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Abstract:  

Motivation 

Single cell RNA Sequencing (scRNA-seq) has rapidly gained popularity over the last few years 

for profiling the transcriptomes of thousands to millions of single cells. This technology is now 

being used to analyse experiments with complex designs including biological replication. One 

question that can be asked from single cell experiments, which has been difficult to directly 
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address with bulk RNA-seq data, is whether the cell type proportions are different between two 

or more experimental conditions. As well as gene expression changes, the relative depletion or 

enrichment of a particular cell type can be the functional consequence of disease or treatment. 

However, cell type proportions estimates from scRNA-seq data are variable and statistical 

methods that can correctly account for different sources of variability are needed to confidently 

identify statistically significant shifts in cell type composition between experimental conditions.  

 

Results 

We have developed propeller, a robust and flexible method that leverages biological replication 

to find statistically significant differences in cell type proportions between groups. Using 

simulated cell type proportions data we show that propeller performs well under a variety of 

scenarios. We applied propeller to test for significant changes in proportions of cell types related 

to human heart development, ageing and COVID-19 disease severity. 

 

Availability and implementation 

The propeller method is publicly available in the open source speckle R package 

(https://github.com/phipsonlab/speckle ). All the analysis code for the paper is available at 

https://github.com/phipsonlab/propeller-paper-analysis/, and the associated analysis website is 

available at https://phipsonlab.github.io/propeller-paper-analysis/ . 
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1. Introduction 

Single cell RNA-sequencing (scRNA-seq) technology has led to breakthroughs in the discovery 

of novel cell types and enhanced our understanding of the development of complex tissues. As 

the technology has matured it has become relatively straightforward to profile the transcriptomes 

of hundreds of thousands of cells, resulting in valuable insight into the composition of tissues. 

  

While many of the first published single cell papers focused on defining the resident cell types in 

complex tissues1–4, the field is now using this technology for complex experimental comparisons 

with biological replication5–8. Experiments with different conditions and multiple biological 

samples can be costly, however substantial savings can be made by pooling cells from multiple 

samples. If samples are genetically diverse, they can be demultiplexed using genetic 

information9,10. An alternative approach is to use molecular cell multiplexing protocols, such as 

the commercially available CellPlex from 10x Genomics. Collectively, cell multiplexing makes 

designing larger scRNA-seq experiments more feasible.  

 

The first step in analysis for an scRNA-seq experiment with multiple experimental conditions 

and biological replicates is to identify the cell types present in each sample. However, 

downstream analysis requires sophisticated tools to address specific hypotheses about how a 

perturbation affects the biological system. Two analysis tasks are commonly performed 

following cell type identification in order to understand the effect of the condition. One task is to 

find genes that are differentially expressed between groups of samples, for every cell type 

observed in the experiment, similar to the analysis of bulk RNA-seq experiments11. However, a 

benefit of scRNA-seq data is that we have additional information on the composition of the 

samples. The relative change in abundance of a cell type can be a consequence of normal 

development, disease or treatment. Due to technical as well as biological sources, the cell type 

proportions estimates from single cell data can be quite variable. The focus of this work is to find 

statistically significant differences in cell type proportions between groups of samples that 

appropriately takes into account sample-to-sample variability.  

 

Here we present propeller, a robust and flexible linear modeling based solution to test for 

differences in cell type proportions between experimental conditions. The propeller method 
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leverages biological replication to obtain measures of variability of cell type proportion 

estimates, and uses empirical Bayes to stabilise variance estimates by borrowing information 

across cell types. It is a flexible approach that can be applied to complex experimental designs 

with multiple factors.  Using simulated data, we compared the performance of commonly used 

statistical models for testing for differences in cell type proportions and show that propeller 

performs well across a variety of experimental scenarios. We applied propeller to three different 

single cell datasets on ageing, human heart development and COVID-19 disease severity and 

find additional cell types changing in abundance that were not reported in the original analysis. 

Our propeller method is publicly available in the speckle R package 

(https://github.com/phipsonlab/speckle ). 

