

1 Mutation, selection, and the prevalence of the *C. elegans* heat-sensitive mortal germline
2 phenotype

3

4 Sayran Saber^{1,*}, Michael Snyder^{1,*}, Moein Rajaei¹, and Charles F. Baer^{1,2}

5

6 1- Department of Biology, University of Florida, Gainesville, FL USA

7 2- University of Florida Genetics Institute, Gainesville, FL USA

8 * These authors contributed equally

9

10 Communication to: cbaer@ufl.edu

11

12 **Abstract**

13 *C. elegans* strains with the heat-sensitive mortal germline (Mrt) phenotype become
14 progressively sterile over the course of a few tens of generations when maintained at
15 temperatures near the upper range of *C. elegans*' tolerance. Mrt is transgenerationally-
16 heritable, and proximately under epigenetic control. Previous studies have suggested that Mrt
17 presents a relatively large mutational target, and that Mrt is not uncommon in natural
18 populations of *C. elegans*. The Mrt phenotype is not monolithic. Some strains exhibit a strong
19 Mrt phenotype, in which individuals invariably become sterile over a few generations, whereas
20 other strains show a weaker (less penetrant) phenotype in which the onset of sterility is slower
21 and more stochastic. We present results in which we (1) quantify the rate of mutation to the Mrt
22 phenotype, and (2) quantify the frequency of Mrt in a collection of 95 wild isolates. Over the
23 course of ~16,000 meioses, we detected one mutation to a strong Mrt phenotype, resulting in a
24 point estimate of the mutation rate $U_{Mrt} \approx 6 \times 10^{-5}$ /genome/generation. We detected no mutations
25 to a weak Mrt phenotype. 6/95 wild isolates have a strong Mrt phenotype, and although
26 quantification of the weak Mrt phenotype is inexact, the weak Mrt phenotype is not rare in
27 nature. We estimate a strength of selection against mutations conferring the strong Mrt
28 phenotype $\bar{s} \approx 0.1\%$, similar to selection against mutations affecting competitive fitness. The
29 appreciable frequency of weak Mrt variants in nature combined with the low mutation rate
30 suggests that Mrt may be maintained by balancing selection.

31 **Introduction**

32 The *C. elegans* "mortal germline" (Mrt) phenotype is a transgenerationally heritable trait in which
33 Mrt lineages become progressively sterile over the course of a few to a few tens of generations
34 (Ahmed and Hodgkin 2000; Smelick and Ahmed 2005). The Mrt phenotype was first discovered
35 in a mutant strain defective in germline telomere replication and DNA repair (Ahmed and
36 Hodgkin 2000). Subsequent studies have identified numerous Mrt mutants, many of which are
37 associated with defects in nuclear RNAi (Katz et al. 2009; Buckley et al. 2012; Spracklin et al.
38 2017). The transgenerational heritability of the nRNAi-defective Mrt phenotype is under
39 proximate epigenetic control, often (perhaps always) involving the interplay between piRNAs
40 and their Argonaute protein partner *prg-1* (Batista et al. 2008; Wahba et al. 2021). However,
41 like any trait governed epigenetically, it has an ultimate, underlying genetic basis. nRNAi-
42 defective Mrt mutants are typically heat-sensitive, with continued exposure to high temperature
43 leading to onset of sterility. Based on the frequency of appearance of Mrt mutants in forward
44 genetic screens, it was suggested that many genes are capable of producing the Mrt phenotype
45 if mutated (Smelick and Ahmed 2005), or in other words, the Mrt phenotype presents a large
46 mutational target (Houle 1998). Note that "large mutational target" in this context is not
47 synonymous with "polygenic" in the usual sense, because even if many genes potentially affect
48 the trait, a mutation in any one gene is sufficient to produce the Mrt phenotype. On the other
49 hand, Mrt probably is polygenic, with subtle phenotypic variation resulting from segregating
50 variants at many loci. However, it would be challenging to discern whether a given genotype
51 becomes sterile after (say) 13 generations vs. 14 generations, on average.

52 Over the past two decades, the realm of *C. elegans* biology has expanded beyond its
53 initial role as a model system par excellence for functional biology to include studies of natural
54 variation (Dirksen et al. 2016; Felix and Duveau 2012; Schulenburg and Felix 2017; Cook et al.
55 2017). It soon became apparent that some wild isolates could not be maintained in culture at
56 25° C (near the upper range of *C. elegans* thermal tolerance), and further, that most such

57 strains had the heat-sensitive Mrt phenotype (Frejal et al. 2018). Heat-sensitive Mrt strains can
58 typically be rescued by exposure to cool temperature (15° C) for a generation, and it is unclear if
59 long-term (multi-generational) exposure to temperatures sufficiently high to induce the Mrt
60 phenotype is common in *C. elegans*' natural environment. At first glance, the Mrt phenotype
61 would seem to be the manifestation of context-dependent mutations, which are neutral in the
62 wild, and only become deleterious in the lab environment. However, that scenario requires
63 bidirectional mutation, such that Mrt alleles mutate into wild-type alleles as well as the reverse; if
64 not, the population would eventually mutate its way to fixation for the Mrt phenotype.
65 Bidirectional mutation is possible, of course, but the evidence at hand suggests it is not
66 common, because the Mrt phenotype is associated with loss-of-function mutations.

67 A straightforward alternative to context-dependent neutrality is that Mrt alleles are
68 deleterious in nature, in which case genetic variation is maintained by mutation-(purifying)
69 selection balance (MSB). That possibility is intuitively attractive because, all else equal, sterility
70 will never be favored by natural selection. All else may not be equal, however; the Mrt
71 phenotype may be a pleiotropic correlate of some other trait(s) for which variation is maintained
72 by some form of balancing selection.

