

Substrate-Specific Effects of Natural Genetic Variation on Proteasome Activity

Mahlon A. Collins, Randi R. Avery, and Frank W. Albert

Department of Genetics, Cell Biology, and Development
University of Minnesota
Minneapolis, MN, U.S.A.

Co-Corresponding Authors:

Mahlon A. Collins (mahlon@umn.edu)
Frank W. Albert (falbert@umn.edu)

Abstract

1 Protein degradation is an essential biological process that regulates protein abundance and re-
2 moves misfolded and damaged proteins from cells. In eukaryotes, most protein degradation oc-
3 curs through the stepwise actions of two functionally distinct entities, the ubiquitin system and
4 the proteasome. Ubiquitin system enzymes attach ubiquitin to cellular proteins, targeting them
5 for degradation. The proteasome then selectively binds and degrades ubiquitinated substrate pro-
6 teins. Genetic variation in ubiquitin system genes creates heritable differences in the degradation
7 of their substrates. However, the challenges of measuring the degradative activity of the protea-
8 some independently of the ubiquitin system in large samples have limited our understanding of
9 genetic influences on the proteasome. Here, using the yeast *Saccharomyces cerevisiae*, we built
10 and characterized reporters that provide high-throughput, ubiquitin system-independent measure-
11 ments of proteasome activity. Using single-cell measurements of proteasome activity from millions
12 of genetically diverse yeast cells, we mapped 15 loci across the genome that influence proteaso-
13 mal protein degradation. Twelve of these 15 loci exerted specific effects on the degradation of
14 two distinct proteasome substrates, revealing a high degree of substrate-specificity in the genetics
15 of proteasome activity. Using CRISPR-Cas9-based allelic engineering, we resolved a locus to a
16 causal variant in the promoter of *RPT6*, a gene that encodes a subunit of the proteasome's 19S
17 regulatory particle. Our results reveal the complex genetic architecture of proteasome activity and
18 suggest that genetic influences on the proteasome may be an important source of variation in the
19 many cellular and organismal traits shaped by protein degradation.

20 Author Summary

21 Protein degradation controls the abundance of cellular proteins and serves an essential role in pro-
22 tein quality control by eliminating misfolded and damaged proteins. In eukaryotes, most protein
23 degradation occurs in two steps. The ubiquitin system first targets proteins for degradation by
24 attaching ubiquitin to them. The proteasome then selectively binds and degrades ubiquitinated
25 proteins. Understanding how individual genetic differences affect the activity of the proteasome
26 could improve our understanding of the many traits influenced by protein degradation. However,
27 most assays that measure proteasomal protein degradation are not suitable for use in large samples
28 or are affected by changes in the activity of the ubiquitin system. Using yeast, we built reporters
29 that provide high-throughput measurements of proteasome activity independently of the ubiquitin
30 system. We used measurements of proteasome activity from millions of live, single cells to iden-
31 tify regions of the genome with DNA variants that affect proteasomal protein degradation. We
32 identified 15 such regions, showing that proteasome activity is a genetically complex trait. Using
33 genome engineering, we found that one locus contained a variant in the promoter of a proteasome
34 subunit gene that affected the activity of the proteasome towards multiple substrates. Our results
35 demonstrate that individual genetic differences shape proteasome activity and suggest that these
36 differences may contribute to variation in the many traits regulated by protein degradation.

37 Introduction

38 Protein degradation helps maintain protein homeostasis by regulating protein abundance and elim-
39 inating misfolded and damaged proteins from cells. The primary protein degradation pathway in
40 eukaryotes is the ubiquitin-proteasome system (UPS). The UPS consists of two functionally dis-
41 tinct components, the ubiquitin system and the proteasome¹⁻⁴. Ubiquitin system enzymes bind
42 degradation-promoting signal sequences (termed “degrons”⁵) in proteins, targeting bound sub-
43 strate proteins for degradation by covalently attaching chains of the small protein ubiquitin (Figure
44 1A)^{2,3,6,7}. The proteasome then degrades polyubiquitinated proteins using two elements, the 19S
45 regulatory particle and the 20S core particle^{1,8,9}. The 19S regulatory particle selectively binds
46 polyubiquitinated proteins^{4,10} then deubiquitinates, unfolds, and translocates them to the 20S core
47 particle, which degrades proteins to short peptides¹¹ (Figure 1A). The UPS is responsible for 70-
48 80% of intracellular protein degradation^{4,12} and influences the abundance of much of the pro-
49 teome¹³⁻¹⁵. Therefore, UPS activity must be precisely and dynamically regulated at the levels of
50 (1) substrate targeting by the ubiquitin system¹⁶⁻¹⁸ and (2) proteasomal protein degradation^{19,20}.
51 Imbalances between UPS activity and the proteolytic needs of the cell adversely impact cellular
52 viability and are associated with a diverse array of human diseases, including cancers, immune
53 disorders, metabolic syndromes, and neurodegenerative diseases^{3,20-23}. Thus, determining the fac-
54 tors that create variation in substrate targeting by the ubiquitin system and proteasomal protein
55 degradation could improve our understanding of the many traits influenced by protein degradation.
56

57 Until recently, it was largely unknown how individual genetic differences affect UPS protein degra-
58 dation. To begin to address this question, we mapped genetic influences on the N-end Rule, a
59 UPS pathway that recognizes degrons in protein N-termini (termed “N-degrons”^{5,24}). Our re-
60 sults showed that UPS activity is a genetically complex trait, shaped by variation throughout the
61 genome²⁵. Some of the largest genetic effects on N-end rule substrates resulted from variation
62 in ubiquitin system genes. In particular, genes whose products process (*NTA1*) and recognize N-
63 degrons (*UBR1* and *DOA10*) and ubiquitinate substrates (*UBC6*) each contained multiple causal
64 variants that altered UPS activity, often in an N-degron-specific manner²⁵. Thus, individual genetic
65 differences in the ubiquitin system are an important source of substrate-specific variation in UPS
66 protein degradation.

67

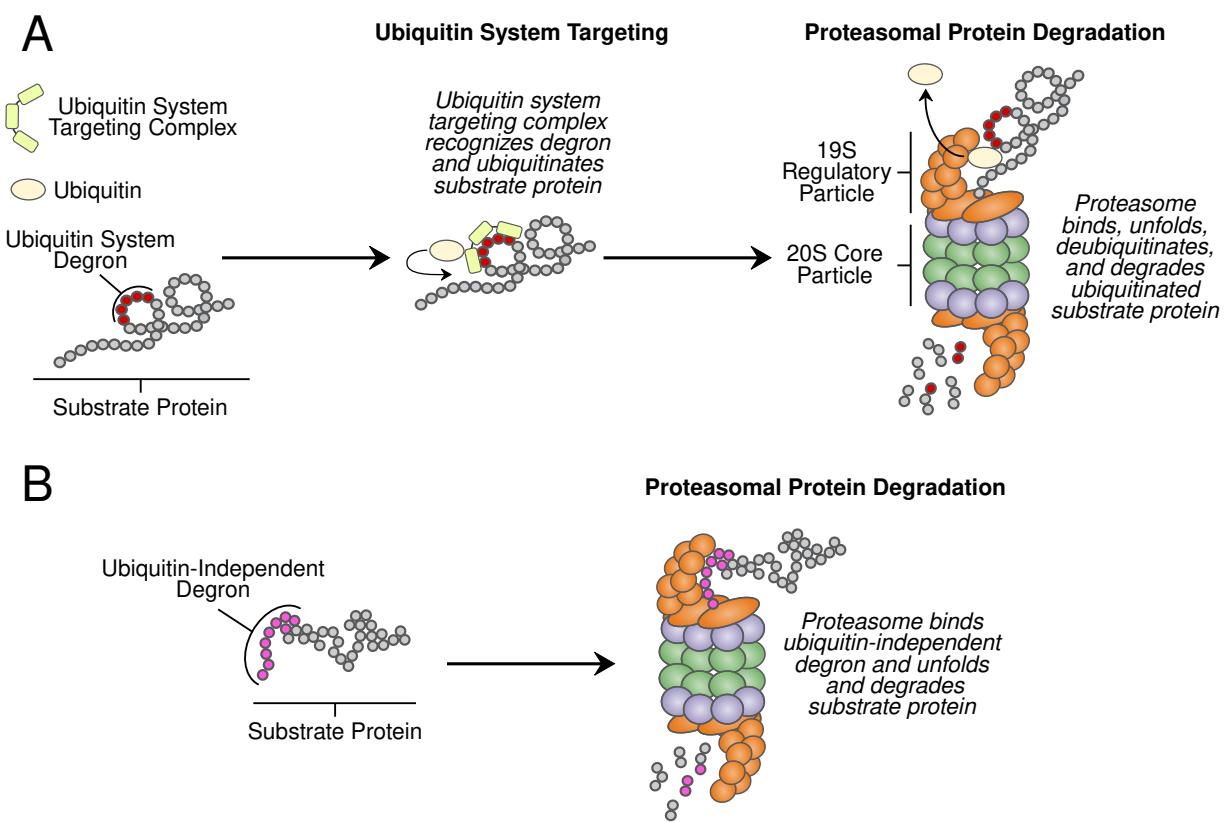
68 We do not know whether genetic effects on the proteasome are as prominent as those on the ubiq-
69 uitin system. Our understanding of genetic influences on proteasome activity is largely limited to
70 the clinical consequences of variation in proteasome genes. Missense mutations in several pro-
71 teasome genes that alter proteasome activity cause a spectrum of heritable disease phenotypes,
72 including intellectual disability²⁶, lipodystrophy^{27,28}, cataracts²⁹, recurrent fever³⁰, and morpho-
73 logical abnormalities³¹. Variation in proteasome genes has also been linked to multiple common
74 diseases, including myocardial infarction³², stroke³³, type 2 diabetes^{34,35}, and cancer^{36,37}. How-
75 ever, these mutations and polymorphisms were identified through targeted sequencing of a subset
76 of proteasome genes, leaving us with a biased, incomplete view of genetic influences on protea-
77 some activity. Genome-wide association studies have linked variation in the vicinity of proteasome
78 genes to a variety of organismal phenotypes³⁸⁻⁴¹. However, these studies have neither fine-mapped
79 the individual causal variants for these loci nor determined whether they alter proteasome activity.

80

81 A related question is whether variant effects on proteasome activity result in similar changes in the
82 degradation of distinct proteasome substrates. Variation in protein half-lives spans several orders
83 of magnitude⁴²⁻⁴⁴, in part as a result of proteasome-specific factors that are independent of the
84 ubiquitin system, such as how readily proteins are bound, unfolded, and degraded by the protea-
85 some. Substrate protein factors such as unstructured initiation region length⁴⁵⁻⁴⁷, biases in amino
86 acid composition⁴⁸⁻⁵⁰, where in the protein degradation is initiated⁴⁵, and the stability of a protein's
87 fold^{48,51} can also alter how readily a specific protein is degraded by the proteasome. Moreover, the
88 proteasome can exist in multiple configurations that can exhibit distinct preferences for individual
89 protein substrates⁵²⁻⁵⁶. Thus, a systematic understanding of genetic effects on proteasome activity
90 requires testing multiple proteasomal substrates with distinct sequence compositions.

91

92 Technical challenges have precluded a more systematic understanding of the genetics of proteas-
93 omal protein degradation. The effects of natural DNA polymorphisms are often subtle, necessitating
94 large sample sizes for detection. Statistically powerful genetic mapping of cellular traits such as
95 proteasome activity requires assays that can provide quantitative measurements from thousands
96 of individuals⁵⁷. At this scale, *in vitro* biochemical assays of proteasome activity are impractical.
97 Several synthetic reporter systems can measure UPS activity *in vivo* with high throughput⁵⁸⁻⁶⁰.
98 However, the output of these reporters reflects the activities of both the ubiquitin system and the
99 proteasome. Thus, when using these systems to map genetic influences on UPS activity, vari-


100 ant effects on the ubiquitin system²⁵ may mask or obscure specific effects on proteasomal protein
101 degradation.

102

103 The proteasome degrades a handful of endogenous cellular proteins without ubiquitination, pro-
104 viding a means of directly measuring proteasome activity independently of the ubiquitin sys-
105 tem (Figure 1B). These proteins contain ubiquitin-independent degrons, short peptides that pro-
106 mote rapid proteasomal degradation without ubiquitination^{61–65}. Ubiquitin-independent degrons
107 simultaneously function as proteasome recognition elements that engage the 19S regulatory par-
108 ticle and unstructured initiation regions for 20S core particle degradation (Figure 1B)^{62,64–69}. The
109 degradation-promoting effect of these peptides is transferable; conjugating a ubiquitin-independent
110 degron to a heterologous protein converts it to a short-lived, ubiquitin-independent proteasome sub-
111 strate^{64,65,67,69,70}. This property has been leveraged to create genetically encoded, high-throughput
112 reporters of proteasome activity whose readout is independent of ubiquitin system activity^{62,70,71}.

113

114 Here, we combined ubiquitin-independent degron-based proteasome activity reporters with our
115 recently developed, statistically powerful mapping strategy to study the genetics of proteasome
116 activity in the yeast *S. cerevisiae*. Our results reveal a polygenic genetic architecture of protea-
117 some activity that is characterized by a high degree of substrate specificity. One locus contained a
118 causal variant in the promoter of *RPT6*, a proteasome subunit gene, while other regions contained
119 candidate causal genes with no known links to UPS protein degradation. Our results show that
120 individual genetic differences are an important source of variation in proteasome activity that may
121 contribute to the complex genetic basis of the many cellular and organismal traits influenced by
122 protein degradation.

Figure 1: UPS protein degradation. A. UPS protein degradation resulting from (1) ubiquitin system targeting followed by (2) proteasomal protein degradation. B. Proteins with ubiquitin-independent degrons are directly bound and degraded by the proteasome without ubiquitin system targeting.

123

124 **Results**

125 **Single-Cell Measurements Reveal Heritable Variation in Proteasome Activity**

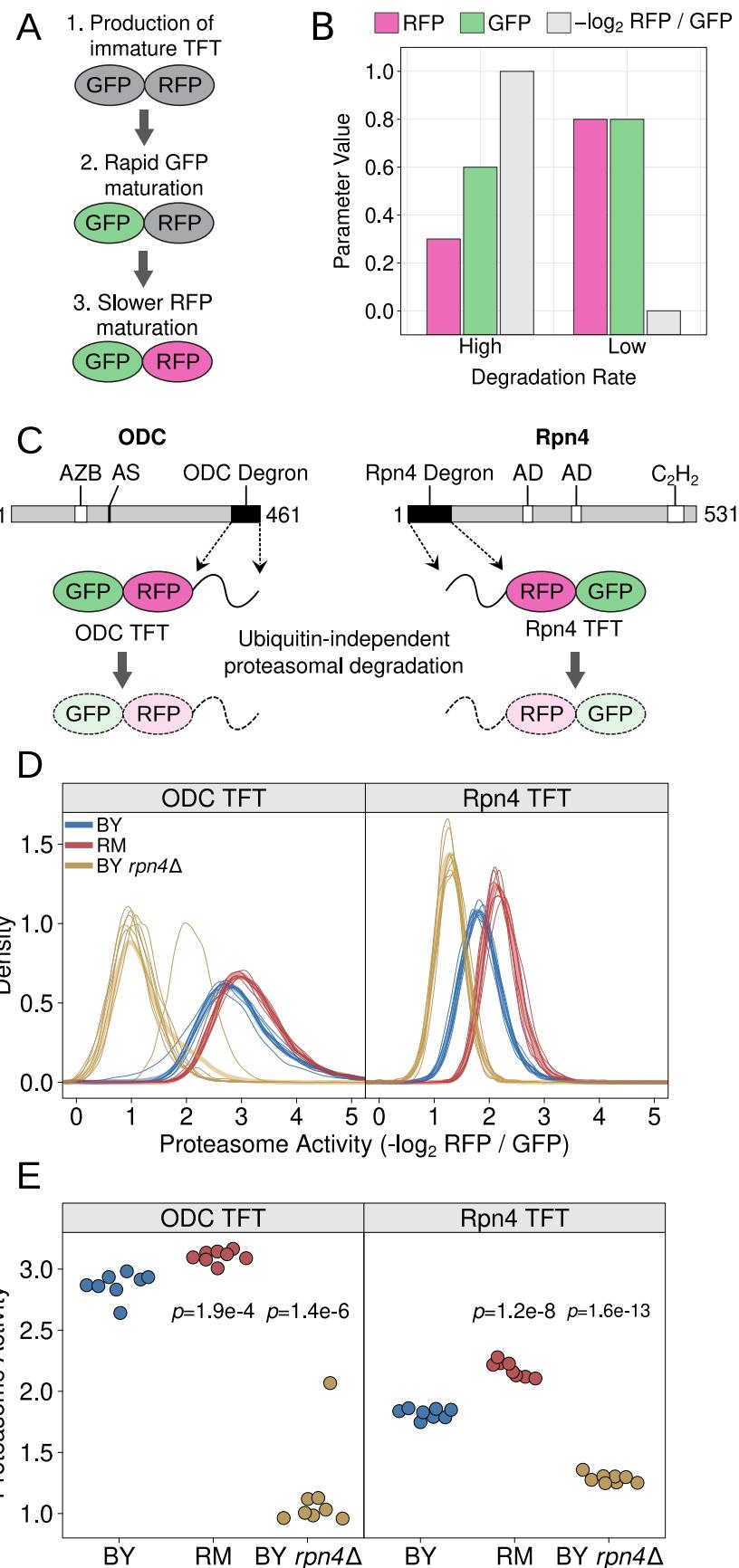
126 We sought to develop a reporter system capable of measuring proteasome activity independently
127 of the ubiquitin system *in vivo* with high throughput and quantitative precision. To do so, we built
128 a series of tandem fluorescent timers (TFTs), fusions of two fluorescent proteins with distinct
129 spectral profiles and maturation kinetics^{72,73}. Our TFTs contained a faster-maturing green fluo-
130 rescent protein (GFP⁷⁴) and a slower-maturing red fluorescent protein (RFP⁷⁵) (Figure 2A). The
131 two fluorophores in the TFT mature at different rates and, as a result, the RFP / GFP ratio changes

132 over time. If the TFT's degradation rate is faster than the RFP's maturation rate, the TFT's output,
133 expressed as the $-\log_2$ RFP / GFP ratio, is directly proportional to its degradation rate (Figure
134 2B). The TFT's output is also independent of the TFT's expression level⁷⁶, making it possible to
135 use TFTs in genetically diverse cell populations without confounding from genetic influences on
136 reporter expression, which are expected in a genetically diverse cell population^{14, 25, 76-79}.

