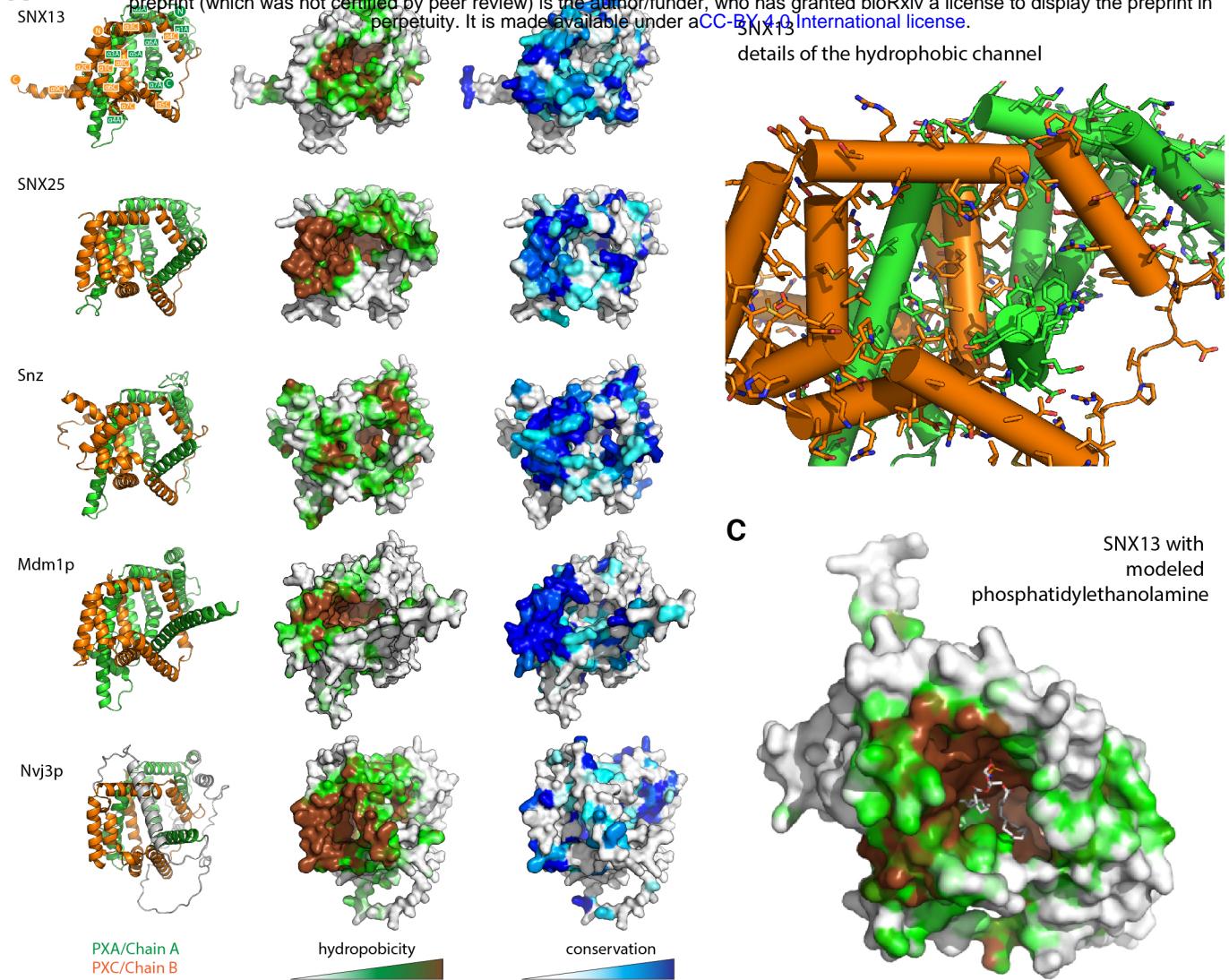
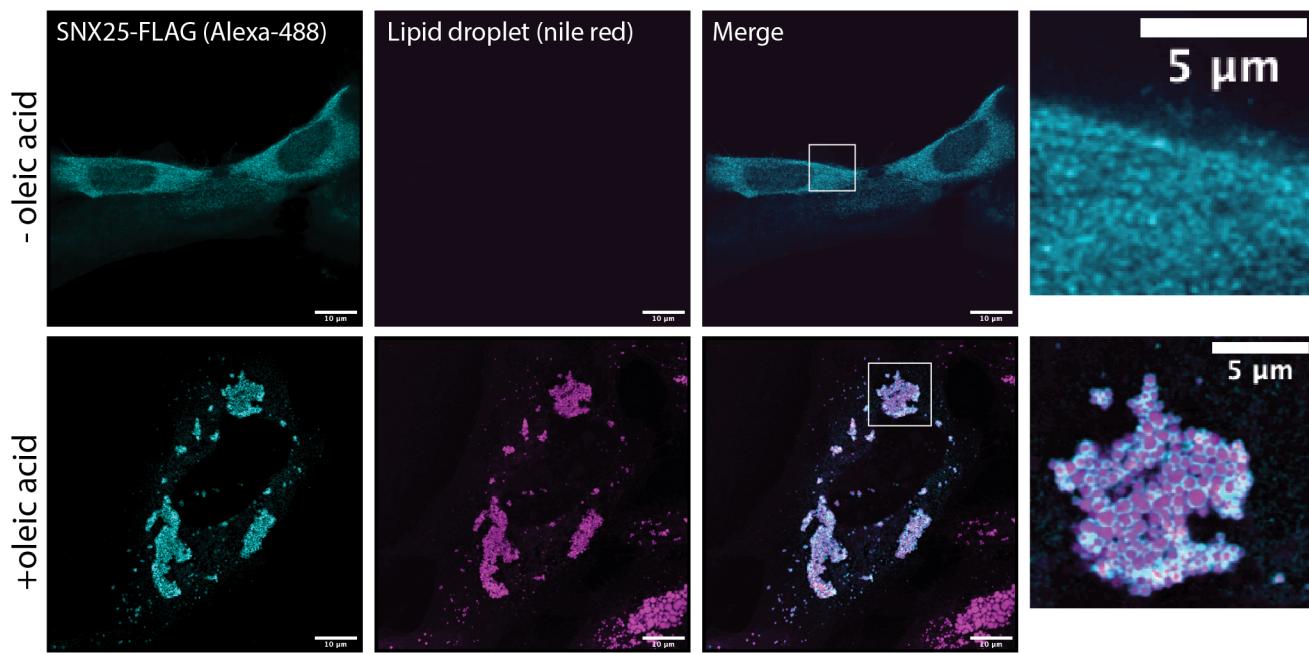



