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Abstract:
Motivation

Single cell RNA Sequencing (ScCRNA-seq) has rapidly gained popularity over the last few years
for profiling the transcriptomes of thousands to millions of single cells. This technology is now
being used to analyse experiments with complex designs including biological replication. One
question that can be asked from single cell experiments, which has been difficult to directly
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address with bulk RNA-seq data, is whether the cell type proportions are different between two
or more experimental conditions. As well as gene expression changes, the relative depletion or
enrichment of a particular cell type can be the functional consequence of disease or treatment.
However, cell type proportions estimates from scRNA-seq data are variable and statistical
methods that can correctly account for different sources of variability are needed to confidently

identify statistically significant shifts in cell type composition between experimental conditions.

Results

We have developed propeller, a robust and flexible method that leverages biological replication
to find statistically significant differences in cell type proportions between groups. Using
simulated cell type proportions data we show that propeller performs well under a variety of
scenarios. We applied propeller to test for significant changes in proportions of cell types related
to human heart development, ageing and COVID-19 disease severity.

Availability and implementation

The propeller method is publicly available in the open source speckle R package

(https://github.com/phipsonlab/speckle ). All the analysis code for the paper is available at
https://github.com/phipsonlab/propeller-paper-analysis/, and the associated analysis website is

available at https://phipsonlab.github.io/propeller-paper-analysis/ .
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1. Introduction
Single cell RNA-sequencing (SCRNA-seq) technology has led to breakthroughs in the discovery

of novel cell types and enhanced our understanding of the development of complex tissues. As
the technology has matured it has become relatively straightforward to profile the transcriptomes

of hundreds of thousands of cells, resulting in valuable insight into the composition of tissues.

While many of the first published single cell papers focused on defining the resident cell types in
complex tissues'™, the field is now using this technology for complex experimental comparisons
with biological replication>®. Experiments with different conditions and multiple biological
samples can be costly, however substantial savings can be made by pooling cells from multiple
samples. If samples are genetically diverse, they can be demultiplexed using genetic
information®*°. An alternative approach is to use molecular cell multiplexing protocols, such as
the commercially available CellPlex from 10x Genomics. Collectively, cell multiplexing makes
designing larger sScRNA-seq experiments more feasible.

The first step in analysis for an sScCRNA-seq experiment with multiple experimental conditions
and biological replicates is to identify the cell types present in each sample. However,
downstream analysis requires sophisticated tools to address specific hypotheses about how a
perturbation affects the biological system. Two analysis tasks are commonly performed
following cell type identification in order to understand the effect of the condition. One task is to
find genes that are differentially expressed between groups of samples, for every cell type
observed in the experiment, similar to the analysis of bulk RNA-seq experiments!!. However, a
benefit of SCRNA-seq data is that we have additional information on the composition of the
samples. The relative change in abundance of a cell type can be a consequence of normal
development, disease or treatment. Due to technical as well as biological sources, the cell type
proportions estimates from single cell data can be quite variable. The focus of this work is to find
statistically significant differences in cell type proportions between groups of samples that

appropriately takes into account sample-to-sample variability.

Here we present propeller, a robust and flexible linear modeling based solution to test for
differences in cell type proportions between experimental conditions. The propeller method
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leverages biological replication to obtain measures of variability of cell type proportion
estimates, and uses empirical Bayes to stabilise variance estimates by borrowing information
across cell types. It is a flexible approach that can be applied to complex experimental designs
with multiple factors. Using simulated data, we compared the performance of commonly used
statistical models for testing for differences in cell type proportions and show that propeller
performs well across a variety of experimental scenarios. We applied propeller to three different
single cell datasets on ageing, human heart development and COVID-19 disease severity and
find additional cell types changing in abundance that were not reported in the original analysis.
Our propeller method is publicly available in the speckle R package

(https://github.com/phipsonlab/speckle ).