137

138 To relate the TFT's output to proteasome activity, we fused the ubiquitin-independent degrons
139 from the mouse ornithine decarboxylase (ODC) and yeast Rpn4 proteins to our TFTs (Figure
140 2C). When expressed in yeast, the mouse ODC degron is recognized, bound, and degraded by
141 the proteasome^{61, 67, 70}. This property has previously been used to measure proteasome activity
142 *in vivo* in yeast cells⁸⁰. We fused amino acids 410 through 461 of mouse ODC to the TFT's
143 C-terminus, consistent with the geometric requirements of the ODC degron⁶², to create the ODC
144 TFT (Figure 2C). The Rpn4 protein contains a ubiquitin-independent degron in amino acids 1
145 to 80^{64, 65}. We fused this sequence to the TFT's N-terminus to create the Rpn4 TFT (Figure
146 2C). We reasoned that the distinct degron positions (C- and N-terminal), sequences, recognition
147 mechanisms, and inferred 19S regulatory particle receptors^{62, 64, 81} would allow us to identify
148 potential substrate-specific genetic effects on proteasome activity.

149

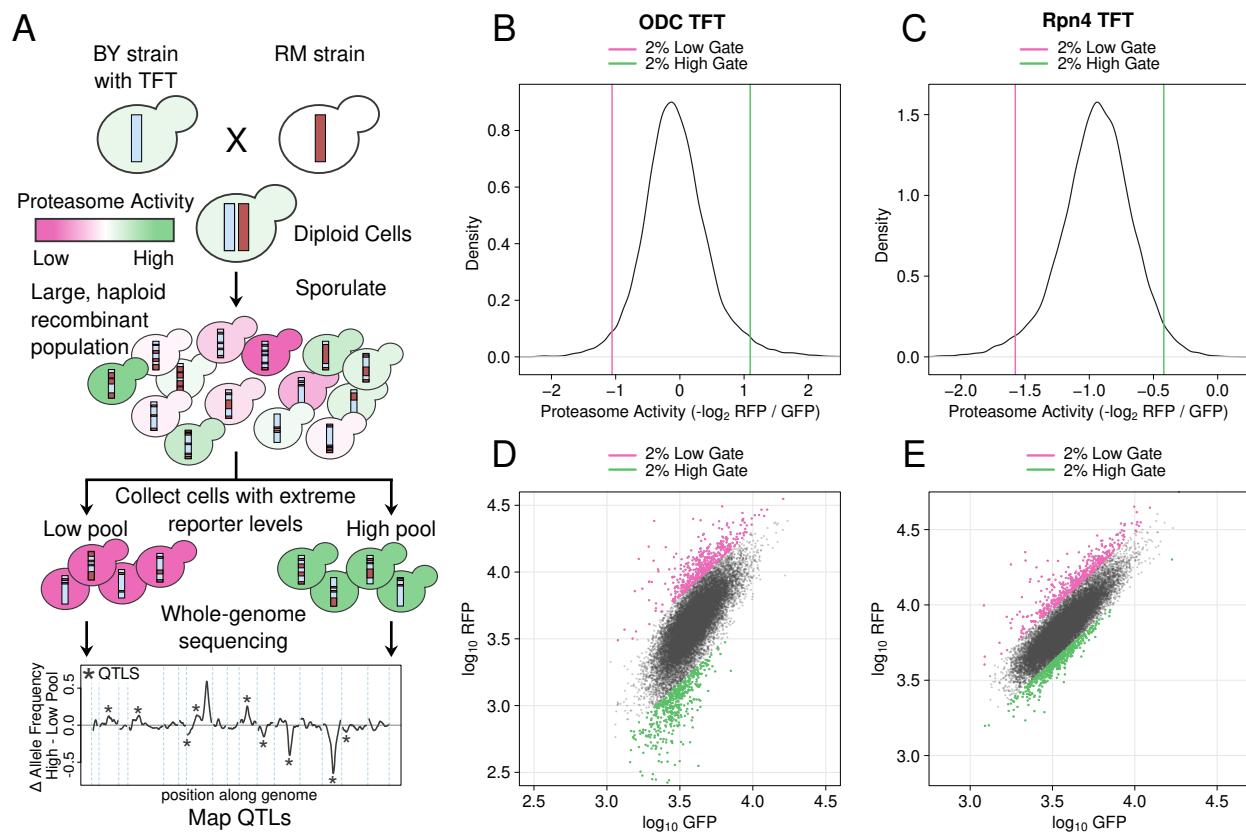

150 We characterized the ODC and Rpn4 TFTs in live, single cells by flow cytometry. We first
151 evaluated the sensitivity of each TFT by comparing each TFT's output in the BY laboratory strain
152 and a BY strain lacking the *RPN4* gene (hereafter "BY *rpn4* Δ "). *RPN4* encodes a transcription
153 factor for proteasome genes and deleting *RPN4* reduces proteasome activity^{63, 68, 82}. Deleting
154 *RPN4* strongly reduced the output from the ODC and Rpn4 TFTs in BY *rpn4* Δ (t-test *p* =
155 1.4e-6 and 1.6e-13, respectively; Figure 2D / E), showing that our TFTs provide sensitive *in vivo*
156 measurements of proteasome activity. Consistent with previous reports^{66, 69, 70}, in the BY strain
157 the ODC TFT was more rapidly degraded than the Rpn4 TFT (t-test *p* = 6.9e-10, Figure 2D / E).
158 Taken together, our results show that our TFTs provide quantitative, substrate-specific, *in vivo*
159 readouts of proteasome activity.

160

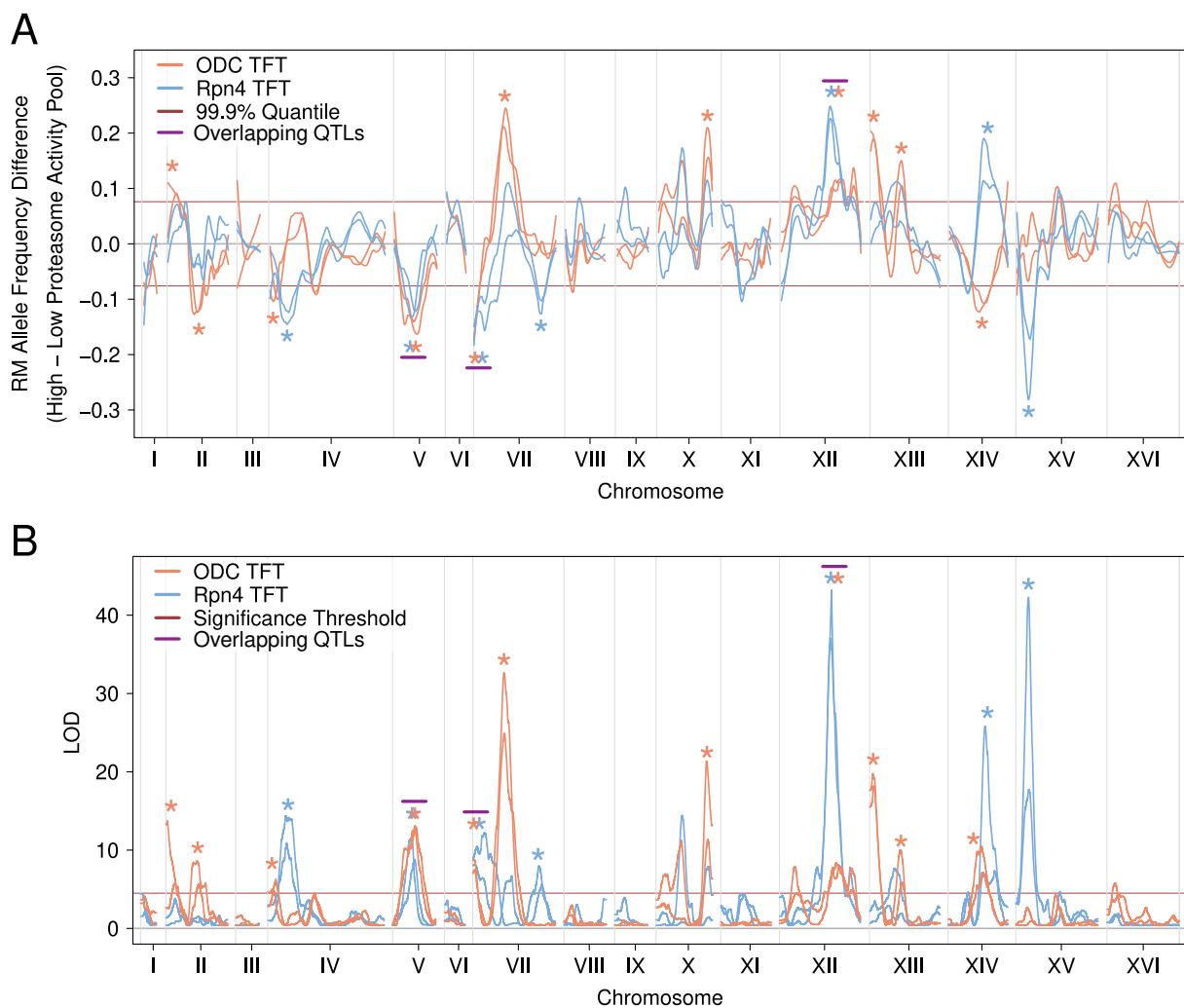
161 To understand how natural genetic variation affects proteasome activity, we measured the output
162 of the ODC and Rpn4 TFTs in two *Saccharomyces cerevisiae* strains. We compared BY, which is
163 closely related to the S288C reference strain, and the genetically divergent vineyard strain, RM,

164 whose genome differs from BY at an average at one out of every 200 base pairs⁸³. The RM strain
165 showed higher proteasome activity towards the ODC and Rpn4 TFTs than BY (t-test $p = 1.9\text{e-}4$
166 and $1.2\text{e-}8$, respectively; Figure 2D / E). We observed a significant interaction between strain
167 background and proteasome substrate such that the magnitude of the BY / RM strain difference
168 was greater for the Rpn4 TFT than the ODC TFT (two-way ANOVA interaction $p = 0.013$).
169 Together, these results show that individual genetic differences create heritable, substrate-specific
170 variation in proteasome activity.

171


Figure 2: Design and characterization of proteasome activity reporters. A. Schematic of the production and maturation of a TFT. B. A bar plot created with simulated data shows how differences in a TFT's degradation rate influence the reporter's RFP and GFP levels, as well as the $-\log_2$ RFP / GFP ratio. C. Diagram of mouse ODC and yeast Rpn4 showing the location of each protein's ubiquitin-independent degron. "AZB" = antizyme binding site, "AS" = active site, "AD" = transcriptional activation domain, "C₂H₂" = C₂H₂ zinc finger DNA binding domain. D. Density plots of proteasome activity from 10,000 cells for each of 8 independent biological replicates per strain per reporter for the indicated strains and TFTs. Thin, opaque lines show individual biological replicates and thicker, transparent lines show the group average for the indicated strains. E. The median from each biological replicate in D. is plotted as a stripchart. t-test p-values are shown for the indicated strain versus BY.

172


173 **Bulk Segregant Analysis Identifies Complex, Polygenic Influences on Protea-
174 some Activity**

175 To map genetic influences on proteasome activity, we used our ODC and Rpn4 TFTs to perform
176 bulk segregant analysis, a statistically powerful genetic mapping method that compares large num-
177 bers of individuals with extreme values for a trait of interest selected from a genetically diverse
178 population^{25, 78, 79, 84, 85}. In our implementation, the method identifies quantitative trait loci (QTLs),
179 regions of the genome with one or more DNA variants that influence proteasome activity. We cre-
180 ated genetically diverse cell populations by mating BY strains harboring either the ODC or Rpn4
181 TFT with RM and sporulating the resulting diploids (Figure 3A). Using the resulting populations
182 of haploid, genetically recombined progeny, we collected pools of 20,000 cells from the 2% tails
183 of the proteasome activity distribution using fluorescence-activated cell sorting (FACS) (Figure
184 3B-E). We then whole-genome sequenced each pool to determine the allele frequency difference
185 between the high and low UPS activity pools at each BY / RM DNA variant. At QTLs affecting
186 proteasome activity, the allele frequencies will be significantly different between pools, while at
187 unlinked loci the allele frequencies will be the same. We called significant QTLs using a logarithm
188 of the odds (LOD) threshold previously determined to produce a 0.5% false discovery rate for
189 TFT-based genetic mapping²⁵ (see "Methods") and retained only QTLs detected at genome-wide

190 significance in both of two independent biological replicates. We determined the direction of QTL
191 effects by computing the difference in RM allele frequency between the high and low proteasome
192 activity pools at each QTL peak position. When this value is positive, the RM allele of the QTL
193 results in higher proteasome activity, while negative values indicate QTLs where the RM allele
194 decreases proteasome activity. We identified 11 QTLs for the ODC TFT and 7 QTLs for the Rpn4
195 TFT (Figure 4, Table 1). The distribution of proteasome activity QTL effect sizes, as reflected
196 by the allele frequency difference between pools, was continuous and consisted predominantly
197 of QTLs with small effects (Figure 4, Table 1). Together, our mapping results demonstrate that
198 proteasome activity is a polygenic trait, shaped by variation throughout the genome.

Figure 3: Mapping genetic influences on proteasome activity using bulk segregant analysis. A. Schematic of the experimental approach. B. / C. Proteasome activity distributions for the ODC TFT (B.) and Rpn4 TFT (C.). Vertical lines show the gates used to collect cells with extreme high or low proteasome activity. D. / E. Backplot of cells collected using the gates in B. / C. onto a scatter plot of GFP and RFP for the ODC (D.) and Rpn4 (E.) TFTs.

Figure 4: Proteasome activity QTLs detected with the ODC and Rpn4 TFTs. A. The line plot shows the loess-smoothed allele frequency difference between the high and low proteasome activity pools across the *S. cerevisiae* genome for each of two independent biological replicates per reporter. Asterisks denote QTLs, which are allele frequency differences exceeding an empirically-derived LOD score significance threshold (indicated in B.) in each of two independent biological replicates for a given reporter. The horizontal red lines denote an empirically-derived 99.9% quantile of the allele frequency difference. Magenta horizontal lines above pairs of asterisks denote QTLs detected with both TFTs with the same direction of effect, which are termed “overlapping QTLs”. **B.** As in A., but for the LOD score for proteasome activity QTLs. The red horizontal line denotes the LOD score significance threshold used to call QTLs at a 0.5% FDR.

