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TheWright-Fisher binomial model of allele frequency change is often approximated

by a scaling limit in which selection, mutation and drift all decrease at the same 1/N

rate. This construction restricts the applicability of the resulting “Wright-Fisher dif-

fusion equation” to the weak selection, weak mutation regime of evolution. We argue

that diffusion approximations of the Wright-Fisher model can be used more generally,

for instance in cases where genetic drift is much weaker than selection. One impor-

tant example of this regime is Muller’s ratchet phenomenon, whereby deleterious

mutations slowly but irreversibly accumulate through rare stochastic fluctuations.

Using a modified diffusion equation we derive improved analytical estimates for the

mean click time of the ratchet.

I. INTRODUCTION

The Wright-Fisher (WF) model captures in simple mathematical form the combined

effects of natural selection, mutation, and genetic drift, making it a pillar of population

genetics. Unfortunately, the main quantities of interest, such as fixation times and fixation

probabilities, cannot be computed analytically within this model—approximations are nec-

essary. One established strategy is to build a diffusion process whose paths match those

of the WF process over very long time scales. This scaling limit was first used by Fisher

[1], Wright [2] and Kimura [3], and more rigorous expositions were given by Kolmogorov

[4], Malécot [5] and Feller [6]; it now features prominently in textbooks under the name

“Wright-Fisher diffusion equation” [7–10]. It has been said that “the standard diffusion ap-

proximation has permeated the field so thoroughly that it shapes the way in which workers

think about the genetics of populations” [11].
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Unfortunately, the classical WF diffusion equation has a rather narrow range of appli-

cability: it can only account for evolutionary processes in which selection, mutation and

genetic are all equally weak, scaling like the inverse population size 1/N (alternative ap-

proaches exist also for rescalings with 1/
√
N [12]). These conditions are neither biologically

well motivated (selection coefficients and mutation rates do not covary with population size)

nor universally applicable (viral populations, for instance, can have large sizes O(107) [13]).

Perhaps because the scaling limit of the WF model is often presented as the diffusion approx-

imation of population genetics, diffusion methods are sometimes believed to be restricted

to the weak selection-weak mutation regime of evolution. Outside this regime, the common

practice is to either assume neutral evolution and effectively set all selection coefficients and

mutation rates to zero, as in Kimura’s original work [3], or to use deterministic equations

[14], i.e. to neglect genetic drift altogether.

Certain problems, however, require approximations that do better justice to the inter-

play between selection, mutation, and genetic drift. One example is Muller’s ratchet [15, 16],

the irreversible accumulation of slightly deleterious mutations in finite asexual populations.

Here, drift and the inflow of deleterious mutants drive the population to extinction against

the force of natural selection. Muller’s ratchet has been invoked in the evolution of mito-

chondria [17], RNA viruses [18], Y chromosomes [19], ageing [20], cancer [21], and sex [22].

Obtaining analytical expressions for the mean click time of the ratchet has therefore been a

longstanding goal for theory [19, 23–28].

At first sight, diffusion theory seems ideally suited for this problem: Muller’s ratchet is

akin to a fixation problem for a two-type Wright-Fisher process, where one type represents

unloaded alleles, and the other type comprises all other, deleterious mutations [19, 23, 26].

However, recent works have reinforced the belief that diffusion theory is inapplicable at finite

selection strengths [27, 28]. An emerging consensus is that diffusion theory just does not

apply to Muller’s ratchet, at least not in the slow click regime: “The fact that the extinction

of the fittest class is due to [. . . ] a rare, large fluctuation and not [. . . ] a typical fluctuation

prohibits simple diffusive treatments of the ratchet” [28]. We show that this belief is not

justified. (As detailed in the Appendix, the approximation Eq. (23) in [28] can be in fact

derived from the standard WF diffusion equation, Eq. (3).)

