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Abstract

Human brain connectomes include sets of densely connected regions, known as connectome
hubs, which play a vital role in understanding global brain communication, cognitive processing,
and brain disorders. However, the consistency and reproducibility of functional connectome
hubs’ anatomical localization have not been established to date and the genetic signatures
underlying robust connectome hubs remain unknown. Here, we conduct the first worldwide,
harmonized meta-connectomic analysis by pooling resting-state functional MRI data of 5,212
healthy young adults across 61 independent cohorts. We identify highly consistent and
reproducible functional connectome hubs in heteromodal and unimodal regions both across
cohorts and across individuals. These connectome hubs show heterogeneous connectivity
profiles and are critical for both intra- and inter-network communications. Using post-mortem
gene expression data, we show that these connectome hubs have a spatiotemporally distinctive
transcriptomic pattern dominated by genes involved in the neuropeptide signaling pathway,
neurodevelopmental processes, and metabolic processes. These results highlight the robustness
of macroscopic connectome hubs and their potential cellular and molecular underpinnings.
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Introduction

Functional connectome mapping studies have identified sets of densely connected regions in
large-scale human brain networks, which are known as hubs!. Connectome hubs play a crucial
role in global brain communication®: 2 and support a broad range of cognitive processing, such as
working memory? and semantic processing*. Growing evidence suggests that these highly
connected brain hubs are preferentially targeted by many neuropsychiatric disorders®®, which
provides critical clues for understanding the biological mechanisms of disorders and establishing
biomarkers for disease diagnosis® ® and treatment evaluation® (%2 1112 for reviews).

Despite such importance, there is considerable inconsistency in anatomical locations of
functional connectome hubs among existing studies. For example, components of the default-
mode network (DMN) have been frequently reported as connectome hubs, yet the spatial pattern
is highly variable across studies. In particular, several studies have shown highly connected hubs
in the lateral parietal regions of the DMN"'8 1314 ‘whereas others have reported midline
structures of the DMN®>%°, Several works have identified primary sensorimotor and visual
regions as connectome hubs®® 1+ 1619 yet others did not replicate these findings’ & . Subcortical
regions, such as the thalamus and amygdala, have also been inconsistently reported as hubs® >
16,18 and non-hubs” 13141719 Thys, the consistency and reproducibility of functional
connectome hubs have been difficult to establish to date, which can be attributed to inadequate
sample size and differences in imaging scanner, imaging protocol, data processing, and
connectome analysis strategies. Here, we aimed to establish a harmonized meta-analysis model
to identify robust functional connectome hubs in healthy young adults by combining multiple
cohorts with uniform protocols for data quality assurance, image processing, and connectome
analyses.

Once the robust connectome hubs are identified, we will further examine their genetic signatures.
It has been well demonstrated that the connectome architecture of the human brain is inheritable,
such as functional connectivity of the DMN?® and the cost-efficiency optimization?'. Moreover,
the functional connectomes can be regulated by genotypic variation both during rest?? and in
cognitive tasks?, especially involving the DMN?* 23 and frontoparietal network (FPN)?3.
Growing evidence also suggests spatial correspondence between transcriptomic profiles and
connectome architectures®*2% (2" for review). Thus, we reasoned that the robust macroscopic
connectome hubs could be associated with microscopic genetic signatures. Elucidating these
genetic signatures will substantially benefit our understanding of how connectome hubs emerge
in development, function in complex cognition, and are involved in disease.

To address these issues, we provide the first worldwide harmonized meta-connectomic analysis
of functional brain hubs by pooling a large-sample resting-state functional MRI (rsfMRI) dataset
of 5,212 healthy young adults (aged 18-36 years) across 61 cohorts. Fig 1 illustrates the sample
size and age ranges of each cohort. To uncover the genetic signatures underlying these
connectome hubs, we conducted machine learning approaches to distinguish connectome hubs
from non-hubs using transcriptomic data from the Allen Human Brain Atlas (AHBA) and
explored their developmental evolutions using the BrainSpan Atlas.
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Results
Identifying consistent connectome hubs using a harmonized meta-analysis model.

Prior to the meta-analysis, we constructed a voxelwise functional connectome matrix for each
individual by computing the Pearson’s correlation coefficient between preprocessed rsfMRI time
series of all pairs of gray matter voxels (47,619 voxels). Then, the functional connectivity
strength (FCS) of each voxel was computed as the sum of connection weights between the given
voxel and all the other voxels. This resultant FCS map was further normalized with respect to its
mean and standard deviation across voxels’. For each cohort, we performed a general linear
model on these normalized FCS maps to reduce age and gender effects. As a result, we obtained
a mean FCS map and its corresponding variance map for each cohort that were used for
subsequent meta-analyses.

To identify the most consistent connectome hubs, we conducted a voxelwise random-effects
meta-analysis on the mean and variance FCS maps of the 61 cohorts. Such an analysis addressed
the across-cohort heterogeneity of functional connectomes, resulting in a robust FCS pattern and
its corresponding standard error (SE) map (Fig 2A). Then, we identified consistent connectome
hubs whose FCS values were significantly (p < 0.001, cluster size > 200 mm?®) higher than the
global mean (i.e., zero) using a voxelwise Z value map computed by dividing the FCS map by
the SE map. To determine the significance levels of these observed Z values, a nonparametric
permutation test?® with 10,000 iterations was performed. Finally, we estimated voxelwise effect
sizes using Cohen’s d metric computed by dividing the Z value map by the square root of the
cohort number (Fig 2B, left). According to prior brain network parcellations?® %, these identified
hub voxels (15,461 voxels) were spatially distributed in multiple brain networks, including the
DMN (27.5%), dorsal attention network (DAN) (16.5%), FPN (15.9%), ventral attention
network (VAN) (15.6%), somatomotor network (SMN) (14.4%), and visual network (VI1S)
(9.9%) (Fig 2B, right). Using a local maxima localization procedure, we identified 35 robust
brain hubs across 61 cohorts (Fig 2B, left; Table 1), involving various heteromodal and unimodal
areas. Specifically, the most robust findings resided in several lateral parietal regions, including
the bilateral ventral postcentral gyrus, supramarginal gyrus, and angular gyrus.

The identified connectome hubs are reproducible across cohorts and individuals.

During identifying the above highly consistent connectome hubs, the random-effects meta-
analysis revealed high heterogeneity of FCS across cohorts (Fig 2C, left). The cumulative
distribution function plot shows more than 95% voxels with 12 (heterogeneity score) exceeding
50% (Fig 2C, right), indicating high heterogeneity across cohorts in almost all brain areas (see
also Fig S1). To determine whether the connectome hubs identified here are dominated by
certain cohorts or are reproduced across-subject/cohort, we performed a leave-one-cohort-out
validation analysis and an across-subject/cohort conjunction analysis.

Leave-one-cohort-out validation analysis. We repeated the above harmonized meta-analysis hub
identification procedure after leaving one cohort out at a time. Comparing the identified hubs

using all cohorts (Fig 2B) with those after leaving one cohort out obtained extremely high Dice’s
coefficients (meanzsd: 0.990+0.006; range: 0.966-0.997). For hub peaks, leaving one cohort out
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resulted in very few displacements (mostly fewer than 6 mm, Fig 2D). Thus, connectome hubs
identified using the 61 cohorts were not dominated by specific cohorts.

Across-subject/cohort conjunction analysis. We defined the top N (N = 15,461, which is the
voxel number of hubs in Fig 2B) voxels with the highest FCS values of a subject or a cohort as
connectome hubs for that subject or that cohort. Then, for each voxel, we assessed hub
occurrence probability values across subjects and cohorts. The identified hubs using all cohorts
were highly overlapped with the top N voxels with the highest hub occurrence probability values
both across all subjects and across all cohorts, indicated by a high Dice’s coefficient (Dice =
0.867, Fig 2E, left; Dice = 0.924, Fig 2E, right). When the identified hubs using all cohorts were
compared with the top N voxels with the highest hub occurrence probability values across
randomly selected subjects or across randomly selected cohorts, the Dice’s coefficient
approached 99% of its maximum value after exceeding 510 subjects (Fig 2F, left) and 35 cohorts
(Fig 2F, right), respectively. This indicated that the identified connectome hubs were highly
reproducible both across cohorts and across individuals.

