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Abstract

Multiplex imaging technologies are increasingly used for single-cell phenotyping and spatial
characterization of tissues; however, trangparent methods are needed for comparing the performance of
platforms, protocols and analytical pipelines. We developed a python software, mplexable, for
reproduci ble image processing and utilize Jupyter notebooks to share our optimization of signal
removal, antibody specificity, background correction and batch normalization of the multiplex imaging
with afocus on cyclic immunofluorescence (CyCIF). Our work both improves the CyCIF methodol ogy

and provides aframework for multiplexed image analytics that can be easily shared and reproduced.

Introduction

Multiplex imaging methods enable quantification of numerous proteins in tissues while retaining spatial
and morphological information. In many contexts, dozens of targets must be labeled in an intact tissue
section to identify key cell types and quantify their spatial relationships. Multiplex imaging technologies
utilize various strategies to overcome the limitation of conventional immunofluorescence (IF) protocols
that label afew markers per section. Five and seven-plex immunohistochemistry (IHC) has been
achieved by fluorophore-conjugated tyramide deposited on the tissue*. Twelve to 29-plex
immunohistochemistry (IHC) is enabled with alcohol-soluble peroxidase substrate 3-amino-9-
ethylcarbazole (AEC) detection combined with antibody stripping*> and 40-plex IF can be achieved
with antibody elution in iterative indirect immunofluorescence imaging (4i)® and multiple interactive
labeling by antibody neodeposition (MILAN)"2. Direct immunofluorescence using fluorophore-
conjugated primary antibodies and chemical inactivation of fluorescent dyes enables detection of over
50 protein targets in a single tissue section, in cyclic immunofluorescence (CyCIF)*™*!, NeoGenomics
MultiOmyx platform®, and iterative bleaching extends multiplexity (IBEX)*. Similarly, multi-epitope-

ligand cartography (MELC), employs photo-inactivation of fluorescently |abeled antibodies'**>.


https://doi.org/10.1101/2021.11.29.470281
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.29.470281,; this version posted May 5, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Eng J et al.
Furthermore, fluorophore-conjugated DNA barcodes (i.e., oligonucleotides) facilitate multiplexing in

co-detection by indexing (Akoya's CODEX)*, Ultivue's InSituPlex'’, Immuo-SABER®®, and Ab-oligo
cyCIF™. Imaging mass cytometry®® and multiplex ion beam imaging® can detect over 40 antibodies
conjugated to metal reporters by time-of-flight mass-spectrometry. The Nanostring GeoMx? platform
can detect >100 protein targets conjugated to oligonucleotide barcodes, although the data are not images,
but spatially registered counts of released oligos®. All of these methods rely on specific labeling of
proteins with antibodies, a process that must be validated by studies that establish specificity, sensitivity
and reproducibility. Ideally thisis accomplished viatransparent analyses using well documented, open-
source image analysis pipelines.

F> while

Herein, we quantitatively assess antibody labeling in one multiplex imaging platform, CyCl
varying antibody application strategies, fluorescence signal and tissue autofluorescence removal
methods, and experimental batches. Thisresulted in several strategiesto improve CyCIF, including
optimization of aspects of chemical bleaching, autofluorescence correction, antibody application order
and batch normalization. Herein, we build on protocol optimization efforts'®** and share our image
processing pipeline software, the free and open source python library, mplexable (Figure 1a-b). Finally,
we introduce a framework for reproducible image analysis and visualization. Our analytics comprise
linked and executable code and data that enabled all figures and analytical resultsin our paper to be fully

reproduced from the accompanying image data (https://www.synapse.org/#! Synapse:syn23644107),

processed data and code (https.//github.com/engjen/cyclF_Validation). We used Jupyter notebooks to

link code, data, metadata and the computational environment in a machine- and human-readable
document (Figure 1c, Table 1). Although we focused on validation of a single platform, our tools for
image analysis facilitate quantitative and reproducible characterization of tissues by any multiplex

imaging platform.
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Resultsand Discussion

Adopting the method of Lin et al.’, we stained formalin-fixed, paraffin-embedded (FFPE) tissues using a
cyclic process in which four proteins per cycle were labeled using a direct immunofluorescence (IF)
protocol, imaged, and quenched of fluorescence signal (Figure 1a,
dx.doi.org/10.17504/protocols.io.23vggn6). We typically labeled 40 — 60 proteins per slide before tissue
and staining quality degraded (quantified in Figure 2e and Supplementary Figure 7, respectively). We
devel oped free and open-source tools to perform quality control on images and metadata and automate
image processing from registration through single-cell segmentation and feature extraction (Figure 1b,

https.//pypi.org/project/mplexablel). Finally, we shared all analytics used to produce figures and

conclusions as linked and executable code and data (Figure 1c). Jupyter notebooks serve as a human and
machine-readable record that described the data, image analysis steps and computational environment,

both enabling replication of our findings and linking data and metadata to facilitate use by others.

Comparison to Standard IF

We benchmarked our CyCIF protocol against adirect IF protocol. CyCIF staining in normal and
malignant breast tissue was compared to standard direct |F on adjacent tissue sections. Antibodies and
staining conditions were selected that produced visually similar staining patternsin both CyCIF and
standard IF staining (Figure 2a, Notebook 1-1, [NB1-1]). For quantification, we set an intensity
threshold for each marker, with all pixels above the set threshold considered positive. All pixels at |east
10 micrometers away from positive staining were considered background pixels (the 10 um gap wasto
exclude any influence of lateral bleed through around positive pixels, Figure 2b, Supplementary Figure
1, NB2-1). If amarker was negative in a given tissue section, it was not analyzed in that tissue.

Although the positive and background intensity varied between conditions, presumably due to the
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imprecisions introduced by manual pipetting, the relative signal-to-background ratio (SBR, see methods)

of standard IF compared to CyCIF was near one (relative SBR: mean=0.96, standard error of the mean
[SEM]=0.22) and highly correlated (Pearson R=0.89, p=1.6e-9, Figure 2c, Supplementary Figure 1,
NB2-2). We assessed specificity between conditions by segmenting single cells and counting positive
cells with amean intensity above the set threshold. We found that the percentage of positive cells of
standard IF relative to CyCIF was also near one (relative % positive: mean=0.96, SEM=0.18) and the
fraction positive was highly correlated (Pearson R=0.99, p=5.8e-24, Figure 2c, Supplementary Figure
1c, NB2-2). We concluded that the SBR and specificity of antibody staining in the first five cycles of
CyCIF issimilar to standard IF, the cyclic process does not excessively impact tissue staining, and

CyCIF offers the advantage of detecting increased marker combinations while utilizing asingle slide.