2. The propeller method

Propeller is a function in the speckle R package that uses cell level annotation information to
calculate sample level cell type proportions, followed by data transformation and statistical
testing for each cell type. Propeller leverages biological replication to estimate the high sample-
to-sample variability in cell type counts often observed in real single cell data (Figure 1a, PBMC
SCRNA-seq data from 12 healthy human donors). The variability in cell type proportions
estimates between samples can be large both due to technical sources such as variation in
dissociation protocols, and due to valid biological factors that contribute to variability. For
example, blood cell type composition is known to change with age!?. Taking into account
sample-to-sample variability when analysing differences in cell type proportions is critical as
observed cell type variances are far greater than variances estimated under a binomial or Poisson
distribution, which can only account for sampling variation (Figure 1b, PBMC scRNA-seq

dataset from 12 healthy human donors).

The first step of propeller is to calculate the cell type proportions for each sample. Propeller can
directly derive the counts and calculate the proportions from a Seurat or SingleCellExperiment
object. This results in a matrix of proportions where the rows are the cell types and the columns
are the samples. The binomial distribution has the statistical property that proportions close to 0

and 1 have small variance, and values close to 0.5 have large variance i.e. the variances are
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Figure 1. Exploring heterogeneity in cell type proportions estimated from single cell RNA-seq data.
a. Barplot showing high levels of variability of cell type proportion estimates between 12 healthy PBMC
scRNA-seq samples. b. Mean-variance relationship for 27 cell types in 12 healthy PBMC scRNA-seq
samples showing that cell type proportions are over-dispersed compared to the variance estimated under a
Binomial distribution. The plot is produced using the plotCellTypePropsMeanVar function in the

speckle package.

heteroskedastic. To overcome this, we have implemented two transformations in propeller: (1)
arcsin square root transformation, and (2) logit transformation. The arcsin square root
transformation has the benefit that it will always produce a real value. If the logit transformation
is selected an offset of 0.5 is added to the raw cell type counts matrix prior to transformation to
avoid taking the log of zeroes.

Next we test whether the transformed proportions for every cell type are significantly different
between two or more experimental conditions using a linear modelling framework. If there are
exactly two groups, we perform moderated t-tests; if there are more than two groups, we perform
moderated ANOVA tests'®. These tests are moderated using an empirical Bayes framework,
allowing information to be borrowed across cell types to stabilise the cell type specific variance
estimates. This is particularly effective when the number of biological replicates is small and the
number of cell types is at least three!*, a common situation in SCRNA-seq experiments. The final

step in propeller is to calculate false discovery rates® to account for testing across multiple cell
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types. The output of propeller consists of condition specific proportions estimates, p-values and

false discovery rates for every cell type observed in the experiment.

The minimal annotation information that propeller requires for each cell is cluster/cell type,
sample and group/condition, which can be manually entered or automatically extracted from
Seurat and SingleCellExperiment class objects. More complex experimental designs can be
accommodated using the propeller.ttest and propeller.anova functions, which have the flexibility
to model additional covariates of interest such as sex or age.

3. Performance using simulated datasets

3.1 Type I error control under null simulation scenario

Although it is clear from the PBMC scRNA-seq data that cell type proportions estimates are
overdispersed (Figure 1b), we wanted to more thoroughly evaluate the performance of propeller
as well as other statistical methods that have commonly been used for testing differences in
proportions in other fields. Using simulated cell type proportions, we compared the performance

of nine different statistical models.