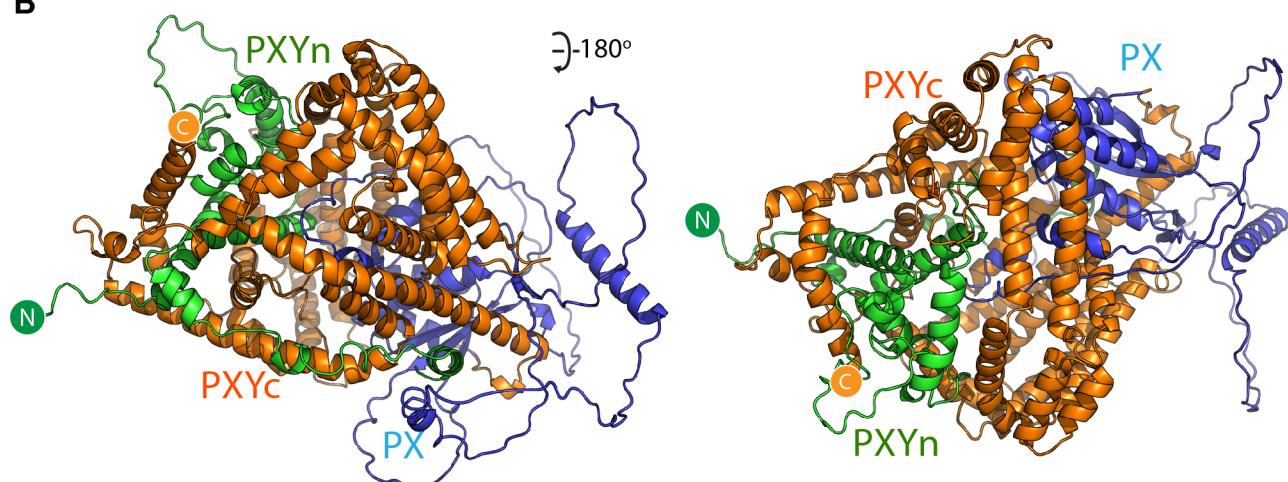
Figure 3. The PXA and PXC domains combine form an intertwined α -helical structure.

(A) Structure of the PXA and PXC domains of human SNX13 predicted by AlphaFold2 in green and orange respectively, shown with cylinders for α -helices. The two domains are predicted to be tightly interwoven. (B) An overlay of the core PXA-PXC domains of human, yeast and fly SNX-RGS proteins shows that all predicted structures have the same topology. (C) Predicted structure of *S. cerevisiae* Nvj3 with the regions expected to be similar to PXA and PXC domains coloured green and orange and the linker shown in grey.

Figure 4. The PXA-PXC structure forms a conserved hydrophobic cavity with potential for lipid binding.

(A) The predicted structures of PXA-PXC domains from human SNX13 and SNX25, fly Snz, and yeast Mdm1 and Nvj3 are shown in ribbon representation (left), surface coloured by hydrophobicity (middle), and sequence conservation (right). All PXA-PXC structures have a highly conserved hydrophobic tunnel. (B) Structure of PXA and PXC domains of SNX13 with sidechains of the putative lipid binding pocket shown. (C) The PXA and PXC domains of SNX13 is shown in close-up with its surface coloured for hydrophobicity as in (A). A phosphatidylethanolamine lipid has been docked manually in the putative lipid binding pocket to give perspective on the dimensions of the channel.