73 To begin to sort out the various possibilities by which variation for the Mrt phenotype is
74 maintained, we need to know (1) the rate of input of new genetic variation by mutation, and (2)
75 the frequency of the Mrt phenotype in nature. At any one locus, the equilibrium frequency of a
76 deleterious allele at MSB, $\hat{q} \approx \frac{\mu}{s}$, where μ is mutation rate from wild-type to the deleterious allele
77 and s is the strength of selection against the mutant allele (the homozygous effect in an
78 organism with near-complete self-fertilization, such as *C. elegans*; (Haldane 1927)). In a
79 (nearly) completely inbred population, by extrapolation over the entire genome, the probability
80 that an individual is not Mrt $\approx 1 - \sum_i \hat{q}_i$, summed over all i loci capable of yielding the Mrt
81 phenotype when mutated. In a population at MSB, the expected frequency of the Mrt

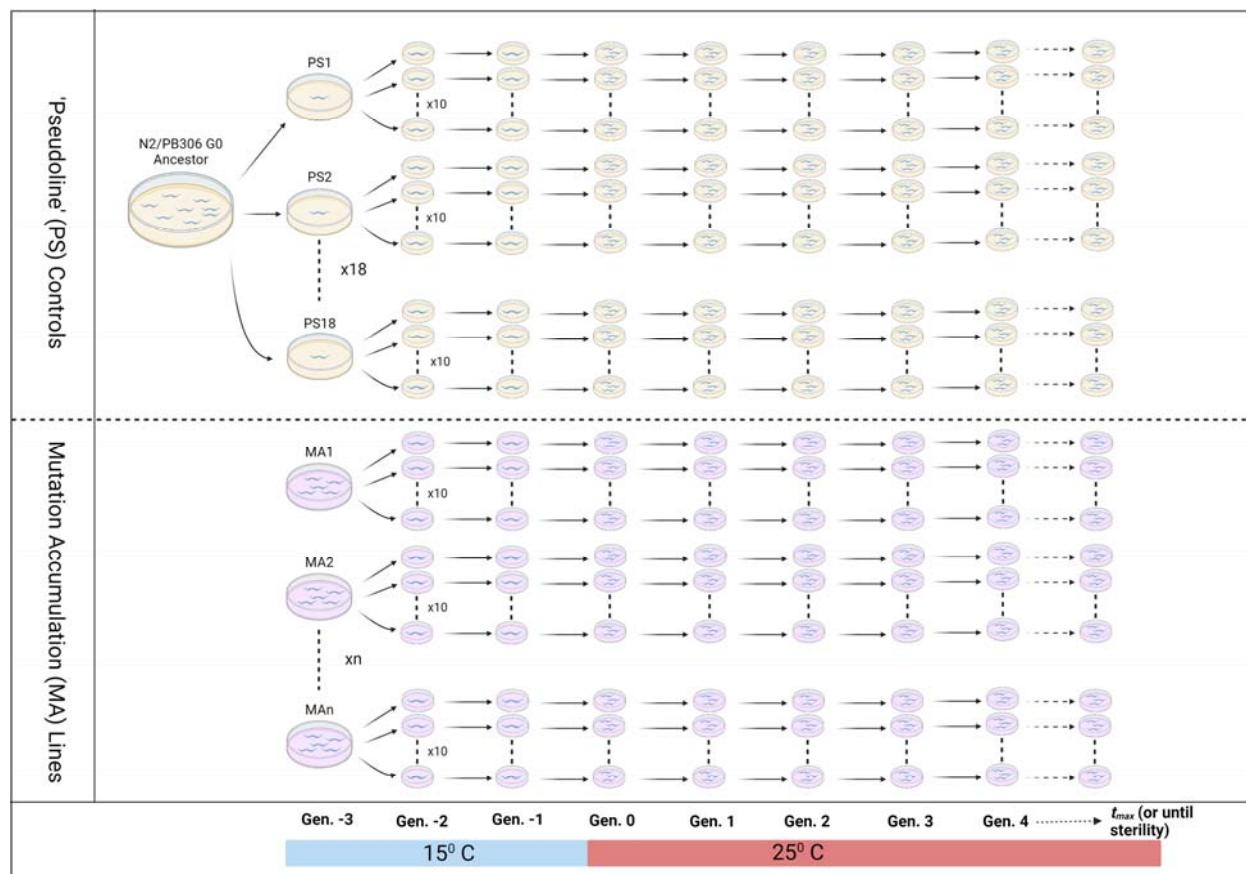
82 phenotype is approximately $\frac{U}{\bar{s}}$, where U is the genome-wide rate of mutation to Mrt alleles and \bar{s}
83 is the average strength of selection against an Mrt allele.

84 We estimated the rate of mutation to the Mrt phenotype from two sets of *C. elegans*
85 laboratory mutation accumulation (MA) lines, which evolved in the near-absence of natural
86 selection for approximately 250 generations. On average, each MA line carries about 65 unique
87 spontaneous base-substitution and small indel mutations (Rajaei et al. 2021), and probably a
88 few larger structural variants (A. S. Saxena and Baer, unpublished results). In addition, we
89 estimated the frequency of the Mrt phenotype in a worldwide collection of 95 wild isolates. From
90 these data, we infer the approximate strength of purifying selection acting on new Mrt mutations.
91 Although we refer to "the mortal germline" as if it was a discrete, presence/absence trait, in
92 reality, the mortal germline exists along a continuum (Frezal et al. 2018), and our analysis takes
93 that fact into account.

