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2 

Abstract 21 

Human brain connectomes include sets of densely connected regions, known as connectome 22 

hubs, which play a vital role in understanding global brain communication, cognitive processing, 23 

and brain disorders. However, the consistency and reproducibility of functional connectome 24 

hubs’ anatomical localization have not been established to date and the genetic signatures 25 

underlying robust connectome hubs remain unknown. Here, we conduct the first worldwide, 26 

harmonized meta-connectomic analysis by pooling resting-state functional MRI data of 5,212 27 

healthy young adults across 61 independent cohorts. We identify highly consistent and 28 

reproducible functional connectome hubs in heteromodal and unimodal regions both across 29 

cohorts and across individuals. These connectome hubs show heterogeneous connectivity 30 

profiles and are critical for both intra- and inter-network communications. Using post-mortem 31 

gene expression data, we show that these connectome hubs have a spatiotemporally distinctive 32 

transcriptomic pattern dominated by genes involved in the neuropeptide signaling pathway, 33 

neurodevelopmental processes, and metabolic processes. These results highlight the robustness 34 

of macroscopic connectome hubs and their potential cellular and molecular underpinnings. 35 

  36 
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Introduction 37 

Functional connectome mapping studies have identified sets of densely connected regions in 38 

large-scale human brain networks, which are known as hubs1. Connectome hubs play a crucial 39 

role in global brain communication1, 2 and support a broad range of cognitive processing, such as 40 

working memory3 and semantic processing4. Growing evidence suggests that these highly 41 

connected brain hubs are preferentially targeted by many neuropsychiatric disorders5-8, which 42 

provides critical clues for understanding the biological mechanisms of disorders and establishing 43 

biomarkers for disease diagnosis8, 9 and treatment evaluation10 (1, 2, 11, 12 for reviews). 44 

Despite such importance, there is considerable inconsistency in anatomical locations of 45 

functional connectome hubs among existing studies. For example, components of the default-46 

mode network (DMN) have been frequently reported as connectome hubs, yet the spatial pattern 47 

is highly variable across studies. In particular, several studies have shown highly connected hubs 48 

in the lateral parietal regions of the DMN7, 8, 13, 14, whereas others have reported midline 49 

structures of the DMN15-19. Several works have identified primary sensorimotor and visual 50 

regions as connectome hubs13, 14, 16-19, yet others did not replicate these findings7, 8, 15. Subcortical 51 

regions, such as the thalamus and amygdala, have also been inconsistently reported as hubs8, 15, 
52 

16, 18 and non-hubs7, 13, 14, 17, 19. Thus, the consistency and reproducibility of functional 53 

connectome hubs have been difficult to establish to date, which can be attributed to inadequate 54 

sample size and differences in imaging scanner, imaging protocol, data processing, and 55 

connectome analysis strategies. Here, we aimed to establish a harmonized meta-analysis model 56 

to identify robust functional connectome hubs in healthy young adults by combining multiple 57 

cohorts with uniform protocols for data quality assurance, image processing, and connectome 58 

analyses.  59 

Once the robust connectome hubs are identified, we will further examine their genetic signatures. 60 

It has been well demonstrated that the connectome architecture of the human brain is inheritable, 61 

such as functional connectivity of the DMN20 and the cost-efficiency optimization21. Moreover, 62 

the functional connectomes can be regulated by genotypic variation both during rest22 and in 63 

cognitive tasks23, especially involving the DMN22, 23 and frontoparietal network (FPN)23. 64 

Growing evidence also suggests spatial correspondence between transcriptomic profiles and 65 

connectome architectures24-26 (27 for review). Thus, we reasoned that the robust macroscopic 66 

connectome hubs could be associated with microscopic genetic signatures. Elucidating these 67 

genetic signatures will substantially benefit our understanding of how connectome hubs emerge 68 

in development, function in complex cognition, and are involved in disease. 69 

To address these issues, we provide the first worldwide harmonized meta-connectomic analysis 70 

of functional brain hubs by pooling a large-sample resting-state functional MRI (rsfMRI) dataset 71 

of 5,212 healthy young adults (aged 18–36 years) across 61 cohorts. Fig 1 illustrates the sample 72 

size and age ranges of each cohort. To uncover the genetic signatures underlying these 73 

connectome hubs, we conducted machine learning approaches to distinguish connectome hubs 74 

from non-hubs using transcriptomic data from the Allen Human Brain Atlas (AHBA) and 75 

explored their developmental evolutions using the BrainSpan Atlas.  76 

 77 
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Results  78 

Identifying consistent connectome hubs using a harmonized meta-analysis model. 79 

Prior to the meta-analysis, we constructed a voxelwise functional connectome matrix for each 80 

individual by computing the Pearson’s correlation coefficient between preprocessed rsfMRI time 81 

series of all pairs of gray matter voxels (47,619 voxels). Then, the functional connectivity 82 

strength (FCS) of each voxel was computed as the sum of connection weights between the given 83 

voxel and all the other voxels. This resultant FCS map was further normalized with respect to its 84 

mean and standard deviation across voxels7. For each cohort, we performed a general linear 85 

model on these normalized FCS maps to reduce age and gender effects. As a result, we obtained 86 

a mean FCS map and its corresponding variance map for each cohort that were used for 87 

subsequent meta-analyses. 88 

To identify the most consistent connectome hubs, we conducted a voxelwise random-effects 89 

meta-analysis on the mean and variance FCS maps of the 61 cohorts. Such an analysis addressed 90 

the across-cohort heterogeneity of functional connectomes, resulting in a robust FCS pattern and 91 

its corresponding standard error (SE) map (Fig 2A). Then, we identified consistent connectome 92 

hubs whose FCS values were significantly (p < 0.001, cluster size > 200 mm3) higher than the 93 

global mean (i.e., zero) using a voxelwise Z value map computed by dividing the FCS map by 94 

the SE map. To determine the significance levels of these observed Z values, a nonparametric 95 

permutation test28 with 10,000 iterations was performed. Finally, we estimated voxelwise effect 96 

sizes using Cohen’s d metric computed by dividing the Z value map by the square root of the 97 

cohort number (Fig 2B, left). According to prior brain network parcellations29, 30, these identified 98 

hub voxels (15,461 voxels) were spatially distributed in multiple brain networks, including the 99 