=

Chi-square test for differences in proportions

Logistic binomial regression (special case of beta-binomial with dispersion=0)

Poisson regression (special case of negative binomial with dispersion=0)

propeller with arcsin square root transformation of proportions, denoted propeller(asin)
propeller with logit transformation of proportions, denoted propeller(logit)
Beta-binomial regression on cell type counts

Negative binomial regression on cell type counts

Quasi-likelihood negative binomial regression on cell type counts

© 0o N o g bk~ w DN

Centred log-ratio transformation (CLR) followed by linear regression, denoted CODA

The first three methods do not take into account sample to sample variability, while the
remaining 6 methods (4-9) do. The quasi-likelihood approach (method 8) is described in the
Bioconductor book “Orchestrating single cell analysis with Bioconductor®. The two variations
of propeller model transformed proportions, while the remaining statistical tests, with the
exception of the CODA method, model the cell type counts directly. Method 9 is an example
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from the compositional data analysis field where the cell types are modeled relative to a
reference “cell type”. Here the geometric mean of the cell types forms the baseline as is
commonly done in microbiome data analysis'’. The log-ratio of the counts to the geometric mean
is calculated and a linear model fitted with group as the explanatory variable to obtain p-values.

We simulated cell type counts in a hierarchical manner under a simple null scenario where the
cell type proportions do not differ between two groups in order to determine whether the nine
methods control the Type | error rate. We simulated five cell types with proportions that varied
from rare to abundant (true proportions z; = 0.01, 0.02, 0.15, 0.34, 0.45). The sample
proportions, pij, for cell type i and sample j, were generated from a Beta distribution with
parameters ai and Bi, which control how variable the proportions are. Larger values of ai and Bi
result in a more precise distribution centred around the true proportions, while smaller values
result in a more diffuse prior (Supplementary Figure 1). We set a; = 10, and calculated the
corresponding 3, for each cell type i from the following relationship derived from properties of
the Beta distribution:
_a(l —m)

i T
Cell type counts xi; were then sampled from a binomial distribution with parameters n; and pj; .
The total number of cells, nj, per sample j, were sampled from a negative binomial distribution
with mean 5000 and dispersion 20 to simulate variation in total cell numbers per sample
observed in real data. We simulated 10,000 datasets, and counted the number of times each of
the five cell types were statistically significant with p-value < 0.05 for the nine different
statistical models. We also varied the number of samples per group to determine the effect of
sample size on the Type I error rate (n = 3, 5, 10, 20). Figure 2a shows the cell type proportions
per sample observed for an example simulated dataset under these conditions.

Table 1 shows the type I error rates for the nine different methods for each of the five different
cell types at a nominal p-value cut-off of 0.05 when the number of samples per group is five. The
most striking observation is that the statistical tests (methods 1-3) that do not account for

additional biological variability frequently find significant differences between the two groups
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Table 1. Proportion of significant tests for each cell type between two groups with no differences at a nominal p-

value cut-off of 0.05. Ten thousand datasets were simulated under a beta binomial model with five samples in each
group. In order to control the type 1 error rate correctly, the proportion of significant tests should be approximately
0.05 for each cell type. The number in brackets in the first column corresponds to the true cell type proportion, and

the cell types are ordered from most rare to most abundant. The bold numbers indicate Type | error estimates < 0.05.

x? test Logistic | Poisson | Propelle | Propelle | BetaBin | LRT QLF CODA
Cell Bin r (asin) | r (logit) NegBin | NegBin
type
C1 0.4501 0.4605 0.4589 0.0141 0.0738 0.0651 0.0951 0.0815 0.0791
(0.01)
C2 0.7238 0.7268 0.7198 0.0493 0.0662 0.0757 0.1003 0.0854 0.0693
(0.05)
C3 0.8142 0.8155 0.798 0.0705 0.0579 0.0694 0.0789 0.0672 0.0585
(0.15)
C4 0.8473 0.8478 0.816 0.0774 0.0466 0.0578 0.0428 0.0364 0.0433
(0.34)
C5 0.8552 0.8563 0.8041 0.0746 0.0389 0.0487 0.0254 0.0201 0.0348
(0.45)

when there are none. As expected, it is clear that methods that account for this additional

variability are required and methods 1-3 are not further explored in this analysis.