This paper has two objectives. First, we stress that diffusion methods in population

genetics do not in fact require s, u, v ∼ 1/N (selection coefficient s, mutation rates u, v) to
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capture the interplay between mutation and selection in large populations; an alternative

diffusion equation, not based on taking a scaling limit, provides a more accurate approxi-

mation under the milder conditions s, u, v ≪ 1 ≪ N . The fact that diffusion theory can

be used to derive more general results than the usual classical WF diffusion equation has

been noted in the past (see e.g. [11] and references therein), but has not been sufficiently

appreciated in our view. Second, we use the alternative approximation by diffusion to derive

a new analytical formula for the mean fixation time of a deleterious allele, a central quantity

in the context of Muller’s ratchet. We find that not only can diffusion theory be applied to

this problem—it actually provides a better approximation than previous estimates in [27, 28]

based on WKB expansions.

II. TWO DIFFUSION APPROXIMATIONS

The haploid WF binomial model describes the evolution of the frequencies of two types

A and B. For a population with size N , this process is the Markov chain on the set

{0, 1/N, · · · , (N − 1)/N, 1} defined by

NXn+1 ∼ Binom(N, p(Xn)). (1)

HereXn denotes the frequency of A types at generation n, and p(x) represents the probability

that an offspring is of type A given that the frequency of A in the parental population

is x. The function p(x) depends on the specifics of mutation-selection dynamics and is

parametrized by a selection coefficient and mutation rates. For instance, if A has (1 + s)

times more offspring than B, and the probability of a mutation A → B (resp. B → A) is u

(resp. v), we have

p(x) =
(1 + s)(1− u)x+ v(1− x)

1 + sx
. (2)

Other functional forms are more appropriate for viability selection, etc.

In the limit of large population sizes N → ∞, the standard diffusion approximation

considers the WF model on the slow timescale T = nN and assumes that selection and

mutation are comparable in strength to genetic drift, i.e. Ns, Nu, and Nv all have finite

limits σ, µ, ν (respectively) as N → ∞. Under these conditions, it can be shown [7, 8] that

the paths of the WF model on the slow timescale converge to those of a diffusion process

with drift σXT (1 − XT ) − µXT + ν(1 − XT )] and diffusion coefficient XT (1 − XT ). When
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FIG. 1. Stationary distributions from 106 generations of the simulated WF process (Eq. (1),

yellow histograms) compared to analytical predictions from the WF diffusion (Eq. (3), blue line),

the diffusion by interpolation (Eq. (4), red line) and the prediction by Norman [29] (green line). In

some cases the green and red line overlap completely so that only the red line remains visible. In the

lower right plot the numerical integral of the new diffusion failed to converge. The parameters s, u, v

as given in the subplots are kept constant when moving vertically downwards where population

size N increases. Deviations of the WF diffusion from the underlying WF model become apparent

for strong selection (N ≫ 1/s2).

brought back to the fast timescale t = T/N , this equation becomes

dXt = [sXt(1−Xt)− uXt + v(1−Xt)]dt+

√
Xt(1−Xt)

N
dWt. (3)

This is the “WF diffusion equation” from textbooks. (Here dWt a standard Wiener process

and the Ito convention is used.) By construction, this approximation requires that all

evolutionary parameters scale as 1/N when N is taken to infinity, corresponding to the
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FIG. 2. Relative errors in approximations of the establishment time of a rare mutant subject to

reversions (here u = 5× 10−4). The errors of the two analytical approximations, the standard WF

diffusion (Eq. (3), in blue) and the alternative diffusion (Eq. (4), in orange) are computed relative

to mean establishment times averaged across 106 runs of stochastic WF simulations (Eq. (1)).

“weak selection-weak mutation” regime of evolution [7]. A rule of thumb due to Nei states

that selection can be considered small if Ns2 ≪ 1 [27, 30].

Building a diffusion approximation of the WF process as a scaling limit implies that the

deterministic term in (3) can only be linear in s, u or v: all higher order terms in p(x) in

are suppressed in the large N limit. But according to (1) we have E(Xn+1 − Xn|Xn) =

p(Xn)−Xn. It is therefore natural to consider as an alternative to (3) the diffusion equation

dXt = [p(Xt)−Xt]dt+

√
Xt(1−Xt)

N
dWt (4)

where the deterministic term is not linearized in s, u, v. We propose to use (4) to approximate

of (1) whenever any of s, u, v in p(x) are small compared to one but large compared to 1/N .