DMN (27.5%), dorsal attention network (DAN) (16.5%), FPN (15.9%), ventral attention 100 

network (VAN) (15.6%), somatomotor network (SMN) (14.4%), and visual network (VIS) 101 

(9.9%) (Fig 2B, right). Using a local maxima localization procedure, we identified 35 robust 102 

brain hubs across 61 cohorts (Fig 2B, left; Table 1), involving various heteromodal and unimodal 103 

areas. Specifically, the most robust findings resided in several lateral parietal regions, including 104 

the bilateral ventral postcentral gyrus, supramarginal gyrus, and angular gyrus.  105 

The identified connectome hubs are reproducible across cohorts and individuals. 106 

During identifying the above highly consistent connectome hubs, the random-effects meta-107 

analysis revealed high heterogeneity of FCS across cohorts (Fig 2C, left). The cumulative 108 

distribution function plot shows more than 95% voxels with I2 (heterogeneity score) exceeding 109 

50% (Fig 2C, right), indicating high heterogeneity across cohorts in almost all brain areas (see 110 

also Fig S1). To determine whether the connectome hubs identified here are dominated by 111 

certain cohorts or are reproduced across-subject/cohort, we performed a leave-one-cohort-out 112 

validation analysis and an across-subject/cohort conjunction analysis.  113 

Leave-one-cohort-out validation analysis. We repeated the above harmonized meta-analysis hub 114 

identification procedure after leaving one cohort out at a time. Comparing the identified hubs 115 

using all cohorts (Fig 2B) with those after leaving one cohort out obtained extremely high Dice’s 116 

coefficients (mean±sd: 0.990±0.006; range: 0.966-0.997). For hub peaks, leaving one cohort out 117 
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resulted in very few displacements (mostly fewer than 6 mm, Fig 2D). Thus, connectome hubs 118 

identified using the 61 cohorts were not dominated by specific cohorts.  119 

Across-subject/cohort conjunction analysis. We defined the top N (N = 15,461, which is the 120 

voxel number of hubs in Fig 2B) voxels with the highest FCS values of a subject or a cohort as 121 

connectome hubs for that subject or that cohort. Then, for each voxel, we assessed hub 122 

occurrence probability values across subjects and cohorts. The identified hubs using all cohorts 123 

were highly overlapped with the top N voxels with the highest hub occurrence probability values 124 

both across all subjects and across all cohorts, indicated by a high Dice’s coefficient (Dice = 125 

0.867, Fig 2E, left; Dice = 0.924, Fig 2E, right). When the identified hubs using all cohorts were 126 

compared with the top N voxels with the highest hub occurrence probability values across 127 

randomly selected subjects or across randomly selected cohorts, the Dice’s coefficient 128 

approached 99% of its maximum value after exceeding 510 subjects (Fig 2F, left) and 35 cohorts 129 

(Fig 2F, right), respectively. This indicated that the identified connectome hubs were highly 130 

reproducible both across cohorts and across individuals.  131 

Validation analysis demonstrated that the above results did not depend on analysis parameters, 132 

such as the connection threshold (Fig S2 and S3), and were not driven by the size of the brain 133 

network to which they belong31 (Fig S4), suggesting the robustness of our main findings.  134 

Connectome hubs have heterogeneous functional connectivity profiles. 135 

Next, we further examined whether these robust brain hubs (Fig 2B and Table 1) have distinctive 136 

functional connectivity profiles that represent their unique roles in network communication. To 137 

gain detailed and robust functional connectivity profiles of each hub region, we conducted a 138 

seed-to-whole-brain connectivity meta-analysis in a harmonized protocol again. For each of the 139 

35 hub regions, we obtained an estimated Cohen’s d effect size map that characterizes the robust 140 

whole-brain connectivity pattern relevant to the seed region across the 61 cohorts (Fig 3A). We 141 

then divided the connectivity map of each hub into eight brain networks according to prior 142 

parcellations29, 30, resulting in an 8×35 connectivity matrix with each column representing the 143 

voxel percentage of each of the eight networks connected with a hub.  144 

Hierarchical clustering analysis on the connectivity matrix clearly divided the 35 hubs into three 145 

clusters (Fig 3B). Cluster I consists of 21 hubs that are primarily connected with extensive areas 146 

in the DAN, VAN, FPN, and SMN (orange, Fig 3B). Cluster II consists of four hubs that are 147 

densely connected with VIS (green, Fig 3B). Cluster III consists of 10 hubs that have robust 148 

connections with the DMN and LIMB (blue, Fig 3B). Of particular interest is that within Cluster 149 

III, a left posterior middle frontal hub called ventral area 8A (8Av) shows a distinctive 150 

connectivity profile in contrast to the other nine hubs, manifested as having robust connections 151 

with bilateral frontal FPN regions (Fig 3A and Fig S5). This imply that the left 8Av hub is a key 152 

connector between the DMN and FPN, which can be supported by the recent finding of a 153 

control-default connector located in the posterior middle frontal gyrus32. Although both Cluster I 154 

and III hubs are connected with subcortical structure, they are connected with different 155 

subcortical nuclei (Fig 3B and Fig S6). Finally, whereas all hubs possess dense intranetwork 156 

connections, most also retain significant internetwork connections (Fig S7), which preserves 157 

efficient communication across the whole brain network feasible. 158 
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Transcriptomic data distinguishes connectome hubs from non-hubs. 159 

A supervised machine learning classifier based on XGBoost33 and 10,027 genes’ transcriptomic 160 

data from the AHBA34 was trained to distinguish connectome hubs from non-hubs (Fig 4A). The 161 

sensitivity, specificity, and accuracy rate of the XGBoost classifier were stably estimated by 162 

repeating the training and testing procedure 1,000 times. This classifier performed better than 163 

chance in all 1,000 repetitions and achieved an overall accuracy rate of 65.3% (Fig 4B). In cross-164 

validation, connectome hubs and non-hubs were classified with a sensitivity of 71.1% and 165 

specificity of 63.4%, respectively. The testing procedure yielded a comparable sensitivity of 166 

69.7% and specificity of 62.0%. After training the classifier, each gene’s contribution to the 167 

optimal prediction model was determined. We noted that some key genes contributed two or 168 

three orders of magnitude more than other genes (Fig 4C). The contributions of the top 300 169 

mostly contributed key genes were consistent between the first 500 repetitions and the second 170 

