

1 **Title:**

2 Mapping consistent, reproducible, and transcriptionally relevant functional connectome hubs of
3 the human brain

4

5 **Authors:**

6 Zhilei Xu^{1,2,3}, Mingrui Xia^{1,2,3}, Xindi Wang^{1,2,3}, Xuhong Liao⁴, Tengda Zhao^{1,2,3}, Yong He^{1,2,3,5 *}

7

8 ¹State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University,
9 Beijing, China

10 ²Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University,
11 Beijing, China

12 ³IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China

13 ⁴School of Systems Science, Beijing Normal University, Beijing, China

14 ⁵Chinese Institute for Brain Research, Beijing, China

15

16 ***Corresponding author:**

17 Yong He, Ph.D., E-mail: yong.he@bnu.edu.cn

18

19 **Manuscript information:** 30 text pages, 7 figures, 1 table.

20 (Supplementary Information: 20 text pages, 9 figures, 10 tables.)

21 **Abstract**

22 Human brain connectomes include sets of densely connected regions, known as connectome
23 hubs, which play a vital role in understanding global brain communication, cognitive processing,
24 and brain disorders. However, the consistency and reproducibility of functional connectome
25 hubs' anatomical localization have not been established to date and the genetic signatures
26 underlying robust connectome hubs remain unknown. Here, we conduct the first worldwide,
27 harmonized meta-connectomic analysis by pooling resting-state functional MRI data of 5,212
28 healthy young adults across 61 independent cohorts. We identify highly consistent and
29 reproducible functional connectome hubs in heteromodal and unimodal regions both across
30 cohorts and across individuals. These connectome hubs show heterogeneous connectivity
31 profiles and are critical for both intra- and inter-network communications. Using post-mortem
32 gene expression data, we show that these connectome hubs have a spatiotemporally distinctive
33 transcriptomic pattern dominated by genes involved in the neuropeptide signaling pathway,
34 neurodevelopmental processes, and metabolic processes. These results highlight the robustness
35 of macroscopic connectome hubs and their potential cellular and molecular underpinnings.

36

37 Introduction

38 Functional connectome mapping studies have identified sets of densely connected regions in
39 large-scale human brain networks, which are known as hubs¹. Connectome hubs play a crucial
40 role in global brain communication^{1, 2} and support a broad range of cognitive processing, such as
41 working memory³ and semantic processing⁴. Growing evidence suggests that these highly
42 connected brain hubs are preferentially targeted by many neuropsychiatric disorders⁵⁻⁸, which
43 provides critical clues for understanding the biological mechanisms of disorders and establishing
44 biomarkers for disease diagnosis^{8, 9} and treatment evaluation¹⁰ (^{1, 2, 11, 12} for reviews).

45 Despite such importance, there is considerable inconsistency in anatomical locations of
46 functional connectome hubs among existing studies. For example, components of the default-
47 mode network (DMN) have been frequently reported as connectome hubs, yet the spatial pattern
48 is highly variable across studies. In particular, several studies have shown highly connected hubs
49 in the lateral parietal regions of the DMN^{7, 8, 13, 14}, whereas others have reported midline
50 structures of the DMN¹⁵⁻¹⁹. Several works have identified primary sensorimotor and visual
51 regions as connectome hubs^{13, 14, 16-19}, yet others did not replicate these findings^{7, 8, 15}. Subcortical
52 regions, such as the thalamus and amygdala, have also been inconsistently reported as hubs^{8, 15,}
53 ^{16, 18} and non-hubs^{7, 13, 14, 17, 19}. Thus, the consistency and reproducibility of functional
54 connectome hubs have been difficult to establish to date, which can be attributed to inadequate
55 sample size and differences in imaging scanner, imaging protocol, data processing, and
56 connectome analysis strategies. Here, we aimed to establish a harmonized meta-analysis model
57 to identify robust functional connectome hubs in healthy young adults by combining multiple
58 cohorts with uniform protocols for data quality assurance, image processing, and connectome
59 analyses.

60 Once the robust connectome hubs are identified, we will further examine their genetic signatures.
61 It has been well demonstrated that the connectome architecture of the human brain is inheritable,
62 such as functional connectivity of the DMN²⁰ and the cost-efficiency optimization²¹. Moreover,
63 the functional connectomes can be regulated by genotypic variation both during rest²² and in
64 cognitive tasks²³, especially involving the DMN^{22, 23} and frontoparietal network (FPN)²³.
65 Growing evidence also suggests spatial correspondence between transcriptomic profiles and
66 connectome architectures²⁴⁻²⁶ (²⁷ for review). Thus, we reasoned that the robust macroscopic
67 connectome hubs could be associated with microscopic genetic signatures. Elucidating these
68 genetic signatures will substantially benefit our understanding of how connectome hubs emerge
69 in development, function in complex cognition, and are involved in disease.

70 To address these issues, we provide the first worldwide harmonized meta-connectomic analysis
71 of functional brain hubs by pooling a large-sample resting-state functional MRI (rsfMRI) dataset
72 of 5,212 healthy young adults (aged 18–36 years) across 61 cohorts. Fig 1 illustrates the sample
73 size and age ranges of each cohort. To uncover the genetic signatures underlying these
74 connectome hubs, we conducted machine learning approaches to distinguish connectome hubs
75 from non-hubs using transcriptomic data from the Allen Human Brain Atlas (AHBA) and
76 explored their developmental evolutions using the BrainSpan Atlas.

78 **Results**

79 **Identifying consistent connectome hubs using a harmonized meta-analysis model.**

80 Prior to the meta-analysis, we constructed a voxelwise functional connectome matrix for each
81 individual by computing the Pearson's correlation coefficient between preprocessed rsfMRI time
82 series of all pairs of gray matter voxels (47,619 voxels). Then, the functional connectivity
83 strength (FCS) of each voxel was computed as the sum of connection weights between the given
84 voxel and all the other voxels. This resultant FCS map was further normalized with respect to its
85 mean and standard deviation across voxels⁷. For each cohort, we performed a general linear
86 model on these normalized FCS maps to reduce age and gender effects. As a result, we obtained
87 a mean FCS map and its corresponding variance map for each cohort that were used for
88 subsequent meta-analyses.

89 To identify the most consistent connectome hubs, we conducted a voxelwise random-effects
90 meta-analysis on the mean and variance FCS maps of the 61 cohorts. Such an analysis addressed
91 the across-cohort heterogeneity of functional connectomes, resulting in a robust FCS pattern and
92 its corresponding standard error (SE) map (Fig 2A). Then, we identified consistent connectome
93 hubs whose FCS values were significantly ($p < 0.001$, cluster size $> 200 \text{ mm}^3$) higher than the
94 global mean (i.e., zero) using a voxelwise Z value map computed by dividing the FCS map by
95 the SE map. To determine the significance levels of these observed Z values, a nonparametric
96 permutation test²⁸ with 10,000 iterations was performed. Finally, we estimated voxelwise effect
97 sizes using Cohen's d metric computed by dividing the Z value map by the square root of the
98 cohort number (Fig 2B, left). According to prior brain network parcellations^{29, 30}, these identified
99 hub voxels (15,461 voxels) were spatially distributed in multiple brain networks, including the
100 DMN (27.5%), dorsal attention network (DAN) (16.5%), FPN (15.9%), ventral attention
101 network (VAN) (15.6%), somatomotor network (SMN) (14.4%), and visual network (VIS)
102 (9.9%) (Fig 2B, right). Using a local maxima localization procedure, we identified 35 robust
103 brain hubs across 61 cohorts (Fig 2B, left; Table 1), involving various heteromodal and unimodal
104 areas. Specifically, the most robust findings resided in several lateral parietal regions, including
105 the bilateral ventral postcentral gyrus, supramarginal gyrus, and angular gyrus.

106 **The identified connectome hubs are reproducible across cohorts and individuals.**

107 During identifying the above highly consistent connectome hubs, the random-effects meta-
108 analysis revealed high heterogeneity of FCS across cohorts (Fig 2C, left). The cumulative
109 distribution function plot shows more than 95% voxels with I^2 (heterogeneity score) exceeding
110 50% (Fig 2C, right), indicating high heterogeneity across cohorts in almost all brain areas (see
111 also Fig S1). To determine whether the connectome hubs identified here are dominated by
112 certain cohorts or are reproduced across-subject/cohort, we performed a leave-one-cohort-out
113 validation analysis and an across-subject/cohort conjunction analysis.

114 *Leave-one-cohort-out validation analysis.* We repeated the above harmonized meta-analysis hub
115 identification procedure after leaving one cohort out at a time. Comparing the identified hubs
116 using all cohorts (Fig 2B) with those after leaving one cohort out obtained extremely high Dice's
117 coefficients ($mean \pm sd$: 0.990 ± 0.006 ; range: 0.966-0.997). For hub peaks, leaving one cohort out

118 resulted in very few displacements (mostly fewer than 6 mm, Fig 2D). Thus, connectome hubs
119 identified using the 61 cohorts were not dominated by specific cohorts.

120 *Across-subject/cohort conjunction analysis.* We defined the top N ($N = 15,461$, which is the
121 voxel number of hubs in Fig 2B) voxels with the highest FCS values of a subject or a cohort as
122 connectome hubs for that subject or that cohort. Then, for each voxel, we assessed hub
123 occurrence probability values across subjects and cohorts. The identified hubs using all cohorts
124 were highly overlapped with the top N voxels with the highest hub occurrence probability values
125 both across all subjects and across all cohorts, indicated by a high Dice's coefficient ($Dice =$
126 0.867, Fig 2E, left; $Dice = 0.924$, Fig 2E, right). When the identified hubs using all cohorts were
127 compared with the top N voxels with the highest hub occurrence probability values across
128 randomly selected subjects or across randomly selected cohorts, the Dice's coefficient
129 approached 99% of its maximum value after exceeding 510 subjects (Fig 2F, left) and 35 cohorts
130 (Fig 2F, right), respectively. This indicated that the identified connectome hubs were highly
131 reproducible both across cohorts and across individuals.

132 Validation analysis demonstrated that the above results did not depend on analysis parameters,
133 such as the connection threshold (Fig S2 and S3), and were not driven by the size of the brain
134 network to which they belong³¹ (Fig S4), suggesting the robustness of our main findings.

135 **Connectome hubs have heterogeneous functional connectivity profiles.**

136 Next, we further examined whether these robust brain hubs (Fig 2B and Table 1) have distinctive
137 functional connectivity profiles that represent their unique roles in network communication. To
138 gain detailed and robust functional connectivity profiles of each hub region, we conducted a
139 seed-to-whole-brain connectivity meta-analysis in a harmonized protocol again. For each of the
140 35 hub regions, we obtained an estimated Cohen's d effect size map that characterizes the robust
141 whole-brain connectivity pattern relevant to the seed region across the 61 cohorts (Fig 3A). We
142 then divided the connectivity map of each hub into eight brain networks according to prior
143 parcellations^{29, 30}, resulting in an 8×35 connectivity matrix with each column representing the
144 voxel percentage of each of the eight networks connected with a hub.

