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Abstract

There is an ongoing debate as to whether cognitive processes arise from a group of functionally specialized

brain modules (modularism) or as the result of distributed nonlinear processes (dynamical systems theory).

The former predicts that tasks recruiting similar local brain areas should be equally similar in their net-

work profiles. The latter allows for differential connectivity, even when the areas recruited are largely the

same. Here we evaluated both views at the macroscopic level by comparing region-wise activation pat-

terns and functional correlation profiles from a large sample of healthy subjects (N=242) that performed

two executive control tasks known to recruit nearly identical brain areas, the color-word Stroop task and the

Multi-Source Interference Task (MSIT). Using a measure of instantaneous functional correlations, based on

edge time series, we estimated the task-related networks that differed between incongruent and congruent

conditions. At the group level, the two tasks were much more different in their network profiles than in

their evoked activity patterns. This is found even when matching the degrees of freedom of both activation

patterns and functional correlation profiles, when considering subject-level differences, after changing brain

parcellations, and if employing alternative methods for defining task-related network profiles. Our results

are consistent with the perspective of the brain as a dynamical system, suggesting that task representations

should be independently evaluated at both node and edge (connectivity) levels.

Significant Statement

If the brain is strictly modular at the macroscopic scale, then recruiting the same brain regions should result

in the same functional interactions between regions. However, if the brain is a dynamical system, with

information represented at both the node and edge levels, then two tasks could have the same pattern of

activation, but largely different functional correlation profiles. Here we tested this contrastive prediction

using two tasks with overlapping cognitive demands, but different sensory signals. Despite being nearly

identical in their activation patterns, we found that the tasks produced largely different functional correlation

profiles. These findings reinforce the view of the brain as a dynamical system, with task states represented

both within and across regions.
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Introduction

The idea of a modular mind (Fodor, 1983), where cognition arises from the interplay between specialized,

domain-specific units that represent fundamental cognitive processes, has dominated the cognitive neurosci-

entific view of the brain since the its inception (e.g., Posner et al., 1988). Here the cognitive ”modules” are

mapped to unique brain areas that execute specific processes (e.g., detecting specifics sound frequencies, es-

timating value, contracting specific muscle groups) (Feinberg and Farah, 2006). Over the last three decades,

this modular view of the brain has largely been justified from empirical observations using non-invasive

brain imaging methods, like positron emission tomography and functional MRI (fMRI), where experiments

and analytical methods were explicitly designed to isolate clusters of regions aligned to certain functional

domains, such as vision (e.g., Bihan et al., 1993), control (e.g., Porro et al., 1996), language (e.g., Binder

et al., 1997), or affect (e.g., Anders et al., 2004). A critical assumption of this modularist perspective is

that task-relevant representations are strictly limited to the domain-specific modules (e.g., specific brain re-

gions), with communication between modules simply being a matter of relaying information from one stage

of processing to the next. In other words, co-activating the same two modules (i.e., brain regions) in the

same way across two different tasks will also lead to similar connectivity profiles between those modules.

This picture of a modular brain has been progressively challenged over the years by the idea that cognition

arises from a dynamical system. From this perspective, a given cognitive function cannot be solely under-

stood by investigating its components separately, but requires also understanding the interactions between

units as well (Gelder, 1995). While almost as old as the modularist view of the brain, this dynamical systems

perspective has gained ground over the past decade in systems neuroscience, where multi-unit recording

studies have shown that task representations emerge as a low-dimensional manifold of population activity,

both within and between brain areas (Russo et al., 2020; Churchland et al., 2012; Sadtler et al., 2014; Oby et

al., 2019). This observation at the microscale level extends to observations of macroscopic brain dynamics

as well (e.g., Kriegeskorte et al., 2008; Ejaz et al., 2015). Indeed, with the rise of connectomics (Behrens

and Sporns, 2012), the idea of the brain as a dynamical network (Sporns, 2013), where information is also

encoded between units (Crossley et al., 2013; Yeo et al., 2014; Bertolero et al., 2015), has gained popular-

ity in cognitive neuroscience. A contrasting assumption of the dynamical systems view, compared to the
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modularist view, is that task-relevant representations are encoded by both the individual regions and the

communication dynamics between those regions. Therefore, two tasks may activate the same pattern of

nodes, but express dissimilar network profiles at the edges (Prinz et al., 2004; Hooper, 2004).

Here we sought to shed light on this debate by testing whether the apparent overlapping patterns of blood

oxygen level-dependent (BOLD) activation that are elicited during two response conflict tasks (Sheu et al.,

2012), the color-word Stroop task (Stroop, 1935) and the Multi-Source Interference Task (MSIT) (Bush and

Shin, 2006), also have similar task-related network profiles. Our study develops on previous work exploring

the relationship between task activation and functional correlations (Alnæs et al., 2015; Chan et al., 2017;

Gratton et al., 2016; Krienen et al., 2014; Newton et al., 2010; Spadone et al., 2015), but concentrates

on tasks that share computational demands and overlapping topologies of evoked responses. In a sample

of neurologically healthy adults (N=242), we first computed instantaneous functional correlation graphs,

using a novel approach that temporally unwraps Pearson correlations to generate time series along edges,

representing the inter-node BOLD signal co-fluctuations (Zamani Esfahlani et al., 2020). Then, by means of

a general linear model (GLM), we assessed the task-based contributions to the edge time series, quantifying

the amount of out-of-sample variability that they contained. We then compared the degree of between-task

similarity at the regional activation and connectomic levels.