 

2. The propeller method 

Propeller is a function in the speckle R package that uses cell level annotation information to 

calculate sample level cell type proportions, followed by data transformation and statistical 

testing for each cell type. Propeller leverages biological replication to estimate the high sample-

to-sample variability in cell type counts often observed in real single cell data (Figure 1a, PBMC 

scRNA-seq data from 12 healthy human donors). The variability in cell type proportions 

estimates between samples can be large both due to technical sources such as variation in 

dissociation protocols, and due to valid biological factors that contribute to variability. For 

example, blood cell type composition is known to change with age12. Taking into account 

sample-to-sample variability when analysing differences in cell type proportions is critical as 

observed cell type variances are far greater than variances estimated under a binomial or Poisson 

distribution, which can only account for sampling variation (Figure 1b, PBMC scRNA-seq 

dataset from 12 healthy human donors). 

 

The first step of propeller is to calculate the cell type proportions for each sample. Propeller can 

directly derive the counts and calculate the proportions from a Seurat or SingleCellExperiment 

object. This results in a matrix of proportions where the rows are the cell types and the columns 

are the samples.  The binomial distribution has the statistical property that proportions close to 0 

and 1 have small variance, and values close to 0.5 have large variance i.e. the variances are  
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Figure 1. Exploring heterogeneity in cell type proportions estimated from single cell RNA-seq data.  

a. Barplot showing high levels of variability of cell type proportion estimates between 12 healthy PBMC 

scRNA-seq samples. b. Mean-variance relationship for 27 cell types in 12 healthy PBMC scRNA-seq 

samples showing that cell type proportions are over-dispersed compared to the variance estimated under a 

Binomial distribution. The plot is produced using the plotCellTypePropsMeanVar function in the 

speckle package. 

 

heteroskedastic. To overcome this, we have implemented two transformations in propeller: (1) 

arcsin square root transformation, and (2) logit transformation. The arcsin square root 

transformation has the benefit that it will always produce a real value. If the logit transformation 

is selected an offset of 0.5 is added to the raw cell type counts matrix prior to transformation to 

avoid taking the log of zeroes.  

 

Next we test whether the transformed proportions for every cell type are significantly different 

between two or more experimental conditions using a linear modelling framework. If there are 

exactly two groups, we perform moderated t-tests; if there are more than two groups, we perform 

moderated ANOVA tests13. These tests are moderated using an empirical Bayes framework, 

allowing information to be borrowed across cell types to stabilise the cell type specific variance 

estimates. This is particularly effective when the number of biological replicates is small and the 

number of cell types is at least three14, a common situation in scRNA-seq experiments. The final 

step in propeller is to calculate false discovery rates15 to account for testing across multiple cell 
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types. The output of propeller consists of condition specific proportions estimates, p-values and 

false discovery rates for every cell type observed in the experiment.  

 

The minimal annotation information that propeller requires for each cell is cluster/cell type, 

sample and group/condition, which can be manually entered or automatically extracted from 

Seurat and SingleCellExperiment class objects. More complex experimental designs can be 

accommodated using the propeller.ttest and propeller.anova functions, which have the flexibility 

to model additional covariates of interest such as sex or age. 

 

3. Performance using simulated datasets 

3.1 Type I error control under null simulation scenario 

Although it is clear from the PBMC scRNA-seq data that cell type proportions estimates are 

overdispersed (Figure 1b), we wanted to more thoroughly evaluate the performance of propeller 

as well as other statistical methods that have commonly been used for testing differences in 

proportions in other fields. Using simulated cell type proportions, we compared the performance 

of nine different statistical models.  

1. Chi-square test for differences in proportions 

2. Logistic binomial regression (special case of beta-binomial with dispersion=0) 

3. Poisson regression (special case of negative binomial with dispersion=0) 

4. propeller with arcsin square root transformation of proportions, denoted propeller(asin) 

5. propeller with logit transformation of proportions, denoted propeller(logit) 

6. Beta-binomial regression on cell type counts 

7. Negative binomial regression on cell type counts 

8. Quasi-likelihood negative binomial regression on cell type counts 

9. Centred log-ratio transformation (CLR) followed by linear regression, denoted CODA 

 

The first three methods do not take into account sample to sample variability, while the 

remaining 6 methods (4-9) do. The quasi-likelihood approach (method 8) is described in the 

Bioconductor book “Orchestrating single cell analysis with Bioconductor”16. The two variations 

of propeller model transformed proportions, while the remaining statistical tests, with the 

exception of the CODA method, model the cell type counts directly. Method 9 is an example 
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from the compositional data analysis field where the cell types are modeled relative to a 

reference “cell type”. Here the geometric mean of the cell types forms the baseline as is 

commonly done in microbiome data analysis17. The log-ratio of the counts to the geometric mean 

is calculated and a linear model fitted with group as the explanatory variable to obtain p-values.  