When s, u, v are in fact very small, (4) reduces to the classical WF diffusion (3) . Eq. (4)

appears in e.g. [26, 31], but, to our knowledge, has never been used to derive analytical

results valid beyond the weak selection-weak mutation limit. A mathematical discussion of

neutral diffusions at large mutation rates can be found in [32, 33].
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III. STATIONARY DISTRIBUTIONS AND FIXATION TIMES

Stationary distributions

Given a stochastic differential equation of the kind described above,

dXt = a(Xt) dt+
√

b(Xt) dWt, (5)

a stationary distribution Peq exists as long as both boundaries, x = 0 and x = 1, are

reflecting (v ̸= 0, u ̸= 0) and can be calculated as [34]

Peq(x) ∝
eΨ(x)

b(x)
with Ψ(x) = 2

∫ x a(y)

b(y)
dy. (6)

We evaluate this integral for the “old” (WF) diffusion equation (3) and the “new” diffusion

(4) with sampling probability (2) to yield

Peq, old(x) ∝
exp (2N [sx+ u log (1− x) + v log (x)])

x(1− x)
(7)

and

Peq, new(x) ∝
exp (2N [(1− u− v) log(1 + sx) + u log (1− x) + v log (x)])

x(1− x)
. (8)

Fig. 1 compares these analytical predictions with empirical simulations of the Wright-Fisher

model for a range of parameters s, u, v, both within and outside the weak selection-weak

mutation regime defined by s, u, v = O(1/N). Both the standard WF diffusion and new

diffusion yield good approximations of the stationary distribution when s < 0.1. This

supports the validity of the above expressions, for which we expect the predictions from

the WF diffusion (in blue) and the new diffusion (in red) to be similar only while (1− u−

v) log 1 + sx ≈ sx. For stronger selection (s ≥ 0.1), the WF diffusion severely overestimates

the center of the distributions, which the new diffusion captures well. The new diffusion

breaks down for s = 1 as expected.

In Fig. 1 we additionally compare another approximation for the stationary distribution

of the WF model, obtained by Norman in [29] (in green). Norman’s result predicts the

stationary distribution to be Gaussian with mean λ, where λ is defined by the condition

a(λ) = p(λ) − x = 0, and variance σ2 = b(λ)/(N |a′(λ)|), where b(x) = p(x)(1 − p(x)).

The predicted stationary distributions are significantly better than the distributions derived

from the standard WF diffusion approximation, but comparable in accuracy with the new
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diffusion. Note that we have considered that Norman’s derivation invoked a rescaling of

time, so that the variance of the Gaussian distribution includes an additional factor of 2N

compared to the expression in [29].

Fixation probabilities

The classical fixation problem in population genetics considers the fate of a single selec-

tively advantageous mutant (s > 0) subject to finite population size fluctuations (genetic

drift) only. Mutation rates are zero (u = v = 0). Diffusive approximations can be used in

that case to derive expressions for the probability of fixation at the boundaries x = 0 or

x = 1.

The fixation probability using the new diffusive approximation, Eq. (4), is predicted to

be

πnew =
1− (1 + s/N)1−2N

1− (1 + s)1−2N
. (9)

For comparison, the estimate from the standard WF diffusion (the Crow-Kimura formula

[35]) reads

πold =
1− e−2s

1− e−2Ns
. (10)

Again, these expressions give similar results while s is small so that es ≈ 1 + s holds.

We report a more complete discussion of the classical fixation problem, including fixation

times and derivations in Appendix A, but note that the differences between predictions

from the two diffusive schemes across varying s are only minor. This is due to the fact that

fixation times depend largely on s, hence corrections with respect to N are small. When s

is small, genetic drift is important but the two diffusions coincide. In contrast, for large s

fixation will occur with high probability (and relatively fast), genetic drift does not play an

important role.

The shortcomings of the standard WF diffusion approximation, compared to the new

interpolation diffusion, become more apparent if the dynamics are not only determined by

selection but also by counteracting back-mutations.
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Establishment times

To showcase this, we analyse the establishment of a beneficial mutant. Establishment

occurs in a setting where a selectively advantageous mutant is additionally subjected to

one-way reversion mutations (u ̸= 0, v = 0). A single advantageous mutant that appears in

the population (x0 = 1/N) and survives genetic drift to reach a metastable state (xc > 0,

defined by p(xc) = xc) is said to have ”established” [36]. In the long run the beneficial type

will go extinct because x = 0 represents the only absorbing boundary. We are interested in

probability and hitting time of establishment.