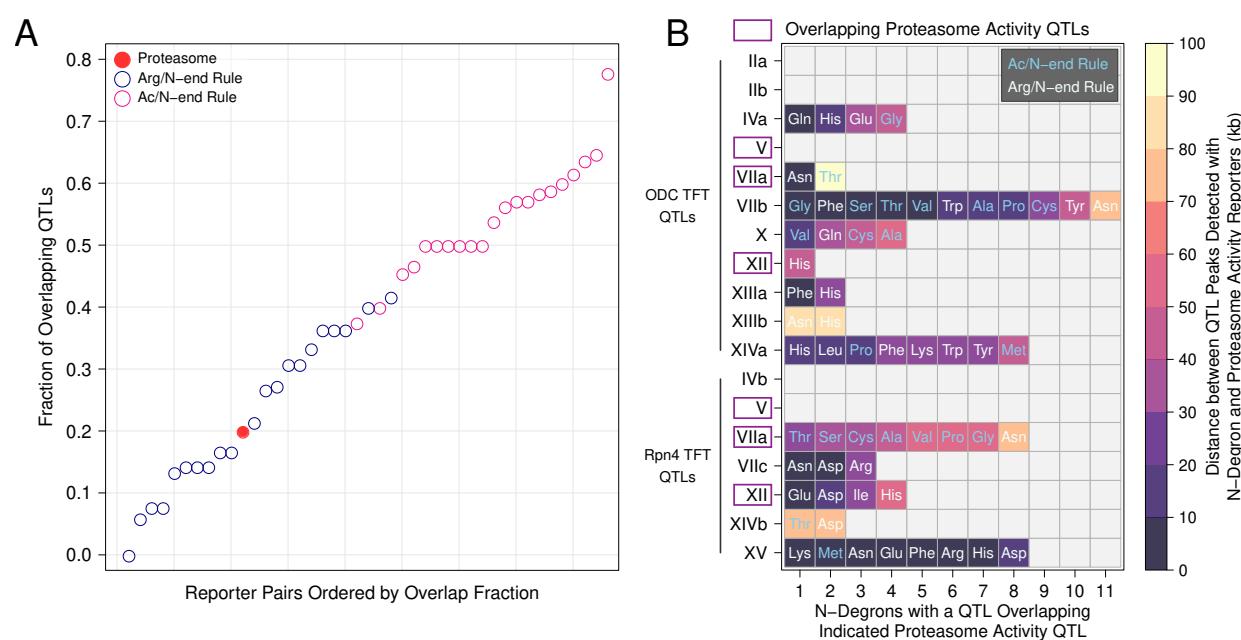
Reporter	Chromosome	LOD	AFD	Peak Position	Left Index	Right Index	
ODC TFT	IIa	9.76	0.10	69800	32850	107100	
ODC TFT	IIb	7.13	-0.12	418100	358850	462650	
ODC TFT	IVa	5.64	-0.10	85150	30400	127400	
ODC TFT	V	12.83	-0.15	291350	247700	325650	
ODC TFT	VIIa	8.14	-0.15	20000	0	52800	
ODC TFT	VIIb	28.74	0.23	409000	390050	431700	
ODC TFT	X	16.36	0.18	666850	649350	691550	
ODC TFT	XII	8.13	0.11	768150	666200	846700	
201	ODC TFT	XIIIa	18.96	0.19	47800	25200	75850
ODC TFT	XIIIb	7.96	0.13	410900	377350	450100	
ODC TFT	XIVa	8.81	-0.11	441750	381400	501600	
Rpn4 TFT	IVb	12.64	-0.13	240600	213200	309150	
Rpn4 TFT	V	10.09	-0.13	259650	218250	294900	
Rpn4 TFT	VIIa	10.21	-0.15	88550	53550	141350	
Rpn4 TFT	VIIc	6.80	-0.11	882500	840650	926150	
Rpn4 TFT	XII	40.11	0.23	672850	661800	685750	
Rpn4 TFT	XIVb	16.58	0.15	544150	497300	574600	
Rpn4 TFT	XV	30.00	-0.22	167400	142600	186200	

Table 1: Proteasome activity QTLs detected with the ODC and Rpn4 TFTs. The table lists all detected QTLs, sorted first by reporter, then by chromosome. Lowercase letters following chromosome numbers are used to distinguish QTLs on the same chromosome. “LOD”, logarithm of the odds; “AFD”, RM allele frequency difference (high proteasome activity pool minus low proteasome activity pool) at the QTL peak position. “Peak Position”, “Left Index”, and “Right Index” refer to base pair positions on the indicated chromosome. Each number is the average value calculated from two independent biological replicates for a given QTL.

203 **Genetic Influences on Proteasome Activity are Predominantly Substrate- 204 Specific**

205 To study substrate specificity in the genetic architecture of proteasome activity, we evaluated the
206 overlap in the sets of QTLs obtained with the ODC and Rpn4 TFTs. We defined overlapping
207 QTLs as those whose peaks were within 100 kb of each other and had the same direction of
208 effect. We then calculated the overlap fraction for the two sets of QTLs by dividing the number
209 of overlapping QTLs by the number of overlapping QTLs plus the non-overlapping QTLs for
210 each reporter. Only three proteasome activity QTLs, V, VIIA, and XII, overlapped between the
211 sets of QTLs detected with the ODC and Rpn4 TFTs (overlap fraction = 0.2, Figure 4, Table 1),
212 suggesting a high degree of substrate specificity.

213


214 To put this result in context, we examined overlap among our previously-described UPS N-end
215 Rule activity QTLs²⁵. The N-end Rule is divided into two primary branches based on how
216 N-degrons are generated and recognized⁸⁶⁻⁸⁹. Ac/N-degrons are generated and recognized by a
217 common set of molecular effectors⁸⁶. Reflecting this, many QTLs for Ac/N-degrons affect all or a
218 majority of the full set of Ac/N-degrons²⁵. By contrast, Arg/N-degrons are created and recognized
219 via molecular mechanisms that affect individual or small subsets of Arg/N-degrons⁸⁶. Accord-
220 ingly, QTLs for Arg/N-degrons tend to affect one or a minority of the set of Arg/N-degrons²⁵. We
221 computed the QTL overlap fraction among all pairs of Arg/N-degrons or Ac/N-degrons with at
222 least 7 QTLs (to match the number of Rpn4 TFT QTLs detected here) using the criteria above. As
223 expected, QTLs for Ac/N-degrons were detected with multiple reporters (median overlap fraction
224 = 0.54; Figure 5A), while Arg/N-degron QTLs were more specific (median overlap fraction =
225 0.21; Figure 5A). The distributions of overlap fractions for Arg/N-degrons and Ac/N-degrons
226 were highly distinct (Figure 5A), making them an ideal reference against which to gauge the
227 substrate-specificity of proteasome activity QTLs.

228

229 The overlap fraction for the two sets of proteasome activity QTLs (0.2) was close to the median
230 overlap for Arg/N-degrons (0.21, Figure 5A). Thus, genetic influences on proteasome activity
231 are as substrate-specific as those on N-degrons that are engaged by a broad variety of molecular
232 mechanisms in the ubiquitin system⁸⁶. Overlap among the two sets of proteasome activity QTLs
233 was considerably lower than that for the Ac/N-degrons (Figure 5A), which are generated and

234 recognized via a common set of molecular effectors^{86,87}. Crucially, the current proteasome and
 235 previous N-end Rule QTLs were detected with a similar experimental design with similarly high
 236 statistical power. Therefore, these comparisons across datasets provide an estimate of substrate
 237 specificity that is immune to potential inflation from QTLs that truly affect multiple substrates
 238 but may appear to be substrate-specific because they happened to be detected with only one or
 239 a few reporters. The chromosome XIVa and XIVb QTLs, which occur at similar positions but
 240 have opposing effects on the degradation of the Rpn4 and ODC TFTs (Figure 4A), provide further
 241 evidence that genetic effects on proteasome activity are highly substrate-specific.

242

Figure 5: Overlap of N-end Rule and Proteasome Activity QTLs. *A. Analysis of QTL overlap for proteasome activity, Arg/N-degron, and Ac/N-degron QTLs. For all pairs of reporters in the indicated reporter sets, we computed the overlap fraction as overlapping QTLs divided by total QTLs (overlapping QTLs plus reporter-specific QTLs). B. Overlap of proteasome activity and N-end Rule QTLs. The plot shows the number, identify, and N-end Rule branch of the N-degron QTLs that overlap proteasome activity QTLs on the y axis are ordered first by reporter then by chromosomal position and labeled as in Table 1. N-degrons on the x axis are ordered by the distance of their QTL's peak position from the peak of the corresponding proteasome activity QTL detected with either the ODC or Rpn4 TFT.*

243

244 Effects of Proteasome Activity QTLs on the UPS N-end Rule

245 We previously showed that four QTLs affecting the degradation of N-end Rule substrates
246 contained causal variants in ubiquitin system genes²⁵. As expected, these QTLs did not meet
247 our criteria for overlap with any proteasome activity QTLs (Supplementary Table 1). However,
248 many N-end Rule QTLs did not contain ubiquitin system genes, suggesting that they may
249 result from genetic effects on processes unrelated to ubiquitin system targeting. To understand
250 whether variation in N-end Rule activity could be explained by genetic effects on proteasome
251 activity, we examined the overlap between the proteasome activity QTLs identified here and our
252 previously-identified N-end Rule QTLs²⁵. The set of N-end Rule QTLs comprises 149 QTLs
253 detected with the 20 possible N-degron TFTs. However, many N-end Rule QTLs detected with
254 distinct reporters overlap. To account for this, we applied our criteria for QTL overlap, which
255 reduced the 149 N-end Rule QTLs detected with multiple reporters to 35 distinct, non-overlapping
256 QTLs. Eleven proteasome activity QTLs overlapped one of these 35 N-end Rule QTLs (31%),
257 suggesting that genetic effects on proteasome activity play a prominent role in shaping the activity
258 of the UPS N-end Rule (Figure 5B).

259

260 Conversely, 4 of 15 proteasome activity QTLs did not overlap any N-end Rule QTLs, demonstrat-
261 ing that genetic variation can specifically alter the turnover of ubiquitin-independent proteasome
262 substrates (Figure 5B). In particular, the chromosome V QTL altered the degradation of both the
263 ODC and Rpn4 TFTs, but no N-end Rule TFTs, suggesting broad effects on ubiquitin-independent
264 proteasomal degradation (Figure 5B). This agrees with previous findings that multiple factors
265 specifically regulate the degradation of ubiquitin-independent proteasomal substrates, without
266 affecting the degradation of ubiquitinated substrates⁸⁰.

267

268 Overlapping Proteasome Activity and N-end Rule QTLs Identify Candidate 269 Causal Genes for Proteasome Activity

270 QTLs often span large intervals, complicating efforts to identify the underlying causal genes and
271 variants. We reasoned that we could use overlapping proteasome activity and N-end Rule QTLs
272 to more precisely estimate QTL peak positions and nominate candidate causal genes. To this
273 end, we computed the overlaps between the sets of proteasome activity QTLs and N-end rule

274 QTLs and used this information to identify candidate causal genes (Figure 5B). Two proteasome
275 activity QTLs that were also detected with multiple N-degron TFTs occurred in genomic regions
276 harboring variation that affects a multitude of traits in the BY / RM cross. The chromosome
277 XIVa QTL was detected with the ODC TFT, 6 Arg/N-degron TFTs, and 2 Ac/N-degron TFTs
278 (Figure 5B). The QTL's average peak position at base pair 462,767 was located approximately
279 4.5 kb from the *MKT1* gene. *MKT1* encodes a multifunctional RNA binding protein involved
280 in 3' UTR-mediated RNA regulation^{90,91}. Variation at *MKT1* affects sporulation efficiency and
281 growth^{92,93}. The *MKT1* locus also occurs in a gene expression QTL “hotspot” that influences
282 the expression of thousands of genes^{77,78} in the BY / RM cross. The chromosome XV QTL was
283 detected with the Rpn4 TFT, 7 Arg/N-degron TFTs, and 1 Ac/N-degron TFT (Figure 5B). This
284 set of QTL peaks clustered tightly at the average peak position of base pair 164,256. This position
285 is approximately 7 kb away from *IRA2*, which encodes a negative regulator of RAS signaling⁹⁴.
286 Variation in *IRA2* affects the expression of thousands of genes in this cross of strains⁹⁵ via multiple
287 causal variants that interact epistatically⁹⁶. The QTL intervals for the chromosome XIVa and XV
288 QTLs do not contain any genes encoding proteasome subunits or proteasome assembly factors.
289 Therefore, the QTLs at *MKT1* and *IRA2* illustrate that some genetic effects on proteasome activity
290 likely result from complex, indirect molecular mechanisms involving altered gene expression.

291

292 The chromosome VIIb QTL detected with the ODC TFT had the highest number of overlapping
293 N-end rule QTLs, with QTLs detected in the same region with 4 Arg/N-degron and 7 Ac/N-degron
294 TFTs (Figure 5B). The high number of overlapping N-end Rule QTLs for both Arg/N-degrons
295 and Ac/N-degrons suggested that this QTL contained variation that broadly affects UPS protein
296 degradation. The average chromosome VIIb QTL peak position at base pair 411,250 is within the
297 *RPT6* open reading frame. *RPT6* encodes a subunit of the proteasome's 19S regulatory particle,
298 suggesting that this QTL influences proteasome activity via direct effects on a proteasome subunit.

299

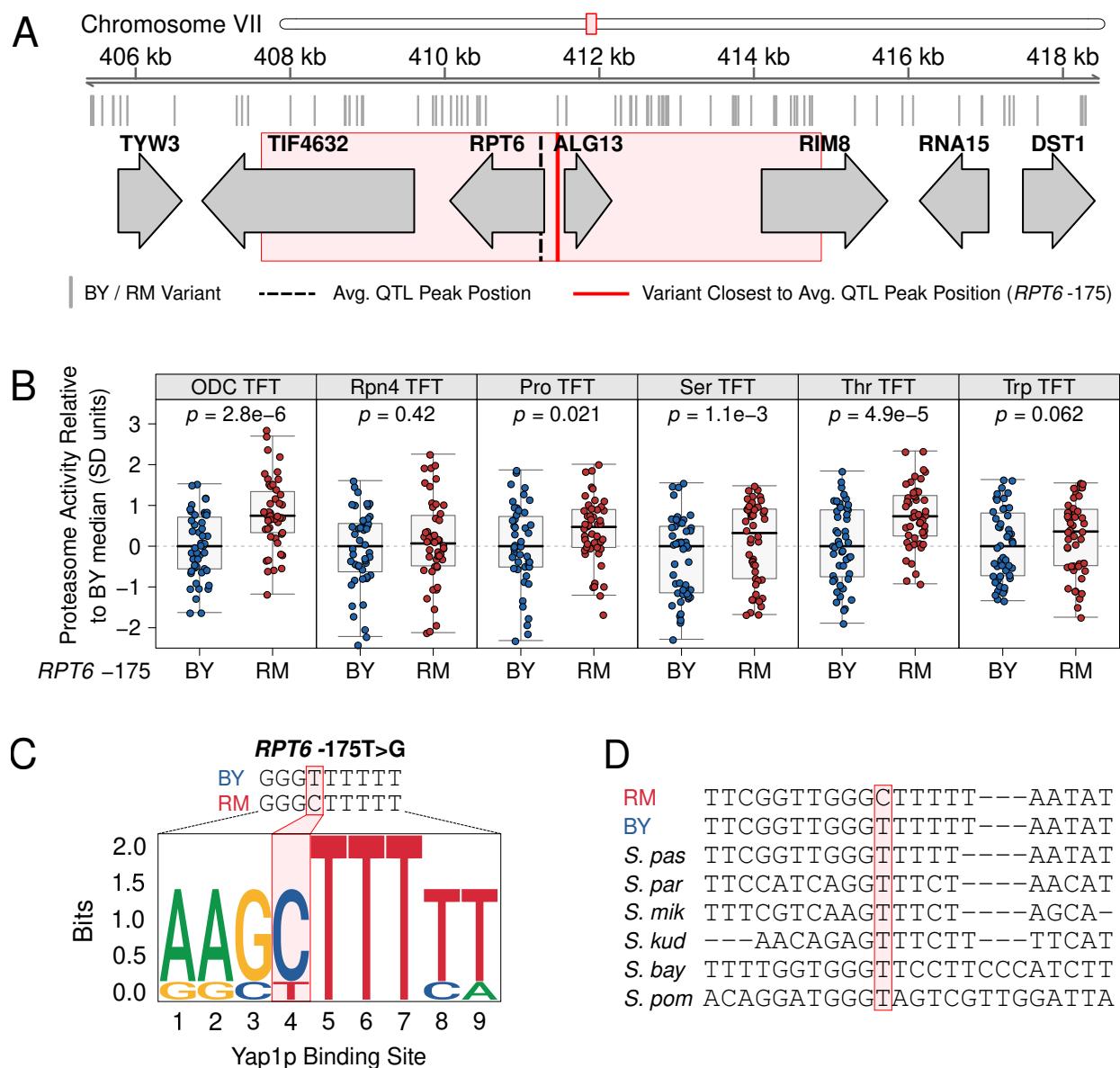
300 **Proteasome Activity is Shaped by a Causal Variant in the *RPT6* Promoter**

301 We selected the chromosome VIIb QTL for further experimental dissection. There are no
302 missense *RPT6* variants between BY and RM. However, a non-coding variant occurs at base
303 pair 411,461 (Figure 6A) in an intergenic region between *RPT6* and the adjacent *ALG13*,

304 which encodes an enzyme involved in oligosaccharide biosynthesis. We hypothesized that this in-
305 tergenic variant (hereafter, “*RPT6* -175”) was the causal nucleotide for the chromosome VIIb QTL.

306

307 To test the effect of *RPT6* -175, we used CRISPR-Cas9 to create BY strains with either the BY
308 or RM alleles at *RPT6* -175. We tested the effect of the *RPT6* -175 RM allele on the ODC and
309 Rpn4 TFTs, as well as a subset of Ac/N-degron and Arg/N-degron reporters with which the
310 chromosome VIIb QTL was also detected. The *RPT6* -175 RM allele significantly increased
311 proteasome activity towards the ODC TFT as compared to the BY *RPT6* -175 allele ($p = 2.8\text{e-}6$,
312 Figure 6B). Consistent with our QTL mapping results, the *RPT6* -175 RM allele did not increase
313 proteasome activity towards the Rpn4 TFT ($p = 0.42$, Figure 6B). The *RPT6* -175 RM allele
314 significantly increased the degradation of the proline, serine, and threonine Ac/N-degron TFTs,
315 while its effect on the degradation of the tryptophan Arg/N-degron was not statistically significant
316 (Figure 6B). These differences in how the *RPT6* -175 RM allele affects the Rpn4 and tryptophan
317 TFTs compared to other reporters suggest that this allele exerts substrate-specific effects on
318 proteasome activity. The Rpn4 degron, in particular, is recognized by distinct 19S regulatory
319 particle receptors from the other substrates tested here⁶⁴ and may, therefore, be unaffected by
320 *RPT6* -175.