 

We simulated cell type counts in a hierarchical manner under a simple null scenario where the 

cell type proportions do not differ between two groups in order to determine whether the nine 

methods control the Type I error rate. We simulated five cell types with proportions that varied 

from rare to abundant (true proportions πi = 0.01, 0.02, 0.15, 0.34, 0.45). The sample 

proportions, pij , for cell type i and sample j, were generated from a Beta distribution with 

parameters 𝛼i and βi, which control how variable the proportions are. Larger values of 𝛼i and βi 

result in a more precise distribution centred around the true proportions, while smaller values 

result in a more diffuse prior (Supplementary Figure 1). We set 𝛼i = 10, and calculated the 

corresponding 𝛽
𝑖
 for each cell type i from the following relationship derived from properties of 

the Beta distribution: 

𝛽
𝑖

=
𝛼(1 − 𝜋𝑖)

𝜋𝑖
 

Cell type counts xij were then sampled from a binomial distribution with parameters nj and pij . 

The total number of cells, nj ,  per sample j, were sampled from a negative binomial distribution 

with mean 5000 and dispersion 20 to simulate variation in total cell numbers per sample 

observed in real data. We simulated 10,000 datasets, and counted the number of times each of 

the five cell types were statistically significant with p-value < 0.05 for the nine different 

statistical models. We also varied the number of samples per group to determine the effect of 

sample size on the Type I error rate (n = 3, 5, 10, 20). Figure 2a shows the cell type proportions 

per sample observed for an example simulated dataset under these conditions. 

 

Table 1 shows the type I error rates for the nine different methods for each of the five different 

cell types at a nominal p-value cut-off of 0.05 when the number of samples per group is five. The 

most striking observation is that the statistical tests (methods 1-3) that do not account for 

additional biological variability frequently find significant differences between the two groups  
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Table 1. Proportion of significant tests for each cell type between two groups with no differences at a nominal p-

value cut-off of 0.05. Ten thousand datasets were simulated under a beta binomial model with five samples in each 

group. In order to control the type 1 error rate correctly, the proportion of significant tests should be approximately 

0.05 for each cell type. The number in brackets in the first column corresponds to the true cell type proportion, and 

the cell types are ordered from most rare to most abundant. The bold numbers indicate Type I error estimates < 0.05. 

 

Cell 

type 

𝜒𝟐 test Logistic 

Bin 

Poisson Propelle

r (asin) 

Propelle

r (logit) 

BetaBin LRT 

NegBin 

QLF 

NegBin 

CODA 

C1 

(0.01) 

0.4501 0.4605 0.4589 0.0141 0.0738 0.0651 0.0951 0.0815 0.0791 

C2 

(0.05) 

0.7238 0.7268 0.7198 0.0493 0.0662 0.0757 0.1003 0.0854 0.0693 

C3 

(0.15) 

0.8142 0.8155 0.798 0.0705 0.0579 0.0694 0.0789 0.0672 0.0585 

C4 

(0.34) 

0.8473 0.8478 0.816 0.0774 0.0466 0.0578 0.0428 0.0364 0.0433 

C5 

(0.45) 

0.8552 0.8563 0.8041 0.0746 0.0389 0.0487 0.0254 0.0201 0.0348 

 

 

when there are none. As expected, it is clear that methods that account for this additional 

variability are required and methods 1-3 are not further explored in this analysis.  

 

For the methods that model sample-to-sample variability none have perfect type I error rate 

control, although the observed rates are generally close to 0.05 (methods 4-9). Propeller(asin) 

tends to be conservative for the most rare cell type, and permissive for more abundant cell types 

whereas the opposite tends to be true for the other tests, particularly for the negative binomial 

methods. These results show that the type I error rate differs between different cell types 

depending on how abundant the cell type is, and no method perfectly controls the type I error 

rate for both rare and abundant cell types. 