In Fig. 2 we compare the relative errors of mean establishment times test between WF

simulations and predictions derived from the two diffusive approximations (Eq. (3) and

Eq. (4)). Details of the calculations that yield the integral expression for the mean estab-

lishment times can be found in the Appendix B. The expressions need to be evaluated

numerically. The comparisons from Fig. 2 confirm that for s, u ≫ 1/N the competing forces

of selection and mutation are better captured in the new diffusion scheme.

Nevertheless, the selection coefficients needed for a significant improvement compared to

the standard WF diffusion are rather high. For most biological settings the WF diffusion

would still perform sufficiently well. In the next section we find an example where the

detailed interaction of selection, mutation and genetic drift matter for the dynamics of the

population: the click time of Muller’s ratchet. This will highlight the improvements of the

interpolation diffusion in biologically relevant parameter settings.

IV. THE CLICK RATE OF MULLER’S RATCHET

The standard model of Muller’s ratchet (due to Haigh [37]) involves mutations occurring

with rate U and with deleterious effect S, such that a mutant with k mutations has fitness

(1 − S)k; the main quantity of interest in this context is the time to extinction of the

un-mutated (k = 0) class. Waxman and Loewe [26] have shown that this problem can

be simplified by lumping all k-mutants into one class with effective fitness (1 − s) where

s = (1 − e−U)/(1 − e−U/S); the effective rate of mutation into this class is u = 1 − e−U .

Within this framework, the click time of Muller’s ratchet is reduced to hitting time at x = 0
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of the Wright-Fisher process defined by the sampling function

p(x) =
(1− u)x

1− s+ sx
. (11)

If mutations are not too frequent (u < s), the population will mostly equilibrate around a

mutation-selection balance (xeq = 1 − u/s), until a rare fluctuation drives the fit type to

extinction against natural selection—Muller’s ratchet will click slowly. Note that the effective

selection coefficient in the reduced model s can be larger than the biological coefficient S.

Using again classical expressions for hitting times of one-dimensional diffusions [7] to-

gether with Laplace’s approximation of integrals, we derive from Eq. (4) an analytical ex-

pression for the expected click time Tclick; see Appendix C for details. On a logarithmic

scale, the resulting expression reads

logE(Tclick) ∼
N→∞

2N
(
(1− s)u log

(
(1−s)u
s(1−u)

)
+ (1− u) log(1− u)

)
1− su

, (12)

to be compared with the result using the standard WF diffusion Eq. (3)

logE(Tclick)old ∼ 2N [s− u+ u log(u/s)]. (13)

We plot the full analytical solution, Eq. (C5), in Fig. 3, together with simulations of

the full Haigh model and the reduced stochastic WF model, as proposed by Waxman and

Loewe [26]. We additionally compare in Fig. 3 the accuracy of our result with earlier

heuristic diffusion approximations [38, 39] as well as more recent WKB expansions of Moran

models [28]. We note that for the parameter ranges where the reduced model approximates

the full model well, our analytical formula provides a very good fit. When the reduced model

deviates, so does our analytical result. This simply suggests that the reduced model in the

form as suggested in [26] cannot capture Haigh’s full model accurately across the whole

parameter regime. Nevertheless, comparing to other analytical expressions derived for the

full model, the prediction errors are small (the error of the reduced model is estimated to

be within one order of magnitude [26]).

Previous analytical approximations usually capture the rate of loss within narrow param-

eter ranges [38], with respect to a particular scaling (e.g. s ∼ 1/N) [28, 39] or specifically for

the fast clicking regime of Muller’s ratchet [23, 40]. We provide an analytical approximation

that holds for a wider range of parameters, as presented in Fig. 3.
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FIG. 3. Accuracy of different analytical expressions for the mean time between clicks of the full

model of Muller’s ratchet (black crosses), as a function of N for S = U = 0.01 (left) and as a

function of S = 2U for N = 100 (right). Our result (Eq. (C5), red line) correctly approximates

Wright-Fisher simulations of the two-type reduced model of Muller’s ratchet (mean click time over

103 replicates, gray dots). Within one order of magnitude it also approximates click times of the

full Haigh model.