Figure 5. Human SNX25 is localised to newly synthesised LDs following oleic acid addition

A431 cells were transfected with SNX25-FLAG and either left untreated or treated with 50 μ g/ml oleic acid to stimulate LD formation. After oleic acid addition SNX25-FLAG undergoes rapid redistribution to the periphery of newly generated LDs LD periphery. Scale bars represent 10 μ m.

A

B

C

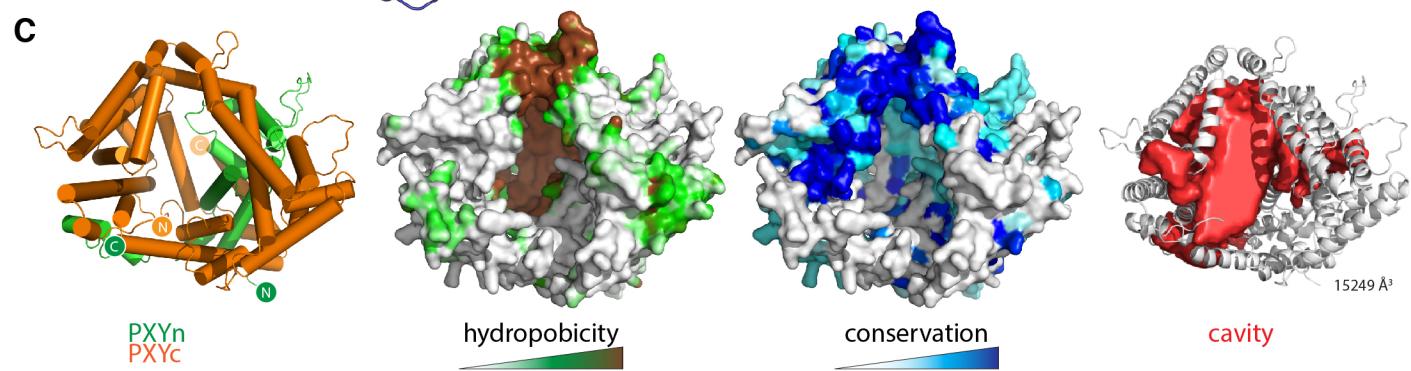


Figure 6. The yeast Lec1/Ypr097w protein forms a unique structure with a hydrophobic cavity.

(A) Domain structure of the *S. cerevisiae* Lec1/Ypr097w protein. (B) AlphaFold2 structural prediction of the Lec1/Ypr097w protein with the PXYn domain in green, PX domain in blue and PXYc domain in orange. (C) The PXYn and PXYc domains are shown with α -helices in cylinder representation and the PX domain removed for clarity. The domains encompass a large conserved hydrophobic cavity and like the SNX-RGS proteins may be a potential lipid binding protein. The far right panel shows the solvent accessible cavity (red surface representation) identified with POCASA56 and the volume (\AA^3) of the largest identified cavity is indicated.

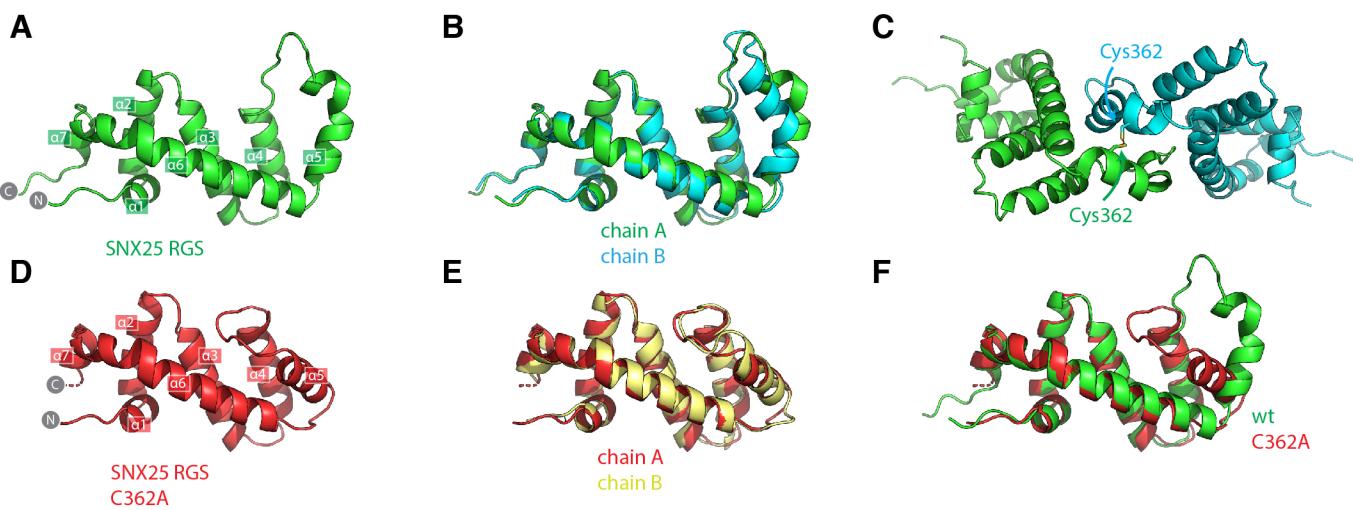


Figure S1. Crystal structure of the SNX25 RGS domain.