Tissue Loss Characterization

The CyCIF process resulted in increased tissue loss compared to standard IF (Supplementary Figure 1a,
NB2-1). In order to characterize the numbers and types of cells and tissues that were susceptible to
tissue loss during CyCIF, three adjacent sections of a 72-core tissue microarray (TMA) containing
normal and malignant tissues were repeatedly quenched and imaged (Figure 2d). Slow but steady tissue
loss was observed over 10 rounds of CyCIF, with 95% of cells remaining after 10 rounds (Figure 2¢).
We found that the 18 normal tissues suffered more tissue loss than the 52 malignant and 2 benign tissues
(Figure 2e), and the difference in fraction of cells remaining after ten rounds was significant (Figure 2f).
We found no difference in the number of cellslost in tissues separated by stage or grade, or by cells
separated by their nuclear size and shape (which correlate with epithelial, immune, endothelial or
mesenchymal cell types, Figure 2f, g, h). While all malignant tissues were obtained from autopsy,
normal tissues obtained from surgical resections vs. autopsy showed a trend towards reduced tissue loss

(Mann-Whitney U, p=0.083). This could reflect tissue processing variation, as smaller tissue size and
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longer time in fixation have been shown to reduce section detachment in immunohistochemistry®. There

were significant differences in tissue loss in normal tissues from different organs and malignant tissues
with different pathol ogies (Supplementary Figure 3). Our results suggest that tissue |oss varied more

between different tissues than between individual cell types within a given tissue.

Quenching Condition Assessment

Most tissue loss was observed during the quenching step, necessitating development of gentle yet
effective conditions for complete signal removal. CyCIF fluorescence signa removal was accomplished
by chemical quenching of fluorescent dyes using hydrogen peroxide (H2O-). Only certain dyes,
including Alexa Fluor (AF)-488, AF555, AF647 and AF750, were quenchable using this method. Other
dyes, including AF546 and fluorescein, were resistant to quenching, as previously reported®. Increasing
H>O, concentration from 3% to 4.5% or 6% in 20 mM sodium hydroxide did not improve quenching
rate, and additional timein H,O, also failed to completely eliminate strong signal (Figure 3a, b, d
Supplementary Figure 4, 5 NB3-1). Gentle heating with an incandescent light placed ~4 inches above
the sample during quenching (see methods) appeared to increase the rate of H,O, oxidation (estimated
by heat generation, Supplementary Figure 5c), resulting in complete signal removal (Figure 3c, d
Supplementary Figure 5 a, b, NB3-1). Quantification of the unstained negative controlsin all quenching
conditions showed that mean tissue autofluorescence decreased during the first quench (AF488: mean
22% decrease, SEM=2.8%; AF555: mean 24% decrease, SEM=2%, AF647: mean 5% decrease,
SEM=1.4%, n=3), a decrease not seen in an unquenched tissue that was repeatedly imaged
(Supplementary Figure 5e, f, NB3-1). Therefore, we standardized quenching using 3% H,O, for 30
minutes with incandescent light and added an additional round of quenching (i.e., pre-quenching before
CyCIF staining) similar to others™, to reduce overall tissue autofluorescence by roughly 25%

(Supplementary Figure 5e).
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Antibody Order Evaluation and Improvement

Finally, we tested if the order of antibody application in the CyCIF pand influenced antibody sensitivity
and specificity. We applied an 11-round, 44-antibody panel twice to the same TMA, for atotal of 22
rounds (Supplementary Table 1). We visually and quantitatively compared the antibody staining pattern
and single cell mean intensities of the images acquired after the first application of each antibody to the
second (Supplementary Figure 6, NB3-3). Of the 44 antibodies evaluated, 86% had a high Pearson
correlation (>0.8) between first and second applications, but 81% had lower dynamic range and SBR on
the second application (Supplementary Figure 7, NB3-4). Effects of double-application were antibody
and epitope specific, as 28% antibodies showed similar dynamic range (<50% change) on the second
application, and 62% still had an estimated SBR>1.5 on the second application, versus 78% on the first
(Supplementary Figure 7, NB3-4). Non-specific nuclear staining was observed for several antibodies
conjugated to the AF750 fluorophore, and unexpectedly, it diminished on the second application
(Supplementary Figure 6¢c, NB3-4). We tested several potential variables impacting stain quality in later
rounds, including non-specific 1gG interactions, non-specific fluorophore interactions, specific 1IgG
interactions, and quenching effects. Out of all of these, the only condition that apparently reduced non-
specific nuclear background was additional quenching (Supplementary Figure 8). Thus, we designed an
improved panel order which positioned antibody-conjugates tending to have non-specific staining in a
later round (Figure 3e), as well as addressed challenges of autofluorescence, channel bleed through and
incomplete quenching (Figure 3f-j, Supplementary Table 2). We compared the original and optimized
orders on near-adjacent slides cut from a TMA containing three tissues with positive staining for each
marker. SBR quantification was completed by applying athreshold to each marker to find positive
pixels, and manually selecting areas of non-specific background (e.g., tumor nests for immune markers

and stromal areas for tumor markers). Our new panel order significantly increased SBR (Figure 3i, NB3-
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5). In earlier rounds we prioritized antibodies to antigens with varied expression levels such as human

epidermal growth factor receptor 2 (HER?2), E-cadherin and cytokeratins, which generally lose their
dynamic range in later staining rounds. We placed immune cell markers in later rounds, as they have a
binary (i.e., on/off) expression pattern and sometimes showed better SBR in later rounds, due to
decreased background (Figure 3e, f, j). Markers expressed in the same cell type and/or subcellular
location were placed in non-adjacent channels and rounds to allow detection artifacts from channel bleed
through and any incomplete quenching. Bleed through was evident for weakly staining and strongly
staining antibodies in adjacent channds (e.g., PD1-AF647 and CK19-AF750, Figure 3 g, j), but was
minimized by avoiding such combinationsin the same round. Bleed through was not specific to our
selected fluorophores and filter sets, as we observed FITC to PE bleed through in another multiplex
imaging platform, which could also be mitigated by avoiding strongly staining and weakly staining

antibodies in adjacent channels (Supplementary Figure 8, NB3-6).