V. CONCLUSION

We have argued that diffusion approximations of the Wright-Fisher model have broader

range of applicability than usually appreciated from classical scaling arguments. In the

context of Muller’s ratchet we found that Eq. (4) can be used to estimate the timescale of rare

fixation events with good accuracy. This conclusion is in contrast with previously expressed

concerns regarding the use of diffusion theory in the context of large deviations [41–44]:

“The fact that the extinction of the fittest class is due to such a rare, large fluctuation and

not the cause of a typical fluctuation prohibits simple diffusive treatments of the ratchet”

[28]. Our results show, instead, that the analytical approximation of Muller’s ratchet within

a diffusive framework improves previous results in the strong selection regime s > 1/
√
N .

We expect that applications of diffusive approximations beyond the ones here presented

might allow further progress in the analysis of evolutionary processes that are well captured

by the discrete-time Wright-Fisher model, but not by its textbook diffusion approximation.

Since the mechanism of Muller’s ratchet was first suggested, experimental evidence for
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Muller’s ratchet as a fitness-decreasing effect on a population has accumulated in a variety

of biological settings [45–47]. While our results show that this problem can be treated

with standard diffusion tools, comparing our prediction with empirical data would require

accurate estimate of evolutionary parameters, which is beyond the scope of this paper.

Broadly, mutation rates per genome per generation have been estimated as large as ugen ≈ 1

[48] for RNA viruses [49], hominids [50], inbred plant populations [51] or Drosophila [52]. Our

model parameter u refers to the rate of deleterious mutations with specific fitness effect s,

which are more difficult to extract experimentally. We chose to test our model on parameter

ranges that have been discussed in the context of Muller’s ratchet [26, 27, 37, 38], as well as

more recently in the attempt to quantify the specific threat of Muller’s ratchet in C. Elegans

[53] and the Amazon molly [54].

We close with a semantic note. Because it does not depend on the mode (fecundity or

viability) of selection, on generations being overlapping or non-overlapping, etc., the classical

WF diffusion equation (3) is sometimes described as “universal”. What this means is simply

that, in the special regime where s, u, v are all very small—as small as the inverse population

size—, these differences are immaterial for the long-term dynamics of the population. But

that is no longer true in regimes where selection and/or mutation are much stronger than

genetic drift. In these regimes, diffusion theory does not break down; instead, other, non-

universal diffusion approximations of the WF model can be used to obtain accurate results

for fixation times and other quantities of interest.
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Appendix A: Fixation probability and fixation time

Eq. (4) from the main text describes the dynamics of the stochastic variable Xt in terms

of a stochastic differential equation (SDE). Moving to an alternative dynamical description

in terms of the probability density function ρ(x, t) of the stochastic variable x at time t, the

corresponding drift-diffusion equation (also known as Fokker-Planck equation or Kolmogorov

forward equation) takes the following form

∂ρ(x, t)

∂t
= − ∂

∂x
[a(x) ρ(x, t)] +

1

2

∂2

∂x2
[b(x) ρ(x, t)] , (A1)

where in our setting a(x) = p(x) − x with p(x) as given in the main text (Eq. (2)),

b(x) = x(1 − x)/N , with x being bound to the interval [0, 1] (since x describes a relative

frequency).

For additional validation of our new model, we here compare predictions for the fixation

probability π of a mutant with selection coefficient s in the Wright-Fisher model. The

fixation problem considers the interplay of selection and genetic drift only. Mutation rates

are assumed to be zero (u = v = 0).

Making use of Eq. (A1), the probability of fixation at x = 1, given an initial point x = x0,

is approximated by

π1(x0) =

∫ x0

0
e−Ψ(x) dx∫ 1

0
e−Ψ(x) dx

, (A2)

where Ψ(x) =
∫ x 2a(z)

b(z)
dz. Similarly, the probability of fixation at x = 0, given an initial

point x = x0, is approximated by

π0(x0) =

∫ 1

x0
e−Ψ(x) dx∫ 1

0
e−Ψ(x) dx

. (A3)

The classical fixation problem considers the probability of an initially single mutant x0 =

1/N to fix at x = 1.