For the methods that model sample-to-sample variability none have perfect type | error rate
control, although the observed rates are generally close to 0.05 (methods 4-9). Propeller(asin)
tends to be conservative for the most rare cell type, and permissive for more abundant cell types
whereas the opposite tends to be true for the other tests, particularly for the negative binomial
methods. These results show that the type | error rate differs between different cell types
depending on how abundant the cell type is, and no method perfectly controls the type | error

rate for both rare and abundant cell types.

Figure 2b summarises the Type | error rates for different sample sizes. As the number of samples
in each group increases, the type I error rate for all methods is closer to 0.05 (Figure 2b). For
sample sizes of 10 and 20 per group, the arcsin-square root transformation shows the best type |

error rate control for almost all cell types abundances, however with smaller sample sizes (n = 3,

8
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Figure 2. Simulation results. a. Cell type proportions for one simulated dataset with no abundance
differences between group 1 (samples S1 - S5) and group 2 (samples S6 - S10). b. Type | error rate at
a=0.05 for sample sizes n=3, 5, 10, 20 for the six methods. 1000 datasets with 5 cell types that do not
change in abundance between two groups were simulated, varying the sample size. For each of the cell
types, the proportion of simulated datasets with p-value < 0.05 was calculated when testing for cell type
proportion differences for each of the six models. c. True cell type proportions for group 1 and group 2.
Three cell types that range in abundance are simulated to vary by 2 - 3 fold (denoted by asterisks). The
remaining four cell types do not differ. d. Heatmap showing the proportions of 1000 simulated datasets
with p-value < 0.05 when testing for cell type proportion differences between two groups. True positives
are denoted by an asterisk. Dark red indicates greater power to detect significant cell type differences
(proportion significant is high). For true negatives, dark blue without the # symbol indicates good false
discovery rate control with proportion significant <0.05, # indicates proportion significant between 0.05
and 0.1, and ## indicates poorest control with the proportion significant > 0.1. e. Heatmap showing the
mean area under the receiver operating curve (AUC) for each of the six methods for all sample sizes
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across 1000 simulated datasets. Higher AUC (darker red) indicates a method has both good power to

detect true positives as well as good false discovery rate control.

5), the logit transform appears to better control the type I error rate. Across all sample sizes there
was a trend of increased Type | error rate for less abundant cell types for propeller(logit), beta-
binomial, negative binomial, quasi-likelihood negative binomial and the CODA method, while
propeller(asin) tends to be conservative for the most rare cell type (z = 0.01). It is not surprising
that the beta-binomial model performs favourably as this method most closely resembles the

distributional assumptions underlying the simulation.

3.2 Power to detect true differences in cell type proportions in simulated data

Next we expanded the simulation to include seven cell types, three of which change proportions
between the two groups by between 2 and 3-fold, while the remaining four did not (Figure 2c).
The parameters i and Bi of the beta distribution were estimated from real human heart single
nuclei RNA-seq data (Figure 3a) using the estimateBetaParamsFromCounts function available
in the speckle package. We simulated 1000 datasets and evaluated the performance of the
models by examining the proportion of simulated datasets with p-value < 0.05 for each of the
seven cell types for each of the six methods. The proportions of the three cell types that are
simulated to differ between the two groups range from very rare to quite abundant (baseline
proportions in group 1 = 0.008, 0.183, 0.551). We repeated these simulations for sample sizes n
= 3,5, 10, 20.

At n=5 samples per group, propeller(asin) detected the rare cell type difference in only 52% of
the simulated datasets, while the other methods detected the rare cell type difference in 71-81%
of simulated datasets (Figure 2d). However, propeller(asin) detected the differences in the more
abundant cell types in a larger percentage of the simulated datasets compared to the other
methods (82% and 74% of simulated datasets). The negative binomial methods detected the
difference in the most abundant cell type in < 50% of the simulated datasets. The CODA method
had relatively poor performance for the more abundant cell types compared to the propeller
methods and the beta-binomial model. The most consistent performing models across cell type

abundances were propeller(logit) and the beta-binomial model. In terms of the cell types that did

10
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not change between the two groups, we noted that propeller(asin) generally had the best false
discovery rate control and CODA had the worst. Heatmaps for sample sizes n = 3, 10 and 20 are

shown in Supplementary Figure 2.