Autofluorescence Dynamics and Corrections

Although pre-quenching reduced overall tissue autofluorescence by ~25% (Supplementary Figure 5 e),
we sought to develop a method to computationally subtract remaining autofluorescence, which, in some
tissue structures, was brighter than the biomarker staining. First, we characterized single-cell
autofluorescence dynamics over rounds of CyCIF by quantifying single-cell AF488 intensity in three
unstained normal pancreas tissues that had been imaged and quenched repeatedly. We segmented the
nuclel based on DAPI staining and expanded each nucleus by five pixels to capture the cytoplasm.
Tissues were batch normalized and unsupervised clustering revealed groups of cells with comparable
autofluorescence profiles over the experiment that localized to similar regionsin each tissue
(Supplementary Figure 9, NB4-1). Overlaying the cellsin each cluster on the tissue revealed cellsin

cluster seven comprised tissue structures with bright autofluorescence that covered a wide spectrum
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from DAPI to AF488 channels (Figure 4a). Quantification of mean cluster intensity over rounds of

guenching showed that while other clusters’ intensities stayed constant, the cluster seven intensity
dropped linearly between one and four rounds of quenching (Figure 4c, NB3-1, NB4-1). To confirm
these results, we collected two additional datasets, three adjacent sections from a 72-core TMA
containing normal and tumor tissues (Figure 4d) and three adjacent sections from an 11-core TMA
containing HER2+ breast cancer tissues. The two groups of slides were guenched for atotal of 10
rounds, 330 minutes and 6 rounds, 210 minutes, respectively. We segmented cells to obtain single-cell
autofluorescence values, batch normalized and clustered as described for the pancreas tissue (Figure 4 e-
0, Supplementary Figure 10). Although the AF488 autofluorescence initially declined in these datasets,
as had been observed in the pancreas, surprisingly it increased in later rounds, globally across all clusters
(Figure 4 h). We did observe that the autofluorescence clusters correlated with one or more tissue types
and pathologies (Figure 4j, Supplementary Fig 11), but they all showed the same trend, with a minimum
intensity at three or four rounds of quenching (after pre-quenching, Figure 4 h, Supplementary Figure
12). We saw similar trends in AF555 autofluorescence (Supplementary Figure 11, 12). Therefore, to
computationally remove autofluorescence without over-subtracting, we recommend collecting baseline
autofluorescence images after quenching at round three or four, and subtracting these, scaled by
exposure time, from AF488, AF555 and AF647 channels. Subtraction from the AF750 channel appeared
unnecessary, given its minimal autofluorescence. This procedure will remove an additional 60 — 70% of
autofluorescence from the brightest rounds (Figure 4i, Supplementary Figure 11, 12). Since different
tissues and other multiplex imaging platforms may exhibit different autofluorescence dynamics, we
implemented both the baseline algorithm and a scaled algorithm, which assumes linear increase or
decrease in autofluorescence, for autofluorescence subtraction in mplexable. We found that the scaled
algorithm, by linearly interpolating autofluorescence between background images collected at the

beginning and end of staining, did reduce false positives for some markers in our pane (Supplementary
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Figure 11). Since the brightest areas of autofluorescence showed linear decrease across the first few

rounds of CyCIF, the scaled algorithm was most advantageous in tissues with strong autofluorescence
that are stained with only a few rounds of CyCIF. On the other hand, the baseline algorithm is simple,
requiring collection of just one background image, and can remove the majority of autofluorescence

background without over-subtraction in various tissue and experimental contexts.

Reproducibility and Batch Normalization

Following panel optimization, we assessed the reproducibility of CyCIF by analyses of three serial TMA
sections stained with the same 20-antibody panel on different dates (Figure 5a). We used manual
thresholding to quantify SBR, asin our standard versus CyCIF analysis (Supplementary Figure 13a, b,
NB5-1). We compared our manual method of SBR calculation to the use of intensity quantiles to
estimate dynamic range™, and found that manual thresholds were more reliable when markers were
negative, (e.g., HER2 in normal breast, Supplementary Figure 14, NB5-2). With both methods, we
found that the ratio of SBR between replicates for al 20 antibodies was close to one (relative SBR:
mean=1.02, SEM=0.23, n=20, Figure 5b, Supplementary Figure 13c & 14, NB5-2). Similarly, the
difference in percent positive cells between each replicate was small (relative percent positive:
mean=1.10, SEM=0.38, Supplementary Figure 13c, NB5-2). These data demonstrate reproducibility
between batches, with the SBR of each antibody being stable, despite variations in raw intensity values
(Supplementary Figure 9¢c, NB5-2). We used the same dataset to examine inter-patient variability on
each TMA. The relative SBR between patients was often far from one (Supplementary Figure 13c, NB5-
2), likedly reflecting a combination of biological variability and pre-analytical factors that affect antibody

performance in FFPE tissues.”
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Since we observed intensity variation between CyCIF replicates, batch normalization was required for

downstream analytics such as cdll classification by unsupervised clustering. To quantify the
effectiveness of batch correction methods on our serial TMA sections, we used the KBET algorithm?,
which, given ak-nearest neighbor graph, compares batch-label distribution in random subsets of
neighboring cells to the global batch-label distribution, thus quantifying how well mixed batches arein
technical replicates (Figure 5a, ¢, Supplementary Figure 15, NB5-3). Previously, we devel oped
RESTORE, which utilizes mutually exclusive marker expression to predict a background threshol d®.
For normalization, we set al values below the RESTORE threshold to zero and scaled those above the
threshold between 0 and 1. We compared RESTORE normalization to ComBat® and mean-only
correction (regress out), both implemented in scanpy®. ComBat produced the best batch correction
(kBET=0.45, SEM=0.05, n=3 dlides, lower KBET regjection rates indicate better batch correction, with O
being perfect mixing and 1 being no mixing of batches) with RESTORE also correcting some of the
batch effect (kBET=0.62, SEM=0.03, Supplementary Figure 15, NB5-3). Unsupervised Leiden
clustering showed that both ComBat and RESTORE recovered known biology (Supplementary Figure
15). To quantify the stability of clustering across batches, we calculated the Pearson correlation of the
positive fraction of each cluster between each section (n=9; 3 cores x 3 sections). ComBat normalization
produced higher correlation with lower variance (indicating fewer cores with low correlation) than
RESTORE normalization, but both were improvements over the raw data (ComBat mean Pearson
corrlation=0.97, SEM=0.01, RESTORE mean=0.88, SEM=0.05, raw mean=0.8, SEM=0.15, n=9,

Figure 5¢, Supplementary Figure 15, NB5-4).