Materials and Methods

Participants

We analyzed task and resting-state fMRI data from the Pittsburgh Imaging Project (PIP), which is a reg-

istry of behavioral, biological and neural correlates of cardiovascular disease risk among otherwise healthy

community-dwelling adults (aged 30–54 years). Details of this project can be found in the supplementary

material of Gianaros et al. (2020). We selected a subset of 242 subjects (female=119, mean age=40 ± 6

years, min age=30 years, max age=51 years) that had full temporal and spatial coverage and exhibited low

average motion (mean framewise displacement, estimated using the method in Power et al., 2012, lower

than 0.35 mm) across the three fMRI tasks used in our study.
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MRI Data Acquisition

MRI data were acquired on a 3 Tesla Trio TIM whole-body scanner (Siemens, Erlangen, Germany),

equipped with a 12-channel head coil. Functional blood-oxygen-level–dependent (BOLD) images were ac-

quired from a T2∗-weighted gradient echo-planar imaging sequence (repetition time=2000 ms, echo time=28

ms; field of view=205×205 mm (matrix size=64×64), slice thickness=3 mm (no gap); and flip angle=90°).

For anatomical coregistration of the fMRI images, a high-resolution T1-weighted image per subject was also

acquired (MPRAGE, repetition time = 2100 ms, echo time=3.29 ms, inversion time=1100 ms, flip angle=8º,

field of view=256 mm × 208 mm (matrix size: 256× 208), slice thickness=1 mm with no gap).

Tasks

We used two tasks that involved processing conflicting information and response inhibition. Both tasks

consisted of 4 blocks that defined a congruent information condition, interleaved with 4 blocks of trials

where the participant received incongruent information. Both task conditions had a duration of 52-60 secs,

and were preceded by a variable 10-17 sec fixation block. It total, each task had a duration of 9 min and 20

secs.

In the color-word Stroop task, participants had to select 1 of 4 identifier words using a response glove

(e.g., thumb button 1 = identifier word on the far left, etc.), such that its name indicates the color of target

words located in the center of a screen. During the congruent trials, the four identifier words were all in

the same color as the target words. Instead, in incongruent trials, identifier words had all different colors,

and the option to select was in a color incongruent with the target words. This kind of task usually evokes

a brain response that activates regions in the anterior insula, parietal cortex, basal ganglia, thalamus, and

cerebellum; while deactivating areas belong to the so-called ‘default-mode network’ (see Fig. 1A, B and

C).

In the MSIT, which corresponded here to a modification from the original task version (Bush and Shin,

2006), participants had to select 1 of 3 numbers such that it differed from the others 2 by pressing buttons

on the glove, where each button matched a number on the screen (thumb button 1 = number 1, etc.). During

congruent trials, targets’ position matched that on the glove, whereas during incongruent trials this position

did not match the glove’s button location. This task elicits a brain pattern response that is largely similar to
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Figure 1: Stroop task and MSIT paradigms and their brain response. For both Stroop task and MSIT,
illustration of incongruent (A, D) and congruent trials (B, E). Trials consisted of blocks of 52-60 s duration,
interleaved with a 10-17 s fixation block. Contrasting brain activity between incongruent and congruent
condition gives rise to a similar brain response (C, F).

that in Stroop task (see Fig. 1D, E and F and Sheu et al., 2012 for more details on the MSIT and the Stroop

task).

In incongruent conditions of both tasks, accuracy was titrated to ∼ 60% by altering intertrial intervals, i.e.

consecutive accurate choices led to shortened intertrial intervals. To control for motor response differences

between conditions in both tasks, the number of trials in the congruent condition was yoked to the number

completed in the incongruent condition. Yoking was implemented by (1) administering an incongruent block

first and (2) presenting congruent condition trials at the mean intertrial interval of the preceding incongruent

block.

Finally, we also used a five-minutes resting-state scan, during which the participants were told to keep their

eyes open.
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Preprocessing

Data were preprocessed using fMRIprep (Esteban et al., 2018), a standard toolbox for fMRI data preprocess-

ing that provides stability to variations in scan acquisition protocols, a minimal user manipulation, and easily

interpretable, comprehensive output results reporting. First, anatomical data preprocessing was performed,

including bias-field correction, skull-stripping, brain extraction and tissue segmentation, and surface recon-

struction. It was then followed by functional data preprocessing, which included reference image estimation,

head-motion parameters estimation, slice time correction, susceptibility distortion correction via a nonlinear

registration (“Fieldmap-less” option of the toolbox), spatial normalization and confounds estimation.

Functional Correlation (Edge) analysis

We estimated task-based functional correlations using the edge, or co-fluctuation, time series proposed in

Faskowitz et al. (2020); Zamani Esfahlani et al. (2020). A sketch of this full estimation procedure can be

found in Fig. 2. We first (step A) reduced the spatial resolution of the preprocessed time series by computing

the voxel-wise average signal within each region (ROI) in a 268-parcels atlas (Shen et al., 2013). Following

Finn et al. (2015), each of these regions were also identified to a specific intrinsic connectivity network: Mo-

tor, Visual-1, Visual-2, Visual-Association, Medial-Frontal, Frontoparietal, Default-mode and Subcortical-

Cerebellum. Then, let ~xi ≡ {xi(1), . . . , xi(T )} be the time series of T scans (the full-scan sequence) for a

given parcel i in such atlas. Each of these parcellated time series were subsequently (step B) denoised by

means of a linear regression model, in a single step that avoid artifacts from being reintroduced in the data

(Lindquist et al., 2019), in order to remove effects from motion (24 parameters which included 3 translations,

3 rotations, their derivatives and the square of all these terms), the average white-matter signal, the average