145 Hierarchical clustering analysis on the connectivity matrix clearly divided the 35 hubs into three
146 clusters (Fig 3B). Cluster I consists of 21 hubs that are primarily connected with extensive areas
147 in the DAN, VAN, FPN, and SMN (orange, Fig 3B). Cluster II consists of four hubs that are
148 densely connected with VIS (green, Fig 3B). Cluster III consists of 10 hubs that have robust
149 connections with the DMN and LIMB (blue, Fig 3B). Of particular interest is that within Cluster
150 III, a left posterior middle frontal hub called ventral area 8A (8Av) shows a distinctive
151 connectivity profile in contrast to the other nine hubs, manifested as having robust connections
152 with bilateral frontal FPN regions (Fig 3A and Fig S5). This imply that the left 8Av hub is a key
153 connector between the DMN and FPN, which can be supported by the recent finding of a
154 control-default connector located in the posterior middle frontal gyrus³². Although both Cluster I
155 and III hubs are connected with subcortical structure, they are connected with different
156 subcortical nuclei (Fig 3B and Fig S6). Finally, whereas all hubs possess dense intranetwork
157 connections, most also retain significant internetwork connections (Fig S7), which preserves
158 efficient communication across the whole brain network feasible.

159 **Transcriptomic data distinguishes connectome hubs from non-hubs.**

160 A supervised machine learning classifier based on XGBoost³³ and 10,027 genes' transcriptomic
161 data from the AHBA³⁴ was trained to distinguish connectome hubs from non-hubs (Fig 4A). The
162 sensitivity, specificity, and accuracy rate of the XGBoost classifier were stably estimated by
163 repeating the training and testing procedure 1,000 times. This classifier performed better than
164 chance in all 1,000 repetitions and achieved an overall accuracy rate of 65.3% (Fig 4B). In cross-
165 validation, connectome hubs and non-hubs were classified with a sensitivity of 71.1% and
166 specificity of 63.4%, respectively. The testing procedure yielded a comparable sensitivity of
167 69.7% and specificity of 62.0%. After training the classifier, each gene's contribution to the
168 optimal prediction model was determined. We noted that some key genes contributed two or
169 three orders of magnitude more than other genes (Fig 4C). The contributions of the top 300
170 mostly contributed key genes were consistent between the first 500 repetitions and the second
171 500 repetitions (Pearson's $r = 0.958$, $p < 10^{-6}$, Fig 4D), suggesting a high reproducibility.

172 To exclude the XGBoost model's potential bias relating to the mostly contributed key genes, we
173 replicated the above classification results using another machine learning model based on the
174 support vector machine (SVM) that was trained using only the top N key genes with the greatest
175 contributions to the XGBoost classifier (Fig 4E). Because no data were available to determine
176 how many key genes were sufficient to train an SVM classifier, we examined the count N from
177 100 to 300. The SVM classifier achieved a very high peak accuracy rate of 91.8% with
178 approximately the top 150 key genes in the easiest classification task (Fig 4F) and also achieved
179 a reasonable peak accuracy rate of 67.8% with approximately the top 150 key genes even in the
180 most difficult classification task (Fig 4G). By contrast, SVM classifiers trained using 150
181 randomly selected genes performed worse than that using the top 150 key genes in all 1,000
182 repetitions (Fig 4H). Thus, these robust connectome hubs were significantly associated with a
183 transcriptomic pattern dominated by approximately 150 key genes (Table S1).

184 **Connectome hubs have a spatiotemporally distinctive transcriptomic pattern.**

185 Gene Ontology (GO) enrichment analysis using GOrilla³⁵ demonstrated that the above 150 key
186 genes were mostly enriched in the neuropeptide signaling pathway (*fold enrichment (FE)* = 8.9,
187 uncorrected $p = 1.2 \times 10^{-5}$, Table S2). GO enrichment analysis using the ranked 10,027 genes
188 according to their contributions to the XGBoost classifier also confirmed the most enriched GO
189 term of the neuropeptide signaling pathway ($FE = 5.7$, uncorrected $p < 10^{-6}$, Table S3). The
190 ranked 10,027 genes were also associated with the developmental process ($FE = 1.2$), cellular
191 developmental process ($FE = 1.3$), anatomical structure development ($FE = 1.3$), and neuron
192 projection arborization ($FE = 13.7$) (uncorrected $p < 5.5 \times 10^{-4}$, Table S3). We speculated that
193 connectome hubs have a distinctive transcriptomic pattern of neurodevelopmental processes in
194 contrast to non-hubs.

195 We repeated the GO enrichment analysis of the above 150 key genes using DAVID^{36, 37}. In
196 addition to the mostly enriched GO term of the neuropeptide signaling pathway ($FE = 8.7$,
197 uncorrected $p = 5.8 \times 10^{-4}$), there were 10 GO terms associated with metabolic process, such as
198 the positive regulation of cellular metabolic process ($FE = 1.4$, uncorrected $p = 0.031$, Table S4).
199 Disease association analysis demonstrated metabolic disease associated with the greatest number
200 of key genes (60 genes, $FE = 1.2$, uncorrected $p = 0.094$, Table S5). Accordingly, it is rational to

201 speculate that connectome hubs have a distinctive transcriptomic pattern of metabolic processes
202 in contrast to non-hubs.

203 To confirm the above two speculations of GO enrichment analysis results, we examined
204 transcription level differences between hub and non-hub regions for genes previously implicated
205 in key neurodevelopmental processes³⁸ (Table S6) and main neuronal metabolic pathways³⁹
206 (oxidative phosphorylation⁴⁰ and aerobic glycolysis⁴¹, Table S7). Permutation tests revealed hub
207 regions with significantly higher transcription levels for genes associated with dendrite
208 development, synapse development, and aerobic glycolysis than non-hub regions (one-sided
209 Wilcoxon rank-sum tests, Bonferroni-corrected $ps \leq 0.032$, Fig 5A). In addition, hub regions had
210 a weak trend of lower transcription levels for genes associated with axon development,
211 myelination, neuron migration, and oxidative phosphorylation (Fig 5A). These transcription level
212 differences were consistent with our speculations of GO enrichment analysis results.

213 These above transcriptomic results were derived from the AHBA, an adult transcriptomic
214 dataset. To explore their developmental evolutions, we inspected transcriptomic trajectory
215 differences between hub and non-hub regions using the BrainSpan Atlas⁴². We observed
216 pronounced diverging transcriptomic trajectories between hub and non-hub regions in these key
217 neurodevelopmental processes and main neuronal metabolic pathways (Fig 5B and Fig S8). For
218 neuron migration, the transcription level in hub regions is higher than that in non-hub regions
219 from the mid-fetal period to early infancy. For dendrite, synapse, axon development, and
220 myelination, transcriptomic trajectories of hub regions apparently diverge from those of non-
221 hubs during childhood and adolescence, during which hub regions have higher transcription
222 levels for dendrite and synapse development but lower transcription levels for axon development
223 and myelination. These results are in agreement with the observation of primary somatosensory,
224 auditory, and visual (V1/V2) cortices with lower synapse density but higher myelination than the
225 prefrontal area^{43, 44}. Moreover, hub regions have higher transcription levels than non-hub
226 regions for aerobic glycolysis since the early childhood period and for oxidative phosphorylation
227 during childhood and adolescence. These transcriptome analyses achieved convergent results
228 between the AHBA and BrainSpan Atlas.

229 Together, functional connectome hubs have a spatiotemporally distinctive transcriptomic pattern
230 in contrast to non-hubs, which is dominated by genes involved in the neuropeptide signaling
231 pathway, neurodevelopmental processes, and metabolic processes.

232 **Connectome hubs have more intricate fiber configuration and higher metabolic rate.**

233 Growing evidence has suggested a striking spatial correspondence between transcriptomic
234 profile and structural connectivity in the human brain²⁷. We speculated that the above microscale
235 transcriptomic differences between hub and non-hub regions in key neurodevelopmental
236 processes may result in macroscale structural connectivity profile differences. Using a fiber
237 length profiling dataset⁴⁵, we observed that hub regions possess more fibers with a length
238 exceeding 40 mm but less fibers with a length shorter than 40 mm (one-sided Wilcoxon rank-sum
239 tests, Bonferroni-corrected $ps \leq 0.008$, Fig 6). That is, hub regions have more short, medium, and
240 long fibers, whereas non-hub regions have more very short (< 40 mm) fibers, suggesting a more
241 intricate fiber configuration in hub regions.

242 The above transcriptome analyses have shown a higher transcription level of oxidative
243 phosphorylation and aerobic glycolysis in hub regions than in non-hubs. We validated these
244 observations using a metabolism dataset derived from positron emission tomography⁴⁶ and found
245 that hub regions not only have a higher metabolic rate than non-hubs in oxidative
246 phosphorylation (indicated by the cerebral metabolic rate for oxygen) and aerobic glycolysis
247 (indicated by the glycolytic index), but also have more blood supply (indicated by the cerebral
248 blood flow) (one-sided Wilcoxon rank-sum tests, Bonferroni-corrected $p < 0.001$, Fig 7). This is
249 in agreement with prior observations of a tight coupling between FCS and blood supply^{1, 47}.

250

251 **Discussion**

252 Using a worldwide harmonized meta-connectomic analysis of 5,212 healthy young adults across
253 61 cohorts, we provided the first description of highly consistent and reproducible functional
254 connectome hubs in the resting human brain. Using transcriptomic data from the AHBA and
255 BrainSpan Atlas, we reported that these robust connectome hubs have a spatiotemporally
256 distinctive transcriptomic pattern in contrast to non-hub regions. These results advanced our
257 understanding of the robustness of macroscopic functional connectome hubs and their potential
258 cellular and molecular substrates.

259 Extant reports have shown largely inconsistent and less reproducible hub localizations^{7, 8, 13-19},
260 which may arise from high heterogeneity in the included subjects, data acquisition, and analysis
261 strategies across studies. To diminish these potential confounding factors, we employed stringent
262 participant inclusion criteria that included only healthy young adults aged 18 to 36 years and
263 adopted harmonized data preprocessing and connectome analysis protocols across cohorts.
264 Nevertheless, the random-effects meta-analysis revealed high heterogeneity among cohorts in
265 almost all brain areas, which implied that heterogeneity of imaging scanners and/or imaging
266 protocols could be an important cause for inconsistent and less reproducible results across prior
267 studies. Thus, our study was indispensable by conducting a harmonized random-effects meta-
268 analysis model in which both intracohort variation (i.e., sampling errors) and intercohort
269 heterogeneity were considered⁴⁸. In addition, our validation results showed that the spatial
270 distribution of functional connectome hubs was relatively stable when using more than 510
271 subjects and 35 cohorts, demonstrating that 5,212 subjects from 61 cohorts were adequate to
272 minimize both sampling errors and heterogeneity among cohorts. Considering only dozens of
273 subjects in most prior studies^{7, 8, 13-15, 17, 19}, the low statistical power attributed to inadequate
274 subjects could be another cause for prior inconsistent and less reproducible hub localizations.
275 Finally, we used harmonized image processing and connectome analysis protocols across cohort,
276 which avoided methodological variation and reduced potential methodological defects that have
277 not been resolved in prior studies. See an extension discussion in Supplementary Text II.

