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Abstract  

Multiplex imaging technologies are increasingly used for single-cell phenotyping and spatial 

characterization of tissues; however, transparent methods are needed for comparing the performance of 

platforms, protocols and analytical pipelines. We developed a python software, mplexable, for 

reproducible image processing and utilize Jupyter notebooks to share our optimization of signal 

removal, antibody specificity, background correction and batch normalization of the multiplex imaging 

with a focus on cyclic immunofluorescence (CyCIF). Our work both improves the CyCIF methodology 

and provides a framework for multiplexed image analytics that can be easily shared and reproduced. 

 

Introduction 

Multiplex imaging methods enable quantification of numerous proteins in tissues while retaining spatial 

and morphological information. In many contexts, dozens of targets must be labeled in an intact tissue 

section to identify key cell types and quantify their spatial relationships. Multiplex imaging technologies 

utilize various strategies to overcome the limitation of conventional immunofluorescence (IF) protocols 

that label a few markers per section. Five and seven-plex immunohistochemistry (IHC) has been 

achieved by fluorophore-conjugated tyramide deposited on the tissue1–3. Twelve to 29-plex 

immunohistochemistry (IHC) is enabled with alcohol-soluble peroxidase substrate 3-amino-9-

ethylcarbazole (AEC) detection combined with antibody stripping4,5 and 40-plex IF can be achieved 

with antibody elution in iterative indirect immunofluorescence imaging (4i)6 and multiple interactive 

labeling by antibody neodeposition (MILAN)7,8. Direct immunofluorescence using fluorophore-

conjugated primary antibodies and chemical inactivation of fluorescent dyes enables detection of over 

50 protein targets in a single tissue section, in cyclic immunofluorescence (CyCIF)9–11, NeoGenomics’ 

MultiOmyx platform12, and iterative bleaching extends multiplexity (IBEX)13. Similarly, multi-epitope-

ligand cartography (MELC), employs photo-inactivation of fluorescently labeled antibodies14,15. 
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Furthermore, fluorophore-conjugated DNA barcodes (i.e., oligonucleotides) facilitate multiplexing in 

co-detection by indexing (Akoya’s CODEX)16, Ultivue’s InSituPlex17, Immuo-SABER18, and Ab-oligo 

cyCIF19. Imaging mass cytometry20 and multiplex ion beam imaging21 can detect over 40 antibodies 

conjugated to metal reporters by time-of-flight mass-spectrometry. The Nanostring GeoMx22 platform 

can detect >100 protein targets conjugated to oligonucleotide barcodes, although the data are not images, 

but spatially registered counts of released oligos23. All of these methods rely on specific labeling of 

proteins with antibodies, a process that must be validated by studies that establish specificity, sensitivity 

and reproducibility. Ideally this is accomplished via transparent analyses using well documented, open-

source image analysis pipelines.  

 

Herein, we quantitatively assess antibody labeling in one multiplex imaging platform, CyCIF9–11, while 

varying antibody application strategies, fluorescence signal and tissue autofluorescence removal 

methods, and experimental batches. This resulted in several strategies to improve CyCIF, including 

optimization of aspects of chemical bleaching, autofluorescence correction, antibody application order 

and batch normalization. Herein, we build on protocol optimization efforts10,24 and share our image 

processing pipeline software, the free and open source python library, mplexable (Figure 1a-b). Finally, 

we introduce a framework for reproducible image analysis and visualization. Our analytics comprise 

linked and executable code and data that enabled all figures and analytical results in our paper to be fully 

reproduced from the accompanying image data (https://www.synapse.org/#!Synapse:syn23644107), 

processed data and code (https://github.com/engjen/cycIF_Validation). We used Jupyter notebooks to 

link code, data, metadata and the computational environment in a machine- and human-readable 

document (Figure 1c, Table 1). Although we focused on validation of a single platform, our tools for 

image analysis facilitate quantitative and reproducible characterization of tissues by any multiplex 

imaging platform. 
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Results and Discussion  

Adopting the method of Lin et al.9, we stained formalin-fixed, paraffin-embedded (FFPE) tissues using a 

cyclic process in which four proteins per cycle were labeled using a direct immunofluorescence (IF) 

protocol, imaged, and quenched of fluorescence signal (Figure 1a, 

dx.doi.org/10.17504/protocols.io.23vggn6). We typically labeled 40 – 60 proteins per slide before tissue 

and staining quality degraded (quantified in Figure 2e and Supplementary Figure 7, respectively). We 

developed free and open-source tools to perform quality control on images and metadata and automate 

image processing from registration through single-cell segmentation and feature extraction (Figure 1b, 

https://pypi.org/project/mplexable/). Finally, we shared all analytics used to produce figures and 

conclusions as linked and executable code and data (Figure 1c). Jupyter notebooks serve as a human and 

machine-readable record that described the data, image analysis steps and computational environment, 

both enabling replication of our findings and linking data and metadata to facilitate use by others.   

 

Comparison to Standard IF 

We benchmarked our CyCIF protocol against a direct IF protocol. CyCIF staining in normal and 

malignant breast tissue was compared to standard direct IF on adjacent tissue sections. Antibodies and 

staining conditions were selected that produced visually similar staining patterns in both CyCIF and 

standard IF staining (Figure 2a, Notebook 1-1, [NB1-1]). For quantification, we set an intensity 

threshold for each marker, with all pixels above the set threshold considered positive. All pixels at least 

10 micrometers away from positive staining were considered background pixels (the 10 µm gap was to 

exclude any influence of lateral bleed through around positive pixels; Figure 2b, Supplementary Figure 

1, NB2-1). If a marker was negative in a given tissue section, it was not analyzed in that tissue. 

Although the positive and background intensity varied between conditions, presumably due to the 
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imprecisions introduced by manual pipetting, the relative signal-to-background ratio (SBR, see methods) 

of standard IF compared to CyCIF was near one (relative SBR: mean=0.96, standard error of the mean 

[SEM]=0.22) and highly correlated (Pearson R=0.89, p=1.6e-9, Figure 2c, Supplementary Figure 1, 

NB2-2). We assessed specificity between conditions by segmenting single cells and counting positive 

cells with a mean intensity above the set threshold. We found that the percentage of positive cells of 

standard IF relative to CyCIF was also near one (relative % positive: mean=0.96, SEM=0.18) and the 

fraction positive was highly correlated (Pearson R=0.99, p=5.8e-24, Figure 2c, Supplementary Figure 

1c, NB2-2). We concluded that the SBR and specificity of antibody staining in the first five cycles of 

CyCIF is similar to standard IF, the cyclic process does not excessively impact tissue staining, and 

CyCIF offers the advantage of detecting increased marker combinations while utilizing a single slide. 