Validation analysis demonstrated that the above results did not depend on analysis parameters,
such as the connection threshold (Fig S2 and S3), and were not driven by the size of the brain
network to which they belong® (Fig S4), suggesting the robustness of our main findings.

Connectome hubs have heterogeneous functional connectivity profiles.

Next, we further examined whether these robust brain hubs (Fig 2B and Table 1) have distinctive
functional connectivity profiles that represent their unique roles in network communication. To
gain detailed and robust functional connectivity profiles of each hub region, we conducted a
seed-to-whole-brain connectivity meta-analysis in a harmonized protocol again. For each of the
35 hub regions, we obtained an estimated Cohen’s d effect size map that characterizes the robust
whole-brain connectivity pattern relevant to the seed region across the 61 cohorts (Fig 3A). We
then divided the connectivity map of each hub into eight brain networks according to prior
parcellations?® *°, resulting in an 8x35 connectivity matrix with each column representing the
voxel percentage of each of the eight networks connected with a hub.

Hierarchical clustering analysis on the connectivity matrix clearly divided the 35 hubs into three
clusters (Fig 3B). Cluster I consists of 21 hubs that are primarily connected with extensive areas
in the DAN, VAN, FPN, and SMN (orange, Fig 3B). Cluster Il consists of four hubs that are
densely connected with VIS (green, Fig 3B). Cluster 11l consists of 10 hubs that have robust
connections with the DMN and LIMB (blue, Fig 3B). Of particular interest is that within Cluster
I11, a left posterior middle frontal hub called ventral area 8A (8Av) shows a distinctive
connectivity profile in contrast to the other nine hubs, manifested as having robust connections
with bilateral frontal FPN regions (Fig 3A and Fig S5). This imply that the left 8Av hub is a key
connector between the DMN and FPN, which can be supported by the recent finding of a
control-default connector located in the posterior middle frontal gyrus®2. Although both Cluster |
and 11 hubs are connected with subcortical structure, they are connected with different
subcortical nuclei (Fig 3B and Fig S6). Finally, whereas all hubs possess dense intranetwork
connections, most also retain significant internetwork connections (Fig S7), which preserves
efficient communication across the whole brain network feasible.
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Transcriptomic data distinguishes connectome hubs from non-hubs.

A supervised machine learning classifier based on XGBoost® and 10,027 genes’ transcriptomic
data from the AHBA3* was trained to distinguish connectome hubs from non-hubs (Fig 4A). The
sensitivity, specificity, and accuracy rate of the XGBoost classifier were stably estimated by
repeating the training and testing procedure 1,000 times. This classifier performed better than
chance in all 1,000 repetitions and achieved an overall accuracy rate of 65.3% (Fig 4B). In cross-
validation, connectome hubs and non-hubs were classified with a sensitivity of 71.1% and
specificity of 63.4%, respectively. The testing procedure yielded a comparable sensitivity of
69.7% and specificity of 62.0%. After training the classifier, each gene’s contribution to the
optimal prediction model was determined. We noted that some key genes contributed two or
three orders of magnitude more than other genes (Fig 4C). The contributions of the top 300
mostly contributed key genes were consistent between the first 500 repetitions and the second
500 repetitions (Pearson’s r = 0.958, p < 10, Fig 4D), suggesting a high reproducibility.

To exclude the XGBoost model’s potential bias relating to the mostly contributed key genes, we
replicated the above classification results using another machine learning model based on the
support vector machine (SVM) that was trained using only the top N key genes with the greatest
contributions to the XGBoost classifier (Fig 4E). Because no data were available to determine
how many key genes were sufficient to train an SVM classifier, we examined the count N from
100 to 300. The SVM classifier achieved a very high peak accuracy rate of 91.8% with
approximately the top 150 key genes in the easiest classification task (Fig 4F) and also achieved
a reasonable peak accuracy rate of 67.8% with approximately the top 150 key genes even in the
most difficult classification task (Fig 4G). By contrast, SVM classifiers trained using 150
randomly selected genes performed worse than that using the top 150 key genes in all 1,000
repetitions (Fig 4H). Thus, these robust connectome hubs were significantly associated with a
transcriptomic pattern dominated by approximately 150 key genes (Table S1).

Connectome hubs have a spatiotemporally distinctive transcriptomic pattern.

Gene Ontology (GO) enrichment analysis using GOrilla*>® demonstrated that the above 150 key
genes were mostly enriched in the neuropeptide signaling pathway (fold enrichment (FE) = 8.9,
uncorrected p = 1.2x10°, Table S2). GO enrichment analysis using the ranked 10,027 genes
according to their contributions to the XGBoost classifier also confirmed the most enriched GO
term of the neuropeptide signaling pathway (FE = 5.7, uncorrected p < 10, Table S3). The
ranked 10,027 genes were also associated with the developmental process (FE = 1.2), cellular
developmental process (FE = 1.3), anatomical structure development (FE = 1.3), and neuron
projection arborization (FE = 13.7) (uncorrected ps < 5.5x10*4, Table S3). We speculated that
connectome hubs have a distinctive transcriptomic pattern of neurodevelopmental processes in
contrast to non-hubs.

We repeated the GO enrichment analysis of the above 150 key genes using DAVID®* ¥ In
addition to the mostly enriched GO term of the neuropeptide signaling pathway (FE = 8.7,
uncorrected p = 5.8x10™), there were 10 GO terms associated with metabolic process, such as
the positive regulation of cellular metabolic process (FE = 1.4, uncorrected p = 0.031, Table S4).
Disease association analysis demonstrated metabolic disease associated with the greatest number
of key genes (60 genes, FE = 1.2, uncorrected p = 0.094, Table S5). Accordingly, it is rational to
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speculate that connectome hubs have a distinctive transcriptomic pattern of metabolic processes
in contrast to non-hubs.

To confirm the above two speculations of GO enrichment analysis results, we examined
transcription level differences between hub and non-hub regions for genes previously implicated
in key neurodevelopmental processes® (Table S6) and main neuronal metabolic pathways®
(oxidative phosphorylation*® and aerobic glycolysis*, Table S7). Permutation tests revealed hub
regions with significantly higher transcription levels for genes associated with dendrite
development, synapse development, and aerobic glycolysis than non-hub regions (one-sided
Wilcoxon rank-sum tests, Bonferroni-corrected ps < 0.032, Fig 5A). In addition, hub regions had
a weak trend of lower transcription levels for genes associated with axon development,
myelination, neuron migration, and oxidative phosphorylation (Fig 5A). These transcription level
differences were consistent with our speculations of GO enrichment analysis results.

These above transcriptomic results were derived from the AHBA, an adult transcriptomic
dataset. To explore their developmental evolutions, we inspected transcriptomic trajectory
differences between hub and non-hub regions using the BrainSpan Atlas*2. We observed
pronounced diverging transcriptomic trajectories between hub and non-hub regions in these key
neurodevelopmental processes and main neuronal metabolic pathways (Fig 5B and Fig S8). For
neuron migration, the transcription level in hub regions is higher than that in non-hub regions
from the mid-fetal period to early infancy. For dendrite, synapse, axon development, and
myelination, transcriptomic trajectories of hub regions apparently diverge from those of non-
hubs during childhood and adolescence, during which hub regions have higher transcription
levels for dendrite and synapse development but lower transcription levels for axon development
and myelination. These results are in agreement with the observation of primary somatosensory,
auditory, and visual (V1/V2) cortices with lower synapse density but higher myelination than the
prefrontal area*® #4. Mmoreover, hub regions have higher transcription levels than non-hub
regions for aerobic glycolysis since the early childhood period and for oxidative phosphorylation
during childhood and adolescence. These transcriptome analyses achieved convergent results
between the AHBA and BrainSpan Atlas.