278 The present results demonstrated that the 35 highly consistent and reproducible connectome hubs
279 show heterogeneous functional connectivity profiles, forming three clusters. Twenty-one hubs
280 (Cluster I) are connected with extensive areas in the DAN, VAN, FPN, and SMN. Previous
281 investigations indicated that they are core regions of the DAN (left AIP, right 7PC, left 7Am,
282 bilateral PFt, left FEF, bilateral 6a, right 6v, and right FST)^{29, 49}, VAN (left 43, left FOP4, right
283 46, right 6r, right PF, left PFop, left SCEF, right 5mv)^{29, 49}, and FPN (left p9-46v and right

284 IFSa)^{29, 50}. In addition, hub regions involved in the sensorimotor pathway (right VIP, right FST,
285 left 7Am, and left FEF)⁵¹ are also connected with the visual association cortex, acting as
286 connectors between the VIS and the SMN, DAN, and VAN. Information flow along the primary
287 visual, visual association, and higher-level sensorimotor cortices is undertaken by the four
288 occipital hubs (Cluster II) left VMV1, right V4, and bilateral V3A that are all densely connected
289 with the VIS and portions of the SMN, DAN, and VAN. This aligns with the role of their
290 homologous regions in the non-human primate cerebral cortex⁵¹. The remaining 10 hubs (Cluster
291 III) are all located in canonical DMN regions⁵². One of them, the left 8Av hub, is robustly
292 connected with both DMN and lateral prefrontal FPN regions, acting as a connector between the
293 DMN and FPN. This can be supported by the recent finding of a control-default connector
294 located in the posterior middle frontal gyrus³² and may also be a case of the hypothesis of
295 parallel interdigitated subnetworks⁵³. This observation offers a significant complementary
296 interpretation to the conventional assumption that the DMN is anticorrelated with other
297 networks⁵². Considering that communication between the DMN and other networks is of
298 significant relevance to neuropsychiatric disorders⁵⁴, such as autism spectrum disorders⁵⁵, we
299 speculated that the left 8Av hub may be a promising target region for therapeutic interventions.

300 We demonstrated that these robust brain hubs have a spatiotemporally distinctive transcriptomic
301 pattern dominated by genes with the highest enrichment for the neuropeptide signaling pathway.
302 Because neuropeptides are a main type of synaptic transmitter that is widely distributed in the
303 human central nervous system⁵⁶, robust neuropeptide signaling pathways are indispensable for
304 efficient synaptic signal transduction that sustains dense and flexible functional connections of
305 hub regions. In addition, hub regions have higher transcription levels for main neuronal
306 metabolic pathways in contrast to non-hubs. This is reasonable because massive synaptic
307 activities in hub regions demand high material and metabolic costs, which is in accordance with
308 our observation of more blood supply and higher oxidative phosphorylation and aerobic
309 glycolysis levels in hub regions. This is also in agreement with prior observations of a tight
310 coupling between FCS and blood supply^{1, 47}.

311 We found that connectome hubs possess a spatiotemporally distinctive transcriptomic pattern of
312 key neurodevelopmental processes in contrast to non-hubs. Specifically, connectome hubs have
313 higher transcription levels for dendrite and synapse development and lower transcription levels
314 for axon development and myelination during childhood, adolescence, and adulthood. These
315 findings are compatible with previous observations of the prefrontal area having higher synapse
316 density but lower myelination than primary somatosensory, auditory, and visual (V1/V2)
317 cortices^{43, 44}. Higher transcription levels for dendrite and synapse development in hub regions are
318 necessary for the overproduction of synapses that will be selectively eliminated based on the
319 demand of the environment and gradually stabilized before full maturation⁵⁷, which is “the major
320 mechanism for generating diversity of neuronal connections beyond their genetic
321 determination”⁵⁸. Lower transcription levels for axon development and myelination will prolong
322 the myelination period in hub regions, which characterizes a delayed maturation phase⁵⁹. Marked
323 delay of anatomical maturation in human prefrontal and lateral parietal cortices has been
324 frequently observed both in human development^{58, 60} and in primate evolution⁵⁹, which provides
325 more opportunities for social learning to establish diverse neuronal circuits that contribute to our
326 complex⁵⁸ and species-specific⁵⁹ cognitive capabilities. We also observed higher transcription
327 levels for neuron migration in hub regions from mid-fetal period to early infancy. This is in
328 agreement with the report of extensive migration of young neurons persisting for several months

329 after birth in the human frontal cortex⁶¹. Meanwhile, the migration and final laminar positioning
330 of postmitotic neurons are regulated by common transcription factors⁶², which suggests that a
331 higher transcription level for neuron migration in hub regions facilitates the construction of more
332 intricate interlaminar connectivity. These microscale divergences of key neurodevelopmental
333 processes may result in a more intricate macroscale structural connectivity profile in hub regions.

334 Human neurodevelopment is an intricate and protracted process, during which the transcriptome
335 of the human brain requires precise spatiotemporal regulation³⁸. Thus, in addition to contributing
336 to our complex cognitive capabilities, the distinctive transcriptomic pattern of neurodevelopment
337 in hub regions may also increase connectome hubs' susceptibility to neuropsychiatric disorders^{58,}
338 ⁵⁹, which means small disturbance in the magnitude or the timing of this transcriptomic pattern
339 may have long-term consequences on brain anatomical topography or functional activation. This
340 is in line with our observation of psychiatric disorders being the most significant disease
341 associated with the top 150 key genes (Table S5). This implies that uncovering the intricate
342 transcriptomic pattern, diverse neuronal circuits, anatomical topography, and functional
343 activation of connectome hubs provide crucial and promising routes for understanding the
344 pathophysiological mechanisms underlying neurodevelopmental disorders, such as autism
345 spectrum disorders^{38, 55} and schizophrenia^{5, 38, 58, 59}.

346 Of note, we conducted transcriptome-connectome association analysis using machine learning
347 approaches in which non-linear mathematical operations were implemented rather than linear
348 operations, such as linear correlation²⁴, linear regression²⁵, or partial least squares²⁶. It has been
349 argued that observations of transcriptome-connectome spatial association have a high false-
350 positive rate through linear regression⁶³ and linear correlation⁶⁴ and may be largely shifted
351 toward the first principal component axis of the dataset through partial least squares⁶⁵. These
352 investigations imply that prior transcriptome-connectome association results by linear
353 mathematical operations may include high false-positive observations that are independent of
354 connectome measurements, such as genes enriched for ion channels²⁴⁻²⁶. By contrast, high
355 reproducibility across different machine learning models and across different GO enrichment
356 analysis tools and convergent results from the AHBA and BrainSpan Atlas made it very unlikely
357 that our findings were false-positive observations.

358 Some results of the present study should be interpreted cautiously because of methodological
359 issues. First, we identified the robust connectome hubs using preprocessed rsfMRI data with
360 global signal regression because of its great promise in minimizing physiological artifacts on
361 functional connectomes⁶⁶. Validation analysis demonstrated that hub distribution identified
362 without global signal regression was more likely derived from physiological artifacts rather than
363 by ongoing neuronal activity (Supplementary Text III and Fig S9). Second, the AHBA dataset
364 only includes partial human genes, of which approximately half were excluded in data
365 preprocessing³⁴, which may have induced incomplete observations in our data-driven analysis.
366 Finally, our transcriptomic signature results addressed only the association between connectome
367 hubs and transcriptomic patterns and did not explore causation between them. Exploring more
368 detailed mechanisms underlying this association is attractive and may be practicable for non-
369 human primate brains in future studies.

370 **Methods**

371 **Dataset.**

372 We included a large-sample rsfMRI dataset of 5,212 healthy young adults (aged 18–36 years,
373 2,377 males) across 61 cohorts from Asia, Europe, North America, and Australia. Data of each
374 cohort were collected with participants' written informed consent and with approval by the
375 respective local institutional review boards. All data passed strict quality controls and were
376 routinely preprocessed with a uniform pipeline. For details, see Supplementary Text I.

377 **Identifying robust functional connectome hubs using a harmonized meta-analysis.**

378 For each individual, we constructed a voxelwise functional connectome matrix by computing the
379 Pearson's correlation coefficient between preprocessed rsfMRI time series of all pairs of voxels
380 within a predefined gray matter mask (47,619 voxels). The gray matter mask was divided into
381 seven large-scale cortical networks²⁹ and a subcortical network³⁰. The cerebellum was not
382 included due to largely incomplete coverage during rsfMRI scanning in most cohorts. Negative
383 functional connections were excluded from our analysis due to neurobiologically ambiguous
384 interpretations⁶⁷. To further reduce signal noise and simultaneously avoid potential sharing
385 signals between nearby voxels, both weak connections (Pearson's $r < 0.1$) and connections
386 terminating within 20 mm were set to zero⁶⁸. We validated the threshold of weak connections
387 using 0.05 and 0.2.

388 For each voxel, we computed the FCS as the sum of connection weights between the given voxel
389 and all the other voxels. We further normalized this resultant FCS map with respect to its mean
390 and standard deviation across voxels⁷. For each cohort, we performed a general linear model on
391 these normalized FCS maps to reduce age and gender effects. For each voxel, we constructed the
392 general linear model as:

393
$$FCS_i = \beta_0 + \beta_{Age} * (Age_i - MeanAge) + \beta_{Gender} * Gender_i + \varepsilon_i \quad (1)$$

394 FCS_i , Age_i , $Gender_i$, and ε_i indicate the FCS, age, gender, and residual of the i th individual,
395 respectively. $MeanAge$ indicates the mean age of that cohort. The general linear model exported
396 a mean FCS map and its corresponding variance map for each cohort.

397 The mean and variance FCS maps of the 61 cohorts were submitted to a random-effects meta-
398 analysis model⁴⁸ to address across-cohort heterogeneity of functional connectomes. The detailed
399 computational procedures are described in the book⁴⁸. A short summary of these procedures was
400 provided in Supplementary Text I. This resulted in a consistent FCS pattern and its
401 corresponding SE map. We compared the FCS of each voxel with the average of the whole brain
402 (i.e., zero) using a Z value⁴⁸:

403
$$Z = \frac{FCS - 0}{SE} \quad (2)$$

404 In line with previous neuroimaging meta-analysis study⁶⁹, we performed 10,000 one-sided
405 nonparametric permutation tests²⁸ to assign a p value to the observed Z value. For each iteration,
406 after randomizing the spatial correspondence among cohorts' mean FCS maps (the spatial

407 correspondence between a cohort's mean FCS map and its variance map was not changed), we
408 repeated the computation procedure of the random-effects meta-analysis for each voxel and
409 extracted the maximum Z value of all voxels to construct a null distribution. A *p* value was
410 assigned to each voxel by comparing the observed Z value to the null distribution. For a
411 significance level below 0.05, this *p* value closely tracks the Bonferroni threshold²⁸. Finally, we
412 defined functional connectome hubs as brain regions with a *p* value less than 0.001 and cluster
413 size greater than 200 mm³. The thresholds of *p* value and cluster size were similar with the
414 activation likelihood estimation algorithm⁶⁹. We extracted MNI coordinates for each local peak Z
415 value terminating beyond 15 mm within each brain cluster using the *wb_command -volume-*
416 *extrema* command (<https://humanconnectome.org/software/workbench-command/-volume-extrema>) in Connectome Workbench v1.4.2. Effect size was estimated using Cohen's *d* metric⁴⁸:

418

$$d = \frac{Z}{\sqrt{k}} \quad (3)$$

419 *k* is the number of cohorts in the meta-analysis.