(A) Crystal structure of the wild-type human SNX25 RGS domain. (B) Alignment of the two chains in the asymmetric unit of wild-type SNX25 RGS domain. (C) The position of the non-native disulfide bond formed between adjacent chains in the crystal lattice. This causes the change in orientation of the $\alpha 5$ helix. (D) Crystal structure of the SNX25(C526A) mutant protein. (E) Alignment of the two chains in the asymmetric unit of SNX25(C526A) RGS domain. (F) Structural alignment of the wild-type and C526A SNX25 RGS domain structures.

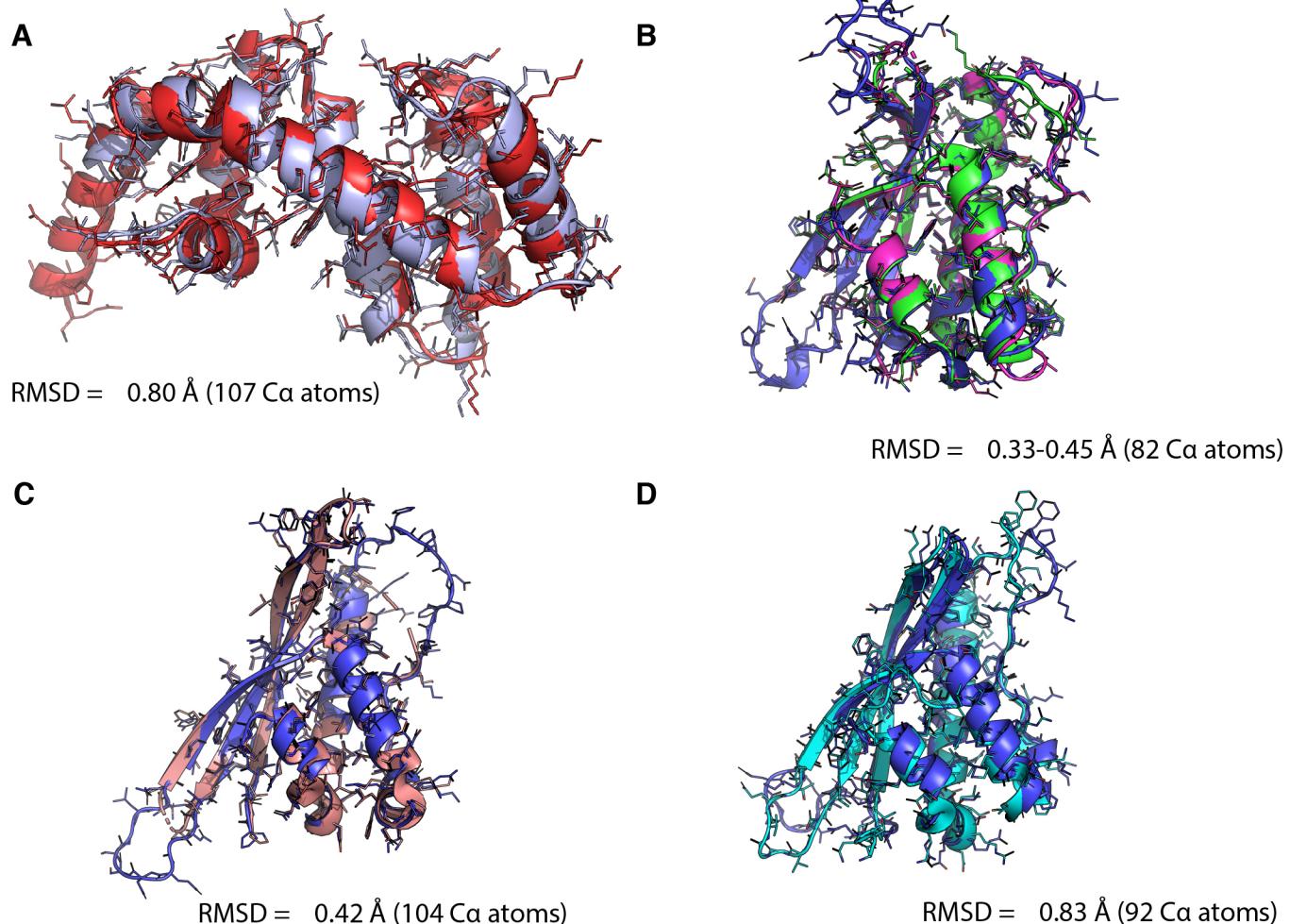


Figure S2. Comparison of experimental SNX-RGS structures with their AlphaFold2 predictions.