 

Tissue Loss Characterization 

The CyCIF process resulted in increased tissue loss compared to standard IF (Supplementary Figure 1a, 

NB2-1). In order to characterize the numbers and types of cells and tissues that were susceptible to 

tissue loss during CyCIF, three adjacent sections of a 72-core tissue microarray (TMA) containing 

normal and malignant tissues were repeatedly quenched and imaged (Figure 2d). Slow but steady tissue 

loss was observed over 10 rounds of CyCIF, with 95% of cells remaining after 10 rounds (Figure 2e). 

We found that the 18 normal tissues suffered more tissue loss than the 52 malignant and 2 benign tissues 

(Figure 2e), and the difference in fraction of cells remaining after ten rounds was significant (Figure 2f). 

We found no difference in the number of cells lost in tissues separated by stage or grade, or by cells 

separated by their nuclear size and shape (which correlate with epithelial, immune, endothelial or 

mesenchymal cell types, Figure 2f, g, h). While all malignant tissues were obtained from autopsy, 

normal tissues obtained from surgical resections vs. autopsy showed a trend towards reduced tissue loss 

(Mann-Whitney U, p=0.083). This could reflect tissue processing variation, as smaller tissue size and 
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longer time in fixation have been shown to reduce section detachment in immunohistochemistry25. There 

were significant differences in tissue loss in normal tissues from different organs and malignant tissues 

with different pathologies (Supplementary Figure 3). Our results suggest that tissue loss varied more 

between different tissues than between individual cell types within a given tissue.  

 

Quenching Condition Assessment 

Most tissue loss was observed during the quenching step, necessitating development of gentle yet 

effective conditions for complete signal removal. CyCIF fluorescence signal removal was accomplished 

by chemical quenching of fluorescent dyes using hydrogen peroxide (H2O2). Only certain dyes, 

including Alexa Fluor (AF)-488, AF555, AF647 and AF750, were quenchable using this method. Other 

dyes, including AF546 and fluorescein, were resistant to quenching, as previously reported24. Increasing 

H2O2 concentration from 3% to 4.5% or 6% in 20 mM sodium hydroxide did not improve quenching 

rate, and additional time in H2O2 also failed to completely eliminate strong signal (Figure 3a, b, d 

Supplementary Figure 4, 5 NB3-1). Gentle heating with an incandescent light placed ~4 inches above 

the sample during quenching (see methods) appeared to increase the rate of H2O2 oxidation (estimated 

by heat generation, Supplementary Figure 5c), resulting in complete signal removal (Figure 3c, d 

Supplementary Figure 5 a, b, NB3-1). Quantification of the unstained negative controls in all quenching 

conditions showed that mean tissue autofluorescence decreased during the first quench (AF488: mean 

22% decrease, SEM=2.8%; AF555: mean 24% decrease, SEM=2%, AF647: mean 5% decrease, 

SEM=1.4%, n=3), a decrease not seen in an unquenched tissue that was repeatedly imaged 

(Supplementary Figure 5e, f, NB3-1). Therefore, we standardized quenching using 3% H2O2 for 30 

minutes with incandescent light and added an additional round of quenching (i.e., pre-quenching before 

CyCIF staining) similar to others10, to reduce overall tissue autofluorescence by roughly 25% 

(Supplementary Figure 5e). 
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Antibody Order Evaluation and Improvement 

Finally, we tested if the order of antibody application in the CyCIF panel influenced antibody sensitivity 

and specificity. We applied an 11-round, 44-antibody panel twice to the same TMA, for a total of 22 

rounds (Supplementary Table 1). We visually and quantitatively compared the antibody staining pattern 

and single cell mean intensities of the images acquired after the first application of each antibody to the 

second (Supplementary Figure 6, NB3-3). Of the 44 antibodies evaluated, 86% had a high Pearson 

correlation (>0.8) between first and second applications, but 81% had lower dynamic range and SBR on 

the second application (Supplementary Figure 7, NB3-4). Effects of double-application were antibody 

and epitope specific, as 28% antibodies showed similar dynamic range (<50% change) on the second 

application, and 62% still had an estimated SBR>1.5 on the second application, versus 78% on the first 

(Supplementary Figure 7, NB3-4). Non-specific nuclear staining was observed for several antibodies 

conjugated to the AF750 fluorophore, and unexpectedly, it diminished on the second application 

(Supplementary Figure 6c, NB3-4). We tested several potential variables impacting stain quality in later 

rounds, including non-specific IgG interactions, non-specific fluorophore interactions, specific IgG 

interactions, and quenching effects. Out of all of these, the only condition that apparently reduced non-

specific nuclear background was additional quenching (Supplementary Figure 8). Thus, we designed an 

improved panel order which positioned antibody-conjugates tending to have non-specific staining in a 

later round (Figure 3e), as well as addressed challenges of autofluorescence, channel bleed through and 

incomplete quenching (Figure 3f-j, Supplementary Table 2). We compared the original and optimized 

orders on near-adjacent slides cut from a TMA containing three tissues with positive staining for each 

marker. SBR quantification was completed by applying a threshold to each marker to find positive 

pixels, and manually selecting areas of non-specific background (e.g., tumor nests for immune markers 

and stromal areas for tumor markers). Our new panel order significantly increased SBR (Figure 3i, NB3-
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5). In earlier rounds we prioritized antibodies to antigens with varied expression levels such as human 

epidermal growth factor receptor 2 (HER2), E-cadherin and cytokeratins, which generally lose their 

dynamic range in later staining rounds. We placed immune cell markers in later rounds, as they have a 

binary (i.e., on/off) expression pattern and sometimes showed better SBR in later rounds, due to 

decreased background (Figure 3e, f, j). Markers expressed in the same cell type and/or subcellular 

location were placed in non-adjacent channels and rounds to allow detection artifacts from channel bleed 

through and any incomplete quenching. Bleed through was evident for weakly staining and strongly 

staining antibodies in adjacent channels (e.g., PD1-AF647 and CK19-AF750, Figure 3 g, j), but was 

minimized by avoiding such combinations in the same round. Bleed through was not specific to our 

selected fluorophores and filter sets, as we observed FITC to PE bleed through in another multiplex 

imaging platform, which could also be mitigated by avoiding strongly staining and weakly staining 

antibodies in adjacent channels (Supplementary Figure 8, NB3-6).  

 

Autofluorescence Dynamics and Corrections 

Although pre-quenching reduced overall tissue autofluorescence by ~25% (Supplementary Figure 5 e), 

we sought to develop a method to computationally subtract remaining autofluorescence, which, in some 

tissue structures, was brighter than the biomarker staining. First, we characterized single-cell 

autofluorescence dynamics over rounds of CyCIF by quantifying single-cell AF488 intensity in three 

unstained normal pancreas tissues that had been imaged and quenched repeatedly. We segmented the 

nuclei based on DAPI staining and expanded each nucleus by five pixels to capture the cytoplasm. 