Inserting x0 = 1/N into Eq. (A2) for the old and new diffusions diffusions gives the

fixation probabilities given in the main text. In addition, Sella and Hirsch [55] suggest using

πSH =
1− (1 + s)−2

1− (1 + s)−2N
(A4)

as a slightly more accurate estimate than the Crow-Kimura formula.

In Fig. 4 we compare both diffusive approximations (Eq. (3) and Eq. (4)), as well as

the formula reported in [55] to empirical mean fixation probabilities from a total of 108 (for
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FIG. 4. Errors in predicted fixation probabilities over varying selection coefficients s (s < 0:

deleterious mutant, s > 0: advantageous mutant) and population sizes N = 100, 1000. Mutation

rates are zero (u = v = 0). Approximations by Sella-Hirsh [55] (Eq. (A4), in grey), the WF

diffusion (Eq. (10), in blue) [35], and from the new diffusion (Eq. (9), in orange) are compared to

relative number of fixations in WF simulations.

N = 100) and 107 (for N = 1000) Wright-Fisher simulations (Eq. (1)). Deviations between

the old and new diffusive approximations only become apparent for strong selection s, as

Eq. (9) and Eq. (10) are the same while es ≈ 1 + s holds. However, the improvements are

only minor. For s ≫ 0.1 we do not expect the new diffusion to be valid anymore and this

also is supported by the decreased accuracy of prediction when selection coefficients become

too large.

Within the scope of diffusion theory we can also derive expressions for the mean fixation

time. In the most general case, we are interested in the expected time for the stochastic

variable Xt to hit the boundary at x = 0 or x = 1, given an initial position X0 = x0. This

time t(x0) is described by the following second order differential equation [34]

a(x0)
dt(x0)

dx0

+
1

2
b(x0)

d2t(x0)

dx2
0

= −1. (A5)

Solving Eq. (A5) subject to the appropriate boundary conditions t(0) = t(1) = 0 (two

absorbing boundaries, since mutation rates are equal to zero), yields the mean first hitting

time at x = 1, conditional on fixation at x = 1, with initial condition x = x0 [34],

t(x0) =
π0(x0)

π1(x0)

∫ x0

0

2eΨ(x)π1(x)

b(x)

∫ x

0

e−Ψ(y) dy dx+

∫ 1

x0

2π1(x)eΨ(x)

b(x)

∫ 1

x

e−Ψ(y) dy dx, (A6)

where as before Ψ(x) =
∫ x 2a(z)

b(z)
dz, and π1(x) and π0(x) denote the fixation probabilities at

x = 1 and x = 0, respectively.
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FIG. 5. Relative errors in approximations of fixation times for varying selection coefficients s and

population sizes N = 100, 1000 as calculated from Eq. (A6), for the WF diffusion (in blue) and the

new diffusion (in orange). Errors are computed relative to simulated mean fixation times over 108

(N = 100) and 107 (N = 1000) runs of of WF simulations.

The relative errors in predicting mean fixation times are compared in Fig. 5 between the

WF diffusion (Eq. (3)) and the diffusive approximation by interpolation (Eq. (4)) relative

to mean times of fixation from WF simulations for varying parameters s,N . The relative

errors decrease substantially with increasing population size N in accordance with large N

requirements for both diffusion approximations. While s < 0.1 the WF diffusion actually

outperforms the new diffusion. We note, that this might be due to limited accuracy in the

numerically evaluated integrals of Eq. (A6).

Appendix B: Establishment times with one-way mutations

In Fig. 2 of the main text we compare analytical estimates for establishment times

between the two diffusive approximations for the Wright-Fisher model with selection and

one-way mutations (s, u > 0, v = 0). These expressions for the expected time to establish-

ment can be derived in analogy to the above described fixation times. The probability of

establishment, given an initial point x0, is given by

πxc(x0) =

∫ x0

0
e−Ψ(y) dy∫ xc

0
e−Ψ(y) dy

, (B1)

where as before Ψ(x) =
∫ x 2a(z)

b(z)
dz and xc denotes the metastable state defined by a(xc) = 0.