(A) Crystal structure of the human SNX25(C326A) RGS domain (red, this study) aligned with the AlphaFold2 prediction (light blue). (B) Crystal structures of human SNX14 PX domain (green, PDB 4PQP; magenta, 4PQO) with the AlphaFold2 prediction (blue). (C) Crystal structure of mouse SNX19 PX domain (pink, PDB 4P2I) aligned with the AlphaFold2 prediction (blue). (D) NMR structure of human SNX25 PX domain (cyan, PDB 4PQP) aligned with the AlphaFold2 prediction (blue).

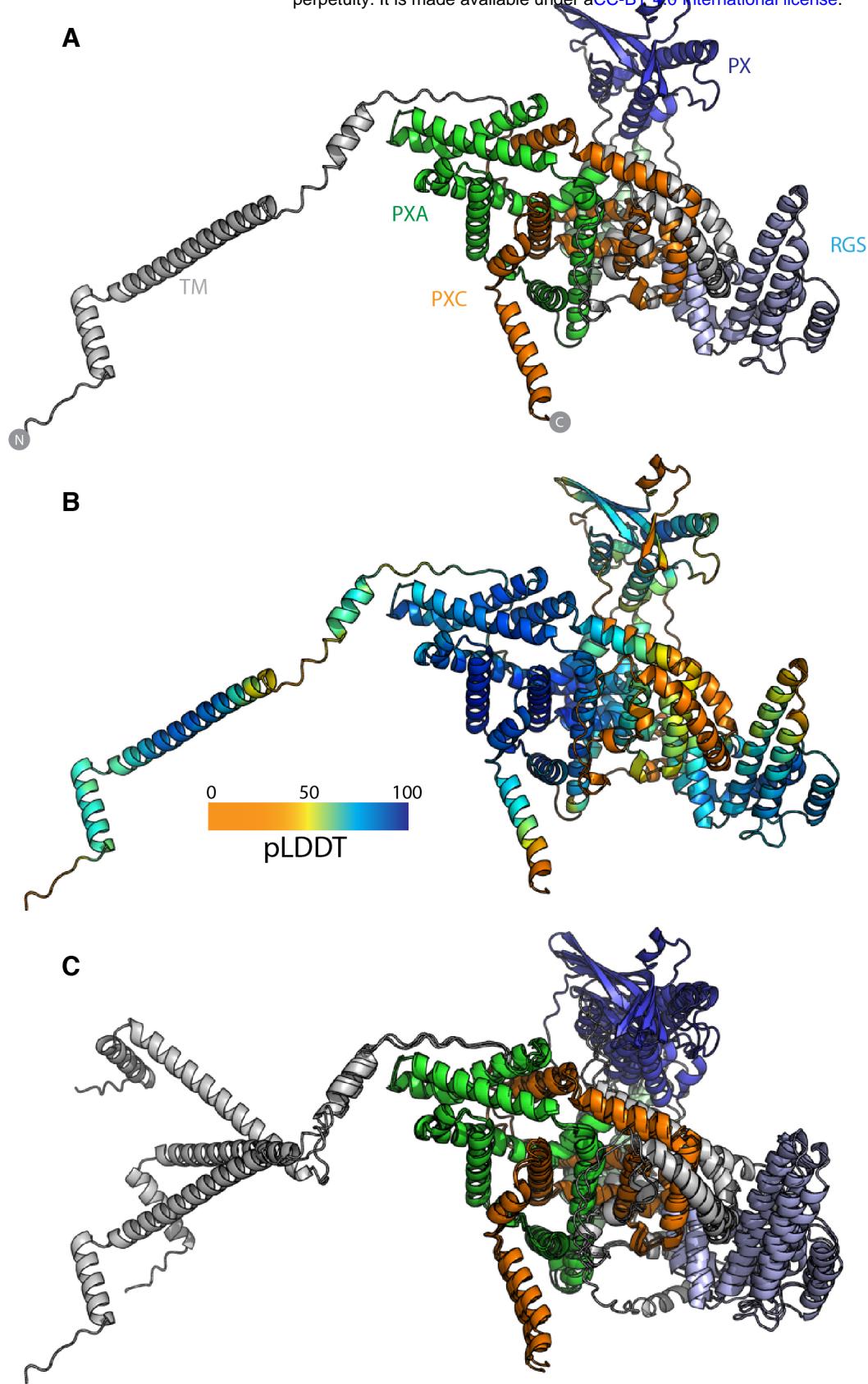


Figure S3. Additional details of the SNX13 predicted full length structure.

(A) AlphaFold2 prediction of full-length human SNX13 protein with individual domains coloured as in Fig. 2B with the TM domain and linker regions (grey), PXA domain (green), RGS domain (light blue), PX domain (blue), and PXC domain (orange). (B) AlphaFold2 prediction of full-length human SNX13 protein coloured according to the pLDDT score. (C) The AlphaFold2 predictions of human, mouse and zebrafish SNX13 proteins were aligned based on the core PXA-PXC structure.