500 repetitions (Pearson’s r = 0.958, p < 10-6, Fig 4D), suggesting a high reproducibility. 171 

To exclude the XGBoost model’s potential bias relating to the mostly contributed key genes, we 172 

replicated the above classification results using another machine learning model based on the 173 

support vector machine (SVM) that was trained using only the top N key genes with the greatest 174 

contributions to the XGBoost classifier (Fig 4E). Because no data were available to determine 175 

how many key genes were sufficient to train an SVM classifier, we examined the count N from 176 

100 to 300. The SVM classifier achieved a very high peak accuracy rate of 91.8% with 177 

approximately the top 150 key genes in the easiest classification task (Fig 4F) and also achieved 178 

a reasonable peak accuracy rate of 67.8% with approximately the top 150 key genes even in the 179 

most difficult classification task (Fig 4G). By contrast, SVM classifiers trained using 150 180 

randomly selected genes performed worse than that using the top 150 key genes in all 1,000 181 

repetitions (Fig 4H). Thus, these robust connectome hubs were significantly associated with a 182 

transcriptomic pattern dominated by approximately 150 key genes (Table S1). 183 

Connectome hubs have a spatiotemporally distinctive transcriptomic pattern. 184 

Gene Ontology (GO) enrichment analysis using GOrilla35 demonstrated that the above 150 key 185 

genes were mostly enriched in the neuropeptide signaling pathway (fold enrichment (FE) = 8.9, 186 

uncorrected p = 1.2×10-5, Table S2). GO enrichment analysis using the ranked 10,027 genes 187 

according to their contributions to the XGBoost classifier also confirmed the most enriched GO 188 

term of the neuropeptide signaling pathway (FE = 5.7, uncorrected p < 10-6, Table S3). The 189 

ranked 10,027 genes were also associated with the developmental process (FE = 1.2), cellular 190 

developmental process (FE = 1.3), anatomical structure development (FE = 1.3), and neuron 191 

projection arborization (FE = 13.7) (uncorrected ps < 5.5×10-4, Table S3). We speculated that 192 

connectome hubs have a distinctive transcriptomic pattern of neurodevelopmental processes in 193 

contrast to non-hubs.  194 

We repeated the GO enrichment analysis of the above 150 key genes using DAVID36, 37. In 195 

addition to the mostly enriched GO term of the neuropeptide signaling pathway (FE = 8.7, 196 

uncorrected p = 5.8×10-4), there were 10 GO terms associated with metabolic process, such as 197 

the positive regulation of cellular metabolic process (FE = 1.4, uncorrected p = 0.031, Table S4). 198 

Disease association analysis demonstrated metabolic disease associated with the greatest number 199 

of key genes (60 genes, FE = 1.2, uncorrected p = 0.094, Table S5). Accordingly, it is rational to 200 
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speculate that connectome hubs have a distinctive transcriptomic pattern of metabolic processes 201 

in contrast to non-hubs. 202 

To confirm the above two speculations of GO enrichment analysis results, we examined 203 

transcription level differences between hub and non-hub regions for genes previously implicated 204 

in key neurodevelopmental processes38 (Table S6) and main neuronal metabolic pathways39 205 

(oxidative phosphorylation40 and aerobic glycolysis41, Table S7). Permutation tests revealed hub 206 

regions with significantly higher transcription levels for genes associated with dendrite 207 

development, synapse development, and aerobic glycolysis than non-hub regions (one-sided 208 

Wilcoxon rank-sum tests, Bonferroni-corrected ps ≤ 0.032, Fig 5A). In addition, hub regions had 209 

a weak trend of lower transcription levels for genes associated with axon development, 210 

myelination, neuron migration, and oxidative phosphorylation (Fig 5A). These transcription level 211 

differences were consistent with our speculations of GO enrichment analysis results. 212 

These above transcriptomic results were derived from the AHBA, an adult transcriptomic 213 

dataset. To explore their developmental evolutions, we inspected transcriptomic trajectory 214 

differences between hub and non-hub regions using the BrainSpan Atlas42. We observed 215 

pronounced diverging transcriptomic trajectories between hub and non-hub regions in these key 216 

neurodevelopmental processes and main neuronal metabolic pathways (Fig 5B and Fig S8). For 217 

neuron migration, the transcription level in hub regions is higher than that in non-hub regions 218 

from the mid-fetal period to early infancy. For dendrite, synapse, axon development, and 219 

myelination, transcriptomic trajectories of hub regions apparently diverge from those of non-220 

hubs during childhood and adolescence, during which hub regions have higher transcription 221 

levels for dendrite and synapse development but lower transcription levels for axon development 222 

and myelination. These results are in agreement with the observation of primary somatosensory, 223 

auditory, and visual (V1/V2) cortices with lower synapse density but higher myelination than the 224 

prefrontal area43, 44. Mmoreover, hub regions have higher transcription levels than non-hub 225 

regions for aerobic glycolysis since the early childhood period and for oxidative phosphorylation 226 

during childhood and adolescence. These transcriptome analyses achieved convergent results 227 

between the AHBA and BrainSpan Atlas. 228 

Together, functional connectome hubs have a spatiotemporally distinctive transcriptomic pattern 229 

in contrast to non-hubs, which is dominated by genes involved in the neuropeptide signaling 230 

pathway, neurodevelopmental processes, and metabolic processes.  231 

Connectome hubs have more intricate fiber configuration and higher metabolic rate. 232 

Growing evidence has suggested a striking spatial correspondence between transcriptomic 233 

profile and structural connectivity in the human brain27. We speculated that the above microscale 234 

transcriptomic differences between hub and non-hub regions in key neurodevelopmental 235 

processes may result in macroscale structural connectivity profile differences. Using a fiber 236 

length profiling dataset45, we observed that hub regions possess more fibers with a length 237 

exceeding 40 mm but less fibers with a length shoter than 40 mm (one-sided Wilcoxon rank-sum 238 

tests, Bonferroni-corrected ps ≤ 0.008, Fig 6). That is, hub regions have more short, medium, and 239 

long fibers, whereas non-hub regions have more very short (< 40 mm) fibers, suggesting a more 240 

intricate fiber configuration in hub regions. 241 
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The above transcriptome analyses have shown a higher transcription level of oxidative 242 

phosphorylation and aerobic glycolysis in hub regions than in non-hubs. We validated these 243 

observations using a metabolism dataset derived from positron emission tomography46 and found 244 

that hub regions not only have a higher metabolic rate than non-hubs in oxidative 245 

phosphorylation (indicated by the cerebral metabolic rate for oxygen) and aerobic glycolysis 246 