Tissues were batch normalized and unsupervised clustering revealed groups of cells with comparable 

autofluorescence profiles over the experiment that localized to similar regions in each tissue 

(Supplementary Figure 9, NB4-1). Overlaying the cells in each cluster on the tissue revealed cells in 

cluster seven comprised tissue structures with bright autofluorescence that covered a wide spectrum 
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from DAPI to AF488 channels (Figure 4a). Quantification of mean cluster intensity over rounds of 

quenching showed that while other clusters’ intensities stayed constant, the cluster seven intensity 

dropped linearly between one and four rounds of quenching (Figure 4c, NB3-1, NB4-1). To confirm 

these results, we collected two additional datasets, three adjacent sections from a 72-core TMA 

containing normal and tumor tissues (Figure 4d) and three adjacent sections from an 11-core TMA 

containing HER2+ breast cancer tissues. The two groups of slides were quenched for a total of 10 

rounds, 330 minutes and 6 rounds, 210 minutes, respectively. We segmented cells to obtain single-cell 

autofluorescence values, batch normalized and clustered as described for the pancreas tissue (Figure 4 e-

g, Supplementary Figure 10). Although the AF488 autofluorescence initially declined in these datasets, 

as had been observed in the pancreas, surprisingly it increased in later rounds, globally across all clusters 

(Figure 4 h). We did observe that the autofluorescence clusters correlated with one or more tissue types 

and pathologies (Figure 4j, Supplementary Fig 11), but they all showed the same trend, with a minimum 

intensity at three or four rounds of quenching (after pre-quenching, Figure 4 h, Supplementary Figure 

12). We saw similar trends in AF555 autofluorescence (Supplementary Figure 11, 12). Therefore, to 

computationally remove autofluorescence without over-subtracting, we recommend collecting baseline 

autofluorescence images after quenching at round three or four, and subtracting these, scaled by 

exposure time, from AF488, AF555 and AF647 channels. Subtraction from the AF750 channel appeared 

unnecessary, given its minimal autofluorescence. This procedure will remove an additional 60 – 70% of 

autofluorescence from the brightest rounds (Figure 4i, Supplementary Figure 11, 12). Since different 

tissues and other multiplex imaging platforms may exhibit different autofluorescence dynamics, we 

implemented both the baseline algorithm and a scaled algorithm, which assumes linear increase or 

decrease in autofluorescence, for autofluorescence subtraction in mplexable. We found that the scaled 

algorithm, by linearly interpolating autofluorescence between background images collected at the 

beginning and end of staining, did reduce false positives for some markers in our panel (Supplementary 
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Figure 11). Since the brightest areas of autofluorescence showed linear decrease across the first few 

rounds of CyCIF, the scaled algorithm was most advantageous in tissues with strong autofluorescence 

that are stained with only a few rounds of CyCIF. On the other hand, the baseline algorithm is simple, 

requiring collection of just one background image, and can remove the majority of autofluorescence 

background without over-subtraction in various tissue and experimental contexts.   

 

Reproducibility and Batch Normalization 

Following panel optimization, we assessed the reproducibility of CyCIF by analyses of three serial TMA 

sections stained with the same 20-antibody panel on different dates (Figure 5a). We used manual 

thresholding to quantify SBR, as in our standard versus CyCIF analysis (Supplementary Figure 13a, b, 

NB5-1). We compared our manual method of SBR calculation to the use of intensity quantiles to 

estimate dynamic range10, and found that manual thresholds were more reliable when markers were 

negative, (e.g., HER2 in normal breast, Supplementary Figure 14, NB5-2). With both methods, we 

found that the ratio of SBR between replicates for all 20 antibodies was close to one (relative SBR: 

mean=1.02, SEM=0.23, n=20, Figure 5b, Supplementary Figure 13c & 14, NB5-2). Similarly, the 

difference in percent positive cells between each replicate was small (relative percent positive: 

mean=1.10, SEM=0.38, Supplementary Figure 13c, NB5-2). These data demonstrate reproducibility 

between batches, with the SBR of each antibody being stable, despite variations in raw intensity values 

(Supplementary Figure 9c, NB5-2). We used the same dataset to examine inter-patient variability on 

each TMA. The relative SBR between patients was often far from one (Supplementary Figure 13c, NB5-

2), likely reflecting a combination of biological variability and pre-analytical factors that affect antibody 

performance in FFPE tissues.26  
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Since we observed intensity variation between CyCIF replicates, batch normalization was required for 

downstream analytics such as cell classification by unsupervised clustering. To quantify the 

effectiveness of batch correction methods on our serial TMA sections, we used the kBET algorithm27, 

which, given a k-nearest neighbor graph, compares batch-label distribution in random subsets of 

neighboring cells to the global batch-label distribution, thus quantifying how well mixed batches are in 

technical replicates (Figure 5a, c, Supplementary Figure 15, NB5-3). Previously, we developed 

RESTORE, which utilizes mutually exclusive marker expression to predict a background threshold28. 

For normalization, we set all values below the RESTORE threshold to zero and scaled those above the 

threshold between 0 and 1. We compared RESTORE normalization to ComBat29 and mean-only 

correction (regress out), both implemented in scanpy30. ComBat produced the best batch correction 

(kBET=0.45, SEM=0.05, n=3 slides, lower KBET rejection rates indicate better batch correction, with 0 

being perfect mixing and 1 being no mixing of batches) with RESTORE also correcting some of the 

batch effect (kBET=0.62, SEM=0.03, Supplementary Figure 15, NB5-3). Unsupervised Leiden 

clustering showed that both ComBat and RESTORE recovered known biology (Supplementary Figure 

15). To quantify the stability of clustering across batches, we calculated the Pearson correlation of the 

positive fraction of each cluster between each section (n=9; 3 cores x 3 sections). ComBat normalization 

produced higher correlation with lower variance (indicating fewer cores with low correlation) than 

RESTORE normalization, but both were improvements over the raw data (ComBat mean Pearson 

correlation=0.97, SEM=0.01, RESTORE mean=0.88, SEM=0.05, raw mean=0.8, SEM=0.15, n=9, 

Figure 5c, Supplementary Figure 15, NB5-4).  