94

95 **Materials and Methods**

96 *Mutation Accumulation Experiment.* Details of the mutation accumulation protocol are given in
97 Baer et al. (2005). N2 is the standard laboratory strain of *C. elegans*; PB306 is a wild isolate
98 generously provided by Scott Baird. The basic protocol follows that of Vassilieva and Lynch
99 (1999) and is outlined in **Supplemental Figure S1**. Briefly, 100 replicate populations (MA lines)
100 were initiated from a cryopreserved stock of a highly-inbred ancestor ("G0") at mutation-drift
101 equilibrium and propagated by transferring a single immature hermaphrodite at one-generation
102 (four-day) intervals. Lines were maintained on 60mm NGM agar plates, spotted with 100 μ l of
103 an overnight culture of the OP50 strain of *E. coli* B, at a constant 20°C. The lines were
104 propagated for 250 transfers (Gmax=250), beginning in March, 2001 and culminating with a
105 final cryopreservation in 2005.


106

107 *Wild Isolates.* A collection of wild isolates of *C. elegans* was obtained from Erik Andersen
108 (Northwestern University) in 2015 and cryopreserved in the Baer lab. A list of the wild isolates
109 is given in **Supplemental Table S3**. The genome sequences of the wild isolates along with
110 collection information are available at <https://www.elegansvariation.org/>.

111

112 *Mortal Germline Assay.* The assay is based on that of Frezal et al. (2018), and is schematically
113 depicted in **Figure 1**. Cryopreserved samples of the G0 ancestor were thawed onto 35 mm

114

115

Figure 1. Schematic diagram of the Mrt assay. See Methods for details of the experiment.

116

117 plates seeded with OP50 and incubated at 20° for three days, at which time 18 L4-stage
118 hermaphrodites were picked individually to seeded 35 mm plates and incubated at 15°. The 18

119 replicates of the G0 ancestor were subsequently treated identically to the MA lines; we refer to
120 these as “pseudolines” (PS). The following day, 35 randomly selected N2 (block 1) or PB306
121 (block 2) MA lines were thawed from cryopreserved samples and incubated at 15° C. PS and
122 MA lines were allowed to reproduce for one generation (g.-3) at 15° C, at which point ten
123 replicates of each line (MA and PS) were initiated by transferring a single L4 hermaphrodite to a
124 seeded 35 mm plate. Each replicate was allowed to reproduce at 15°C for two more generations
125 generation (g.-2, g.-1), at which time three L4s from each replicate were transferred to a seeded
126 35 mm plate (g.0) and incubated at 25° C. Subsequently, three L4s were transferred at three-
127 day intervals for the duration of the assay. The N2 assay (block 1) was propagated for 21
128 generations; we terminated the PB306 assay (block 2) after 14 generations because it was
129 evident that there were no lines with a strong Mrt phenotype.

130 The assay of the wild isolates was identical to that of the N2 MA lines (21 generations)
131 except there were only three replicates per line rather than ten.

132

133 *The mortal germline (Mrt) phenotype.* A strain is defined as having the Mrt phenotype if (1) it
134 becomes sterile over a predefined number of generations (see next paragraph), and (2) sterility
135 is manifested in a stereotypical way. Specifically, animals with the Mrt phenotype develop at
136 approximately the normal rate, are of normal size and lifespan, exhibit typical activity, have a
137 characteristically dark intestine, and an obvious absence of developing embryos (see Figure 1D
138 of Frezal et al. 2018). Mrt sterility is defined in contrast to failure to reproduce *per se*. Some
139 MA lines simply have low fitness, which may lead to failure to reproduce. Typically, worms from
140 low-fitness lines are sickly-looking, develop slowly, mature at small size, and are sluggish.
141 Individuals from low-fitness lines have low fecundity and/or lay eggs that fail to hatch, and often
142 die before reproducing. Low fitness is not temperature-dependent, although the effects are
143 often more severe at higher temperature (Matsuba et al. 2013). Several MA lines had low
144 fitness; none of the 95 wild isolates did.

145 As noted, the Mrt phenotype exists along a continuum. We define a strain (MA or wild
146 isolate) as having a "strong" Mrt phenotype if (1) the mean time to sterility is less than 10
147 generations, and (2) the maximum time to sterility is less than 15 generations. We further define
148 a strain as having a "moderate" Mrt phenotype if (1) the mean time to sterility is less than 16
149 generations and (2) no replicate is still fertile by the culmination of the experiment at 21
150 generations. We define a "weak" Mrt phenotype as a strain that meets neither of the preceding
151 criteria but in which at least two out of three replicates have become sterile by generation 21. A
152 strain is designated as wild-type if at least two out of three replicates are fertile at generation 21.
153 The strong-Mrt category is defined on the basis of the MA line results and to parallel the
154 classification of Frezal et al. (2018); the moderate and weak categories are *ad hoc*.

155

156 *Haplotype tree.* Mrt phenotypes as defined in the previous section were mapped onto a
157 species-wide, whole-genome haplotype tree constructed from the *WI.20210121.hard-*
158 *filter.isotype.min4* strain set, available from the CeNDR database
159 (<https://www.elegansvariation.org/data/release/latest>). The tree was estimated by Neighbor
160 Joining, as implemented in the QuickTree software (<https://github.com/tseemann/quicktree>).

161

162 *Data Access*

163 Mrt assay data are included in supplemental tables S1 and S3 and in Dryad ##. Genome
164 sequence data of MA line 578 is deposited in the NCBI Sequence Read Archive under
165 Accession number PRJNA665851, sample SAMN16272702.