 

Figure 2b summarises the Type I error rates for different sample sizes. As the number of samples 

in each group increases, the type I error rate for all methods is closer to 0.05 (Figure 2b). For 

sample sizes of 10 and 20 per group, the arcsin-square root transformation shows the best type I 

error rate control for almost all cell types abundances, however with smaller sample sizes (n = 3,  
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Figure 2. Simulation results. a. Cell type proportions for one simulated dataset with no abundance 

differences between group 1 (samples S1 - S5) and group 2 (samples S6 - S10). b. Type I error rate at 

𝛼=0.05 for sample sizes n=3, 5, 10, 20 for the six methods. 1000 datasets with 5 cell types that do not 

change in abundance between two groups were simulated, varying the sample size. For each of the cell 

types, the proportion of simulated datasets with p-value < 0.05 was calculated when testing for cell type 

proportion differences for each of the six models. c. True cell type proportions for group 1 and group 2. 

Three cell types that range in abundance are simulated to vary by 2 - 3 fold (denoted by asterisks). The 

remaining four cell types do not differ. d. Heatmap showing the proportions of 1000 simulated datasets 

with p-value < 0.05 when testing for cell type proportion differences between two groups. True positives 

are denoted by an asterisk. Dark red indicates greater power to detect significant cell type differences 

(proportion significant is high). For true negatives, dark blue without the # symbol indicates good false 

discovery rate control with proportion significant <0.05, # indicates proportion significant between 0.05 

and 0.1, and ## indicates poorest control with the proportion significant > 0.1. e. Heatmap showing the 

mean area under the receiver operating curve (AUC) for each of the six methods for all sample sizes 
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across 1000 simulated datasets. Higher AUC (darker red) indicates a method has both good power to 

detect true positives as well as good false discovery rate control. 

 

5), the logit transform appears to better control the type I error rate. Across all sample sizes there 

was a trend of increased Type I error rate for less abundant cell types for propeller(logit), beta-

binomial, negative binomial, quasi-likelihood negative binomial and the CODA method, while 

propeller(asin) tends to be conservative for the most rare cell type (π = 0.01). It is not surprising 

that the beta-binomial model performs favourably as this method most closely resembles the 

distributional assumptions underlying the simulation. 

 

3.2 Power to detect true differences in cell type proportions in simulated data 

Next we expanded the simulation to include seven cell types, three of which change proportions 

between the two groups by between 2 and 3-fold, while the remaining four did not (Figure 2c). 

The parameters αi and βi of the beta distribution were estimated from real human heart single 

nuclei RNA-seq data (Figure 3a) using the estimateBetaParamsFromCounts function available 

in the speckle package. We simulated 1000 datasets and evaluated the performance of the 

models by examining the proportion of simulated datasets with p-value < 0.05 for each of the 

seven cell types for each of the six methods. The proportions of the three cell types that are 

simulated to differ between the two groups range from very rare to quite abundant (baseline 

proportions in group 1 = 0.008, 0.183, 0.551). We repeated these simulations for sample sizes n 

= 3, 5, 10, 20. 

 

At n=5 samples per group, propeller(asin) detected the rare cell type difference in only 52% of 

the simulated datasets, while the other methods detected the rare cell type difference in 71-81% 

of simulated datasets (Figure 2d). However, propeller(asin) detected the differences in the more 

abundant cell types in a larger percentage of the simulated datasets compared to the other 

methods (82% and 74% of simulated datasets). The negative binomial methods detected the 

difference in the most abundant cell type in < 50% of the simulated datasets. The CODA method 

had relatively poor performance for the more abundant cell types compared to the propeller 

methods and the beta-binomial model. The most consistent performing models across cell type 

abundances were propeller(logit) and the beta-binomial model. In terms of the cell types that did 
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not change between the two groups, we noted that propeller(asin) generally had the best false 

discovery rate control and CODA had the worst. Heatmaps for sample sizes n = 3, 10 and 20 are 

shown in Supplementary Figure 2. 

 

Figure 2e shows the mean area under the receiver operating curve (AUC) for the six methods at 

the four different sample sizes (n = 3, 5, 10, 20). As sample size increases, all methods show an 

improvement in performance. With at least 10 samples in each group, all methods except CODA 

have an AUC above 98%. In general, propeller(asin), propeller(logit) and the Beta binomial 

method have the highest AUC at each of the four sample sizes.  