 

To further evaluate batch normalization methods, we created a TMA using FFPE breast cancer cell lines 

and normal tissues (Figure 5d). Importantly, the cell lines were of known clinical and intrinsic subtype31, 

establishing a ground truth for clustering results (Supplementary Table 3). Three TMA sections were 
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stained using the same antibody conjugates but different panel orders (Supplementary Table 4). Images 

were processed through registration, autofluorescence subtraction, single cell segmentation, and feature 

extraction. Due to different panel orders, raw data showed significant batch effects, with little mixing of 

cells from different TMAs in a UMAP projection based on single cell marker intensity (Figure 3e, NB5-

5). Again, the kBET algorithm27 and replicates’ cluster correlation were used to quantify the 

effectiveness of batch correction methods (Figure 5f, Supplementary Figure 16, NB5-6). Thirty methods 

were evaluated on three random samples of 600 cells from each core in each replicate (Supplementary 

Figure 16, NB5-5). Although Z-score normalization produced a reasonable kBET score (mean rejection 

rate=0.64, SEM=0.05, n=3), the UMAP did not show separation of each core, i.e. known breast cancer 

subtypes (Figure 5e, NB5-5). In contrast, the ComBat algorithm scored well with kBET (mean rejection 

rate=0.67, SEM=0.03, n=3), separated the cores in the UMAP, and clustering recovered known cell 

types within cell lines and normal tissues (Figure 5e, g, h). ComBat normalization applied without log2 

transformation produced the most consistent clustering between replicate cores (mean Pearson 

correlation=0.97, SEM=0.06, 8 cores x 3 sections, n=24; Figure 5f, h, Supplementary Figure 16, NB5-

5). RESTORE normalization resulted in improved cluster correlation compared to raw data (mean=0.73, 

SEM=0.25 versus mean=0.30, SEM=0.41, n=24), and recovered known biology (Figure 5f, 

Supplementary Figure 17, NB5-7); however, due to the lack of mutually exclusive marker pairs in cell 

lines, RESTORE did not perform as well as ComBat in this dataset (Figure 3f).  

 

Since the ComBat normalization method29 scored highest in kBET batch correction and cluster 

correlation in multiple datasets while recovering biological features of interest, we tested its sensitivity 

to different input distributions for parameterization. Since ComBat standardizes the mean and variance 

across batches, the same control tissue must be present in each batch (Figure 5i, j, Supplementary Figure 

16e, f). Sampling cells from three control tissues (i.e. sampled training) produced better kBET scores 
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than using a single control tissue (sampled training with kBET=0.51, SEM=0.06 versus same training 

with kBET=0.79, SEM=0.07, n=3, Figure 5i, j, Supplementary Figure 16, NB5-3). Cluster correlation 

varied with the resolution of clustering, indicating higher precision batch correction with sampling from 

three rather than a single tissue (with 9 clusters, sampled training mean=0.98, SEM=0.02 versus same 

training mean=0.98, SEM=0.04; with 17 clusters, sampled training mean=0.97, SEM=0.02 versus same 

training mean= 0.94, SEM=0.05, n=9 Figure 5i, j, Supplementary Figure 16f). Therefore, one or more 

control tissues with similar cellular composition to the sample tissues should be included in each batch 

of CyCIF for proper ComBat normalization. In the absence of control tissues and given mutually-

exclusive marker pairs, the RESTORE algorithm is a good alternative that produced high correlation in 

cluster composition in multiple replicate CyCIF experiments (mean correlation=0.88; 0.73). 

Additionally, in the absence of blank images for autofluorescence (AF) subtraction, RESTORE reduced 

the influence of AF on analytics (Supplementary Figure 15).  

  

In summary, we performed extensive validation of the CyCIF multiplex imaging method to optimize 

fluorophore signal removal, antibody order and autofluorescence subtraction. We also quantified CyCIF 

similarity to standard IF and the reproducibility of staining, using this data to evaluate methods for batch 

normalization and cluster analysis to define biologically-relevant cell types. In parallel, we developed 

the open-source python library, mplexable, for reproducible image processing and analysis. We 

provided all of our code and data not only to document and reproduce our work, but to enable use and 

further community development of our analytics (https://github.com/engjen/cycIF_Validation). Our 

validation studies and computational tools will facilitate maturation of multiplex imaging methods 

towards quantitative, reproducible characterization of protein expression in intact tissue sections. 
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Methods 

Tissue and Cell Button Preparation 

We purchased TMA tissue sections (BR1506, US Biomax, Derwood, MD). All human tissue was 

collected under HIPPA approved protocols with the highest ethical standards with the donor being 

informed completely and with their consent (OHSU Biolibrary IRB 4918). Tissue blocks and tissue 

microarrays were from archival tissues fixed with standard methods (Biomax, Derwood, MD and OHSU 

Biolibrary, Portland, OR). Cell lines were cultured in conditions following Neve et al31. Cell line 

sources and culture media are as follows: AU565, ATCC, RPMI1640+10%FBS, BT474, ATCC, 

PMI1640+10%FBS, HCC1143, Adi Gazdar (now available through ATCC), RPMI1640+10%FBS, 

HCC3153, Adi Gazdar, RPMI1640+10%FBS, MDAMB436, ATCC, DMEM+10%FBS, T47D, ATCC, 

RPMI1640+10%FBS. FFPE cell buttons were prepared as previously described32. For each cell button, 

cells were scraped from two 15 cm plates and spun down (in 10 ml of culture media, no serum, for 4 

min X 1000 rpm) in collodion-coated 15 ml glass centrifuge tubes (Fisher #C408-500). Collodion bags 

containing pellets were gently removed from tube, tied with thread, and transferred to 10% buffered 

formalin on ice. Cell pellets in collodion bags were fixed overnight at 4° C in 10% buffered formalin, 

then transferred through graded ethanol series (30%, 50%, 70%) for one hour each, and processed and 

embedded in paraffin. For cell line TMA creation, 1 mm cores from normal breast and tonsil (OHSU 

Biolibrary), or FFPE cell buttons were punched and inserted into the recipient block with the Estigen 

manual tissue arrayer MTA-1. 

 

Cyclic Immunostaining 

Formalin-fixed paraffin-embedded (FFPE) human tissues were sectioned at 4-5 microns and mounted on 

positively charged slides (Tanner Adhesive Slides, Mercedes Medical, TNR WHT45AD). The slides 

were baked overnight at 55 °C (Robbin Scientific, Model 1000) and for an additional 30 minutes at 65 
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°C, (Clinical Scientific Equipment NO. 100). Tissues were deparaffinized and hydrated through xylenes 

and graded ethanol (EtOH) as follows: xylenes (3 x 5 min), 100% EtOH (2 x 5 min), 95% EtOH (2 x 2 

min), 70% EtOH (2 x 2 min), and distilled and deionized water (ddH2O, 2 x 5 min). Two step antigen 

retrieval was performed in a Decloaking Chamber (Biocare Medical, Pacheco, CA) using the following 

settings: set point 1 (SP1), 125 °C, 30 seconds; SP2: 90 °C, 30 seconds; SP limit: 10 °C variation. 