420 **Mapping seed-to-whole-brain connectivity profiles of functional connectome hubs.**

421 We modeled each hub seed region as a sphere with a 6-mm radius centered on the hub peak and
422 computed Pearson's correlation coefficients between the seed region's preprocessed rsfMRI time
423 series and the time series of all gray matter voxels. The time series of the seed region was
424 computed by averaging the time series of all gray matter voxels in the seed sphere. These
425 correlation coefficients were further transformed to Fisher's *z* for normality. In line with above,
426 we constructed a general linear model on these Fisher's *z* value maps within each cohort to
427 reduce age and gender effects and performed a random-effects meta-analysis on these Fisher's *z*
428 value maps across cohorts to address the across-cohort heterogeneity, resulting in a robust
429 Fisher's *z* pattern and its corresponding SE map. Then, We compared the Fisher's *z* value of each
430 voxel with zero using a Z value⁴⁸ and estimated effect size using Cohen's *d* metric⁴⁸ as described
431 in equations (2) and (3). We performed 10,000 one-sided nonparametric permutation tests²⁸ to
432 identify the most consistent functional connection Z value map with a *p* value less than 0.001 and
433 cluster size greater than 200 mm³. Finally, we divided the connectivity map of each hub into
434 eight brain networks mentioned above and represented the functional connectivity profile of a
435 hub as the voxel percentage of each of the eight networks connected with it to address the effect
436 of network size. To illustrate the left 8Av hub's connectivity profile, we also mapped its
437 homologous region the right 8Av region's connectivity profile (Fig S5).

438 **Identifying transcriptomic signatures underlying functional connectome hubs.**

439 We trained classifiers based on XGBoost and SVM to distinguish connectome hubs from non-
440 hubs using transcriptomic features from the preprocessed AHBA dataset³⁴. The top 150 genes
441 (Table S1) mostly contributed to the classification results were submitted to GO enrichment
442 analyses using GOrilla³⁵ (<http://cbl-gorilla.cs.technion.ac.il>) and DAVID^{36, 37} v6.8
443 (<https://david.ncifcrf.gov>). For details, see Supplementary Text I. Based on GO enrichment
444 analysis results, we tested transcription level differences of gene sets involved in key
445 neurodevelopmental processes³⁸ (Table S6) and main neuronal metabolic pathways³⁹ (oxidative
446 phosphorylation⁴⁰ and aerobic glycolysis⁴¹, Table S7) between connectome hubs and non-hubs

447 through one-sided Wilcoxon rank-sum test. In line with prior studies^{38, 41}, we used the first
448 principal component of each gene set's transcription level to plot and to perform the statistical
449 analysis (Fig 5A). For illustration purposes, we normalized the first principal component of each
450 gene set's transcription level respect to its minimum and maximum values across all brain
451 samples to range from 0 to 1.

452 To explore developmental details, we inspected transcriptomic trajectory differences between
453 connectome hubs and non-hubs in the above gene sets using the BrainSpan Atlas⁴². In line with
454 prior studies^{38, 41}, we used the first principal component of each gene set's transcription level to
455 plot transcriptomic trajectories and visually inspected transcriptomic trajectory differences
456 between connectome hubs and non-hubs (Fig 5B). Transcriptomic trajectories were plotted using
457 locally weighted regression by smoothing the first principal component of each gene set's
458 transcription level against log2[post-conceptional days] as in prior study³⁸. Of note, considering
459 apparent transcriptomic differences compared to the neocortex³⁸, we excluded the striatum,
460 mediodorsal nucleus of the thalamus, and cerebellar cortex in the transcriptomic trajectory
461 analysis but not the amygdala and hippocampus whose transcriptomic trajectories are more
462 similar to those of the neocortex than to those of other subcortical structures³⁸. Analysis using
463 only neocortical regions revealed almost unchanged results (Fig S8).

464 To validate above results derived from transcriptome datasets, we tested fiber number
465 differences between connectome hubs and non-hubs through one-sided Wilcoxon rank-sum test
466 (Fig 6). Fiber number data across different length bins was derived from a fiber length profiling
467 dataset⁴⁵. For each fiber length bin, fiber number of each vertex was normalized with respect to
468 its mean and standard deviation across vertices. We further examined differences between
469 connectome hubs and non-hubs in metabolic measurements of blood supply (the cerebral blood
470 flow), oxidative phosphorylation (the cerebral metabolic rate for oxygen), and aerobic glycolysis
471 (the glycolytic index) through one-sided Wilcoxon rank-sum test (Fig 7). These measurements
472 were derived from a positron emission tomography study⁴⁶ and assigned to 82 Brodmann areas
473 and seven subcortical structures. Brodmann areas with more than 50% vertices or subcortical
474 structures with more than 50% voxels identified as hubs were regarded as hub regions.

475 **Statistical analysis.**

476 We performed statistical analyses using MATLAB R2013a. Statistical significance of brain
477 clusters in Fig 2B and 3A and Fig S2B, S3B, S5, and S9A were determined by comparing the
478 observed Z values in equation (2) with their corresponding null distributions constructed by
479 above mentioned 10,000 one-sided nonparametric permutation tests²⁸. To determine the
480 statistical significance of one-sided Wilcoxon rank-sum tests in Fig 5A, 6, and 7 and Fig S9D,
481 we constructed 1,000 surrogate hub identification maps with the spatial autocorrelations being
482 corrected using a generative model⁷⁰ and repeated calculating rank-sum statistics using these
483 surrogate hub identification maps to construct a null distribution. Then, *p* values derived by
484 comparing the observed rank-sum statistics with their corresponding null distributions were
485 Bonferroni-corrected. Surrogate hub identification maps in Fig 5A, 6, and 7 were constructed
486 based on the hub identification map in Fig 2B. Surrogate hub identification maps in Fig S9D
487 were constructed based on the hub identification map in Fig S9A.

488

489 **Data availability**

490 The MRI data of the first 60 cohorts listed in Table S8 are available at the International
491 Neuroimaging Data-sharing Initiative (http://fcon_1000.projects.nitrc.org), Brain Genomics
492 Superstruct Project (<https://doi.org/10.7910/DVN/25833>), Human Connectome Project
493 (<https://www.humanconnectome.org>), MPI-Leipzig Mind-Brain-Body Project
494 (<https://openneuro.org/datasets/ds000221>), and Age-ility Project
495 (<https://www.nitrc.org/projects/age-ility>). The MRI data of the PKU cohort are under active use
496 by the reporting laboratory and will be available upon reasonable request. The preprocessed
497 AHBA dataset is available at <https://doi.org/10.6084/m9.figshare.6852911>. The normalized
498 BrainSpan Atlas dataset is available at <http://brainspan.org/static/download.html>. The fiber
499 length profiling dataset⁴⁵ is available at <https://balsa.wustl.edu/study/1K31>.

500

501 **Code availability**

502 The code to reproduce the results and visualizations of this manuscript is available at
503 <https://github.com/zhileixu/FunctionalConnectomeHubs>.

504

505 **Author Contributions**

506 Conceptualization: Z.X., Y.H.; Methodology: Z.X., Y.H., M.X., X.W., X.L., T.Z.; Investigation:
507 Z.X.; Visualization: Z.X.; Supervision: Y.H.; Writing—original draft: Z.X., Y.H.; Writing—
508 review & editing: Y.H., Z.X., M.X., X.L., T.Z., X.W.

509

510 **Acknowledgments**

511 We thank Drs. Huali Wang and Xiaodan Chen for data acquisition of the PKU cohort and Drs.
512 Qiushi Wang and Nan Zhang for valuable advice on MRI data quality controls. This work was
513 supported by the National Natural Science Foundation of China [82021004, 31830034, and
514 81620108016 to Y.H., 82071998 and 81671767 to M.X., 81971690 to X.L., 81801783 to T.Z.],
515 Changjiang Scholar Professorship Award [T2015027 to Y.H.], National Key Research and
516 Development Project [2018YFA0701402 to Y.H.], Beijing Nova Program [Z191100001119023
517 to M.X.], and Fundamental Research Funds for the Central Universities [2020NTST29 to M.X.].

518

519 **Conflict of Interest**

520 The authors declare no competing interests.

521 **References**

- 522 1. van den Heuvel MP, Sporns O. Network hubs in the human brain. *Trends in Cognitive Sciences* **17**, 683-696 (2013).
- 524 2. Bullmore E, Sporns O. The economy of brain network organization. *Nature Reviews Neuroscience* **13**, 336-349 (2012).
- 527 3. Liu J, *et al.* Intrinsic Brain Hub Connectivity Underlies Individual Differences in Spatial 529 Working Memory. *Cerebral Cortex* **27**, 5496-5508 (2016).
- 530 4. Xu Y, Lin Q, Han Z, He Y, Bi Y. Intrinsic functional network architecture of human 531 semantic processing: Modules and hubs. *Neuroimage* **132**, 542-555 (2016).
- 533 5. van den Heuvel MP, *et al.* Abnormal Rich Club Organization and Functional Brain 534 Dynamics in Schizophrenia. *JAMA Psychiatry* **70**, 783-792 (2013).
- 536 6. Crossley NA, *et al.* The hubs of the human connectome are generally implicated in the 537 anatomy of brain disorders. *Brain* **137**, 2382-2395 (2014).
- 539 7. Buckner RL, *et al.* Cortical Hubs Revealed by Intrinsic Functional Connectivity: Mapping, 540 Assessment of Stability, and Relation to Alzheimer's Disease. *The Journal of Neuroscience* 541 **29**, 1860 (2009).
- 543 8. Dai Z, *et al.* Identifying and Mapping Connectivity Patterns of Brain Network Hubs in 544 Alzheimer's Disease. *Cerebral Cortex* **25**, 3723-3742 (2014).
- 546 9. Wang J, *et al.* Disrupted Functional Brain Connectome in Individuals at Risk for 547 Alzheimer's Disease. *Biological Psychiatry* **73**, 472-481 (2013).
- 549 10. Wang L, *et al.* The Effects of Antidepressant Treatment on Resting-State Functional Brain 550 Networks in Patients With Major Depressive Disorder. *Human Brain Mapping* **36**, 768- 551 778 (2015).
- 553 11. Fornito A, Zalesky A, Breakspear M. The connectomics of brain disorders. *Nature Reviews 554 Neuroscience* **16**, 159-172 (2015).
- 556 12. Gong Q, He Y. Depression, Neuroimaging and Connectomics: A Selective Overview. 557 *Biological Psychiatry* **77**, 223-235 (2015).

559

560 13. Achard S, Salvador R, Whitcher B, Suckling J, Bullmore E. A Resilient, Low-Frequency,
561 Small-World Human Brain Functional Network with Highly Connected Association
562 Cortical Hubs. *The Journal of Neuroscience* **26**, 63-72 (2006).

563

564 14. Liao X-H, *et al.* Functional brain hubs and their test-retest reliability: A multiband resting-
565 state functional MRI study. *NeuroImage* **83**, 969-982 (2013).

566

567 15. Cole MW, Pathak S, Schneider W. Identifying the brain's most globally connected regions.
568 *Neuroimage* **49**, 3132-3148 (2010).

569

570 16. Tomasi D, Volkow ND. Functional connectivity density mapping. *Proc Natl Acad Sci USA*
571 **107**, 9885-9890 (2010).

572

573 17. Fransson P, Aden U, Blennow M, Lagercrantz H. The Functional Architecture of the Infant
574 Brain as Revealed by Resting-State fMRI. *Cerebral Cortex* **21**, 145-154 (2011).

575

576 18. Tomasi D, Volkow ND. Association between Functional Connectivity Hubs and Brain
577 Networks. *Cerebral Cortex* **21**, 2003-2013 (2011).

578

579 19. de Pasquale F, *et al.* The connectivity of functional cores reveals different degrees of
580 segregation and integration in the brain at rest. *Neuroimage* **69**, 51-61 (2013).

581

582 20. Glahn DC, *et al.* Genetic control over the resting brain. *Proc Natl Acad Sci USA* **107**, 1223-
583 1228 (2010).

584

585 21. Fornito A, *et al.* Genetic Influences on Cost-Efficient Organization of Human Cortical
586 Functional Networks. *The Journal of Neuroscience* **31**, 3261-3270 (2011).