CSF signal, the average brain signal, periodic oscillations greater than 187 s (5 cosine terms) and task acti-

vations (24 terms). This last set of regressors consisted of 12 finite impulse response (FIR) terms per task

condition (congruent and incongruent) to flexibly model an hemodynamic response function (HRF) of about

24s to external stimuli and that was included so as to avoid systematic inflation of functional correlations

produced by task activations (Cole et al., 2019). The resulting denoised ROI time series were standardized

(step C), i.e. ~zi = ~xi−µ
σ , and then used to generate the edge time series ~rij (step D) as the component-wise

product between pairs of standardized time series, i.e. ~rij = {zi(1) · zj(1), . . . , zi(T ) · zj(T )}. At this
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Figure 2: Estimation of intrinsic and task-related functional correlations. For a given pair of regions in
the Shen atlas (consisting of 268 regions), the average signal within them was first computed (A). The time
series were then denoised (B) and standardized (C). Subsequently, they were multiplied component-wise
(D). Finally, the resulting temporal profile was regressed onto a design matrix to model intrinsic (intercept
term) and task-related functional correlations (E).

point, if we summed these components up and divide by T − 1, we would obtain the Pearson correlation

coefficient that usually represents the static functional connectivity between BOLD time series - that is, each

edge time series can be interpreted as a temporal decomposition of a functional connection (correlation) into

its framewise contributions. Instead, we continued working on these edge time series as response variables

in a general linear model (step E) in order to estimate intrinsic and task-dependent functional correlation

profiles. To this end, the input design matrix included an intercept term and a set of regressors for each

9

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 20, 2022. ; https://doi.org/10.1101/2021.11.27.470015doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.27.470015
http://creativecommons.org/licenses/by-nc-nd/4.0/


task condition (congruent and incongruent), which comprised a boxcar function convolved with the usual

double gamma hemodynamic response function and its temporal and dispersion derivatives. Although it is

not clear that the usual hemodynamic response function also takes place in the edge time series, we decided

to assume it for pipeline compatibility with the activation (node) analysis (see next subsection). Yet, due

to the nature of our tasks, we would not expect this to be a major issue, given that task-dependent GLM

estimations essentially represented averages across blocks of considerable duration.

Prior to any statistical analysis, time series in both sides of the regression model were prewhitened through

a first-order autoregressive model in order to account for the temporal autocorrelations. As aforementioned,

we assumed this standard procedure for dealing with temporal autocorrelations in order to have the same

statistical pipeline as that in the activation analysis (see next subsection). Future studies should investigate

the most appropriate procedure for accounting for autocorrelations using edge time series. After this first-

level estimation, task-based network changes were computed as contrasts of parameters and subsequently

used to assess edge-wise group-level effects by means of a one-sample t-test. Statistical inference at a

usual 0.05 significance level was finally performed, after correcting the family-wise error (Holm-Bonferroni

procedure) due to multiple testing. All these statistical analyses of the edge time series were carried out

using Nilearn 0.7 (Abraham et al., 2014).

To test whether or not the inferred network maps reliably generalized to unseen data, the same general linear

model was embedded within a k-fold cross-validation scenario. Specifically, for each edge time series used

as a response variable and the task regressors (the same set of terms described previously) as predictors, the

group-level α (intercept) and β (slopes) were estimated as their average across the first-level estimations

from the subjects in the training set. Subsequently, these were used to quantify to what degree mean edge

time series from the subjects in the test set were predicted. The difference between the predicted and

observed edge time series was evaluated using the coefficient of determination R2. The advantage of using

this metric is that for values greater than zero it means that the task stimuli explained a non-zero variability

on top of that of the intrinsic or background signal, here modeled as the intercept. A 3-fold cross-validation

was employed, where the full data were divided into 3 smaller sets (”folds”), such that for each of these (the

test set) the generalization was determined using the coefficients estimated in the other 2 folds (the training

set). This process was further repeated 20 times with different splitting seeds. The final performance per
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edge was then the average R2 across all folds and repetitions.

Activation (Node) analysis

We also analyzed the preprocessed BOLD images at the node level, which involved estimating brain activa-

tion changes during the different task conditions. Such analyses are usually carried out at the voxel-level.

However, in order to keep the same resolution as that of the edge-level results, brain activations were esti-

mated at the region-level using the same parcellated BOLD time series.

For this analysis, we employed again a GLM with the parcellated BOLD time series as response variables

and a design matrix that included the same set of task regressors used in the edge-wise analyses, as well

as the same covariates that were regressed out prior to this, i.e. the 24 motion parameters (Friston et al.,

1996), the cosine terms to account for oscillation effects greater than 187s, the average signal within white-

matter tissue, the average signal within CSF tissue, and the average signal within the whole-brain. We

considered this last regressor, not common in brain activation analyses, for consistency again with the edge-

level analyses (see previous section). Group-level effects were similarly assessed using a one-sample t-test.