Briefly, slides were placed in decloaking chamber in a plastic Coplin jar containing citrate buffer, pH 6 

(10 mM citrate, Sigma C-1909). Two additional polyethylene Coplin jars with buffer were placed in 

chamber to heat, which contained ddH2O and 1x Target Retrieval Solution, pH 9 (Agilent S2367). The 

chamber was heated to 125 °C, held for 30 seconds (SP1), then cooled to 90 °C, 0 psi and held for 30 

seconds (SP2). After the SP2 program was completed, the decloaking chamber was turned off, opened, 

and slides were dipped in the Coplin jar containing hot ddH2O for ~1 second. Slides were then 

transferred to hot 1x Target Retrieval Solution pH 9. The lid was placed back on chamber, and slides 

remained in hot pH 9 buffer for 15 minutes. Following this two-step antigen retrieval, the tissues were 

washed in two brief changes of ddH2O (~2 seconds) and then washed once for 5 minutes in 1x 

phosphate buffered saline (PBS), pH 7.4 (Fisher, BP39920).  

 

Pre-quenching to reduce autofluorescence  

Next, pre-quenching was performed on tissues to reduce tissue autofluorescence. Quenching solution 

containing 20 mM sodium hydroxide (NaOH) and 3% hydrogen peroxide (H2O2) in 1x PBS was freshly 

prepared from stock solutions of 5 M NaOH and 30% H2O2, and each slide was placed in 10 ml 

quenching solution. Slides were quenched face down on ~1 mm risers in a 4-well rectangular tissue 

culture dish (each well holds one slide), under incandescent light, for 30 minutes. Lamps with 60-Watt 

incandescent bulbs were positioned so the bulb was four inches above the 4-well dish. Placing slides in 

the outer two wells and leaving the center wells empty resulted in the temperature increasing from 23° C 
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to 39° C over 30 minutes (see Supplementary Figure 5c). Slides were then removed from the chamber 

with forceps and washed 3 x 2 min in 1x PBS. Sections were blocked in 10% normal goat serum (NGS, 

Vector S-1000) and 1% bovine serum albumin (BSA, Sigma A7906) in 1x PBS for 30 minutes at room 

temperature in a humidified chamber. Plastic cover slips (IHC World, IW-2601) were used to spread 

blocking solution evenly across tissue. Tissues were soaked briefly in PBS in a Coplin jar to remove 

plastic coverslip, then washed 1 x 5 min in PBS. Coverslips (Corning; 2980-243 and 2980-245) were 

mounted in Slowfade Gold plus DAPI mounting media (Life Technologies, S36938). Pre-staining 

autofluorescence signal was acquired using a Zeiss Axioscan Z.1 (see imaging protocol below). After 

acquiring autofluorescence signal, slides were soaked in 1x PBS for 10 – 30 minutes in a glass Coplin 

jar, waiting until glass coverslip slid off without agitation. 

 

Primary Antibody Staining 

Primary antibodies were diluted in 5% NGS and 1% BSA in 1x PBS (see Supplementary Data 1) and 

applied overnight at 4 °C in a humidified chamber, covered with plastic coverslips (IHC World, IW-

2601). Following overnight incubation, tissues were washed 3 x 10 min in 1x PBS, and coverslipped as 

described above. Antibody information is provided in Supplementary Data 1. 

 

Fluorescence Microscopy 

For standard versus CyCIF and reproducibility experiments, fluorescently stained slides were scanned 

on the Zeiss AxioScan.Z1 (Zeiss, Germany) with a Lumencor SpectraX-IR light source (Lumencor Inc., 

Beaverton, OR). The filter cubes used for image collection were DAPI (Semrock, LED-DAPI-A-000), 

AF488 (Zeiss 38 HE), AF555 (Zeiss 43 HE), AF647 (Zeiss 50) and Alexa Fluor 750 (AF750, Chroma 

49007 ET Cy7). The exposure time was determined individually for each slide and stain, and the LED 

light intensity was fixed at 100%. Full tissue scans were taken with the 20x objective and stitching was 
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performed in Zen Blue image acquisition software (Zeiss). After those initial experiments, a new light 

source was purchased and used for collecting quenching and round order data. For those experiments, a 

Colibri 7 light source (Zeiss), with the same filter cubes, except DAPI (Zeiss 96 HE), was used. The 

exposure time was determined individually for each slide and stain to ensure maximum dynamic range 

without saturation, and the LED light intensity was fixed at 10% (DAPI), 20% (AF488), and 50% 

(AF555, AF647, AF750). Full tissue scans were taken with the 20x objective (Plan-Apochromat 0.8NA 

WD=0.55, Zeiss) and stitching was performed. 

 

Quenching of Fluorescence Signal for Cyclic Immunostaining. 

After successful scanning, slides were soaked in 1x PBS for 10 – 30 minutes in a glass Coplin jar, 

waiting until glass coverslip slid off without agitation. Quenching was performed as described above, in 

the section of Pre-quenching to reduce autofluorescence. After removal from quenching solution, slides 

were washed 1 x 5 min in 1x PBS and subsequent rounds of primary antibodies were applied, diluted in 

blocking buffer as described in the section of Primary Antibody Staining.  

 

Image Registration, Autofluorescence Removal and Segmentation  

Scanned images were first split into separate scenes using the function Split Scenes (Write files) in Zeiss 

Zen Blue software (with "Include scene information in the Generated File name" unchecked). For the 

datasets used in this work, we did not apply flat field correction, although it may be applied in Zen using 

the function Shading Correction. Using the same software, each scene was then exported to 16-bit 

grayscale uncompressed TIFF using the function Image Export. Quality control and metadata extraction 

were performed in python. TIFF images from each round of cyclic immunostaining were registered 

based on DAPI staining as follows. Image features were found with the detectSURFFeatures function, 

and automated feature matching was performed with the matchFeatures function, in Matlab (R2017B 
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9.3.0.713579, MathWorks, Natick, MA). Image registration was the performed using Matlab’ 

estimateGeometricTransform function and performing affine registration (scaling, rotation, translation). 

Although Matlab was used for the majority of registration in this work, we also successfully registered 

images using a python implementation. Both scripts are provided (Matlab: 

https://gitlab.com/engje/mplexable/-/blob/master/mplexable/src/template_registration_mscene.m and 

python: https://gitlab.com/engje/mplexable/-

/blob/master/mplexable/src/template_registration_mscene.py). 

Autofluorescence subtraction preceded segmentation. Images of unstained tissue were acquired in each 

channel, before and after staining. For each marker, background images were scaled linearly by 

exposure time and relative round, and subtracted using mplexable. 