Together, functional connectome hubs have a spatiotemporally distinctive transcriptomic pattern
in contrast to non-hubs, which is dominated by genes involved in the neuropeptide signaling
pathway, neurodevelopmental processes, and metabolic processes.

Connectome hubs have more intricate fiber configuration and higher metabolic rate.

Growing evidence has suggested a striking spatial correspondence between transcriptomic
profile and structural connectivity in the human brain?’. We speculated that the above microscale
transcriptomic differences between hub and non-hub regions in key neurodevelopmental
processes may result in macroscale structural connectivity profile differences. Using a fiber
length profiling dataset*, we observed that hub regions possess more fibers with a length
exceeding 40 mm but less fibers with a length shoter than 40 mm (one-sided Wilcoxon rank-sum
tests, Bonferroni-corrected ps < 0.008, Fig 6). That is, hub regions have more short, medium, and
long fibers, whereas non-hub regions have more very short (< 40 mm) fibers, suggesting a more
intricate fiber configuration in hub regions.
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The above transcriptome analyses have shown a higher transcription level of oxidative
phosphorylation and aerobic glycolysis in hub regions than in non-hubs. We validated these
observations using a metabolism dataset derived from positron emission tomography*® and found
that hub regions not only have a higher metabolic rate than non-hubs in oxidative
phosphorylation (indicated by the cerebral metabolic rate for oxygen) and aerobic glycolysis
(indicated by the glycolytic index), but also have more blood supply (indicated by the cerebral
blood flow) (one-sided Wilcoxon rank-sum tests, Bonferroni-corrected ps < 0.001, Fig 7). This is
in agreement with prior observations of a tight coupling between FCS and blood supply® #'.

Discussion

Using a worldwide harmonized meta-connectomic analysis of 5,212 healthy young adults across
61 cohorts, we provided the first description of highly consistent and reproducible functional
connectome hubs in the resting human brain. Using transcriptomic data from the AHBA and
BrainSpan Atlas, we reported that these robust connectome hubs have a spatiotemporally
distinctive transcriptomic pattern in contrast to non-hub regions. These results advanced our
understanding of the robustness of macroscopic functional connectome hubs and their potential
cellular and molecular substrates.

Extant reports have shown largely inconsistent and less reproducible hub localizations” 8 1319,
which may arise from high heterogeneity in the included subjects, data acquisition, and analysis
strategies across studies. To diminish these potential confounding factors, we employed stringent
participant inclusion criteria that included only healthy young adults aged 18 to 36 years and
adopted harmonized data preprocessing and connectome analysis protocols across cohorts.
Nevertheless, the random-effects meta-analysis revealed high heterogeneity among cohorts in
almost all brain areas, which implied that heterogeneity of imaging scanners and/or imaging
protocols could be an important cause for inconsistent and less reproducible results across prior
studies. Thus, our study was indispensable by conducting a harmonized random-effects meta-
analysis model in which both intracohort variation (i.e., sampling errors) and intercohort
heterogeneity were considered*®. In addition, our validation results showed that the spatial
distribution of functional connectome hubs was relatively stable when using more than 510
subjects and 35 cohorts, demonstrating that 5,212 subjects from 61 cohorts were adequate to
minimize both sampling errors and heterogeneity among cohorts. Considering only dozens of
subjects in most prior studies” 8 315 17.19 the |ow statistical power attributed to inadequate
subjects could be another cause for prior inconsistent and less reproducible hub localizations.
Finally, we used harmonized image processing and connectome analysis protocols across cohort,
which avoided methodological variation and reduced potential methodological defects that have
not been resolved in prior studies. See an extension discussion in Supplementary Text II.

The present results demonstrated that the 35 highly consistent and reproducible connectome hubs
show heterogeneous functional connectivity profiles, forming three clusters. Twenty-one hubs
(Cluster I) are connected with extensive areas in the DAN, VAN, FPN, and SMN. Previous
investigations indicated that they are core regions of the DAN (left AIP, right 7PC, left 7Am,
bilateral PFt, left FEF, bilateral 6a, right 6v, and right FST)?>*°, VAN (left 43, left FOP4, right
46, right 6r, right PF, left PFop, left SCEF, right 5mv)?®4°, and FPN (left p9-46v and right
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284 IFSa)?> 0, In addition, hub regions involved in the sensorimotor pathway (right VIP, right FST,
285 left 7Am, and left FEF)®! are also connected with the visual association cortex, acting as

286  connectors between the VIS and the SMN, DAN, and VAN. Information flow along the primary
287  visual, visual association, and higher-level sensorimotor cortices is undertaken by the four

288  occipital hubs (Cluster II) left VMV, right V4, and bilateral VV3A that are all densely connected
289  with the VIS and portions of the SMN, DAN, and VAN. This aligns with the role of their

290 homologous regions in the non-human primate cerebral cortex®. The remaining 10 hubs (Cluster
291 1) are all located in canonical DMN regions®2. One of them, the left 8Av hub, is robustly

292  connected with both DMN and lateral prefrontal FPN regions, acting as a connector between the
293  DMN and FPN. This can be supported by the recent finding of a control-default connector

294 located in the posterior middle frontal gyrus3? and may also be a case of the hypothesis of

295  parallel interdigitated subnetworks®®. This observation offers a significant complementary

296  interpretation to the conventional assumption that the DMN is anticorrelated with other

297 networks®. Considering that communication between the DMN and other networks is of

298 significant relevance to neuropsychiatric disorders®, such as autism spectrum disorders®®, we
299  speculated that the left 8Av hub may be a promising target region for therapeutic interventions.

300  We demonstrated that these robust brain hubs have a spatiotemporally distinctive transcriptomic
301  pattern dominated by genes with the highest enrichment for the neuropeptide signaling pathway.
302  Because neuropeptides are a main type of synaptic transmitter that is widely distributed in the
303 human central nervous system®®, robust neuropeptide signaling pathways are indispensable for
304 efficient synaptic signal transduction that sustains dense and flexible functional connections of
305  hub regions. In addition, hub regions have higher transcription levels for main neuronal

306  metabolic pathways in contrast to non-hubs. This is reasonable because massive synaptic

307  activities in hub regions demand high material and metabolic costs, which is in accordance with
308  our observation of more blood supply and higher oxidative phosphorylation and aerobic

309  glycolysis levels in hub regions. This is also in agreement with prior observations of a tight

310  coupling between FCS and blood supply® 4.

311 We found that connectome hubs possess a spatiotemporally distinctive transcriptomic pattern of
312 key neurodevelopmental processes in contrast to non-hubs. Specifically, connectome hubs have
313 higher transcription levels for dendrite and synapse development and lower transcription levels
314  for axon development and myelination during childhood, adolescence, and adulthood. These

315 findings are compatible with previous observations of the prefrontal area having higher synapse
316  density but lower myelination than primary somatosensory, auditory, and visual (V1/V2)

317 cortices*> *. Higher transcription levels for dendrite and synapse development in hub regions are
318  necessary for the overproduction of synapses that will be selectively eliminated based on the

319  demand of the environment and gradually stabilized before full maturation®”, which is “the major
320  mechanism for generating diversity of neuronal connections beyond their genetic

321 determination”®. Lower transcription levels for axon development and myelination will prolong
322 the myelination period in hub regions, which characterizes a delayed maturation phase®®. Marked
323 delay of anatomical maturation in human prefrontal and lateral parietal cortices has been

324  frequently observed both in human development®® % and in primate evolution®®, which provides
325  more opportunities for social learning to establish diverse neuronal circuits that contribute to our
326 complex® and species-specific®® cognitive capabilities. We also observed higher transcription
327 levels for neuron migration in hub regions from mid-fetal period to early infancy. This is in

328  agreement with the report of extensive migration of young neurons persisting for several months
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after birth in the human frontal cortex®:. Meanwhile, the migration and final laminar positioning
of postmitotic neurons are regulated by common transcription factors®?, which suggests that a
higher transcription level for neuron migration in hub regions facilitates the construction of more
intricate interlaminar connectivity. These microscale divergences of key neurodevelopmental
processes may result in a more intricate macroscale structural connectivity proflie in hub regions.