(indicated by the glycolytic index), but also have more blood supply (indicated by the cerebral 247 

blood flow) (one-sided Wilcoxon rank-sum tests, Bonferroni-corrected ps < 0.001, Fig 7). This is 248 

in agreement with prior observations of a tight coupling between FCS and blood supply1, 47. 249 

 250 

Discussion  251 

Using a worldwide harmonized meta-connectomic analysis of 5,212 healthy young adults across 252 

61 cohorts, we provided the first description of highly consistent and reproducible functional 253 

connectome hubs in the resting human brain. Using transcriptomic data from the AHBA and 254 

BrainSpan Atlas, we reported that these robust connectome hubs have a spatiotemporally 255 

distinctive transcriptomic pattern in contrast to non-hub regions. These results advanced our 256 

understanding of the robustness of macroscopic functional connectome hubs and their potential 257 

cellular and molecular substrates. 258 

Extant reports have shown largely inconsistent and less reproducible hub localizations7, 8, 13-19, 259 

which may arise from high heterogeneity in the included subjects, data acquisition, and analysis 260 

strategies across studies. To diminish these potential confounding factors, we employed stringent 261 

participant inclusion criteria that included only healthy young adults aged 18 to 36 years and 262 

adopted harmonized data preprocessing and connectome analysis protocols across cohorts. 263 

Nevertheless, the random-effects meta-analysis revealed high heterogeneity among cohorts in 264 

almost all brain areas, which implied that heterogeneity of imaging scanners and/or imaging 265 

protocols could be an important cause for inconsistent and less reproducible results across prior 266 

studies. Thus, our study was indispensable by conducting a harmonized random-effects meta-267 

analysis model in which both intracohort variation (i.e., sampling errors) and intercohort 268 

heterogeneity were considered48. In addition, our validation results showed that the spatial 269 

distribution of functional connectome hubs was relatively stable when using more than 510 270 

subjects and 35 cohorts, demonstrating that 5,212 subjects from 61 cohorts were adequate to 271 

minimize both sampling errors and heterogeneity among cohorts. Considering only dozens of 272 

subjects in most prior studies7, 8, 13-15, 17, 19, the low statistical power attributed to inadequate 273 

subjects could be another cause for prior inconsistent and less reproducible hub localizations. 274 

Finally, we used harmonized image processing and connectome analysis protocols across cohort, 275 

which avoided methodological variation and reduced potential methodological defects that have 276 

not been resolved in prior studies. See an extension discussion in Supplementary Text Ⅱ. 277 

The present results demonstrated that the 35 highly consistent and reproducible connectome hubs 278 

show heterogeneous functional connectivity profiles, forming three clusters. Twenty-one hubs 279 

(Cluster I) are connected with extensive areas in the DAN, VAN, FPN, and SMN. Previous 280 

investigations indicated that they are core regions of the DAN (left AIP, right 7PC, left 7Am, 281 

bilateral PFt, left FEF, bilateral 6a, right 6v, and right FST)29, 49, VAN (left 43, left FOP4, right 282 

46, right 6r, right PF, left PFop, left SCEF, right 5mv)29, 49, and FPN (left p9-46v and right 283 
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IFSa)29, 50. In addition, hub regions involved in the sensorimotor pathway (right VIP, right FST, 284 

left 7Am, and left FEF)51 are also connected with the visual association cortex, acting as 285 

connectors between the VIS and the SMN, DAN, and VAN. Information flow along the primary 286 

visual, visual association, and higher-level sensorimotor cortices is undertaken by the four 287 

occipital hubs (Cluster II) left VMV1, right V4, and bilateral V3A that are all densely connected 288 

with the VIS and portions of the SMN, DAN, and VAN. This aligns with the role of their 289 

homologous regions in the non-human primate cerebral cortex51. The remaining 10 hubs (Cluster 290 

III) are all located in canonical DMN regions52. One of them, the left 8Av hub, is robustly 291 

connected with both DMN and lateral prefrontal FPN regions, acting as a connector between the 292 

DMN and FPN. This can be supported by the recent finding of a control-default connector 293 

located in the posterior middle frontal gyrus32 and may also be a case of the hypothesis of 294 

parallel interdigitated subnetworks53. This observation offers a significant complementary 295 

interpretation to the conventional assumption that the DMN is anticorrelated with other 296 

networks52. Considering that communication between the DMN and other networks is of 297 

significant relevance to neuropsychiatric disorders54, such as autism spectrum disorders55, we 298 

speculated that the left 8Av hub may be a promising target region for therapeutic interventions. 299 

We demonstrated that these robust brain hubs have a spatiotemporally distinctive transcriptomic 300 

pattern dominated by genes with the highest enrichment for the neuropeptide signaling pathway. 301 

Because neuropeptides are a main type of synaptic transmitter that is widely distributed in the 302 

human central nervous system56, robust neuropeptide signaling pathways are indispensable for 303 

efficient synaptic signal transduction that sustains dense and flexible functional connections of 304 

hub regions. In addition, hub regions have higher transcription levels for main neuronal 305 

metabolic pathways in contrast to non-hubs. This is reasonable because massive synaptic 306 

activities in hub regions demand high material and metabolic costs, which is in accordance with 307 

our observation of more blood supply and higher oxidative phosphorylation and aerobic 308 

glycolysis levels in hub regions. This is also in agreement with prior observations of a tight 309 

coupling between FCS and blood supply1, 47. 310 

We found that connectome hubs possess a spatiotemporally distinctive transcriptomic pattern of 311 

key neurodevelopmental processes in contrast to non-hubs. Specifically, connectome hubs have 312 

higher transcription levels for dendrite and synapse development and lower transcription levels 313 

for axon development and myelination during childhood, adolescence, and adulthood. These 314 