321

322 The *RPT6* -175 variant occurs in an intergenic region with putative promoters for *RPT6* and
323 the divergently oriented *ALG13*. While we cannot formally exclude that the effect of the *RPT6*
324 -175 occurs via *ALG13*, there are no known links between *ALG13* and proteasome activity.
325 Moreover, previous genetic mapping in this cross of yeast strains identified a QTL in this same
326 region affecting *RPT6* mRNA abundance with the same direction of effect as the proteasome
327 activity QTL⁷⁷. Increasing the expression of individual proteasome subunits is a well-established
328 mechanism for increasing proteasome activity^{19,97,98}. Based on these observations, we conclude
329 that the effects of *RPT6* -175 on proteasome activity likely result from increased *RPT6* expression.

330

331 To understand potential molecular mechanisms of the *RPT6* -175 RM allele, we scanned the BY
332 and RM *RPT6* promoters for transcription factor binding sites⁹⁹. The RM, but not BY, allele
333 contains a putative binding site for Yap1p (Figure 6C). Yap1p is a stress-associated transcription
334 factor that indirectly increases proteasome activity during cellular stress, in part, by increasing
335 expression of the proteasome gene transcription factor *RPN4*¹⁰⁰⁻¹⁰². A multi-species alignment of

336 the *RPT6* promoter, showed that the *RPT6* -175 BY allele is highly conserved among yeast species
337 (Figure 6D). The BY allele is also present in the ancestral Taiwanese *S. cerevisiae* isolate, further
338 indicating that the *RPT6* -175 RM allele is derived. We then examined *RPT6* -175 allelic status in
339 a global panel of 1,011 *S. cerevisiae* isolates¹⁰³ to better understand its population characteristics
340 and evolutionary origin. Overall, the *RPT6* -175 RM allele has a 33.7% population frequency.
341 However, among the “Wine / European” clade that contains RM, the *RPT6* -175 RM allele has a
342 population frequency of 91.6% (Supplementary Figure 1). No other clades have a comparably high
343 *RPT6* -175 RM allele frequency (Supplementary Figure 1). Yap1p increases proteasome activity
344 in response to a variety of cellular stressors, including ethanol stress¹⁰⁴. Thus, the *RPT6* -175 RM
345 allele may have arisen in the “Wine / European” as an adaptation to the wine-making environment.
346 Our results demonstrate that natural populations harbor derived alleles that increase proteasome
347 activity and suggest that these alleles may have arisen through adaptation to local environmental
348 conditions.

Figure 6: Fine-mapping a causal variant for the chromosome VIIb QTL. A. Genomic interval for the chromosome VIIb QTL. The red box depicts the 95% confidence interval of the chromosome VIIb QTL peak position, which was calculated using the chromosome VIIb QTL intervals from the ODC and N-end Rule TFTs with which the QTL was detected. B. CRISPR-Cas9 was used to engineer strains containing either the BY or RM allele at RPT6 -175 and the variant's effect on proteasome activity was measured using the ODC and Rpn4 ubiquitin-independent degron TFTs, as well as the proline (Pro), serine (Ser), and threonine (Thr) Ac/N-end TFTs, and the tryptophan (Trp) Arg/N-degron TFT. C. Sequence logo for the predicted Yap1p binding site created by the RM allele of RPT6 -175. D. Multi-species alignment of the RPT6 promoter. The RPT6 -175 is highlighted. “S. pas” = *Saccharomyces pastorianus*, “S. par” = *Saccharomyces paradoxus*, “S. mik” = *Saccharomyces mikatae*, “S. kud” = *Saccharomyces kudriavzevii*, “S. bay” = *Saccharomyces bayanus*, “S. pombe” = *Saccharomyces pombe*

349

350 Discussion

351 Much of the proteome undergoes regulated turnover via proteasomal protein degradation^{13–15}.
352 Proteasome activity is thus a critical determinant of the abundance of individual proteins and,
353 by extension, the functional state of the cell. Physiological variation in proteasome activity
354 enables adaptation to changing internal and external cellular environments, such as during cellular
355 stress^{97,105,106}, while pathological variation in proteasome activity is linked to a diverse array of
356 human diseases^{3,20,23,107}. However, a full understanding of the factors that determine proteasome
357 activity has remained elusive. In particular, the challenges of measuring proteasomal protein
358 degradation in large samples has limited our understanding of the genetics of proteasome activity.
359 By combining high-throughput proteasome activity reporters with a statistically powerful genetic
360 mapping method, we have established individual genetic differences as an important source of
361 variation in proteasome activity. Our results add to the emerging picture of the complex effects of
362 genetic variation on protein degradation, which include widespread effects on the activity of the
363 ubiquitin system²⁵ and, as we show here, the proteasome.

364

365 This work provides several new insights into how individual genetic differences shape the activity
366 of the proteasome. Previous studies identified rare mutations in proteasome genes as the cause

367 of a variety of monogenic disorders^{27–29,31,107,108}. However, it was unclear to what extent these
368 mutations are representative of genetic effects on proteasome activity. Our results suggest that
369 disease-causing mutations and disease-linked polymorphisms with large effects on proteasome
370 activity represent one extreme of a continuous distribution of variant effects on proteasome activi-
371 ty. Aberrant proteasome activity is a hallmark of numerous common human diseases^{3,20,23}. Our
372 results raise the possibility that the risk for these diseases may be subtly influenced by common
373 variants that create heritable variation in proteasome activity. Our unbiased, genome-wide genetic
374 mapping also identified QTLs containing no genes with previously-established connections to
375 the regulation of proteasome activity. In particular, the chromosome XIVa and XV QTLs do
376 not contain any genes encoding proteasome genes or proteasome assembly factors. Instead, the
377 peaks of these QTLs center on *MKT1* and *IRA2*, which encode an RNA-binding protein and a
378 RAS signaling regulator respectively, further highlighting the complexity of genetic effects on
379 proteasome activity.

380

381 The proteasome activity QTLs we have identified add new insight into how genetic variation
382 shapes the molecular effectors of cellular protein degradation. We recently mapped the genetics
383 of the UPS N-end rule pathway and discovered multiple DNA variants that alter the activity of
384 four functionally distinct components of the ubiquitin system²⁵. Here, we extend this result by
385 showing that genetic variation also shapes protein degradation through effects on the proteasome.
386 Although many stimuli, such as protein misfolding or heat shock, cause coordinated changes
387 in the activity of the ubiquitin system and the proteasome, recent work shows that these two
388 systems can also be regulated independently and function autonomously of one another^{19,109}. For
389 example, ubiquitination can initiate events besides proteasomal protein degradation, including
390 lysosomal protein degradation, altered protein subcellular localization, and signaling cascade acti-
391 vation^{109–111}. Likewise, a number of cellular proteins are bound and degraded by the proteasome
392 without modification by the ubiquitin system⁶⁶. Thus, predicting how genetic variation shapes the
393 turnover of individual proteins will require consideration of genetic effects on both the ubiquitin
394 system and the proteasome.

395

396 Genetic effects on proteasome activity were largely substrate-specific. Such a result would be ex-
397 pected if individual genetic differences primarily affected substrate selection by the proteasome’s
398 19S regulatory particle. Efficient degradation of the proteasome substrates tested here and in our

399 previous study²⁵ require the proteasome's 19S regulatory particle^{64,112}, which contains multiple
400 substrate receptors. The ODC and Rpn4 degrons are likely bound by distinct 19S receptors.
401 Although the 19S receptors for the ODC degron are not known, the observation that the ODC
402 degron competes with polyubiquitinated proteins for 19S binding has been used to infer that it
403 is primarily bound by the canonical 19S ubiquitin receptors, Rpn1, Rpn10, and Rpn13^{62,81}. In
404 contrast, the Rpn4 degron is bound by the 19S subunits Rpn2 and Rpn5⁶⁴. Substrate selection is
405 influenced by multiple factors, such as the subunit composition of the 19S regulatory particle and
406 post-translational modification of 19S subunits^{1,8,113}. Variant effects on these processes and other
407 factors affecting 19S function may alter substrate selection, creating substrate-specific effects
408 on proteasomal protein degradation. Four proteasome activity QTLs were not detected with any
409 N-end reporters (Figure 5B), likely reflecting genetic mechanisms that specifically affect the
410 degradation of substrates with ubiquitin-independent degrons. Collectively, our results suggest
411 that genetic effects on protein degradation primarily affect subsets of UPS substrates, either
412 via ubiquitin system targeting or at the substrate selection step preceding proteasomal protein
413 degradation, rather than globally altering protein turnover.

414

415 Using CRISPR-Cas9 based allelic engineering, we resolved a QTL on chromosome VII to a
416 causal nucleotide in the *RPT6* promoter. This region also harbors a QTL that influences *RPT6*
417 expression⁷⁷, suggesting the variant alters proteasome activity by altering *RPT6* expression. This
418 mechanism is consistent with previous results showing that increasing the expression of individual
419 proteasome subunits can increase proteasome activity. For example, increased expression of
420 the 19S subunit *PSMD11* increases proteasome activity in human embryonic stem cells, which
421 helps them maintain an undifferentiated stem cell identity⁹⁸. In yeast, overexpression of the
422 *PRE9* gene, which encodes a subunit of the 20S core particle, increases proteasome activity and
423 promotes resistance to cellular stress⁹⁷. Cells employ diverse mechanisms to monitor and degrade
424 non-stoichiometric subunits of protein complexes^{114,115}, raising the question of how increasing
425 the expression of individual proteasome subunits increases proteasome activity. Rpt6 subunits not
426 stably incorporated into proteasomes are protected from degradation by the chaperone proteasome
427 associated assembly factor 1 (PAAF1)^{115,116}. Thus, PAAF1 association with Rpt6 creates a stable
428 Rpt6 pool that can be used to rapidly drive proteasome assembly, leading to increased proteasome
429 activity.

430

431 We have developed a generalizable strategy for mapping genetic effects on proteasomal protein
432 degradation with high statistical power. The elements in our reporters function in many other eu-
433 karyotic organisms, including human cells^{64,67,76}. Deploying the reporter systems developed here
434 in genetically diverse cell populations may provide new insights into the genetic basis of a vari-
435 ety of cellular and organismal traits, including the many diseases marked by aberrant proteasome
436 activity.

437 Materials and Methods

438 Tandem Fluorescent Timer (TFT) Reporters of Proteasome Activity

439 We used TFTs, fusions of two fluorescent proteins with distinct spectral profiles and maturation
440 kinetics, to measure proteasome activity. The most common TFT implementation consists of a
441 faster-maturing green fluorescent protein (GFP) and a slower-maturing red fluorescent protein
442 (RFP)^{72,73,76,117}. Because the two fluorescent proteins mature at different rates, the RFP / GFP
443 ratio changes over time. If the TFT's degradation rate is faster than the RFP's maturation rate,
444 the negative \log_2 RFP / GFP ratio is directly proportional to the TFT's degradation rate^{72,76}. The
445 RFP / GFP ratio is also independent of the TFT's expression level,^{72,76}, enabling high-throughput,
446 quantitative measurements of TFT turnover in genetically diverse cell populations^{25,76}. All TFTs
447 in the present study contained superfolder GFP (sfGFP)⁷⁴ and the RFP mCherry⁷⁵ separated
448 by an unstructured 35 amino acid peptide sequence to minimize fluorescence resonance energy
449 transfer⁷⁶.

450

451 To measure proteasome activity with our TFTs, we fused the ubiquitin-independent degrons from
452 the mouse ornithine decarboxylase (ODC) and yeast Rpn4 proteins to our sfGFP-mCherry TFTs.
453 ODC, an enzyme involved in polyamine biosynthesis, contains a ubiquitin-independent degron
454 in its C-terminal 37 amino acids^{61,62,70,118}. Rpn4, a transcription factor for proteasome genes,
455 contains a ubiquitin-independent degron in its N-terminal 80 amino acids^{63,64,68}. Both degrons are
456 recognized and bound by the 19S regulatory particle without ubiquitin conjugation and function
457 as unstructured initiation regions⁴⁶ for 20S core particle degradation. Attaching either degron
458 to a heterologous protein converts it into a short-lived proteasomal substrate with half-lives of
459 approximately 5 minutes for the ODC degron and 20 minutes for the Rpn4 degron^{66,69,70}. The
460 ODC and Rpn4 degron sfGFP-mCherry TFTs thus provide direct, quantitative, substrate-specific
461 readouts of proteasome activity.

462

463 We used a previously described approach²⁵ to construct TFT reporters and yeast strains harbor-
464 ing TFTs. Each TFT contained the constitutively active *TDH3* promoter, the *ADH1* terminator,
465 sfGFP, mCherry, and the KanMX selection module¹¹⁹. TFTs were constructed so that the ubiquitin-
466 independent degron was immediately adjacent to mCherry (Figure 2C), consistent with established
467 guidelines for optimizing TFT function⁷³. We used BFA0190 as the plasmid backbone for all TFT

468 plasmids. BFA0190 contains 734 bp of sequence upstream and 380 bp of sequence downstream
469 of the *LYP1* ORF separated by a *Swa*I restriction site. We inserted TFT reporters into BFA0190
470 by digesting the plasmid with *Swa*I and inserting TFT components between the *LYP1* flanking
471 sequences using isothermal assembly cloning (Hifi Assembly Cloning Kit; New England Biolabs
472 [NEB], Ipswich, MA, USA). The 5' and 3' *LYP1* flanking sequences in each TFT plasmid contain
473 natural *Sac*I and *Bgl*III restriction sites, respectively. We produced linear DNA transformation frag-
474 ments by digesting TFT-containing plasmids with *Sac*I and *Bgl*III and gel purifying the fragments
475 (Monarch Gel Purification, NEB). Genomic integration of each linear transformation fragment re-
476 sults in deletion of the *LYP1* gene, allowing selection for TFT integration at the *LYP1* locus using
477 the toxic amino acid analogue thialysine (S-(2-aminoethyl)-L-cysteine hydrochloride)¹²⁰⁻¹²² and
478 G418¹¹⁹. All plasmids used in this study are listed in Supplementary Table 2.

479 Yeast Strains and Handling

480 Yeast Strains

481 We used two genetically divergent *Saccharomyces cerevisiae* yeast strains for characterizing our
482 proteasome activity TFTs and mapping genetic influences on proteasome activity. The haploid
483 BY strain (genotype: *MATa his3Δ hoΔ*) is a laboratory strain that is closely related to the *S.*
484 *cerevisiae* S288C reference strain. The haploid RM strain is a vineyard isolate with genotype
485 *MATα can1Δ::STE2pr-SpHIS5 his3Δ::NatMX AMNI-BY hoΔ::HphMX URA3-FY*. BY and
486 RM differ, on average, at 1 nucleotide per 200 base pairs, such that approximately 45,000 single
487 nucleotide variants (SNVs) between the strains can serve as markers in a genetic mapping experi-
488 ment^{78,79,83,84}. We also engineered a BY strain lacking the *RPN4* gene (hereafter “BY *rpn4Δ*”) to
489 characterize the sensitivity and dynamic range of our TFT reporters. We replaced the *RPN4* gene
490 with the NatMX cassette, which confers resistance to the antibiotic nourseothricin¹¹⁹. To do so,
491 we transformed BY with a DNA fragment created by PCR amplifying the NatMX cassette from
492 plasmid from Addgene plasmid #35121 (a gift from John McCusker) using primers with 40 bp
493 of homology to the 5' upstream and 3' downstream sequences of *RPN4* using the transformation
494 procedure described below. Strain genotypes are presented in Table 2. Supplementary Table 3
495 lists the full set of strains used in this study.

496

497 The media formulations for all experiments are listed in Table 3. Synthetic complete media

Short Name	Genotype	Antibiotic Resistance	Auxotrophies
BY	<i>MATa his3Δ hoΔ</i>		histidine
RM	<i>MATα can1Δ::STE2pr-SpHIS5 his3Δ::NatMX hoΔ::HphMX</i>	clonNAT, hygromycin	histidine
BY <i>rpn4Δ</i>	<i>MATa his3Δ hoΔ rpn4Δ::NatMX</i>	clonNAT	histidine

Table 2: Strain genotypes

498 powders (SC -lys and SC -his -lys -ura) were obtained from Sunrise Science (Knoxville, TN,
 499 USA). We added the following reagents at the following concentrations to yeast media where
 500 indicated: G418, 200 mg / mL (Fisher Scientific, Pittsburgh, PA, USA); ClonNAT (nourseothricin
 501 sulfate, Fisher Scientific), 50 mg / L; thialysine (S-(2-aminoethyl)-L-cysteine hydrochloride;
 502 MilliporeSigma, St. Louis, MO, USA), 50 mg / L; canavanine (L-canavanine sulfate, Millipore-
 503 Sigma), 50 mg / L.