 

3.3 Extreme case: varying numbers of cell types 

While the simulations above examine Type I error control and power to detect true positives with 

5 and 7 cell types respectively, we wanted to examine the performance of the methods in the 

extreme case when there are only 2 cell types present in the dataset, compared to when there are 

20. Here we focussed on n = 5 and simulating cell types with true differences between two 

groups. 

 

The scenario when only two cell types are present in the data is interesting from the perspective 

that if one cell type changes in proportion, the other cell type will also naturally change. In this 

scenario, we set the Group 1 true proportions as π1i = 0.4, 0.6; and Group 2 true proportions as  

π2i = 0.2, 0.8 (Supplementary Figure 3a). Hence, cell type 1 is halved in Group 2 compared to 

Group 1, and cell type 2 increases by 33.3%. In this scenario, all the methods detected the 

changes in the two cell types in the majority of the simulated datasets (Supplementary Figure 

3b).There was a slight decrease in power for the negative binomial methods for the more 

abundant cell type. 

 

For the scenario with 20 cell types, we used cell type proportion estimates from the 12 healthy 

human PBMC scRNA-seq dataset as our true baseline proportions. We modified 8 of the 20 cell 

types to be different between the two groups (Supplementary Figure 4a). The cell types that 

differed in abundance between the two groups ranged from rare to abundant. The heatmap in 

Supplementary Figure 4b shows the proportion of significant tests across the 1000 simulated 
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datasets for each cell type and each method. In this scenario with a larger number of cell types, 

the negative binomial methods have similar performance compared to the other methods. Cell 

types with larger log-fold changes are detected as statistically significant in the majority of 

simulated datasets by all methods. 

 

Table 2 shows the recall, precision and F1 score for each method averaged across the 1000 

simulated datasets. In this scenario, the CODA method is able to detect more true differences in 

cell type proportions compared to any of the other methods, at the expense of detecting the most 

false positives. In general, the propeller methods have high precision indicating that not many 

false discoveries are reported. The negative binomial methods perform well in this scenario, and 

the beta-binomial model has the second highest F1 score with a good balance between precision 

and recall. Propeller(logit) has the highest precision and CODA has the highest recall. 

 

Table 2. Recall, precision and F1 score for 1000 simulated datasets with 20 cell types.  8 out of 20 cell types differ 

in abundance between two groups by between 1.4 - 3 fold. Recall, precision and F1 scores were calculated for each 

of the 1000 simulated datasets, and mean values shown. Bold values highlight best performing method for each 

metric. 

Method Recall Precision F1 score 

propeller(asin) 0.646125 0.9085725 0.7463168 

propeller(logit) 0.694250 0.9161798 0.7808882 

Beta-binomial 0.725125 0.9091364 0.7984171 

Negative binomial 0.710500 0.8972013 0.7839388 

Quasi-likelihood neg bin 0.690125 0.9098287 0.7756611 

CODA 0.794500 0.8640721 0.8197626 

 

 

4. Application to real single cell datasets 

One important feature of propeller is that complex experimental designs can be modelled by 

using a design matrix that takes account of multiple factors. In order to demonstrate the types of 

experimental designs that can be accommodated, we applied propeller(logit) to three different 
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scRNA-seq datasets that varied in terms of the experimental design and the number of samples 

and cell types in each dataset:  

1. 9 human heart biopsy samples across development (fetal, young, adult), with 8 broad cell 

types annotated5. We modelled development as a continuous variable and sex as a 

categorical variable.  

2. 20 PBMC samples across young and old male and female samples with 24 cell types 

annotated6. We modelled age and sex as categorical variables.  

3. 13 bronchoalveolar lavage fluid immune cell samples across three groups (healthy 

controls, moderate and severe COVID-19 infection) with 10 cell types annotated18. We 

modelled disease status as a categorical variable and performed an ANOVA to find cell 

type differences between the three groups. 

 

Figure 3a-c shows the cell type proportion estimates for each sample for the three different 

datasets. The cell type proportions are highly variable between individuals across all datasets.  