Figure 2e shows the mean area under the receiver operating curve (AUC) for the six methods at
the four different sample sizes (n = 3, 5, 10, 20). As sample size increases, all methods show an
improvement in performance. With at least 10 samples in each group, all methods except CODA
have an AUC above 98%. In general, propeller(asin), propeller(logit) and the Beta binomial

method have the highest AUC at each of the four sample sizes.

3.3 Extreme case: varying numbers of cell types

While the simulations above examine Type | error control and power to detect true positives with
5 and 7 cell types respectively, we wanted to examine the performance of the methods in the
extreme case when there are only 2 cell types present in the dataset, compared to when there are
20. Here we focussed on n = 5 and simulating cell types with true differences between two

groups.

The scenario when only two cell types are present in the data is interesting from the perspective
that if one cell type changes in proportion, the other cell type will also naturally change. In this
scenario, we set the Group 1 true proportions as z1i = 0.4, 0.6; and Group 2 true proportions as
m2i = 0.2, 0.8 (Supplementary Figure 3a). Hence, cell type 1 is halved in Group 2 compared to
Group 1, and cell type 2 increases by 33.3%. In this scenario, all the methods detected the
changes in the two cell types in the majority of the simulated datasets (Supplementary Figure
3b).There was a slight decrease in power for the negative binomial methods for the more

abundant cell type.

For the scenario with 20 cell types, we used cell type proportion estimates from the 12 healthy
human PBMC scRNA-seq dataset as our true baseline proportions. We modified 8 of the 20 cell
types to be different between the two groups (Supplementary Figure 4a). The cell types that
differed in abundance between the two groups ranged from rare to abundant. The heatmap in

Supplementary Figure 4b shows the proportion of significant tests across the 1000 simulated

11
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datasets for each cell type and each method. In this scenario with a larger number of cell types,
the negative binomial methods have similar performance compared to the other methods. Cell
types with larger log-fold changes are detected as statistically significant in the majority of

simulated datasets by all methods.

Table 2 shows the recall, precision and F1 score for each method averaged across the 1000
simulated datasets. In this scenario, the CODA method is able to detect more true differences in
cell type proportions compared to any of the other methods, at the expense of detecting the most
false positives. In general, the propeller methods have high precision indicating that not many
false discoveries are reported. The negative binomial methods perform well in this scenario, and
the beta-binomial model has the second highest F1 score with a good balance between precision
and recall. Propeller(logit) has the highest precision and CODA has the highest recall.

Table 2. Recall, precision and F1 score for 1000 simulated datasets with 20 cell types. 8 out of 20 cell types differ
in abundance between two groups by between 1.4 - 3 fold. Recall, precision and F1 scores were calculated for each

of the 1000 simulated datasets, and mean values shown. Bold values highlight best performing method for each

metric.

Method Recall Precision F1 score

propeller(asin) 0.646125 0.9085725 0.7463168
propeller(logit) 0.694250 0.9161798 0.7808882
Beta-binomial 0.725125 0.9091364 0.7984171
Negative binomial 0.710500 0.8972013 0.7839388
Quasi-likelihood neg bin | 0.690125 0.9098287 0.7756611
CODA 0.794500 | 0.8640721 0.8197626

4. Application to real single cell datasets

One important feature of propeller is that complex experimental designs can be modelled by
using a design matrix that takes account of multiple factors. In order to demonstrate the types of

experimental designs that can be accommodated, we applied propeller(logit) to three different
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SscCRNA-seq datasets that varied in terms of the experimental design and the number of samples
and cell types in each dataset:

1. 9 human heart biopsy samples across development (fetal, young, adult), with 8 broad cell
types annotated®. We modelled development as a continuous variable and sex as a
categorical variable.