Generalized Psychophysiological Interaction

As a part of our sanity check pipeline, we compared the functional correlation analysis using the afore-

mentioned edge time series approach with a model of Generalized Psychophysiological Interactions (PPI),

which is a standard approach for estimating task-dependent functional connectivity changes (McLaren et

al., 2012) and is based on a general linear model of task-moderated temporal association between pairs of

brain units. Specifically, for a given pair of BOLD time series ~xi and ~xj , such model includes one of them

as the response variable and as inputs the other BOLD time series, the group of task regressors, the interac-

tion terms between these task regressors and the input BOLD time series, and the possible confounders to

consider in the model. In our case, the generalized PPI model can be written as follows:

~xi = α+ βbckij · ~xj + βtask × T + βppiij × Ii + βcov × C + ~ε , (1)

where T is a matrix whose columns are the HRF convolved box-car congruent and incongruent time profiles

and their derivatives and dispersion terms, Ii the matrix with the PPI terms from each condition, i.e. the
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Figure 3: Group-level activation maps. For both Stroop task (A) and MSIT (B), the group-level
incongruent-vs-congruent t-stat maps, at the voxel level for aesthetic reasons. Thus, red colors display
higher BOLD activity during incongruent trials compared to congruent trials, whereas blue colors represent
the other way around.

interaction term between each task condition’s time profile and the input time series ~xi, and C a matrix with

the different covariates to include in this model, which in our case comprised the 24 motion parameters, the

average white-matter signal, the average CSF signal, the average brain signal and cosine expansion for a

187 sec high-pass filtering. Once all the parameters in this model were estimated, task-based connectivity

changes were evaluated by contrasting the incongruent and congruent PPI estimations and their effect at the

group level assessed using a one-sample t-test. In this way, a matrix of estimated task-based connectivity

changes can be constructed. However, since a PPI model yields non-symmetrical matrices, we symmetrized

them by averaging their corresponding upper and lower triangular elements as done in Di et al. (2017), which

enabled a direct comparison with the connectivity profiles obtained from the edge time series approach.
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Results

Group-level activation patterns

We begin by replicating an exhaustively reported effect (see Sheu et al., 2012 and references in), namely that

the Stroop task and MSIT, both effortful cognitive control tasks, have largely overlapping spatial patterns

of evoked activity across the brain, particularly the neocortex (see contrasts maps in Fig. 3). Here such

similarity was quantified by a Spearman correlation coefficient, ρ, between un-thresholded incongruent-vs-

congruent t-stat maps calculated at the region-level (voxel-wise estimations with the same region-size spatial

smoothing yielded similar values), and a Dice similarity coefficient (DSC), from binarizing these maps as

to whether their t-stats rejected or not the null hypothesis at α = 0.05 after family-wise (Holm–Bonferroni)

error correction. For our group-level activation patterns, the former, ρ, was equal to 0.87, and the latter,

DSC, equal to 0.86. As shown in Fig. 3, increases in brain activity in incongruent trials, with respect to

congruent trials, were located in areas typically engaged during the processing of conflict information and

response inhibition, such as the anterior cingulate cortex, anterior insula, parietal cortex, basal ganglia,

thalamus, and cerebellum. In contrast, de-activations took place in areas within the ventromedial prefrontal

cortex, perigenual anterior cingulate cortex, posterior cingulate cortex, and precuneus, which all comprise

the default-mode network. As a consequence, these results show that similar cognitive contexts evoke similar

patterns of activity outputs in areas segregated across the brain.

Exploration of co-fluctuating hemodynamics

For illustrative purposes, we examined the task-related effects on the inter-region co-fluctuations by com-

puting the root sum of squares (RSS) across edges at each time frame. It is important to clarify that, for this

calculation, parcellated BOLD time series prior to edge time series formation included all task events, in con-

trast to subsequent analyses. As shown in Fig. 4A and B, during both tasks high moments of co-fluctuations

tended to be synchronized across subjects, concentrated mostly around the rest periods separating congru-

ent and incongruent block conditions. In both the congruent and incongruent blocks, there appeared to be

a consistent reduction in global connectivity, with sporadic and inconsistent periods of brief synchronous

activity that qualitatively appear more frequent during incongruent blocks.
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Figure 4: Analysis of the root sum of squares time series. For each subject, the root sum of squares of the
edge time series that include the task effects for Stroop task (A), MSIT (B) and resting-state acquisition (C).
Their power spectrum (in arbitrary units) using a periodogram (D), averaged across subjects.

In contrast to the task patterns, for the resting-state run, where no external stimulus was presented, we did

not see evidence of between-subjects synchronization of high amplitude co-fluctuations (Fig. 4C). Though

the overall presence of these brief co-fluctuations appears to be more frequent in the resting-state run than

during either of the two tasks. These results were further confirmed by inspecting the subject-averaged

power-spectrum of the RSS for the three tasks (Fig. 4D). For both Stroop and MSIT, there was an overall

increase in power at frequencies consistent with task onsets and offsets.

Group-level functional correlations

We estimated task-related functional correlations using a GLM on the edge time series. Three coefficients

(i.e., intercept, congruent, and incongruent) for both Stroop task and MSIT were estimated for each edge,
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Figure 5: Functional correlation matrices at the group level. For Stroop task, MSIT and resting-state
functional correlation matrices using the intercept, congruent and incongruent GLM estimations at the group
level. Regions (i.e. the rows and columns) have been arranged based on their belonging to a major intrinsic
network system (see Methods). In the middle in the form of a graph, the Spearman correlations between the
upper-triangular elements of these matrices. MF: Medial-Frontal; FP: Frontoparietal; DM: Default-mode;
SC: Subcortical-Cerebellum; MT: Motor; V1: Visual-1; V2: Visual-2; VA: Visual-Association.

while for resting state a single coefficient per edge was obtained (i.e., intercept only). The resulting group-

level network profiles are displayed in Fig. 5, where the t-stats for each of these coefficients were converted

to correlations using the transformation r2 = t2

t2+N−1
, with N being the number of subjects.

The first thing to note is that, after accounting for condition effects during the two tasks, we were able to
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recover the intrinsic brain networks observed during resting state. The intercept profiles for both Stroop and

MSIT had a high degree of similarity to the resting state profile (ρ = 0.81 and ρ = 0.83 respectively), as

well as a high degree of similarity to each other (ρ = 0.92).