Note that the deterministic term a(x) now contains the parameter u ̸= 0 in contrast to the

fixation problems discussed in the previous sections.
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Assuming the initial frequency to be again a single mutant, x0 =
1
N
, we can calculate the

mean establishment time by evaluating the following integral numerically

test =
2 (1− πxc (1/N))

πxc (1/N)

∫ 1/N

0

πxc(x)eΨ(x)

b(x)

∫ x

0

e−Ψ(y) dy dx

+

∫ xc

1/N

2πxc(x)eΨ(x)

b(x)

∫ xc

x

e−Ψ(y) dy dx .

(B2)

Appendix C: Fixation of a deleterious mutant and Muller’s ratchet rate formula

The mean click time of Muller’s ratchet can be estimated by solving (A5) with sampling

function (11) and boundary conditions

dt(x)

dx
|x=1 = 0 and t(0) = 0.

This gives

t(x0) =

∫ 1

0

2eΨ(x)

b(x)

∫ min[x,x0]

0

e−Ψ(y) dy dx, (C1)

where Ψ(x) =
∫ x 2a(z)

b(z)
dz as before. Eq. (C1) cannot be solved analytically. Instead we note

that the integral in the exponential, Ψ(x), is proportional to a large parameter, namely the

population size N . This renders the integral suitable for a Laplace approximation in the so

called low-noise regime Ns ≫ 1. We therefore expand Ψ(x) in a Taylor series around the

critical point xc and truncate the expansion by assuming (x − xc) = O(1/
√
N). Hence we

can write

Ψ(x) = Ψ(xc) + Ψ′(xc) (x− xc) +
1

2
Ψ′′(xc) (x− xc)

2 +O
(

1√
N

)
(C2)

since N(x−xc)
3 = O(1/

√
N). The exponential integral is reduced to a Gaussian integral on

a bounded interval, which can be evaluated in terms of error functions. Generally speaking,
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∫ b

a

exp (Φ(x)) ≈
∫ b

a

exp

[
Φ(xc) + Φ′(xc) (x− xc) +

1

2
Φ′′(xc) (x− xc)

2

]
dx

= C

∫ b

a

exp

(√Φ′′(xc)

2
(x− xc) +

Φ′(xc)√
2Φ′′(xc)

)2
 dx

= C

√
2

Φ′′(xc)
i

∫ i
(b−xc)Φ

′′(xc)+Φ′(xc)√
2Φ′′(xc)

i
(a−xc)Φ′′(xc)+Φ′(xc)√

2Φ′′(xc)

exp(−χ2) dχ

= C

√
π

2Φ′′(xc)

(
erfi

[
(b− xc)Φ

′′(xc) + Φ′(xc)√
2Φ′′(xc)

]
− erfi

[
(a− xc)Φ

′′(xc) + Φ′(xc)√
2Φ′′(xc)

])
,

(C3)

where C = exp
[
Φ(xc)− Φ′(xc)2

2Φ′′(xc)

]
and erfi(x) refers to the imaginary error function. Con-

sidering in Eq. (C1) an additional expansion of the non-exponential function around the

critical point g(x) = 2/b(x) = g(xc) + O(1/
√
N), as well as an approximation of the limit

min[x, x0] ≈ min[xc, x0] we notice that the previously nested integrals decouple. We can

deduce the full approximation by applying the Laplace approximation (Eq. (C3)) to both

integrals separately

t(x0) =

∫ 1

0

2

b(x)
exp (Ψ(x))

∫ min[x,x0]

0

exp (−Ψ(y)) dy dx

≈ g(xc)
π

2
√

−Ψ′′(yc)Ψ′′(xc)
exp

[
Ψ(xc)−

Ψ′(xc)
2

2Ψ′′(xc)
−Ψ(yc) +

Ψ′(yc)
2

2Ψ′′(yc)

]
×(

erfi

[
−(min[xc, x0]− yc)Ψ

′′(yc)−Ψ′(yc)√
−2Ψ′′(yc)

]
− erfi

[
−(0− yc)Ψ

′′(yc)−Ψ′(yc)√
−2Ψ′′(yc)

])
×(

erfi

[
(1− xc)Ψ

′′(xc) + Ψ′(xc)√
2Ψ′′(xc)

]
− erfi

[
(0− xc)Ψ

′′(xc) + Ψ′(xc)√
2Φ′′(xc)

])
.