587

588 22. Wiggins JL, *et al.* The impact of serotonin transporter (5-HTTLPR) genotype on the
589 development of resting-state functional connectivity in children and adolescents: a
590 preliminary report. *Neuroimage* **59**, 2760-2770 (2012).

591

592 23. Gordon EM, Stollstorff M, Devaney JM, Bean S, Vaidya CJ. Effect of Dopamine
593 Transporter Genotype on Intrinsic Functional Connectivity Depends on Cognitive State.
594 *Cerebral Cortex* **22**, 2182-2196 (2012).

595

596 24. Richiardi J, *et al.* Correlated gene expression supports synchronous activity in brain
597 networks. *Science* **348**, 1241-1244 (2015).

598

599 25. Diez I, Sepulcre J. Neurogenetic profiles delineate large-scale connectivity dynamics of
600 the human brain. *Nature Communications* **9**, 3876 (2018).

601
602 26. Vertes PE, *et al.* Gene transcription profiles associated with inter-modular hubs and
603 connection distance in human functional magnetic resonance imaging networks. *Phil Trans
604 R Soc B* **371**, (2016).

605
606 27. Fornito A, Arnatkevičiūtė A, Fulcher BD. Bridging the Gap between Connectome and
607 Transcriptome. *Trends in Cognitive Sciences* **23**, 34-50 (2019).

608
609 28. Nichols TE, Holmes AP. Nonparametric Permutation Tests For Functional Neuroimaging:
610 A Primer with Examples. *Human Brain Mapping* **15**, 1-25 (2002).

611
612 29. Yeo BT, *et al.* The organization of the human cerebral cortex estimated by intrinsic
613 functional connectivity. *Journal of Neurophysiology* **106**, 1125-1165 (2011).

614
615 30. Tzourio-Mazoyer N, *et al.* Automated Anatomical Labeling of Activations in SPM Using
616 a Macroscopic Anatomical Parcellation of the MNI MRI Single-Subject Brain.
617 *Neuroimage* **15**, 273-289 (2002).

618
619 31. Power JD, Schlaggar BL, Lessov-Schlaggar CN, Petersen SE. Evidence for Hubs in
620 Human Functional Brain Networks. *Neuron* **79**, 798-813 (2013).

621
622 32. Gordon EM, *et al.* Three Distinct Sets of Connector Hubs Integrate Human Brain Function.
623 *Cell reports* **24**, 1687-1695 e1684 (2018).

624
625 33. Chen T, Guestrin C. XGBoost: A Scalable Tree Boosting System. *arXiv*, (2016).

626
627 34. Arnatkevic Iute A, Fulcher BD, Fornito A. A practical guide to linking brain-wide gene
628 expression and neuroimaging data. *Neuroimage* **189**, 353-367 (2019).

629
630 35. Eden E, Navon R, Steinfeld I, Lipson D, Yakhini Z. GOrilla: a tool for discovery and
631 visualization of enriched GO terms in ranked gene lists. *BMC bioinformatics* **10**, 48 (2009).

632
633 36. Huang da W, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward
634 the comprehensive functional analysis of large gene lists. *Nucleic Acids Research* **37**, 1-13
635 (2009).

636
637 37. Huang da W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene
638 lists using DAVID bioinformatics resources. *Nature protocols* **4**, 44-57 (2009).

639

640 38. Kang HJ, *et al.* Spatio-temporal transcriptome of the human brain. *Nature* **478**, 483-489
641 (2011).

642

643 39. Harris Julia J, Jolivet R, Attwell D. Synaptic Energy Use and Supply. *Neuron* **75**, 762-777
644 (2012).

645

646 40. Arroyo JD, *et al.* A Genome-wide CRISPR Death Screen Identifies Genes Essential for
647 Oxidative Phosphorylation. *Cell Metabolism* **24**, 875-885 (2016).

648

649 41. Goyal MS, Hawrylycz M, Miller JA, Snyder AZ, Raichle ME. Aerobic Glycolysis in the
650 Human Brain Is Associated with Development and Neotenuous Gene Expression. *Cell
651 Metabolism* **19**, 49-57 (2014).

652

653 42. Miller JA, *et al.* Transcriptional landscape of the prenatal human brain. *Nature* **508**, 199-
654 206 (2014).

655

656 43. Sherwood CC, Gómez-Robles A. Brain Plasticity and Human Evolution. *Annual Review
657 of Anthropology* **46**, 399-419 (2017).

658

659 44. Huttenlocher PR, Dabholkar AS. Regional Differences in Synaptogenesis in Human
660 Cerebral Cortex. *The Journal of comparative neurology* **387**, 167-178 (1997).

661

662 45. Bajada CJ, Schreiber J, Caspers S. Fiber length profiling: A novel approach to structural
663 brain organization. *Neuroimage* **186**, 164-173 (2019).

664

665 46. Vaishnavi SN, Vlassenko AG, Rundle MM, Snyder AZ, Mintun MA, Raichle ME.
666 Regional aerobic glycolysis in the human brain. *Proc Natl Acad Sci USA* **107**, 17757-17762
667 (2010).

668

669 47. Liang X, Zou Q, He Y, Yang Y. Coupling of functional connectivity and regional cerebral
670 blood flow reveals a physiological basis for network hubs of the human brain. *Proc Natl
671 Acad Sci USA* **110**, 1929-1934 (2013).

672

673 48. Cumming G. *Understanding the new statistics: Effect sizes, confidence intervals, and
674 meta-analysis*. Routledge (2013).

675

676 49. Fox MD, Corbetta M, Snyder AZ, Vincent JL, Raichle ME. Spontaneous neuronal activity
677 distinguishes human dorsal and ventral attention systems. *Proc Natl Acad Sci USA* **103**,
678 10046-10051 (2006).

679

680 50. Marek S, Dosenbach NUF. The frontoparietal network: function, electrophysiology, and
681 importance of individual precision mapping. *Dialogues in clinical neuroscience* **20**, 133-
682 140 (2018).

683

684 51. Felleman DJ, Van Essen DC. Distributed Hierarchical Processing in the Primate Cerebral
685 Cortex. *Cerebral Cortex* **1**, 1-47 (1991).

686

687 52. Buckner RL, Andrews-Hanna JR, Schacter DL. The Brain's Default Network Anatomy,
688 Function, and Relevance to Disease. *Annals of the New York Academy of Sciences* **1124**,
689 1-38 (2008).

690

691 53. Braga RM, Buckner RL. Parallel Interdigitated Distributed Networks within the Individual
692 Estimated by Intrinsic Functional Connectivity. *Neuron* **95**, 457-471 e455 (2017).

693

694 54. Menon V. Large-scale brain networks and psychopathology: a unifying triple network
695 model. *Trends in Cognitive Sciences* **15**, 483-506 (2011).

696

697 55. Xie Y, *et al.* Alterations in Connectome Dynamics in Autism Spectrum Disorder: A
698 Harmonized Mega- and Meta-Analysis Study Using the ABIDE Dataset. *Biological
699 Psychiatry*, (2021).

700

701 56. Nicholls JG, Martin AR, Fuchs PA, Brown DA, Diamond ME, Weisblat DA. *From Neuron
702 to Brain, Fifth Edition*. Sinauer Associates Sunderland, MA (2012).

703

704 57. Changeux J-P, Danchin A. Selective stabilisation of developing synapses as a mechanism
705 for the specification of neuronal networks. *Nature* **264**, 705-712 (1976).

706

707 58. Petanjek Z, *et al.* Extraordinary neoteny of synaptic spines in the human prefrontal cortex.
708 *Proc Natl Acad Sci USA* **108**, 13281-13286 (2011).

709

710 59. Miller DJ, *et al.* Prolonged myelination in human neocortical evolution. *Proc Natl Acad
711 Sci USA* **109**, 16480-16485 (2012).

712

713 60. Lebel C, Gee M, Camicioli R, Wieler M, Martin W, Beaulieu C. Diffusion tensor imaging
714 of white matter tract evolution over the lifespan. *Neuroimage* **60**, 340-352 (2012).

715

716 61. Paredes MF, *et al.* Extensive migration of young neurons into the infant human frontal lobe.
717 *Science* **354**, (2016).

718

719 62. Kwan KY, Sestan N, Anton ES. Transcriptional co-regulation of neuronal migration and
720 laminar identity in the neocortex. *Development* **139**, 1535-1546 (2012).

721
722 63. Wei Y, *et al.* Statistical testing in transcriptomic-neuroimaging studies: A how-to and
723 evaluation of methods assessing spatial and gene specificity. *Human Brain Mapping* **43**,
724 885-901 (2022).

725
726 64. Fulcher BD, Arnatkeviciute A, Fornito A. Overcoming false-positive gene-category
727 enrichment in the analysis of spatially resolved transcriptomic brain atlas data. *Nature
728 Communications* **12**, 2669 (2021).

729
730 65. Helmer M, *et al.* On stability of Canonical Correlation Analysis and Partial Least Squares
731 with application to brain-behavior associations. *bioRxiv*, (2020).

732
733 66. Ceric R, *et al.* Benchmarking of participant-level confound regression strategies for the
734 control of motion artifact in studies of functional connectivity. *Neuroimage* **154**, 174-187
735 (2017).

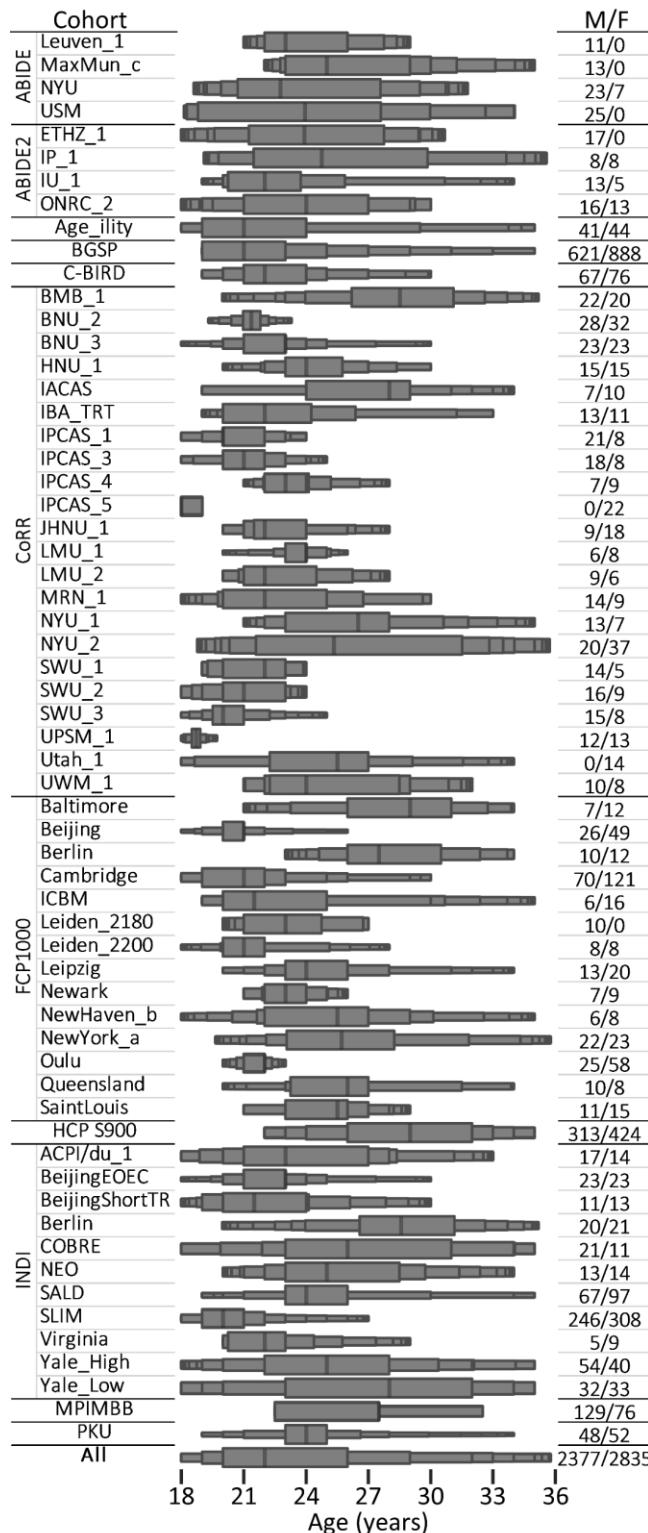
736
737 67. Schwarz AJ, McGonigle J. Negative edges and soft thresholding in complex network
738 analysis of resting state functional connectivity data. *Neuroimage* **55**, 1132-1146 (2011).