findings are compatible with previous observations of the prefrontal area having higher synapse 315 

density but lower myelination than primary somatosensory, auditory, and visual (V1/V2) 316 

cortices43, 44. Higher transcription levels for dendrite and synapse development in hub regions are 317 

necessary for the overproduction of synapses that will be selectively eliminated based on the 318 

demand of the environment and gradually stabilized before full maturation57, which is “the major 319 

mechanism for generating diversity of neuronal connections beyond their genetic 320 

determination”58. Lower transcription levels for axon development and myelination will prolong 321 

the myelination period in hub regions, which characterizes a delayed maturation phase59. Marked 322 

delay of anatomical maturation in human prefrontal and lateral parietal cortices has been 323 

frequently observed both in human development58, 60 and in primate evolution59, which provides 324 

more opportunities for social learning to establish diverse neuronal circuits that contribute to our 325 

complex58 and species-specific59 cognitive capabilities. We also observed higher transcription 326 

levels for neuron migration in hub regions from mid-fetal period to early infancy. This is in 327 

agreement with the report of extensive migration of young neurons persisting for several months 328 
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after birth in the human frontal cortex61. Meanwhile, the migration and final laminar positioning 329 

of postmitotic neurons are regulated by common transcription factors62, which suggests that a 330 

higher transcription level for neuron migration in hub regions facilitates the construction of more 331 

intricate interlaminar connectivity. These microscale divergences of key neurodevelopmental 332 

processes may result in a more intricate macroscale structural connectivity proflie in hub regions. 333 

Human neurodevelopment is an intricate and protracted process, during which the transcriptome 334 

of the human brain requires precise spatiotemporal regulation38. Thus, in addition to contributing 335 

to our complex cognitive capabilities, the distinctive transcriptomic pattern of neurodevelopment 336 

in hub regions may also increase connectome hubs’ susceptibility to neuropsychiatric disorders58, 
337 

59, which means small disturbance in the magnitude or the timing of this transcriptomic pattern 338 

may have long-term consequences on brain anatomical topography or functional activation. This 339 

is in line with our observation of psychiatric disorders being the most significant disease 340 

associated with the top 150 key genes (Table S5). This implies that uncovering the intricate 341 

transcriptomic pattern, diverse neuronal circuits, anatomical topography, and functional 342 

activation of connectome hubs provide crucial and promising routes for understanding the 343 

pathophysiological mechanisms underlying neurodevelopmental disorders, such as autism 344 

spectrum disorders38, 55 and schizophrenia5, 38, 58, 59. 345 

Of note, we conducted transcriptome-connectome association analysis using machine learning 346 

approaches in which non-linear mathematical operations were implemented rather than linear 347 

operations, such as linear correlation24, linear regression25, or partial least squares26. It has been 348 

argued that observations of transcriptome-connectome spatial association have a high false-349 

positive rate through linear regression63 and linear correlation64 and may be largely shifted 350 

toward the first principal component axis of the dataset through partial least squares65. These 351 

investigations imply that prior transcriptome-connectome association results by linear 352 

mathematical operations may include high false-positive observations that are independent of 353 

connectome measurements, such as genes enriched for ion channels24-26. By contrast, high 354 

reproducibility across different machine learning models and across different GO enrichment 355 

analysis tools and convergent results from the AHBA and BrainSpan Atlas made it very unlikely 356 

that our findings were false-positive observations. 357 

Some results of the present study should be interpreted cautiously because of methodological 358 

issues. First, we identified the robust connectome hubs using preprocessed rsfMRI data with 359 

global signal regression because of its great promise in minimizing physiological artifacts on 360 

functional connectomes66. Validation analysis demonstrated that hub distribution identified 361 

without global signal regression was more likely derived from physiological artifacts rather than 362 

by ongoing neuronal activity (Supplementary Text Ⅲ and Fig S9). Second, the AHBA dataset 363 

only includes partial human genes, of which approximately half were excluded in data 364 

preprocessing34, which may have induced incomplete observations in our data-driven analysis. 365 

Finally, our transcriptomic signature results addressed only the association between connectome 366 

hubs and transcriptomic patterns and did not explore causation between them. Exploring more 367 

detailed mechanisms underlying this association is attractive and may be practicable for non-368 

human primate brains in future studies.  369 
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Methods 370 

Dataset. 371 

We included a large-sample rsfMRI dataset of 5,212 healthy young adults (aged 18–36 years, 372 

2,377 males) across 61 cohorts from Asia, Europe, North America, and Australia. Data of each 373 

cohort were collected with participants’ written informed consent and with approval by the 374 

respective local institutional review boards. All data passed strict quality controls and were 375 

routinely preprocessed with a uniform pipeline. For details, see Supplementary Text I. 376 

Identifying robust functional connectome hubs using a harmonized meta-analysis. 377 

For each individual, we constructed a voxelwise functional connectome matrix by computing the 378 

Pearson’s correlation coefficient between preprocessed rsfMRI time series of all pairs of voxels 379 

within a predefined gray matter mask (47,619 voxels). The gray matter mask was divided into 380 

seven large-scale cortical networks29 and a subcortical network30. The cerebellum was not 381 

included due to largely incomplete coverage during rsfMRI scanning in most cohorts. Negative 382 

functional connections were excluded from our analysis due to neurobiologically ambiguous 383 

interpretations67. To further reduce signal noise and simultaneously avoid potential sharing 384 

signals between nearby voxels, both weak connections (Pearson’s r < 0.1) and connections 385 

terminating within 20 mm were set to zero68. We validated the threshold of weak connections 386 

using 0.05 and 0.2. 387 

For each voxel, we computed the FCS as the sum of connection weights between the given voxel 388 

and all the other voxels. We further normalized this resultant FCS map with respect to its mean 389 

and standard deviation across voxels7. For each cohort, we performed a general linear model on 390 

these normalized FCS maps to reduce age and gender effects. For each voxel, we constructed the 391 

general linear model as:  392 

𝐹𝐶𝑆𝑖 = 𝛽0 + 𝛽𝐴𝑔𝑒 ∗ (𝐴𝑔𝑒𝑖 −𝑀𝑒𝑎𝑛𝐴𝑔𝑒) + 𝛽𝐺𝑒𝑛𝑑𝑒𝑟 ∗ 𝐺𝑒𝑛𝑑𝑒𝑟𝑖 + 𝜀𝑖 (1) 393 

FCSi, Agei, Genderi, and εi indicate the FCS, age, gender, and residual of the ith individual, 394 

respectively. MeanAge indicates the mean age of that cohort. The general linear model exported 395 

a mean FCS map and its corresponding variance map for each cohort. 396 

The mean and variance FCS maps of the 61 cohorts were submitted to a random-effects meta-397 

analysis model48 to address across-cohort heterogeneity of functional connectomes. The detailed 398 

computational procedures are described in the book48. A short summary of these procedures was 399 

provided in Supplementary Text I. This resulted in a consistent FCS pattern and its 400 

corresponding SE map. We compared the FCS of each voxel with the average of the whole brain 401 