Across healthy human heart development, we detected significant changes in the abundances of 

immune, erythroid, cardiomyocyte and fibroblast cells (Supplementary Figure 5). In the original 

analysis, propeller(logit) was applied as an ANOVA test, ignoring sex. While the conclusions are 

not markedly different, the order of significant cell types has changed with immune cells the 

most significant cell type when modelling development as a continuous variable. The immune 

and erythroid cell type changes across development form a type of positive control and it is 

encouraging that they are the most significant cell types. As noted in the initial paper5, immune 

cells increase throughout development, as would be expected as the fetus has not been exposed 

to many pathogens, while an adult would have a larger and more diverse repertoire of immune 

cells. With the erythroid cells, only fetal red blood cells are nucleated, and hence they are 

captured with the nuclei protocol in fetal samples and absent in young and adult samples. An 

interesting finding in this study was that the relative abundance of cardiomyocytes decline with 

age (Figure 3d), while fibroblasts increase across development (Supplementary Figure 6).  

 

For the aging PBMC dataset, we detected statistically significant differences in CD8 naive and 

CD16 cells between young and old samples, while controlling for sex, at a false discovery rate 

threshold of 0.05. CD8 naive cells were enriched in the young samples (Figure 3e), and CD16  
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Figure 3. Applying propeller to three single cell RNA-seq datasets. a.  Barplot showing cell type 

proportions for nine samples in a human heart development snRNA-seq dataset. f=fetal, y=young, a=adult 

b. Barplot showing cell type proportions for 20 PBMC samples that differ in terms of their age (Y/O) and 

sex (M/F) c. Barplot showing cell type proportions for 13 samples in a COVID-19 study. HC=healthy 

control, M=moderate COVID-19 infection, S=severe COVID-19 infection. d. Treating developmental 

stage as a continuous variable, the cardiomyocyte populations show a relative decline across development 

in human heart samples. e. There is a statistically significant difference in the proportions of CD8 naive 

cells between young and old PBMC samples, taking sex into account. f. Neutrophils are statistically 

significantly different between healthy control, moderate and severe COVID-19 bronchoalveolar lavage 

samples.  

 

cells were depleted in the young samples compared to old (Supplementary Figure 6). While the 

CD8 naive result was reported in the initial paper, we detected a significant change in abundance 

of CD16 cells between young and old samples that was not reported in the original analysis6. 

 

For the COVID-19 dataset, we found four cell types to have significant changes in abundance 

between the three groups when we used propeller(logit) (Supplementary Figure 7). We found 

that neutrophils were the most significantly different between healthy controls and moderate and 
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severe bronchoalveolar lavage samples from COVID-19 patients (Figure 3f), and this was not 

reported as statistically significant in the original analysis18. Plasma, pDC and NK cells also 

showed significant changes in abundance. Upon closer inspection, it appeared that the significant 

result for Plasma was driven by one sample in the severe COVID-19 group (Supplementary 

Figure 7). When we re-analysed the data with propeller(asin), this cell type was no longer 

significant, while neutrophils, pDC and NK cells were still statistically significant. This indicates 

that propeller(logit) may be sensitive to outlier samples and suggests that propeller(asin) is a 

more robust method to use when outliers are present in the data. Compared to the results from 

the original analysis, we detected two additional cell types, neutrophils and NK cells, that 

significantly changed in abundance between healthy controls, moderate and severe COVID-19 

patients. 

 

5. Discussion 

In this paper we present propeller, a new method for testing for differences in cell type 

proportions from single cell data. It takes account of sample-to-sample variability, which is large 

due to both technical and biological sources. The propeller function itself inter-operates with 

Seurat and SingleCellExperiment class objects, and the propeller.ttest and propeller.anova 

functions have the ability to model complex experimental designs. In order to work specifically 

with the features of single cell data which often have extreme cell proportions, we have 

implemented propeller with two different transformations: the arcsin square root transformation 

and the logit transformation. Through simulation studies, we found propeller(logit) has superior 

performance in terms of power to detect changes in cell type proportions, as well as good false 

discovery rate control. Through analysis of real datasets, we found that propeller(logit) may be 

sensitive to outlier samples, while propeller(asin) is not, which suggests that propeller(asin) is a 

good alternative in this scenario. A recent comparison of statistical methods for performing cell 

type composition analysis of single cell data found that propeller(asin) and Dirichlet regression 

had the best performance across a variety of scenarios19. The propeller methods have the ability 

to handle zeros and ones in the data, which are not uncommon in cell type proportion estimates 

from single cell data. Zero values need to be carefully dealt with when using compositional data 

analysis methods (CODA). For the simulation studies, we replaced zeroes with 0.5 prior to 
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centred-log ratio transformation. Another factor to consider when using a CODA framework is 

the choice of reference cell type, and all results need to be interpreted relative to the reference 

cell type, which can make interpretation of the output more challenging. 