166

167 **Results**

168 *Mutation*

169 Raw survival data are given in **Supplemental Table S1**. Both the N2 and PB306 progenitors
170 are wild-type. In the N2 G0 progenitor, only ten of the 180 replicates (18 PS lines, 10

171 replicates/line) failed to reproduce before termination of the assay at generation 21, and only
172 one of the 18 PS lines had more than one replicate fail to finish the assay. Of the 34 N2 MA
173 lines assayed, one (line 540) incurred a heat-sensitive sterile mutation, identified as such
174 because all ten replicates of the line were sterile after the first generation at 25°. Temperature-
175 sensitive sterile and lethal mutations are well-documented in many organisms, and are distinct
176 from Mrt. One line (line 578) had an obvious strong Mrt phenotype; all ten replicates were
177 sterile by generation ten (median time to sterility = six generations). Of the remaining 32 MA
178 lines, only two had more than one replicate fail prior to completion of the assay. Line 516 had
179 3/10 replicates fail, and line 538 had two. However, both lines had obviously low fitness (e.g.
180 slow development, sickly worms) and did not exhibit the canonical Mrt-sterile phenotype, so we
181 classify those lines as wild-type with respect to the Mrt phenotype.

182 Of the 180 replicates of the PB306 progenitor, only one failed to reproduce prior to
183 completion of the assay at generation 14. Of the 33 PB306 MA lines, one (line 471) had 6/10
184 replicates fail before generation seven. However, line 471 has low fitness even at 20°, and the
185 remaining four replicates survived to the end. The replicates that failed did not have the Mrt-
186 sterile phenotype; rather, they were characterized by slow growth and dead worms.
187 Accordingly, we do not classify line 471 as Mrt. No other PB306 MA line had more than one
188 replicate fail to complete the assay.

189 From these data, we conclude that 1/34 N2 lines and 0/33 PB306 lines incurred a strong
190 Mrt mutation, and no MA line incurred a moderate or weak Mrt mutation. We can calculate the
191 point estimate of the genome-wide rate of mutation to (strong) Mrt as $U_{Mrt} = k/nt$, where k is the
192 number of Mrt mutations observed (one in N2 and zero in PB306, assuming that the one
193 observed Mrt phenotype is the result of a single mutation, which it appears to be), n is the
194 number of MA lines included, and t is the number of generations of MA. Note that this is the
195 haploid rate, but that mutations accumulated in diploids; double the number of genomes (for
196 diploidy) is cancelled by the probability of loss of a new neutral mutation in an MA line, which is

197 1/2. Pooling over the two sets of lines, the point estimate of $U_{Mrt} = 1/(67 \times 250) \approx 6 \times 10^{-5}$ /genome/generation. If we assume that the number of mutations X is Poisson distributed
198 among lines, the exact 95% confidence interval around U_{Mrt} can be calculated as follows. Let λ_L
199 and λ_U be the lower and upper bounds on the $(1-\alpha)\%$ confidence interval of a Poisson-
200 distributed random variable $X=k$, defined as:
201

$$P(\lambda_L) = \sum_{i=k}^{\infty} \frac{e^{-\lambda_L} \lambda_L^i}{i!} = \alpha/2$$

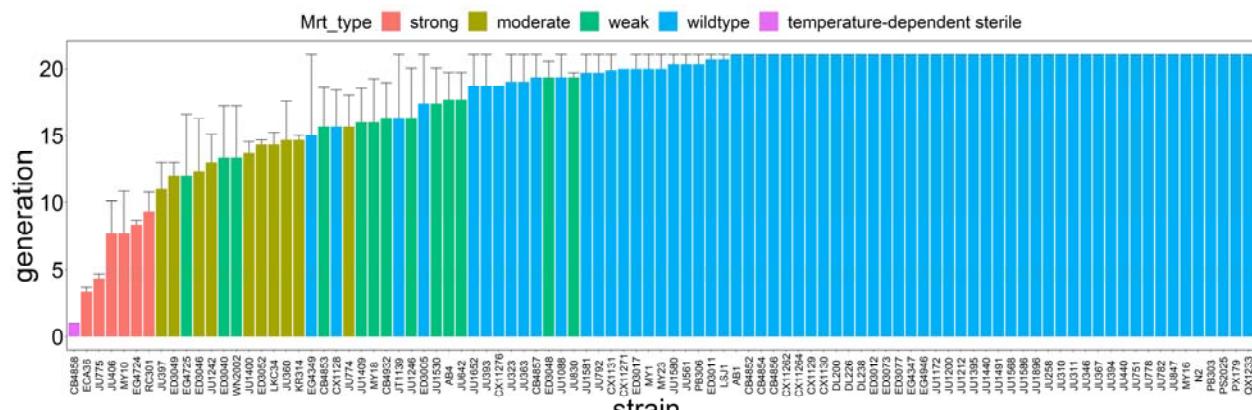
202 and

$$P(\lambda_U) = \sum_{i=0}^k \frac{e^{-\lambda_U} \lambda_U^i}{i!} = \alpha/2$$

203 From the relationship between the Poisson and the Chi-square distributions,
204 $P(\lambda_L) = \Pr(\chi_{2k}^2 \leq 2\lambda_L) = \alpha/2$ and $1 - P(\lambda_U) = \Pr(\chi_{2(k+1)}^2 \leq 2\lambda_U) = 1 - \alpha/2$. $2\lambda_L$ is the $\alpha/2$ fractile of
205 a χ^2 -distributed random variable with $2k$ degrees of freedom, and $2\lambda_U$ is the $1 - \alpha/2$ fractile of a
206 χ^2 -distributed random variable with $2(k+1)$ df (Ulm 1990). Here, $k=1$ mutation in nt (67
207 lines)(250 generations)=16750 meioses, so the 95% confidence interval around U_{Mrt} is
208 $(1.53 \times 10^{-6} - 3.28 \times 10^{-4}$ /genome/generation). The per-nucleotide mutation rate in these lines is
209 approximately 2.8×10^{-9} /generation (Saxena et al. 2019; Rajaei et al. 2021) and the *C. elegans*
210 genome is approximately 10^8 bp, resulting in a point estimate of the mutational target of the Mrt
211 phenotype of about 0.02%, and possibly as much as 0.1% of the *C. elegans* genome.