On the other hand, a largely different profile emerged during congruent and incongruent conditions in both

tasks. These networks showed much lower overall functional correlations, and a shift towards more negative

correlations, than the intercept profiles. Despite this difference from the intrinsic networks, the condition-

related profiles (i.e. congruent and incongruent) had a decent degree of within-task similarity (ρ = 0.69

for Stroop and ρ = 0.74 for MSIT), demonstrating that both conditions recruit largely consistent networks

overall. Less similarity was observed between-task profiles, whether it be using within condition compar-

isons (ρ = 0.48 in both cases), or between-condition comparisons (Stroop Congruent-MSIT incongruent

ρ = 0.31, Stroop Incongruent and MSIT Congruent ρ = 0.28).

Taken together, these results confirm that our method was able to reliably characterize both task and intrinsic

(resting) networks, at the group level, using the edge time series.

Network profile differences between task conditions

The network profiles that emerged as a consequence of conflict processing were quantified at the group level

by contrasting subject-level functional correlations from both task conditions. The resulting incongruent-

vs-congruent statistical maps for both tasks are displayed in Fig. 6 (left plots, panels A and B), with 1228

(Stroop task) and 1076 (MSIT) edges that were significant at α = 0.05 after family-wise (Holm-Bonferroni

procedure) error correction (red colors denote a greater functional correlations during incongruent trials than

during congruent trials, and blue colors the opposite). In both cases, network differences were primarily

associated with default-mode, frontoparietal, medial-frontal and visual systems, as measured by the average

significant edges per region found in those networks. Furthermore, inspecting the sign of these differences

(Fig. 6, right side of panels A and B), increased functional correlations appeared to be dominated by edges

connecting regions of distinct intrinsic major systems, particularly those between the default-mode and the

frontoparietal and visual-association systems, and medial-frontal areas with the frontoparietal cortex. In

contrast, significant decreases in functional correlations during incongruent trials appeared in regions of the

same major system, specially those within the default-mode and medial frontal networks.
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Figure 6: Group-level incongruent-vs-congruent functional correlation differences. For Stroop task (A)
and MSIT (B), on the left side and from outer to inner circular, plots display each region arranged and
colored according to the major functional system, their incongruent-vs-congruent activity at the node level,
their degree from the incongruent-vs-congruent significant edges, and finally the t-stat of these edges (red:
incongruent > congruent, blue: incongruent < congruent). At both node and edge-level, only significant
results (at α = 0.05, Bonferroni corrected) are shown. On the right side the number of significant edges
within and between major connectivity networks, normalized by the total number of edges in each case. (C)
Using the significant edges from a paired t-test at α = 0.05 Bonferroni corrected, between-task differences
in incongruent-vs-congruent functional correlations shown in region degree (left panel), and with the edge
t-stats to regions of each major functional system (right panel). MF: Medial-Frontal; FP: Frontoparietal;
DM: Default-mode; SC: Subcortical-Cerebellum; MT: Motor; V1: Visual-1; V2: Visual-2; VA: Visual-
Association.

However, despite the apparent qualitative similarity in network-level responses to congruent and incongruent

conditions, the Stroop and MSIT also exhibited key differences. For example, concentrating on the 10% of
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edges with the largest absolute t-stat values (n=358), the Stroop task contained a significantly greater num-

ber of positive (i.e. increased functional correlation during incongruent trials) to negative (i.e. decreased

functional correlation during incongruent trials) edges than the MSIT (Fisher exact’s test, odds ratio = 3.76,

p = 4.00 × 10−14). On the other hand, a paired-sample t-test performed on individual edges revealed that

these between-task network differences spanned the entire brain (see Fig. 6C), though they prominently ex-

pressed in the dorsolateral prefrontal and posterior parietal cortex, both responsible for executive function,

as well as in the posterior cingulate cortex, that is strongly implicated during control processes, and the pri-

mary visual cortex. As a consequence, these results suggest that the Stroop task and MSIT have substantial

differences in their network profiles.

Reliability of edge-wise responses

We next explored the reliability of functional correlation graphs shown by testing whether edges could be

predicted out-of-sample by the tasks. Since we had two fMRI tasks, this gave rise to two possible predictive

scenarios: “within-tasks”, if out-of-sample predictions were performed on the same task used for training,

or “between-task”, if out-of-sample performance was tested on the task not used for training. The edge-wise

prediction rates are displayed in Fig. 7A and B, contrasting within- and between-task performance for both

Stroop and MSIT data used as the training set. First, it is noteworthy that approximately 88% (Stroop)

and 94% (MSIT) of the significant edges resulting from the incongruent-vs-congruent contrast reported

in previous sections could be predicted here within-tasks, demonstrating the reliability of these network

profiles. Second, one can see that the task-based signal at each edge varied dramatically across the entire

brain network, with some edges containing more than 30% variability attributable to the task conditions.

Nevertheless, across both Stroop and MSIT only less than 10% of the edges appeared to encode meaningful

task variability (i.e. average R2 greater than zero at 95% confidence level).