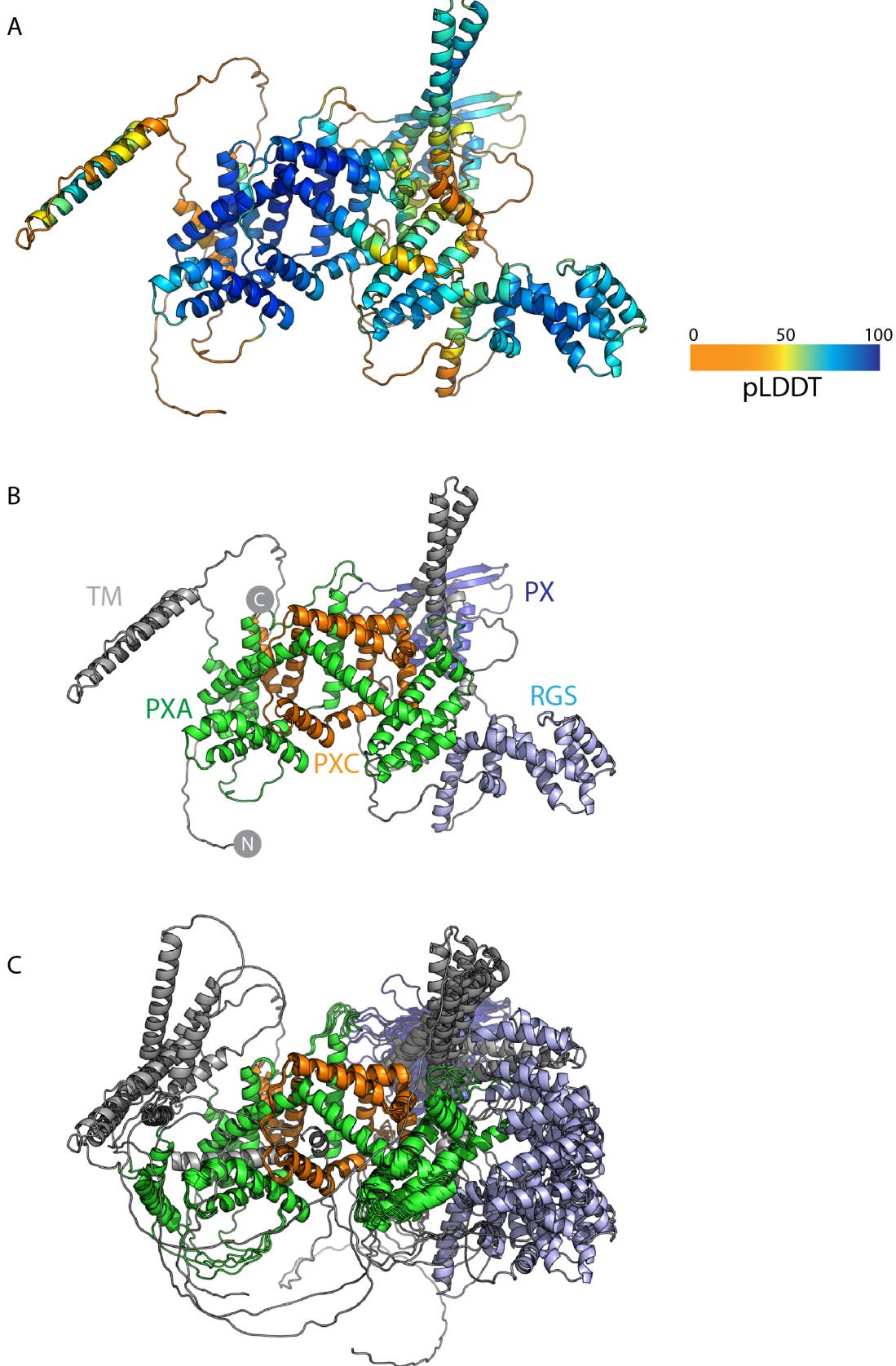


Figure S4. AlphaFold2 prediction of full-length human SNX25 protein.

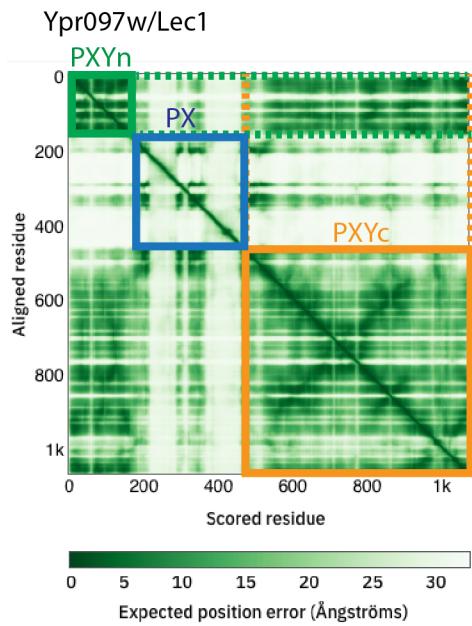
(A) Top ranked structure of full length human SNX25 5 (Uniprot ID A0A494C0S0) predicted by ColabFold coloured according to pLDDT score. (B) Top ranked structure of human SNX25 predicted by ColabFold coloured according to the indicated domains. (C) Alignment based on the core PXA-PXC structure of the five structural predictions of human SNX25 from ColabFold.