To further evaluate batch normalization methods, we created a TMA using FFPE breast cancer cell lines
and normal tissues (Figure 5d). Importantly, the cell lines were of known clinical and intrinsic subtype™,

establishing a ground truth for clustering results (Supplementary Table 3). Three TMA sections were

10
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stained using the same antibody conjugates but different panel orders (Supplementary Table 4). Images

were processed through registration, autofluorescence subtraction, single cell segmentation, and feature
extraction. Due to different panel orders, raw data showed significant batch effects, with little mixing of
cellsfrom different TMAsin a UMAP projection based on single cell marker intensity (Figure 3e, NB5-
5). Again, the KBET algorithm?’ and replicates cluster correlation were used to quantify the
effectiveness of batch correction methods (Figure 5f, Supplementary Figure 16, NB5-6). Thirty methods
were evaluated on three random samples of 600 cells from each core in each replicate (Supplementary
Figure 16, NB5-5). Although Z-score normalization produced a reasonable KBET score (mean rejection
rate=0.64, SEM=0.05, n=3), the UMAP did not show separation of each core, i.e. known breast cancer
subtypes (Figure 5e, NB5-5). In contrast, the ComBat algorithm scored well with KBET (mean rejection
rate=0.67, SEM=0.03, n=3), separated the cores in the UMAP, and clustering recovered known cell
types within cell lines and normal tissues (Figure 5e, g, h). ComBat normalization applied without log2
transformation produced the most consistent clustering between replicate cores (mean Pearson
correlation=0.97, SEM=0.06, 8 cores x 3 sections, n=24; Figure 5f, h, Supplementary Figure 16, NB5-
5). RESTORE normalization resulted in improved cluster correlation compared to raw data (mean=0.73,
SEM=0.25 versus mean=0.30, SEM=0.41, n=24), and recovered known biology (Figure 5f,
Supplementary Figure 17, NB5-7); however, due to the lack of mutually exclusive marker pairsin cell

lines, RESTORE did not perform aswell as ComBat in this dataset (Figure 3f).

Since the ComBat normalization method® scored highest in kBET batch correction and cluster
correlation in multiple datasets while recovering biological features of interest, we tested its sensitivity
to different input distributions for parameterization. Since ComBat standardizes the mean and variance
across batches, the same control tissue must be present in each batch (Figure 5i, j, Supplementary Figure

16e, f). Sampling cells from three control tissues (i.e. sampled training) produced better KBET scores

11
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than using a single control tissue (sampled training with kBET=0.51, SEM=0.06 versus same training

with KBET=0.79, SEM=0.07, n=3, Figure 5i, j, Supplementary Figure 16, NB5-3). Cluster correlation
varied with the resolution of clustering, indicating higher precision batch correction with sampling from
three rather than a single tissue (with 9 clusters, sampled training mean=0.98, SEM=0.02 versus same
training mean=0.98, SEM=0.04; with 17 clusters, sampled training mean=0.97, SEM=0.02 versus same
training mean= 0.94, SEM=0.05, n=9 Figure 5i, j, Supplementary Figure 16f). Therefore, one or more
control tissues with similar cellular composition to the sample tissues should be included in each batch
of CyCIF for proper ComBat normalization. In the absence of control tissues and given mutually-
exclusive marker pairs, the RESTORE algorithm is a good alternative that produced high correlation in
cluster composition in multiple replicate CyCIF experiments (mean correlation=0.88; 0.73).
Additionally, in the absence of blank images for autofluorescence (AF) subtraction, RESTORE reduced

the influence of AF on analytics (Supplementary Figure 15).

In summary, we performed extensive validation of the CyCIF multiplex imaging method to optimize
fluorophore signal removal, antibody order and autofluorescence subtraction. We also quantified CyCIF
similarity to standard |F and the reproducibility of staining, using this data to evaluate methods for batch
normalization and cluster analysis to define biologically-relevant cell types. In parallel, we devel oped
the open-source python library, mplexable, for reproducible image processing and analysis. We

provided all of our code and data not only to document and reproduce our work, but to enable use and

further community development of our analytics (https.//github.com/engjen/cyclF_Validation). Our
validation studies and computational tools will facilitate maturation of multiplex imaging methods

towards quantitative, reproducible characterization of protein expression in intact tissue sections.

12


https://doi.org/10.1101/2021.11.29.470281
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.29.470281,; this version posted May 5, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Eng J et al.
Methods

Tissue and Cell Button Preparation

We purchased TMA tissue sections (BR1506, US Biomax, Derwood, MD). All human tissue was
collected under HIPPA approved protocols with the highest ethical standards with the donor being
informed completely and with their consent (OHSU Biolibrary IRB 4918). Tissue blocks and tissue
microarrays were from archival tissues fixed with standard methods (Biomax, Derwood, MD and OHSU
Biolibrary, Portland, OR). Cell lines were cultured in conditions following Neve et al**. Cell line
sources and culture media are as follows: AU565, ATCC, RPM11640+10%FBS, BT474, ATCC,
PM11640+10%FBS, HCC1143, Adi Gazdar (now available through ATCC), RPM11640+10%FBS,
HCC3153, Adi Gazdar, RPM11640+10%FBS, MDAMB436, ATCC, DMEM+10%FBS, T47D, ATCC,
RPM11640+10%FBS. FFPE cell buttons were prepared as previously described®. For each cell button,
cells were scraped from two 15 cm plates and spun down (in 10 ml of culture media, no serum, for 4
min X 1000 rpm) in collodion-coated 15 ml glass centrifuge tubes (Fisher #C408-500). Collodion bags
containing pellets were gently removed from tube, tied with thread, and transferred to 10% buffered
formalin on ice. Cell pelletsin collodion bags were fixed overnight at 4° C in 10% buffered formalin,
then transferred through graded ethanol series (30%, 50%, 70%) for one hour each, and processed and
embedded in paraffin. For cell line TMA creation, 1 mm cores from normal breast and tonsil (OHSU
Biolibrary), or FFPE cell buttons were punched and inserted into the recipient block with the Estigen

manual tissue arrayer MTA-1.