2. 20 PBMC samples across young and old male and female samples with 24 cell types
annotated®. We modelled age and sex as categorical variables.

3. 13 bronchoalveolar lavage fluid immune cell samples across three groups (healthy
controls, moderate and severe COVID-19 infection) with 10 cell types annotated*8, We
modelled disease status as a categorical variable and performed an ANOVA to find cell

type differences between the three groups.

Figure 3a-c shows the cell type proportion estimates for each sample for the three different
datasets. The cell type proportions are highly variable between individuals across all datasets.
Across healthy human heart development, we detected significant changes in the abundances of
immune, erythroid, cardiomyocyte and fibroblast cells (Supplementary Figure 5). In the original
analysis, propeller(logit) was applied as an ANOVA test, ignoring sex. While the conclusions are
not markedly different, the order of significant cell types has changed with immune cells the
most significant cell type when modelling development as a continuous variable. The immune
and erythroid cell type changes across development form a type of positive control and it is
encouraging that they are the most significant cell types. As noted in the initial paper®, immune
cells increase throughout development, as would be expected as the fetus has not been exposed
to many pathogens, while an adult would have a larger and more diverse repertoire of immune
cells. With the erythroid cells, only fetal red blood cells are nucleated, and hence they are
captured with the nuclei protocol in fetal samples and absent in young and adult samples. An
interesting finding in this study was that the relative abundance of cardiomyocytes decline with

age (Figure 3d), while fibroblasts increase across development (Supplementary Figure 6).

For the aging PBMC dataset, we detected statistically significant differences in CD8 naive and
CD16 cells between young and old samples, while controlling for sex, at a false discovery rate

threshold of 0.05. CD8 naive cells were enriched in the young samples (Figure 3e), and CD16
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Figure 3. Applying propeller to three single cell RNA-seq datasets. a. Barplot showing cell type
proportions for nine samples in a human heart development snRNA-seq dataset. f=fetal, y=young, a=adult
b. Barplot showing cell type proportions for 20 PBMC samples that differ in terms of their age (Y/O) and
sex (M/F) c. Barplot showing cell type proportions for 13 samples in a COVID-19 study. HC=healthy
control, M=moderate COVID-19 infection, S=severe COVID-19 infection. d. Treating developmental
stage as a continuous variable, the cardiomyocyte populations show a relative decline across development
in human heart samples. e. There is a statistically significant difference in the proportions of CD8 naive
cells between young and old PBMC samples, taking sex into account. f. Neutrophils are statistically
significantly different between healthy control, moderate and severe COVID-19 bronchoalveolar lavage

samples.

cells were depleted in the young samples compared to old (Supplementary Figure 6). While the
CD8 naive result was reported in the initial paper, we detected a significant change in abundance

of CD16 cells between young and old samples that was not reported in the original analysis®.

For the COVID-19 dataset, we found four cell types to have significant changes in abundance
between the three groups when we used propeller(logit) (Supplementary Figure 7). We found
that neutrophils were the most significantly different between healthy controls and moderate and
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severe bronchoalveolar lavage samples from COVID-19 patients (Figure 3f), and this was not
reported as statistically significant in the original analysis*®. Plasma, pDC and NK cells also
showed significant changes in abundance. Upon closer inspection, it appeared that the significant
result for Plasma was driven by one sample in the severe COVID-19 group (Supplementary
Figure 7). When we re-analysed the data with propeller(asin), this cell type was no longer
significant, while neutrophils, pDC and NK cells were still statistically significant. This indicates
that propeller(logit) may be sensitive to outlier samples and suggests that propeller(asin) is a
more robust method to use when outliers are present in the data. Compared to the results from
the original analysis, we detected two additional cell types, neutrophils and NK cells, that
significantly changed in abundance between healthy controls, moderate and severe COVID-19

patients.