504

Media Name	Abbreviation	Formulation
Yeast-Peptone-Dextrose	YPD	10 g / L yeast extract 20 g / L peptone 20 g / L dextrose
Synthetic Complete	SC	6.7 g / L yeast nitrogen base 1.96 g / L amino acid mix -lys 20 g / L dextrose
Haploid Selection	SGA	6.7 g / L yeast nitrogen base 1.74 g / L amino acid mix -his -lys -ura 20 g / L dextrose
Sporulation	SPO	1 g / L yeast extract 10 g / L potassium acetate 0.5 g / L dextrose

Table 3: Media Formulations

505 Yeast Transformations

506 We used the lithium acetate / single-stranded carrier DNA / polyethyline glycol (PEG) method
507 for all yeast transformations¹²³. In brief, yeast strains were inoculated into 5 mL of YPD liquid
508 medium for overnight growth at 30 °C. The next day, we diluted 1 mL of each saturated culture
509 into 50 mL of fresh YPD and grew cells for 4 hours. Cells were washed in sterile ultrapure water
510 and then in transformation solution 1 (10 mM Tris HCl [pH 8.0], 1 mM EDTA [pH 8.0], and 0.1
511 M lithium acetate). After each wash, we pelleted the cells by centrifugation at 3,000 rpm for 2
512 minutes in a benchtop centrifuge and discarded supernatants. After washing, cells were suspended
513 in 100 μ L of transformation solution 1 along with 50 μ g of salmon sperm carrier DNA and 300
514 ng of transforming DNA and incubated at 30 °C for 30 minutes with rolling. Subsequently, 700
515 μ L of transformation solution 2 (10 mM Tris HCl [pH 8.0], 1 mM EDTA [pH 8.0], and 0.1 M
516 lithium acetate in 40% PEG) was added to each tube, followed by a 30 minute heat shock at
517 42 °C. Transformed cells were then washed in sterile, ultrapure water, followed by addition of
518 1 mL of liquid YPD medium to each tube. Cells were incubated in YPD for 90 minutes with
519 rolling at 30 °C to allow for expression of antibiotic resistance cassettes. We then washed the cells
520 with sterile, ultrapure water and plated 200 μ L of cells on solid SC -lys medium with G418 and
521 thialysine, and, for strains with the NatMX cassette, clonNAT. We single-colony purified multiple
522 independent colonies (biological replicates) from each transformation plate for further analysis as
523 indicated in the text. Reporter integration at the targeted genomic locus was verified by colony
524 PCR¹²⁴ using the primers listed in Supplementary Table 4.

525 Yeast Mating and Segregant Populations

526 We used a modified synthetic genetic array (SGA) methodology^{121,122} to create populations of
527 genetically variable, recombinant cells (“segregants”) for genetic mapping. BY strains with either
528 ODC or Rpn4 TFTs were mixed with the RM strain on solid YPD medium and grown overnight
529 at 30 °C. We selected for diploid cells (successful BY / RM matings) by streaking mixed BY
530 / RM cells onto solid YPD medium containing G418, which selects for the KanMX cassette in
531 the TFT in the BY strain, and clonNAT, which selects for the NatMX cassette in the RM strain.
532 Diploid cells were inoculated into 5 ml of liquid YPD and grown overnight at 30 °C. The next day,
533 cultures were washed with sterile, ultrapure water, and resuspended in 5 mL of SPO liquid medium
534 (Table 3). We induced sporulation by incubating cells in SPO medium at room temperature with

535 rolling for 9 days. After confirming sporulation by brightfield microscopy, we pelleted 2 mL of
536 cells, which were then washed with 1 mL of sterile, ultrapure water, and resuspended in 300 μ L
537 of 1 M sorbitol containing 3 U of Zymolyase lytic enzyme (United States Biological, Salem, MA,
538 USA) to degrade ascus walls. Ascus were digested for 2 hours at 30 °C with rolling. Spores were
539 then washed with 1 mL of 1 M sorbitol, vortexed for 1 minute at the highest intensity setting, and
540 resuspended in sterile ultrapure water. We confirmed the release of cells from ascus by brightfield
541 microscopy and plated 300 μ L of cells onto solid SGA medium containing G418 and canavanine.
542 This media formulation selects for haploid cells with (1) a TFT via G418, (2) the *MATa* mating type
543 via the *Schizosaccharomyces pombe* *HIS5* gene under the control of the *STE2* promoter (which is
544 only active in *MATa* cells), and (3) replacement of the *CAN1* gene with *S. pombe* *HIS5* via the
545 toxic arginine analog canavanine^{121,122}. Haploid segregants were grown for 2 days at 30 °C and
546 harvested by adding 10 mL of sterile, ultrapure water and scraping the cells from each plate. Each
547 segregant population cell suspension was centrifuged at 3000 rpm for 10 minutes and resuspended
548 in 1 mL of SGA medium. We added 450 μ L of 40% (v / v) sterile glycerol solution to 750 μ L
549 to each segregant culture and stored this mixture in screw cap cryovials at -80 °C. We stored 2
550 independent sporulations each of the ODC and Rpn4 degron TFT-containing segregants (derived
551 from our initial matings) as independent biological replicates.

552 **Flow Cytometry and Fluorescence-Activated Cell Sorting**

553 **Flow Cytometry**

554 We characterized our proteasome activity TFTs using flow cytometry. For all flow cytometry
555 experiments, we inoculated yeast strains into 400 μ L of liquid SC -lys medium with G418 for
556 overnight growth in 2 mL 96 well plates at 30 °C with 1000 rpm mixing on a MixMate (Eppendorf,
557 Hamburg, Germany). The next day, 4 μ L of each saturated culture was inoculated into a fresh
558 400 μ L of G418-containing SC -lys media and cells were grown for an additional 3 hours prior to
559 flow cytometry. We performed all flow cytometry experiments on an LSR II flow cytometer (BD,
560 Franklin Lakes, NJ, USA) equipped with a 20 mW 488 nm laser with 488 / 10 and 525 / 50 filters
561 for measuring forward and side scatter and sfGFP fluorescence, respectively, as well as a 40 mW
562 561 nm laser and a 610 / 20 filter for measuring mCherry fluorescence. Table 4 lists the parame-
563 ters and settings for all flow cytometry and fluorescence-activated cell sorting (FACS) experiments.

Parameter	Laser Line (nm)	Laser Setting (V)	Filter
forward scatter (FSC)	488	500	488/10
side scatter (SSC)	488	275	488/10
sfGFP	488	500	525/50
mCherry	561	615	610/20

Table 4: *Flow cytometry and FACS settings.*

565 All flow cytometry data was analyzed using R¹²⁵ and the flowCore R package¹²⁶. We filtered each
566 flow cytometry dataset to exclude all events outside of $10\% \pm$ the median forward scatter (a proxy
567 for cell size). This gating approach captured the central peak of cells in the FSC histogram and
568 removed cellular debris, aggregates of multiple cells, and restricted our analyses to cells of the
569 same approximate size²⁵.

570

571 For flow cytometry experiments related to reporter characterization, we recorded 10,000 cells
572 each from 8 independent biological replicates per strain for the ODC and Rpn4 degron TFTs.
573 We extracted the median from each independent biological replicate and used these values for
574 statistical analyses. The statistical significance of between strain differences for the ODC and
575 Rpn4 degron TFTs was assessed using a two-tailed t-test without correction for multiple testing.
576 We used an ANOVA with strain (BY or RM) and reporter (ODC or Rpn4 degron TFT) as fixed
577 factors to assess the statistical significance of the interaction of genetic background with reporter.

578

579 For flow cytometry experiments related to fine-mapping the chromosome VIIb QTL, we used the
580 following procedures. We recorded 10,000 cells each from 12 independent biological replicates
581 per strain (BY *RPT6* -175 BY and BY *RPT6* -175 RM) per guide RNA per reporter (ODC and
582 Rpn4 TFTs, as well as proline, serine, threonine, and tryptophan N-degron TFTs). We observed
583 that, consistent with previous results²⁵, the output of the TFTs changed over the course of each
584 flow cytometry experiment. We used a previously-described approach in which the residuals of a
585 regression of the TFT's output on time were used to correct for this effect^{25,79}. We then Z-score
586 normalized the sets of median values for each reporter, setting the mean equal to the median of
587 the BY *RPT6* -175 BY allele strain. The effect of the *RPT6* -175 genotype was assessed using a
588 linear mixed model implemented in the R packages 'lme4'¹²⁷ and 'lmerTest'¹²⁸ using *RPT6* -175

589 genotype and guide RNA as fixed effects and plate as a random effect.

590 **Fluorescence-Activated Cell Sorting (FACS)**

591 We used FACS to collect pools of segregant cells for genetic mapping by bulk segregant analy-
592 sis^{78,79}. We thawed and inoculated segregant populations into 5 mL of SGA medium containing
593 G418 and canavanine for overnight growth at 30 °C with rolling. The following morning, we di-
594 luted 1 mL of cells from each segregant population into a fresh 4 mL of SGA medium containing
595 G418 and canavanine. Diluted segregant cultures were grown for 4 hours prior to sorting on a
596 FACSaria II cell sorter (BD). Plots of side scatter (SSC) height by SSC width and forward scatter
597 (FSC) height by FSC width were used to remove doublets from each sample and cells were further
598 filtered to contain cells within ± 7.5% of the central FSC peak. We empirically determined that
599 this filtering approach excluded cellular debris and aggregates while retaining the primary hap-
600 loid cell population. We also defined a fluorescence-positive population by retaining only those
601 TFT-containing cells with sfGFP fluorescence values higher than negative control BY and RM
602 strains without TFTs. We collected pools of 20,000 cells each from the 2% high and low protea-
603 some activity tails (Figure 2B / C) from two independent biological replicates for each TFT. Pools
604 of 20,000 cells were collected into sterile 1.5 mL polypropylene tubes containing 1 mL of SGA
605 medium that were grown overnight at 30 °C with rolling. After overnight growth, we mixed 750
606 μL of cells with 450 μL of 40% (v / v) glycerol and stored this mixture in 2 mL 96 well plates at
607 –80 °C.

608 **Genomic DNA Isolation, Library Preparation, and Whole-Genome Sequenc- 609 ing**

610 To isolate genomic DNA from sorted segregant pools, we first pelleted 800 μL of each pool
611 by centrifugation at 3,700 rpm for 10 minutes. Supernatants were discarded and cell pellets
612 were resuspended in 800 μL of a 1 M sorbitol solution containing 0.1 M EDTA, 14.3 mM
613 β-mercaptoethanol, and 500 U of Zymolyase lytic enzyme (United States Biological) to digest cell
614 walls. Zymolyase digestions were carried out by resuspending cell pellets with mixing at 1000
615 rpm for 2 minutes followed by incubation for 2 hours at 37 °C. After completing the digestion
616 reaction, we pelleted and resuspended cells in 50 μL of phosphate-buffered saline. We then
617 used the Quick-DNA 96 Plus kit (Zymo Research, Irvine, CA, USA) to extract genomic DNA

according to the manufacturer's protocol, including an overnight protein digestion in a 20 mg / mL proteinase K solution at 55 °C prior to loading samples onto columns. DNA was eluted from sample preparation columns using 40 μ L of DNA elution buffer (10 mM Tris-HCl [pH 8.5], 0.1 mM EDTA). DNA concentrations for each sample were determined with the Qubit dsDNA BR assay kit (Thermo Fisher Scientific, Waltham, MA, USA) in a 96 well format using a Synergy H1 plate reader (BioTek Instruments, Winooski, VT, USA).

624

We used genomic DNA from our segregant pools to prepare a short-read library for whole-genome sequencing on the Illumina Next-Seq platform using a previously-described approach^{25,78,79}. The Nextera DNA library kit (Illumina, San Diego, CA, USA) was used according to the manufacturer's instructions with the following modifications. We fragmented and added sequencing adapters to genomic DNA by adding 5 ng of DNA to a master mix containing 4 μ L of Tagment DNA buffer, 1 μ L of sterile molecular biology grade water, and 5 μ L of Tagment DNA enzyme diluted 1:20 in Tagment DNA buffer and incubating this mixture on a SimpliAmp thermal cycler using the following parameters (Thermo Fisher Scientific): 55 °C temperature, 20 μ L reaction volume, 10 minute incubation. We PCR amplified libraries prior to sequencing by adding 10 μ L of the tagmentation reaction to a master mix containing 1 μ L of an Illumina i5 and i7 index primer pair mixture, 0.375 μ L of ExTaq polymerase (Takara), 5 μ L of ExTaq buffer, 4 μ L of a dNTP mixture, and 29.625 μ L of sterile molecular biology grade water. To multiplex samples for sequencing, we generated all 96 possible index oligo combinations using 8 i5 and 12 i7 index primers. Libraries were PCR amplified on a SimpliAmp thermal cycler using the following parameters: initial denaturation at 95 °C for 30 seconds, then 17 cycles of 95 °C for 10 seconds (denaturation), 62 °C for 30 seconds (annealing), and 72 °C for 3 minutes (extension). The DNA concentration of each reaction was quantified using the Qubit dsDNA BR assay kit (Thermo Fisher Scientific). We pooled equimolar amounts of each sample, ran this mixture on a 2% agarose gel, and extracted and purified DNA in the 400 bp to 600 bp region using the Monarch Gel Extraction Kit (NEB) according to the manufacturer's instructions.

645

The pooled library was submitted to the University of Minnesota Genomics Center (UMGC) for quality control assessment and Illumina sequencing. UMGC staff performed three quality control (QC) assays prior to sequencing. The PicoGreen dsDNA quantification reagent (Thermo Fisher Scientific) was used to determine library concentration, with a concentration \geq 1 ng/ μ L required

650 to pass. The Tapestation electrophoresis system (Agilent Technologies, Santa Clara, CA, USA)
651 was used to determine library size, with libraries in the range of 200 to 700 bp passing. Finally, the
652 KAPA DNA Library Quantification kit (Roche, Basel, Switzerland) was used to determine library
653 functionality, with libraries requiring a concentration ≥ 2 nM to pass. The submitted library passed
654 each QC assay. The library was sequenced on a Next-Seq 550 instrument in mid-output, 75 bp
655 paired-end mode, generating 153,887,828 reads across all samples, with a median of 9,757,090
656 and a range of 5,994,921 to 14,753,319 reads per sample. The mean read quality for all samples
657 was > 30 . The median read coverage of the genome was 21, with a range of 16 to 25 across all
658 samples. Data will be deposited into the NIH Sequence Read Archive following publication.

659 QTL Mapping

660 We used a previously-described approach to identify QTLs from our whole-genome sequencing
661 data^{25,78,79}. We initially filtered our raw reads to retain only those with a mean base quality score
662 greater than 30. Filtered reads were aligned to the *S. cerevisiae* reference genome (sacCer3) with
663 the Burroughs-Wheeler alignment tool¹²⁹. We used samtools¹³⁰ to first remove unaligned reads,
664 non-uniquely aligned reads, and PCR duplicates, and then to produce vcf files containing coverage
665 and allelic read counts at each of 18,871 high-confidence, reliable SNPs^{57,84}, with BY alleles as
666 reference and RM alleles as alternative alleles.

667

668 QTLs were called from allele counts using the MULTIPOOL algorithm¹³¹. MULTIPOOL esti-
669 mates a logarithm of the odds (LOD) score by calculating a likelihood ratio from two models. In
670 the noncausal model, the locus is not associated with the trait and the high and low proteasome
671 activity pools have the same frequency of the BY and RM alleles. In the causal model, the locus is
672 associated with the trait, such that the BY and RM allele frequencies differ between pools. QTLs
673 were defined as loci with a LOD ≥ 4.5 . In a previous study²⁵, we empirically determined that
674 this threshold produces a 0.5% false discovery rate (FDR) for TFT-based genetic mapping by bulk
675 segregant analysis. We used the following MULTIPOOL settings: bp per centiMorgan = 2,200,
676 bin size = 100 bp, effective pool size = 1,000. As in previous studies^{78,79}, we excluded variants
677 with allele frequencies higher than 0.9 or lower than 0.1^{25,78,79}. QTL confidence intervals were
678 defined as a 2-LOD drop from the QTL peak (the QTL position with the highest LOD value). We
679 computed the RM allele frequency difference (Δ AF) between the high and low proteasome activ-

680 ity pools at each allele to visualize QTLs. We also used ΔAF at each QTL peak to determine the
681 magnitude and direction of the QTL's effect. When the RM allele frequency difference at a QTL is
682 positive, the RM allele of the QTL is associated with higher proteasome activity. Negative RM al-
683 lele frequency differences indicate QTLs where the RM allele is associated with lower proteasome
684 activity. Because allele frequencies are affected by random counting noise, we smoothed allele
685 frequencies along the genome using loess regression prior to calculating ΔAF for each sample.

686 QTL Fine-Mapping By Allelic Engineering

687 We used CRISPR-Cas9 to edit the *RPT6* -175 locus in the BY strain. Guide RNAs (gRNAs)
688 targeting *RPT6* were obtained from the CRISPR track of the UCSC Genome Browser¹³². To
689 control for potential off-target edits by CRISPR-Cas9, we used two unique guide RNAs to
690 engineer each allelic edit. We selected two gRNAs in the *RPT6* open-reading frame (ORF)
691 based on their proximity to the *RPT6* -175 variant (PAM sequences 226 and 194 bp from *RPT6*
692 -175), their CRISPOR specificity scores¹³³ (100 each, where 100 is the highest possible predicted
693 specificity), and their predicted cleavage scores¹³⁴ (66 and 56, where > 55 indicates high predicted
694 cleavage efficiency). We inserted each gRNA into a plasmid that expresses Cas9 under the
695 control of the constitutively active *TDH3* promoter as follows. We digested backbone plasmid
696 BFA0224²⁵ with the restriction enzymes HpaI and BsmBI (New England Biolabs) to remove
697 the backbone vector's existing gRNA. The cut vector was gel purified using the Monarch Gel
698 Purification kit (New England Biolabs) according to the manufacturer's instructions. We then
699 performed isothermal assembly cloning using the HiFi Assembly Kit with the gel purified vector
700 backbone and oligos encoding each gRNA (OFA1198 or OFA1199; Supplementary Table 4) to
701 create plasmids BFA0242 and BFA0243 (Supplementary Table 2). Plasmids were miniprepped
702 from DH5 α *E. coli* cells using the Monarch Plasmid Miniprep kit. The sequence identities of
703 BFA0242 and BFA0243 were confirmed by Sanger sequencing.