739
740 68. Power Jonathan D, *et al.* Functional Network Organization of the Human Brain. *Neuron*
741 **72**, 665-678 (2011).

742
743 69. Eickhoff SB, Laird AR, Grefkes C, Wang LE, Zilles K, Fox PT. Coordinate-Based
744 Activation Likelihood Estimation Meta-Analysis of Neuroimaging Data: A Random-
745 Effects Approach Based on Empirical Estimates of Spatial Uncertainty. *Human Brain
746 Mapping* **30**, 2907-2926 (2009).

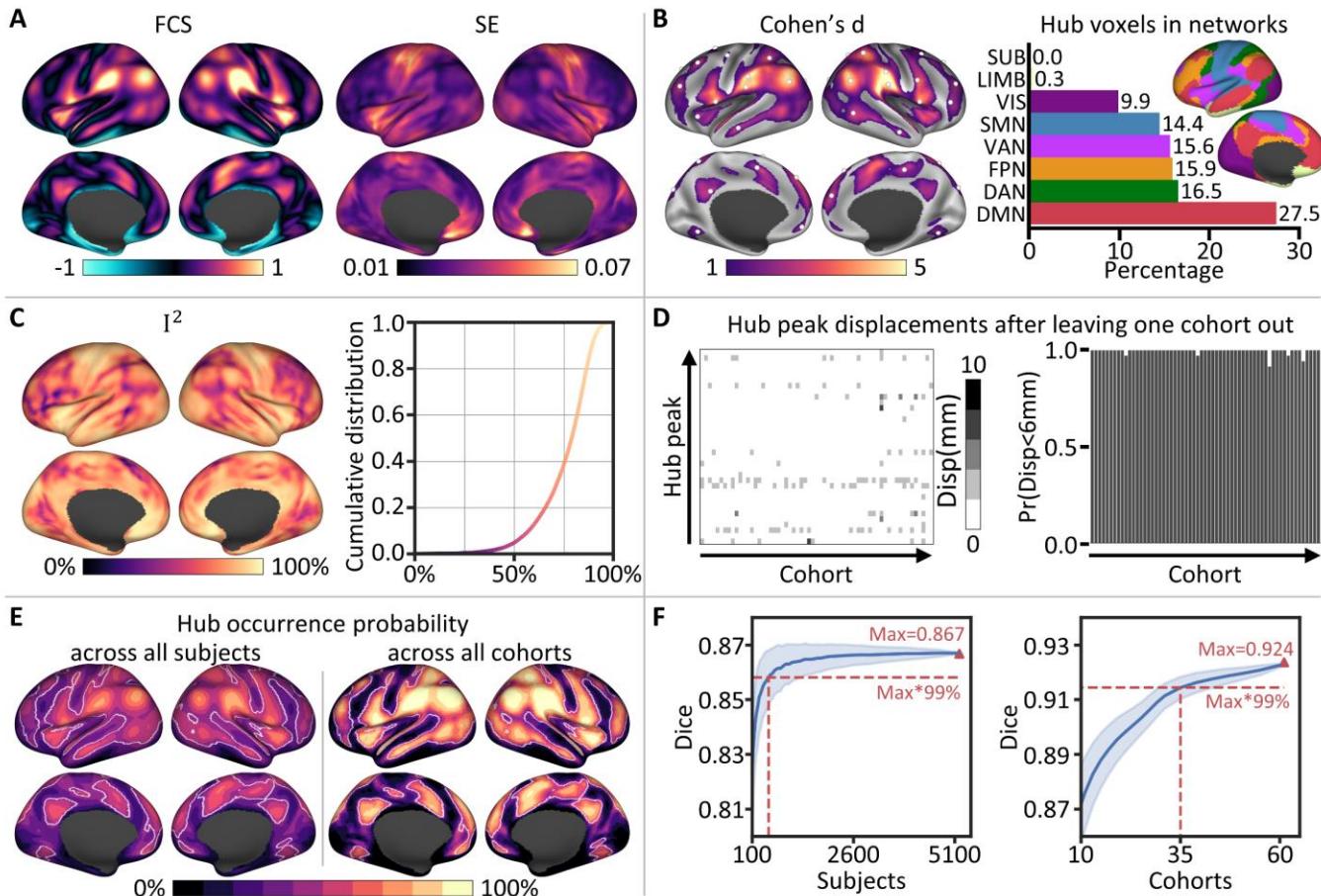
747
748 70. Burt JB, Helmer M, Shinn M, Anticevic A, Murray JD. Generative modeling of brain maps
749 with spatial autocorrelation. *Neuroimage* **220**, 117038 (2020).