(C4)

We assume the initial position to be precisely at the deterministic mutation-selection

balance, i.e. where a(x0) = x0

(
1−u

s(1−u)x0−s+1
− 1
)

!
= 0, which means the initial point x0

and the critical point xc of the potential Ψ(x) coincide, x0 = xc = 1 − u/s. It is from this

that the condition for the existence of an interior metastable state can be deduced, namely

u < s. We arrive finally at the following expression for the expected click time in terms of

our evolutionary parameters N, s, u:
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E(Tclick) ≈ πs2(u− 1)2(1− s)−
2n(u−1)
su−1

−1×erf

(s− u)
√

− n(s−1)2

s2+s(u−3)u+u

s− 1

− erf

(s(u− 2) + 1)(s− u)2
√

− n(s−1)2

s2+s(u−3)u+u

(s− 1)2s(u− 1)

×

erfi

(
s

√
−n(s− 1)u

s2(u− 1)

)
− erfi

 n(s− u)

(s− su)
√

−n(s−1)u
s2(u−1)

×

exp

2n
(
(s− 1)u log

(
(s−1)u
s(u−1)

)
+ (u− 1) log(1− u)

)
su− 1

− n(s− u)2

s2 + s(u− 3)u+ u

×

1/

(
2u(s− u)

√
s2(u− 1) (s2 + s(u− 3)u+ u)

(s− 1)3u

)
.

(C5)

On a logarithmic scale, Eq. (C5) yields in the limit of large populations

logE(Tclick) ∼
N→∞

2N log

[(u
s

)u(1− u

1− s

)1−u
]
, (C6)

in accordance with Eq. (12) from the main text.

An analogous procedure can be used to derive an analytical expression for Muller’s ratchet

rate from the standard WF diffusion. We consider the deterministic term of the WF diffusion

(Eq. (3)) with v = 0, so that a(x) = sx(1−x)−ux. This yields the following expected click

time

E(Tclick) ≈
πs

2(s− u)u
exp

−N(s− u)2

u
× exp

(
2N [s− u+ u log

[u
s

]
]
)
×[

erf

(√
−N

u

(s− u)2

s

)
− erf

(√
−N

u
(s− u)

)]
×[

erfi
(√

−Nu
( s
u
− 1
))

+ erfi
(√

−Nu
)]

.

(C7)

For σ < 1− u/s, where σ2 = u/(2Ns2) denotes the variance of the Gaussian in the Laplace

approximation, the expression from above can be reduced to

E(Tclick) ≈
√

π

Nu

s

(s− u)2
exp

(
2N(s− u+ log

[u
s

]
)
)
. (C8)

This is the same equation as derived in [28] through WKB approximations of the associated

Moran process (after a rescaling of time and population size t′ → t/2N and N ′ → 2N). The

result in Eq. (C8) coincides on a logarithmic scale with Eq. (13), as described in the main

text.
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Appendix D: Simulations

Stochastic simulations of the 2-type WF model were run in Wolfram Mathematica ac-

cording to the dynamics of Eq. (1), while varying the evolutionary parameters N, s, u, v as

described in the main text. Generated data points were usually averaged across 106 repeats

of the stochastic WF process or as specified otherwise. Only a constrained set of parameters

were tested that did not exceed feasible computation times.

Simulations of a Haigh’s model of Muller’s ratchet [37], as well as the corresponding 2-type

WF simulations of the reduced model [26], were implemented using the Julia programming

language. For Haigh’s model, we initialised a monomorphic, mutation-free population and

run the model until the mutation-free class was lost. As detailed in [37], the frequency of

each class in the next generation is sampled from a multinomial distribution with sampling

probability pk ∝ Σk
j=0xk−j(1− S)k−jU j/j!.

The population in the reduced model evolves according to a WF model, as before, fol-

lowing the binomial sampling of Eq. (1), where p(x) = x(1− u)/(1− s+ s(1− u)). At the

start of each simulation, the population is initialised at the mutation-selection equilibrium,

as specified in the main text.

Our code is freely available at https://github.com/msmerlak/mullers-ratchet.
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