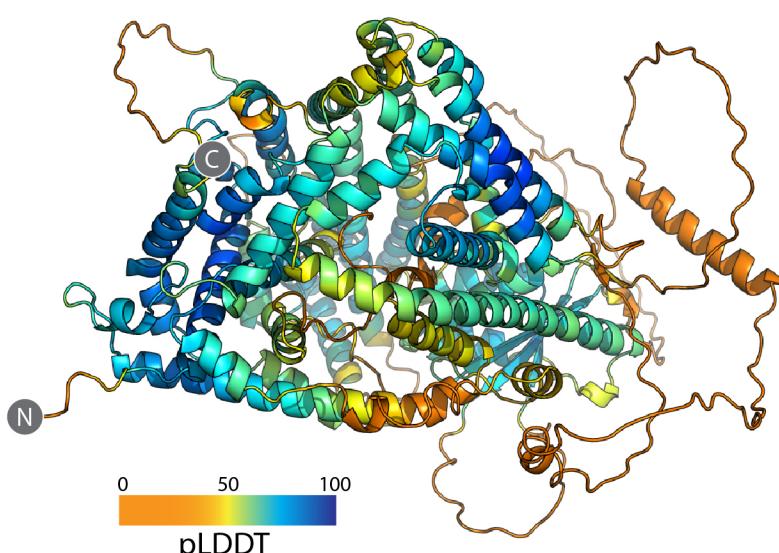
PXA/Chain A

hydrophobicity

PXC/Chain B

conservation


perpetuity. It is made available under aCC-BY 4.0 International license.


Figure S5. Conserved hydrophobic cavities in all human, yeast and fly PXA-PXC domains.

Structures of indicated PXA-PXC domains in ribbon (left) surface coloured by hydrophobicity, and sequence conservation. A region in SNX14 is highlighted that when deleted prevents LD recruitment 7. Far right panels display accessible cavities (red surface representation) in the proteins identified with POCASA56 and the volume (Å³) of the largest identified cavity is indicated. The five bottom structures are examples of other lipid transfer proteins bound to different lipids, demonstrating how similar kinds of conserved hydrophobic pockets can serve as lipid binding cavities and provided for comparison. Extended synaptotagmin 2 (E-Syt2) is in complex with a phosphatidylethanolamine lipid and Triton-X100 detergent molecule (PDB 4P42) 57. Cholesteryl ester transfer protein (CETP) is in complex with two cholesteryl esters and two phosphatidylcholine lipids (PDB 2OBP) 35. Glycolipid transfer protein (GLTP) is in complex with N-oleoyl-glucosylceramide (PDB 3S0K) 58. Phosphatidylcholine transfer protein (PC-TP) is shown in complex with a phosphatidylcholine molecule (PDB 1LN2) 59. Human OSBP-related protein 1 (ORP1) is shown bound to phosphatidylinositol(4,5)P2 (PDB 5ZM6)60

A

B

C

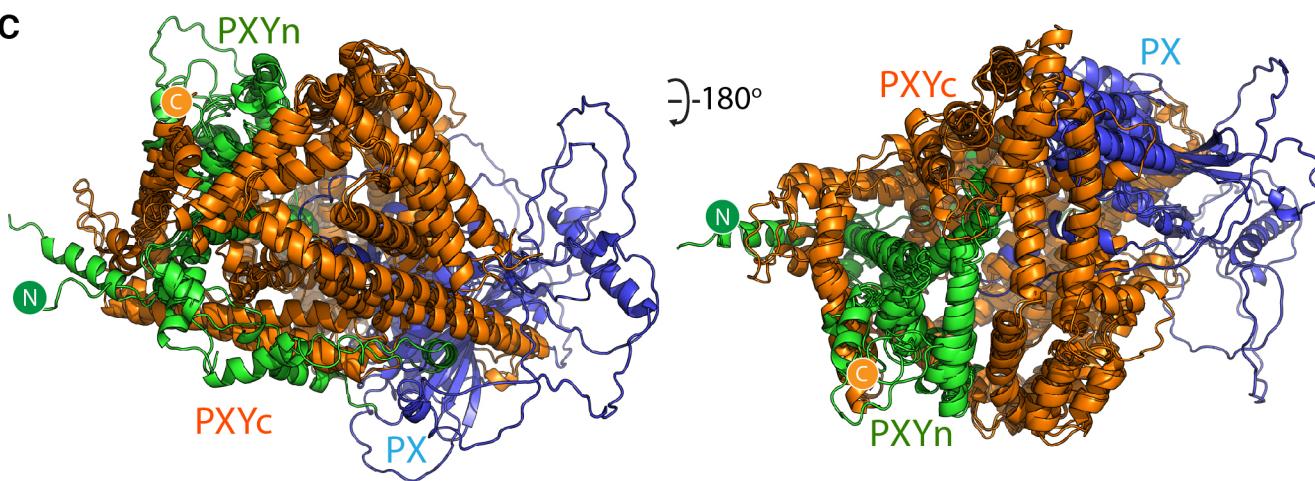


Figure S6. AlphaFold2 predicted structure of Lec1/Ypr097w.