704

705 We created repair templates for co-transformation with BFA0242 and BFA0243 as follows. We
706 first extracted genomic DNA from BY and RM using the "10 minute prep" protocol¹³⁵. Genomic
707 DNA from each strain was used as a template for PCR amplification of the *RPT6* promoter using
708 oligos OFA1204 and OFA1207 (Supplementary Table 4). To prevent Cas9 cutting after editing
709 of the *RPT6* -175 locus, we introduced two synonymous substitutions into the *RPT6* ORF by

710 converting the serine codons GGA and TCA to AGT at base pairs 22-24 and 49-51. Synonymous
711 substitutions were introduced using splicing overlap by extension PCR¹³⁶ with primers OFA1208
712 and OFA1209. Full repair templates were then amplified using either the BY or RM *UBR1*
713 promoter and the BY *RPT6* ORF as templates in a splicing overlap extension by PCR reaction
714 with primers OFA1204 and OFA1205 (Supplementary Table 4). The sequence identity of all
715 repair templates was verified by Sanger sequencing.

716

717 To create BY strains with edited *RPT6* alleles, we co-transformed 150 ng of either plasmid
718 BFA0242 or BFA0243 with 1.5 μ g of repair template using the transformation protocol above.
719 The transformation reaction was streaked onto solid SC medium lacking histidine to select for
720 the *HIS3* selectable marker in BFA0242 or BFA0243. Colonies from transformation plates were
721 single-colony purified on solid medium lacking histidine, then patched onto solid YPD medium.
722 To verify allelic edits, we performed colony PCR using oligos 1204 and 1206 (Supplementary Ta-
723 ble 4). Reaction products were gel purified using the Monarch Gel Purification kit (New England
724 Biolabs) and Sanger sequenced using oligos OFA1204 and OFA1206 to confirm both the sequence
725 of the *RPT6* promoter and the synonymous substitutions in the *RPT6* ORF. Strains with the desired
726 edits were then transformed to contain TFT reporters as indicated above. We tested 12 indepen-
727 dent biological replicates per strain per guide RNA per TFT. For subsequent statistical analyses,
728 we pooled strains with the same allelic edit engineered with unique guide RNAs.

729 Data and Statistical Analysis

730 All data and statistical analyses were performed using R¹²⁵. In all boxplots, the center line shows
731 the median, the box bounds the first and third quartiles, and the whiskers extend to 1.5 times the
732 interquartile range. DNA binding motifs in the *RPT6* promoter were assessed using the Yeast
733 Transcription Factor Specificity Compendium database⁹⁹. We inferred the allelic status of *RPT6*
734 -175 by comparing the BY and RM alleles to a likely-ancestral Taiwanese strain. The frequency
735 of the RM allele at *RPT6* -175 was calculated across and within clades of a global panel of 1,011
736 *S. cerevisiae* isolates¹⁰³. Final figures and illustrations were made using Inkscape (version 0.92;
737 Inkscape Project).

738 **Data and Materials Availability**

739 Computational scripts used to process data, for statistical analysis, and to generate plots are
740 available at:

741

742 http://www.github.com/mac230/proteasome_QTL_paper

743

744 Whole-genome sequencing data is in the process of being deposited into the NIH Sequence Read
745 Archive. Yeast strains and plasmids used in this study are available on request. Correspondence
746 should be addressed to FWA.

747 **Author Contributions**

748 Conceptualization: MAC, FWA

749 Formal Analysis: MAC

750 Funding Acquisition: MAC, FWA

751 Investigation: MAC, RRA

752 Methodology: MAC, FWA

753 Resources: FWA

754 Supervision: MAC, FWA

755 Validation: MAC, RRA

756 Visualization: MAC

757 Writing - Original Draft: MAC

758 Writing - Review and Editing: MAC, FWA

759 **Acknowledgements**

760 We thank the members of the Albert laboratory for feedback on the project and manuscript. We
761 thank the University of Minnesota's Flow Cytometry Resource and Genomics Center for their
762 contributions to the project.

763 **Competing Interests**

764 The authors declare that they have no competing interests.

765 **Financial Disclosure Statement**

766 This work was supported by NIH grants F32-GM128302 to MAC and R35-GM124676 to FWA

767 from the National Institute of General Medical Sciences (<https://www.nigms.nih.gov/>).

768 The funders had no role in study design, data collection and analysis, decision to publish, or prepa-

769 ration of the manuscript.

770 References

771 ¹ D. Finley, H. D. Ulrich, T. Sommer, and P. Kaiser. The ubiquitin-proteasome system of *Saccha-*
772 *romyces cerevisiae*. *Genetics*, 192(2):319–360, Oct 2012.

773 ² A. Hershko and A. Ciechanover. The ubiquitin system. *Annu Rev Biochem*, 67:425–479, 1998.

774 ³ A. L. Schwartz and A. Ciechanover. The ubiquitin-proteasome pathway and pathogenesis of
775 human diseases. *Annu Rev Med*, 50:57–74, 1999.

776 ⁴ G. A. Collins and A. L. Goldberg. The Logic of the 26S Proteasome. *Cell*, 169(5):792–806,
777 May 2017.

778 ⁵ A. Varshavsky. Naming a targeting signal. *Cell*, 64(1):13–15, Jan 1991.

779 ⁶ A. Ciechanover, A. Orian, and A. L. Schwartz. Ubiquitin-mediated proteolysis: biological
780 regulation via destruction. *Bioessays*, 22(5):442–451, May 2000.

781 ⁷ N. S. Abell, M. K. DeGorter, M. J. Gloudemans, E. Greenwald, K. S. Smith, Z. He, and
782 S. B. Montgomery. Multiple causal variants underlie genetic associations in humans. *Science*,
783 375(6586):1247–1254, 03 2022.

784 ⁸ J. Hanna and D. Finley. A proteasome for all occasions. *FEBS Lett*, 581(15):2854–2861, Jun
785 2007.

786 ⁹ T. Inobe and A. Matouschek. Paradigms of protein degradation by the proteasome. *Curr Opin*
787 *Struct Biol*, 24:156–164, Feb 2014.

788 ¹⁰ O. Coux, K. Tanaka, and A. L. Goldberg. Structure and functions of the 20S and 26S protea-
789 somes. *Annu Rev Biochem*, 65:801–847, 1996.

790 ¹¹ A. F. Kissellev, T. N. Akopian, K. M. Woo, and A. L. Goldberg. The sizes of peptides gener-
791 ated from protein by mammalian 26 and 20 S proteasomes. Implications for understanding the
792 degradative mechanism and antigen presentation. *J Biol Chem*, 274(6):3363–3371, Feb 1999.

793 ¹² J. Zhao, B. Zhai, S. P. Gygi, and A. L. Goldberg. mTOR inhibition activates overall protein
794 degradation by the ubiquitin proteasome system as well as by autophagy. *Proc Natl Acad Sci U*
795 *SA*, 112(52):15790–15797, Dec 2015.

796 ¹³ R. Christiano, H. Arlt, S. Kabatnik, N. Mejhert, Z. W. Lai, R. V. Farese, and T. C. Walther. A
797 Systematic Protein Turnover Map for Decoding Protein Degradation. *Cell Rep*, 33(6):108378,
798 11 2020.

799 ¹⁴ K. E. Kong, B. Fischer, M. Meurer, I. Kats, Z. Li, F. Rühle, J. D. Barry, D. Kirrmaier,
800 V. Chevyreva, B. J. San Luis, M. Costanzo, W. Huber, B. J. Andrews, C. Boone, M. Knop,
801 and A. Khmelinskii. Timer-based proteomic profiling of the ubiquitin-proteasome system re-
802 veals a substrate receptor of the GID ubiquitin ligase. *Mol Cell*, 81(11):2460–2476, 06 2021.

803 ¹⁵ V. Solomon, S. H. Lecker, A. L. Goldberg, and A. L. Goldberg. The N-end rule path-
804 way catalyzes a major fraction of the protein degradation in skeletal muscle. *J Biol Chem*,
805 273(39):25216–25222, Sep 1998.

806 ¹⁶ S. E. Smith, M. Koegl, and S. Jentsch. Role of the ubiquitin/proteasome system in regulated
807 protein degradation in *Saccharomyces cerevisiae*. *Biol Chem*, 377(7-8):437–446, 1996.

808 ¹⁷ D. Kornitzer and A. Ciechanover. Modes of regulation of ubiquitin-mediated protein degrada-
809 tion. *J Cell Physiol*, 182(1):1–11, Jan 2000.

810 ¹⁸ J. S. Bett. Proteostasis regulation by the ubiquitin system. *Essays Biochem*, 60(2):143–151, 10
811 2016.

812 ¹⁹ R. S. Marshall and R. D. Vierstra. Dynamic Regulation of the 26S Proteasome: From Synthesis
813 to Degradation. *Front Mol Biosci*, 6:40, 2019.

814 ²⁰ M. Schmidt and D. Finley. Regulation of proteasome activity in health and disease. *Biochim
815 Biophys Acta*, 1843(1):13–25, Jan 2014.

816 ²¹ R. Shringarpure and K. J. Davies. Protein turnover by the proteasome in aging and disease.
817 *Free Radic Biol Med*, 32(11):1084–1089, Jun 2002.

818 ²² C. Zheng, T. Geetha, and J. R. Babu. Failure of ubiquitin proteasome system: risk for neurode-
819 generative diseases. *Neurodegener Dis*, 14(4):161–175, 2014.

820 ²³ N. P. Dantuma and L. C. Bott. The ubiquitin-proteasome system in neurodegenerative diseases:
821 precipitating factor, yet part of the solution. *Front Mol Neurosci*, 7:70, 2014.

822 24 A. Varshavsky. N-degron and C-degron pathways of protein degradation. *Proc Natl Acad Sci*
823 *U S A*, 116(2):358–366, 01 2019.

824 25 Mahlon A. Collins, Gemechu Mekonnen, and Frank W. Albert. Variation in ubiquitin system
825 genes creates substrate-specific effects on proteasomal protein degradation. *bioRxiv*, 2021.

826 26 J. de Ligt, M. H. Willemsen, B. W. van Bon, T. Kleefstra, H. G. Yntema, T. Kroes, A. T. Vulto-
827 van Silfhout, D. A. Koolen, P. de Vries, C. Gilissen, M. del Rosario, A. Hoischen, H. Scheffer,
828 B. B. de Vries, H. G. Brunner, J. A. Veltman, and L. E. Vissers. Diagnostic exome sequencing
829 in persons with severe intellectual disability. *N Engl J Med*, 367(20):1921–1929, Nov 2012.

830 27 A. K. Agarwal, C. Xing, G. N. DeMartino, D. Mizrahi, M. D. Hernandez, A. B. Sousa,
831 L. Martínez de Villarreal, H. G. dos Santos, and A. Garg. PSMB8 encoding the B5i proteasome
832 subunit is mutated in joint contractures, muscle atrophy, microcytic anemia, and panniculitis-
833 induced lipodystrophy syndrome. *Am J Hum Genet*, 87(6):866–872, Dec 2010.

834 28 Y. Liu, Y. Ramot, A. Torrelo, A. S. Paller, N. Si, S. Babay, P. W. Kim, A. Sheikh, C. C. Lee,
835 Y. Chen, A. Vera, X. Zhang, R. Goldbach-Mansky, and A. Zlotogorski. Mutations in protea-
836 some subunit B type 8 cause chronic atypical neutrophilic dermatosis with lipodystrophy and
837 elevated temperature with evidence of genetic and phenotypic heterogeneity. *Arthritis Rheum*,
838 64(3):895–907, Mar 2012.

839 29 A. Kröll-Hermi, F. Ebstein, C. Stoetzel, V. Geoffroy, E. Schaefer, S. Scheidecker, S. Bär,
840 M. Takamiya, K. Kawakami, B. A. Zieba, F. Studer, V. Pelletier, C. Eyermann, C. Speeg-Schatz,
841 V. Laugel, D. Lipsker, F. Sandron, S. McGinn, A. Boland, J. F. Deleuze, L. Kuhn, J. Chicher,
842 P. Hammann, S. Friant, C. Etard, E. Krüger, J. Muller, U. Strähle, and H. Dollfus. Proteasome
843 subunit PSMC3 variants cause neurosensory syndrome combining deafness and cataract due to
844 proteotoxic stress. *EMBO Mol Med*, 12(7):e11861, 07 2020.

845 30 A. Brehm, Y. Liu, A. Sheikh, B. Marrero, E. Omoyinmi, Q. Zhou, G. Montealegre, A. Bian-
846 cotto, A. Reinhardt, A. Almeida de Jesus, M. Pelletier, W. L. Tsai, E. F. Remmers, L. Kardava,
847 S. Hill, H. Kim, H. J. Lachmann, A. Megarbane, J. J. Chae, J. Brady, R. D. Castillo, D. Brown,
848 A. V. Casano, L. Gao, D. Chapelle, Y. Huang, D. Stone, Y. Chen, F. Sotzny, C. C. Lee, D. L.
849 Kastner, A. Torrelo, A. Zlotogorski, S. Moir, M. Gadina, P. McCoy, R. Wesley, K. I. Rother,
850 K. Rother, P. W. Hildebrand, P. Brogan, E. Krüger, I. Aksentijevich, and R. Goldbach-Mansky.

851 Additive loss-of-function proteasome subunit mutations in CANDLE/PRAAS patients promote
852 type I IFN production. *J Clin Invest*, 125(11):4196–4211, Nov 2015.

853 ³¹ U. Tomaru, S. Takahashi, A. Ishizu, Y. Miyatake, A. Gohda, S. Suzuki, A. Ono, J. Ohara,
854 T. Baba, S. Murata, K. Tanaka, and M. Kasahara. Decreased proteasomal activity causes age-
855 related phenotypes and promotes the development of metabolic abnormalities. *Am J Pathol*,
856 180(3):963–972, Mar 2012.

857 ³² K. Ozaki, H. Sato, A. Iida, H. Mizuno, T. Nakamura, Y. Miyamoto, A. Takahashi, T. Tsunoda,
858 S. Ikegawa, N. Kamatani, M. Hori, Y. Nakamura, and T. Tanaka. A functional SNP in PSMA6
859 confers risk of myocardial infarction in the Japanese population. *Nat Genet*, 38(8):921–925,
860 Aug 2006.

861 ³³ M. G. Heckman, A. I. Soto-Ortolaza, N. N. Diehl, S. Rayaprolu, T. G. Brott, Z. K. Wszolek, J. F.
862 Meschia, and O. A. Ross. Genetic variants associated with myocardial infarction in the PSMA6
863 gene and Chr9p21 are also associated with ischaemic stroke. *Eur J Neurol*, 20(2):300–308, Feb
864 2013.

865 ³⁴ T. Sjakste, M. Kalis, I. Poudziunas, V. Pirags, M. Lazdins, L. Groop, and N. Sjakste. Association
866 of microsatellite polymorphisms of the human 14q13.2 region with type 2 diabetes mellitus in
867 Latvian and Finnish populations. *Ann Hum Genet*, 71(Pt 6):772–776, Nov 2007.

868 ³⁵ S. S. Wing. The UPS in diabetes and obesity. *BMC Biochem*, 9 Suppl 1:S6, Oct 2008.

869 ³⁶ E. L. Webb, M. F. Rudd, G. S. Sellick, R. El Galta, L. Bethke, W. Wood, O. Fletcher, S. Penegar,
870 L. Withey, M. Qureshi, N. Johnson, I. Tomlinson, R. Gray, J. Peto, and R. S. Houlston. Search
871 for low penetrance alleles for colorectal cancer through a scan of 1467 non-synonymous SNPs
872 in 2575 cases and 2707 controls with validation by kin-cohort analysis of 14 704 first-degree
873 relatives. *Hum Mol Genet*, 15(21):3263–3271, Nov 2006.

874 ³⁷ C. Zeng, K. Matsuda, W. H. Jia, J. Chang, S. S. Kweon, Y. B. Xiang, A. Shin, S. H. Jee,
875 D. H. Kim, B. Zhang, Q. Cai, X. Guo, J. Long, N. Wang, R. Courtney, Z. Z. Pan, C. Wu,
876 A. Takahashi, M. H. Shin, K. Matsuo, F. Matsuda, Y. T. Gao, J. H. Oh, S. Kim, K. J. Jung, Y. O.
877 Ahn, Z. Ren, H. L. Li, J. Wu, J. Shi, W. Wen, G. Yang, B. Li, B. T. Ji, H. Brenner, R. E. Schoen,
878 S. Küry, S. B. Gruber, F. R. Schumacher, S. L. Stenzel, G. Casey, J. L. Hopper, M. A. Jenkins,
879 H. R. Kim, J. Y. Jeong, J. W. Park, K. Tajima, S. H. Cho, M. Kubo, X. O. Shu, D. Lin, Y. X.