Deep learning based cell segmentation was performed with Cellpose, a generalist algorithm for 

cellular segmentation33. Cellpose was used to generate nuclear and cell masks by classifying pixels on 

the basis of a DAPI or E-cadherin antibody staining, respectively. The following parameters were used 

for Cellpose segmentation: for the cells, diameter=30 pixels, flow_threshold=0.6, min_size=113; for the 

nuclei, diameter=30, flow_threshold=0, min_size=28. Nuclei with no E-cadherin (Ecad) staining (i.e., 

non-epithelial cells) were expanded by 5 pixels (1.6 micrometers) to approximate the cytoplasm, based 

on the average measurement of immune cell cytoplasm in images. The cytoplasm was derived by 

subtracting the nuclei area from the cell segmentation result, or from the 5-pixel expansion result in the 

case of Ecad negative cells. The mean intensity of each subcellular region was extracted using 

mplexable. Watershed-algorithm-based cell segmentation was performed for some datasets, using in-

house java software for the following operations. A z-projection of DAPI images from all rounds of 

staining was processed with the white top-hat algorithm that separates individual nuclear candidates 

from the background. Contours of nuclei were detected with the Prewitt operator, and single nuclei were 

segmented by applying a watershed algorithm to the nuclear contours, with top-hat candidates as seeds. 
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Nuclear segmentation accuracy was improved by sorting nuclei based on expression of tumor 

cytokeratins or immune markers and using this information to set a maximum nuclear size for the 

watershed algorithm. If a cell was positive for cytokeratins, it was allowed to have a larger nucleus than 

cells that were negative for cytokeratins because it was assumed to be an epithelial cell. Cell 

segmentation was achieved by applying a watershed on the Ecad image with segmented nuclei as seeds, 

or by inflating the nuclei if the Ecad marker was negative. The resulting segmentation mask defined 

nuclear and cytoplasmic regions for each cell. Mean intensity used for downstream analysis was selected 

for each marker based on its biologically-relevant subcellular region (e.g., cytoplasm for CK19, nuclei 

for Ki67). 

 

Data Analysis 

For single cell analyses, single cell mean intensity was used for clustering, as in Figure 4 and 5. For 

percent positive calculation, as in Figure 2c (left), cells with a mean intensity above threshold were 

considered positive. Tissue retention was calculated in Figure 2e – h by thresholding DAPI using the Li 

algorithm34 and considering cells above DAPI threshold as retained in that round. For signal-to-

background (SBR) calculations, mean intensity was integrated across the entire slide or region of 

interest, as in Figure 2c, right, Figure 3, and Figure 5b. In fluorescence imaging, background adds to the 

signal of interest35, so SBR was calculated as (mean intensity of positive pixels – mean intensity of 

negative pixels) / mean intensity of negative pixels (NB2-1). For SBR quantification in Figure 2, 

thresholds were applied directly to image data (no single cell segmentation) and signal was taken as the 

mean pixel intensity above the threshold, while background was defined as the mean pixel intensity of 

pixels below the threshold and 30 pixels away (10 μm) from the positive pixels to exclude the influence 

of lateral bleed through. Since the threshold directly determines the result, thresholds were used that 

selected a similar pixel pattern and area in adjacent sections. The same marker in adjacent sections was 
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visualized side-by-side, and the respective thresholds were adjusted until the positive pixels were as 

equivalent as possible, which was estimated by eye. Therefore, although the threshold reflected the 

subjective decision of the researcher, it allowed comparison of similar pixels in replicates across 

adjacent sections. The masks that resulted from thresholding are provided for visual assessment of 

thresholds (https://github.com/engjen/cycIF_Validation/blob/master/Extended_single_vs_cyclic.ipynb 

and 

https://github.com/engjen/cycIF_Validation/blob/master/Extended_Reproducibility_3TMA_Tissue.ipyn

b). 

We tested whether the same threshold could be applied to different regions of the same slide by 

measuring correlation between two ROIs in normal breast and two ROIs in HER2+ breast tumor given 

the same threshold. The mean fluorescence intensity measured above threshold, and the intensity of 

background noise were highly correlated between ROIs (Supplementary Figure 2). Finally, we tested 

whether manual thresholds gave us a different answer for SBR calculations than estimating SBR at the 

95th/5th quantile (Supplementary Figure 14). 

Dynamic range was estimated using the 4th and 99.5th quantile of mean intensity for markers in 

tissues with known positive staining. We compared different ranges for estimating dynamic range (5th to 

98th percentile versus 5th to 99.9 percentile, see Supplementary Figure 14). We found that using a higher 

maximum did not change the dynamic range as much for common markers (e.g., CK7) but had more 

effect on rare markers (e.g., Ki67 and alpha-SMA). Therefore, we selected the 99.5th percentile as the 

maximum to reflect both common and rare markers’ dynamic range. In cases where we did not set a 

manual threshold, SBR was estimated as the ratio of the (99.5th quantile – 4th quantile)/4th quantile of 

mean intensity.  

For SBR quantification in Figure 3, we needed to calculate SBR in the presence of artifacts such 

as non-specific staining, bleed through, autofluorescence and incomplete quenching. We utilized the 
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napari image viewer to overlay all of the markers, set thresholds and create masks. For positive signal, 

we set a threshold (recorded in our 20211007_napari.py script) that created a mask including all of the 

positive staining plus any bright artifacts. We then manually erased areas of the mask covering imaging 

or staining artifacts and saved the mask for future reproducibility. For background signal, we manually 

selected six regions of the image exhibiting background caused by the artifacts listed above, and again 

saved the mask. We then extracted the mean intensity of the positive and background areas of the image 

and used these to calculate SBR as described above.  

For F1 score calculation in Supplementary Figure 11, we again used the napari image viewer to 

overlay staining, segmentation results, and positive cells based on manual thresholding. Based on the 

staining pattern and other marker’s expression (e.g., membranous CD8 staining in CD45+ cells was a 

true CD8 positive), we manually annotated false negatives in three 2000 x 2000-pixel ROIs. False 

positives were any cell with AF488 autofluorescence >1024-pixel intensity, true positives were cells 

above this threshold excluding false positives and true negatives were all other cells neither positive, 

false positive or false negative.   