(i.e., zero) using a Z value48:  402 

𝑍 =
𝐹𝐶𝑆 − 0

𝑆𝐸
(2) 403 

In line with previous neuroimaging meta-analysis study69, we performed 10,000 one-sided 404 

nonparametric permutation tests28 to assign a p value to the observed Z value. For each iteration, 405 

after randomizing the spatial correspondence among cohorts’ mean FCS maps (the spatial 406 
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correspondence between a cohort’s mean FCS map and its variance map was not changed), we 407 

repeated the computation procedure of the random-effects meta-analysis for each voxel and 408 

extracted the maximum Z value of all voxels to construct a null distribution. A p value was 409 

assigned to each voxel by comparing the observed Z value to the null distribution. For a 410 

significance level below 0.05, this p value closely tracks the Bonferroni threshold28. Finally, we 411 

defined functional connectome hubs as brain regions with a p value less than 0.001 and cluster 412 

size greater than 200 mm3. The thresholds of p value and cluster size were similar with the 413 

activation likelihood estimation algorithm69. We extracted MNI coordinates for each local peak Z 414 

value terminating beyond 15 mm within each brain cluster using the wb_command -volume-415 

extrema command (https://humanconnectome.org/software/workbench-command/-volume-416 

extrema) in Connectome Workbench v1.4.2. Effect size was estimated using Cohen’s d metric 48:  417 

𝑑 =
𝑍

√𝑘
(3) 418 

k is the number of cohorts in the meta-analysis. 419 

Mapping seed-to-whole-brain connectivity profiles of functional connectome hubs. 420 

We modeled each hub seed region as a sphere with a 6-mm radius centered on the hub peak and 421 

computed Pearson’s correlation coefficients between the seed region’s preprocessed rsfMRI time 422 

series and the time series of all gray matter voxels. The time series of the seed region was 423 

computed by averaging the time series of all gray matter voxels in the seed sphere. These 424 

correlation coefficients were further transformed to Fisher’s z for normality. In line with above, 425 

we constructed a general linear model on these Fisher’s z value maps within each cohort to 426 

reduce age and gender effects and performed a random-effects meta-analysis on these Fisher’s z 427 

value maps across cohorts to address the across-cohort heterogeneity, resulting in a robust 428 

Fisher’s z pattern and its corresponding SE map. Then, We compared the Fisher’s z value of each 429 

voxel with zero using a Z value48 and estimated effect size using Cohen’s d metric48 as described 430 

in equations (2) and (3). We performed 10,000 one-sided nonparametric permutation tests28 to 431 

identify the most consistent functional connection Z value map with a p value less than 0.001 and 432 

cluster size greater than 200 mm3. Finally, we divided the connectivity map of each hub into 433 

eight brain networks mentioned above and represented the functional connectivity profile of a 434 

hub as the voxel percentage of each of the eight networks connected with it to address the effect 435 

of network size. To illustrate the left 8Av hub’s connectivity profile, we also mapped its 436 

homologous region the right 8Av region’s connectivity profile (Fig S5). 437 

Identifying transcriptomic signatures underlying functional connectome hubs. 438 

We trained classifiers based on XGBoost and SVM to distinguish connectome hubs from non-439 

hubs using transcriptomic features from the preprocessed AHBA dataset34. The top 150 genes 440 

(Table S1) mostly contributed to the classification results were submitted to GO enrichment 441 

analyses using GOrilla35 (http://cbl-gorilla.cs.technion.ac.il) and DAVID36, 37 v6.8 442 

(https://david.ncifcrf.gov). For details, see Supplementary Text I. Based on GO enrichment 443 

analysis results, we tested transcription level differences of gene sets involved in key 444 

neurodevelopmental processes38 (Table S6) and main neuronal metabolic pathways39 (oxidative 445 

phosphorylation40 and aerobic glycolysis41, Table S7) between connectome hubs and non-hubs 446 
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through one-sided Wilcoxon rank-sum test. In line with prior studies38, 41, we used the first 447 

principal component of each gene set’s transcription level to plot and to perform the statistical 448 

analysis (Fig 5A). For illustration purposes, we normalized the first principal component of each 449 

gene set’s transcription level respect to its minimum and maximum values across all brain 450 

samples to range from 0 to 1.  451 

To explore developmental details, we inspected transcriptomic trajectory differences between 452 

connectome hubs and non-hubs in the above gene sets using the BrainSpan Atlas42. In line with 453 

prior studies38, 41, we used the first principal component of each gene set’s transcription level to 454 

plot transcriptomic trajectories and visually inspected transcriptomic trajectory differences 455 

between connectome hubs and non-hubs (Fig 5B). Transcriptomic trajectories were plotted using 456 

locally weighted regression by smoothing the first principal component of each gene set’s 457 

transcription level against log2[post-conceptional days] as in prior study38. Of note, considering 458 

apparent transcriptomic differences compared to the neocortex38, we excluded the striatum, 459 

mediodorsal nucleus of the thalamus, and cerebellar cortex in the transcriptomic trajectory 460 

analysis but not the amygdala and hippocampus whose transcriptomic trajectories are more 461 

similar to those of the neocortex than to those of other subcortical structures38. Analysis using 462 

only neocortical regions revealed almost unchanged results (Fig S8).  463 

To validate above results derived from transcriptome datasets, we tested fiber number 464 

differences between connectome hubs and non-hubs through one-sided Wilcoxon rank-sum test 465 