Cyclic Immunostaining
Formalin-fixed paraffin-embedded (FFPE) human tissues were sectioned at 4-5 microns and mounted on
positively charged slides (Tanner Adhesive Slides, Mercedes Medical, TNR WHT45AD). The dides

were baked overnight at 55 °C (Robbin Scientific, Model 1000) and for an additional 30 minutes at 65
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°C, (Clinical Scientific Equipment NO. 100). Tissues were deparaffinized and hydrated through xylenes

and graded ethanol (EtOH) as follows: xylenes (3 x 5 min), 100% EtOH (2 x 5 min), 95% EtOH (2 x 2
min), 70% EtOH (2 x 2 min), and distilled and deionized water (ddH>O, 2 x 5 min). Two step antigen
retrieval was performed in a Decloaking Chamber (Biocare Medical, Pacheco, CA) using the following
settings: set point 1 (SP1), 125 °C, 30 seconds; SP2: 90 °C, 30 seconds; SP limit: 10 °C variation.
Briefly, slides were placed in decloaking chamber in a plastic Coplin jar containing citrate buffer, pH 6
(10 mM citrate, Sigma C-1909). Two additional polyethylene Coplin jars with buffer were placed in
chamber to heat, which contained ddH,O and 1x Target Retrieval Solution, pH 9 (Agilent S2367). The
chamber was heated to 125 °C, held for 30 seconds (SP1), then cooled to 90 °C, 0 ps and held for 30
seconds (SP2). After the SP2 program was completed, the decloaking chamber was turned off, opened,
and slides were dipped in the Coplin jar containing hot ddH,O for ~1 second. Slides were then
transferred to hot 1x Target Retrieval Solution pH 9. The lid was placed back on chamber, and slides
remained in hot pH 9 buffer for 15 minutes. Following this two-step antigen retrieval, the tissues were
washed in two brief changes of ddH,O (~2 seconds) and then washed once for 5 minutesin 1x

phosphate buffered saline (PBS), pH 7.4 (Fisher, BP39920).

Pre-quenching to reduce autofluor escence

Next, pre-quenching was performed on tissues to reduce tissue autofluorescence. Quenching solution
containing 20 mM sodium hydroxide (NaOH) and 3% hydrogen peroxide (H20,) in 1x PBS was freshly
prepared from stock solutions of 5 M NaOH and 30% H,0O,, and each slide was placed in 10 ml
guenching solution. Slides were quenched face down on ~1 mm risers in a4-well rectangular tissue
culture dish (each well holds one slide), under incandescent light, for 30 minutes. Lamps with 60-Watt
incandescent bulbs were positioned so the bulb was four inches above the 4-well dish. Placing dlidesin

the outer two wells and leaving the center wells empty resulted in the temperature increasing from 23° C
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to 39° C over 30 minutes (see Supplementary Figure 5¢). Slides were then removed from the chamber

with forceps and washed 3 x 2 minin 1x PBS. Sections were blocked in 10% normal goat serum (NGS,
Vector S-1000) and 1% bovine serum albumin (BSA, Sigma A7906) in 1x PBS for 30 minutes at room
temperature in a humidified chamber. Plastic cover dips (IHC World, IW-2601) were used to spread
blocking solution evenly across tissue. Tissues were soaked briefly in PBSin a Coplin jar to remove
plastic coverslip, then washed 1 x 5 minin PBS. Coverdlips (Corning; 2980-243 and 2980-245) were
mounted in Slowfade Gold plus DAPI mounting media (Life Technologies, S36938). Pre-staining
autofluorescence signal was acquired using a Zeiss Axioscan Z.1 (see imaging protocol below). After
acquiring autofluorescence signal, slides were soaked in 1x PBS for 10 — 30 minutesin a glass Coplin

jar, waiting until glass coverdlip slid off without agitation.

Primary Antibody Staining

Primary antibodies were diluted in 5% NGS and 1% BSA in 1x PBS (see Supplementary Data 1) and
applied overnight at 4 °C in ahumidified chamber, covered with plastic coverdips (IHC World, IW-
2601). Following overnight incubation, tissues were washed 3 x 10 minin 1x PBS, and coversipped as

described above. Antibody information is provided in Supplementary Data 1.

Fluor escence Microscopy

For standard versus CyCIF and reproducibility experiments, fluorescently stained slides were scanned
on the Zeiss AxioScan.Z1 (Zeiss, Germany) with a Lumencor SpectraX-IR light source (Lumencor Inc.,
Beaverton, OR). The filter cubes used for image collection were DAPI (Semrock, LED-DAPI-A-000),
AF488 (Zeiss 38 HE), AF555 (Zeiss 43 HE), AF647 (Zeiss 50) and Alexa Fluor 750 (AF750, Chroma
49007 ET Cy7). The exposure time was determined individually for each slide and stain, and the LED

light intensity was fixed at 100%. Full tissue scans were taken with the 20x objective and stitching was
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performed in Zen Blue image acquisition software (Zeiss). After thoseinitial experiments, a new light

source was purchased and used for collecting quenching and round order data. For those experiments, a
Coalibri 7 light source (Zeiss), with the same filter cubes, except DAPI (Zeiss 96 HE), was used. The
exposure time was determined individually for each side and stain to ensure maximum dynamic range
without saturation, and the LED light intensity was fixed at 10% (DAPI), 20% (AF488), and 50%
(AF555, AF647, AF750). Full tissue scans were taken with the 20x objective (Plan-Apochromat 0.8NA

WD=0.55, Zeiss) and stitching was performed.

Quenching of Fluorescence Signal for Cyclic mmunostaining.

After successful scanning, slides were soaked in 1x PBS for 10 — 30 minutesin aglass Coplin jar,
waiting until glass coverdip dlid off without agitation. Quenching was performed as described above, in
the section of Pre-quenching to reduce autofluorescence. After removal from quenching solution, slides
werewashed 1 x 5 min in 1x PBS and subsequent rounds of primary antibodies were applied, diluted in

blocking buffer as described in the section of Primary Antibody Staining.

I mage Registration, Autofluorescence Removal and Segmentation

Scanned images were first split into separate scenes using the function Split Scenes (Writefiles) in Zeiss
Zen Blue software (with "Include scene information in the Generated File name" unchecked). For the
datasets used in this work, we did not apply flat field correction, although it may be applied in Zen using
the function Shading Correction. Using the same software, each scene was then exported to 16-bit
grayscale uncompressed TIFF using the function Image Export. Quality control and metadata extraction
were performed in python. TIFF images from each round of cyclic immunostaining were registered
based on DAPI staining as follows. Image features were found with the detect SURFFeatures function,

and automated feature matching was performed with the matchFeatures function, in Matlab (R2017B
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9.3.0.713579, MathWorks, Natick, MA). Image registration was the performed using Matlab’

estimateGeometricTransform function and performing affine registration (scaling, rotation, translation).
Although Matlab was used for the majority of registration in this work, we also successfully registered
images using a python implementation. Both scripts are provided (Matlab:

https://gitlab.com/engje/mplexabl e/-/blob/master/mplexabl e/src/template registration mscene.m and

python: https://gitlab.com/engje/mplexable/-

/blob/master/mplexable/src/template registration mscene.py).