Normalization methods tested included transformations (raw, log2 or arcsinh), division by 

background signal, determined either with RESTORE, which requires mutually exclusive marker 

expression in different cell populations, or the 3rd quantile of background fluorescence measured in the 

reverse subcellular compartment of expected localization (e.g., cytoplasmic signal for nuclear markers), 

scaling methods (standard, min-max, max-abs, robust, quantile and power) which are implemented in 

the python library scikit-learn36 and batch correction algorithms regress_out and ComBat, implemented 

in the python library scanpy30. For RESTORE normalization, the scikit-learn36 TruncatedSVD 

decomposition function was used to quantify the L-shaped distribution of marker pairs; in each core, 

markers were considered mutually exclusive if the function yielded an R-value above 0.5, or above 0.2 

when no pairs reached the 0.5 cut-off. For global thresholds, a more stringent cutoff was used (for the 
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presented TMA datasets 0.66 globally or 0.5 when no pairs reached the 0.66 cut-off. For each core or 

batch, this procedure generated data-driven mutually exclusive marker pairs. The selected mutually 

exclusive marker pairs were used to calculate RESTORE thresholds, and the median threshold produced 

by multiple marker pairs was selected for normalization. Mean intensity was normalized with division 

by local (per core) and global (per batch) thresholds. For the RESTORE scale method, cells with 

intensity below threshold were set to a random value between 0 and 0.02, while all cells with intensity 

above threshold were scaled to a range of 0.02 – 1 for each marker.  

Following normalization, 7200 cells (cell lines) or 5400 cells (tissues) were randomly sampled (i.e., 600 

cells per TMA core from each batch) and evaluated for batch effects using the kBET algorithm27 (n=3). 

UMAP visualization and graph-based Leiden clustering (resolution=0.6) was carried out using scanpy30.  

 

Statistics and Reproducibility  

All visualizations and results can be fully reproduced from the raw images with the accompanying code 

and data, here https://github.com/engjen/cycIF_Validation. Statistical analyses were conducted in 

python using the scipy37 library. Replicates were defined as separate CyCIF experiments. Sample sizes 

are defined by the number of tissues stained, including tissue cores in TMAs.  

 

Data Availability 

All image data is available at synapse.org, at cycIF_Validation, syn23644107. The synapse platform 

requires registration. With a free account, the images are freely accessible. All other source data used to 

produce the graphs and figures is available here: https://github.com/engjen/cycIF_Validation, DOI: 

10.5281/zenodo.6049278. 

 

Code Availability 
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The data, code and Jupyter notebooks to reproduce the analyses herein are at 

https://github.com/engjen/cycIF_Validation, DOI: 10.5281/zenodo.6049278. For image processing, we 

developed mplexable, available through the Python Package Index, https://pypi.org/project/mplexable/. 

An image processing tutorial with Zeiss Axioscan example images is available at 

https://www.synapse.org/#!Synapse:syn26958265. Additionally, we demonstrate processing Zeiss 

Axioscan, Akoya CODEX and Miltenyi MACSima prototype images in our pipeline example Jupyter 

notebooks, here: https://gitlab.com/engje/mplexable/-/tree/master/jupyter. 
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Figure Legends 
 
Figure 1. Reproducible Generation, Processing and Analysis of Multiplex Images. a. CyCIF data is 
generated with a reproducible protocol (dx.doi.org/10.17504/protocols.io.3xfgpjn). b. Image processing 
pipeline integrates quality control and workflow management with in-house Python software, 
mplexable, facilitating data quality, scaling and reproducibility. c. Analysis, image visualization and 
figure generation are fully reproducible with shared linked and executable code and data. Raw and 
processed data, metadata and analysis are documented in Jupyter notebooks running our free and open-
source software that provides a framework for reproducible image analysis.  
 
Figure 2: CycIF Signal to Background and Tissue Loss. Comparison of CyCIF staining to a standard 
IF protocol, in adjacent sections of HER2+ tumor and normal breast tissue. a. Multicolor visualizations 
are produced with our python code. b. Positive pixels, or foreground (FG), were determined by 
thresholding and negative pixels, or background (BG), were determined by selecting regions 10 µm 
away from positive regions. The signal-to-background ratio (SBR) is the mean intensity of FG/mean 
intensity of BG. c. Positive cell counts were determined by applying the thresholds from (b) to single 
cell mean intensities of segmented cells. Pearson correlation (R), was calculated for standard IF versus 
CyCIF fraction positive in tissue and SBR, n=26; R and p-value given in figure title. d. Three adjacent 
sections of a 72-core tissue microarray (TMA) containing normal and malignant tissues were repeatedly 
quenched to assess tissue loss during CyCIF. e. Tissue retention after each round of quenching. Error is 
95% confidence interval of tissue retention at each round for normal, benign and malignant tissues, n = 
54, 6 and 156, respectively (18 normal, 2 benign and 52 malignant tissues x 3 replicate TMAs). f. 
Fraction of cells remaining after 10 rounds of CyCIF, separated by type, stage, grade and source. g. 
Tissue retention by nuclear area quartile; error is 95% confidence interval, n=216 cores. h. Fraction of 
cells remaining after 10 rounds of CyCIF, separated by nuclear area quartile and nuclear eccentricity 
quartile. In f, h, Kruskal-Wallis H-test was used to assess differences in tissue retention, n = 216 (72 
cores x 3 replicate TMAs), except Source, which includes only normal tissue, n=41 cores. p-value 
shown in figure title. In a-b, scale bar = 50 µm. 
 
Figure 3. CyCIF Optimization: Quenching and Panel Order. a-d. Quenching Optimization. a. 
Normal pancreas was stained with CK7-AF488 and imaged before and after fifteen minutes of 
quenching in 3% (top row), 4.5% (middle row) or 6% (bottom row) H2O2. b. Breast cancer tissue stained 
with CK7-AF488 and Vimentin-AF488 imaged before and after 30 (top) and 60 minutes of quenching 
(bottom). c. Tissue stained as in (b) and imaged before and after 30-minute quenching under 
incandescent light source. d. Mean AF488 (left) or AF555 (right) fluorescence intensity in tissue area of 
stained tissue relative to a blank autofluorescence control after one round of quenching with conditions 
shown in a-c. e - h. Panel order optimization, with representative images. i. Signal-to-background ratio 
(SBR) quantification was done by applying a threshold to find positive pixels, and manually selecting 
areas of non-specific background, e.g., tumor nests in e-g and stromal areas in h., n=6 areas per tissue. A 
t-test was used to assess significance; p-value shown in figure title. e. Non-specific nuclear staining in 
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the AF750 channel is improved by moving antibody to a later round. CD45-AF750 showed higher SBR 
in round (R) 6 than in R2. f. Autofluorescence in the AF55 or AF488 channel is mitigated by moving 
antibody from R1 to a later round. CD8-AF555 had higher SBR in R7 than R1. g. Channel bleed 
through is mitigated by pairing two bright or two dim antibodies in adjacent channels, not a bright with a 
dim. PD1-AF647 shows bleed through from bright CK19-AF750 in R1, but not from CD45-AF750 in 
R6. h. Incomplete quenching is mitigated by moving markers resistant to quenching to later in the panel. 
Vimentin-AF488 resists quenching and is moved after cytokeratin staining, rather than before. j. 
Schematic of panel optimizations addressing background and dynamic range, autofluorescence, channel 
bleed-through and incomplete quenching. a-c & e-h. Blue = DAPI, Green = Stain, green colorbar = 16-
bit grayscale intensity, Y-axis scale is in micrometers, scale bar = 30 µm. 
 