Human neurodevelopment is an intricate and protracted process, during which the transcriptome
of the human brain requires precise spatiotemporal regulation®. Thus, in addition to contributing
to our complex cognitive capabilities, the distinctive transcriptomic pattern of neurodevelopment
in hub regions may also increase connectome hubs’ susceptibility to neuropsychiatric disorders®®
59 which means small disturbance in the magnitude or the timing of this transcriptomic pattern
may have long-term consequences on brain anatomical topography or functional activation. This
is in line with our observation of psychiatric disorders being the most significant disease
associated with the top 150 key genes (Table S5). This implies that uncovering the intricate
transcriptomic pattern, diverse neuronal circuits, anatomical topography, and functional
activation of connectome hubs provide crucial and promising routes for understanding the
pathophysiological mechanisms underlying neurodevelopmental disorders, such as autism
spectrum disorders®® > and schizophrenia® 3885,

Of note, we conducted transcriptome-connectome association analysis using machine learning
approaches in which non-linear mathematical operations were implemented rather than linear
operations, such as linear correlation?*, linear regression®, or partial least squares?®. It has been
argued that observations of transcriptome-connectome spatial association have a high false-
positive rate through linear regression®® and linear correlation® and may be largely shifted
toward the first principal component axis of the dataset through partial least squares®. These
investigations imply that prior transcriptome-connectome association results by linear
mathematical operations may include high false-positive observations that are independent of
connectome measurements, such as genes enriched for ion channels?+2?6. By contrast, high
reproducibility across different machine learning models and across different GO enrichment
analysis tools and convergent results from the AHBA and BrainSpan Atlas made it very unlikely
that our findings were false-positive observations.

Some results of the present study should be interpreted cautiously because of methodological
issues. First, we identified the robust connectome hubs using preprocessed rsfMRI data with
global signal regression because of its great promise in minimizing physiological artifacts on
functional connectomes®®. Validation analysis demonstrated that hub distribution identified
without global signal regression was more likely derived from physiological artifacts rather than
by ongoing neuronal activity (Supplementary Text III and Fig S9). Second, the AHBA dataset
only includes partial human genes, of which approximately half were excluded in data
preprocessing®, which may have induced incomplete observations in our data-driven analysis.
Finally, our transcriptomic signature results addressed only the association between connectome
hubs and transcriptomic patterns and did not explore causation between them. Exploring more
detailed mechanisms underlying this association is attractive and may be practicable for non-
human primate brains in future studies.
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Methods
Dataset.

We included a large-sample rsfMRI dataset of 5,212 healthy young adults (aged 18-36 years,
2,377 males) across 61 cohorts from Asia, Europe, North America, and Australia. Data of each
cohort were collected with participants’ written informed consent and with approval by the
respective local institutional review boards. All data passed strict quality controls and were
routinely preprocessed with a uniform pipeline. For details, see Supplementary Text I.

Identifying robust functional connectome hubs using a harmonized meta-analysis.

For each individual, we constructed a voxelwise functional connectome matrix by computing the
Pearson’s correlation coefficient between preprocessed rsfMRI time series of all pairs of voxels
within a predefined gray matter mask (47,619 voxels). The gray matter mask was divided into
seven large-scale cortical networks?® and a subcortical network®. The cerebellum was not
included due to largely incomplete coverage during rsfMRI scanning in most cohorts. Negative
functional connections were excluded from our analysis due to neurobiologically ambiguous
interpretations®’. To further reduce signal noise and simultaneously avoid potential sharing
signals between nearby voxels, both weak connections (Pearson’s r < 0.1) and connections
terminating within 20 mm were set to zero%. We validated the threshold of weak connections
using 0.05 and 0.2.

For each voxel, we computed the FCS as the sum of connection weights between the given voxel
and all the other voxels. We further normalized this resultant FCS map with respect to its mean
and standard deviation across voxels’. For each cohort, we performed a general linear model on
these normalized FCS maps to reduce age and gender effects. For each voxel, we constructed the
general linear model as:

FCS; = Bo + Page * (Age; — MeanAge) + Pgenaer * Gender; + ¢; (D

FCSi, Agei, Gender;, and &i indicate the FCS, age, gender, and residual of the ith individual,
respectively. MeanAge indicates the mean age of that cohort. The general linear model exported
a mean FCS map and its corresponding variance map for each cohort.

The mean and variance FCS maps of the 61 cohorts were submitted to a random-effects meta-
analysis model“® to address across-cohort heterogeneity of functional connectomes. The detailed
computational procedures are described in the book*. A short summary of these procedures was
provided in Supplementary Text I. This resulted in a consistent FCS pattern and its
corresponding SE map. We compared the FCS of each voxel with the average of the whole brain

(i.e., zero) using a Z value®®:
FCS—-0
L= @

In line with previous neuroimaging meta-analysis study®®, we performed 10,000 one-sided
nonparametric permutation tests? to assign a p value to the observed Z value. For each iteration,
after randomizing the spatial correspondence among cohorts’ mean FCS maps (the spatial

11


https://doi.org/10.1101/2021.11.29.470494
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.29.470494; this version posted April 14, 2022. The copyright holder for this preprint (which

407
408
409
410
411
412
413
414
415
416
417

418

419

420

421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437

438

439
440
441
442
443
444
445
446

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

correspondence between a cohort’s mean FCS map and its variance map was not changed), we
repeated the computation procedure of the random-effects meta-analysis for each voxel and
extracted the maximum Z value of all voxels to construct a null distribution. A p value was
assigned to each voxel by comparing the observed Z value to the null distribution. For a
significance level below 0.05, this p value closely tracks the Bonferroni threshold?. Finally, we
defined functional connectome hubs as brain regions with a p value less than 0.001 and cluster
size greater than 200 mm?. The thresholds of p value and cluster size were similar with the
activation likelihood estimation algorithm®. We extracted MNI coordinates for each local peak Z
value terminating beyond 15 mm within each brain cluster using the wb_command -volume-
extrema command (https://humanconnectome.org/software/workbench-command/-volume-
extrema) in Connectome Workbench v1.4.2. Effect size was estimated using Cohen’s d metric %

i=2 @3)
=T

k is the number of cohorts in the meta-analysis.
Mapping seed-to-whole-brain connectivity profiles of functional connectome hubs.

We modeled each hub seed region as a sphere with a 6-mm radius centered on the hub peak and
computed Pearson’s correlation coefficients between the seed region’s preprocessed rsfMRI time
series and the time series of all gray matter voxels. The time series of the seed region was
computed by averaging the time series of all gray matter voxels in the seed sphere. These
correlation coefficients were further transformed to Fisher’s z for normality. In line with above,
we constructed a general linear model on these Fisher’s z value maps within each cohort to
reduce age and gender effects and performed a random-effects meta-analysis on these Fisher’s z
value maps across cohorts to address the across-cohort heterogeneity, resulting in a robust
Fisher’s z pattern and its corresponding SE map. Then, We compared the Fisher’s z value of each
voxel with zero using a Z value*® and estimated effect size using Cohen’s d metric* as described
in equations (2) and (3). We performed 10,000 one-sided nonparametric permutation tests? to
identify the most consistent functional connection Z value map with a p value less than 0.001 and
cluster size greater than 200 mm?. Finally, we divided the connectivity map of each hub into
eight brain networks mentioned above and represented the functional connectivity profile of a
hub as the voxel percentage of each of the eight networks connected with it to address the effect
of network size. To illustrate the left 8Av hub’s connectivity profile, we also mapped its
homologous region the right 8Av region’s connectivity profile (Fig S5).

Identifying transcriptomic signatures underlying functional connectome hubs.