Autofluorescence subtraction preceded segmentation. Images of unstained tissue were acquired in each
channel, before and after staining. For each marker, background images were scaled linearly by
exposure time and relative round, and subtracted using mplexable.

Deep learning based cell segmentation was performed with Cellpose, a generalist algorithm for
cellular segmentation®. Cellpose was used to generate nuclear and cell masks by classifying pixels on
the basis of a DAPI or E-cadherin antibody staining, respectively. The following parameters were used
for Cellpose segmentation: for the cells, diameter=30 pixels, flow_threshold=0.6, min_size=113; for the
nuclel, diameter=30, flow_threshold=0, min_size=28. Nuclel with no E-cadherin (Ecad) staining (i.e.,
non-epithelial cells) were expanded by 5 pixels (1.6 micrometers) to approximate the cytoplasm, based
on the average measurement of immune cell cytoplasm in images. The cytoplasm was derived by
subtracting the nuclei area from the cell segmentation result, or from the 5-pixel expansion result in the
case of Ecad negative cells. The mean intensity of each subcellular region was extracted using
mplexable. Watershed-algorithm-based cell segmentation was performed for some datasets, using in-
house java software for the following operations. A z-projection of DAPI images from all rounds of
staining was processed with the white top-hat algorithm that separates individual nuclear candidates
from the background. Contours of nuclei were detected with the Prewitt operator, and single nuclei were

segmented by applying a watershed algorithm to the nuclear contours, with top-hat candidates as seeds.
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Nuclear segmentation accuracy was improved by sorting nuclel based on expression of tumor

cytokeratins or immune markers and using this information to set a maximum nuclear size for the
watershed algorithm. If a cell was positive for cytokeratins, it was allowed to have alarger nucleus than
cells that were negative for cytokeratins because it was assumed to be an epithelial cell. Cdll
segmentation was achieved by applying a watershed on the Ecad image with segmented nuclei as seeds,
or by inflating the nuclel if the Ecad marker was negative. The resulting segmentation mask defined
nuclear and cytoplasmic regions for each cell. Mean intensity used for downstream analysis was selected
for each marker based on its biologically-relevant subcellular region (e.g., cytoplasm for CK 19, nuclei

for Ki67).

Data Analysis

For single cell analyses, single cell mean intensity was used for clustering, asin Figure 4 and 5. For
percent positive calculation, asin Figure 2c (Ieft), cells with a mean intensity above threshold were
considered positive. Tissue retention was calculated in Figure 2e — h by thresholding DAPI using the Li
algorithm® and considering cells above DAPI threshold as retained in that round. For signal-to-
background (SBR) calculations, mean intensity was integrated across the entire slide or region of
interest, asin Figure 2c, right, Figure 3, and Figure 5b. In fluorescence imaging, background adds to the
signal of interest®™, so SBR was calculated as (mean intensity of positive pixels— mean intensity of
negative pixels) / mean intensity of negative pixels (NB2-1). For SBR quantification in Figure 2,
thresholds were applied directly to image data (no single cell segmentation) and signal was taken as the
mean pixe intensity above the threshold, while background was defined as the mean pixel intensity of
pixels below the threshold and 30 pixels away (10 wm) from the positive pixels to exclude the influence
of lateral bleed through. Since the threshold directly determines the result, thresholds were used that

selected asimilar pixel pattern and area in adjacent sections. The same marker in adjacent sections was
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visualized side-by-side, and the respective thresholds were adjusted until the positive pixels were as

equivalent as possible, which was estimated by eye. Therefore, although the threshold reflected the
subjective decision of the researcher, it allowed comparison of smilar pixelsin replicates across
adjacent sections. The masks that resulted from thresholding are provided for visual assessment of

thresholds (https://github.com/engjen/cycl F Validation/blob/master/Extended single vs cyclic.ipynb

and

https://github.com/engjen/cyclF Validation/blob/master/Extended Reproducibility 3STMA_ Tissue.ipyn

b).
We tested whether the same threshold could be applied to different regions of the same slide by
measuring correlation between two ROIs in normal breast and two ROIs in HER2+ breast tumor given
the same threshold. The mean fluorescence intensity measured above threshold, and the intensity of
background noise were highly correlated between ROIs (Supplementary Figure 2). Finally, we tested
whether manual thresholds gave us a different answer for SBR calculations than estimating SBR at the
95"/5™ quantile (Supplementary Figure 14).

Dynamic range was estimated using the 4™ and 99.5™ quantile of mean intensity for markersin
tissues with known positive staining. We compared different ranges for estimating dynamic range (5" to
98" percentile versus 5™ to 99.9 percentile, see Supplementary Figure 14). We found that using a higher
maximum did not change the dynamic range as much for common markers (e.g., CK7) but had more
effect on rare markers (e.g., Ki67 and alpha-SMA). Therefore, we selected the 99.5™ percentile as the
maximum to reflect both common and rare markers' dynamic range. In cases where we did not set a
manual threshold, SBR was estimated as the ratio of the (99.5th quantile — 4™ quantile)/4™ quantile of
mean intensity.

For SBR quantification in Figure 3, we needed to calculate SBR in the presence of artifacts such

as non-specific staining, bleed through, autofluorescence and incomplete quenching. We utilized the
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napari image viewer to overlay all of the markers, set thresholds and create masks. For positive signal,

we set athreshold (recorded in our 20211007 _napari.py script) that created a mask including al of the
positive staining plus any bright artifacts. We then manually erased areas of the mask covering imaging
or staining artifacts and saved the mask for future reproducibility. For background signal, we manually
selected six regions of the image exhibiting background caused by the artifacts listed above, and again
saved the mask. We then extracted the mean intensity of the positive and background areas of the image
and used these to calculate SBR as described above.

For F1 score calculation in Supplementary Figure 11, we again used the napari image viewer to
overlay staining, segmentation results, and positive cells based on manual thresholding. Based on the
staining pattern and other marker’s expression (e.g., membranous CD8 staining in CD45+ cellswas a
true CD8 positive), we manually annotated false negatives in three 2000 x 2000-pixel ROIs. False
positives were any cell with AF488 autofluorescence >1024-pixel intengity, true positives were cells
above this threshold excluding false positives and true negatives were all other cells neither positive,
false positive or false negative.