(Fig 6). Fiber number data across different length bins was derived from a fiber length profiling 466 

dataset45. For each fiber length bin, fiber number of each vertex was normalized with respect to 467 

its mean and standard deviation across vertices. We further examined differences between 468 

connectome hubs and non-hubs in metabolic measurements of blood supply (the cerebral blood 469 

flow), oxidative phosphorylation (the cerebral metabolic rate for oxygen), and aerobic glycolysis 470 

(the glycolytic index) through one-sided Wilcoxon rank-sum test (Fig 7). These measurements 471 

were derived from a positron emission tomography study46 and assigned to 82 Brodmann areas 472 

and seven subcortical structures. Brodmann areas with more than 50% vertices or subcortical 473 

structures with more than 50% voxels identified as hubs were regarded as hub regions.  474 

Statistical analysis. 475 

We performed statistical analyses using MATLAB R2013a. Statistical significance of brain 476 

clusters in Fig 2B and 3A and Fig S2B, S3B, S5, and S9A were determined by comparing the 477 

observed Z values in equation (2) with their corresponding null distributions constructed by 478 

above mentioned 10,000 one-sided nonparametric permutation tests28. To determine the 479 

statistical significance of one-sided Wilcoxon rank-sum tests in Fig 5A, 6, and 7 and Fig S9D, 480 

we constructed 1,000 surrogate hub identification maps with the spatial autocorrelations being 481 

corrected using a generative model70 and repeated calculating rank-sum statistics using these 482 

surrogate hub identification maps to construct a null distribution. Then, p values derived by 483 

comparing the observed rank-sum statistics with their corresponding null distributions were 484 

Bonferroni-corrected. Surrogate hub identification maps in Fig 5A, 6, and 7 were constructed 485 

based on the hub identification map in Fig 2B. Surrogate hub identification maps in Fig S9D 486 

were constructed based on the hub identification map in Fig S9A.  487 

 488 
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Data availability 489 

The MRI data of the first 60 cohorts listed in Table S8 are available at the International 490 

Neuroimaging Data-sharing Initiative (http://fcon_1000.projects.nitrc.org), Brain Genomics 491 

Superstruct Project  (https://doi.org/10.7910/DVN/25833), Human Connectome Project 492 

(https://www.humanconnectome.org), MPI-Leipzig Mind-Brain-Body Project 493 

(https://openneuro.org/datasets/ds000221), and Age-ility Project 494 

(https://www.nitrc.org/projects/age-ility). The MRI data of the PKU cohort are under active use 495 

by the reporting laboratory and will be available upon reasonable request. The preprocessed 496 

AHBA dataset is available at https://doi.org/10.6084/m9.figshare.6852911. The normalized 497 

BrainSpan Atlas dataset is available at http://brainspan.org/static/download.html. The fiber 498 

length profiling dataset45 is available at https://balsa.wustl.edu/study/1K3l. 499 

 500 

Code availability 501 

The code to reproduce the results and visualizations of this manuscript is available at 502 

https://github.com/zhileixu/FunctionalConnectomeHubs. 503 
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 751 

Fig 1. Enhanced box plot of the age ranges of each cohort. M/F, males/femals.  752 
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Fig 2. Highly consistent and reproducible functional connectome hubs. A Robust FCS 753 

pattern and its corresponding variance (standard error, SE) map estimated using a harmonized 754 

voxelwise random-effects meta-analysis across 61 cohorts. B Left: The most consistent 755 

functional connectome hubs (p < 0.001, cluster size > 200 mm3); white spheres represent hub 756 

peaks. Right: Hub voxel distribution in eight large-scale brain networks; insets, the seven large-757 

scale cortical networks29 were rendered on the left hemisphere. SUB, subcortical network; 758 

LIMB, limbic network. C Left: Heterogeneity measurement I2 estimated through the random-759 

effects meta-analysis. Right: Cumulative distribution function plot of I2. D Left: Heatmap of 760 

displacements of the 35 hub peaks after leaving one cohort out. Right: Bar plot of the probability 761 

across the 35 hub peaks whose displacement was less than 6 mm after leaving one cohort out. E 762 

Hub occurrence probability map across all subjects (left) and all cohorts (right). White lines 763 

delineate boundaries of the identified hubs in B. F Dice’s coefficient of the identified hubs in B 764 

compared with the top N (voxel number of the identified hubs in B) voxels with the highest hub 765 

occurrence probability values across randomly selected subjects (left) and randomly selected 766 

cohorts (right). Blue shading represents the standard deviation across 2,000 random selections.  767 
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Fig 3. Functional connectivity profiles of connectome hubs. A Functional connectivity 769 

profiles of the 35 hubs. White spheres represent hub seeds. Blue lines delineate boundaries of the 770 

seven cortical networks shown in Fig 2B. B Top: Dendrogram derived by hierarchical clustering 771 

of the connectivity percentage matrix. Middle: The 35 hubs were rendered using three different 772 

colors according to the hierarchical clustering solution. Bottom: Radar charts showing 773 

heterogeneous connectivity profiles of the three hub clusters. 774 

775 
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Fig 4. Transcriptomic data distinguishes connectome hubs from non-hubs. A Schematic 776 

diagram of using the XGBoost model to classify brain samples as a hub or non-hub. B 777 

Performance of the XGBoost classifier. Each dot represents one repetition in A. The horizontal 778 

gray dashed line represents the chance level accuracy rate (50%). The horizontal green dashed 779 

line represents the average accuracy rate of the XGBoost classifier across 1,000 repetitions. C 780 
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Density plot of 10,027 genes’ logarithmic average contributions across 1,000 repetitions to the 781 

XGBoost classifier. Genes with the greatest contributions were regarded as key genes. D 782 

Regression plot of the logarithmic average contributions of the top 300 key genes across the first 783 

500 repetitions versus those across the second 500 repetitions. Each dot represents one gene. E 784 

Schematic diagram of using the SVM model to classify brain samples as a hub or non-hub. F 785 

and G Accuracy rate of the SVM classifier versus the count of key genes used to distinguish 382 786 

hub samples from 382 non-hub samples with the highest rate (F) or lowest rate (G) to be 787 

correctly classified by the XGBoost classifier. Each dot represents one SVM classifier. Black 788 

curves were estimated by locally weighted regression. H Performance of the SVM classifier. 789 