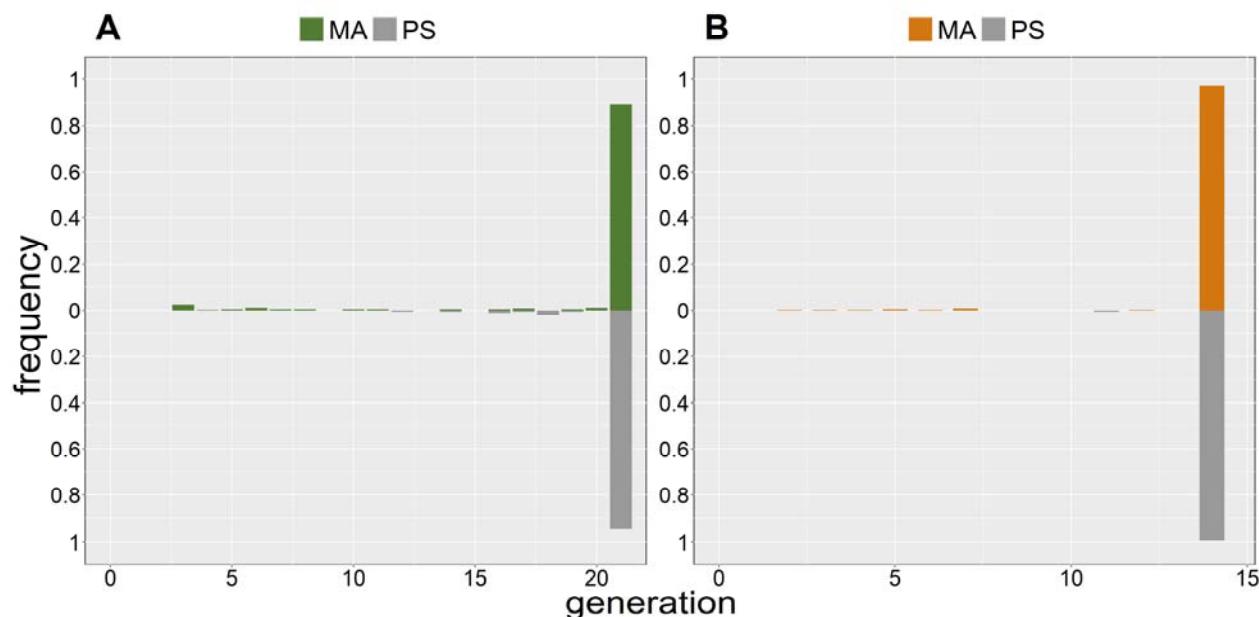
212 Given that one, and only one, MA line has a clear Mrt phenotype, we scrutinized its
213 genome for candidate mutations (Rajaei et al. 2021; **Supplemental Methods**). Line 578 carries
214 37 unique base-substitutions, 13 deletions, and four insertions relative to the genome of the
215 progenitor of the N2 MA lines (**Supplemental Table S2**). There is one obvious candidate, an
216 11-base frameshift insertion in an exon of the *nrde-2* gene. *nrde-2* is so-named for its Nuclear
217 RNAi Defective phenotype (Guang et al. 2008), is involved in heterochromatin assembly by

218 small RNA as well as nuclear RNAi, and has been shown to be involved in temperature-
219 dependent transgenerational nuclear silencing (Sakaguchi et al. 2014).


220

221 *Standing genetic variation*

222 95 wild isolates ("strains") were chosen haphazardly, based on a collection by E. C. Andersen.
223 Assay data are given in **Supplemental Table S3**. Unlike that of the MA lines, the phenotypic
224 distribution of the wild isolates cannot be unambiguously categorized into Mrt and Not Mrt. The
225 difficulty has (at least) two sources. First, the sample size per strain is smaller (three replicates
226 per strain, as opposed to ten per MA line), and second, there appear to be small-effect QTL
227 segregating in the population that contribute a non-trivial fraction of the heritable variation
228 (Frezal et al. 2018).


229 Six of the 95 strains had an unambiguous strong Mrt phenotype (**Figure 2**).

230 Progressively loosening the Mrt criteria, 10 strains had the moderate Mrt phenotype, and
231 another 13 strains had the weak Mrt phenotype. The remaining 65 strains were classified as
232 wild-type, of which 42 remained fertile at 21 generations in all three replicates. The
233 quantification is obviously not exact; some lines with relatively low mean time-to-failure were
234 classified as wild-type because one replicate became sterile early on, whereas two of the three
235 replicates remained fertile at 21 generations (e.g., EG4349). Depending on the stringency of the
236 criteria, the frequency of the temperature-dependent Mrt phenotype in the wild isolates is at
237 least 6/95 (~6%) and probably much higher.