Normalization methods tested included transformations (raw, log2 or arcsinh), division by
background signal, determined either with RESTORE, which requires mutually exclusive marker
expression in different cell populations, or the 3" quantile of background fluorescence measured in the
reverse subcellular compartment of expected localization (e.g., cytoplasmic signal for nuclear markers),
scaling methods (standard, min-max, max-abs, robust, quantile and power) which are implemented in
the python library scikit-learn® and batch correction algorithms regress_out and ComBat, implemented
in the python library scanpy™®. For RESTORE normalization, the scikit-learn® TruncatedSVD
decomposition function was used to quantify the L-shaped distribution of marker pairs; in each core,
markers were considered mutually exclusive if the function yielded an R-value above 0.5, or above 0.2

when no pairs reached the 0.5 cut-off. For global thresholds, a more stringent cutoff was used (for the
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presented TMA datasets 0.66 globally or 0.5 when no pairs reached the 0.66 cut-off. For each core or

batch, this procedure generated data-driven mutually exclusive marker pairs. The selected mutually
exclusive marker pairs were used to calculate RESTORE thresholds, and the median threshold produced
by multiple marker pairs was selected for normalization. Mean intensity was normalized with divison
by local (per core) and global (per batch) thresholds. For the RESTORE scale method, cells with
intensity below threshold were set to a random value between 0 and 0.02, while all cells with intensity
above threshold were scaled to arange of 0.02 — 1 for each marker.

Following normalization, 7200 cells (cell lines) or 5400 cells (tissues) were randomly sampled (i.e., 600
cells per TMA core from each batch) and evaluated for batch effects using the KBET algorithm?” (n=3).

UMAP visualization and graph-based L eiden clustering (resolution=0.6) was carried out using scanpy™.

Statistics and Reproducibility
All visualizations and results can be fully reproduced from the raw images with the accompanying code

and data, here https.//github.com/engjen/cyclF_Validation. Statistical analyses were conducted in

python using the scipy® library. Replicates were defined as separate CyCIF experiments. Sample sizes

are defined by the number of tissues stained, including tissue coresin TMAS.

Data Availability
All image data is available at synapse.org, at cyclF_Validation, syn23644107. The synapse platform

requires registration. With afree account, the images are freely accessible. All other source data used to

produce the graphs and figures is available here: https.//github.com/engjen/cyclF Validation, DOI:

10.5281/zenod0.6049278.

Code Availability
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The data, code and Jupyter notebooks to reproduce the analyses herein are at

https.//github.com/engjen/cyclF_Validation, DOI: 10.5281/zenodo.6049278. For image processing, we

devel oped mplexable, available through the Python Package Index, https.//pypi.org/project/mplexable/.

An image processing tutorial with Zeiss Axioscan example imagesis available at

https.//www.synapse.org/#! Synapse:syn26958265. Additionally, we demonstrate processing Zeiss

Axioscan, Akoya CODEX and Miltenyi MACSima prototype images in our pipeline example Jupyter

notebooks, here: https://gitlab.com/engj e/ mplexable/-/tree/master/jupyter.
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Figure L egends

Figure 1. Reproducible Generation, Processing and Analysis of Multiplex Images. a. CyCIF datais
generated with a reproducible protocol (dx.doi.org/10.17504/protocols.io.3xfgpjn). b. Image processing
pipeline integrates quality control and workflow management with in-house Python software,
mplexable, facilitating data quality, scaling and reproducibility. c. Analysis, image visualization and
figure generation are fully reproducible with shared linked and executable code and data. Raw and
processed data, metadata and analysis are documented in Jupyter notebooks running our free and open-
source software that provides a framework for reproducible image analysis.

Figure 2: CyclF Signal to Background and Tissue L oss. Comparison of CyCIF staining to a standard
IF protocol, in adjacent sections of HER2+ tumor and normal breast tissue. a. Multicolor visualizations
are produced with our python code. b. Positive pixels, or foreground (FG), were determined by
thresholding and negative pixels, or background (BG), were determined by selecting regions 10 pm
away from positive regions. The signal-to-background ratio (SBR) is the mean intensity of FG/mean
intensity of BG. c. Positive cell counts were determined by applying the thresholds from (b) to single
cell mean intensities of segmented cells. Pearson correlation (R), was calculated for standard IF versus
CyCIF fraction positive in tissue and SBR, n=26; R and p-value given in figuretitle. d. Three adjacent
sections of a 72-core tissue microarray (TMA) containing normal and malignant tissues were repeatedly
guenched to assess tissue loss during CyCIF. e. Tissue retention after each round of quenching. Error is
95% confidence interval of tissue retention at each round for normal, benign and malignant tissues, n =
54, 6 and 156, respectively (18 normal, 2 benign and 52 malignant tissues x 3 replicate TMAS). f.
Fraction of cells remaining after 10 rounds of CyCIF, separated by type, stage, grade and source. g.
Tissue retention by nuclear area quartile; error is 95% confidence interval, n=216 cores. h. Fraction of
cellsremaining after 10 rounds of CyCIF, separated by nuclear area quartile and nuclear eccentricity
quartile. In f, h, Kruskal-Wallis H-test was used to assess differencesin tissue retention, n = 216 (72
cores x 3 replicate TMAS), except Source, which includes only normal tissue, n=41 cores. p-value
shown in figuretitle. In a-b, scale bar = 50 pm.

Figure 3. CyCIF Optimization: Quenching and Panel Order. a-d. Quenching Optimization. a
Normal pancreas was stained with CK7-AF488 and imaged before and after fifteen minutes of
guenching in 3% (top row), 4.5% (middle row) or 6% (bottom row) H,O,. b. Breast cancer tissue stained
with CK7-AF488 and Vimentin-AF488 imaged before and after 30 (top) and 60 minutes of quenching
(bottom). c. Tissue stained asin (b) and imaged before and after 30-minute quenching under
incandescent light source. d. Mean AF488 (left) or AF555 (right) fluorescence intensity in tissue area of
stained tissue relative to a blank autofluorescence control after one round of quenching with conditions
shown in a-c. e - h. Panel order optimization, with representative images. i. Signal-to-background ratio
(SBR) quantification was done by applying athreshold to find positive pixels, and manually selecting
areas of non-specific background, e.g., tumor nestsin e-g and stromal areasin h., n=6 areas per tissue. A
t-test was used to assess significance; p-value shown in figuretitle. e. Non-specific nuclear staining in
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the AF750 channel isimproved by moving antibody to alater round. CD45-AF750 showed higher SBR
in round (R) 6 than in R2. f. Autofluorescence in the AF55 or AF488 channel is mitigated by moving
antibody from R1 to alater round. CD8-AF555 had higher SBR in R7 than R1. g. Channel bleed
through is mitigated by pairing two bright or two dim antibodies in adjacent channels, not a bright with a
dim. PD1-AF647 shows bleed through from bright CK19-AF750 in R1, but not from CD45-AF750 in
R6. h. Incomplete quenching is mitigated by moving markers resistant to quenching to later in the panel.
Vimentin-AF488 resists quenching and is moved after cytokeratin staining, rather than before. j.
Schematic of panel optimizations addressing background and dynamic range, autofluorescence, channel
bleed-through and incomplete quenching. a-c & e-h. Blue = DAPI, Green = Stain, green colorbar = 16-
bit grayscale intengity, Y-axis scaleisin micrometers, scale bar = 30 um.