(A) Plot of the Predicted Alignment Error (PAE) from the AlphaFold2 database. There is a strong degree of correlation between the N-terminal PXYn and C-terminal PXYc domains suggesting these two domains are physically associated. (B) The predicted structure of Lec1/Ypr097w from *S. cerevisiae* coloured according to the pLDDT score. (C) Overlay of the PXY proteins from *S. cerevisiae*, *S. pombe* and *C. albicans*.

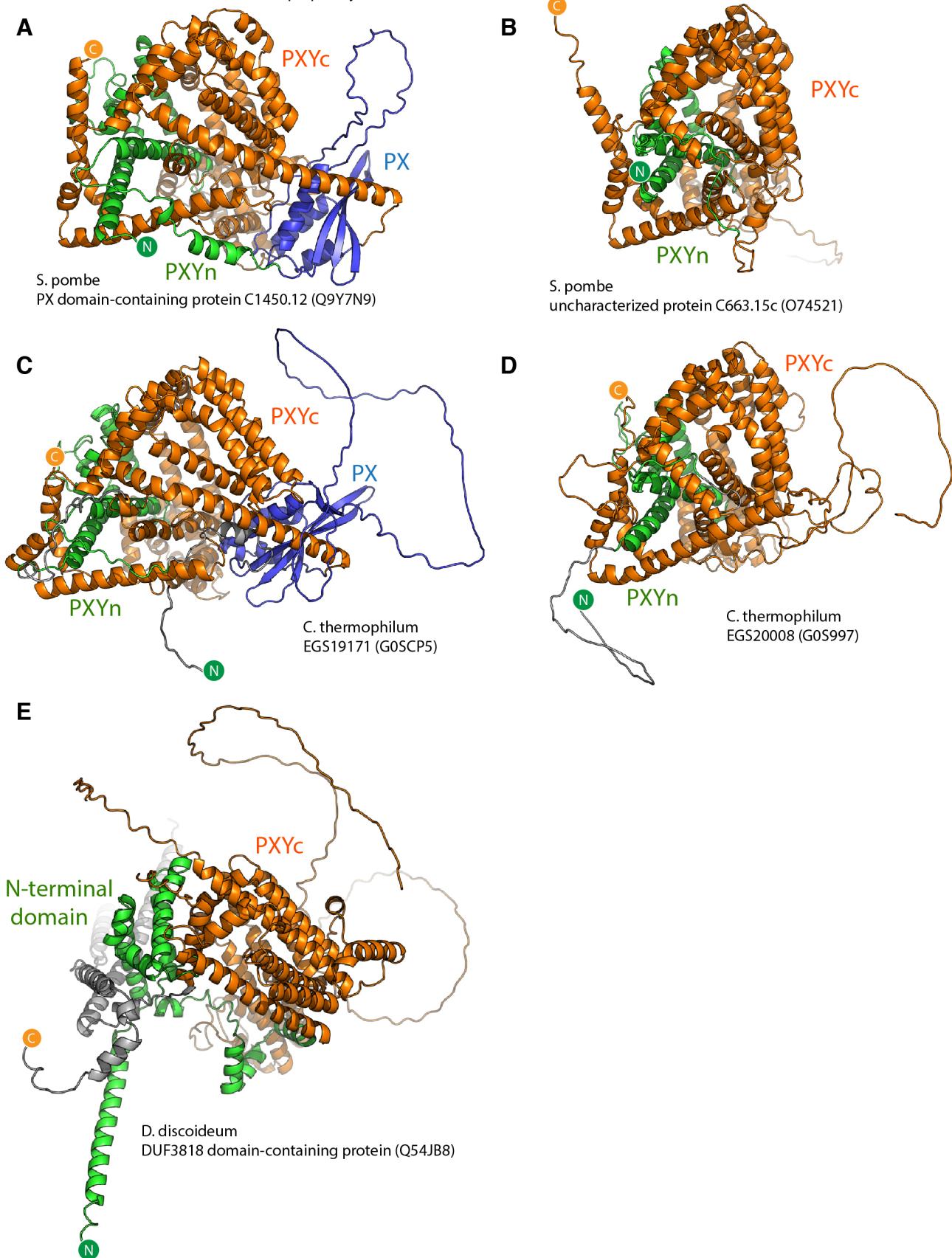


Figure S7. AlphaFold2 predicted structure of PXY domain proteins found in *S. pombe*, *C. thermophilum* and *D. discoideum*. (A) Structural prediction of *S. pombe* Lec1/Ypr092w orthologue C1450.12. (B) Structural prediction of *S. pombe* Lec1/Ypr092w homologue C663.15c. (C) Structural prediction of *C. thermophilum* Lec1/Ypr092w orthologue EGS19171. (D) Structural prediction of *C. thermophilum* Lec1/Ypr092w homologue EGS20008. (E) Structural prediction of *D. discoideum* DUF3818 domain-containing protein.