5. Discussion

In this paper we present propeller, a new method for testing for differences in cell type
proportions from single cell data. It takes account of sample-to-sample variability, which is large
due to both technical and biological sources. The propeller function itself inter-operates with
Seurat and SingleCellExperiment class objects, and the propeller.ttest and propeller.anova
functions have the ability to model complex experimental designs. In order to work specifically
with the features of single cell data which often have extreme cell proportions, we have
implemented propeller with two different transformations: the arcsin square root transformation
and the logit transformation. Through simulation studies, we found propeller(logit) has superior
performance in terms of power to detect changes in cell type proportions, as well as good false
discovery rate control. Through analysis of real datasets, we found that propeller(logit) may be
sensitive to outlier samples, while propeller(asin) is not, which suggests that propeller(asin) is a
good alternative in this scenario. A recent comparison of statistical methods for performing cell
type composition analysis of single cell data found that propeller(asin) and Dirichlet regression
had the best performance across a variety of scenarios®®. The propeller methods have the ability
to handle zeros and ones in the data, which are not uncommon in cell type proportion estimates
from single cell data. Zero values need to be carefully dealt with when using compositional data

analysis methods (CODA). For the simulation studies, we replaced zeroes with 0.5 prior to
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centred-log ratio transformation. Another factor to consider when using a CODA framework is
the choice of reference cell type, and all results need to be interpreted relative to the reference

cell type, which can make interpretation of the output more challenging.

In our simulation studies we explored the effect of the number of cell types on the performance
of the methods. For datasets with fewer cell types, the negative binomial methods and the CODA
method show decreased performance compared to beta-binomial and propeller methods. As the
number of cell types increases to 20, the performance of negative binomial and CODA methods
improve to be comparable to the other methods. We also explored the effect of sample size and
baseline abundance of the cell type on the performance of the methods. For small sample sizes
the differences between the methods is more pronounced, with propeller(logit) and beta-binomial
showing the best overall performance. As the sample size increases beyond 10 samples per
group, all methods show good power and false discovery rate control, with the exception of the
CODA method, which has increased false discovery rates for all cell types with increasing
sample size. We also found that at smaller sample sizes, propeller(asin) had less power to detect
the differences in the most rare cell types, while the negative binomial methods had less power to

detect differences in the most abundant cell types.

We applied propeller to the analysis of three different single cell datasets that differed in terms
of tissue, number of cell types, sample size and experimental conditions. We found significant
biological differences in abundance, including some cell types that had not been previously
reported, in three different studies: across healthy human heart development, comparing blood
from young and old patients, and in lung fluid from individuals with severe covid versus
moderate and healthy controls. All our analysis is available via a workflowr?® website

(https://phipsonlab.github.io/propeller-paper-analysis/), with the original source code available

on github (https://github.com/phipsonlab/propeller-paper-analysis/tree/master ). The propeller

methods are available in the speckle R package (https://github.com/phipsonlab/speckle ).

6. Materials and Methods

6.1 The propeller statistical model
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Let xi; denote the number of cells observed for cell type i for sample j, and let N; denote the total
number of cells observed for sample j. For each cell type i and sample j, we calculate the cell

type proportions as

We perform a variance stabilising step in propeller by performing a data transformation. The
arcsin square root transform, denoted zjj , is simply calculated as follows:
z;j = arcsin(\/p))-
For the logit transform, more care is needed to deal with zeroes in the data. We thus add a count
of 0.5 to xjjwhen calculating the proportions:
Xij+ 0.5
o (i +0.35)

pbi; =

The logit transform is then given by

Dij

Zij = log(

1-pyj
Let zi"= (zi1,...,Zis) denote the vector of transformed proportions for cell type i for samples 1,...,J.
We fit a linear model,
E(z) = XB )

where X is a design matrix of full column rank and g; is a vector of coefficients. In general, S
can be estimated by