Figure 4. Autofluorescence Characterization in the CyCIF Protocol. a. Top: DAPI nuclear staining
and autofluorescence in the AF488 channel before and after 60 minutes of quenching. Arrowheads show
areas of bright (gray), medium (purple) and dim (pink) autofluorescence. Bottom: Colored nuclei of
clusters 7 (Ieft), 4 (middle) and 6 (right) on the autofluorescence image, representing cells with bright
(gray arrowhead), medium (purple arrowhead) and dim (pink arrowhead) autofluorescence, respectively.
Scale bar = 30 um. b. UMAP projection of single cells based on autofluorescence, colored by AF4388
intensity after 0 or 60 minutes of quenching (left and middle); Umap colored by unsupervised clustering
results of the Leiden algorithm (right). c. Mean AF488 intensity of cellsin each Leiden cluster over
rounds of quenching; note bright (gray line) cells quench differently than medium (purple line) and dim
(pink line) cells. Similar trend in nuclear (left) and cytoplasmic (right) autofluorescence, although
nuclear is brighter. d. Autofluorescence analysis asin (a-C) was repeated on a 72-core tissue microarray
(TMA). AF488 autofluorescence shown after 0 minutes (top) and 330 minutes or quenching (bottom). e.
UMAP projection of single cells based on autofluorescence, colored by AF488 intensity after O (top) or
330 minutes of quenching (bottom). f. UMAP colored by batch. Three adjacent sections from TMA
were repeatedly quenched and normalized by batch for analysis. g. UMAP colored by unsupervised
clustering results of the Leiden algorithm. h. Mean AF488 intensity of cellsin each Leiden cluster over
rounds of quenching. Overall, minimum intensity was observed at 120 minutes and maximum intensity
at 240 minutes. i. Subtracting the minimum intensity autofluorescence will avoid over-subtraction while
still removing 60 - 70% of autofluorescence at 240 minutes. j. Heatmap showing observed number of
cells per Leiden cluster — expected number of cells per cluster, by tissue, y-axis, illustrating different
trends by tissue. Brightest autofluorescence, cluster 14 (yellow line, h), originates from liver tissue.
Cluster 10, showing greatest fraction of autofluorescence remaining after subtraction (blue bar, 1),
originates primarily in lymph node. ¢, hand i. Error bars = standard error of the mean, n=3 slides.

Figure 5. Reproducibility and Normalization of CyCIF Staining Intensity. a. Representative images,
generated with our python code, of 12 markers from three adjacent sections of a breast cancer TMA
stained with a 20-marker CyCIF panel, scale bar = 50 um. b. Relative SBR of slide 1-2, 2-3 and 1-3 for
each marker. c. Evaluation of batch correction with KBET (left, lower rejection rates indicating better
batch correction, n=3 batches, 5400 cells) and correlation (Pearson, n=9) of Leiden cluster composition
between replicate cores for different batch correction methods (right) d. Overview of breast cancer cell
line and normal tissue TMA created to represent breast cancer subtypes. e. UMAP projection based on
single-cell marker intensity; left to right: raw data, z-score normalization and ComBat normalization,
colored by batch (top) and TMA core/cell line (bottom). f. Evaluation of batch correction with kKBET
(left, n=3 batches, 7200 cells) and cluster correlation (right, n=24) on cell line TMA. g. Heat map of
relative mean intensity of each marker in the ComBat normalized, Leiden-clustered cell line TMA data,
with annotation on left. h. Fraction of cellsin each cluster from (g), showing similar composition of
technical replicates and reflecting known normal tissue and cdll line cell types. i. Schematic of different
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sel ection methods to parameterize the ComBat algorithm. j. Evaluation of ComBat parameterization
with KBET (left, n=3 batches, 7200 cells) and cluster correlation (right, n=9). c, f and j. Error bars =
standard error of the mean, n=3 dides.

Table 1: Links to Analysis Notebooks

Name url
NB1-1 https://github.com/engjen/cyclF_Validation/blob/master/Multicolor_Image_Visualization.ipynb

NB2-1 https://github.com/engjen/cyclF_Validation/blob/master/Extended_single_vs_cyclic.ipynb

NB2-2 https://github.com/engjen/cyclF_Validation/blob/master/SinglevsCyclic_44290.ipynb

NB3-1 https://github.com/engjen/cyclF_Validation/blob/master/Quenching_analysis.ipynb

NB3-3 https://github.com/engjen/cyclF_Validation/blob/master/Image_Analysis_Visualization.ipynb
NB3-4 https://github.com/engjen/cyclF_Validation/blob/master/DoubleApplication_K157.ipynb

NB3-5 https://github.com/engjen/cyclF_Validation/blob/master/OrderOptimization_K154vsK175.ipynb
NB3-6 https://github.com/engjen/cyclF_Validation/blob/master/Macsima_clustering.ipynb

NB4-1 https://github.com/engjen/cyclF_Validation/blob/master/Quenching_Single_Cell.ipynb

NB5-1 https://github.com/engjen/cyclF_Validation/blob/master/Extended_Reproducibility_3TMA_Tissue.ipynb
NB5-2 https://github.com/engjen/cyclF_Validation/blob/master/TMAReplicates_analysis.ipynb

NB5-3 https://github.com/engjen/cyclF_Validation/blob/master/Normalization_testing_tissue.ipynb
NB5-4 https://github.com/engjen/cyclF_Validation/blob/master/Normalization_testing_HER2-N75.ipynb
NB5-5 https://github.com/engjen/cyclF_Validation/blob/master/Normalization_testing.ipynb

NB5-6 https://github.com/engjen/cyclF_Validation/blob/master/kBET.ipynb

NB5-7 https://github.com/engjen/cyclF_Validation/blob/master/RestoreNorm_scale.ipynb

Table 1. Reproducible Image Analytics. All figures and results can be fully reproduced with the

accompanying Jupyter notebooks and data provided here: https://github.com/engjen/cyclF_Validation,

DOI: 10.5281/zenodo.6049278
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