We trained classifiers based on XGBoost and SVM to distinguish connectome hubs from non-
hubs using transcriptomic features from the preprocessed AHBA dataset®*. The top 150 genes
(Table S1) mostly contributed to the classification results were submitted to GO enrichment
analyses using GOrilla® (http://cbl-gorilla.cs.technion.ac.il) and DAVID?® %7 v6.8
(https://david.ncifcrf.gov). For details, see Supplementary Text I. Based on GO enrichment
analysis results, we tested transcription level differences of gene sets involved in key
neurodevelopmental processes® (Table S6) and main neuronal metabolic pathways®® (oxidative
phosphorylation*® and aerobic glycolysis*!, Table S7) between connectome hubs and non-hubs

12
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447 through one-sided Wilcoxon rank-sum test. In line with prior studies®® *!, we used the first

448  principal component of each gene set’s transcription level to plot and to perform the statistical
449  analysis (Fig 5A). For illustration purposes, we normalized the first principal component of each
450  gene set’s transcription level respect to its minimum and maximum values across all brain

451 samples to range from O to 1.

452 To explore developmental details, we inspected transcriptomic trajectory differences between
453 connectome hubs and non-hubs in the above gene sets using the BrainSpan Atlas*2. In line with
454 prior studies® 4, we used the first principal component of each gene set’s transcription level to
455  plot transcriptomic trajectories and visually inspected transcriptomic trajectory differences

456  between connectome hubs and non-hubs (Fig 5B). Transcriptomic trajectories were plotted using
457 locally weighted regression by smoothing the first principal component of each gene set’s

458 transcription level against log2[post-conceptional days] as in prior study?®. Of note, considering
459  apparent transcriptomic differences compared to the neocortex®, we excluded the striatum,

460  mediodorsal nucleus of the thalamus, and cerebellar cortex in the transcriptomic trajectory

461  analysis but not the amygdala and hippocampus whose transcriptomic trajectories are more

462 similar to those of the neocortex than to those of other subcortical structures®®. Analysis using
463  only neocortical regions revealed almost unchanged results (Fig S8).

464  To validate above results derived from transcriptome datasets, we tested fiber number

465  differences between connectome hubs and non-hubs through one-sided Wilcoxon rank-sum test
466  (Fig 6). Fiber number data across different length bins was derived from a fiber length profiling
467  dataset®. For each fiber length bin, fiber number of each vertex was normalized with respect to
468 its mean and standard deviation across vertices. We further examined differences between

469  connectome hubs and non-hubs in metabolic measurements of blood supply (the cerebral blood
470  flow), oxidative phosphorylation (the cerebral metabolic rate for oxygen), and aerobic glycolysis
471 (the glycolytic index) through one-sided Wilcoxon rank-sum test (Fig 7). These measurements
472 were derived from a positron emission tomography study*® and assigned to 82 Brodmann areas
473 and seven subcortical structures. Brodmann areas with more than 50% vertices or subcortical
474  structures with more than 50% voxels identified as hubs were regarded as hub regions.

475  Statistical analysis.

476  We performed statistical analyses using MATLAB R2013a. Statistical significance of brain
477 clusters in Fig 2B and 3A and Fig S2B, S3B, S5, and S9A were determined by comparing the
478  observed Z values in equation (2) with their corresponding null distributions constructed by
479  above mentioned 10,000 one-sided nonparametric permutation tests?®. To determine the

480  statistical significance of one-sided Wilcoxon rank-sum tests in Fig 5A, 6, and 7 and Fig S9D,
481  we constructed 1,000 surrogate hub identification maps with the spatial autocorrelations being
482 corrected using a generative model’® and repeated calculating rank-sum statistics using these
483  surrogate hub identification maps to construct a null distribution. Then, p values derived by
484  comparing the observed rank-sum statistics with their corresponding null distributions were
485  Bonferroni-corrected. Surrogate hub identification maps in Fig 5A, 6, and 7 were constructed
486  based on the hub identification map in Fig 2B. Surrogate hub identification maps in Fig S9D
487  were constructed based on the hub identification map in Fig S9A.

488
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Data availability

The MRI data of the first 60 cohorts listed in Table S8 are available at the International
Neuroimaging Data-sharing Initiative (http://fcon_1000.projects.nitrc.org), Brain Genomics
Superstruct Project (https://doi.org/10.7910/DVN/25833), Human Connectome Project
(https://www.humanconnectome.org), MPI-Leipzig Mind-Brain-Body Project
(https://openneuro.org/datasets/ds000221), and Age-ility Project
(https://wwwe.nitrc.org/projects/age-ility). The MRI data of the PKU cohort are under active use
by the reporting laboratory and will be available upon reasonable request. The preprocessed
AHBA dataset is available at https://doi.org/10.6084/m9.figshare.6852911. The normalized
BrainSpan Atlas dataset is available at http://brainspan.org/static/download.html. The fiber
length profiling dataset® is available at https://balsa.wustl.edu/study/1K3I.

Code availability

The code to reproduce the results and visualizations of this manuscript is available at
https://github.com/zhileixu/Functional ConnectomeHubs.

Author Contributions

Conceptualization: Z.X., Y.H.; Methodology: Z.X., Y.H., M.X., X.W., X.L., T.Z.; Investigation:
Z.X.; Visualization: Z.X.; Supervision: Y.H.; Writing—original draft: Z.X., Y.H.; Writing—
review & editing: Y.H., Z.X., M.X., X.L., T.Z., X.W.

Acknowledgments

We thank Drs. Huali Wang and Xiaodan Chen for data acquisition of the PKU cohort and Drs.
Qiushi Wang and Nan Zhang for valuable advice on MRI data quality controls. This work was
supported by the National Natural Science Foundation of China [82021004, 31830034, and
81620108016 to Y.H., 82071998 and 81671767 to M.X., 81971690 to X.L., 81801783 to T.Z.],
Changjiang Scholar Professorship Award [T2015027 to Y.H.], National Key Research and
Development Project [2018YFAQ0701402 to Y.H.], Beijing Nova Program [Z191100001119023
to M.X.], and Fundamental Research Funds for the Central Universities [2020NTST29 to M.X.].

Conflict of Interest

The authors declare no competing interests.

14


https://doi.org/10.1101/2021.11.29.470494
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.29.470494; this version posted April 14, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

521 References

522 1. van den Heuvel MP, Sporns O. Network hubs in the human brain. Trends in Cognitive
523 Sciences 17, 683-696 (2013).

524

525 2. Bullmore E, Sporns O. The economy of brain network organization. Nature Reviews
526 Neuroscience 13, 336-349 (2012).

527

528 3. Liu J, et al. Intrinsic Brain Hub Connectivity Underlies Individual Differences in Spatial
529 Working Memory. Cerebral Cortex 27, 5496-5508 (2016).

530

531 4. Xu'Y, Lin Q, Han Z, He Y, Bi Y. Intrinsic functional network architecture of human
532 semantic processing: Modules and hubs. Neuroimage 132, 542-555 (2016).

533

534 5. van den Heuvel MP, et al. Abnormal Rich Club Organization and Functional Brain
535 Dynamics in Schizophrenia. JAMA Psychiatry 70, 783-792 (2013).

536

537 6. Crossley NA, et al. The hubs of the human connectome are generally implicated in the
538 anatomy of brain disorders. Brain 137, 2382-2395 (2014).

539

540 7. Buckner RL, et al. Cortical Hubs Revealed by Intrinsic Functional Connectivity: Mapping,
541 Assessment of Stability, and Relation to Alzheimer's Disease. The Journal of Neuroscience
542 29, 1860 (2009).

543

544 8. Dai Z, et al. Identifying and Mapping Connectivity Patterns of Brain Network Hubs in
545 Alzheimer's Disease. Cerebral Cortex 25, 3723-3742 (2014).

546

547 9. Wang J, et al. Disrupted Functional Brain Connectome in Individuals at Risk for
548 Alzheimer’s Disease. Biological Psychiatry 73, 472-481 (2013).

549

550 10.  Wang L, et al. The Effects of Antidepressant Treatment on Resting-State Functional Brain
551 Networks in Patients With Major Depressive Disorder. Human Brain Mapping 36, 768-
552 778 (2015).

553

554  11. Fornito A, Zalesky A, Breakspear M. The connectomics of brain disorders. Nature Reviews
555 Neuroscience 16, 159-172 (2015).