880 Zeng, W. Zheng, J. A. Baron, S. I. Berndt, S. Bezieau, H. Brenner, B. J. Caan, C. S. Carlson,
881 G. Casey, A. T. Chan, J. Chang-Claude, S. J. Chanock, D. V. Conti, K. Curtis, D. Duggan,
882 C. S. Fuchs, S. Gallinger, E. L. Giovannucci, S. B. Gruber, R. W. Haile, T. A. Harrison, R. B.
883 Hayes, M. Hoffmeister, J. L. Hopper, L. Hsu, T. J. Hudson, D. J. Hunter, C. M. Hutter, R. D.
884 Jackson, M. A. Jenkins, S. Jiao, S. Küry, L. Le Marchand, M. Lemire, N. M. Lindor, J. Ma,
885 P. A. Newcomb, U. Peters, J. D. Potter, C. Qu, R. E. Schoen, F. R. Schumacher, D. Seminara,
886 M. L. Slattery, S. N. Thibodeau, E. White, B. W. Zanke, K. Blalock, P. T. Campbell, G. Casey,
887 D. V. Conti, C. K. Edlund, J. Figueiredo, W. J. Gauderman, J. Gong, R. C. Green, S. B. Gruber,
888 J. F. Harju, T. A. Harrison, E. J. Jacobs, M. A. Jenkins, S. Jiao, L. Li, Y. Lin, F. J. Manion,
889 V. Moreno, B. Mukherjee, U. Peters, L. Raskin, F. R. Schumacher, D. Seminara, G. Severi,
890 S. L. Stenzel, and D. C. Thomas. Identification of Susceptibility Loci and Genes for Colorectal
891 Cancer Risk. *Gastroenterology*, 150(7):1633–1645, 06 2016.

892 ³⁸ K. Shameer, J. C. Denny, K. Ding, H. Jouni, D. R. Crosslin, M. de Andrade, C. G. Chute,
893 P. Peissig, J. A. Pacheco, R. Li, L. Bastarache, A. N. Kho, M. D. Ritchie, D. R. Masys, R. L.
894 Chisholm, E. B. Larson, C. A. McCarty, D. M. Roden, G. P. Jarvik, and I. J. Kullo. A genome-
895 and phenotype-wide association study to identify genetic variants influencing platelet count and
896 volume and their pleiotropic effects. *Hum Genet*, 133(1):95–109, Jan 2014.

897 ³⁹ P. E. Stuart, R. P. Nair, E. Ellinghaus, J. Ding, T. Tejasvi, J. E. Gudjonsson, Y. Li, S. Weidinger,
898 B. Eberlein, C. Gieger, H. E. Wichmann, M. Kunz, R. Ike, G. G. Krueger, A. M. Bowcock,
899 U. Mrowietz, H. W. Lim, J. J. Voorhees, G. R. Abecasis, M. Weichenthal, A. Franke, P. Rahman,
900 D. D. Gladman, and J. T. Elder. Genome-wide association analysis identifies three psoriasis
901 susceptibility loci. *Nat Genet*, 42(11):1000–1004, Nov 2010.

902 ⁴⁰ E. Iio, K. Matsuura, N. Nishida, S. Maekawa, N. Enomoto, M. Nakagawa, N. Sakamoto, H. Yat-
903 suhashi, M. Kurosaki, N. Izumi, Y. Hiasa, N. Masaki, T. Ide, K. Hino, A. Tamori, M. Honda,
904 S. Kaneko, S. Mochida, H. Nomura, S. Nishiguchi, C. Okuse, Y. Itoh, H. Yoshiji, I. Sakaida,
905 K. Yamamoto, H. Watanabe, S. Hige, A. Matsumoto, E. Tanaka, K. Tokunaga, and Y. Tanaka.
906 Genome-wide association study identifies a PSMD3 variant associated with neutropenia in
907 interferon-based therapy for chronic hepatitis C. *Hum Genet*, 134(3):279–289, Mar 2015.

908 ⁴¹ X. Song, G. Zhu, S. Hou, Y. Ren, M. W. Amjid, W. Li, and W. Guo.). *Front Plant Sci*,
909 12:695503, 2021.

910 ⁴² A. Belle, A. Tanay, L. Bitincka, R. Shamir, and E. K. O’Shea. Quantification of protein half-lives in the budding yeast proteome. *Proc Natl Acad Sci U S A*, 103(35):13004–13009, Aug 2006.

911

912

913 ⁴³ R. Christiano, N. Nagaraj, F. Frohlich, and T. C. Walther. Global proteome turnover analyses of the Yeasts *S. cerevisiae* and *S. pombe*. *Cell Rep*, 9(5):1959–1965, Dec 2014.

914

915 ⁴⁴ B. Schwanhausser, D. Busse, N. Li, G. Dittmar, J. Schuchhardt, J. Wolf, W. Chen, and M. Selbach. Global quantification of mammalian gene expression control. *Nature*, 473(7347):337–342, May 2011.

916

917

918 ⁴⁵ D. A. Kraut and A. Matouschek. Proteasomal degradation from internal sites favors partial proteolysis via remote domain stabilization. *ACS Chem Biol*, 6(10):1087–1095, Oct 2011.

919

920 ⁴⁶ S. Prakash, L. Tian, K. S. Ratliff, R. E. Lehotzky, and A. Matouschek. An unstructured initiation site is required for efficient proteasome-mediated degradation. *Nat Struct Mol Biol*, 11(9):830–837, Sep 2004.

921

922

923 ⁴⁷ K. Martinez-Fonts, C. Davis, T. Tomita, S. Elsasser, A. R. Nager, Y. Shi, D. Finley, and A. Matouschek. The proteasome 19S cap and its ubiquitin receptors provide a versatile recognition platform for substrates. *Nat Commun*, 11(1):477, 01 2020.

924

925

926 ⁴⁸ D. A. Kraut, E. Israeli, E. K. Schrader, A. Patil, K. Nakai, D. Nanavati, T. Inobe, and A. Matouschek. Sequence- and species-dependence of proteasomal processivity. *ACS Chem Biol*, 7(8):1444–1453, Aug 2012.

927

928

929 ⁴⁹ H. Yu, A. K. Singh Gautam, S. R. Wilmington, D. Wylie, K. Martinez-Fonts, G. Kago, M. Warburton, S. Chavali, T. Inobe, I. J. Finkelstein, M. M. Babu, and A. Matouschek. Conserved Sequence Preferences Contribute to Substrate Recognition by the Proteasome. *J Biol Chem*, 291(28):14526–14539, Jul 2016.

930

931

932

933 ⁵⁰ M. A. Hoyt, J. Zich, J. Takeuchi, M. Zhang, C. Govaerts, and P. Coffino. Glycine-alanine repeats impair proper substrate unfolding by the proteasome. *EMBO J*, 25(8):1720–1729, Apr 2006.

934

935

936 51 P. Koodathingal, N. E. Jaffe, D. A. Kraut, S. Prakash, S. Fishbain, C. Herman, and A. Ma-
937 touschek. ATP-dependent proteases differ substantially in their ability to unfold globular pro-
938 teins. *J Biol Chem*, 284(28):18674–18684, Jul 2009.

939 52 J. Abi Habib, E. De Plaen, V. Stroobant, D. Zivkovic, M. P. Bousquet, B. Guillaume, K. Wahni,
940 J. Messens, A. Busse, N. Vigneron, and B. J. Van den Eynde. Efficiency of the four proteasome
941 subtypes to degrade ubiquitinated or oxidized proteins. *Sci Rep*, 10(1):15765, 09 2020.

942 53 J. Abi Habib, J. Lesenfants, N. Vigneron, and B. J. Van den Eynde. Functional Differences
943 between Proteasome Subtypes. *Cells*, 11(3), 01 2022.

944 54 M. Bajorek, D. Finley, and M. H. Glickman. Proteasome disassembly and downregulation is
945 correlated with viability during stationary phase. *Curr Biol*, 13(13):1140–1144, Jul 2003.

946 55 T. Mayor, M. Sharon, and M. H. Glickman. Tuning the proteasome to brighten the end of the
947 journey. *Am J Physiol Cell Physiol*, 311(5):C793–C804, Nov 2016.

948 56 R. Shringarpure, T. Grune, J. Mehlhase, and K. J. Davies. Ubiquitin conjugation is not required
949 for the degradation of oxidized proteins by proteasome. *J Biol Chem*, 278(1):311–318, Jan
950 2003.

951 57 J. S. Bloom, I. M. Ehrenreich, W. T. Loo, T. L. Lite, and L. Kruglyak. Finding the sources of
952 missing heritability in a yeast cross. *Nature*, 494(7436):234–237, Feb 2013.

953 58 H. C. Yen, Q. Xu, D. M. Chou, Z. Zhao, and S. J. Elledge. Global protein stability profiling in
954 mammalian cells. *Science*, 322(5903):918–923, Nov 2008.

955 59 Y. Geffen, A. Appleboim, R. G. Gardner, N. Friedman, R. Sadeh, and T. Ravid. Mapping the
956 Landscape of a Eukaryotic Degronome. *Mol Cell*, 63(6):1055–1065, 09 2016.

957 60 H. Ella, Y. Reiss, and T. Ravid. The Hunt for Degrons of the 26S Proteasome. *Biomolecules*,
958 9(6), 06 2019.

959 61 M. Zhang, C. M. Pickart, and P. Coffino. Determinants of proteasome recognition of ornithine
960 decarboxylase, a ubiquitin-independent substrate. *EMBO J*, 22(7):1488–1496, Apr 2003.

961 62 J. Takeuchi, H. Chen, M. A. Hoyt, and P. Coffino. Structural elements of the ubiquitin-
962 independent proteasome degron of ornithine decarboxylase. *Biochem J*, 410(2):401–407, Mar
963 2008.

964 ⁶³ Y. Xie and A. Varshavsky. RPN4 is a ligand, substrate, and transcriptional regulator of the 26S
965 proteasome: a negative feedback circuit. *Proc. Natl. Acad. Sci. U.S.A.*, 98(6):3056–3061, Mar
966 2001.

967 ⁶⁴ S. W. Ha, D. Ju, and Y. Xie. The N-terminal domain of Rpn4 serves as a portable ubiquitin-
968 independent degron and is recognized by specific 19S RP subunits. *Biochem Biophys Res
969 Commun*, 419(2):226–231, Mar 2012.

970 ⁶⁵ D. Ju and Y. Xie. Proteasomal degradation of RPN4 via two distinct mechanisms, ubiquitin-
971 dependent and -independent. *J Biol Chem*, 279(23):23851–23854, Jun 2004.

972 ⁶⁶ J. Erales and P. Coffino. Ubiquitin-independent proteasomal degradation. *Biochim Biophys
973 Acta*, 1843(1):216–221, Jan 2014.

974 ⁶⁷ M. A. Hoyt, M. Zhang, and P. Coffino. Ubiquitin-independent mechanisms of mouse ornithine
975 decarboxylase degradation are conserved between mammalian and fungal cells. *J Biol Chem*,
976 278(14):12135–12143, Apr 2003.

977 ⁶⁸ G. Mannhaupt, R. Schnall, V. Karpov, I. Vetter, and H. Feldmann. Rpn4p acts as a transcription
978 factor by binding to PACE, a nonamer box found upstream of 26S proteasomal and other genes
979 in yeast. *FEBS Lett*, 450(1-2):27–34, Apr 1999.

980 ⁶⁹ A. V. Morozov, D. S. Spasskaya, D. S. Karpov, and V. L. Karpov. The central domain of yeast
981 transcription factor Rpn4 facilitates degradation of reporter protein in human cells. *FEBS Lett*,
982 588(20):3713–3719, Oct 2014.

983 ⁷⁰ M. A. Hoyt, M. Zhang, and P. Coffino. Probing the ubiquitin/proteasome system with ornithine
984 decarboxylase, a ubiquitin-independent substrate. *Methods Enzymol*, 398:399–413, 2005.

985 ⁷¹ I. Momose, D. Tatsuda, S. Ohba, T. Masuda, D. Ikeda, and A. Nomoto. In vivo imaging of pro-
986 teasome inhibition using a proteasome-sensitive fluorescent reporter. *Cancer Sci*, 103(9):1730–
987 1736, Sep 2012.

988 ⁷² A. Khmelinskii and M. Knop. Analysis of protein dynamics with tandem fluorescent protein
989 timers. *Methods Mol. Biol.*, 1174:195–210, 2014.

990 73 A. Khmelinskii, M. Meurer, C. T. Ho, B. Besenbeck, J. F?ller, M. K. Lemberg, B. Bukau,
991 A. Mogk, and M. Knop. Incomplete proteasomal degradation of green fluorescent proteins in
992 the context of tandem fluorescent protein timers. *Mol. Biol. Cell*, 27(2):360–370, Jan 2016.

993 74 J. D. Pedelacq, S. Cabantous, T. Tran, T. C. Terwilliger, and G. S. Waldo. Engineering and
994 characterization of a superfolder green fluorescent protein. *Nat. Biotechnol.*, 24(1):79–88, Jan
995 2006.

996 75 N. C. Shaner, R. E. Campbell, P. A. Steinbach, B. N. Giepmans, A. E. Palmer, and R. Y. Tsien.
997 Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp.
998 red fluorescent protein. *Nat. Biotechnol.*, 22(12):1567–1572, Dec 2004.

999 76 A. Khmelinskii, P. J. Keller, A. Bartosik, M. Meurer, J. D. Barry, B. R. Mardin, A. Kaufmann,
1000 S. Trautmann, M. Wachsmuth, G. Pereira, W. Huber, E. Schiebel, and M. Knop. Tandem
1001 fluorescent protein timers for in vivo analysis of protein dynamics. *Nat. Biotechnol.*, 30(7):708–
1002 714, Jun 2012.

1003 77 F. W. Albert, J. S. Bloom, J. Siegel, L. Day, and L. Kruglyak. Genetics of trans-regulatory
1004 variation in gene expression. *Elife*, 7, 07 2018.

1005 78 F. W. Albert, S. Treusch, A. H. Shockley, J. S. Bloom, and L. Kruglyak. Genetics of single-cell
1006 protein abundance variation in large yeast populations. *Nature*, 506(7489):494–497, Feb 2014.

1007 79 C. Brion, S. M. Lutz, and F. W. Albert. Simultaneous quantification of mRNA and protein in
1008 single cells reveals post-transcriptional effects of genetic variation. *Elife*, 9, Nov 2020.

1009 80 M. A. Hoyt, S. McDonough, S. A. Pimpl, H. Scheel, K. Hofmann, and P. Coffino. A genetic
1010 screen for *Saccharomyces cerevisiae* mutants affecting proteasome function, using a ubiquitin-
1011 independent substrate. *Yeast*, 25(3):199–217, Mar 2008.

1012 81 J. Takeuchi, H. Chen, and P. Coffino. Proteasome substrate degradation requires association
1013 plus extended peptide. *EMBO J*, 26(1):123–131, Jan 2007.

1014 82 D. Ju, H. Xu, X. Wang, and Y. Xie. The transcription activation domain of Rpn4 is separate
1015 from its degrons. *Int J Biochem Cell Biol*, 42(2):282–286, Feb 2010.

1016 83 I. M. Ehrenreich, J. P. Gerke, and L. Kruglyak. Genetic dissection of complex traits in yeast:
1017 insights from studies of gene expression and other phenotypes in the BYxRM cross. *Cold*
1018 *Spring Harb Symp Quant Biol*, 74:145–153, 2009.

1019 84 I. M. Ehrenreich, N. Torabi, Y. Jia, J. Kent, S. Martis, J. A. Shapiro, D. Gresham, A. A. Caudy,
1020 and L. Kruglyak. Dissection of genetically complex traits with extremely large pools of yeast
1021 segregants. *Nature*, 464(7291):1039–1042, Apr 2010.

1022 85 R. W. Michelmore, I. Paran, and R. V. Kesseli. Identification of markers linked to disease-
1023 resistance genes by bulked segregant analysis: a rapid method to detect markers in specific
1024 genomic regions by using segregating populations. *Proc Natl Acad Sci U S A*, 88(21):9828–
1025 9832, Nov 1991.

1026 86 A. Varshavsky. The N-end rule pathway and regulation by proteolysis. *Protein Sci.*, 20(8):1298–
1027 1345, Aug 2011.

1028 87 C. S. Hwang, A. Shemorry, and A. Varshavsky. N-terminal acetylation of cellular proteins
1029 creates specific degradation signals. *Science*, 327(5968):973–977, Feb 2010.

1030 88 A. Bachmair, D. Finley, and A. Varshavsky. In vivo half-life of a protein is a function of its
1031 amino-terminal residue. *Science*, 234(4773):179–186, Oct 1986.

1032 89 R. T. Baker and A. Varshavsky. Yeast N-terminal amidase. A new enzyme and component of
1033 the N-end rule pathway. *J Biol Chem*, 270(20):12065–12074, May 1995.

1034 90 R. B. Wickner. MKT1, a nonessential *Saccharomyces cerevisiae* gene with a temperature-
1035 dependent effect on replication of M2 double-stranded RNA. *J Bacteriol*, 169(11):4941–4945,
1036 Nov 1987.