More importantly, edges largely tended to generalize better within-tasks. For example, during the Stroop

task 2573 edges could be predicted if tested on the same task (median R2 = 0.026 across these edges),

whereas between-task this number dropped to 998 (median R2 = 0.022 across these edges). Moreover,

only 474 of these edges could be predicted successfully both within and between-task, so the intersection

between binary masks of predicted edges in both cases was low (DSC = 0.265). Likewise, similar values
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Figure 7: Edge-wise out-of-sample generalizability. The coefficient of determination for each edge pre-
dicted by the tasks regressors, using A) Stroop and B) MSIT as training set. Values on the horizontal axis
represent predictions on the same task used for training (within-tasks), whereas between-task values (pre-
dictions on the different task used as training) lie on the vertical axis. C) Binary graph that displays the
sub-network formed by those edges that could be predicted (average R2 > 0 at 95% confidence level)
within and between-task in both MSIT and Stroop task (points in the gray area in panels A and B). D) Using
the aforementioned sub-network, degree (i.e., number of edges connected to each node), grouped by major
macroscopic functional systems. Each point then represents a region. The bars show the median degree
across regions within each intrinsic network. MF: Medial-Frontal; FP: Frontoparietal; DM: Default-mode;
SC: Subcortical-Cerebellum; MT: Motor; V1: Visual-1; V2: Visual-2; VA: Visual-Association.

were found for the MSIT (2567 predicted edges within-tasks and median R2 = 0.028 across them, 914

predicted edges between-task and median R2 = 0.016 across these edges, intersection DSC = 0.228).

Consequently, within- and between-task predictions had a poor correspondence (see the almost flat regres-

sion line in Fig. 7A and B), which is consistent with the differences in network profiles between both the

MSIT and Stroop task observed in previous sections. Interestingly, in both scenarios there was a subset of
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edges that were not predicted by the same task used for training, but by the other task (points in the left

upper corner of Fig. 7A and B). However, the R2 values for these are quite small and likely reflect random

noise in the generalization error estimates.

Finally, we wondered which sub-network(s) appeared to be most consistent across tasks by looking at the

shared edges between the Stroop and MSIT that could be predicted both within and between-task (points

between the right upper corners of Fig. 7A and B). The resulting sub-network contained 239 edges (Fig. 7C),

with a prominence of connections to areas within and between visual systems (see Fig. 7D), suggesting that

part of the visual information is similarly encoded and preprocessed by both tasks, and some areas in the

default-mode network.

Comparison of similarities in activation patterns and network profiles between tasks

We have previously shown that both Stroop and MSIT elicit largely overlapping patterns of brain activation

(ρ = 0.87,DSC = 0.86; see also Sheu et al., 2012). In contrast, estimated edge-wise responses suggest that

both tasks appeared to differ at the network level. Is the lower similarity of network profiles between-task

really that different than the similarity in activation patterns? The between-task similarity in incongruent-vs-

congruent network profiles was equal to ρ = 0.64 and DSC = 0.43 at α = 0.05, after family-wise (Holm-

Bonferroni) correction, which indeed constitute a considerable reduction with respect to the aforementioned

similarity rates from activation patterns. Furthermore, this reduction became even more evident as the

number of subjects decreased (Fig. 8A), suggesting that this does not reflect an issue with statistical power

in our sample. Also, this effect is largely insensitive to using Spearmans ρ as a similarity measure since the

same effect was observed using Dice similarity coefficients at different thresholds (see Fig. 8 A and B).

In order to show that this reduction in similarity scores between the incongruent-vs-congruent functional

correlation graphs was not due to correlating a larger number of features from the edges (268×267
2 = 35778

edges) than in the activation maps (only 268 components, since these were also considered at the region-

level), we repeated this calculation taking subsamples (number of subsamples=10000) that randomly se-

lected 268 edges in the functional correlation profiles. Across all subsets, we found similar between-task

Spearman correlation values (0.65± 0.04, see Fig. 8C) as the one using the full network.

Along similar lines, we explored how similarity of network profiles was expressed across the brain by cor-
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Figure 8: Between-task similarity of activation patterns and network profiles. A) Spearman correlations
between tasks from the group-level t-stat incongruent-vs-congruent maps for both brain activation (blue
line) and task-based functional correlations (FC, orange line), varying the number of subjects used for their
estimation. Each curve represents the average similarity and the gray area the standard deviation after
repeating 10 times the estimation procedure to consider different subjects. B) Same as A) but using the
dice similarity coefficient. Statistical maps were binarized according to whether each t-stat was significant
or not under several thresholds α. C) Distribution of Spearman correlations ρ between MSIT and Stroop
functional correlation profiles from 10000 subsamples that each randomly selected a subset of edges equal
to the number of regions (268). The red cross displays the correlation using the full profiles (i.e. 35778
edges). D) Region-wise similarity between tasks, using the whole-brain incongruent-vs-congruent network
profile of each region. E) These similarity rates per region (y-axis) are plotted versus their activation levels,
measured as the average of both tasks’ incongruent-vs-congruent absolute Cohen’s d at the group level. F)
For each subject (a dot in the figure), the Spearman correlation between the incongruent-vs-congruent β map
of each task for both brain activation (blue points) and task-based functional correlations (orange points). A
paired t-test then quantified the statistical difference between both distributions.

relating, for each region, the whole-brain incongurent-vs-congruent functional correlation profile (a vector

of 267 t-stat values, i.e, we do not consider the diagonal terms in the functional correlation profiles) at the

group level of both tasks (see Fig. 8D). This analysis showed that there are certain regions, particularly in

the superior medial and dorsolateral-frontal gyrus, the precuneus and the anterior lobe of cerebellum, that
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exhibit comparable, and sometimes even greater, similarity values than that from activation patterns. While

regions with the largest between-task similarities in activation did tend to have higher degrees of between-

task similarity in network profiles (Fig. 8E), this association was fairly weak (ρ = 0.261), suggesting that

our main conclusion would also be reached if one focused exclusively on the sub-network typically engaged

during both Stroop and MSIT.