750

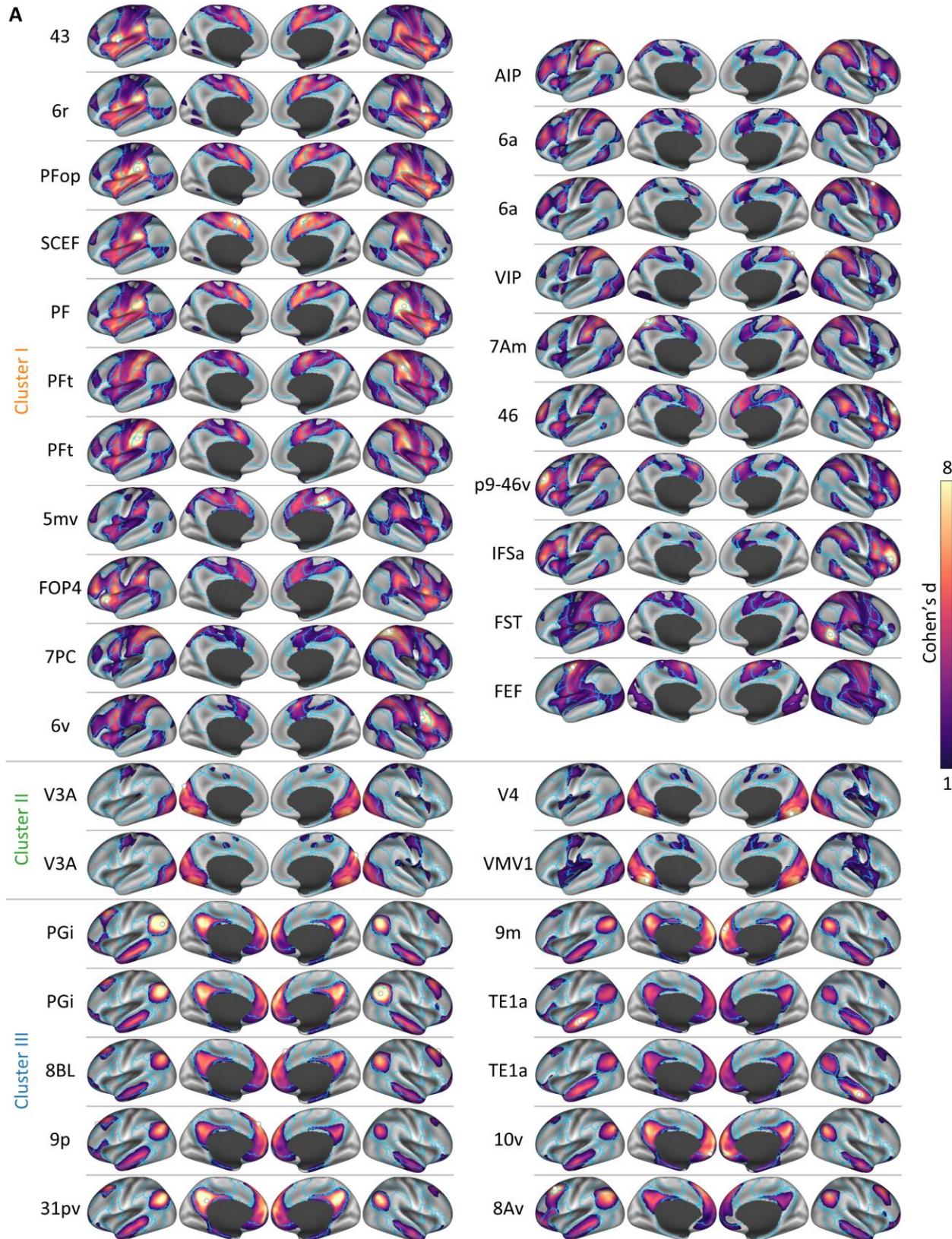


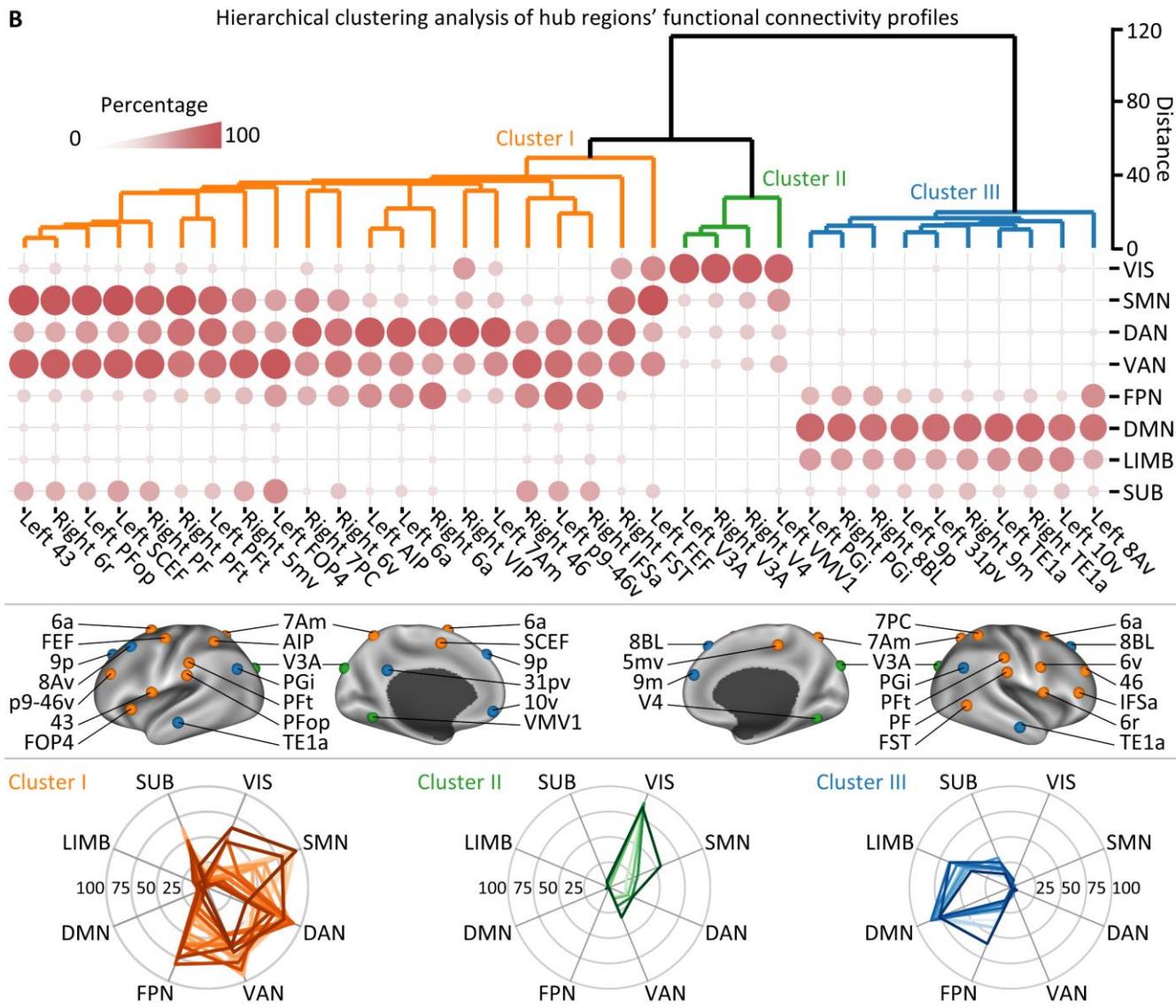
751

752 **Fig 1. Enhanced box plot of the age ranges of each cohort. M/F, males/femals.**



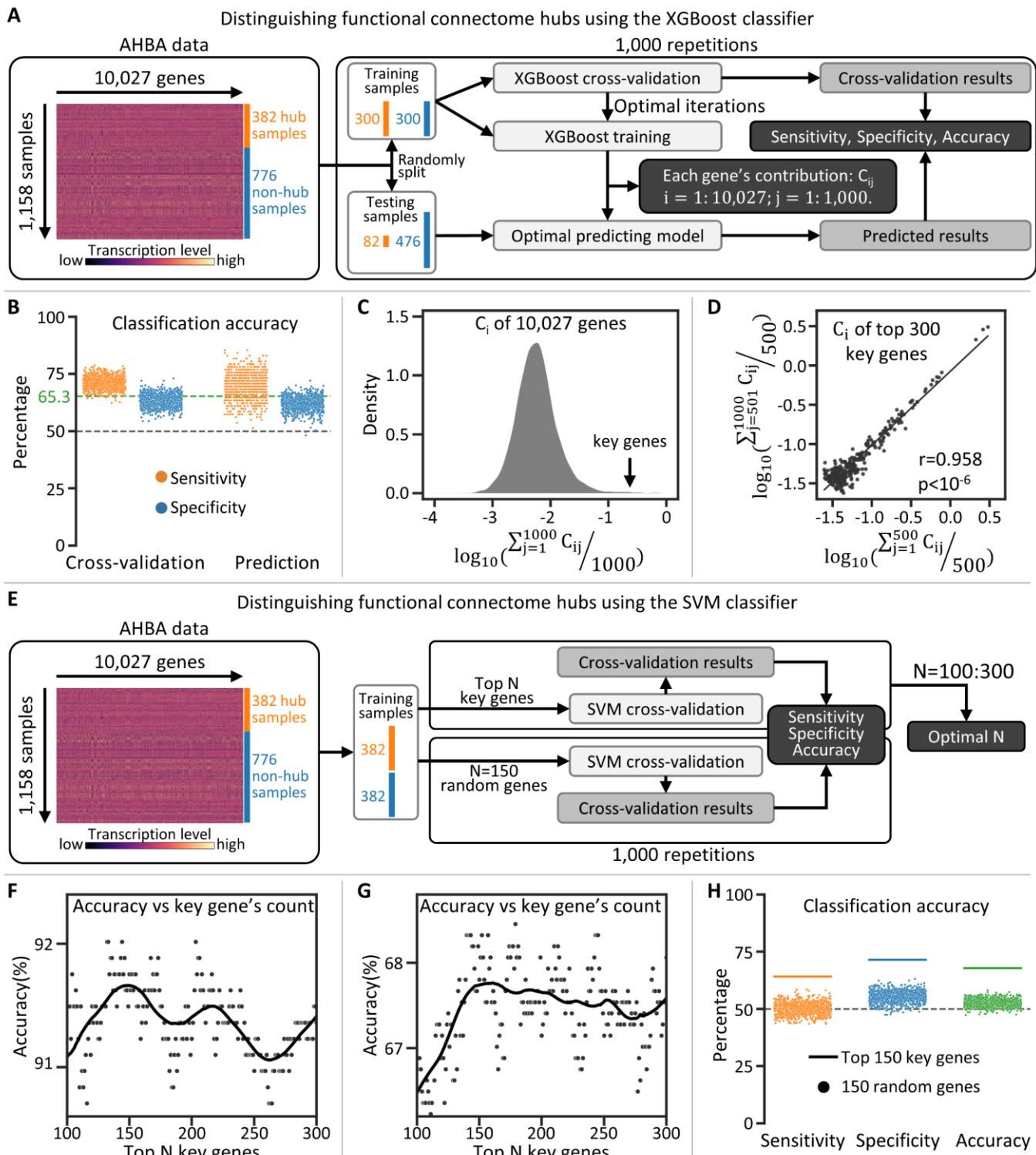
753 **Fig 2. Highly consistent and reproducible functional connectome hubs.** **A** Robust FCS
754 pattern and its corresponding variance (standard error, SE) map estimated using a harmonized
755 voxelwise random-effects meta-analysis across 61 cohorts. **B** Left: The most consistent
756 functional connectome hubs ($p < 0.001$, cluster size $> 200 \text{ mm}^3$); white spheres represent hub
757 peaks. Right: Hub voxel distribution in eight large-scale brain networks; insets, the seven large-
758 scale cortical networks²⁹ were rendered on the left hemisphere. SUB, subcortical network;
759 LIMB, limbic network. **C** Left: Heterogeneity measurement I^2 estimated through the random-
760 effects meta-analysis. Right: Cumulative distribution function plot of I^2 . **D** Left: Heatmap of
761 displacements of the 35 hub peaks after leaving one cohort out. Right: Bar plot of the probability
762 across the 35 hub peaks whose displacement was less than 6 mm after leaving one cohort out. **E**
763 Hub occurrence probability map across all subjects (left) and all cohorts (right). White lines
764 delineate boundaries of the identified hubs in **B**. **F** Dice's coefficient of the identified hubs in **B**
765 compared with the top N (voxel number of the identified hubs in **B**) voxels with the highest hub
766 occurrence probability values across randomly selected subjects (left) and randomly selected
767 cohorts (right). Blue shading represents the standard deviation across 2,000 random selections.





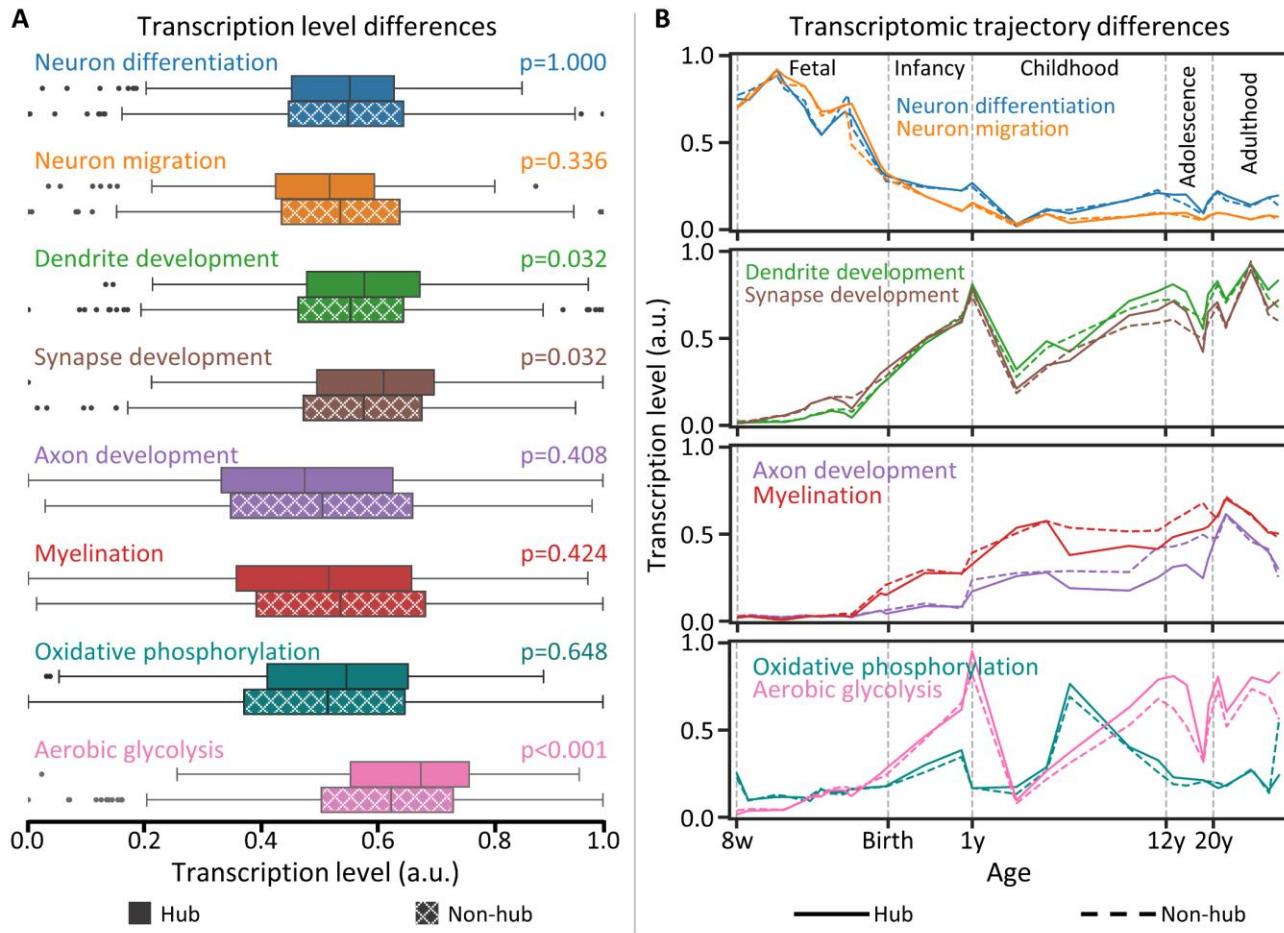
769 **Fig 3. Functional connectivity profiles of connectome hubs.** A Functional connectivity
770 profiles of the 35 hubs. White spheres represent hub seeds. Blue lines delineate boundaries of the
771 seven cortical networks shown in Fig 2B. B Top: Dendrogram derived by hierarchical clustering
772 of the connectivity percentage matrix. Middle: The 35 hubs were rendered using three different
773 colors according to the hierarchical clustering solution. Bottom: Radar charts showing
774 heterogeneous connectivity profiles of the three hub clusters.