256 calculated as before from the Poisson probability of observing k mutations, where now $k=0$. U
257 as high as 2.2×10^{-4} /generation is consistent with the observed absence of weak Mrt phenotypes
258 among the MA lines.

259 A trait for which variation is maintained by MSB will recur and quickly be lost. When
260 mapped onto a species' haplotype phylogeny, the trait is expected to be scattered on tip
261 branches throughout the tree, but not be present deeper in the tree. In contrast, a trait for which
262 variation is maintained by balancing selection will appear deep(er) in the tree. We mapped the
263 four categories of Mrt (strong, moderate, weak, and wild-type) onto a recent haplotype
264 phylogeny of *C. elegans* (Supplemental Figure S2). The data are sparse, but for four of the six
265 strong Mrt strains, the nearest neighbor in the tree with a characterized phenotype is wild-type,
266 as predicted for a trait at MSB; the other two are ambiguous. The pattern is less clear for
267 weaker Mrt phenotypes, but some clades do have multiple moderate and weak-Mrt strains,
268 albeit interspersed with wild-type strains.

269
270 **Figure 3.** Frequency distribution of time to failure to reproduce of individual replicates in the
271 MA assay. MA lines above the mid-line, G0 pseudolines (PS) below. (A) N2. (B) PB306.

272 **Discussion**

273 The high frequency of weak Mrt phenotypes in the wild isolates seems incongruous with the
274 failure to observe even a single MA line with a weak Mrt phenotype. Long-term maintenance of
275 neutral variation requires bidirectional mutation. It is evident that the strong Mrt phenotype is
276 deleterious in the lab environment. Fortunately, we have a strain (XZ1516) in long-term mass
277 culture at 20° that has a strong temperature-dependent Mrt phenotype that is weakly penetrant
278 at 20°. As an *ad hoc* test for back-mutation of a strong Mrt phenotype in the presence of
279 selection, we initiated ten replicates of our Mrt assay at 25° with XZ1516 worms that had been
280 cryopreserved after ~80 generations in mass culture at 20°. All ten replicates were sterile by
281 seven generations. Obviously that would have been a more meaningful test had we kept the
282 strain in mass culture at 25° rather than 20° (and used more than a single strain), but it at least
283 suggests that back-mutations from a strong Mrt phenotype are infrequent. Of course, the
284 genetic basis underlying weak Mrt phenotypes is likely to be different from that of the strong Mrt
285 phenotype, which has been shown to typically result from loss-of-function mutations at protein-
286 coding loci (e.g., MA line 578). Based on what is known about quantitative traits in general
287 (Manolio et al. 2009; Boyle et al. 2017), it seems likely that much variation in weak Mrt is the
288 result of variation in the magnitude and/or timing of expression of genes that confer a strong Mrt
289 phenotype when silenced. On the other hand, "typical" quantitative traits accumulate abundant
290 mutational variance (Houle et al. 1996; Davies et al. 2016), which is not the case for the weak
291 Mrt phenotype in these lines. Another possibility is that a different epigenetically-heritable factor
292 (e.g., a different small RNA) accumulates in the germline at a slower rate, leading to what we
293 classify as a weak Mrt phenotype. The failure to observe a weak Mrt phenotype in the MA lines
294 is consistent with that possibility.

295 Taken together, abundant genetic variation in nature coupled with a low rate of input of
296 variation by mutation points toward variation being maintained by some type of balancing
297 selection. We do not yet know enough about the natural history of the Mrt phenotype to identify

298 candidate mechanisms, except to note the close correspondence between genes that produce a
299 Mrt phenotype and the RNAi mechanism. Natural targets of RNAi include transposable
300 elements and viruses (Robert et al. 2005; Fischer et al. 2013), each of which could plausibly
301 constitute an agent of balancing selection.

302

303 **Acknowledgments**

304 We thank José Miguel Ponciano, Matt Rockman, and the anonymous reviewers for their helpful
305 comments. We especially thank Marie-Anne Félix for her comments and for piquing our interest
306 in the mortal germline phenotype. Support was provided by NIH award GM127433 to CFB and
307 V. Katju.

308

309

310 **Literature Cited**

311 Ahmed, S., and J. Hodgkin, 2000 MRT-2 checkpoint protein is required for germline immortality and
312 telomere replication in *C. elegans*. *Nature* 403 (6766):159-164.

313 Baer, C.F., F. Shaw, C. Steding, M. Baumgartner, A. Hawkins *et al.*, 2005 Comparative evolutionary
314 genetics of spontaneous mutations affecting fitness in rhabditid nematodes. *Proceedings of the
315 National Academy of Sciences of the United States of America* 102 (16):5785-5790.

316 Batista, P.J., J.G. Ruby, J.M. Claycomb, R. Chiang, N. Fahlgren *et al.*, 2008 PRG-1 and 21U-RNAs interact
317 to form the piRNA complex required for fertility in *C. elegans*. *Molecular Cell* 31 (1):67-78.

318 Boyle, E.A., Y.I. Li, and J.K. Pritchard, 2017 An Expanded View of Complex Traits: From Polygenic to
319 Omnipigenic. *Cell* 169 (7):1177-1186.

320 Buckley, B.A., K.B. Burkhart, S.G. Gu, G. Spracklin, A. Kershner *et al.*, 2012 A nuclear Argonaute promotes
321 multigenerational epigenetic inheritance and germline immortality. *Nature* 489 (7416):447-451.

322 Cook, D.E., S. Zdraljevic, J.P. Roberts, and E.C. Andersen, 2017 CeNDR, the *Caenorhabditis elegans*
323 natural diversity resource. *Nucleic Acids Research* 45 (D1):D650-D657.