1037 91 T. Tadauchi, T. Inada, K. Matsumoto, and K. Irie. Posttranscriptional regulation of HO expres-
1038 sion by the Mkt1-Pbp1 complex. *Mol Cell Biol*, 24(9):3670–3681, May 2004.

1039 92 H. Sinha, B. P. Nicholson, L. M. Steinmetz, and J. H. McCusker. Complex genetic interactions
1040 in a quantitative trait locus. *PLoS Genet*, 2(2):e13, Feb 2006.

1041 93 A. M. Deutschbauer and R. W. Davis. Quantitative trait loci mapped to single-nucleotide reso-
1042 lution in yeast. *Nat Genet*, 37(12):1333–1340, Dec 2005.

1043 ⁹⁴ K. Tanaka, M. Nakafuku, F. Tamanoi, Y. Kaziro, K. Matsumoto, and A. Toh-e. IRA2, a sec-
1044 ond gene of *Saccharomyces cerevisiae* that encodes a protein with a domain homologous to
1045 mammalian ras GTPase-activating protein. *Mol Cell Biol*, 10(8):4303–4313, Aug 1990.

1046 ⁹⁵ E. N. Smith and L. Kruglyak. Gene-environment interaction in yeast gene expression. *PLoS
1047 Biol*, 6(4):e83, Apr 2008.

1048 ⁹⁶ S. Lutz, K. Van Dyke, M. A. Feraru, and F. W. Albert. Multiple epistatic DNA variants in a
1049 single gene affect gene expression in trans. *Genetics*, 220(1), 01 2022.

1050 ⁹⁷ L. A. Howell, A. K. Peterson, and R. J. Tomko. Proteasome subunit a1 overexpression prefer-
1051 entially drives canonical proteasome biogenesis and enhances stress tolerance in yeast. *Sci Rep*,
1052 9(1):12418, 08 2019.

1053 ⁹⁸ D. Vilchez, L. Boyer, I. Morantte, M. Lutz, C. Merkwirth, D. Joyce, B. Spencer, L. Page,
1054 E. Masliah, W. T. Berggren, F. H. Gage, and A. Dillin. Increased proteasome activity in human
1055 embryonic stem cells is regulated by PSMD11. *Nature*, 489(7415):304–308, Sep 2012.

1056 ⁹⁹ C. G. de Boer and T. R. Hughes. YeTFaSCo: a database of evaluated yeast transcription factor
1057 sequence specificities. *Nucleic Acids Res*, 40(Database issue):D169–179, Jan 2012.

1058 ¹⁰⁰ G. Owsianik, L. Balzi l, and M. Ghislain. Control of 26S proteasome expression by tran-
1059 scription factors regulating multidrug resistance in *Saccharomyces cerevisiae*. *Mol Microbiol*,
1060 43(5):1295–1308, Mar 2002.

1061 ¹⁰¹ X. Wang, J. Yen, P. Kaiser, and L. Huang. Regulation of the 26S proteasome complex during
1062 oxidative stress. *Sci Signal*, 3(151):ra88, Dec 2010.

1063 ¹⁰² H. Salin, V. Fardeau, E. Piccini, G. Lelandais, V. Tanty, S. Lemoine, C. Jacq, and F. Devaux.
1064 Structure and properties of transcriptional networks driving selenite stress response in yeasts.
1065 *BMC Genomics*, 9:333, Jul 2008.

1066 ¹⁰³ J. Peter, M. De Chiara, A. Friedrich, J. X. Yue, D. Pfleiger, A. Bergström, A. Sigwalt, B. Barre,
1067 K. Freel, A. Llored, C. Cruaud, K. Labadie, J. M. Aury, B. Istace, K. Lebrigand, P. Barbry,
1068 S. Engelen, A. Lemainque, P. Wincker, G. Liti, and J. Schacherer. Genome evolution across
1069 1,011 *Saccharomyces cerevisiae* isolates. *Nature*, 556(7701):339–344, 04 2018.

1070 104 A. N. Zyrina, E. A. Smirnova, O. V. Markova, F. F. Severin, and D. A. Knorre. Mitochondrial
1071 Superoxide Dismutase and Yap1p Act as a Signaling Module Contributing to Ethanol Tolerance
1072 of the Yeast *Saccharomyces cerevisiae*. *Appl Environ Microbiol*, 83(3), 02 2017.

1073 105 K. Flick and P. Kaiser. Protein degradation and the stress response. *Semin Cell Dev Biol*,
1074 23(5):515–522, Jul 2012.

1075 106 J. Hanna, A. Meides, D. P. Zhang, and D. Finley. A ubiquitin stress response induces altered
1076 proteasome composition. *Cell*, 129(4):747–759, May 2007.

1077 107 A. V. Gomes. Genetics of proteasome diseases. *Scientifica (Cairo)*, 2013:637629, 2013.

1078 108 K. Arima, A. Kinoshita, H. Mishima, N. Kanazawa, T. Kaneko, T. Mizushima, K. Ichinose,
1079 H. Nakamura, A. Tsujino, A. Kawakami, M. Matsunaka, S. Kasagi, S. Kawano, S. Kumagai,
1080 K. Ohmura, T. Mimori, M. Hirano, S. Ueno, K. Tanaka, M. Tanaka, I. Toyoshima, H. Sug-
1081 ino, A. Yamakawa, K. Tanaka, N. Niikawa, F. Furukawa, S. Murata, K. Eguchi, H. Ida, and
1082 K. Yoshiura. Proteasome assembly defect due to a proteasome subunit beta type 8 (PSMB8)
1083 mutation causes the autoinflammatory disorder, Nakajo-Nishimura syndrome. *Proc Natl Acad
1084 Sci U S A*, 108(36):14914–14919, Sep 2011.

1085 109 D. Komander and M. Rape. The ubiquitin code. *Annu Rev Biochem*, 81:203–229, 2012.

1086 110 F. Ohtake, Y. Saeki, S. Ishido, J. Kanno, and K. Tanaka. The K48-K63 Branched Ubiquitin
1087 Chain Regulates NF-KB Signaling. *Mol Cell*, 64(2):251–266, 10 2016.

1088 111 M. E. French, C. F. Koehler, and T. Hunter. Emerging functions of branched ubiquitin chains.
1089 *Cell Discov*, 7(1):6, Jan 2021.

1090 112 Y. Murakami, S. Matsufuji, T. Kameji, S. Hayashi, K. Igarashi, T. Tamura, K. Tanaka, and
1091 A. Ichihara. Ornithine decarboxylase is degraded by the 26S proteasome without ubiquitination.
1092 *Nature*, 360(6404):597–599, Dec 1992.

1093 113 S. Kors, K. Geijtenbeek, E. Reits, and S. Schipper-Krom. Regulation of Proteasome Activity
1094 by (Post-)transcriptional Mechanisms. *Front Mol Biosci*, 6:48, 2019.

1095 114 C. Pla-Prats and N. H. Thoma. Quality control of protein complex assembly by the ubiquitin-
1096 proteasome system. *Trends Cell Biol*, Mar 2022.

1097 115 C. Padovani, P. Jevtic, and M. Rape. Quality control of protein complex composition. *Mol Cell*,
1098 82(8):1439–1450, Apr 2022.

1099 116 Y. Saeki, A. Toh-E, T. Kudo, H. Kawamura, and K. Tanaka. Multiple proteasome-interacting
1100 proteins assist the assembly of the yeast 19S regulatory particle. *Cell*, 137(5):900–913, May
1101 2009.

1102 117 A. Khmelinskii, E. Blaszcak, M. Pantazopoulou, B. Fischer, D. J. Omnis, G. Le Dez,
1103 A. Brossard, A. Gunnarsson, J. D. Barry, M. Meurer, D. Kirrmaier, C. Boone, W. Huber,
1104 G. Rabut, P. O. Ljungdahl, and M. Knop. Protein quality control at the inner nuclear mem-
1105 brane. *Nature*, 516(7531):410–413, Dec 2014.

1106 118 M. Zhang, A. I. MacDonald, M. A. Hoyt, and P. Coffino. Proteasomes begin ornithine decar-
1107 boxylase digestion at the C terminus. *J Biol Chem*, 279(20):20959–20965, May 2004.

1108 119 A. L. Goldstein and J. H. McCusker. Three new dominant drug resistance cassettes for gene
1109 disruption in *Saccharomyces cerevisiae*. *Yeast*, 15(14):1541–1553, Oct 1999.

1110 120 J. H. Zwolshen and J. K. Bhattacharjee. Genetic and biochemical properties of thialysine-
1111 resistant mutants of *Saccharomyces cerevisiae*. *J Gen Microbiol*, 122(2):281–287, Feb 1981.

1112 121 A. Baryshnikova, M. Costanzo, S. Dixon, F. J. Vizeacoumar, C. L. Myers, B. Andrews, and
1113 C. Boone. Synthetic genetic array (SGA) analysis in *Saccharomyces cerevisiae* and *Schizosac-*
1114 *charomyces pombe*. *Methods Enzymol*, 470:145–179, 2010.

1115 122 E. Kuzmin, M. Costanzo, B. Andrews, and C. Boone. Synthetic Genetic Array Analysis. *Cold*
1116 *Spring Harb Protoc*, 2016(4):pdb.prot088807, Apr 2016.

1117 123 R. D. Gietz and R. H. Schiestl. High-efficiency yeast transformation using the LiAc/SS carrier
1118 DNA/PEG method. *Nat Protoc*, 2(1):31–34, 2007.

1119 124 A. C. Ward. Rapid analysis of yeast transformants using colony-PCR. *Biotechniques*, 13(3):350,
1120 Sep 1992.

1121 125 R Core Team. *R: A Language and Environment for Statistical Computing*. R Foundation for
1122 Statistical Computing, Vienna, Austria, 2021.

1123 126 F. Hahne, N. LeMeur, R. R. Brinkman, B. Ellis, P. Haaland, D. Sarkar, J. Spidlen, E. Strain, and
1124 R. Gentleman. flowCore: a Bioconductor package for high throughput flow cytometry. *BMC*
1125 *Bioinformatics*, 10:106, Apr 2009.

1126 127 Douglas Bates, Martin Machler, Ben Bolker, and Steve Walker. Fitting linear mixed-effects
1127 models using lme4. *Journal of Statistical Software*, 67(1):1–48, 2015.

1128 128 Alexandra Kuznetsova, Per B. Brockhoff, and Rune H. B. Christensen. lmerTest package: Tests
1129 in linear mixed effects models. *Journal of Statistical Software*, 82(13):1–26, 2017.

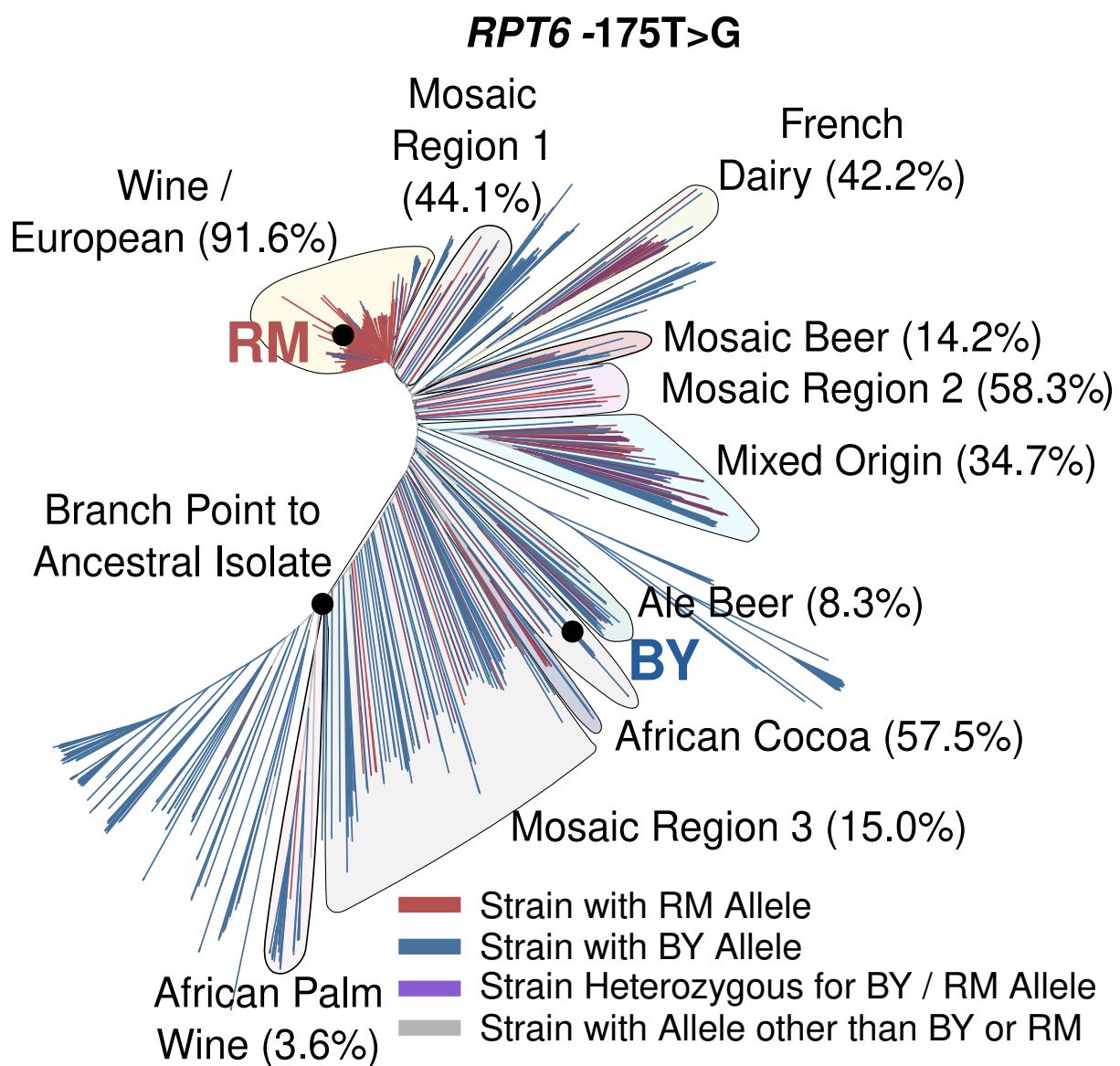
1130 129 H. Li and R. Durbin. Fast and accurate short read alignment with Burrows-Wheeler transform.
1131 *Bioinformatics*, 25(14):1754–1760, Jul 2009.

1132 130 H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G. Marth, G. Abecasis, and
1133 R. Durbin. The Sequence Alignment/Map format and SAMtools. *Bioinformatics*, 25(16):2078–
1134 2079, Aug 2009.

1135 131 M. D. Edwards and D. K. Gifford. High-resolution genetic mapping with pooled sequencing.
1136 *BMC Bioinformatics*, 13 Suppl 6:S8, Apr 2012.

1137 132 W. J. Kent, C. W. Sugnet, T. S. Furey, K. M. Roskin, T. H. Pringle, A. M. Zahler, and D. Haus-
1138 sler. The human genome browser at UCSC. *Genome Res*, 12(6):996–1006, Jun 2002.

1139 133 M. Haeussler, K. Schönig, H. Eckert, A. Eschstruth, J. Mianné, J. B. Renaud, S. Schneider-
1140 Maunoury, A. Shkumatava, L. Teboul, J. Kent, J. S. Joly, and J. P. Concorde. Evaluation of
1141 off-target and on-target scoring algorithms and integration into the guide RNA selection tool
1142 CRISPOR. *Genome Biol*, 17(1):148, 07 2016.


1143 134 J. G. Doench, N. Fusi, M. Sullender, M. Hegde, E. W. Vaimberg, K. F. Donovan, I. Smith,
1144 Z. Tothova, C. Wilen, R. Orchard, H. W. Virgin, J. Listgarten, and D. E. Root. Optimized
1145 sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. *Nat*
1146 *Biotechnol*, 34(2):184–191, Feb 2016.

1147 135 C. S. Hoffman and F. Winston. A ten-minute DNA preparation from yeast efficiently releases
1148 autonomous plasmids for transformation of *Escherichia coli*. *Gene*, 57(2-3):267–272, 1987.

1149 ¹³⁶ R. M. Horton, H. D. Hunt, S. N. Ho, J. K. Pullen, and L. R. Pease. Engineering hybrid genes
1150 without the use of restriction enzymes: gene splicing by overlap extension. *Gene*, 77(1):61–68,
1151 Apr 1989.

1152 **Supporting Information**

1153 **Supplementary Figure**

1154 **Supplementary Figure 1.** Tree diagram showing the distribution of the RPT6 -175 allele among
1155 a panel of 1,011 *S. cerevisiae* strains. Clades with the RPT6 -175 RM allele are indicated along
1156 with its frequency in that clade in parentheses.

1157

1158 **Supplementary Table Captions**

1159 **Supplementary Table 1.** *Overlap of proteasome activity QTLs with known causal genes for*
1160 *N-end Rule QTLs.*

1161 **Supplementary Table 2.** *Plasmids used in the study.*

1162 **Supplementary Table 3.** *Yeast strains used in the study.*

1163 **Supplementary Table 4.** *Oligonucleotides used in the study.*

1164