775

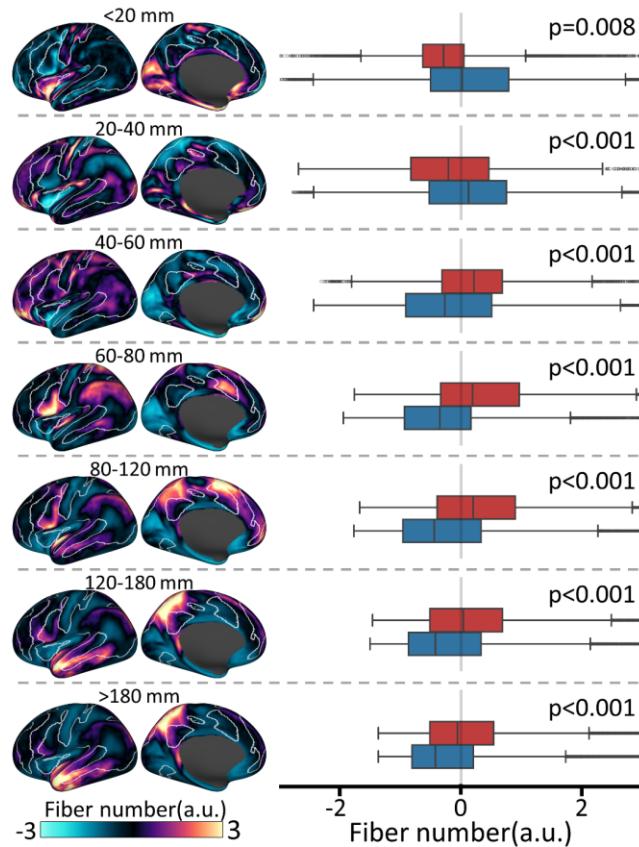


776 **Fig 4. Transcriptomic data distinguishes connectome hubs from non-hubs. A** Schematic
777 diagram of using the XGBoost model to classify brain samples as a hub or non-hub. **B**
778 Performance of the XGBoost classifier. Each dot represents one repetition in A. The horizontal
779 gray dashed line represents the chance level accuracy rate (50%). The horizontal green dashed
780 line represents the average accuracy rate of the XGBoost classifier across 1,000 repetitions. **C**

781 Density plot of 10,027 genes' logarithmic average contributions across 1,000 repetitions to the
782 XGBoost classifier. Genes with the greatest contributions were regarded as key genes. **D**
783 Regression plot of the logarithmic average contributions of the top 300 key genes across the first
784 500 repetitions versus those across the second 500 repetitions. Each dot represents one gene. **E**
785 Schematic diagram of using the SVM model to classify brain samples as a hub or non-hub. **F**
786 **and G** Accuracy rate of the SVM classifier versus the count of key genes used to distinguish 382
787 hub samples from 382 non-hub samples with the highest rate (**F**) or lowest rate (**G**) to be
788 correctly classified by the XGBoost classifier. Each dot represents one SVM classifier. Black
789 curves were estimated by locally weighted regression. **H** Performance of the SVM classifier.
790 Horizontal lines correspond to the SVM classifier trained using top 150 key genes in **G**. Each dot
791 represents one repetition using 150 randomly selected genes in **E**. The horizontal gray dashed
792 line represents the chance level accuracy rate (50%).

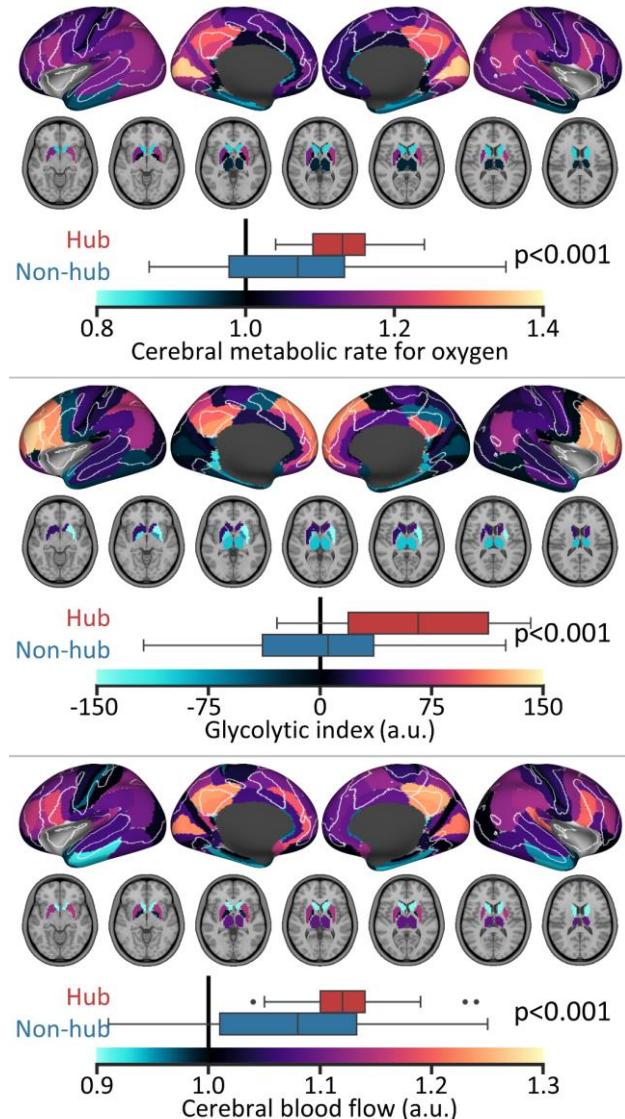


793 **Fig 5. Connectome hubs have a spatiotemporally distinctive transcriptomic pattern. A**
 794 Transcription level differences between hub samples ($n=382$) and non-hub samples ($n=776$) for
 795 genes associated with key neurodevelopmental processes³⁸ and main neuronal metabolic
 796 pathways³⁹. Boxplot edges, gray lines, and whiskers and dots depict the 25th and 75th
 797 percentiles, median, and extreme nonoutlier and outlier values, respectively. Significance of one-
 798 sided Wilcoxon rank-sum tests were determined by 1,000 permutation tests and were labeled
 799 with Bonferroni-corrected p values. **B** Transcriptomic trajectory differences between hub and
 800 non-hub regions for genes involved in key neurodevelopmental processe³⁸ and main neuronal
 801 metabolic pathways³⁹. w, post-conceptional week; y, postnatal year; a.u., arbitrary unit.



802

803 **Fig 6. Connectome hubs have more intricate fiber configuration.** Left: Fiber number for
804 different fiber length bins was derived from a fiber length profiling dataset⁴⁵. To save space, we
805 only presented data of the left hemisphere and used data of both hemispheres in boxplots and
806 statistics. White lines delineate boundaries of the identified hubs in Fig 2B. Right: Fiber number
807 difference between connectome hubs (red, n=25,944) and non-hubs (blue, n=33,195). Boxplot
808 edges, gray lines, and whiskers and dots depict the 25th and 75th percentiles, median, and
809 extreme nonoutlier and outlier fiber number values, respectively. Significance of one-sided
810 Wilcoxon rank-sum tests were determined by 1,000 permutation tests and were labeled with
811 Bonferroni-corrected *p* values. a.u., arbitrary unit.



812

813 **Fig 7. Connectome hubs have higher metabolic rate.** The cerebral metabolic rate for oxygen,
814 glycolytic index, and cerebral blood flow of 82 Brodmann areas and seven subcortical structures
815 were provided by a prior study⁴⁶. White lines delineate boundaries of the identified hubs in Fig
816 2B. Boxplot edges, gray lines, and whiskers and dots depict the 25th and 75th percentiles,
817 median, and extreme nonoutlier and outlier metabolic measurement values, respectively.
818 Brodmann areas with more than 50% vertices or subcortical structures with more than 50%
819 voxels identified as hubs were regarded as hub regions (n=29), vice versa as non-hub regions
820 (n=60). Significance of one-sided Wilcoxon rank-sum tests was determined by 1,000
821 permutation tests and were labeled with Bonferroni-corrected *p* values. a.u., arbitrary unit.

822 **Table 1. Highly consistent functional connectome hubs.**

No.	Hub	Location	MNI coordinates			Cohen's <i>d</i>	FCS	SE
			x	y	z			
1	Right PFt	PFt (superoanterior BA* 40)	60	-21	45	6.267	1.072	0.022
2	Left PFt	PFt (superoanterior BA 40)	-60	-24	36	6.151	0.949	0.020
3	Right PF	PF (posterior BA 40)	60	-27	24	5.785	1.239	0.027
4	Left SCEF	Supplementary and cingulate eye field	0	0	51	5.635	1.000	0.023
5	Left PGi	PGi (inferior BA 39)	-51	-66	30	5.168	1.075	0.027
6	Left PFop	PF opercular (inféroanterior BA 40)	-63	-27	18	5.160	1.095	0.027
7	Left 43	Area 43	-57	3	3	4.927	1.114	0.029
8	Right 6r	Rostral area 6	57	6	0	4.916	1.184	0.031
9	Right PGi	PGi (inferior BA 39)	54	-60	30	4.739	1.007	0.027
10	Right 8BL	Area 8B lateral	21	36	51	4.655	0.713	0.020
11	Right 7PC	Area 7PC	36	-45	54	4.414	0.712	0.021
12	Left 9p	Area 9 posterior	-15	45	45	4.199	0.639	0.019
13	Right 6v	Ventral area 6	54	9	33	4.037	0.766	0.024
14	Left 8Av	Ventral area 8A	-39	18	48	3.990	0.561	0.018
15	Left AIP	Anterior intra-parietal area	-33	-45	45	3.474	0.567	0.021
16	Right FST	Fundus of the superior temporal area	54	-60	0	3.156	0.729	0.030
17	Right 9m	Area 9 middle	3	54	24	3.128	0.609	0.025
18	Left 31pv	Area 31p ventral	-3	-51	33	3.049	0.784	0.033
19	Right VIP	Ventral intra-parietal complex	18	-63	57	2.984	0.572	0.025
20	Right 6a	Area 6 anterior	33	3	63	2.975	0.454	0.020
21	Left FOP4	Frontal opercular area 4	-33	21	6	2.858	0.828	0.037
22	Right 5mv	Area 5m ventral	12	-30	45	2.822	0.701	0.032
23	Right 46	Area 46	36	42	30	2.779	0.656	0.030
24	Left 10v	Area 10v	0	57	-9	2.769	0.731	0.034
25	Left p9-46v	Area posterior 9-46v	-42	36	27	2.591	0.561	0.028
26	Left V3A	Area V3A	-15	-90	33	2.575	0.684	0.034
27	Left TE1a	Area TE1 anterior	-63	-15	-15	2.527	0.595	0.030
28	Right TE1a	Area TE1 anterior	60	-9	-21	2.494	0.580	0.030
29	Right IFSa	Anterior inferior frontal sulcus	48	39	12	2.468	0.480	0.025
30	Left 7Am	Medial area 7A	-12	-60	60	2.461	0.475	0.025
31	Right V3A	Area V3A	18	-87	36	2.442	0.645	0.034
32	Right V4	Fourth visual area	24	-63	-9	2.339	0.446	0.024
33	Left 6a	Area 6 anterior	-24	3	63	2.317	0.331	0.018
34	Left VMV1	Ventromedial visual area 1	-18	-60	-6	1.937	0.397	0.026
35	Left FEF	Frontal eye fields	-45	-9	57	1.412	0.640	0.058

823 * BA, Brodmann area.