In our simulation studies we explored the effect of the number of cell types on the performance 

of the methods. For datasets with fewer cell types, the negative binomial methods and the CODA 

method show decreased performance compared to beta-binomial and propeller methods. As the 

number of cell types increases to 20, the performance of negative binomial and CODA methods 

improve to be comparable to the other methods. We also explored the effect of sample size and 

baseline abundance of the cell type on the performance of the methods. For small sample sizes 

the differences between the methods is more pronounced, with propeller(logit) and beta-binomial 

showing the best overall performance. As the sample size increases beyond 10 samples per 

group, all methods show good power and false discovery rate control, with the exception of the 

CODA method, which has increased false discovery rates for all cell types with increasing 

sample size. We also found that at smaller sample sizes, propeller(asin) had less power to detect 

the differences in the most rare cell types, while the negative binomial methods had less power to 

detect differences in the most abundant cell types. 

 

We applied propeller to the analysis of three different single cell datasets that differed in terms 

of tissue, number of cell types, sample size and experimental conditions. We found significant 

biological differences in abundance, including some cell types that had not been previously 

reported, in three different studies: across healthy human heart development, comparing blood 

from young and old patients, and in lung fluid from individuals with severe covid versus 

moderate and healthy controls. All our analysis is available via a workflowr20 website 

(https://phipsonlab.github.io/propeller-paper-analysis/), with the original source code available 

on github (https://github.com/phipsonlab/propeller-paper-analysis/tree/master ). The propeller 

methods are available in the speckle R package (https://github.com/phipsonlab/speckle ). 

 

6. Materials and Methods 

6.1 The propeller statistical model 
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Let xij  denote the number of cells observed for cell type i for sample j, and let Nj denote the total 

number of cells observed for sample j. For each cell type i and sample j, we calculate the cell 

type proportions as 

𝑝𝑖𝑗 =
𝑥𝑖𝑗

𝑁𝑗
. 

 We perform a variance stabilising step in propeller by performing a data transformation. The 

arcsin square root transform, denoted zij , is simply calculated as follows: 

𝑧𝑖𝑗 = 𝑎𝑟𝑐𝑠𝑖𝑛(√𝑝𝑖𝑗). 

For the logit transform, more care is needed to deal with zeroes in the data. We thus add a count 

of 0.5 to xij when calculating the proportions: 

𝑝𝑖𝑗 =
𝑥𝑖𝑗 + 0.5

∑𝐼
𝑖=1 (𝑥𝑖𝑗 + 0.5)

 

The logit transform is then given by 

𝑧𝑖𝑗 = 𝑙𝑜𝑔(
𝑝𝑖𝑗

1−𝑝𝑖𝑗
) . 

Let zi
T= (zi1,...,ziJ) denote the vector of transformed proportions for cell type i for samples 1,...,J. 

We fit a linear model, 

                                                      E(zi) = X𝝱i                                                      (1) 

where X is a design matrix of full column rank and 𝝱i  is a vector of coefficients. In general, 𝝱i 

can be estimated by 

𝛽𝑖̂ = (𝑋𝑇𝑋)−1𝑋𝑇𝘻𝑖. 

The variance of the transformed proportions for the ith cell type is denoted si
2 and are the 

residuals obtained from fitting the linear model in (1). Moderated t-statistics for each contrast k 

are calculated as 

𝑡𝑖𝑘 =
𝛽𝑖𝑘̂

𝑠𝑖𝑘√𝜈
 , 

where 𝜈 is the appropriate diagonal element from the positive definite matrix (XTX)-1, and sik
2 are 

the squeezed variances from Smyth (2004). The tik follow a scaled t distribution with augmented 

degrees of freedom do+di. Once p-values are obtained from the moderated t-statistics, they are 

adjusted for multiple testing using the method of Benjamini and Hochberg15, which has been 

shown to be robust to dependence of the test statistics21. The BH procedure is also robust to the 

number of cell types and will compute when the number of cell types is as low as two.  
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6.2 Estimating the parameters of the Beta distribution from observed cell type counts 

We used the method of moments to estimate the parameters 𝛼 and 𝛽 of the Beta distribution 

from observed cell type counts xij from real single cell data in some of our simulated datasets. 