Bi=x"x)"x"z,.
The variance of the transformed proportions for the i" cell type is denoted si? and are the
residuals obtained from fitting the linear model in (1). Moderated t-statistics for each contrast k
are calculated as
ik = Si—lkﬁ '

where v is the appropriate diagonal element from the positive definite matrix (X™X), and si? are

t

the squeezed variances from Smyth (2004). The tik follow a scaled t distribution with augmented
degrees of freedom do+di. Once p-values are obtained from the moderated t-statistics, they are
adjusted for multiple testing using the method of Benjamini and Hochberg®®, which has been
shown to be robust to dependence of the test statistics?'. The BH procedure is also robust to the

number of cell types and will compute when the number of cell types is as low as two.
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6.2 Estimating the parameters of the Beta distribution from observed cell type counts

We used the method of moments to estimate the parameters a and g of the Beta distribution
from observed cell type counts xij from real single cell data in some of our simulated datasets.
We implemented the estimation procedure on both cell type counts and proportions in the
estimateBetaParamsFromCounts and estimateBetaParam functions respectively. We found the

estimation procedure more stable on the cell type counts and it is described here.

The cell type proportions pjj for cell type i and sample j are calculated as

py = XU
yjy - R
N;j

where

are the total cell counts for sample j. In practice the cell type counts are scaled to the median N;,

such that all Nj =N. For cell type i, the mean and variance of the Beta distribution are given by

E(p) =53-E(X) =5

a;i+pB;’
and

a;pi
(ai+Bi) (ai+Bi+1)

1
Var(p;) =z Var(X;) =

The k' raw moment can be estimated from the k™ raw sample moment for cell type i

; J
— § k
My = 7 xl-]-
j=1

The estimated first and second moments for cell type i are given by

; J
m; = 72 Xij
j=1

_IyJ 2
mzi-;Z,-:] Xij-

It can hence be shown through the mathematical relationships between the mean, variance and

moments that estimators for «aj and Bi can be obtained by

18


https://doi.org/10.1101/2021.11.28.470236
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.28.470236; this version posted July 13, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Nm;; —my

a; =
m .

N 21
(mu

—m;—1)+my

(N—m ) (N—2h

i = .
N(m—i—mu—f)‘l'mu

6.3 The hierarchical model for the simulated datasets
Let it denote a vector of true probabilities for the cell types. For a given value of a, 8 can be
calculated as

g = a(ln— n).

Alternatively, a and B can be estimated from observed cell type counts in real single cell

datasets using the method of moments described above.

The sample proportions pjj for cell type i and sample j are generated from a Beta distribution:
pij ~Beta(ai , Bi)
The cell type counts x;; are sampled from a binomial distribution
xij ~ Bin(n;, pi),
where the total number of cells per sample j are sampled from a negative binomial distribution
nj ~NegBin(u = 5000, ¢ = 20).

The resulting cell type counts follow a beta-binomial distribution.

6.4 Implementation of the different methods in R

For the chi-square test, cells from the samples within each group were summed and the prop.test
function was used to obtain p-values for each cell type. For the negative binomial models, the
edgeR Bioconductor package was used. For the classic negative binomial regression, the gimFit
and gImLRT functions were used to model cell type counts. For quasi-likelihood negative
binomial, gimQLFit and gimQLFTest were used. To fit Poisson regression, the glmFit and
gImLRT functions in edgeR were used with the dispersion set to zero. For beta-binomial, an
alternate parameterisation for the negative binomial was employed, as described in Chen et al.,??
to analyse bisulfite sequencing data. For logistic binomial regression, the same approach was
taken but with the dispersion set to zero. We implemented the CODA method from first
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principles. First, we replaced any zeroes in the data with 0.5. For each sample j we calculated the
geometric mean. The centred log-ratio transformation divides the observed cell type count for
sample j by the geometric mean for sample j and then takes the log of the ratio. Normal
regression theory can then be applied to the transformed data. We used 1 imma to fit linear

regression models on the transformed data.
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