556
557 12.  Gong Q, He Y. Depression, Neuroimaging and Connectomics: A Selective Overview.
558 Biological Psychiatry 77, 223-235 (2015).

15


https://doi.org/10.1101/2021.11.29.470494
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.29.470494; this version posted April 14, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

559

560 13.  Achard S, Salvador R, Whitcher B, Suckling J, Bullmore E. A Resilient, Low-Frequency,
561 Small-World Human Brain Functional Network with Highly Connected Association
562 Cortical Hubs. The Journal of Neuroscience 26, 63-72 (2006).

563

564 14.  Liao X-H, et al. Functional brain hubs and their test—retest reliability: A multiband resting-
565 state functional MRI study. Neurolmage 83, 969-982 (2013).

566

567 15.  Cole MW, Pathak S, Schneider W. Identifying the brain's most globally connected regions.
568 Neuroimage 49, 3132-3148 (2010).

569
570 16.  Tomasi D, Volkow ND. Functional connectivity density mapping. Proc Natl Acad Sci USA
571 107, 9885-9890 (2010).

572

573  17. Fransson P, Aden U, Blennow M, Lagercrantz H. The Functional Architecture of the Infant
574 Brain as Revealed by Resting-State fMRI. Cerebral Cortex 21, 145-154 (2011).

575

576  18.  Tomasi D, Volkow ND. Association between Functional Connectivity Hubs and Brain
577 Networks. Cerebral Cortex 21, 2003-2013 (2011).

578

579 19.  de Pasquale F, et al. The connectivity of functional cores reveals different degrees of
580 segregation and integration in the brain at rest. Neuroimage 69, 51-61 (2013).

581

582 20.  Glahn DC, et al. Genetic control over the resting brain. Proc Natl Acad Sci USA 107, 1223-
583 1228 (2010).

584

585  21. Fornito A, et al. Genetic Influences on Cost-Efficient Organization of Human Cortical
586 Functional Networks. The Journal of Neuroscience 31, 3261-3270 (2011).

587

588 22.  Wiggins JL, et al. The impact of serotonin transporter (5-HTTLPR) genotype on the
589 development of resting-state functional connectivity in children and adolescents: a
590 preliminary report. Neuroimage 59, 2760-2770 (2012).

591

592  23. Gordon EM, Stollstorff M, Devaney JM, Bean S, Vaidya CJ. Effect of Dopamine
593 Transporter Genotype on Intrinsic Functional Connectivity Depends on Cognitive State.
594 Cerebral Cortex 22, 2182-2196 (2012).

595

596  24. Richiardi J, et al. Correlated gene expression supports synchronous activity in brain
597 networks. Science 348, 1241-1244 (2015).

598

16


https://doi.org/10.1101/2021.11.29.470494
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.29.470494; this version posted April 14, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

599  25. Diez I, Sepulcre J. Neurogenetic profiles delineate large-scale connectivity dynamics of

600 the human brain. Nature Communications 9, 3876 (2018).

601

602 26.  Vertes PE, et al. Gene transcription profiles associated with inter-modular hubs and
603 connection distance in human functional magnetic resonance imaging networks. Phil Trans
604 R Soc B 371, (2016).

605

606 27.  Fornito A, Arnatkevicitté¢ A, Fulcher BD. Bridging the Gap between Connectome and
607 Transcriptome. Trends in Cognitive Sciences 23, 34-50 (2019).

608

609  28. Nichols TE, Holmes AP. Nonparametric Permutation Tests For Functional Neuroimaging:
610 A Primer with Examples. Human Brain Mapping 15, 1-25 (2002).

611

612 29.  Yeo BT, et al. The organization of the human cerebral cortex estimated by intrinsic
613 functional connectivity. Journal of Neurophysiology 106, 1125-1165 (2011).

614

615 30.  Tzourio-Mazoyer N, et al. Automated Anatomical Labeling of Activations in SPM Using
616 a Macroscopic Anatomical Parcellation of the MNI MRI Single-Subject Brain.
617 Neuroimage 15, 273-289 (2002).

618

619 31.  Power JD, Schlaggar BL, Lessov-Schlaggar CN, Petersen SE. Evidence for Hubs in
620 Human Functional Brain Networks. Neuron 79, 798-813 (2013).

621

622 32.  Gordon EM, etal. Three Distinct Sets of Connector Hubs Integrate Human Brain Function.
623 Cell reports 24, 1687-1695 1684 (2018).

624

625 33.  Chen T, Guestrin C. XGBoost: A Scalable Tree Boosting System. arXiv, (2016).

626

627 34.  Arnatkevic lute A, Fulcher BD, Fornito A. A practical guide to linking brain-wide gene
628 expression and neuroimaging data. Neuroimage 189, 353-367 (2019).

629

630  35. Eden E, Navon R, Steinfeld I, Lipson D, Yakhini Z. GOrilla: a tool for discovery and
631 visualization of enriched GO terms in ranked gene lists. BMC bioinformatics 10, 48 (2009).
632

633  36. Huang da W, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward
634 the comprehensive functional analysis of large gene lists. Nucleic Acids Research 37, 1-13
635 (2009).

636

637 37.  HuangdaW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene
638 lists using DAVID bioinformatics resources. Nature protocols 4, 44-57 (2009).

17


https://doi.org/10.1101/2021.11.29.470494
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.29.470494; this version posted April 14, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

639
640  38. Kang HJ, et al. Spatio-temporal transcriptome of the human brain. Nature 478, 483-489
641 (2011).

642
643  39. Harris Julia J, Jolivet R, Attwell D. Synaptic Energy Use and Supply. Neuron 75, 762-777
644 (2012).

645

646  40.  Arroyo JD, et al. A Genome-wide CRISPR Death Screen Identifies Genes Essential for
647 Oxidative Phosphorylation. Cell Metabolism 24, 875-885 (2016).

648

649  41. Goyal MS, Hawrylycz M, Miller JA, Snyder AZ, Raichle ME. Aerobic Glycolysis in the
650 Human Brain Is Associated with Development and Neotenous Gene Expression. Cell
651 Metabolism 19, 49-57 (2014).

652

653  42. Miller JA, et al. Transcriptional landscape of the prenatal human brain. Nature 508, 199-
654 206 (2014).

655
656 43.  Sherwood CC, Gomez-Robles A. Brain Plasticity and Human Evolution. Annual Review
657 of Anthropology 46, 399-419 (2017).

658

659 44, Huttenlocher PR, Dabholkar AS. Regional Differences in Synaptogenesis in Human
660 Cerebral Cortex. The Journal of comparative neurology 387, 167-178 (1997).

661

662  45. Bajada CJ, Schreiber J, Caspers S. Fiber length profiling: A novel approach to structural
663 brain organization. Neuroimage 186, 164-173 (2019).

664

665 46.  Vaishnavi SN, Vlassenko AG, Rundle MM, Snyder AZ, Mintun MA, Raichle ME.
666 Regional aerobic glycolysis in the human brain. Proc Natl Acad Sci USA 107, 17757-17762
667 (2010).

668

669 47.  Liang X, Zou Q, He Y, Yang Y. Coupling of functional connectivity and regional cerebral
670 blood flow reveals a physiological basis for network hubs of the human brain. Proc Natl
671 Acad Sci USA 110, 1929-1934 (2013).

672

673 48.  Cumming G. Understanding the new statistics: Effect sizes, confidence intervals, and
674 meta-analysis. Routledge (2013).

675

676  49. Fox MD, Corbetta M, Snyder AZ, Vincent JL, Raichle ME. Spontaneous neuronal activity
677 distinguishes human dorsal and ventral attention systems. Proc Natl Acad Sci USA 103,
678 10046-10051 (2006).

18


https://doi.org/10.1101/2021.11.29.470494
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.29.470494; this version posted April 14, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

679

680  50. Marek S, Dosenbach NUF. The frontoparietal network: function, electrophysiology, and
681 importance of individual precision mapping. Dialogues in clinical neuroscience 20, 133-
682 140 (2018).