Since the previous calculation concentrated exclusively on group-level patterns, we also tested whether

the same qualitative findings were present at the within-subject level. Specifically, for each individual we

correlated, between tasks, the incongruent-vs-congruent activation maps and functional correlation graphs,

using in both cases the β estimations (see the sample distributions in Fig. 8F). The reason for using the

β estimations here instead of the t-stat values is that temporal autocorrelations in the time series produced

a different number of degrees of freedom across nodes and edges in both tasks, in contrast to the group

level, where the degrees of freedom remained always the same (N − 1, with N the number of subjects). A

paired t-test showed that, as found before with the group-level maps, between-task similarity rates of brain

activation maps (mean ρ = 0.30, 95% CI [0.279, 0.322]) were higher than those from task-based network

differences (mean ρ = 0.038, 95% CI [0.031 0.046]; Cohen’s d = 2.07, p < 0.001).

We ran several follow up tests to ensure that all these findings did not depend on choices taken during

the setup of the analytical pipeline. First, we investigated whether the reduction in between-task similarity

values from network profiles compared with evoked responses was not due to regressing out the task stimuli

prior to the calculation of the edge time series. As shown in Fig. 9A, a mild increase was obtained when tasks

effects were maintained (mean ρ = 0.075, 95% CI [0.066, 0.083]) and it was still significantly lower with

respect to activation patterns (Cohen’s d = −1.71, p < 0.001). Moreover, a similar finding was observed

(see Fig. 9B) when we concentrated exclusively on the regions with greatest task activation response (group-

level incongruent-vs-congruent absolute Cohen’s d’s larger than 0.8 in both tasks), given that these regions

should be particularly sensitivity to the removal of task stimuli. Thus the choice of regressing out task effects

prior to building the edges-time series did not drive our primary effect.

Subsequently, we tested whether including in our parcellation specific brain structures that are known to

be noisier or more susceptible to signal loss, namely the cerebellum and subcortex, might have driven our
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Figure 9: Replication analyses. A) Same subject-level results as in Fig. 8F, but including the case where
task stimuli were not regressed out prior the edge time series formation (”FC with tasks”). B) Same as
A), but concentrating on the subset of regions with greatest task evoked response (group-level incongruent-
vs-congruent absolute effect sizes, i.e. Cohen’s d, in activation larger than 0.8 in both tasks) C) At the
subject level, between-task Spearman’s ρ correlation from brain activation (blue points) and task-based
functional correlation (FC, orange points) β profiles for Shen, Craddock and Schaefer parcellations. D) PPI-
based incongruent-vs-congruent connectivity t-stat matrices for both Stroop and MSIT, and the similarity
(Spearman’s ρ and DSC) between them.

findings. In order to achieve this, we repeated the subject-level similarity analysis using a Craddock atlas

(Craddock et al., 2011), consisting of 200 regions that did not include the cerebellum, and the Schaefer

atlas (Schaefer et al., 2017), comprising 200 cortical regions. We found, again, that the choice to use the

Shen atlas was not decisive in our primary effect of the differences between activation and network profile

similarities (See Fig. 9C).

Likewise, we wondered whether the reduction in similarity between Stroop and MSIT task-dependent net-
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Figure 10: Results with global signal. A) Network profiles as incongruent-vs-congruent differences for
both tasks. Each edge depicts the t-stat value of this contrast at the group-level (red: incongruent > con-
gruent, blue: incongruent < congruent) B) Same as A) but depicting instead brain activation patterns as
incongruent-vs-congruent t-stat contrast maps E) Spearman’s ρ correlations between tasks for both activa-
tion (blue line) and functional correlation profiles (FC, orange line) at the group-level, varying the number
of subjects used for their estimation. Each curve represents the average similarity and the gray area the stan-
dard deviation after repeating 10 times the estimation procedure to consider different subjects. F) Same as
E) but using instead a dice similarity coefficient between binarized significant maps for different thresholds.
G) Spearman’s ρ correlation between subject-level incongruent-vs-congruent β profiles of each task for both
brain activation (blue points) and task-based functional correlations (orange points).

work profiles was influenced by the edge time series approach itself. We tested this possibility by replicating

our analyses using a generalized Psychophysiological Interaction (PPI) model, which is a standard and com-

mon framework for assessing task modulated functional connectivity (see Materials & Methods for details

on this model). As Fig. 9D illustrates, these PPI-based network profiles also showed a reduced similarity

between tasks (ρ = 0.53, DSC = 0.35) compared to what is observed in the brain activation patterns. In

addition, albeit small differences existed, particularly within the motor system, both approaches (edge time

series and PPI) appeared to yield fairly similar incongruent-vs-congruent contrast network profiles in both

tasks (ρ = 0.74 for Stroop, ρ = 0.77 for MSIT).
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Finally, due to the ongoing controversy around the inclusion of the brain global signal in task-effect esti-

mations (Liu et al., 2017), we recomputed both incongruent-vs-congruent activation maps and functional

correlation graphs without the global signal removed. We found even more pronounced topological differ-

ences in network profiles between Stroop and MSIT with the global signal left in, which translated in the

same reduction in group- and subject-level between-task similarity rates compared to those from activation

patterns (see Fig. 10). Therefore, our difference between activation and network profile similarities cannot

be explained by the absence of the global signal.