324 Davies, S.K., A.M. Leroi, A. Burt, J. Bundy, and C.F. Baer, 2016 The mutational structure of metabolism in
325 *Caenorhabditis elegans*. *Evolution* 70:2239-2246.

326 Dirksen, P., S.A. Marsh, I. Braker, N. Heitland, S. Wagner *et al.*, 2016 The native microbiome of the
327 nematode *Caenorhabditis elegans*: gateway to a new host-microbiome model. *Bmc Biology* 14.

328 Felix, M.A., and F. Duveau, 2012 Population dynamics and habitat sharing of natural populations of
329 *Caenorhabditis elegans* and *C. briggsae*. *Bmc Biology* 10.

330 Fischer, S.E.J., Q. Pan, P.C. Breen, Y. Qi, Z. Shi *et al.*, 2013 Multiple small RNA pathways regulate the
331 silencing of repeated and foreign genes in *C. elegans*. *Genes & Development* 27 (24):2678-2695.

332 Frezal, L., E. Demoinet, C. Braendle, E. Miska, and M.A. Felix, 2018 Natural genetic variation in a
333 multigenerational phenotype in *C. elegans*. *Current Biology* 28 (16):2588-+.

334 Guang, S., A.F. Bochner, D.M. Pavelec, K.B. Burkhart, S. Harding *et al.*, 2008 An Argonaute transports
335 siRNAs from the cytoplasm to the nucleus. *Science* 321 (5888):537-541.

336 Haldane, J.B.S., 1927 A mathematical theory of natural and artificial selection, Part V: Selection and
337 mutation. *Proceedings of the Cambridge Philosophical Society* 23:838-844.

338 Houle, D., 1998 How should we explain variation in the genetic variance of traits? *Genetica* 103:241-253.

339 Houle, D., B. Morikawa, and M. Lynch, 1996 Comparing mutational variabilities. *Genetics* 143 (3):1467-
340 1483.

341 Katz, D.J., T.M. Edwards, V. Reinke, and W.G. Kelly, 2009 A *C. elegans* LSD1 demethylase contributes to
342 germline immortality by reprogramming epigenetic memory. *Cell* 137 (2):308-320.

343 Manolio, T.A., F.S. Collins, N.J. Cox, D.B. Goldstein, L.A. Hindorff *et al.*, 2009 Finding the missing
344 heritability of complex diseases. *Nature* 461 (7265):747-753.

345 Matsuba, C., D.G. Ostrow, M.P. Salomon, A. Tolani, and C.F. Baer, 2013 Temperature, stress and
346 spontaneous mutation in *Caenorhabditis briggsae* and *Caenorhabditis elegans*. *Biology Letters* 9
347 (1).

348 Rajaei, M., A.S. Saxena, L.M. Johnson, M.C. Snyder, T.A. Crombie *et al.*, 2021 Mutability of
349 mononucleotide repeats, not oxidative stress, explains the discrepancy between laboratory-
350 accumulated mutations and the natural allele-frequency spectrum in *C. elegans*. *Genome
351 Research* 31 (9):1602-1613.

352 Robert, V.J.P., T. Sijen, J. van Wolfswinkel, and R.H.A. Plasterk, 2005 Chromatin and RNAi factors protect
353 the *C. elegans* germline against repetitive sequences. *Genes & Development* 19 (7):782-787.

354 Sakaguchi, A., P. Sarkies, M. Simon, A.-L. Doebley, L.D. Goldstein *et al.*, 2014 *Caenorhabditis elegans*
355 RSD-2 and RSD-6 promote germ cell immortality by maintaining small interfering RNA
356 populations. *Proceedings of the National Academy of Sciences* 111 (41):E4323-E4331.

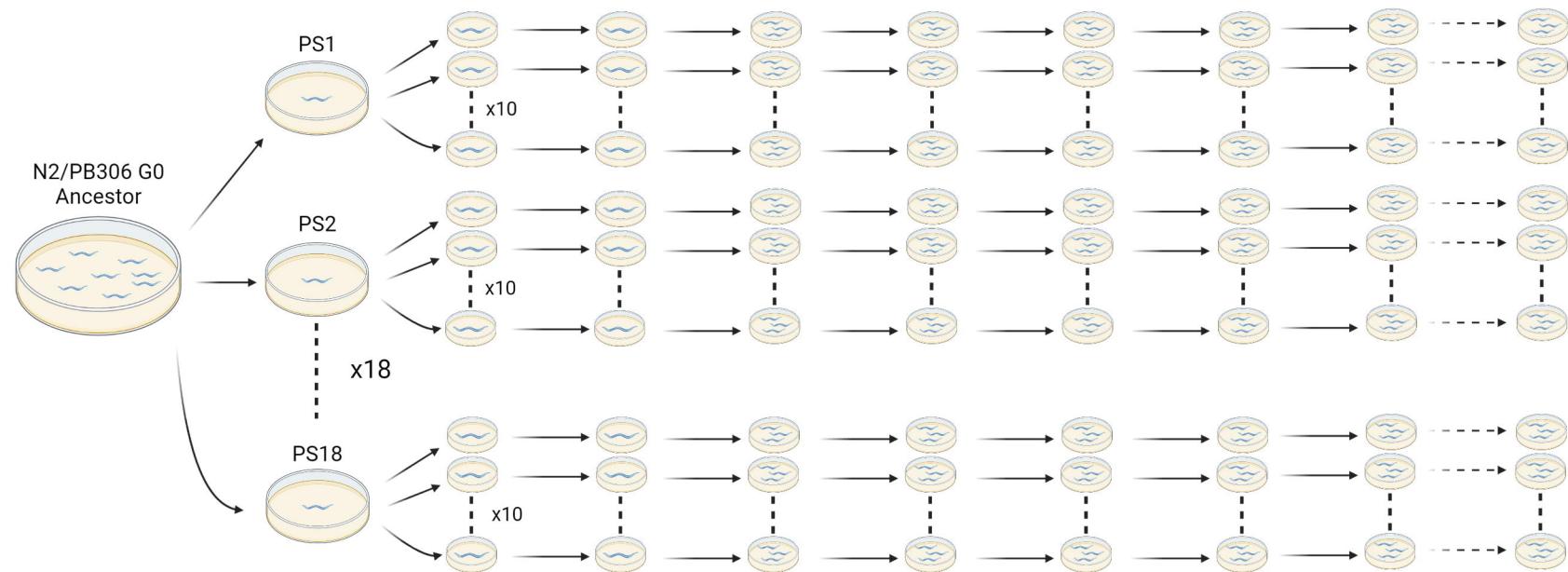
357 Saxena, A.S., M.P. Salomon, C. Matsuba, S.D. Yeh, and C.F. Baer, 2019 Evolution of the mutational
358 process under relaxed selection in *Caenorhabditis elegans*. *Molecular Biology and Evolution* 36
359 (2):239-251.