683

684 51.  Felleman DJ, Van Essen DC. Distributed Hierarchical Processing in the Primate Cerebral
685 Cortex. Cerebral Cortex 1, 1-47 (1991).

686

687  52. Buckner RL, Andrews-Hanna JR, Schacter DL. The Brain’s Default Network Anatomy,
688 Function, and Relevance to Disease. Annals of the New York Academy of Sciences 1124,
689 1-38 (2008).

690

691  53. Braga RM, Buckner RL. Parallel Interdigitated Distributed Networks within the Individual
692 Estimated by Intrinsic Functional Connectivity. Neuron 95, 457-471 e455 (2017).

693

694 54.  Menon V. Large-scale brain networks and psychopathology: a unifying triple network
695 model. Trends in Cognitive Sciences 15, 483-506 (2011).

696

697 55.  Xie Y, et al. Alterations in Connectome Dynamics in Autism Spectrum Disorder: A
698 Harmonized Mega- and Meta-Analysis Study Using the ABIDE Dataset. Biological
699 Psychiatry, (2021).

700

701 56. Nicholls JG, Martin AR, Fuchs PA, Brown DA, Diamond ME, Weisblat DA. From Neuron
702 to Brain, Fifth Edition. Sinauer Associates Sunderland, MA (2012).

703

704 57.  Changeux J-P, Danchin A. Selective stabilisation of developing synapses as a mechanism
705 for the specification of neuronal networks. Nature 264, 705-712 (1976).

706

707 58.  Petanjek Z, et al. Extraordinary neoteny of synaptic spines in the human prefrontal cortex.
708 Proc Natl Acad Sci USA 108, 13281-13286 (2011).

709

710  59. Miller DJ, et al. Prolonged myelination in human neocortical evolution. Proc Natl Acad
711 Sci USA 109, 16480-16485 (2012).

712

713 60.  Lebel C, Gee M, Camicioli R, Wieler M, Martin W, Beaulieu C. Diffusion tensor imaging
714 of white matter tract evolution over the lifespan. Neuroimage 60, 340-352 (2012).

715

716  61. Paredes MF, et al. Extensive migration of young neurons into the infant human frontal lobe.
717 Science 354, (2016).

718

19


https://doi.org/10.1101/2021.11.29.470494
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.29.470494; this version posted April 14, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

719  62. Kwan KY, Sestan N, Anton ES. Transcriptional co-regulation of neuronal migration and

720 laminar identity in the neocortex. Development 139, 1535-1546 (2012).

721

722 63.  Wel Y, et al. Statistical testing in transcriptomic-neuroimaging studies: A how-to and
723 evaluation of methods assessing spatial and gene specificity. Human Brain Mapping 43,
724 885-901 (2022).

725

726  64. Fulcher BD, Arnatkeviciute A, Fornito A. Overcoming false-positive gene-category
727 enrichment in the analysis of spatially resolved transcriptomic brain atlas data. Nature
728 Communications 12, 2669 (2021).

729

730  65. Helmer M, et al. On stability of Canonical Correlation Analysis and Partial Least Squares
731 with application to brain-behavior associations. bioRxiv, (2020).

732

733 66. Ciric R, et al. Benchmarking of participant-level confound regression strategies for the
734 control of motion artifact in studies of functional connectivity. Neuroimage 154, 174-187
735 (2017).

736

737  67.  Schwarz AJ, McGonigle J. Negative edges and soft thresholding in complex network
738 analysis of resting state functional connectivity data. Neuroimage 55, 1132-1146 (2011).
739

740 68.  Power Jonathan D, et al. Functional Network Organization of the Human Brain. Neuron
741 72,665-678 (2011).

742

743 69. Eickhoff SB, Laird AR, Grefkes C, Wang LE, Zilles K, Fox PT. Coordinate-Based
744 Activation Likelihood Estimation Meta-Analysis of Neuroimaging Data: A Random-
745 Effects Approach Based on Empirical Estimates of Spatial Uncertainty. Human Brain
746 Mapping 30, 2907-2926 (2009).

747

748  70. Burt JB, Helmer M, Shinn M, Anticevic A, Murray JD. Generative modeling of brain maps
749 with spatial autocorrelation. Neuroimage 220, 117038 (2020).

750

20


https://doi.org/10.1101/2021.11.29.470494
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.29.470494, this version posted April 14, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Cohort M/F
., teuven_1 o —m 11/0
& MaxMun_c N 13/0
@ NYU | o Y N s e 23/7
Usm | IS A S— — 25/0
~ ETHZ1 L s N I s = 17/0
alp_1 N g/
@ IU_1 e | —F————————rm 13/5
< ONRC_2 [ o o I N e = 16/13
Age_ility (= I ————————— ] 41/44
BGSP I I — —— —— 621/888
C-BIRD oIl Fr—— 67/76
BMB_1 e 77/20
BNU_2 === 28/32
BNU_3 o] jra—— 23/23
HNU_1 e | Fr—o— 15/15
IACAS — | T 7/10
IBA_TRT of | | p—7— 13/11
IPCAS_1 == I 21/8
IPCAS_3 e—1 [ m 18/8
IPCAS_4 wf | 7/9
IPCAS_S ] 0/22
& JHNU_1 [= - — ] 9/18
S LMU_1 L=l = 6/8
LMU_2 I — o/6
MRN_1 m T T J7—mn 14/9
NYU_1 [ | T Trrom 13/7
NYU2 R 20/37
SWU_1 1P 14/5
SWU_2 1 16/9
Swu_3 = [l ===C_ 15/8
UPSM_1 o= 12/13
Utah_1 e—— | F—r——r—rm 0/14
UWM_1 CC 1T T—1m 10/8
Baltimore o= | }—1=3 7/12
Beijing — —— 26/49
Berlin o 1T  —10 10/12
Cambridge g T 70/121
ICBM [= I ——————— . ] 6/16
g Leiden_2180 o 1T 1 10/0
S Leiden_2200 e=e={iijj—— 8/8
&5 Leipzig e | ————————m 13/20
- Newark (o ) =] 7/9
NewHaven_b esssamg e 6/8
NewYork_a e 22/23
Oulu o e 25/58
Queensland e | /————— 10/8
SaintLouis — Il 11/15
HCP $900 e 313/424
ACPI/du_T — eommim 17/14
BeijingEOEC ee=mpul s 23/23
BeijingShortTR i) 11/13
Berlin eomceesens—— 20/21
COBRE e 21/11
2 NEO [ e o I N s o = 2 13/14
~ SALD eae— R ——— 67/97
SLIM I = 246/308
Virginia C IIFT——m 5/9
Yale_High sl 54/40
Yale_Low e 32/33
MPIMBB = 129/76
Al e —— )377/2835
1 I I I | | |
18 21 24 27 30 33 36

Age (years
751 ge (years)
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753 Fig 2. Highly consistent and reproducible functional connectome hubs. A Robust FCS

754  pattern and its corresponding variance (standard error, SE) map estimated using a harmonized
755  voxelwise random-effects meta-analysis across 61 cohorts. B Left: The most consistent

756 functional connectome hubs (p < 0.001, cluster size > 200 mm?®); white spheres represent hub
757  peaks. Right: Hub voxel distribution in eight large-scale brain networks; insets, the seven large-
758 scale cortical networks?® were rendered on the left hemisphere. SUB, subcortical network;

759 LIMB, limbic network. C Left: Heterogeneity measurement I estimated through the random-
760  effects meta-analysis. Right: Cumulative distribution function plot of 12. D Left: Heatmap of
761  displacements of the 35 hub peaks after leaving one cohort out. Right: Bar plot of the probability
762  across the 35 hub peaks whose displacement was less than 6 mm after leaving one cohort out. E
763 Hub occurrence probability map across all subjects (left) and all cohorts (right). White lines

764  delineate boundaries of the identified hubs in B. F Dice’s coefficient of the identified hubs in B
765  compared with the top N (voxel number of the identified hubs in B) voxels with the highest hub
766 occurrence probability values across randomly selected subjects (left) and randomly selected
767  cohorts (right). Blue shading represents the standard deviation across 2,000 random selections.
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Hierarchical clustering analysis of hub regions’ functional connectivity profiles