Discussion

Here we set out to determine whether two tasks with highly similar activation patterns also share common

task-related network profiles. Using a GLM framework on instantaneous functional correlation estimates

(Faskowitz et al., 2020; Zamani Esfahlani et al., 2020), we were able to successfully separate task-free (in-

trinsic) from task-dependent network contributions, in line with the extensive evidence that task functional

correlations are jointly shaped by both intrinsic and evoked network architectures (Cole et al., 2014). Sub-

sequently, we showed how our two tasks shared a large degree of similarity in activation topology (nodes),

but substantially less similarity in network profiles (edges). This difference in task effects at the nodes and

edges was confirmed at both group and subject level and using two different measures commonly employed

for representational similarity analyses. Likewise, this difference between activation and network profiles

was replicated after keeping task effects in the edge time series, employing different parcellations, using a

different method for estimating task-related connectivity (i.e., PPI), and without including the brain global

signal as covariate. Taken all together, these results are consistent with the dynamical systems perspectives

of the macroscopic brain that suggest tasks are separately represented at both the node (voxel or region) and

edge (connectivity) levels.

How is it possible that similar patterns of brain activation arise from dissimilar network architectures? Even

though our study did not enable us to directly address this question, our results provide intriguing hints

that the underlying mechanisms responsible for this take place at the connectivity level. It is important to

keep in mind that functional connectivity is, itself, a dynamic signal. Even though intrinsic networks, like

those measured in resting-state conditions, are thought to reflect underlying structural (or at least static)
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networks (Hagmann et al., 2008; Honey et al., 2009; Cole et al., 2014, 2016), the reality is that correlations

in the hemodynamic BOLD response reflect highly flexible network states. Indeed, it is well known that

these networks can flexibly reconfigure in order to adapt to contextual changes (Spielberg et al., 2015),

so one could expect a similar behavior even when these contextual changes do not produce a significant

deviation in the brain response. In our case, network differences between tasks are not large (i.e., they are

not completely independent networks), albeit significantly larger than those from brain activation patterns.

Nevertheless, it is expected that these differences become more pronounced as the scale of the interacting

components increase, e.g., at the neuronal level (Prinz et al., 2004; Hooper, 2004; Cropper et al., 2016).

It is worth pointing out that while network profiles do differ more between tasks than activation patterns,

we still observed a modest degree of similarity in network profiles across tasks. This is not surprising given

the existence of a core functional architecture shared between even markedly different task states (Krienen

et al., 2014). In our case, the greatest similarities were found in networks that are reliably associated with

sensory processing and motor planning. While motor planning constraints were identical across tasks (i.e.,

both involved button presses with the same hand and fingers), the visual stimuli were quite different (see

Fig. 1). This suggests that the between-task dissimilarities in network profiles reflect differences in how

sensory information is used during action selection, after sensory representations are formed, rather than

simple bottom-up effects driven by the stimulus differences between the Stroop task and MSIT. Adding to

the other between-task topological differences that we observed, involving mainly regions of the default-

mode and executive networks, this appears to suggest that greater deviations take place in subnetworks

largely associated with higher-level cognitive functions.

One natural follow-up question is how the edge time series responses compare to other approaches for ad-

dressing task-based networks like PPI. We have shown that, even though PPI arrives at the same conclusion

as the edge time series method, the network profiles obtained from both approaches were not perfectly

identical. While the edge time series straightforwardly represents measures of (instantaneous) functional

correlations, PPI was designed to assess effective connectivity (Friston et al., 1997; Friston, 2011). Thus,

in order to enable the comparison between both approaches in our study, PPI estimates were symmetrized,

so we speculate that part of these differences may come from this operation. A full comparison with other

common methods for task-related networks, such as correlational PPI (Fornito et al., 2012) or beta series
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correlations (Rissman et al., 2004), could yield both interesting differences and show areas of robustness in

network profiles. However, this is well beyond the scope of the current project.

While our findings here provide strong evidence in support of the dynamical systems model, some caveats

must be considered. First, all our analyses have been performed at the macroscopic-level. As mentioned

above, even though evidence suggests that a similar behavior is expected at smaller network scales, future

studies should test this ex profeso. On a related point, since the correlation matrices become computationally

intractable at the voxel-level, and in order to maintain both activation and network measures with the same

spatial resolution, we opted to perform all analyses at the region level, using a predefined parcellation tem-

plate. This obviously introduces some degree of anatomically bounded spatial smoothing in the data, which

may be contributing to inflating the similarities in both task-related activation and network profiles between

tasks. Smoothing would be problematic if we were interested in null hypotheses tests on spatial patterns

(Markello and Misic, 2021), however, the analysis used here does not rely on such spatial hypothesis test-

ing. Thus, this region-level approach does not invalidate the main conclusions of our study that similarity

in the topology of activation patterns does not perfectly associate with similarity in network architecture.

Finally, one might question whether the BOLD time series first needed to be deconvolved with the hemo-

dynamic response function prior to estimating the edge time series. It has been argued that deconvolution

in block-design tasks, like our Stroop task and MSIT, may not be necessary (Di and Biswal, 2017; Di et al.,

2020). However, it is important to point out that while changing the choices in the preprocessing and analy-

sis steps may lead to nuanced differences in certain aspects of our results, none of these potential limitations

would likely change the primary conclusion we have drawn from our observations.

Regardless of these limitations, our results clearly illustrate that important aspects of task representations

are encoded in the associations between regions, which are unique to and complement information reflected

in the spatial topology of activation (Gratton et al., 2016; Chan et al., 2017). Indeed, our findings bolster

previous work looking at informational connectivity (Coutanche and Thompson-Schill, 2013), that high-

lights the information value of associations between regions in understanding task representations. Further

work should dig deeper into the high dimensional relationships between localized activation and global

connectivity dynamics when trying to understand the nature of representations int he brain.
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Code and data availability

The code used to generate all the analyses and results can be found in https://github.com/

CoAxLab/cofluctuating-task-connectivity.
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