360 Schulenburg, H., and M.A. Felix, 2017 The Natural Biotic Environment of *Caenorhabditis elegans*.
361 *Genetics* 206 (1):55-86.

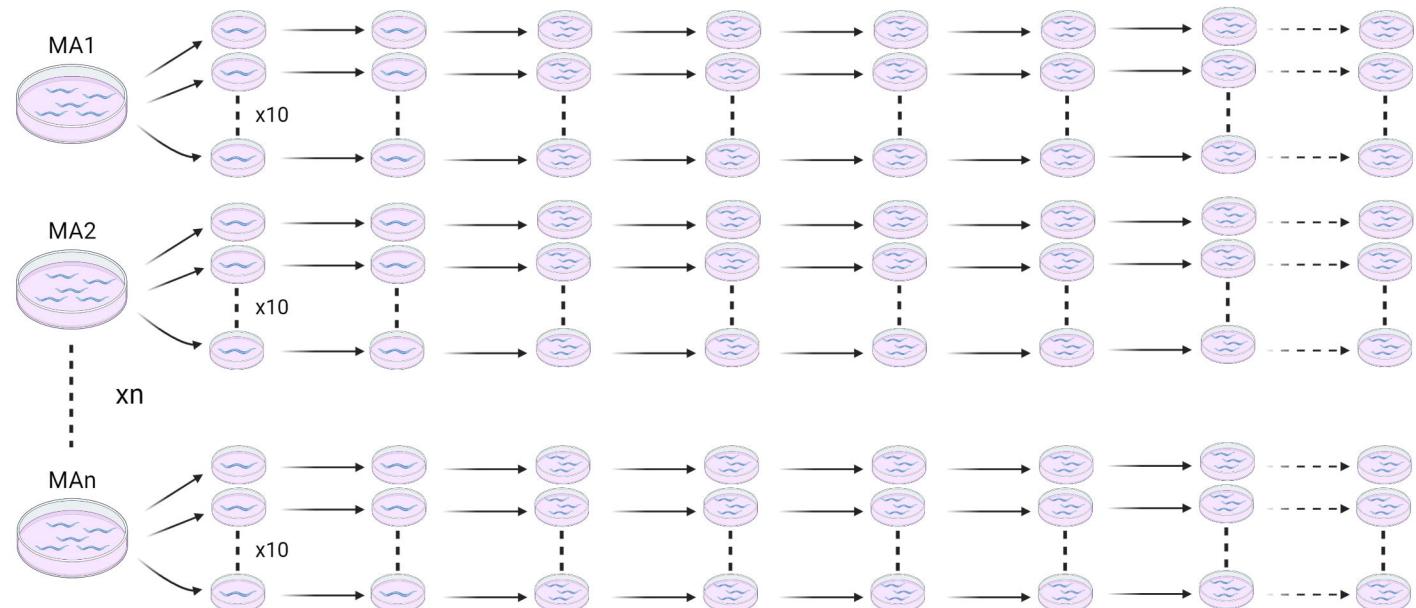
362 Smelick, C., and S. Ahmed, 2005 Achieving immortality in the *C. elegans* germline. *Ageing Research
363 Reviews* 4 (1):67-82.

364 Spracklin, G., B. Fields, G. Wan, D. Becker, A. Wallig *et al.*, 2017 The RNAi inheritance machinery of
365 *Caenorhabditis elegans*. *Genetics* 206 (3):1403-1416.

366 Ulm, K., 1990 A simple method to calculate the confidence interval of a standardized mortality ratio
367 (SMR). *American Journal of Epidemiology* 131 (2):373-375.


368 Vassilieva, L.L., and M. Lynch, 1999 The rate of spontaneous mutation for life-history traits in
369 *Caenorhabditis elegans*. *Genetics* 151 (1):119-129.

370 Wahba, L., L. Hansen, and A.Z. Fire, 2021 An essential role for the piRNA pathway in regulating the
371 ribosomal RNA pool in *C. elegans*. *Developmental Cell* 56 (16):2295-2312.


372

373

'Pseudoline' (PS) Controls

Mutation Accumulation (MA) Lines

Gen. -3 Gen. -2 Gen. -1 Gen. 0 Gen. 1 Gen. 2 Gen. 3 Gen. 4 t_{max} (or until sterility)

15°C 25°C