120
Percentage 80 g.
0 sl 100 Cluster | g
40 @
rq;_ciUSter L Cluster Ill
j AN -o

0000
&

©0000000000000000
000000000000000000
o 900 (Y I )

LIMB SMN LIMB SMN

100 75 50 25 w 100
DMN DAN ‘DAN DMN ‘DAN
FPN VAN FPN VAN FPN VAN

Fig 3. Functional connectivity profiles of connectome hubs. A Functional connectivity
profiles of the 35 hubs. White spheres represent hub seeds. Blue lines delineate boundaries of the
seven cortical networks shown in Fig 2B. B Top: Dendrogram derived by hierarchical clustering
of the connectivity percentage matrix. Middle: The 35 hubs were rendered using three different
colors according to the hierarchical clustering solution. Bottom: Radar charts showing
heterogeneous connectivity profiles of the three hub clusters.
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Fig 4. Transcriptomic data distinguishes connectome hubs from non-hubs. A Schematic
diagram of using the XGBoost model to classify brain samples as a hub or non-hub. B
Performance of the XGBoost classifier. Each dot represents one repetition in A. The horizontal
gray dashed line represents the chance level accuracy rate (50%). The horizontal green dashed
line represents the average accuracy rate of the XGBoost classifier across 1,000 repetitions. C
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Density plot of 10,027 genes’ logarithmic average contributions across 1,000 repetitions to the
XGBoost classifier. Genes with the greatest contributions were regarded as key genes. D
Regression plot of the logarithmic average contributions of the top 300 key genes across the first
500 repetitions versus those across the second 500 repetitions. Each dot represents one gene. E
Schematic diagram of using the SVM model to classify brain samples as a hub or non-hub. F
and G Accuracy rate of the SVM classifier versus the count of key genes used to distinguish 382
hub samples from 382 non-hub samples with the highest rate (F) or lowest rate (G) to be
correctly classified by the XGBoost classifier. Each dot represents one SVM classifier. Black
curves were estimated by locally weighted regression. H Performance of the SVM classifier.
Horizontal lines correspond to the SVM classifier trained using top 150 key genes in G. Each dot
represents one repetition using 150 randomly selected genes in E. The horizontal gray dashed
line represents the chance level accuracy rate (50%).
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793 Fig 5. Connectome hubs have a spatiotemporally distinctive transcriptomic pattern. A

794  Transcription level differences between hub samples (n=382) and non-hub samples (n=776) for
795  genes associated with key neurodevelopmental processes® and main neuronal metabolic

796  pathways®. Boxplot edges, gray lines, and whiskers and dots depict the 25th and 75th

797  percentiles, median, and extreme nonoutlier and outlier values, respectively. Significance of one-
798  sided Wilcoxon rank-sum tests were determined by 1,000 permutation tests and were labeled

799  with Bonferroni-corrected p values. B Transcriptomic trajectory differences between hub and
800  non-hub regions for genes involved in key neurodevelopmental processe®® and main neuronal
801  metabolic pathways®. w, post-conceptional week; y, postnatal year; a.u., arbitrary unit.
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Fig 6. Connectome hubs have more intricate fiber configuration. Left: Fiber number for
different fiber length bins was derived from a fiber length profiling dataset*. To save space, we
only presented data of the left hemisphere and used data of both hemispheres in boxplots and
statistics. White lines delineate boundaries of the identified hubs in Fig 2B. Right: Fiber number
difference between connectome hubs (red, n=25,944) and non-hubs (blue, n=33,195). Boxplot
edges, gray lines, and whiskers and dots depict the 25th and 75th percentiles, median, and
extreme nonoutlier and outlier fiber number values, respectively. Significance of one-sided
Wilcoxon rank-sum tests were determined by 1,000 permutation tests and were labeled with
Bonferroni-corrected p values. a.u., arbitrary unit.
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Fig 7. Connectome hubs have higher metabolic rate. The cerebral metabolic rate for oxygen,
glycolytic index, and cerebral blood flow of 82 Brodmann areas and seven subcortical structures
were provided by a prior study®®. White lines delineate boundaries of the identified hubs in Fig
2B. Boxplot edges, gray lines, and whiskers and dots depict the 25th and 75th percentiles,
median, and extreme nonoutlier and outlier metabolic measurement values, respectively.
Brodmann areas with more than 50% vertices or subcortical structures with more than 50%
voxels identified as hubs were regarded as hub regions (n=29), vice versa as non-hub regions
(n=60). Significance of one-sided Wilcoxon rank-sum tests was determined by 1,000
permutation tests and were labeled with Bonferroni-corrected p values. a.u., arbitrary unit.
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822  Table 1. Highly consistent functional connectome hubs.

MNI coordinates

No. Hub Location x 7 . Cohen’sd FCS SE
1 Right PFt PFt (superoanterior BA* 40) 60 -21 45 6.267 1.072 0.022
2  LeftPFt PFt (superoanterior BA 40) -60 -24 36 6.151 0.949 0.020
3  Right PF PF (posterior BA 40) 60 -27 24 5.785 1.239 0.027
4  LeftSCEF  Supplementary and cingulate eye field 0 0 51 5.635 1.000 0.023
5 LeftPGi PGi (inferior BA 39) 51 66 30 5.168 1.075 0.027
6 Left PFop PF opercular (inferoanterior BA 40) -63  -27 18 5.160 1.095 0.027
7 Left43 Area 43 -57 3 3 4.927 1.114 0.029
8 Right 6r Rostral area 6 57 6 0 4.916 1.184 0.031
9 Right PGi PGi (inferior BA 39) 54 -60 30 4.739 1.007 0.027
10 Right8BL  Area 8B lateral 21 36 51 4.655 0.713  0.020
11 Right7PC Area 7TPC 36 -45 54 4414 0.712 0.021
12 Left9p Area 9 posterior 15 45 45 4.199 0.639 0.019
13 Right 6v Ventral area 6 54 9 33 4.037 0.766 0.024
14 Left8Av Ventral area 8A -39 18 48 3.990 0.561 0.018
15 Left AIP Anterior intra-parietal area -33 45 45 3.474 0.567 0.021
16 Right FST Fundus of the superior temporal area 54  -60 0 3.156 0.729 0.030
17  Right 9m Area 9 middle 3 54 24 3.128 0.609 0.025
18 Left31pv Area 31p ventral -3 b1 33 3.049 0.784 0.033
19 Right VIP Ventral intra-parietal complex 18 -63 57 2.984 0.572 0.025
20 Right 6a Area 6 anterior 33 3 63 2.975 0.454 0.020
21 LeftFOP4  Frontal opercular area 4 -33 21 6 2.858 0.828 0.037
22 Right5mv  Area 5m ventral 12 -30 45 2.822 0.701 0.032
23 Right 46 Area 46 36 42 30 2.779 0.656  0.030
24 Left 10v Area 10v 0 57 -9 2.769 0.731 0.034
25 Leftp9-46v  Area posterior 9-46v -42 36 27 2.591 0.561 0.028
26 Left V3A Area V3A -15 90 33 2.575 0.684 0.034
27 Left TEla Area TE1 anterior -63 -15 -15 2.527 0.595 0.030
28 Right TEla Area TE1 anterior 60 -9 21 2.494 0.580 0.030
29 RightIFSa  Anterior inferior frontal suleus 48 39 12 2.468 0.480 0.025
30 Left7Am Medial area 7A -12 60 60 2.461 0.475 0.025
31 RightV3A AreaV3A 18 -87 36 2.442 0.645 0.034
32  RightVv4 Fourth visual area 24 -63 -9 2.339 0.446 0.024
33 Left6a Area 6 anterior -24 3 63 2.317 0.331 0.018
34 LeftVMV1 Ventromedial visual area 1 -18  -60 -6 1.937 0.397 0.026
35 Left FEF Frontal eye fields -45 -9 57 1.412 0.640 0.058

823 *BA, Brodmann area.
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