We implemented the estimation procedure on both cell type counts and proportions in the 

estimateBetaParamsFromCounts and estimateBetaParam functions respectively. We found the 

estimation procedure more stable on the cell type counts and it is described here.  

 

The cell type proportions pij for cell type i and sample j are calculated as 

𝑝𝑖𝑗 =
𝑥𝑖𝑗

𝑁𝑗
, 

where                                                           

𝑁𝑗 = ∑

𝐼

𝑖=1

𝑥𝑖𝑗  

are the total cell counts for sample j. In practice the cell type counts are scaled to the median Nj, 

such that all Nj =N. For cell type i, the mean and variance of the Beta distribution are given by 

𝐸(𝑝𝑖)  =
1

𝑁
𝐸(𝑋𝑖) =

𝛼𝑖

𝛼𝑖+𝛽𝑖
, 

and 

𝑉𝑎𝑟(𝑝𝑖)  =
1

𝑁2 𝑉𝑎𝑟(𝑋𝑖) =
𝛼𝑖𝛽𝑖

(𝛼𝑖+𝛽𝑖)2(𝛼𝑖+𝛽𝑖+1)
. 

 

The kth raw moment can be estimated from the kth raw sample moment for cell type i 

𝑚𝑘𝑖 =
1

𝐽
∑

𝐽

𝑗=1

𝑥𝑖𝑗
𝑘  

The estimated first and second moments for cell type i are given by 

𝑚1𝑖 =
1

𝐽
∑

𝐽

𝑗=1

𝑥𝑖𝑗 

𝑚2𝑖 =
1

𝐽
∑𝐽

𝑗=1 𝑥𝑖𝑗
2 . 

It can hence be shown through the mathematical relationships between the mean, variance and 

moments that estimators for  𝛼i and 𝛽i  can be obtained by 
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𝛼𝑖̂ =
𝑁𝑚1𝑖 − 𝑚2𝑖

𝑁(
𝑚2𝑖
𝑚1𝑖

− 𝑚1𝑖 − 1) + 𝑚1𝑖

 

𝛽𝑖̂ =
(𝑁−𝑚1𝑖)(𝑁−

𝑚2𝑖
𝑚1𝑖

)

𝑁(
𝑚2𝑖
𝑚1𝑖

−𝑚1𝑖−1)+𝑚1𝑖
. 

 

6.3 The hierarchical model for the simulated datasets 

Let 𝝅 denote a vector of true probabilities for the cell types. For a given value of 𝜶, 𝜷 can be 

calculated as  

𝛽 =
𝛼(1 − 𝜋)

𝜋
. 

Alternatively, 𝜶 and 𝜷 can be estimated from observed cell type counts in real single cell 

datasets using the method of moments described above. 

 

The sample proportions pij for cell type i and sample j are generated from a Beta distribution: 

pij ~Beta(𝛼i , 𝛽i) 

The cell type counts xij are sampled from a binomial distribution 

xij ~ Bin(nj , pij), 

where the total number of cells per sample j are sampled from a negative binomial distribution 

nj ~NegBin(𝜇 = 5000, 𝜑 = 20). 

The resulting cell type counts follow a beta-binomial distribution. 

 

6.4 Implementation of the different methods in R 

For the chi-square test, cells from the samples within each group were summed and the prop.test 

function was used to obtain p-values for each cell type. For the negative binomial models, the 

edgeR Bioconductor package was used. For the classic negative binomial regression, the glmFit 

and glmLRT functions were used to model cell type counts. For quasi-likelihood negative 

binomial, glmQLFit and glmQLFTest were used. To fit Poisson regression, the glmFit and 

glmLRT functions in edgeR were used with the dispersion set to zero. For beta-binomial, an 

alternate parameterisation for the negative binomial was employed, as described in Chen et al.,22 

to analyse bisulfite sequencing data. For logistic binomial regression, the same approach was 

taken but with the dispersion set to zero. We implemented the CODA method from first 
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principles. First, we replaced any zeroes in the data with 0.5. For each sample j we calculated the 

geometric mean. The centred log-ratio transformation divides the observed cell type count for 

sample j by the geometric mean for sample j and then takes the log of the ratio. Normal 

regression theory can then be applied to the transformed data. We used limma to fit linear 

regression models on the transformed data. 
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