Figure 4. Autofluorescence Characterization in the CyCIF Protocol. a. Top: DAPI nuclear staining 
and autofluorescence in the AF488 channel before and after 60 minutes of quenching. Arrowheads show 
areas of bright (gray), medium (purple) and dim (pink) autofluorescence. Bottom: Colored nuclei of 
clusters 7 (left), 4 (middle) and 6 (right) on the autofluorescence image, representing cells with bright 
(gray arrowhead), medium (purple arrowhead) and dim (pink arrowhead) autofluorescence, respectively. 
Scale bar = 30 µm. b. UMAP projection of single cells based on autofluorescence, colored by AF488 
intensity after 0 or 60 minutes of quenching (left and middle); Umap colored by unsupervised clustering 
results of the Leiden algorithm (right). c. Mean AF488 intensity of cells in each Leiden cluster over 
rounds of quenching; note bright (gray line) cells quench differently than medium (purple line) and dim 
(pink line) cells. Similar trend in nuclear (left) and cytoplasmic (right) autofluorescence, although 
nuclear is brighter. d. Autofluorescence analysis as in (a-c) was repeated on a 72-core tissue microarray 
(TMA). AF488 autofluorescence shown after 0 minutes (top) and 330 minutes or quenching (bottom). e. 
UMAP projection of single cells based on autofluorescence, colored by AF488 intensity after 0 (top) or 
330 minutes of quenching (bottom). f. UMAP colored by batch. Three adjacent sections from TMA 
were repeatedly quenched and normalized by batch for analysis. g. UMAP colored by unsupervised 
clustering results of the Leiden algorithm. h. Mean AF488 intensity of cells in each Leiden cluster over 
rounds of quenching. Overall, minimum intensity was observed at 120 minutes and maximum intensity 
at 240 minutes. i. Subtracting the minimum intensity autofluorescence will avoid over-subtraction while 
still removing 60 - 70% of autofluorescence at 240 minutes. j. Heatmap showing observed number of 
cells per Leiden cluster – expected number of cells per cluster, by tissue, y-axis, illustrating different 
trends by tissue. Brightest autofluorescence, cluster 14 (yellow line, h), originates from liver tissue. 
Cluster 10, showing greatest fraction of autofluorescence remaining after subtraction (blue bar, i), 
originates primarily in lymph node. c, h and i. Error bars = standard error of the mean, n=3 slides.  
 
Figure 5. Reproducibility and Normalization of CyCIF Staining Intensity. a. Representative images, 
generated with our python code, of 12 markers from three adjacent sections of a breast cancer TMA 
stained with a 20-marker CyCIF panel, scale bar = 50 µm. b. Relative SBR of slide 1-2, 2-3 and 1-3 for 
each marker. c. Evaluation of batch correction with kBET (left, lower rejection rates indicating better 
batch correction, n=3 batches, 5400 cells) and correlation (Pearson, n=9) of Leiden cluster composition 
between replicate cores for different batch correction methods (right) d. Overview of breast cancer cell 
line and normal tissue TMA created to represent breast cancer subtypes. e. UMAP projection based on 
single-cell marker intensity; left to right: raw data, z-score normalization and ComBat normalization, 
colored by batch (top) and TMA core/cell line (bottom). f. Evaluation of batch correction with kBET 
(left, n=3 batches, 7200 cells) and cluster correlation (right, n=24) on cell line TMA. g. Heat map of 
relative mean intensity of each marker in the ComBat normalized, Leiden-clustered cell line TMA data, 
with annotation on left. h. Fraction of cells in each cluster from (g), showing similar composition of 
technical replicates and reflecting known normal tissue and cell line cell types. i. Schematic of different 
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selection methods to parameterize the ComBat algorithm. j. Evaluation of ComBat parameterization 
with kBET (left, n=3 batches, 7200 cells) and cluster correlation (right, n=9). c, f and j. Error bars = 
standard error of the mean, n=3 slides.  
 
 
 
 
 

Table 1: Links to Analysis Notebooks 

Name url 

NB1-1  https://github.com/engjen/cycIF_Validation/blob/master/Multicolor_Image_Visualization.ipynb  

NB2-1  https://github.com/engjen/cycIF_Validation/blob/master/Extended_single_vs_cyclic.ipynb 

NB2-2  https://github.com/engjen/cycIF_Validation/blob/master/SinglevsCyclic_44290.ipynb 

NB3-1  https://github.com/engjen/cycIF_Validation/blob/master/Quenching_analysis.ipynb 

NB3-3  https://github.com/engjen/cycIF_Validation/blob/master/Image_Analysis_Visualization.ipynb 

NB3-4  https://github.com/engjen/cycIF_Validation/blob/master/DoubleApplication_K157.ipynb 

NB3-5  https://github.com/engjen/cycIF_Validation/blob/master/OrderOptimization_K154vsK175.ipynb 

NB3-6 https://github.com/engjen/cycIF_Validation/blob/master/Macsima_clustering.ipynb 

NB4-1 https://github.com/engjen/cycIF_Validation/blob/master/Quenching_Single_Cell.ipynb 

NB5-1  https://github.com/engjen/cycIF_Validation/blob/master/Extended_Reproducibility_3TMA_Tissue.ipynb 

NB5-2  https://github.com/engjen/cycIF_Validation/blob/master/TMAReplicates_analysis.ipynb 

NB5-3  https://github.com/engjen/cycIF_Validation/blob/master/Normalization_testing_tissue.ipynb 

NB5-4  https://github.com/engjen/cycIF_Validation/blob/master/Normalization_testing_HER2-N75.ipynb 

NB5-5  https://github.com/engjen/cycIF_Validation/blob/master/Normalization_testing.ipynb 

NB5-6  https://github.com/engjen/cycIF_Validation/blob/master/kBET.ipynb 

NB5-7  https://github.com/engjen/cycIF_Validation/blob/master/RestoreNorm_scale.ipynb 

 

Table 1. Reproducible Image Analytics. All figures and results can be fully reproduced with the 

accompanying Jupyter notebooks and data provided here: https://github.com/engjen/cycIF_Validation, 

DOI: 10.5281/zenodo.6049278 
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