Horizontal lines correspond to the SVM classifier trained using top 150 key genes in G. Each dot 790 

represents one repetition using 150 randomly selected genes in E. The horizontal gray dashed 791 

line represents the chance level accuracy rate (50%).  792 
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Fig 5. Connectome hubs have a spatiotemporally distinctive transcriptomic pattern. A 793 

Transcription level differences between hub samples (n=382) and non-hub samples (n=776) for 794 

genes associated with key neurodevelopmental processes38 and main neuronal metabolic 795 

pathways39. Boxplot edges, gray lines, and whiskers and dots depict the 25th and 75th 796 

percentiles, median, and extreme nonoutlier and outlier values, respectively. Significance of one-797 

sided Wilcoxon rank-sum tests were determined by 1,000 permutation tests and were labeled 798 

with Bonferroni-corrected p values. B Transcriptomic trajectory differences between hub and 799 

non-hub regions for genes involved in key neurodevelopmental processe38 and main neuronal 800 

metabolic pathways39. w, post-conceptional week; y, postnatal year; a.u., arbitrary unit.   801 
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 802 

Fig 6. Connectome hubs have more intricate fiber configuration. Left: Fiber number for 803 

different fiber length bins was derived from a fiber length profiling dataset45. To save space, we 804 

only presented data of the left hemisphere and used data of both hemispheres in boxplots and 805 

statistics. White lines delineate boundaries of the identified hubs in Fig 2B. Right: Fiber number 806 

difference between connectome hubs (red, n=25,944) and non-hubs (blue, n=33,195). Boxplot 807 

edges, gray lines, and whiskers and dots depict the 25th and 75th percentiles, median, and 808 

extreme nonoutlier and outlier fiber number values, respectively. Significance of one-sided 809 

Wilcoxon rank-sum tests were determined by 1,000 permutation tests and were labeled with 810 

Bonferroni-corrected p values. a.u., arbitrary unit.  811 
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 812 

Fig 7. Connectome hubs have higher metabolic rate. The cerebral metabolic rate for oxygen, 813 

glycolytic index, and cerebral blood flow of 82 Brodmann areas and seven subcortical structures 814 

were provided by a prior study46. White lines delineate boundaries of the identified hubs in Fig 815 

2B. Boxplot edges, gray lines, and whiskers and dots depict the 25th and 75th percentiles, 816 

median, and extreme nonoutlier and outlier metabolic measurement values, respectively. 817 

Brodmann areas with more than 50% vertices or subcortical structures with more than 50% 818 

voxels identified as hubs were regarded as hub regions (n=29), vice versa as non-hub regions 819 

(n=60). Significance of one-sided Wilcoxon rank-sum tests was determined by 1,000 820 

permutation tests and were labeled with Bonferroni-corrected p values. a.u., arbitrary unit.  821 
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Table 1. Highly consistent functional connectome hubs.  822 

No. Hub Location 
MNI coordinates 

Cohen’s d FCS SE 
x y z 

1 Right PFt PFt (superoanterior BA* 40)  60 -21 45 6.267 1.072 0.022 

2 Left PFt PFt (superoanterior BA 40) -60 -24 36 6.151 0.949 0.020 

3 Right PF PF (posterior BA 40) 60 -27 24 5.785 1.239 0.027 

4 Left SCEF Supplementary and cingulate eye field  0 0 51 5.635 1.000 0.023 

5 Left PGi PGi (inferior BA 39) -51 -66 30 5.168 1.075 0.027 

6 Left PFop PF opercular (inferoanterior BA 40) -63 -27 18 5.160 1.095 0.027 

7 Left 43 Area 43 -57 3 3 4.927 1.114 0.029 

8 Right 6r Rostral area 6  57 6 0 4.916 1.184 0.031 

9 Right PGi PGi (inferior BA 39) 54 -60 30 4.739 1.007 0.027 

10 Right 8BL Area 8B lateral  21 36 51 4.655 0.713 0.020 

11 Right 7PC Area 7PC 36 -45 54 4.414 0.712 0.021 

12 Left 9p Area 9 posterior  -15 45 45 4.199 0.639 0.019 

13 Right 6v Ventral area 6  54 9 33 4.037 0.766 0.024 

14 Left 8Av Ventral area 8A -39 18 48 3.990 0.561 0.018 

15 Left AIP Anterior intra-parietal area -33 -45 45 3.474 0.567 0.021 

16 Right FST Fundus of the superior temporal area  54 -60 0 3.156 0.729 0.030 

17 Right 9m Area 9 middle  3 54 24 3.128 0.609 0.025 

18 Left 31pv Area 31p ventral  -3 -51 33 3.049 0.784 0.033 

19 Right VIP Ventral intra-parietal complex  18 -63 57 2.984 0.572 0.025 

20 Right 6a Area 6 anterior  33 3 63 2.975 0.454 0.020 

21 Left FOP4 Frontal opercular area 4  -33 21 6 2.858 0.828 0.037 

22 Right 5mv Area 5m ventral  12 -30 45 2.822 0.701 0.032 

23 Right 46 Area 46 36 42 30 2.779 0.656 0.030 

24 Left 10v Area 10v  0 57 -9 2.769 0.731 0.034 

25 Left p9-46v Area posterior 9-46v  -42 36 27 2.591 0.561 0.028 

26 Left V3A Area V3A  -15 -90 33 2.575 0.684 0.034 

27 Left TE1a Area TE1 anterior  -63 -15 -15 2.527 0.595 0.030 

28 Right TE1a Area TE1 anterior  60 -9 -21 2.494 0.580 0.030 

29 Right IFSa Anterior inferior frontal suleus  48 39 12 2.468 0.480 0.025 

30 Left 7Am Medial area 7A  -12 -60 60 2.461 0.475 0.025 

31 Right V3A Area V3A  18 -87 36 2.442 0.645 0.034 

32 Right V4 Fourth visual area  24 -63 -9 2.339 0.446 0.024 

33 Left 6a Area 6 anterior  -24 3 63 2.317 0.331 0.018 

34 Left VMV1 Ventromedial visual area 1  -18 -60 -6 1.937 0.397 0.026 

35 Left FEF Frontal eye fields  -45 -9 57 1.412 0.640 0.058 

* BA, Brodmann area.  823 
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